1 //===- InstrScheduling.cpp - Generic Instruction Scheduling support -------===//
3 // This file implements the llvm/CodeGen/InstrScheduling.h interface, along with
4 // generic support routines for instruction scheduling.
6 //===----------------------------------------------------------------------===//
8 #include "SchedPriorities.h"
9 #include "llvm/CodeGen/MachineInstr.h"
10 #include "llvm/CodeGen/MachineCodeForInstruction.h"
11 #include "llvm/CodeGen/MachineCodeForBasicBlock.h"
12 #include "llvm/CodeGen/MachineCodeForMethod.h"
13 #include "llvm/Analysis/LiveVar/FunctionLiveVarInfo.h" // FIXME: Remove when modularized better
14 #include "llvm/Target/TargetMachine.h"
15 #include "llvm/BasicBlock.h"
16 #include "llvm/Instruction.h"
17 #include "Support/CommandLine.h"
22 SchedDebugLevel_t SchedDebugLevel;
24 static cl::opt<SchedDebugLevel_t, true>
25 SDL_opt("dsched", cl::Hidden, cl::location(SchedDebugLevel),
26 cl::desc("enable instruction scheduling debugging information"),
28 clEnumValN(Sched_NoDebugInfo, "n", "disable debug output"),
29 clEnumValN(Sched_Disable, "off", "disable instruction scheduling"),
30 clEnumValN(Sched_PrintMachineCode, "y", "print machine code after scheduling"),
31 clEnumValN(Sched_PrintSchedTrace, "t", "print trace of scheduling actions"),
32 clEnumValN(Sched_PrintSchedGraphs, "g", "print scheduling graphs"),
36 //************************* Internal Data Types *****************************/
39 class SchedulingManager;
42 //----------------------------------------------------------------------
45 // Represents a group of instructions scheduled to be issued
47 //----------------------------------------------------------------------
49 class InstrGroup: public NonCopyable {
51 inline const SchedGraphNode* operator[](unsigned int slotNum) const {
52 assert(slotNum < group.size());
53 return group[slotNum];
57 friend class InstrSchedule;
59 inline void addInstr(const SchedGraphNode* node, unsigned int slotNum) {
60 assert(slotNum < group.size());
61 group[slotNum] = node;
64 /*ctor*/ InstrGroup(unsigned int nslots)
65 : group(nslots, NULL) {}
67 /*ctor*/ InstrGroup(); // disable: DO NOT IMPLEMENT
70 vector<const SchedGraphNode*> group;
74 //----------------------------------------------------------------------
75 // class ScheduleIterator:
77 // Iterates over the machine instructions in the for a single basic block.
78 // The schedule is represented by an InstrSchedule object.
79 //----------------------------------------------------------------------
81 template<class _NodeType>
82 class ScheduleIterator : public forward_iterator<_NodeType, ptrdiff_t> {
86 const InstrSchedule& S;
88 typedef ScheduleIterator<_NodeType> _Self;
90 /*ctor*/ inline ScheduleIterator(const InstrSchedule& _schedule,
93 : cycleNum(_cycleNum), slotNum(_slotNum), S(_schedule) {
97 /*ctor*/ inline ScheduleIterator(const _Self& x)
98 : cycleNum(x.cycleNum), slotNum(x.slotNum), S(x.S) {}
100 inline bool operator==(const _Self& x) const {
101 return (slotNum == x.slotNum && cycleNum== x.cycleNum && &S==&x.S);
104 inline bool operator!=(const _Self& x) const { return !operator==(x); }
106 inline _NodeType* operator*() const {
107 assert(cycleNum < S.groups.size());
108 return (*S.groups[cycleNum])[slotNum];
110 inline _NodeType* operator->() const { return operator*(); }
112 _Self& operator++(); // Preincrement
113 inline _Self operator++(int) { // Postincrement
114 _Self tmp(*this); ++*this; return tmp;
117 static _Self begin(const InstrSchedule& _schedule);
118 static _Self end( const InstrSchedule& _schedule);
121 inline _Self& operator=(const _Self& x); // DISABLE -- DO NOT IMPLEMENT
122 void skipToNextInstr();
126 //----------------------------------------------------------------------
127 // class InstrSchedule:
129 // Represents the schedule of machine instructions for a single basic block.
130 //----------------------------------------------------------------------
132 class InstrSchedule: public NonCopyable {
134 const unsigned int nslots;
135 unsigned int numInstr;
136 vector<InstrGroup*> groups; // indexed by cycle number
137 vector<cycles_t> startTime; // indexed by node id
140 typedef ScheduleIterator<SchedGraphNode> iterator;
141 typedef ScheduleIterator<const SchedGraphNode> const_iterator;
144 const_iterator begin() const;
146 const_iterator end() const;
148 public: // constructors and destructor
149 /*ctor*/ InstrSchedule (unsigned int _nslots,
150 unsigned int _numNodes);
151 /*dtor*/ ~InstrSchedule ();
153 public: // accessor functions to query chosen schedule
154 const SchedGraphNode* getInstr (unsigned int slotNum,
156 const InstrGroup* igroup = this->getIGroup(c);
157 return (igroup == NULL)? NULL : (*igroup)[slotNum];
160 inline InstrGroup* getIGroup (cycles_t c) {
161 if ((unsigned)c >= groups.size())
163 if (groups[c] == NULL)
164 groups[c] = new InstrGroup(nslots);
168 inline const InstrGroup* getIGroup (cycles_t c) const {
169 assert((unsigned)c < groups.size());
173 inline cycles_t getStartTime (unsigned int nodeId) const {
174 assert(nodeId < startTime.size());
175 return startTime[nodeId];
178 unsigned int getNumInstructions() const {
182 inline void scheduleInstr (const SchedGraphNode* node,
183 unsigned int slotNum,
185 InstrGroup* igroup = this->getIGroup(cycle);
186 assert((*igroup)[slotNum] == NULL && "Slot already filled?");
187 igroup->addInstr(node, slotNum);
188 assert(node->getNodeId() < startTime.size());
189 startTime[node->getNodeId()] = cycle;
194 friend class iterator;
195 friend class const_iterator;
196 /*ctor*/ InstrSchedule (); // Disable: DO NOT IMPLEMENT.
201 InstrSchedule::InstrSchedule(unsigned int _nslots, unsigned int _numNodes)
204 groups(2 * _numNodes / _nslots), // 2 x lower-bound for #cycles
205 startTime(_numNodes, (cycles_t) -1) // set all to -1
211 InstrSchedule::~InstrSchedule()
213 for (unsigned c=0, NC=groups.size(); c < NC; c++)
214 if (groups[c] != NULL)
215 delete groups[c]; // delete InstrGroup objects
219 template<class _NodeType>
222 ScheduleIterator<_NodeType>::skipToNextInstr()
224 while(cycleNum < S.groups.size() && S.groups[cycleNum] == NULL)
225 ++cycleNum; // skip cycles with no instructions
227 while (cycleNum < S.groups.size() &&
228 (*S.groups[cycleNum])[slotNum] == NULL)
231 if (slotNum == S.nslots)
235 while(cycleNum < S.groups.size() && S.groups[cycleNum] == NULL)
236 ++cycleNum; // skip cycles with no instructions
241 template<class _NodeType>
243 ScheduleIterator<_NodeType>&
244 ScheduleIterator<_NodeType>::operator++() // Preincrement
247 if (slotNum == S.nslots)
256 template<class _NodeType>
257 ScheduleIterator<_NodeType>
258 ScheduleIterator<_NodeType>::begin(const InstrSchedule& _schedule)
260 return _Self(_schedule, 0, 0);
263 template<class _NodeType>
264 ScheduleIterator<_NodeType>
265 ScheduleIterator<_NodeType>::end(const InstrSchedule& _schedule)
267 return _Self(_schedule, _schedule.groups.size(), 0);
270 InstrSchedule::iterator
271 InstrSchedule::begin()
273 return iterator::begin(*this);
276 InstrSchedule::const_iterator
277 InstrSchedule::begin() const
279 return const_iterator::begin(*this);
282 InstrSchedule::iterator
285 return iterator::end(*this);
288 InstrSchedule::const_iterator
289 InstrSchedule::end() const
291 return const_iterator::end( *this);
295 //----------------------------------------------------------------------
296 // class DelaySlotInfo:
298 // Record information about delay slots for a single branch instruction.
299 // Delay slots are simply indexed by slot number 1 ... numDelaySlots
300 //----------------------------------------------------------------------
302 class DelaySlotInfo: public NonCopyable {
304 const SchedGraphNode* brNode;
305 unsigned int ndelays;
306 vector<const SchedGraphNode*> delayNodeVec;
307 cycles_t delayedNodeCycle;
308 unsigned int delayedNodeSlotNum;
311 /*ctor*/ DelaySlotInfo (const SchedGraphNode* _brNode,
313 : brNode(_brNode), ndelays(_ndelays),
314 delayedNodeCycle(0), delayedNodeSlotNum(0) {}
316 inline unsigned getNumDelays () {
320 inline const vector<const SchedGraphNode*>& getDelayNodeVec() {
324 inline void addDelayNode (const SchedGraphNode* node) {
325 delayNodeVec.push_back(node);
326 assert(delayNodeVec.size() <= ndelays && "Too many delay slot instrs!");
329 inline void recordChosenSlot (cycles_t cycle, unsigned slotNum) {
330 delayedNodeCycle = cycle;
331 delayedNodeSlotNum = slotNum;
334 unsigned scheduleDelayedNode (SchedulingManager& S);
338 //----------------------------------------------------------------------
339 // class SchedulingManager:
341 // Represents the schedule of machine instructions for a single basic block.
342 //----------------------------------------------------------------------
344 class SchedulingManager: public NonCopyable {
345 public: // publicly accessible data members
346 const unsigned int nslots;
347 const MachineSchedInfo& schedInfo;
348 SchedPriorities& schedPrio;
349 InstrSchedule isched;
352 unsigned int totalInstrCount;
354 cycles_t nextEarliestIssueTime; // next cycle we can issue
355 vector<hash_set<const SchedGraphNode*> > choicesForSlot; // indexed by slot#
356 vector<const SchedGraphNode*> choiceVec; // indexed by node ptr
357 vector<int> numInClass; // indexed by sched class
358 vector<cycles_t> nextEarliestStartTime; // indexed by opCode
359 hash_map<const SchedGraphNode*, DelaySlotInfo*> delaySlotInfoForBranches;
360 // indexed by branch node ptr
363 SchedulingManager(const TargetMachine& _target, const SchedGraph* graph,
364 SchedPriorities& schedPrio);
365 ~SchedulingManager() {
366 for (hash_map<const SchedGraphNode*,
367 DelaySlotInfo*>::iterator I = delaySlotInfoForBranches.begin(),
368 E = delaySlotInfoForBranches.end(); I != E; ++I)
372 //----------------------------------------------------------------------
373 // Simplify access to the machine instruction info
374 //----------------------------------------------------------------------
376 inline const MachineInstrInfo& getInstrInfo () const {
377 return schedInfo.getInstrInfo();
380 //----------------------------------------------------------------------
381 // Interface for checking and updating the current time
382 //----------------------------------------------------------------------
384 inline cycles_t getTime () const {
388 inline cycles_t getEarliestIssueTime() const {
389 return nextEarliestIssueTime;
392 inline cycles_t getEarliestStartTimeForOp(MachineOpCode opCode) const {
393 assert(opCode < (int) nextEarliestStartTime.size());
394 return nextEarliestStartTime[opCode];
397 // Update current time to specified cycle
398 inline void updateTime (cycles_t c) {
400 schedPrio.updateTime(c);
403 //----------------------------------------------------------------------
404 // Functions to manage the choices for the current cycle including:
405 // -- a vector of choices by priority (choiceVec)
406 // -- vectors of the choices for each instruction slot (choicesForSlot[])
407 // -- number of choices in each sched class, used to check issue conflicts
408 // between choices for a single cycle
409 //----------------------------------------------------------------------
411 inline unsigned int getNumChoices () const {
412 return choiceVec.size();
415 inline unsigned getNumChoicesInClass (const InstrSchedClass& sc) const {
416 assert(sc < (int) numInClass.size() && "Invalid op code or sched class!");
417 return numInClass[sc];
420 inline const SchedGraphNode* getChoice(unsigned int i) const {
421 // assert(i < choiceVec.size()); don't check here.
425 inline hash_set<const SchedGraphNode*>& getChoicesForSlot(unsigned slotNum) {
426 assert(slotNum < nslots);
427 return choicesForSlot[slotNum];
430 inline void addChoice (const SchedGraphNode* node) {
431 // Append the instruction to the vector of choices for current cycle.
432 // Increment numInClass[c] for the sched class to which the instr belongs.
433 choiceVec.push_back(node);
434 const InstrSchedClass& sc = schedInfo.getSchedClass(node->getOpCode());
435 assert(sc < (int) numInClass.size());
439 inline void addChoiceToSlot (unsigned int slotNum,
440 const SchedGraphNode* node) {
441 // Add the instruction to the choice set for the specified slot
442 assert(slotNum < nslots);
443 choicesForSlot[slotNum].insert(node);
446 inline void resetChoices () {
448 for (unsigned int s=0; s < nslots; s++)
449 choicesForSlot[s].clear();
450 for (unsigned int c=0; c < numInClass.size(); c++)
454 //----------------------------------------------------------------------
455 // Code to query and manage the partial instruction schedule so far
456 //----------------------------------------------------------------------
458 inline unsigned int getNumScheduled () const {
459 return isched.getNumInstructions();
462 inline unsigned int getNumUnscheduled() const {
463 return totalInstrCount - isched.getNumInstructions();
466 inline bool isScheduled (const SchedGraphNode* node) const {
467 return (isched.getStartTime(node->getNodeId()) >= 0);
470 inline void scheduleInstr (const SchedGraphNode* node,
471 unsigned int slotNum,
474 assert(! isScheduled(node) && "Instruction already scheduled?");
476 // add the instruction to the schedule
477 isched.scheduleInstr(node, slotNum, cycle);
479 // update the earliest start times of all nodes that conflict with `node'
480 // and the next-earliest time anything can issue if `node' causes bubbles
481 updateEarliestStartTimes(node, cycle);
483 // remove the instruction from the choice sets for all slots
484 for (unsigned s=0; s < nslots; s++)
485 choicesForSlot[s].erase(node);
487 // and decrement the instr count for the sched class to which it belongs
488 const InstrSchedClass& sc = schedInfo.getSchedClass(node->getOpCode());
489 assert(sc < (int) numInClass.size());
493 //----------------------------------------------------------------------
494 // Create and retrieve delay slot info for delayed instructions
495 //----------------------------------------------------------------------
497 inline DelaySlotInfo* getDelaySlotInfoForInstr(const SchedGraphNode* bn,
498 bool createIfMissing=false)
500 hash_map<const SchedGraphNode*, DelaySlotInfo*>::const_iterator
501 I = delaySlotInfoForBranches.find(bn);
502 if (I != delaySlotInfoForBranches.end())
505 if (!createIfMissing) return 0;
507 DelaySlotInfo *dinfo =
508 new DelaySlotInfo(bn, getInstrInfo().getNumDelaySlots(bn->getOpCode()));
509 return delaySlotInfoForBranches[bn] = dinfo;
513 SchedulingManager(); // DISABLED: DO NOT IMPLEMENT
514 void updateEarliestStartTimes(const SchedGraphNode* node, cycles_t schedTime);
519 SchedulingManager::SchedulingManager(const TargetMachine& target,
520 const SchedGraph* graph,
521 SchedPriorities& _schedPrio)
522 : nslots(target.getSchedInfo().getMaxNumIssueTotal()),
523 schedInfo(target.getSchedInfo()),
524 schedPrio(_schedPrio),
525 isched(nslots, graph->getNumNodes()),
526 totalInstrCount(graph->getNumNodes() - 2),
527 nextEarliestIssueTime(0),
528 choicesForSlot(nslots),
529 numInClass(target.getSchedInfo().getNumSchedClasses(), 0), // set all to 0
530 nextEarliestStartTime(target.getInstrInfo().getNumRealOpCodes(),
531 (cycles_t) 0) // set all to 0
535 // Note that an upper bound on #choices for each slot is = nslots since
536 // we use this vector to hold a feasible set of instructions, and more
537 // would be infeasible. Reserve that much memory since it is probably small.
538 for (unsigned int i=0; i < nslots; i++)
539 choicesForSlot[i].resize(nslots);
544 SchedulingManager::updateEarliestStartTimes(const SchedGraphNode* node,
547 if (schedInfo.numBubblesAfter(node->getOpCode()) > 0)
548 { // Update next earliest time before which *nothing* can issue.
549 nextEarliestIssueTime = std::max(nextEarliestIssueTime,
550 curTime + 1 + schedInfo.numBubblesAfter(node->getOpCode()));
553 const vector<MachineOpCode>*
554 conflictVec = schedInfo.getConflictList(node->getOpCode());
556 if (conflictVec != NULL)
557 for (unsigned i=0; i < conflictVec->size(); i++)
559 MachineOpCode toOp = (*conflictVec)[i];
560 cycles_t est = schedTime + schedInfo.getMinIssueGap(node->getOpCode(),
562 assert(toOp < (int) nextEarliestStartTime.size());
563 if (nextEarliestStartTime[toOp] < est)
564 nextEarliestStartTime[toOp] = est;
568 //************************* Internal Functions *****************************/
572 AssignInstructionsToSlots(class SchedulingManager& S, unsigned maxIssue)
574 // find the slot to start from, in the current cycle
575 unsigned int startSlot = 0;
576 cycles_t curTime = S.getTime();
578 assert(maxIssue > 0 && maxIssue <= S.nslots - startSlot);
580 // If only one instruction can be issued, do so.
582 for (unsigned s=startSlot; s < S.nslots; s++)
583 if (S.getChoicesForSlot(s).size() > 0)
584 {// found the one instruction
585 S.scheduleInstr(*S.getChoicesForSlot(s).begin(), s, curTime);
589 // Otherwise, choose from the choices for each slot
591 InstrGroup* igroup = S.isched.getIGroup(S.getTime());
592 assert(igroup != NULL && "Group creation failed?");
594 // Find a slot that has only a single choice, and take it.
595 // If all slots have 0 or multiple choices, pick the first slot with
596 // choices and use its last instruction (just to avoid shifting the vector).
598 for (numIssued = 0; numIssued < maxIssue; numIssued++)
601 for (unsigned s=startSlot; s < S.nslots; s++)
602 if ((*igroup)[s] == NULL && S.getChoicesForSlot(s).size() == 1)
604 chosenSlot = (int) s;
608 if (chosenSlot == -1)
609 for (unsigned s=startSlot; s < S.nslots; s++)
610 if ((*igroup)[s] == NULL && S.getChoicesForSlot(s).size() > 0)
612 chosenSlot = (int) s;
616 if (chosenSlot != -1)
617 { // Insert the chosen instr in the chosen slot and
618 // erase it from all slots.
619 const SchedGraphNode* node= *S.getChoicesForSlot(chosenSlot).begin();
620 S.scheduleInstr(node, chosenSlot, curTime);
624 assert(numIssued > 0 && "Should not happen when maxIssue > 0!");
629 // For now, just assume we are scheduling within a single basic block.
630 // Get the machine instruction vector for the basic block and clear it,
631 // then append instructions in scheduled order.
632 // Also, re-insert the dummy PHI instructions that were at the beginning
633 // of the basic block, since they are not part of the schedule.
636 RecordSchedule(const BasicBlock* bb, const SchedulingManager& S)
638 MachineCodeForBasicBlock& mvec = MachineCodeForBasicBlock::get(bb);
639 const MachineInstrInfo& mii = S.schedInfo.getInstrInfo();
642 // Lets make sure we didn't lose any instructions, except possibly
643 // some NOPs from delay slots. Also, PHIs are not included in the schedule.
644 unsigned numInstr = 0;
645 for (MachineCodeForBasicBlock::iterator I=mvec.begin(); I != mvec.end(); ++I)
646 if (! mii.isNop((*I)->getOpCode()) &&
647 ! mii.isDummyPhiInstr((*I)->getOpCode()))
649 assert(S.isched.getNumInstructions() >= numInstr &&
650 "Lost some non-NOP instructions during scheduling!");
653 if (S.isched.getNumInstructions() == 0)
654 return; // empty basic block!
656 // First find the dummy instructions at the start of the basic block
657 MachineCodeForBasicBlock::iterator I = mvec.begin();
658 for ( ; I != mvec.end(); ++I)
659 if (! mii.isDummyPhiInstr((*I)->getOpCode()))
662 // Erase all except the dummy PHI instructions from mvec, and
663 // pre-allocate create space for the ones we will put back in.
664 mvec.erase(I, mvec.end());
666 InstrSchedule::const_iterator NIend = S.isched.end();
667 for (InstrSchedule::const_iterator NI = S.isched.begin(); NI != NIend; ++NI)
668 mvec.push_back(const_cast<MachineInstr*>((*NI)->getMachineInstr()));
674 MarkSuccessorsReady(SchedulingManager& S, const SchedGraphNode* node)
676 // Check if any successors are now ready that were not already marked
677 // ready before, and that have not yet been scheduled.
679 for (sg_succ_const_iterator SI = succ_begin(node); SI !=succ_end(node); ++SI)
680 if (! (*SI)->isDummyNode()
681 && ! S.isScheduled(*SI)
682 && ! S.schedPrio.nodeIsReady(*SI))
683 {// successor not scheduled and not marked ready; check *its* preds.
685 bool succIsReady = true;
686 for (sg_pred_const_iterator P=pred_begin(*SI); P != pred_end(*SI); ++P)
687 if (! (*P)->isDummyNode()
688 && ! S.isScheduled(*P))
694 if (succIsReady) // add the successor to the ready list
695 S.schedPrio.insertReady(*SI);
700 // Choose up to `nslots' FEASIBLE instructions and assign each
701 // instruction to all possible slots that do not violate feasibility.
702 // FEASIBLE means it should be guaranteed that the set
703 // of chosen instructions can be issued in a single group.
706 // maxIssue : total number of feasible instructions
707 // S.choicesForSlot[i=0..nslots] : set of instructions feasible in slot i
710 FindSlotChoices(SchedulingManager& S,
711 DelaySlotInfo*& getDelaySlotInfo)
713 // initialize result vectors to empty
716 // find the slot to start from, in the current cycle
717 unsigned int startSlot = 0;
718 InstrGroup* igroup = S.isched.getIGroup(S.getTime());
719 for (int s = S.nslots - 1; s >= 0; s--)
720 if ((*igroup)[s] != NULL)
726 // Make sure we pick at most one instruction that would break the group.
727 // Also, if we do pick one, remember which it was.
728 unsigned int indexForBreakingNode = S.nslots;
729 unsigned int indexForDelayedInstr = S.nslots;
730 DelaySlotInfo* delaySlotInfo = NULL;
732 getDelaySlotInfo = NULL;
734 // Choose instructions in order of priority.
735 // Add choices to the choice vector in the SchedulingManager class as
736 // we choose them so that subsequent choices will be correctly tested
737 // for feasibility, w.r.t. higher priority choices for the same cycle.
739 while (S.getNumChoices() < S.nslots - startSlot)
741 const SchedGraphNode* nextNode=S.schedPrio.getNextHighest(S,S.getTime());
742 if (nextNode == NULL)
743 break; // no more instructions for this cycle
745 if (S.getInstrInfo().getNumDelaySlots(nextNode->getOpCode()) > 0)
747 delaySlotInfo = S.getDelaySlotInfoForInstr(nextNode);
748 if (delaySlotInfo != NULL)
750 if (indexForBreakingNode < S.nslots)
751 // cannot issue a delayed instr in the same cycle as one
752 // that breaks the issue group or as another delayed instr
755 indexForDelayedInstr = S.getNumChoices();
758 else if (S.schedInfo.breaksIssueGroup(nextNode->getOpCode()))
760 if (indexForBreakingNode < S.nslots)
761 // have a breaking instruction already so throw this one away
764 indexForBreakingNode = S.getNumChoices();
767 if (nextNode != NULL)
769 S.addChoice(nextNode);
771 if (S.schedInfo.isSingleIssue(nextNode->getOpCode()))
773 assert(S.getNumChoices() == 1 &&
774 "Prioritizer returned invalid instr for this cycle!");
779 if (indexForDelayedInstr < S.nslots)
780 break; // leave the rest for delay slots
783 assert(S.getNumChoices() <= S.nslots);
784 assert(! (indexForDelayedInstr < S.nslots &&
785 indexForBreakingNode < S.nslots) && "Cannot have both in a cycle");
787 // Assign each chosen instruction to all possible slots for that instr.
788 // But if only one instruction was chosen, put it only in the first
789 // feasible slot; no more analysis will be needed.
791 if (indexForDelayedInstr >= S.nslots &&
792 indexForBreakingNode >= S.nslots)
793 { // No instructions that break the issue group or that have delay slots.
794 // This is the common case, so handle it separately for efficiency.
796 if (S.getNumChoices() == 1)
798 MachineOpCode opCode = S.getChoice(0)->getOpCode();
800 for (s=startSlot; s < S.nslots; s++)
801 if (S.schedInfo.instrCanUseSlot(opCode, s))
803 assert(s < S.nslots && "No feasible slot for this opCode?");
804 S.addChoiceToSlot(s, S.getChoice(0));
808 for (unsigned i=0; i < S.getNumChoices(); i++)
810 MachineOpCode opCode = S.getChoice(i)->getOpCode();
811 for (unsigned int s=startSlot; s < S.nslots; s++)
812 if (S.schedInfo.instrCanUseSlot(opCode, s))
813 S.addChoiceToSlot(s, S.getChoice(i));
817 else if (indexForDelayedInstr < S.nslots)
819 // There is an instruction that needs delay slots.
820 // Try to assign that instruction to a higher slot than any other
821 // instructions in the group, so that its delay slots can go
825 assert(indexForDelayedInstr == S.getNumChoices() - 1 &&
826 "Instruction with delay slots should be last choice!");
827 assert(delaySlotInfo != NULL && "No delay slot info for instr?");
829 const SchedGraphNode* delayedNode = S.getChoice(indexForDelayedInstr);
830 MachineOpCode delayOpCode = delayedNode->getOpCode();
831 unsigned ndelays= S.getInstrInfo().getNumDelaySlots(delayOpCode);
833 unsigned delayedNodeSlot = S.nslots;
836 // Find the last possible slot for the delayed instruction that leaves
837 // at least `d' slots vacant after it (d = #delay slots)
838 for (int s = S.nslots-ndelays-1; s >= (int) startSlot; s--)
839 if (S.schedInfo.instrCanUseSlot(delayOpCode, s))
845 highestSlotUsed = -1;
846 for (unsigned i=0; i < S.getNumChoices() - 1; i++)
848 // Try to assign every other instruction to a lower numbered
849 // slot than delayedNodeSlot.
850 MachineOpCode opCode =S.getChoice(i)->getOpCode();
851 bool noSlotFound = true;
853 for (s=startSlot; s < delayedNodeSlot; s++)
854 if (S.schedInfo.instrCanUseSlot(opCode, s))
856 S.addChoiceToSlot(s, S.getChoice(i));
860 // No slot before `delayedNodeSlot' was found for this opCode
861 // Use a later slot, and allow some delay slots to fall in
864 for ( ; s < S.nslots; s++)
865 if (S.schedInfo.instrCanUseSlot(opCode, s))
867 S.addChoiceToSlot(s, S.getChoice(i));
871 assert(s < S.nslots && "No feasible slot for instruction?");
873 highestSlotUsed = std::max(highestSlotUsed, (int) s);
876 assert(highestSlotUsed <= (int) S.nslots-1 && "Invalid slot used?");
878 // We will put the delayed node in the first slot after the
879 // highest slot used. But we just mark that for now, and
880 // schedule it separately because we want to schedule the delay
881 // slots for the node at the same time.
882 cycles_t dcycle = S.getTime();
883 unsigned int dslot = highestSlotUsed + 1;
884 if (dslot == S.nslots)
889 delaySlotInfo->recordChosenSlot(dcycle, dslot);
890 getDelaySlotInfo = delaySlotInfo;
893 { // There is an instruction that breaks the issue group.
894 // For such an instruction, assign to the last possible slot in
895 // the current group, and then don't assign any other instructions
897 assert(indexForBreakingNode < S.nslots);
898 const SchedGraphNode* breakingNode=S.getChoice(indexForBreakingNode);
899 unsigned breakingSlot = INT_MAX;
900 unsigned int nslotsToUse = S.nslots;
902 // Find the last possible slot for this instruction.
903 for (int s = S.nslots-1; s >= (int) startSlot; s--)
904 if (S.schedInfo.instrCanUseSlot(breakingNode->getOpCode(), s))
909 assert(breakingSlot < S.nslots &&
910 "No feasible slot for `breakingNode'?");
912 // Higher priority instructions than the one that breaks the group:
913 // These can be assigned to all slots, but will be assigned only
914 // to earlier slots if possible.
916 i < S.getNumChoices() && i < indexForBreakingNode; i++)
918 MachineOpCode opCode =S.getChoice(i)->getOpCode();
920 // If a higher priority instruction cannot be assigned to
921 // any earlier slots, don't schedule the breaking instruction.
923 bool foundLowerSlot = false;
924 nslotsToUse = S.nslots; // May be modified in the loop
925 for (unsigned int s=startSlot; s < nslotsToUse; s++)
926 if (S.schedInfo.instrCanUseSlot(opCode, s))
928 if (breakingSlot < S.nslots && s < breakingSlot)
930 foundLowerSlot = true;
931 nslotsToUse = breakingSlot; // RESETS LOOP UPPER BOUND!
934 S.addChoiceToSlot(s, S.getChoice(i));
938 breakingSlot = INT_MAX; // disable breaking instr
941 // Assign the breaking instruction (if any) to a single slot
942 // Otherwise, just ignore the instruction. It will simply be
943 // scheduled in a later cycle.
944 if (breakingSlot < S.nslots)
946 S.addChoiceToSlot(breakingSlot, breakingNode);
947 nslotsToUse = breakingSlot;
950 nslotsToUse = S.nslots;
952 // For lower priority instructions than the one that breaks the
953 // group, only assign them to slots lower than the breaking slot.
954 // Otherwise, just ignore the instruction.
955 for (unsigned i=indexForBreakingNode+1; i < S.getNumChoices(); i++)
957 MachineOpCode opCode = S.getChoice(i)->getOpCode();
958 for (unsigned int s=startSlot; s < nslotsToUse; s++)
959 if (S.schedInfo.instrCanUseSlot(opCode, s))
960 S.addChoiceToSlot(s, S.getChoice(i));
962 } // endif (no delay slots and no breaking slots)
964 return S.getNumChoices();
969 ChooseOneGroup(SchedulingManager& S)
971 assert(S.schedPrio.getNumReady() > 0
972 && "Don't get here without ready instructions.");
974 cycles_t firstCycle = S.getTime();
975 DelaySlotInfo* getDelaySlotInfo = NULL;
977 // Choose up to `nslots' feasible instructions and their possible slots.
978 unsigned numIssued = FindSlotChoices(S, getDelaySlotInfo);
980 while (numIssued == 0)
982 S.updateTime(S.getTime()+1);
983 numIssued = FindSlotChoices(S, getDelaySlotInfo);
986 AssignInstructionsToSlots(S, numIssued);
988 if (getDelaySlotInfo != NULL)
989 numIssued += getDelaySlotInfo->scheduleDelayedNode(S);
991 // Print trace of scheduled instructions before newly ready ones
992 if (SchedDebugLevel >= Sched_PrintSchedTrace)
994 for (cycles_t c = firstCycle; c <= S.getTime(); c++)
996 cerr << " Cycle " << (long)c << " : Scheduled instructions:\n";
997 const InstrGroup* igroup = S.isched.getIGroup(c);
998 for (unsigned int s=0; s < S.nslots; s++)
1001 if ((*igroup)[s] != NULL)
1002 cerr << * ((*igroup)[s])->getMachineInstr() << "\n";
1014 ForwardListSchedule(SchedulingManager& S)
1017 const SchedGraphNode* node;
1019 S.schedPrio.initialize();
1021 while ((N = S.schedPrio.getNumReady()) > 0)
1023 cycles_t nextCycle = S.getTime();
1025 // Choose one group of instructions for a cycle, plus any delay slot
1026 // instructions (which may overflow into successive cycles).
1027 // This will advance S.getTime() to the last cycle in which
1028 // instructions are actually issued.
1030 unsigned numIssued = ChooseOneGroup(S);
1031 assert(numIssued > 0 && "Deadlock in list scheduling algorithm?");
1033 // Notify the priority manager of scheduled instructions and mark
1034 // any successors that may now be ready
1036 for (cycles_t c = nextCycle; c <= S.getTime(); c++)
1038 const InstrGroup* igroup = S.isched.getIGroup(c);
1039 for (unsigned int s=0; s < S.nslots; s++)
1040 if ((node = (*igroup)[s]) != NULL)
1042 S.schedPrio.issuedReadyNodeAt(S.getTime(), node);
1043 MarkSuccessorsReady(S, node);
1047 // Move to the next the next earliest cycle for which
1048 // an instruction can be issued, or the next earliest in which
1049 // one will be ready, or to the next cycle, whichever is latest.
1051 S.updateTime(std::max(S.getTime() + 1,
1052 std::max(S.getEarliestIssueTime(),
1053 S.schedPrio.getEarliestReadyTime())));
1058 //---------------------------------------------------------------------
1059 // Code for filling delay slots for delayed terminator instructions
1060 // (e.g., BRANCH and RETURN). Delay slots for non-terminator
1061 // instructions (e.g., CALL) are not handled here because they almost
1062 // always can be filled with instructions from the call sequence code
1063 // before a call. That's preferable because we incur many tradeoffs here
1064 // when we cannot find single-cycle instructions that can be reordered.
1065 //----------------------------------------------------------------------
1068 NodeCanFillDelaySlot(const SchedulingManager& S,
1069 const SchedGraphNode* node,
1070 const SchedGraphNode* brNode,
1071 bool nodeIsPredecessor)
1073 assert(! node->isDummyNode());
1075 // don't put a branch in the delay slot of another branch
1076 if (S.getInstrInfo().isBranch(node->getOpCode()))
1079 // don't put a single-issue instruction in the delay slot of a branch
1080 if (S.schedInfo.isSingleIssue(node->getOpCode()))
1083 // don't put a load-use dependence in the delay slot of a branch
1084 const MachineInstrInfo& mii = S.getInstrInfo();
1086 for (SchedGraphNode::const_iterator EI = node->beginInEdges();
1087 EI != node->endInEdges(); ++EI)
1088 if (! (*EI)->getSrc()->isDummyNode()
1089 && mii.isLoad((*EI)->getSrc()->getOpCode())
1090 && (*EI)->getDepType() == SchedGraphEdge::CtrlDep)
1093 // for now, don't put an instruction that does not have operand
1094 // interlocks in the delay slot of a branch
1095 if (! S.getInstrInfo().hasOperandInterlock(node->getOpCode()))
1098 // Finally, if the instruction preceeds the branch, we make sure the
1099 // instruction can be reordered relative to the branch. We simply check
1100 // if the instr. has only 1 outgoing edge, viz., a CD edge to the branch.
1102 if (nodeIsPredecessor)
1104 bool onlyCDEdgeToBranch = true;
1105 for (SchedGraphNode::const_iterator OEI = node->beginOutEdges();
1106 OEI != node->endOutEdges(); ++OEI)
1107 if (! (*OEI)->getSink()->isDummyNode()
1108 && ((*OEI)->getSink() != brNode
1109 || (*OEI)->getDepType() != SchedGraphEdge::CtrlDep))
1111 onlyCDEdgeToBranch = false;
1115 if (!onlyCDEdgeToBranch)
1124 MarkNodeForDelaySlot(SchedulingManager& S,
1126 SchedGraphNode* node,
1127 const SchedGraphNode* brNode,
1128 bool nodeIsPredecessor)
1130 if (nodeIsPredecessor)
1131 { // If node is in the same basic block (i.e., preceeds brNode),
1132 // remove it and all its incident edges from the graph. Make sure we
1133 // add dummy edges for pred/succ nodes that become entry/exit nodes.
1134 graph->eraseIncidentEdges(node, /*addDummyEdges*/ true);
1137 { // If the node was from a target block, add the node to the graph
1138 // and add a CD edge from brNode to node.
1139 assert(0 && "NOT IMPLEMENTED YET");
1142 DelaySlotInfo* dinfo = S.getDelaySlotInfoForInstr(brNode, /*create*/ true);
1143 dinfo->addDelayNode(node);
1148 FindUsefulInstructionsForDelaySlots(SchedulingManager& S,
1149 SchedGraphNode* brNode,
1150 vector<SchedGraphNode*>& sdelayNodeVec)
1152 const MachineInstrInfo& mii = S.getInstrInfo();
1154 mii.getNumDelaySlots(brNode->getOpCode());
1159 sdelayNodeVec.reserve(ndelays);
1161 // Use a separate vector to hold the feasible multi-cycle nodes.
1162 // These will be used if not enough single-cycle nodes are found.
1164 vector<SchedGraphNode*> mdelayNodeVec;
1166 for (sg_pred_iterator P = pred_begin(brNode);
1167 P != pred_end(brNode) && sdelayNodeVec.size() < ndelays; ++P)
1168 if (! (*P)->isDummyNode() &&
1169 ! mii.isNop((*P)->getOpCode()) &&
1170 NodeCanFillDelaySlot(S, *P, brNode, /*pred*/ true))
1172 if (mii.maxLatency((*P)->getOpCode()) > 1)
1173 mdelayNodeVec.push_back(*P);
1175 sdelayNodeVec.push_back(*P);
1178 // If not enough single-cycle instructions were found, select the
1179 // lowest-latency multi-cycle instructions and use them.
1180 // Note that this is the most efficient code when only 1 (or even 2)
1181 // values need to be selected.
1183 while (sdelayNodeVec.size() < ndelays && mdelayNodeVec.size() > 0)
1186 mii.maxLatency(mdelayNodeVec[0]->getOpCode());
1187 unsigned minIndex = 0;
1188 for (unsigned i=1; i < mdelayNodeVec.size(); i++)
1191 mii.maxLatency(mdelayNodeVec[i]->getOpCode());
1198 sdelayNodeVec.push_back(mdelayNodeVec[minIndex]);
1199 if (sdelayNodeVec.size() < ndelays) // avoid the last erase!
1200 mdelayNodeVec.erase(mdelayNodeVec.begin() + minIndex);
1205 // Remove the NOPs currently in delay slots from the graph.
1206 // Mark instructions specified in sdelayNodeVec to replace them.
1207 // If not enough useful instructions were found, mark the NOPs to be used
1208 // for filling delay slots, otherwise, otherwise just discard them.
1211 ReplaceNopsWithUsefulInstr(SchedulingManager& S,
1212 SchedGraphNode* node,
1213 vector<SchedGraphNode*> sdelayNodeVec,
1216 vector<SchedGraphNode*> nopNodeVec; // this will hold unused NOPs
1217 const MachineInstrInfo& mii = S.getInstrInfo();
1218 const MachineInstr* brInstr = node->getMachineInstr();
1219 unsigned ndelays= mii.getNumDelaySlots(brInstr->getOpCode());
1220 assert(ndelays > 0 && "Unnecessary call to replace NOPs");
1222 // Remove the NOPs currently in delay slots from the graph.
1223 // If not enough useful instructions were found, use the NOPs to
1224 // fill delay slots, otherwise, just discard them.
1226 unsigned int firstDelaySlotIdx = node->getOrigIndexInBB() + 1;
1227 MachineCodeForBasicBlock& bbMvec = MachineCodeForBasicBlock::get(node->getBB());
1228 assert(bbMvec[firstDelaySlotIdx - 1] == brInstr &&
1229 "Incorrect instr. index in basic block for brInstr");
1231 // First find all useful instructions already in the delay slots
1232 // and USE THEM. We'll throw away the unused alternatives below
1234 for (unsigned i=firstDelaySlotIdx; i < firstDelaySlotIdx + ndelays; ++i)
1235 if (! mii.isNop(bbMvec[i]->getOpCode()))
1236 sdelayNodeVec.insert(sdelayNodeVec.begin(),
1237 graph->getGraphNodeForInstr(bbMvec[i]));
1239 // Then find the NOPs and keep only as many as are needed.
1240 // Put the rest in nopNodeVec to be deleted.
1241 for (unsigned i=firstDelaySlotIdx; i < firstDelaySlotIdx + ndelays; ++i)
1242 if (mii.isNop(bbMvec[i]->getOpCode()))
1243 if (sdelayNodeVec.size() < ndelays)
1244 sdelayNodeVec.push_back(graph->getGraphNodeForInstr(bbMvec[i]));
1247 nopNodeVec.push_back(graph->getGraphNodeForInstr(bbMvec[i]));
1249 //remove the MI from the Machine Code For Instruction
1250 MachineCodeForInstruction& llvmMvec =
1251 MachineCodeForInstruction::get((Instruction *)
1252 (node->getBB()->getTerminator()));
1253 for(MachineCodeForInstruction::iterator mciI=llvmMvec.begin(),
1254 mciE=llvmMvec.end(); mciI!=mciE; ++mciI){
1255 if(*mciI==bbMvec[i])
1256 llvmMvec.erase(mciI);
1260 assert(sdelayNodeVec.size() >= ndelays);
1262 // If some delay slots were already filled, throw away that many new choices
1263 if (sdelayNodeVec.size() > ndelays)
1264 sdelayNodeVec.resize(ndelays);
1266 // Mark the nodes chosen for delay slots. This removes them from the graph.
1267 for (unsigned i=0; i < sdelayNodeVec.size(); i++)
1268 MarkNodeForDelaySlot(S, graph, sdelayNodeVec[i], node, true);
1270 // And remove the unused NOPs from the graph.
1271 for (unsigned i=0; i < nopNodeVec.size(); i++)
1272 graph->eraseIncidentEdges(nopNodeVec[i], /*addDummyEdges*/ true);
1276 // For all delayed instructions, choose instructions to put in the delay
1277 // slots and pull those out of the graph. Mark them for the delay slots
1278 // in the DelaySlotInfo object for that graph node. If no useful work
1279 // is found for a delay slot, use the NOP that is currently in that slot.
1281 // We try to fill the delay slots with useful work for all instructions
1282 // EXCEPT CALLS AND RETURNS.
1283 // For CALLs and RETURNs, it is nearly always possible to use one of the
1284 // call sequence instrs and putting anything else in the delay slot could be
1285 // suboptimal. Also, it complicates generating the calling sequence code in
1289 ChooseInstructionsForDelaySlots(SchedulingManager& S,
1290 const BasicBlock *bb,
1293 const MachineInstrInfo& mii = S.getInstrInfo();
1294 const Instruction *termInstr = (Instruction*)bb->getTerminator();
1295 MachineCodeForInstruction &termMvec=MachineCodeForInstruction::get(termInstr);
1296 vector<SchedGraphNode*> delayNodeVec;
1297 const MachineInstr* brInstr = NULL;
1299 if (termInstr->getOpcode() != Instruction::Ret)
1301 // To find instructions that need delay slots without searching the full
1302 // machine code, we assume that the only delayed instructions are CALLs
1303 // or instructions generated for the terminator inst.
1304 // Find the first branch instr in the sequence of machine instrs for term
1307 while (first < termMvec.size() &&
1308 ! mii.isBranch(termMvec[first]->getOpCode()))
1312 assert(first < termMvec.size() &&
1313 "No branch instructions for BR? Ok, but weird! Delete assertion.");
1315 brInstr = (first < termMvec.size())? termMvec[first] : NULL;
1317 // Compute a vector of the nodes chosen for delay slots and then
1318 // mark delay slots to replace NOPs with these useful instructions.
1320 if (brInstr != NULL)
1322 SchedGraphNode* brNode = graph->getGraphNodeForInstr(brInstr);
1323 FindUsefulInstructionsForDelaySlots(S, brNode, delayNodeVec);
1324 ReplaceNopsWithUsefulInstr(S, brNode, delayNodeVec, graph);
1328 // Also mark delay slots for other delayed instructions to hold NOPs.
1329 // Simply passing in an empty delayNodeVec will have this effect.
1331 delayNodeVec.clear();
1332 const MachineCodeForBasicBlock& bbMvec = MachineCodeForBasicBlock::get(bb);
1333 for (unsigned i=0; i < bbMvec.size(); i++)
1334 if (bbMvec[i] != brInstr &&
1335 mii.getNumDelaySlots(bbMvec[i]->getOpCode()) > 0)
1337 SchedGraphNode* node = graph->getGraphNodeForInstr(bbMvec[i]);
1338 ReplaceNopsWithUsefulInstr(S, node, delayNodeVec, graph);
1344 // Schedule the delayed branch and its delay slots
1347 DelaySlotInfo::scheduleDelayedNode(SchedulingManager& S)
1349 assert(delayedNodeSlotNum < S.nslots && "Illegal slot for branch");
1350 assert(S.isched.getInstr(delayedNodeSlotNum, delayedNodeCycle) == NULL
1351 && "Slot for branch should be empty");
1353 unsigned int nextSlot = delayedNodeSlotNum;
1354 cycles_t nextTime = delayedNodeCycle;
1356 S.scheduleInstr(brNode, nextSlot, nextTime);
1358 for (unsigned d=0; d < ndelays; d++)
1361 if (nextSlot == S.nslots)
1367 // Find the first feasible instruction for this delay slot
1368 // Note that we only check for issue restrictions here.
1369 // We do *not* check for flow dependences but rely on pipeline
1370 // interlocks to resolve them. Machines without interlocks
1371 // will require this code to be modified.
1372 for (unsigned i=0; i < delayNodeVec.size(); i++)
1374 const SchedGraphNode* dnode = delayNodeVec[i];
1375 if ( ! S.isScheduled(dnode)
1376 && S.schedInfo.instrCanUseSlot(dnode->getOpCode(), nextSlot)
1377 && instrIsFeasible(S, dnode->getOpCode()))
1379 assert(S.getInstrInfo().hasOperandInterlock(dnode->getOpCode())
1380 && "Instructions without interlocks not yet supported "
1381 "when filling branch delay slots");
1382 S.scheduleInstr(dnode, nextSlot, nextTime);
1388 // Update current time if delay slots overflowed into later cycles.
1389 // Do this here because we know exactly which cycle is the last cycle
1390 // that contains delay slots. The next loop doesn't compute that.
1391 if (nextTime > S.getTime())
1392 S.updateTime(nextTime);
1394 // Now put any remaining instructions in the unfilled delay slots.
1395 // This could lead to suboptimal performance but needed for correctness.
1396 nextSlot = delayedNodeSlotNum;
1397 nextTime = delayedNodeCycle;
1398 for (unsigned i=0; i < delayNodeVec.size(); i++)
1399 if (! S.isScheduled(delayNodeVec[i]))
1401 do { // find the next empty slot
1403 if (nextSlot == S.nslots)
1408 } while (S.isched.getInstr(nextSlot, nextTime) != NULL);
1410 S.scheduleInstr(delayNodeVec[i], nextSlot, nextTime);
1418 // Check if the instruction would conflict with instructions already
1419 // chosen for the current cycle
1422 ConflictsWithChoices(const SchedulingManager& S,
1423 MachineOpCode opCode)
1425 // Check if the instruction must issue by itself, and some feasible
1426 // choices have already been made for this cycle
1427 if (S.getNumChoices() > 0 && S.schedInfo.isSingleIssue(opCode))
1430 // For each class that opCode belongs to, check if there are too many
1431 // instructions of that class.
1433 const InstrSchedClass sc = S.schedInfo.getSchedClass(opCode);
1434 return (S.getNumChoicesInClass(sc) == S.schedInfo.getMaxIssueForClass(sc));
1438 //************************* External Functions *****************************/
1441 //---------------------------------------------------------------------------
1442 // Function: ViolatesMinimumGap
1445 // Check minimum gap requirements relative to instructions scheduled in
1447 // Note that we do not need to consider `nextEarliestIssueTime' here because
1448 // that is also captured in the earliest start times for each opcode.
1449 //---------------------------------------------------------------------------
1452 ViolatesMinimumGap(const SchedulingManager& S,
1453 MachineOpCode opCode,
1454 const cycles_t inCycle)
1456 return (inCycle < S.getEarliestStartTimeForOp(opCode));
1460 //---------------------------------------------------------------------------
1461 // Function: instrIsFeasible
1464 // Check if any issue restrictions would prevent the instruction from
1465 // being issued in the current cycle
1466 //---------------------------------------------------------------------------
1469 instrIsFeasible(const SchedulingManager& S,
1470 MachineOpCode opCode)
1472 // skip the instruction if it cannot be issued due to issue restrictions
1473 // caused by previously issued instructions
1474 if (ViolatesMinimumGap(S, opCode, S.getTime()))
1477 // skip the instruction if it cannot be issued due to issue restrictions
1478 // caused by previously chosen instructions for the current cycle
1479 if (ConflictsWithChoices(S, opCode))
1485 //---------------------------------------------------------------------------
1486 // Function: ScheduleInstructionsWithSSA
1489 // Entry point for instruction scheduling on SSA form.
1490 // Schedules the machine instructions generated by instruction selection.
1491 // Assumes that register allocation has not been done, i.e., operands
1492 // are still in SSA form.
1493 //---------------------------------------------------------------------------
1496 class InstructionSchedulingWithSSA : public FunctionPass {
1497 const TargetMachine ⌖
1499 inline InstructionSchedulingWithSSA(const TargetMachine &T) : target(T) {}
1501 const char *getPassName() const { return "Instruction Scheduling"; }
1503 // getAnalysisUsage - We use LiveVarInfo...
1504 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1505 AU.addRequired<FunctionLiveVarInfo>();
1508 bool runOnFunction(Function &F);
1510 } // end anonymous namespace
1513 bool InstructionSchedulingWithSSA::runOnFunction(Function &F)
1515 if (SchedDebugLevel == Sched_Disable)
1518 SchedGraphSet graphSet(&F, target);
1520 if (SchedDebugLevel >= Sched_PrintSchedGraphs)
1522 cerr << "\n*** SCHEDULING GRAPHS FOR INSTRUCTION SCHEDULING\n";
1526 for (SchedGraphSet::const_iterator GI=graphSet.begin(), GE=graphSet.end();
1529 SchedGraph* graph = (*GI);
1530 const vector<const BasicBlock*> &bbvec = graph->getBasicBlocks();
1531 assert(bbvec.size() == 1 && "Cannot schedule multiple basic blocks");
1532 const BasicBlock* bb = bbvec[0];
1534 if (SchedDebugLevel >= Sched_PrintSchedTrace)
1535 cerr << "\n*** TRACE OF INSTRUCTION SCHEDULING OPERATIONS\n\n";
1538 SchedPriorities schedPrio(&F, graph,getAnalysis<FunctionLiveVarInfo>());
1539 SchedulingManager S(target, graph, schedPrio);
1541 ChooseInstructionsForDelaySlots(S, bb, graph); // modifies graph
1543 ForwardListSchedule(S); // computes schedule in S
1545 RecordSchedule(bb, S); // records schedule in BB
1548 if (SchedDebugLevel >= Sched_PrintMachineCode)
1550 cerr << "\n*** Machine instructions after INSTRUCTION SCHEDULING\n";
1551 MachineCodeForMethod::get(&F).dump();
1558 Pass *createInstructionSchedulingWithSSAPass(const TargetMachine &tgt) {
1559 return new InstructionSchedulingWithSSA(tgt);