Add TargetLowering::prepareVolatileOrAtomicLoad
[oota-llvm.git] / lib / Target / SystemZ / SystemZISelLowering.cpp
1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SystemZTargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "systemz-lower"
15
16 #include "SystemZISelLowering.h"
17 #include "SystemZCallingConv.h"
18 #include "SystemZConstantPoolValue.h"
19 #include "SystemZMachineFunctionInfo.h"
20 #include "SystemZTargetMachine.h"
21 #include "llvm/CodeGen/CallingConvLower.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
25
26 #include <cctype>
27
28 using namespace llvm;
29
30 namespace {
31 // Represents a sequence for extracting a 0/1 value from an IPM result:
32 // (((X ^ XORValue) + AddValue) >> Bit)
33 struct IPMConversion {
34   IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit)
35     : XORValue(xorValue), AddValue(addValue), Bit(bit) {}
36
37   int64_t XORValue;
38   int64_t AddValue;
39   unsigned Bit;
40 };
41 }
42
43 // Classify VT as either 32 or 64 bit.
44 static bool is32Bit(EVT VT) {
45   switch (VT.getSimpleVT().SimpleTy) {
46   case MVT::i32:
47     return true;
48   case MVT::i64:
49     return false;
50   default:
51     llvm_unreachable("Unsupported type");
52   }
53 }
54
55 // Return a version of MachineOperand that can be safely used before the
56 // final use.
57 static MachineOperand earlyUseOperand(MachineOperand Op) {
58   if (Op.isReg())
59     Op.setIsKill(false);
60   return Op;
61 }
62
63 SystemZTargetLowering::SystemZTargetLowering(SystemZTargetMachine &tm)
64   : TargetLowering(tm, new TargetLoweringObjectFileELF()),
65     Subtarget(*tm.getSubtargetImpl()), TM(tm) {
66   MVT PtrVT = getPointerTy();
67
68   // Set up the register classes.
69   if (Subtarget.hasHighWord())
70     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
71   else
72     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
73   addRegisterClass(MVT::i64,  &SystemZ::GR64BitRegClass);
74   addRegisterClass(MVT::f32,  &SystemZ::FP32BitRegClass);
75   addRegisterClass(MVT::f64,  &SystemZ::FP64BitRegClass);
76   addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
77
78   // Compute derived properties from the register classes
79   computeRegisterProperties();
80
81   // Set up special registers.
82   setExceptionPointerRegister(SystemZ::R6D);
83   setExceptionSelectorRegister(SystemZ::R7D);
84   setStackPointerRegisterToSaveRestore(SystemZ::R15D);
85
86   // TODO: It may be better to default to latency-oriented scheduling, however
87   // LLVM's current latency-oriented scheduler can't handle physreg definitions
88   // such as SystemZ has with CC, so set this to the register-pressure
89   // scheduler, because it can.
90   setSchedulingPreference(Sched::RegPressure);
91
92   setBooleanContents(ZeroOrOneBooleanContent);
93   setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
94
95   // Instructions are strings of 2-byte aligned 2-byte values.
96   setMinFunctionAlignment(2);
97
98   // Handle operations that are handled in a similar way for all types.
99   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
100        I <= MVT::LAST_FP_VALUETYPE;
101        ++I) {
102     MVT VT = MVT::SimpleValueType(I);
103     if (isTypeLegal(VT)) {
104       // Lower SET_CC into an IPM-based sequence.
105       setOperationAction(ISD::SETCC, VT, Custom);
106
107       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
108       setOperationAction(ISD::SELECT, VT, Expand);
109
110       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
111       setOperationAction(ISD::SELECT_CC, VT, Custom);
112       setOperationAction(ISD::BR_CC,     VT, Custom);
113     }
114   }
115
116   // Expand jump table branches as address arithmetic followed by an
117   // indirect jump.
118   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
119
120   // Expand BRCOND into a BR_CC (see above).
121   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
122
123   // Handle integer types.
124   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
125        I <= MVT::LAST_INTEGER_VALUETYPE;
126        ++I) {
127     MVT VT = MVT::SimpleValueType(I);
128     if (isTypeLegal(VT)) {
129       // Expand individual DIV and REMs into DIVREMs.
130       setOperationAction(ISD::SDIV, VT, Expand);
131       setOperationAction(ISD::UDIV, VT, Expand);
132       setOperationAction(ISD::SREM, VT, Expand);
133       setOperationAction(ISD::UREM, VT, Expand);
134       setOperationAction(ISD::SDIVREM, VT, Custom);
135       setOperationAction(ISD::UDIVREM, VT, Custom);
136
137       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
138       // stores, putting a serialization instruction after the stores.
139       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
140       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
141
142       // No special instructions for these.
143       setOperationAction(ISD::CTPOP,           VT, Expand);
144       setOperationAction(ISD::CTTZ,            VT, Expand);
145       setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
146       setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
147       setOperationAction(ISD::ROTR,            VT, Expand);
148
149       // Use *MUL_LOHI where possible instead of MULH*.
150       setOperationAction(ISD::MULHS, VT, Expand);
151       setOperationAction(ISD::MULHU, VT, Expand);
152       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
153       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
154
155       // We have instructions for signed but not unsigned FP conversion.
156       setOperationAction(ISD::FP_TO_UINT, VT, Expand);
157     }
158   }
159
160   // Type legalization will convert 8- and 16-bit atomic operations into
161   // forms that operate on i32s (but still keeping the original memory VT).
162   // Lower them into full i32 operations.
163   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
164   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
165   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
166   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
167   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
168   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
169   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
170   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
171   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
172   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
173   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
174   setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Custom);
175
176   // We have instructions for signed but not unsigned FP conversion.
177   // Handle unsigned 32-bit types as signed 64-bit types.
178   setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
179   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
180
181   // We have native support for a 64-bit CTLZ, via FLOGR.
182   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
183   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
184
185   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
186   setOperationAction(ISD::OR, MVT::i64, Custom);
187
188   // FIXME: Can we support these natively?
189   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
190   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
191   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
192
193   // We have native instructions for i8, i16 and i32 extensions, but not i1.
194   setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
195   setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
196   setLoadExtAction(ISD::EXTLOAD,  MVT::i1, Promote);
197   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
198
199   // Handle the various types of symbolic address.
200   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
201   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
202   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
203   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
204   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
205
206   // We need to handle dynamic allocations specially because of the
207   // 160-byte area at the bottom of the stack.
208   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
209
210   // Use custom expanders so that we can force the function to use
211   // a frame pointer.
212   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
213   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
214
215   // Handle prefetches with PFD or PFDRL.
216   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
217
218   // Handle floating-point types.
219   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
220        I <= MVT::LAST_FP_VALUETYPE;
221        ++I) {
222     MVT VT = MVT::SimpleValueType(I);
223     if (isTypeLegal(VT)) {
224       // We can use FI for FRINT.
225       setOperationAction(ISD::FRINT, VT, Legal);
226
227       // We can use the extended form of FI for other rounding operations.
228       if (Subtarget.hasFPExtension()) {
229         setOperationAction(ISD::FNEARBYINT, VT, Legal);
230         setOperationAction(ISD::FFLOOR, VT, Legal);
231         setOperationAction(ISD::FCEIL, VT, Legal);
232         setOperationAction(ISD::FTRUNC, VT, Legal);
233         setOperationAction(ISD::FROUND, VT, Legal);
234       }
235
236       // No special instructions for these.
237       setOperationAction(ISD::FSIN, VT, Expand);
238       setOperationAction(ISD::FCOS, VT, Expand);
239       setOperationAction(ISD::FREM, VT, Expand);
240     }
241   }
242
243   // We have fused multiply-addition for f32 and f64 but not f128.
244   setOperationAction(ISD::FMA, MVT::f32,  Legal);
245   setOperationAction(ISD::FMA, MVT::f64,  Legal);
246   setOperationAction(ISD::FMA, MVT::f128, Expand);
247
248   // Needed so that we don't try to implement f128 constant loads using
249   // a load-and-extend of a f80 constant (in cases where the constant
250   // would fit in an f80).
251   setLoadExtAction(ISD::EXTLOAD, MVT::f80, Expand);
252
253   // Floating-point truncation and stores need to be done separately.
254   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
255   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
256   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
257
258   // We have 64-bit FPR<->GPR moves, but need special handling for
259   // 32-bit forms.
260   setOperationAction(ISD::BITCAST, MVT::i32, Custom);
261   setOperationAction(ISD::BITCAST, MVT::f32, Custom);
262
263   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
264   // structure, but VAEND is a no-op.
265   setOperationAction(ISD::VASTART, MVT::Other, Custom);
266   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
267   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
268
269   // We want to use MVC in preference to even a single load/store pair.
270   MaxStoresPerMemcpy = 0;
271   MaxStoresPerMemcpyOptSize = 0;
272
273   // The main memset sequence is a byte store followed by an MVC.
274   // Two STC or MV..I stores win over that, but the kind of fused stores
275   // generated by target-independent code don't when the byte value is
276   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
277   // than "STC;MVC".  Handle the choice in target-specific code instead.
278   MaxStoresPerMemset = 0;
279   MaxStoresPerMemsetOptSize = 0;
280 }
281
282 EVT SystemZTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
283   if (!VT.isVector())
284     return MVT::i32;
285   return VT.changeVectorElementTypeToInteger();
286 }
287
288 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
289   VT = VT.getScalarType();
290
291   if (!VT.isSimple())
292     return false;
293
294   switch (VT.getSimpleVT().SimpleTy) {
295   case MVT::f32:
296   case MVT::f64:
297     return true;
298   case MVT::f128:
299     return false;
300   default:
301     break;
302   }
303
304   return false;
305 }
306
307 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
308   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
309   return Imm.isZero() || Imm.isNegZero();
310 }
311
312 bool SystemZTargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
313                                                           bool *Fast) const {
314   // Unaligned accesses should never be slower than the expanded version.
315   // We check specifically for aligned accesses in the few cases where
316   // they are required.
317   if (Fast)
318     *Fast = true;
319   return true;
320 }
321   
322 bool SystemZTargetLowering::isLegalAddressingMode(const AddrMode &AM,
323                                                   Type *Ty) const {
324   // Punt on globals for now, although they can be used in limited
325   // RELATIVE LONG cases.
326   if (AM.BaseGV)
327     return false;
328
329   // Require a 20-bit signed offset.
330   if (!isInt<20>(AM.BaseOffs))
331     return false;
332
333   // Indexing is OK but no scale factor can be applied.
334   return AM.Scale == 0 || AM.Scale == 1;
335 }
336
337 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
338   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
339     return false;
340   unsigned FromBits = FromType->getPrimitiveSizeInBits();
341   unsigned ToBits = ToType->getPrimitiveSizeInBits();
342   return FromBits > ToBits;
343 }
344
345 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
346   if (!FromVT.isInteger() || !ToVT.isInteger())
347     return false;
348   unsigned FromBits = FromVT.getSizeInBits();
349   unsigned ToBits = ToVT.getSizeInBits();
350   return FromBits > ToBits;
351 }
352
353 //===----------------------------------------------------------------------===//
354 // Inline asm support
355 //===----------------------------------------------------------------------===//
356
357 TargetLowering::ConstraintType
358 SystemZTargetLowering::getConstraintType(const std::string &Constraint) const {
359   if (Constraint.size() == 1) {
360     switch (Constraint[0]) {
361     case 'a': // Address register
362     case 'd': // Data register (equivalent to 'r')
363     case 'f': // Floating-point register
364     case 'h': // High-part register
365     case 'r': // General-purpose register
366       return C_RegisterClass;
367
368     case 'Q': // Memory with base and unsigned 12-bit displacement
369     case 'R': // Likewise, plus an index
370     case 'S': // Memory with base and signed 20-bit displacement
371     case 'T': // Likewise, plus an index
372     case 'm': // Equivalent to 'T'.
373       return C_Memory;
374
375     case 'I': // Unsigned 8-bit constant
376     case 'J': // Unsigned 12-bit constant
377     case 'K': // Signed 16-bit constant
378     case 'L': // Signed 20-bit displacement (on all targets we support)
379     case 'M': // 0x7fffffff
380       return C_Other;
381
382     default:
383       break;
384     }
385   }
386   return TargetLowering::getConstraintType(Constraint);
387 }
388
389 TargetLowering::ConstraintWeight SystemZTargetLowering::
390 getSingleConstraintMatchWeight(AsmOperandInfo &info,
391                                const char *constraint) const {
392   ConstraintWeight weight = CW_Invalid;
393   Value *CallOperandVal = info.CallOperandVal;
394   // If we don't have a value, we can't do a match,
395   // but allow it at the lowest weight.
396   if (CallOperandVal == NULL)
397     return CW_Default;
398   Type *type = CallOperandVal->getType();
399   // Look at the constraint type.
400   switch (*constraint) {
401   default:
402     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
403     break;
404
405   case 'a': // Address register
406   case 'd': // Data register (equivalent to 'r')
407   case 'h': // High-part register
408   case 'r': // General-purpose register
409     if (CallOperandVal->getType()->isIntegerTy())
410       weight = CW_Register;
411     break;
412
413   case 'f': // Floating-point register
414     if (type->isFloatingPointTy())
415       weight = CW_Register;
416     break;
417
418   case 'I': // Unsigned 8-bit constant
419     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
420       if (isUInt<8>(C->getZExtValue()))
421         weight = CW_Constant;
422     break;
423
424   case 'J': // Unsigned 12-bit constant
425     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
426       if (isUInt<12>(C->getZExtValue()))
427         weight = CW_Constant;
428     break;
429
430   case 'K': // Signed 16-bit constant
431     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
432       if (isInt<16>(C->getSExtValue()))
433         weight = CW_Constant;
434     break;
435
436   case 'L': // Signed 20-bit displacement (on all targets we support)
437     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
438       if (isInt<20>(C->getSExtValue()))
439         weight = CW_Constant;
440     break;
441
442   case 'M': // 0x7fffffff
443     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
444       if (C->getZExtValue() == 0x7fffffff)
445         weight = CW_Constant;
446     break;
447   }
448   return weight;
449 }
450
451 // Parse a "{tNNN}" register constraint for which the register type "t"
452 // has already been verified.  MC is the class associated with "t" and
453 // Map maps 0-based register numbers to LLVM register numbers.
454 static std::pair<unsigned, const TargetRegisterClass *>
455 parseRegisterNumber(const std::string &Constraint,
456                     const TargetRegisterClass *RC, const unsigned *Map) {
457   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
458   if (isdigit(Constraint[2])) {
459     std::string Suffix(Constraint.data() + 2, Constraint.size() - 2);
460     unsigned Index = atoi(Suffix.c_str());
461     if (Index < 16 && Map[Index])
462       return std::make_pair(Map[Index], RC);
463   }
464   return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
465 }
466
467 std::pair<unsigned, const TargetRegisterClass *> SystemZTargetLowering::
468 getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const {
469   if (Constraint.size() == 1) {
470     // GCC Constraint Letters
471     switch (Constraint[0]) {
472     default: break;
473     case 'd': // Data register (equivalent to 'r')
474     case 'r': // General-purpose register
475       if (VT == MVT::i64)
476         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
477       else if (VT == MVT::i128)
478         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
479       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
480
481     case 'a': // Address register
482       if (VT == MVT::i64)
483         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
484       else if (VT == MVT::i128)
485         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
486       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
487
488     case 'h': // High-part register (an LLVM extension)
489       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
490
491     case 'f': // Floating-point register
492       if (VT == MVT::f64)
493         return std::make_pair(0U, &SystemZ::FP64BitRegClass);
494       else if (VT == MVT::f128)
495         return std::make_pair(0U, &SystemZ::FP128BitRegClass);
496       return std::make_pair(0U, &SystemZ::FP32BitRegClass);
497     }
498   }
499   if (Constraint[0] == '{') {
500     // We need to override the default register parsing for GPRs and FPRs
501     // because the interpretation depends on VT.  The internal names of
502     // the registers are also different from the external names
503     // (F0D and F0S instead of F0, etc.).
504     if (Constraint[1] == 'r') {
505       if (VT == MVT::i32)
506         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
507                                    SystemZMC::GR32Regs);
508       if (VT == MVT::i128)
509         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
510                                    SystemZMC::GR128Regs);
511       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
512                                  SystemZMC::GR64Regs);
513     }
514     if (Constraint[1] == 'f') {
515       if (VT == MVT::f32)
516         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
517                                    SystemZMC::FP32Regs);
518       if (VT == MVT::f128)
519         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
520                                    SystemZMC::FP128Regs);
521       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
522                                  SystemZMC::FP64Regs);
523     }
524   }
525   return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
526 }
527
528 void SystemZTargetLowering::
529 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
530                              std::vector<SDValue> &Ops,
531                              SelectionDAG &DAG) const {
532   // Only support length 1 constraints for now.
533   if (Constraint.length() == 1) {
534     switch (Constraint[0]) {
535     case 'I': // Unsigned 8-bit constant
536       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
537         if (isUInt<8>(C->getZExtValue()))
538           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
539                                               Op.getValueType()));
540       return;
541
542     case 'J': // Unsigned 12-bit constant
543       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
544         if (isUInt<12>(C->getZExtValue()))
545           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
546                                               Op.getValueType()));
547       return;
548
549     case 'K': // Signed 16-bit constant
550       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
551         if (isInt<16>(C->getSExtValue()))
552           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
553                                               Op.getValueType()));
554       return;
555
556     case 'L': // Signed 20-bit displacement (on all targets we support)
557       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
558         if (isInt<20>(C->getSExtValue()))
559           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
560                                               Op.getValueType()));
561       return;
562
563     case 'M': // 0x7fffffff
564       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
565         if (C->getZExtValue() == 0x7fffffff)
566           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
567                                               Op.getValueType()));
568       return;
569     }
570   }
571   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
572 }
573
574 //===----------------------------------------------------------------------===//
575 // Calling conventions
576 //===----------------------------------------------------------------------===//
577
578 #include "SystemZGenCallingConv.inc"
579
580 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
581                                                      Type *ToType) const {
582   return isTruncateFree(FromType, ToType);
583 }
584
585 bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
586   if (!CI->isTailCall())
587     return false;
588   return true;
589 }
590
591 // Value is a value that has been passed to us in the location described by VA
592 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
593 // any loads onto Chain.
594 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDLoc DL,
595                                    CCValAssign &VA, SDValue Chain,
596                                    SDValue Value) {
597   // If the argument has been promoted from a smaller type, insert an
598   // assertion to capture this.
599   if (VA.getLocInfo() == CCValAssign::SExt)
600     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
601                         DAG.getValueType(VA.getValVT()));
602   else if (VA.getLocInfo() == CCValAssign::ZExt)
603     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
604                         DAG.getValueType(VA.getValVT()));
605
606   if (VA.isExtInLoc())
607     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
608   else if (VA.getLocInfo() == CCValAssign::Indirect)
609     Value = DAG.getLoad(VA.getValVT(), DL, Chain, Value,
610                         MachinePointerInfo(), false, false, false, 0);
611   else
612     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
613   return Value;
614 }
615
616 // Value is a value of type VA.getValVT() that we need to copy into
617 // the location described by VA.  Return a copy of Value converted to
618 // VA.getValVT().  The caller is responsible for handling indirect values.
619 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDLoc DL,
620                                    CCValAssign &VA, SDValue Value) {
621   switch (VA.getLocInfo()) {
622   case CCValAssign::SExt:
623     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
624   case CCValAssign::ZExt:
625     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
626   case CCValAssign::AExt:
627     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
628   case CCValAssign::Full:
629     return Value;
630   default:
631     llvm_unreachable("Unhandled getLocInfo()");
632   }
633 }
634
635 SDValue SystemZTargetLowering::
636 LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
637                      const SmallVectorImpl<ISD::InputArg> &Ins,
638                      SDLoc DL, SelectionDAG &DAG,
639                      SmallVectorImpl<SDValue> &InVals) const {
640   MachineFunction &MF = DAG.getMachineFunction();
641   MachineFrameInfo *MFI = MF.getFrameInfo();
642   MachineRegisterInfo &MRI = MF.getRegInfo();
643   SystemZMachineFunctionInfo *FuncInfo =
644     MF.getInfo<SystemZMachineFunctionInfo>();
645   const SystemZFrameLowering *TFL =
646     static_cast<const SystemZFrameLowering *>(TM.getFrameLowering());
647
648   // Assign locations to all of the incoming arguments.
649   SmallVector<CCValAssign, 16> ArgLocs;
650   CCState CCInfo(CallConv, IsVarArg, MF, TM, ArgLocs, *DAG.getContext());
651   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
652
653   unsigned NumFixedGPRs = 0;
654   unsigned NumFixedFPRs = 0;
655   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
656     SDValue ArgValue;
657     CCValAssign &VA = ArgLocs[I];
658     EVT LocVT = VA.getLocVT();
659     if (VA.isRegLoc()) {
660       // Arguments passed in registers
661       const TargetRegisterClass *RC;
662       switch (LocVT.getSimpleVT().SimpleTy) {
663       default:
664         // Integers smaller than i64 should be promoted to i64.
665         llvm_unreachable("Unexpected argument type");
666       case MVT::i32:
667         NumFixedGPRs += 1;
668         RC = &SystemZ::GR32BitRegClass;
669         break;
670       case MVT::i64:
671         NumFixedGPRs += 1;
672         RC = &SystemZ::GR64BitRegClass;
673         break;
674       case MVT::f32:
675         NumFixedFPRs += 1;
676         RC = &SystemZ::FP32BitRegClass;
677         break;
678       case MVT::f64:
679         NumFixedFPRs += 1;
680         RC = &SystemZ::FP64BitRegClass;
681         break;
682       }
683
684       unsigned VReg = MRI.createVirtualRegister(RC);
685       MRI.addLiveIn(VA.getLocReg(), VReg);
686       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
687     } else {
688       assert(VA.isMemLoc() && "Argument not register or memory");
689
690       // Create the frame index object for this incoming parameter.
691       int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8,
692                                       VA.getLocMemOffset(), true);
693
694       // Create the SelectionDAG nodes corresponding to a load
695       // from this parameter.  Unpromoted ints and floats are
696       // passed as right-justified 8-byte values.
697       EVT PtrVT = getPointerTy();
698       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
699       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
700         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4));
701       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
702                              MachinePointerInfo::getFixedStack(FI),
703                              false, false, false, 0);
704     }
705
706     // Convert the value of the argument register into the value that's
707     // being passed.
708     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
709   }
710
711   if (IsVarArg) {
712     // Save the number of non-varargs registers for later use by va_start, etc.
713     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
714     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
715
716     // Likewise the address (in the form of a frame index) of where the
717     // first stack vararg would be.  The 1-byte size here is arbitrary.
718     int64_t StackSize = CCInfo.getNextStackOffset();
719     FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true));
720
721     // ...and a similar frame index for the caller-allocated save area
722     // that will be used to store the incoming registers.
723     int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
724     unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true);
725     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
726
727     // Store the FPR varargs in the reserved frame slots.  (We store the
728     // GPRs as part of the prologue.)
729     if (NumFixedFPRs < SystemZ::NumArgFPRs) {
730       SDValue MemOps[SystemZ::NumArgFPRs];
731       for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
732         unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
733         int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true);
734         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
735         unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
736                                      &SystemZ::FP64BitRegClass);
737         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
738         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
739                                  MachinePointerInfo::getFixedStack(FI),
740                                  false, false, 0);
741
742       }
743       // Join the stores, which are independent of one another.
744       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
745                           &MemOps[NumFixedFPRs],
746                           SystemZ::NumArgFPRs - NumFixedFPRs);
747     }
748   }
749
750   return Chain;
751 }
752
753 static bool canUseSiblingCall(CCState ArgCCInfo,
754                               SmallVectorImpl<CCValAssign> &ArgLocs) {
755   // Punt if there are any indirect or stack arguments, or if the call
756   // needs the call-saved argument register R6.
757   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
758     CCValAssign &VA = ArgLocs[I];
759     if (VA.getLocInfo() == CCValAssign::Indirect)
760       return false;
761     if (!VA.isRegLoc())
762       return false;
763     unsigned Reg = VA.getLocReg();
764     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
765       return false;
766   }
767   return true;
768 }
769
770 SDValue
771 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
772                                  SmallVectorImpl<SDValue> &InVals) const {
773   SelectionDAG &DAG = CLI.DAG;
774   SDLoc &DL = CLI.DL;
775   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
776   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
777   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
778   SDValue Chain = CLI.Chain;
779   SDValue Callee = CLI.Callee;
780   bool &IsTailCall = CLI.IsTailCall;
781   CallingConv::ID CallConv = CLI.CallConv;
782   bool IsVarArg = CLI.IsVarArg;
783   MachineFunction &MF = DAG.getMachineFunction();
784   EVT PtrVT = getPointerTy();
785
786   // Analyze the operands of the call, assigning locations to each operand.
787   SmallVector<CCValAssign, 16> ArgLocs;
788   CCState ArgCCInfo(CallConv, IsVarArg, MF, TM, ArgLocs, *DAG.getContext());
789   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
790
791   // We don't support GuaranteedTailCallOpt, only automatically-detected
792   // sibling calls.
793   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs))
794     IsTailCall = false;
795
796   // Get a count of how many bytes are to be pushed on the stack.
797   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
798
799   // Mark the start of the call.
800   if (!IsTailCall)
801     Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes, PtrVT, true),
802                                  DL);
803
804   // Copy argument values to their designated locations.
805   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
806   SmallVector<SDValue, 8> MemOpChains;
807   SDValue StackPtr;
808   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
809     CCValAssign &VA = ArgLocs[I];
810     SDValue ArgValue = OutVals[I];
811
812     if (VA.getLocInfo() == CCValAssign::Indirect) {
813       // Store the argument in a stack slot and pass its address.
814       SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
815       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
816       MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, SpillSlot,
817                                          MachinePointerInfo::getFixedStack(FI),
818                                          false, false, 0));
819       ArgValue = SpillSlot;
820     } else
821       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
822
823     if (VA.isRegLoc())
824       // Queue up the argument copies and emit them at the end.
825       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
826     else {
827       assert(VA.isMemLoc() && "Argument not register or memory");
828
829       // Work out the address of the stack slot.  Unpromoted ints and
830       // floats are passed as right-justified 8-byte values.
831       if (!StackPtr.getNode())
832         StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
833       unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
834       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
835         Offset += 4;
836       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
837                                     DAG.getIntPtrConstant(Offset));
838
839       // Emit the store.
840       MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address,
841                                          MachinePointerInfo(),
842                                          false, false, 0));
843     }
844   }
845
846   // Join the stores, which are independent of one another.
847   if (!MemOpChains.empty())
848     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
849                         &MemOpChains[0], MemOpChains.size());
850
851   // Accept direct calls by converting symbolic call addresses to the
852   // associated Target* opcodes.  Force %r1 to be used for indirect
853   // tail calls.
854   SDValue Glue;
855   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
856     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
857     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
858   } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
859     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
860     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
861   } else if (IsTailCall) {
862     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
863     Glue = Chain.getValue(1);
864     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
865   }
866
867   // Build a sequence of copy-to-reg nodes, chained and glued together.
868   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
869     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
870                              RegsToPass[I].second, Glue);
871     Glue = Chain.getValue(1);
872   }
873
874   // The first call operand is the chain and the second is the target address.
875   SmallVector<SDValue, 8> Ops;
876   Ops.push_back(Chain);
877   Ops.push_back(Callee);
878
879   // Add argument registers to the end of the list so that they are
880   // known live into the call.
881   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
882     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
883                                   RegsToPass[I].second.getValueType()));
884
885   // Glue the call to the argument copies, if any.
886   if (Glue.getNode())
887     Ops.push_back(Glue);
888
889   // Emit the call.
890   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
891   if (IsTailCall)
892     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, &Ops[0], Ops.size());
893   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, &Ops[0], Ops.size());
894   Glue = Chain.getValue(1);
895
896   // Mark the end of the call, which is glued to the call itself.
897   Chain = DAG.getCALLSEQ_END(Chain,
898                              DAG.getConstant(NumBytes, PtrVT, true),
899                              DAG.getConstant(0, PtrVT, true),
900                              Glue, DL);
901   Glue = Chain.getValue(1);
902
903   // Assign locations to each value returned by this call.
904   SmallVector<CCValAssign, 16> RetLocs;
905   CCState RetCCInfo(CallConv, IsVarArg, MF, TM, RetLocs, *DAG.getContext());
906   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
907
908   // Copy all of the result registers out of their specified physreg.
909   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
910     CCValAssign &VA = RetLocs[I];
911
912     // Copy the value out, gluing the copy to the end of the call sequence.
913     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
914                                           VA.getLocVT(), Glue);
915     Chain = RetValue.getValue(1);
916     Glue = RetValue.getValue(2);
917
918     // Convert the value of the return register into the value that's
919     // being returned.
920     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
921   }
922
923   return Chain;
924 }
925
926 SDValue
927 SystemZTargetLowering::LowerReturn(SDValue Chain,
928                                    CallingConv::ID CallConv, bool IsVarArg,
929                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
930                                    const SmallVectorImpl<SDValue> &OutVals,
931                                    SDLoc DL, SelectionDAG &DAG) const {
932   MachineFunction &MF = DAG.getMachineFunction();
933
934   // Assign locations to each returned value.
935   SmallVector<CCValAssign, 16> RetLocs;
936   CCState RetCCInfo(CallConv, IsVarArg, MF, TM, RetLocs, *DAG.getContext());
937   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
938
939   // Quick exit for void returns
940   if (RetLocs.empty())
941     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
942
943   // Copy the result values into the output registers.
944   SDValue Glue;
945   SmallVector<SDValue, 4> RetOps;
946   RetOps.push_back(Chain);
947   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
948     CCValAssign &VA = RetLocs[I];
949     SDValue RetValue = OutVals[I];
950
951     // Make the return register live on exit.
952     assert(VA.isRegLoc() && "Can only return in registers!");
953
954     // Promote the value as required.
955     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
956
957     // Chain and glue the copies together.
958     unsigned Reg = VA.getLocReg();
959     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
960     Glue = Chain.getValue(1);
961     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
962   }
963
964   // Update chain and glue.
965   RetOps[0] = Chain;
966   if (Glue.getNode())
967     RetOps.push_back(Glue);
968
969   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other,
970                      RetOps.data(), RetOps.size());
971 }
972
973 SDValue SystemZTargetLowering::
974 prepareVolatileOrAtomicLoad(SDValue Chain, SDLoc DL, SelectionDAG &DAG) const {
975   return DAG.getNode(SystemZISD::SERIALIZE, DL, MVT::Other, Chain);
976 }
977
978 // CC is a comparison that will be implemented using an integer or
979 // floating-point comparison.  Return the condition code mask for
980 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
981 // unsigned comparisons and clear for signed ones.  In the floating-point
982 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
983 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
984 #define CONV(X) \
985   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
986   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
987   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
988
989   switch (CC) {
990   default:
991     llvm_unreachable("Invalid integer condition!");
992
993   CONV(EQ);
994   CONV(NE);
995   CONV(GT);
996   CONV(GE);
997   CONV(LT);
998   CONV(LE);
999
1000   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
1001   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
1002   }
1003 #undef CONV
1004 }
1005
1006 // Return a sequence for getting a 1 from an IPM result when CC has a
1007 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask.
1008 // The handling of CC values outside CCValid doesn't matter.
1009 static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) {
1010   // Deal with cases where the result can be taken directly from a bit
1011   // of the IPM result.
1012   if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3)))
1013     return IPMConversion(0, 0, SystemZ::IPM_CC);
1014   if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3)))
1015     return IPMConversion(0, 0, SystemZ::IPM_CC + 1);
1016
1017   // Deal with cases where we can add a value to force the sign bit
1018   // to contain the right value.  Putting the bit in 31 means we can
1019   // use SRL rather than RISBG(L), and also makes it easier to get a
1020   // 0/-1 value, so it has priority over the other tests below.
1021   //
1022   // These sequences rely on the fact that the upper two bits of the
1023   // IPM result are zero.
1024   uint64_t TopBit = uint64_t(1) << 31;
1025   if (CCMask == (CCValid & SystemZ::CCMASK_0))
1026     return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31);
1027   if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1)))
1028     return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31);
1029   if (CCMask == (CCValid & (SystemZ::CCMASK_0
1030                             | SystemZ::CCMASK_1
1031                             | SystemZ::CCMASK_2)))
1032     return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31);
1033   if (CCMask == (CCValid & SystemZ::CCMASK_3))
1034     return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31);
1035   if (CCMask == (CCValid & (SystemZ::CCMASK_1
1036                             | SystemZ::CCMASK_2
1037                             | SystemZ::CCMASK_3)))
1038     return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31);
1039
1040   // Next try inverting the value and testing a bit.  0/1 could be
1041   // handled this way too, but we dealt with that case above.
1042   if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2)))
1043     return IPMConversion(-1, 0, SystemZ::IPM_CC);
1044
1045   // Handle cases where adding a value forces a non-sign bit to contain
1046   // the right value.
1047   if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2)))
1048     return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1);
1049   if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3)))
1050     return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1);
1051
1052   // The remaing cases are 1, 2, 0/1/3 and 0/2/3.  All these are
1053   // can be done by inverting the low CC bit and applying one of the
1054   // sign-based extractions above.
1055   if (CCMask == (CCValid & SystemZ::CCMASK_1))
1056     return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31);
1057   if (CCMask == (CCValid & SystemZ::CCMASK_2))
1058     return IPMConversion(1 << SystemZ::IPM_CC,
1059                          TopBit - (3 << SystemZ::IPM_CC), 31);
1060   if (CCMask == (CCValid & (SystemZ::CCMASK_0
1061                             | SystemZ::CCMASK_1
1062                             | SystemZ::CCMASK_3)))
1063     return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31);
1064   if (CCMask == (CCValid & (SystemZ::CCMASK_0
1065                             | SystemZ::CCMASK_2
1066                             | SystemZ::CCMASK_3)))
1067     return IPMConversion(1 << SystemZ::IPM_CC,
1068                          TopBit - (1 << SystemZ::IPM_CC), 31);
1069
1070   llvm_unreachable("Unexpected CC combination");
1071 }
1072
1073 // If a comparison described by IsUnsigned, CCMask, CmpOp0 and CmpOp1
1074 // can be converted to a comparison against zero, adjust the operands
1075 // as necessary.
1076 static void adjustZeroCmp(SelectionDAG &DAG, bool &IsUnsigned,
1077                           SDValue &CmpOp0, SDValue &CmpOp1,
1078                           unsigned &CCMask) {
1079   if (IsUnsigned)
1080     return;
1081
1082   ConstantSDNode *ConstOp1 = dyn_cast<ConstantSDNode>(CmpOp1.getNode());
1083   if (!ConstOp1)
1084     return;
1085
1086   int64_t Value = ConstOp1->getSExtValue();
1087   if ((Value == -1 && CCMask == SystemZ::CCMASK_CMP_GT) ||
1088       (Value == -1 && CCMask == SystemZ::CCMASK_CMP_LE) ||
1089       (Value == 1 && CCMask == SystemZ::CCMASK_CMP_LT) ||
1090       (Value == 1 && CCMask == SystemZ::CCMASK_CMP_GE)) {
1091     CCMask ^= SystemZ::CCMASK_CMP_EQ;
1092     CmpOp1 = DAG.getConstant(0, CmpOp1.getValueType());
1093   }
1094 }
1095
1096 // If a comparison described by IsUnsigned, CCMask, CmpOp0 and CmpOp1
1097 // is suitable for CLI(Y), CHHSI or CLHHSI, adjust the operands as necessary.
1098 static void adjustSubwordCmp(SelectionDAG &DAG, bool &IsUnsigned,
1099                              SDValue &CmpOp0, SDValue &CmpOp1,
1100                              unsigned &CCMask) {
1101   // For us to make any changes, it must a comparison between a single-use
1102   // load and a constant.
1103   if (!CmpOp0.hasOneUse() ||
1104       CmpOp0.getOpcode() != ISD::LOAD ||
1105       CmpOp1.getOpcode() != ISD::Constant)
1106     return;
1107
1108   // We must have an 8- or 16-bit load.
1109   LoadSDNode *Load = cast<LoadSDNode>(CmpOp0);
1110   unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
1111   if (NumBits != 8 && NumBits != 16)
1112     return;
1113
1114   // The load must be an extending one and the constant must be within the
1115   // range of the unextended value.
1116   ConstantSDNode *Constant = cast<ConstantSDNode>(CmpOp1);
1117   uint64_t Value = Constant->getZExtValue();
1118   uint64_t Mask = (1 << NumBits) - 1;
1119   if (Load->getExtensionType() == ISD::SEXTLOAD) {
1120     int64_t SignedValue = Constant->getSExtValue();
1121     if (uint64_t(SignedValue) + (1ULL << (NumBits - 1)) > Mask)
1122       return;
1123     // Unsigned comparison between two sign-extended values is equivalent
1124     // to unsigned comparison between two zero-extended values.
1125     if (IsUnsigned)
1126       Value &= Mask;
1127     else if (CCMask == SystemZ::CCMASK_CMP_EQ ||
1128              CCMask == SystemZ::CCMASK_CMP_NE)
1129       // Any choice of IsUnsigned is OK for equality comparisons.
1130       // We could use either CHHSI or CLHHSI for 16-bit comparisons,
1131       // but since we use CLHHSI for zero extensions, it seems better
1132       // to be consistent and do the same here.
1133       Value &= Mask, IsUnsigned = true;
1134     else if (NumBits == 8) {
1135       // Try to treat the comparison as unsigned, so that we can use CLI.
1136       // Adjust CCMask and Value as necessary.
1137       if (Value == 0 && CCMask == SystemZ::CCMASK_CMP_LT)
1138         // Test whether the high bit of the byte is set.
1139         Value = 127, CCMask = SystemZ::CCMASK_CMP_GT, IsUnsigned = true;
1140       else if (Value == 0 && CCMask == SystemZ::CCMASK_CMP_GE)
1141         // Test whether the high bit of the byte is clear.
1142         Value = 128, CCMask = SystemZ::CCMASK_CMP_LT, IsUnsigned = true;
1143       else
1144         // No instruction exists for this combination.
1145         return;
1146     }
1147   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
1148     if (Value > Mask)
1149       return;
1150     // Signed comparison between two zero-extended values is equivalent
1151     // to unsigned comparison.
1152     IsUnsigned = true;
1153   } else
1154     return;
1155
1156   // Make sure that the first operand is an i32 of the right extension type.
1157   ISD::LoadExtType ExtType = IsUnsigned ? ISD::ZEXTLOAD : ISD::SEXTLOAD;
1158   if (CmpOp0.getValueType() != MVT::i32 ||
1159       Load->getExtensionType() != ExtType)
1160     CmpOp0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32,
1161                             Load->getChain(), Load->getBasePtr(),
1162                             Load->getPointerInfo(), Load->getMemoryVT(),
1163                             Load->isVolatile(), Load->isNonTemporal(),
1164                             Load->getAlignment());
1165
1166   // Make sure that the second operand is an i32 with the right value.
1167   if (CmpOp1.getValueType() != MVT::i32 ||
1168       Value != Constant->getZExtValue())
1169     CmpOp1 = DAG.getConstant(Value, MVT::i32);
1170 }
1171
1172 // Return true if Op is either an unextended load, or a load suitable
1173 // for integer register-memory comparisons of type ICmpType.
1174 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
1175   LoadSDNode *Load = dyn_cast<LoadSDNode>(Op.getNode());
1176   if (Load) {
1177     // There are no instructions to compare a register with a memory byte.
1178     if (Load->getMemoryVT() == MVT::i8)
1179       return false;
1180     // Otherwise decide on extension type.
1181     switch (Load->getExtensionType()) {
1182     case ISD::NON_EXTLOAD:
1183       return true;
1184     case ISD::SEXTLOAD:
1185       return ICmpType != SystemZICMP::UnsignedOnly;
1186     case ISD::ZEXTLOAD:
1187       return ICmpType != SystemZICMP::SignedOnly;
1188     default:
1189       break;
1190     }
1191   }
1192   return false;
1193 }
1194
1195 // Return true if it is better to swap comparison operands Op0 and Op1.
1196 // ICmpType is the type of an integer comparison.
1197 static bool shouldSwapCmpOperands(SDValue Op0, SDValue Op1,
1198                                   unsigned ICmpType) {
1199   // Leave f128 comparisons alone, since they have no memory forms.
1200   if (Op0.getValueType() == MVT::f128)
1201     return false;
1202
1203   // Always keep a floating-point constant second, since comparisons with
1204   // zero can use LOAD TEST and comparisons with other constants make a
1205   // natural memory operand.
1206   if (isa<ConstantFPSDNode>(Op1))
1207     return false;
1208
1209   // Never swap comparisons with zero since there are many ways to optimize
1210   // those later.
1211   ConstantSDNode *COp1 = dyn_cast<ConstantSDNode>(Op1);
1212   if (COp1 && COp1->getZExtValue() == 0)
1213     return false;
1214
1215   // Also keep natural memory operands second if the loaded value is
1216   // only used here.  Several comparisons have memory forms.
1217   if (isNaturalMemoryOperand(Op1, ICmpType) && Op1.hasOneUse())
1218     return false;
1219
1220   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
1221   // In that case we generally prefer the memory to be second.
1222   if (isNaturalMemoryOperand(Op0, ICmpType) && Op0.hasOneUse()) {
1223     // The only exceptions are when the second operand is a constant and
1224     // we can use things like CHHSI.
1225     if (!COp1)
1226       return true;
1227     // The unsigned memory-immediate instructions can handle 16-bit
1228     // unsigned integers.
1229     if (ICmpType != SystemZICMP::SignedOnly &&
1230         isUInt<16>(COp1->getZExtValue()))
1231       return false;
1232     // The signed memory-immediate instructions can handle 16-bit
1233     // signed integers.
1234     if (ICmpType != SystemZICMP::UnsignedOnly &&
1235         isInt<16>(COp1->getSExtValue()))
1236       return false;
1237     return true;
1238   }
1239
1240   // Try to promote the use of CGFR and CLGFR.
1241   unsigned Opcode0 = Op0.getOpcode();
1242   if (ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
1243     return true;
1244   if (ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
1245     return true;
1246   if (ICmpType != SystemZICMP::SignedOnly &&
1247       Opcode0 == ISD::AND &&
1248       Op0.getOperand(1).getOpcode() == ISD::Constant &&
1249       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0xffffffff)
1250     return true;
1251
1252   return false;
1253 }
1254
1255 // Return true if shift operation N has an in-range constant shift value.
1256 // Store it in ShiftVal if so.
1257 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
1258   ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
1259   if (!Shift)
1260     return false;
1261
1262   uint64_t Amount = Shift->getZExtValue();
1263   if (Amount >= N.getValueType().getSizeInBits())
1264     return false;
1265
1266   ShiftVal = Amount;
1267   return true;
1268 }
1269
1270 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
1271 // instruction and whether the CC value is descriptive enough to handle
1272 // a comparison of type Opcode between the AND result and CmpVal.
1273 // CCMask says which comparison result is being tested and BitSize is
1274 // the number of bits in the operands.  If TEST UNDER MASK can be used,
1275 // return the corresponding CC mask, otherwise return 0.
1276 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
1277                                      uint64_t Mask, uint64_t CmpVal,
1278                                      unsigned ICmpType) {
1279   assert(Mask != 0 && "ANDs with zero should have been removed by now");
1280
1281   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
1282   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
1283       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
1284     return 0;
1285
1286   // Work out the masks for the lowest and highest bits.
1287   unsigned HighShift = 63 - countLeadingZeros(Mask);
1288   uint64_t High = uint64_t(1) << HighShift;
1289   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
1290
1291   // Signed ordered comparisons are effectively unsigned if the sign
1292   // bit is dropped.
1293   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
1294
1295   // Check for equality comparisons with 0, or the equivalent.
1296   if (CmpVal == 0) {
1297     if (CCMask == SystemZ::CCMASK_CMP_EQ)
1298       return SystemZ::CCMASK_TM_ALL_0;
1299     if (CCMask == SystemZ::CCMASK_CMP_NE)
1300       return SystemZ::CCMASK_TM_SOME_1;
1301   }
1302   if (EffectivelyUnsigned && CmpVal <= Low) {
1303     if (CCMask == SystemZ::CCMASK_CMP_LT)
1304       return SystemZ::CCMASK_TM_ALL_0;
1305     if (CCMask == SystemZ::CCMASK_CMP_GE)
1306       return SystemZ::CCMASK_TM_SOME_1;
1307   }
1308   if (EffectivelyUnsigned && CmpVal < Low) {
1309     if (CCMask == SystemZ::CCMASK_CMP_LE)
1310       return SystemZ::CCMASK_TM_ALL_0;
1311     if (CCMask == SystemZ::CCMASK_CMP_GT)
1312       return SystemZ::CCMASK_TM_SOME_1;
1313   }
1314
1315   // Check for equality comparisons with the mask, or the equivalent.
1316   if (CmpVal == Mask) {
1317     if (CCMask == SystemZ::CCMASK_CMP_EQ)
1318       return SystemZ::CCMASK_TM_ALL_1;
1319     if (CCMask == SystemZ::CCMASK_CMP_NE)
1320       return SystemZ::CCMASK_TM_SOME_0;
1321   }
1322   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
1323     if (CCMask == SystemZ::CCMASK_CMP_GT)
1324       return SystemZ::CCMASK_TM_ALL_1;
1325     if (CCMask == SystemZ::CCMASK_CMP_LE)
1326       return SystemZ::CCMASK_TM_SOME_0;
1327   }
1328   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
1329     if (CCMask == SystemZ::CCMASK_CMP_GE)
1330       return SystemZ::CCMASK_TM_ALL_1;
1331     if (CCMask == SystemZ::CCMASK_CMP_LT)
1332       return SystemZ::CCMASK_TM_SOME_0;
1333   }
1334
1335   // Check for ordered comparisons with the top bit.
1336   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
1337     if (CCMask == SystemZ::CCMASK_CMP_LE)
1338       return SystemZ::CCMASK_TM_MSB_0;
1339     if (CCMask == SystemZ::CCMASK_CMP_GT)
1340       return SystemZ::CCMASK_TM_MSB_1;
1341   }
1342   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
1343     if (CCMask == SystemZ::CCMASK_CMP_LT)
1344       return SystemZ::CCMASK_TM_MSB_0;
1345     if (CCMask == SystemZ::CCMASK_CMP_GE)
1346       return SystemZ::CCMASK_TM_MSB_1;
1347   }
1348
1349   // If there are just two bits, we can do equality checks for Low and High
1350   // as well.
1351   if (Mask == Low + High) {
1352     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
1353       return SystemZ::CCMASK_TM_MIXED_MSB_0;
1354     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
1355       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
1356     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
1357       return SystemZ::CCMASK_TM_MIXED_MSB_1;
1358     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
1359       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
1360   }
1361
1362   // Looks like we've exhausted our options.
1363   return 0;
1364 }
1365
1366 // See whether the comparison (Opcode CmpOp0, CmpOp1, ICmpType) can be
1367 // implemented as a TEST UNDER MASK instruction when the condition being
1368 // tested is as described by CCValid and CCMask.  Update the arguments
1369 // with the TM version if so.
1370 static void adjustForTestUnderMask(SelectionDAG &DAG, unsigned &Opcode,
1371                                    SDValue &CmpOp0, SDValue &CmpOp1,
1372                                    unsigned &CCValid, unsigned &CCMask,
1373                                    unsigned &ICmpType) {
1374   // Check that we have a comparison with a constant.
1375   ConstantSDNode *ConstCmpOp1 = dyn_cast<ConstantSDNode>(CmpOp1);
1376   if (!ConstCmpOp1)
1377     return;
1378   uint64_t CmpVal = ConstCmpOp1->getZExtValue();
1379
1380   // Check whether the nonconstant input is an AND with a constant mask.
1381   if (CmpOp0.getOpcode() != ISD::AND)
1382     return;
1383   SDValue AndOp0 = CmpOp0.getOperand(0);
1384   SDValue AndOp1 = CmpOp0.getOperand(1);
1385   ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(AndOp1.getNode());
1386   if (!Mask)
1387     return;
1388   uint64_t MaskVal = Mask->getZExtValue();
1389
1390   // Check whether the combination of mask, comparison value and comparison
1391   // type are suitable.
1392   unsigned BitSize = CmpOp0.getValueType().getSizeInBits();
1393   unsigned NewCCMask, ShiftVal;
1394   if (ICmpType != SystemZICMP::SignedOnly &&
1395       AndOp0.getOpcode() == ISD::SHL &&
1396       isSimpleShift(AndOp0, ShiftVal) &&
1397       (NewCCMask = getTestUnderMaskCond(BitSize, CCMask, MaskVal >> ShiftVal,
1398                                         CmpVal >> ShiftVal,
1399                                         SystemZICMP::Any))) {
1400     AndOp0 = AndOp0.getOperand(0);
1401     AndOp1 = DAG.getConstant(MaskVal >> ShiftVal, AndOp0.getValueType());
1402   } else if (ICmpType != SystemZICMP::SignedOnly &&
1403              AndOp0.getOpcode() == ISD::SRL &&
1404              isSimpleShift(AndOp0, ShiftVal) &&
1405              (NewCCMask = getTestUnderMaskCond(BitSize, CCMask,
1406                                                MaskVal << ShiftVal,
1407                                                CmpVal << ShiftVal,
1408                                                SystemZICMP::UnsignedOnly))) {
1409     AndOp0 = AndOp0.getOperand(0);
1410     AndOp1 = DAG.getConstant(MaskVal << ShiftVal, AndOp0.getValueType());
1411   } else {
1412     NewCCMask = getTestUnderMaskCond(BitSize, CCMask, MaskVal, CmpVal,
1413                                      ICmpType);
1414     if (!NewCCMask)
1415       return;
1416   }
1417
1418   // Go ahead and make the change.
1419   Opcode = SystemZISD::TM;
1420   CmpOp0 = AndOp0;
1421   CmpOp1 = AndOp1;
1422   ICmpType = (bool(NewCCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
1423               bool(NewCCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
1424   CCValid = SystemZ::CCMASK_TM;
1425   CCMask = NewCCMask;
1426 }
1427
1428 // Return a target node that compares CmpOp0 with CmpOp1 and stores a
1429 // 2-bit result in CC.  Set CCValid to the CCMASK_* of all possible
1430 // 2-bit results and CCMask to the subset of those results that are
1431 // associated with Cond.
1432 static SDValue emitCmp(const SystemZTargetMachine &TM, SelectionDAG &DAG,
1433                        SDLoc DL, SDValue CmpOp0, SDValue CmpOp1,
1434                        ISD::CondCode Cond, unsigned &CCValid,
1435                        unsigned &CCMask) {
1436   bool IsUnsigned = false;
1437   CCMask = CCMaskForCondCode(Cond);
1438   unsigned Opcode, ICmpType = 0;
1439   if (CmpOp0.getValueType().isFloatingPoint()) {
1440     CCValid = SystemZ::CCMASK_FCMP;
1441     Opcode = SystemZISD::FCMP;
1442   } else {
1443     IsUnsigned = CCMask & SystemZ::CCMASK_CMP_UO;
1444     CCValid = SystemZ::CCMASK_ICMP;
1445     CCMask &= CCValid;
1446     adjustZeroCmp(DAG, IsUnsigned, CmpOp0, CmpOp1, CCMask);
1447     adjustSubwordCmp(DAG, IsUnsigned, CmpOp0, CmpOp1, CCMask);
1448     Opcode = SystemZISD::ICMP;
1449     // Choose the type of comparison.  Equality and inequality tests can
1450     // use either signed or unsigned comparisons.  The choice also doesn't
1451     // matter if both sign bits are known to be clear.  In those cases we
1452     // want to give the main isel code the freedom to choose whichever
1453     // form fits best.
1454     if (CCMask == SystemZ::CCMASK_CMP_EQ ||
1455         CCMask == SystemZ::CCMASK_CMP_NE ||
1456         (DAG.SignBitIsZero(CmpOp0) && DAG.SignBitIsZero(CmpOp1)))
1457       ICmpType = SystemZICMP::Any;
1458     else if (IsUnsigned)
1459       ICmpType = SystemZICMP::UnsignedOnly;
1460     else
1461       ICmpType = SystemZICMP::SignedOnly;
1462   }
1463
1464   if (shouldSwapCmpOperands(CmpOp0, CmpOp1, ICmpType)) {
1465     std::swap(CmpOp0, CmpOp1);
1466     CCMask = ((CCMask & SystemZ::CCMASK_CMP_EQ) |
1467               (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
1468               (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
1469               (CCMask & SystemZ::CCMASK_CMP_UO));
1470   }
1471
1472   adjustForTestUnderMask(DAG, Opcode, CmpOp0, CmpOp1, CCValid, CCMask,
1473                          ICmpType);
1474   if (Opcode == SystemZISD::ICMP || Opcode == SystemZISD::TM)
1475     return DAG.getNode(Opcode, DL, MVT::Glue, CmpOp0, CmpOp1,
1476                        DAG.getConstant(ICmpType, MVT::i32));
1477   return DAG.getNode(Opcode, DL, MVT::Glue, CmpOp0, CmpOp1);
1478 }
1479
1480 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
1481 // 64 bits.  Extend is the extension type to use.  Store the high part
1482 // in Hi and the low part in Lo.
1483 static void lowerMUL_LOHI32(SelectionDAG &DAG, SDLoc DL,
1484                             unsigned Extend, SDValue Op0, SDValue Op1,
1485                             SDValue &Hi, SDValue &Lo) {
1486   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
1487   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
1488   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
1489   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, DAG.getConstant(32, MVT::i64));
1490   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
1491   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
1492 }
1493
1494 // Lower a binary operation that produces two VT results, one in each
1495 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
1496 // Extend extends Op0 to a GR128, and Opcode performs the GR128 operation
1497 // on the extended Op0 and (unextended) Op1.  Store the even register result
1498 // in Even and the odd register result in Odd.
1499 static void lowerGR128Binary(SelectionDAG &DAG, SDLoc DL, EVT VT,
1500                              unsigned Extend, unsigned Opcode,
1501                              SDValue Op0, SDValue Op1,
1502                              SDValue &Even, SDValue &Odd) {
1503   SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0);
1504   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped,
1505                                SDValue(In128, 0), Op1);
1506   bool Is32Bit = is32Bit(VT);
1507   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
1508   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
1509 }
1510
1511 // Return an i32 value that is 1 if the CC value produced by Glue is
1512 // in the mask CCMask and 0 otherwise.  CC is known to have a value
1513 // in CCValid, so other values can be ignored.
1514 static SDValue emitSETCC(SelectionDAG &DAG, SDLoc DL, SDValue Glue,
1515                          unsigned CCValid, unsigned CCMask) {
1516   IPMConversion Conversion = getIPMConversion(CCValid, CCMask);
1517   SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
1518
1519   if (Conversion.XORValue)
1520     Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result,
1521                          DAG.getConstant(Conversion.XORValue, MVT::i32));
1522
1523   if (Conversion.AddValue)
1524     Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result,
1525                          DAG.getConstant(Conversion.AddValue, MVT::i32));
1526
1527   // The SHR/AND sequence should get optimized to an RISBG.
1528   Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result,
1529                        DAG.getConstant(Conversion.Bit, MVT::i32));
1530   if (Conversion.Bit != 31)
1531     Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result,
1532                          DAG.getConstant(1, MVT::i32));
1533   return Result;
1534 }
1535
1536 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
1537                                           SelectionDAG &DAG) const {
1538   SDValue CmpOp0   = Op.getOperand(0);
1539   SDValue CmpOp1   = Op.getOperand(1);
1540   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1541   SDLoc DL(Op);
1542
1543   unsigned CCValid, CCMask;
1544   SDValue Glue = emitCmp(TM, DAG, DL, CmpOp0, CmpOp1, CC, CCValid, CCMask);
1545   return emitSETCC(DAG, DL, Glue, CCValid, CCMask);
1546 }
1547
1548 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
1549   SDValue Chain    = Op.getOperand(0);
1550   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
1551   SDValue CmpOp0   = Op.getOperand(2);
1552   SDValue CmpOp1   = Op.getOperand(3);
1553   SDValue Dest     = Op.getOperand(4);
1554   SDLoc DL(Op);
1555
1556   unsigned CCValid, CCMask;
1557   SDValue Glue = emitCmp(TM, DAG, DL, CmpOp0, CmpOp1, CC, CCValid, CCMask);
1558   return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
1559                      Chain, DAG.getConstant(CCValid, MVT::i32),
1560                      DAG.getConstant(CCMask, MVT::i32), Dest, Glue);
1561 }
1562
1563 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
1564                                               SelectionDAG &DAG) const {
1565   SDValue CmpOp0   = Op.getOperand(0);
1566   SDValue CmpOp1   = Op.getOperand(1);
1567   SDValue TrueOp   = Op.getOperand(2);
1568   SDValue FalseOp  = Op.getOperand(3);
1569   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1570   SDLoc DL(Op);
1571
1572   unsigned CCValid, CCMask;
1573   SDValue Glue = emitCmp(TM, DAG, DL, CmpOp0, CmpOp1, CC, CCValid, CCMask);
1574
1575   // Special case for handling -1/0 results.  The shifts we use here
1576   // should get optimized with the IPM conversion sequence.
1577   ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp);
1578   ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp);
1579   if (TrueC && FalseC) {
1580     int64_t TrueVal = TrueC->getSExtValue();
1581     int64_t FalseVal = FalseC->getSExtValue();
1582     if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) {
1583       // Invert the condition if we want -1 on false.
1584       if (TrueVal == 0)
1585         CCMask ^= CCValid;
1586       SDValue Result = emitSETCC(DAG, DL, Glue, CCValid, CCMask);
1587       EVT VT = Op.getValueType();
1588       // Extend the result to VT.  Upper bits are ignored.
1589       if (!is32Bit(VT))
1590         Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result);
1591       // Sign-extend from the low bit.
1592       SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, MVT::i32);
1593       SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt);
1594       return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt);
1595     }
1596   }
1597
1598   SmallVector<SDValue, 5> Ops;
1599   Ops.push_back(TrueOp);
1600   Ops.push_back(FalseOp);
1601   Ops.push_back(DAG.getConstant(CCValid, MVT::i32));
1602   Ops.push_back(DAG.getConstant(CCMask, MVT::i32));
1603   Ops.push_back(Glue);
1604
1605   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
1606   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, &Ops[0], Ops.size());
1607 }
1608
1609 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
1610                                                   SelectionDAG &DAG) const {
1611   SDLoc DL(Node);
1612   const GlobalValue *GV = Node->getGlobal();
1613   int64_t Offset = Node->getOffset();
1614   EVT PtrVT = getPointerTy();
1615   Reloc::Model RM = TM.getRelocationModel();
1616   CodeModel::Model CM = TM.getCodeModel();
1617
1618   SDValue Result;
1619   if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) {
1620     // Assign anchors at 1<<12 byte boundaries.
1621     uint64_t Anchor = Offset & ~uint64_t(0xfff);
1622     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
1623     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1624
1625     // The offset can be folded into the address if it is aligned to a halfword.
1626     Offset -= Anchor;
1627     if (Offset != 0 && (Offset & 1) == 0) {
1628       SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
1629       Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
1630       Offset = 0;
1631     }
1632   } else {
1633     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
1634     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1635     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
1636                          MachinePointerInfo::getGOT(), false, false, false, 0);
1637   }
1638
1639   // If there was a non-zero offset that we didn't fold, create an explicit
1640   // addition for it.
1641   if (Offset != 0)
1642     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
1643                          DAG.getConstant(Offset, PtrVT));
1644
1645   return Result;
1646 }
1647
1648 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
1649                                                      SelectionDAG &DAG) const {
1650   SDLoc DL(Node);
1651   const GlobalValue *GV = Node->getGlobal();
1652   EVT PtrVT = getPointerTy();
1653   TLSModel::Model model = TM.getTLSModel(GV);
1654
1655   if (model != TLSModel::LocalExec)
1656     llvm_unreachable("only local-exec TLS mode supported");
1657
1658   // The high part of the thread pointer is in access register 0.
1659   SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
1660                              DAG.getConstant(0, MVT::i32));
1661   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
1662
1663   // The low part of the thread pointer is in access register 1.
1664   SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
1665                              DAG.getConstant(1, MVT::i32));
1666   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
1667
1668   // Merge them into a single 64-bit address.
1669   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
1670                                     DAG.getConstant(32, PtrVT));
1671   SDValue TP = DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
1672
1673   // Get the offset of GA from the thread pointer.
1674   SystemZConstantPoolValue *CPV =
1675     SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
1676
1677   // Force the offset into the constant pool and load it from there.
1678   SDValue CPAddr = DAG.getConstantPool(CPV, PtrVT, 8);
1679   SDValue Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(),
1680                                CPAddr, MachinePointerInfo::getConstantPool(),
1681                                false, false, false, 0);
1682
1683   // Add the base and offset together.
1684   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
1685 }
1686
1687 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
1688                                                  SelectionDAG &DAG) const {
1689   SDLoc DL(Node);
1690   const BlockAddress *BA = Node->getBlockAddress();
1691   int64_t Offset = Node->getOffset();
1692   EVT PtrVT = getPointerTy();
1693
1694   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
1695   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1696   return Result;
1697 }
1698
1699 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
1700                                               SelectionDAG &DAG) const {
1701   SDLoc DL(JT);
1702   EVT PtrVT = getPointerTy();
1703   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1704
1705   // Use LARL to load the address of the table.
1706   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1707 }
1708
1709 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
1710                                                  SelectionDAG &DAG) const {
1711   SDLoc DL(CP);
1712   EVT PtrVT = getPointerTy();
1713
1714   SDValue Result;
1715   if (CP->isMachineConstantPoolEntry())
1716     Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1717                                        CP->getAlignment());
1718   else
1719     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1720                                        CP->getAlignment(), CP->getOffset());
1721
1722   // Use LARL to load the address of the constant pool entry.
1723   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1724 }
1725
1726 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
1727                                             SelectionDAG &DAG) const {
1728   SDLoc DL(Op);
1729   SDValue In = Op.getOperand(0);
1730   EVT InVT = In.getValueType();
1731   EVT ResVT = Op.getValueType();
1732
1733   if (InVT == MVT::i32 && ResVT == MVT::f32) {
1734     SDValue In64;
1735     if (Subtarget.hasHighWord()) {
1736       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
1737                                        MVT::i64);
1738       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
1739                                        MVT::i64, SDValue(U64, 0), In);
1740     } else {
1741       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
1742       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
1743                          DAG.getConstant(32, MVT::i64));
1744     }
1745     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
1746     return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
1747                                       DL, MVT::f32, Out64);
1748   }
1749   if (InVT == MVT::f32 && ResVT == MVT::i32) {
1750     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
1751     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
1752                                              MVT::f64, SDValue(U64, 0), In);
1753     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
1754     if (Subtarget.hasHighWord())
1755       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
1756                                         MVT::i32, Out64);
1757     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
1758                                 DAG.getConstant(32, MVT::i64));
1759     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
1760   }
1761   llvm_unreachable("Unexpected bitcast combination");
1762 }
1763
1764 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
1765                                             SelectionDAG &DAG) const {
1766   MachineFunction &MF = DAG.getMachineFunction();
1767   SystemZMachineFunctionInfo *FuncInfo =
1768     MF.getInfo<SystemZMachineFunctionInfo>();
1769   EVT PtrVT = getPointerTy();
1770
1771   SDValue Chain   = Op.getOperand(0);
1772   SDValue Addr    = Op.getOperand(1);
1773   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1774   SDLoc DL(Op);
1775
1776   // The initial values of each field.
1777   const unsigned NumFields = 4;
1778   SDValue Fields[NumFields] = {
1779     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), PtrVT),
1780     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), PtrVT),
1781     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
1782     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
1783   };
1784
1785   // Store each field into its respective slot.
1786   SDValue MemOps[NumFields];
1787   unsigned Offset = 0;
1788   for (unsigned I = 0; I < NumFields; ++I) {
1789     SDValue FieldAddr = Addr;
1790     if (Offset != 0)
1791       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
1792                               DAG.getIntPtrConstant(Offset));
1793     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
1794                              MachinePointerInfo(SV, Offset),
1795                              false, false, 0);
1796     Offset += 8;
1797   }
1798   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps, NumFields);
1799 }
1800
1801 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
1802                                            SelectionDAG &DAG) const {
1803   SDValue Chain      = Op.getOperand(0);
1804   SDValue DstPtr     = Op.getOperand(1);
1805   SDValue SrcPtr     = Op.getOperand(2);
1806   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
1807   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
1808   SDLoc DL(Op);
1809
1810   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32),
1811                        /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
1812                        MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
1813 }
1814
1815 SDValue SystemZTargetLowering::
1816 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
1817   SDValue Chain = Op.getOperand(0);
1818   SDValue Size  = Op.getOperand(1);
1819   SDLoc DL(Op);
1820
1821   unsigned SPReg = getStackPointerRegisterToSaveRestore();
1822
1823   // Get a reference to the stack pointer.
1824   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
1825
1826   // Get the new stack pointer value.
1827   SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, Size);
1828
1829   // Copy the new stack pointer back.
1830   Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
1831
1832   // The allocated data lives above the 160 bytes allocated for the standard
1833   // frame, plus any outgoing stack arguments.  We don't know how much that
1834   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
1835   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
1836   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
1837
1838   SDValue Ops[2] = { Result, Chain };
1839   return DAG.getMergeValues(Ops, 2, DL);
1840 }
1841
1842 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
1843                                               SelectionDAG &DAG) const {
1844   EVT VT = Op.getValueType();
1845   SDLoc DL(Op);
1846   SDValue Ops[2];
1847   if (is32Bit(VT))
1848     // Just do a normal 64-bit multiplication and extract the results.
1849     // We define this so that it can be used for constant division.
1850     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
1851                     Op.getOperand(1), Ops[1], Ops[0]);
1852   else {
1853     // Do a full 128-bit multiplication based on UMUL_LOHI64:
1854     //
1855     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
1856     //
1857     // but using the fact that the upper halves are either all zeros
1858     // or all ones:
1859     //
1860     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
1861     //
1862     // and grouping the right terms together since they are quicker than the
1863     // multiplication:
1864     //
1865     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
1866     SDValue C63 = DAG.getConstant(63, MVT::i64);
1867     SDValue LL = Op.getOperand(0);
1868     SDValue RL = Op.getOperand(1);
1869     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
1870     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
1871     // UMUL_LOHI64 returns the low result in the odd register and the high
1872     // result in the even register.  SMUL_LOHI is defined to return the
1873     // low half first, so the results are in reverse order.
1874     lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
1875                      LL, RL, Ops[1], Ops[0]);
1876     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
1877     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
1878     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
1879     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
1880   }
1881   return DAG.getMergeValues(Ops, 2, DL);
1882 }
1883
1884 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
1885                                               SelectionDAG &DAG) const {
1886   EVT VT = Op.getValueType();
1887   SDLoc DL(Op);
1888   SDValue Ops[2];
1889   if (is32Bit(VT))
1890     // Just do a normal 64-bit multiplication and extract the results.
1891     // We define this so that it can be used for constant division.
1892     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
1893                     Op.getOperand(1), Ops[1], Ops[0]);
1894   else
1895     // UMUL_LOHI64 returns the low result in the odd register and the high
1896     // result in the even register.  UMUL_LOHI is defined to return the
1897     // low half first, so the results are in reverse order.
1898     lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
1899                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
1900   return DAG.getMergeValues(Ops, 2, DL);
1901 }
1902
1903 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
1904                                             SelectionDAG &DAG) const {
1905   SDValue Op0 = Op.getOperand(0);
1906   SDValue Op1 = Op.getOperand(1);
1907   EVT VT = Op.getValueType();
1908   SDLoc DL(Op);
1909   unsigned Opcode;
1910
1911   // We use DSGF for 32-bit division.
1912   if (is32Bit(VT)) {
1913     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
1914     Opcode = SystemZISD::SDIVREM32;
1915   } else if (DAG.ComputeNumSignBits(Op1) > 32) {
1916     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
1917     Opcode = SystemZISD::SDIVREM32;
1918   } else    
1919     Opcode = SystemZISD::SDIVREM64;
1920
1921   // DSG(F) takes a 64-bit dividend, so the even register in the GR128
1922   // input is "don't care".  The instruction returns the remainder in
1923   // the even register and the quotient in the odd register.
1924   SDValue Ops[2];
1925   lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode,
1926                    Op0, Op1, Ops[1], Ops[0]);
1927   return DAG.getMergeValues(Ops, 2, DL);
1928 }
1929
1930 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
1931                                             SelectionDAG &DAG) const {
1932   EVT VT = Op.getValueType();
1933   SDLoc DL(Op);
1934
1935   // DL(G) uses a double-width dividend, so we need to clear the even
1936   // register in the GR128 input.  The instruction returns the remainder
1937   // in the even register and the quotient in the odd register.
1938   SDValue Ops[2];
1939   if (is32Bit(VT))
1940     lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32,
1941                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
1942   else
1943     lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64,
1944                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
1945   return DAG.getMergeValues(Ops, 2, DL);
1946 }
1947
1948 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
1949   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
1950
1951   // Get the known-zero masks for each operand.
1952   SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
1953   APInt KnownZero[2], KnownOne[2];
1954   DAG.ComputeMaskedBits(Ops[0], KnownZero[0], KnownOne[0]);
1955   DAG.ComputeMaskedBits(Ops[1], KnownZero[1], KnownOne[1]);
1956
1957   // See if the upper 32 bits of one operand and the lower 32 bits of the
1958   // other are known zero.  They are the low and high operands respectively.
1959   uint64_t Masks[] = { KnownZero[0].getZExtValue(),
1960                        KnownZero[1].getZExtValue() };
1961   unsigned High, Low;
1962   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
1963     High = 1, Low = 0;
1964   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
1965     High = 0, Low = 1;
1966   else
1967     return Op;
1968
1969   SDValue LowOp = Ops[Low];
1970   SDValue HighOp = Ops[High];
1971
1972   // If the high part is a constant, we're better off using IILH.
1973   if (HighOp.getOpcode() == ISD::Constant)
1974     return Op;
1975
1976   // If the low part is a constant that is outside the range of LHI,
1977   // then we're better off using IILF.
1978   if (LowOp.getOpcode() == ISD::Constant) {
1979     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
1980     if (!isInt<16>(Value))
1981       return Op;
1982   }
1983
1984   // Check whether the high part is an AND that doesn't change the
1985   // high 32 bits and just masks out low bits.  We can skip it if so.
1986   if (HighOp.getOpcode() == ISD::AND &&
1987       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
1988     SDValue HighOp0 = HighOp.getOperand(0);
1989     uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
1990     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
1991       HighOp = HighOp0;
1992   }
1993
1994   // Take advantage of the fact that all GR32 operations only change the
1995   // low 32 bits by truncating Low to an i32 and inserting it directly
1996   // using a subreg.  The interesting cases are those where the truncation
1997   // can be folded.
1998   SDLoc DL(Op);
1999   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
2000   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
2001                                    MVT::i64, HighOp, Low32);
2002 }
2003
2004 // Op is an atomic load.  Lower it into a normal volatile load.
2005 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
2006                                                 SelectionDAG &DAG) const {
2007   AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode());
2008   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
2009                         Node->getChain(), Node->getBasePtr(),
2010                         Node->getMemoryVT(), Node->getMemOperand());
2011 }
2012
2013 // Op is an atomic store.  Lower it into a normal volatile store followed
2014 // by a serialization.
2015 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
2016                                                  SelectionDAG &DAG) const {
2017   AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode());
2018   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
2019                                     Node->getBasePtr(), Node->getMemoryVT(),
2020                                     Node->getMemOperand());
2021   return SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), MVT::Other,
2022                                     Chain), 0);
2023 }
2024
2025 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
2026 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
2027 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
2028                                                    SelectionDAG &DAG,
2029                                                    unsigned Opcode) const {
2030   AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode());
2031
2032   // 32-bit operations need no code outside the main loop.
2033   EVT NarrowVT = Node->getMemoryVT();
2034   EVT WideVT = MVT::i32;
2035   if (NarrowVT == WideVT)
2036     return Op;
2037
2038   int64_t BitSize = NarrowVT.getSizeInBits();
2039   SDValue ChainIn = Node->getChain();
2040   SDValue Addr = Node->getBasePtr();
2041   SDValue Src2 = Node->getVal();
2042   MachineMemOperand *MMO = Node->getMemOperand();
2043   SDLoc DL(Node);
2044   EVT PtrVT = Addr.getValueType();
2045
2046   // Convert atomic subtracts of constants into additions.
2047   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
2048     if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Src2)) {
2049       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
2050       Src2 = DAG.getConstant(-Const->getSExtValue(), Src2.getValueType());
2051     }
2052
2053   // Get the address of the containing word.
2054   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
2055                                     DAG.getConstant(-4, PtrVT));
2056
2057   // Get the number of bits that the word must be rotated left in order
2058   // to bring the field to the top bits of a GR32.
2059   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
2060                                  DAG.getConstant(3, PtrVT));
2061   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
2062
2063   // Get the complementing shift amount, for rotating a field in the top
2064   // bits back to its proper position.
2065   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
2066                                     DAG.getConstant(0, WideVT), BitShift);
2067
2068   // Extend the source operand to 32 bits and prepare it for the inner loop.
2069   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
2070   // operations require the source to be shifted in advance.  (This shift
2071   // can be folded if the source is constant.)  For AND and NAND, the lower
2072   // bits must be set, while for other opcodes they should be left clear.
2073   if (Opcode != SystemZISD::ATOMIC_SWAPW)
2074     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
2075                        DAG.getConstant(32 - BitSize, WideVT));
2076   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
2077       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
2078     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
2079                        DAG.getConstant(uint32_t(-1) >> BitSize, WideVT));
2080
2081   // Construct the ATOMIC_LOADW_* node.
2082   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
2083   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
2084                     DAG.getConstant(BitSize, WideVT) };
2085   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
2086                                              array_lengthof(Ops),
2087                                              NarrowVT, MMO);
2088
2089   // Rotate the result of the final CS so that the field is in the lower
2090   // bits of a GR32, then truncate it.
2091   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
2092                                     DAG.getConstant(BitSize, WideVT));
2093   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
2094
2095   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
2096   return DAG.getMergeValues(RetOps, 2, DL);
2097 }
2098
2099 // Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation.  Lower the first two
2100 // into a fullword ATOMIC_CMP_SWAPW operation.
2101 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
2102                                                     SelectionDAG &DAG) const {
2103   AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode());
2104
2105   // We have native support for 32-bit compare and swap.
2106   EVT NarrowVT = Node->getMemoryVT();
2107   EVT WideVT = MVT::i32;
2108   if (NarrowVT == WideVT)
2109     return Op;
2110
2111   int64_t BitSize = NarrowVT.getSizeInBits();
2112   SDValue ChainIn = Node->getOperand(0);
2113   SDValue Addr = Node->getOperand(1);
2114   SDValue CmpVal = Node->getOperand(2);
2115   SDValue SwapVal = Node->getOperand(3);
2116   MachineMemOperand *MMO = Node->getMemOperand();
2117   SDLoc DL(Node);
2118   EVT PtrVT = Addr.getValueType();
2119
2120   // Get the address of the containing word.
2121   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
2122                                     DAG.getConstant(-4, PtrVT));
2123
2124   // Get the number of bits that the word must be rotated left in order
2125   // to bring the field to the top bits of a GR32.
2126   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
2127                                  DAG.getConstant(3, PtrVT));
2128   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
2129
2130   // Get the complementing shift amount, for rotating a field in the top
2131   // bits back to its proper position.
2132   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
2133                                     DAG.getConstant(0, WideVT), BitShift);
2134
2135   // Construct the ATOMIC_CMP_SWAPW node.
2136   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
2137   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
2138                     NegBitShift, DAG.getConstant(BitSize, WideVT) };
2139   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
2140                                              VTList, Ops, array_lengthof(Ops),
2141                                              NarrowVT, MMO);
2142   return AtomicOp;
2143 }
2144
2145 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
2146                                               SelectionDAG &DAG) const {
2147   MachineFunction &MF = DAG.getMachineFunction();
2148   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
2149   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
2150                             SystemZ::R15D, Op.getValueType());
2151 }
2152
2153 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
2154                                                  SelectionDAG &DAG) const {
2155   MachineFunction &MF = DAG.getMachineFunction();
2156   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
2157   return DAG.getCopyToReg(Op.getOperand(0), SDLoc(Op),
2158                           SystemZ::R15D, Op.getOperand(1));
2159 }
2160
2161 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
2162                                              SelectionDAG &DAG) const {
2163   bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
2164   if (!IsData)
2165     // Just preserve the chain.
2166     return Op.getOperand(0);
2167
2168   bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2169   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
2170   MemIntrinsicSDNode *Node = cast<MemIntrinsicSDNode>(Op.getNode());
2171   SDValue Ops[] = {
2172     Op.getOperand(0),
2173     DAG.getConstant(Code, MVT::i32),
2174     Op.getOperand(1)
2175   };
2176   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, SDLoc(Op),
2177                                  Node->getVTList(), Ops, array_lengthof(Ops),
2178                                  Node->getMemoryVT(), Node->getMemOperand());
2179 }
2180
2181 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
2182                                               SelectionDAG &DAG) const {
2183   switch (Op.getOpcode()) {
2184   case ISD::BR_CC:
2185     return lowerBR_CC(Op, DAG);
2186   case ISD::SELECT_CC:
2187     return lowerSELECT_CC(Op, DAG);
2188   case ISD::SETCC:
2189     return lowerSETCC(Op, DAG);
2190   case ISD::GlobalAddress:
2191     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
2192   case ISD::GlobalTLSAddress:
2193     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
2194   case ISD::BlockAddress:
2195     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
2196   case ISD::JumpTable:
2197     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
2198   case ISD::ConstantPool:
2199     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
2200   case ISD::BITCAST:
2201     return lowerBITCAST(Op, DAG);
2202   case ISD::VASTART:
2203     return lowerVASTART(Op, DAG);
2204   case ISD::VACOPY:
2205     return lowerVACOPY(Op, DAG);
2206   case ISD::DYNAMIC_STACKALLOC:
2207     return lowerDYNAMIC_STACKALLOC(Op, DAG);
2208   case ISD::SMUL_LOHI:
2209     return lowerSMUL_LOHI(Op, DAG);
2210   case ISD::UMUL_LOHI:
2211     return lowerUMUL_LOHI(Op, DAG);
2212   case ISD::SDIVREM:
2213     return lowerSDIVREM(Op, DAG);
2214   case ISD::UDIVREM:
2215     return lowerUDIVREM(Op, DAG);
2216   case ISD::OR:
2217     return lowerOR(Op, DAG);
2218   case ISD::ATOMIC_SWAP:
2219     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
2220   case ISD::ATOMIC_STORE:
2221     return lowerATOMIC_STORE(Op, DAG);
2222   case ISD::ATOMIC_LOAD:
2223     return lowerATOMIC_LOAD(Op, DAG);
2224   case ISD::ATOMIC_LOAD_ADD:
2225     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
2226   case ISD::ATOMIC_LOAD_SUB:
2227     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
2228   case ISD::ATOMIC_LOAD_AND:
2229     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
2230   case ISD::ATOMIC_LOAD_OR:
2231     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
2232   case ISD::ATOMIC_LOAD_XOR:
2233     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
2234   case ISD::ATOMIC_LOAD_NAND:
2235     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
2236   case ISD::ATOMIC_LOAD_MIN:
2237     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
2238   case ISD::ATOMIC_LOAD_MAX:
2239     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
2240   case ISD::ATOMIC_LOAD_UMIN:
2241     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
2242   case ISD::ATOMIC_LOAD_UMAX:
2243     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
2244   case ISD::ATOMIC_CMP_SWAP:
2245     return lowerATOMIC_CMP_SWAP(Op, DAG);
2246   case ISD::STACKSAVE:
2247     return lowerSTACKSAVE(Op, DAG);
2248   case ISD::STACKRESTORE:
2249     return lowerSTACKRESTORE(Op, DAG);
2250   case ISD::PREFETCH:
2251     return lowerPREFETCH(Op, DAG);
2252   default:
2253     llvm_unreachable("Unexpected node to lower");
2254   }
2255 }
2256
2257 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
2258 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
2259   switch (Opcode) {
2260     OPCODE(RET_FLAG);
2261     OPCODE(CALL);
2262     OPCODE(SIBCALL);
2263     OPCODE(PCREL_WRAPPER);
2264     OPCODE(PCREL_OFFSET);
2265     OPCODE(ICMP);
2266     OPCODE(FCMP);
2267     OPCODE(TM);
2268     OPCODE(BR_CCMASK);
2269     OPCODE(SELECT_CCMASK);
2270     OPCODE(ADJDYNALLOC);
2271     OPCODE(EXTRACT_ACCESS);
2272     OPCODE(UMUL_LOHI64);
2273     OPCODE(SDIVREM64);
2274     OPCODE(UDIVREM32);
2275     OPCODE(UDIVREM64);
2276     OPCODE(MVC);
2277     OPCODE(MVC_LOOP);
2278     OPCODE(NC);
2279     OPCODE(NC_LOOP);
2280     OPCODE(OC);
2281     OPCODE(OC_LOOP);
2282     OPCODE(XC);
2283     OPCODE(XC_LOOP);
2284     OPCODE(CLC);
2285     OPCODE(CLC_LOOP);
2286     OPCODE(STRCMP);
2287     OPCODE(STPCPY);
2288     OPCODE(SEARCH_STRING);
2289     OPCODE(IPM);
2290     OPCODE(SERIALIZE);
2291     OPCODE(ATOMIC_SWAPW);
2292     OPCODE(ATOMIC_LOADW_ADD);
2293     OPCODE(ATOMIC_LOADW_SUB);
2294     OPCODE(ATOMIC_LOADW_AND);
2295     OPCODE(ATOMIC_LOADW_OR);
2296     OPCODE(ATOMIC_LOADW_XOR);
2297     OPCODE(ATOMIC_LOADW_NAND);
2298     OPCODE(ATOMIC_LOADW_MIN);
2299     OPCODE(ATOMIC_LOADW_MAX);
2300     OPCODE(ATOMIC_LOADW_UMIN);
2301     OPCODE(ATOMIC_LOADW_UMAX);
2302     OPCODE(ATOMIC_CMP_SWAPW);
2303     OPCODE(PREFETCH);
2304   }
2305   return NULL;
2306 #undef OPCODE
2307 }
2308
2309 //===----------------------------------------------------------------------===//
2310 // Custom insertion
2311 //===----------------------------------------------------------------------===//
2312
2313 // Create a new basic block after MBB.
2314 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
2315   MachineFunction &MF = *MBB->getParent();
2316   MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
2317   MF.insert(llvm::next(MachineFunction::iterator(MBB)), NewMBB);
2318   return NewMBB;
2319 }
2320
2321 // Split MBB after MI and return the new block (the one that contains
2322 // instructions after MI).
2323 static MachineBasicBlock *splitBlockAfter(MachineInstr *MI,
2324                                           MachineBasicBlock *MBB) {
2325   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
2326   NewMBB->splice(NewMBB->begin(), MBB,
2327                  llvm::next(MachineBasicBlock::iterator(MI)),
2328                  MBB->end());
2329   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
2330   return NewMBB;
2331 }
2332
2333 // Split MBB before MI and return the new block (the one that contains MI).
2334 static MachineBasicBlock *splitBlockBefore(MachineInstr *MI,
2335                                            MachineBasicBlock *MBB) {
2336   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
2337   NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
2338   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
2339   return NewMBB;
2340 }
2341
2342 // Force base value Base into a register before MI.  Return the register.
2343 static unsigned forceReg(MachineInstr *MI, MachineOperand &Base,
2344                          const SystemZInstrInfo *TII) {
2345   if (Base.isReg())
2346     return Base.getReg();
2347
2348   MachineBasicBlock *MBB = MI->getParent();
2349   MachineFunction &MF = *MBB->getParent();
2350   MachineRegisterInfo &MRI = MF.getRegInfo();
2351
2352   unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
2353   BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LA), Reg)
2354     .addOperand(Base).addImm(0).addReg(0);
2355   return Reg;
2356 }
2357
2358 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
2359 MachineBasicBlock *
2360 SystemZTargetLowering::emitSelect(MachineInstr *MI,
2361                                   MachineBasicBlock *MBB) const {
2362   const SystemZInstrInfo *TII = TM.getInstrInfo();
2363
2364   unsigned DestReg  = MI->getOperand(0).getReg();
2365   unsigned TrueReg  = MI->getOperand(1).getReg();
2366   unsigned FalseReg = MI->getOperand(2).getReg();
2367   unsigned CCValid  = MI->getOperand(3).getImm();
2368   unsigned CCMask   = MI->getOperand(4).getImm();
2369   DebugLoc DL       = MI->getDebugLoc();
2370
2371   MachineBasicBlock *StartMBB = MBB;
2372   MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
2373   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
2374
2375   //  StartMBB:
2376   //   BRC CCMask, JoinMBB
2377   //   # fallthrough to FalseMBB
2378   MBB = StartMBB;
2379   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2380     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
2381   MBB->addSuccessor(JoinMBB);
2382   MBB->addSuccessor(FalseMBB);
2383
2384   //  FalseMBB:
2385   //   # fallthrough to JoinMBB
2386   MBB = FalseMBB;
2387   MBB->addSuccessor(JoinMBB);
2388
2389   //  JoinMBB:
2390   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
2391   //  ...
2392   MBB = JoinMBB;
2393   BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg)
2394     .addReg(TrueReg).addMBB(StartMBB)
2395     .addReg(FalseReg).addMBB(FalseMBB);
2396
2397   MI->eraseFromParent();
2398   return JoinMBB;
2399 }
2400
2401 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
2402 // StoreOpcode is the store to use and Invert says whether the store should
2403 // happen when the condition is false rather than true.  If a STORE ON
2404 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
2405 MachineBasicBlock *
2406 SystemZTargetLowering::emitCondStore(MachineInstr *MI,
2407                                      MachineBasicBlock *MBB,
2408                                      unsigned StoreOpcode, unsigned STOCOpcode,
2409                                      bool Invert) const {
2410   const SystemZInstrInfo *TII = TM.getInstrInfo();
2411
2412   unsigned SrcReg     = MI->getOperand(0).getReg();
2413   MachineOperand Base = MI->getOperand(1);
2414   int64_t Disp        = MI->getOperand(2).getImm();
2415   unsigned IndexReg   = MI->getOperand(3).getReg();
2416   unsigned CCValid    = MI->getOperand(4).getImm();
2417   unsigned CCMask     = MI->getOperand(5).getImm();
2418   DebugLoc DL         = MI->getDebugLoc();
2419
2420   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
2421
2422   // Use STOCOpcode if possible.  We could use different store patterns in
2423   // order to avoid matching the index register, but the performance trade-offs
2424   // might be more complicated in that case.
2425   if (STOCOpcode && !IndexReg && TM.getSubtargetImpl()->hasLoadStoreOnCond()) {
2426     if (Invert)
2427       CCMask ^= CCValid;
2428     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
2429       .addReg(SrcReg).addOperand(Base).addImm(Disp)
2430       .addImm(CCValid).addImm(CCMask);
2431     MI->eraseFromParent();
2432     return MBB;
2433   }
2434
2435   // Get the condition needed to branch around the store.
2436   if (!Invert)
2437     CCMask ^= CCValid;
2438
2439   MachineBasicBlock *StartMBB = MBB;
2440   MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
2441   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
2442
2443   //  StartMBB:
2444   //   BRC CCMask, JoinMBB
2445   //   # fallthrough to FalseMBB
2446   MBB = StartMBB;
2447   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2448     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
2449   MBB->addSuccessor(JoinMBB);
2450   MBB->addSuccessor(FalseMBB);
2451
2452   //  FalseMBB:
2453   //   store %SrcReg, %Disp(%Index,%Base)
2454   //   # fallthrough to JoinMBB
2455   MBB = FalseMBB;
2456   BuildMI(MBB, DL, TII->get(StoreOpcode))
2457     .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg);
2458   MBB->addSuccessor(JoinMBB);
2459
2460   MI->eraseFromParent();
2461   return JoinMBB;
2462 }
2463
2464 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
2465 // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
2466 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
2467 // BitSize is the width of the field in bits, or 0 if this is a partword
2468 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
2469 // is one of the operands.  Invert says whether the field should be
2470 // inverted after performing BinOpcode (e.g. for NAND).
2471 MachineBasicBlock *
2472 SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI,
2473                                             MachineBasicBlock *MBB,
2474                                             unsigned BinOpcode,
2475                                             unsigned BitSize,
2476                                             bool Invert) const {
2477   const SystemZInstrInfo *TII = TM.getInstrInfo();
2478   MachineFunction &MF = *MBB->getParent();
2479   MachineRegisterInfo &MRI = MF.getRegInfo();
2480   bool IsSubWord = (BitSize < 32);
2481
2482   // Extract the operands.  Base can be a register or a frame index.
2483   // Src2 can be a register or immediate.
2484   unsigned Dest        = MI->getOperand(0).getReg();
2485   MachineOperand Base  = earlyUseOperand(MI->getOperand(1));
2486   int64_t Disp         = MI->getOperand(2).getImm();
2487   MachineOperand Src2  = earlyUseOperand(MI->getOperand(3));
2488   unsigned BitShift    = (IsSubWord ? MI->getOperand(4).getReg() : 0);
2489   unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
2490   DebugLoc DL          = MI->getDebugLoc();
2491   if (IsSubWord)
2492     BitSize = MI->getOperand(6).getImm();
2493
2494   // Subword operations use 32-bit registers.
2495   const TargetRegisterClass *RC = (BitSize <= 32 ?
2496                                    &SystemZ::GR32BitRegClass :
2497                                    &SystemZ::GR64BitRegClass);
2498   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
2499   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
2500
2501   // Get the right opcodes for the displacement.
2502   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
2503   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
2504   assert(LOpcode && CSOpcode && "Displacement out of range");
2505
2506   // Create virtual registers for temporary results.
2507   unsigned OrigVal       = MRI.createVirtualRegister(RC);
2508   unsigned OldVal        = MRI.createVirtualRegister(RC);
2509   unsigned NewVal        = (BinOpcode || IsSubWord ?
2510                             MRI.createVirtualRegister(RC) : Src2.getReg());
2511   unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
2512   unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
2513
2514   // Insert a basic block for the main loop.
2515   MachineBasicBlock *StartMBB = MBB;
2516   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
2517   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
2518
2519   //  StartMBB:
2520   //   ...
2521   //   %OrigVal = L Disp(%Base)
2522   //   # fall through to LoopMMB
2523   MBB = StartMBB;
2524   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
2525     .addOperand(Base).addImm(Disp).addReg(0);
2526   MBB->addSuccessor(LoopMBB);
2527
2528   //  LoopMBB:
2529   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
2530   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
2531   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
2532   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
2533   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
2534   //   JNE LoopMBB
2535   //   # fall through to DoneMMB
2536   MBB = LoopMBB;
2537   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
2538     .addReg(OrigVal).addMBB(StartMBB)
2539     .addReg(Dest).addMBB(LoopMBB);
2540   if (IsSubWord)
2541     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
2542       .addReg(OldVal).addReg(BitShift).addImm(0);
2543   if (Invert) {
2544     // Perform the operation normally and then invert every bit of the field.
2545     unsigned Tmp = MRI.createVirtualRegister(RC);
2546     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp)
2547       .addReg(RotatedOldVal).addOperand(Src2);
2548     if (BitSize < 32)
2549       // XILF with the upper BitSize bits set.
2550       BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
2551         .addReg(Tmp).addImm(uint32_t(~0 << (32 - BitSize)));
2552     else if (BitSize == 32)
2553       // XILF with every bit set.
2554       BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
2555         .addReg(Tmp).addImm(~uint32_t(0));
2556     else {
2557       // Use LCGR and add -1 to the result, which is more compact than
2558       // an XILF, XILH pair.
2559       unsigned Tmp2 = MRI.createVirtualRegister(RC);
2560       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
2561       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
2562         .addReg(Tmp2).addImm(-1);
2563     }
2564   } else if (BinOpcode)
2565     // A simply binary operation.
2566     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
2567       .addReg(RotatedOldVal).addOperand(Src2);
2568   else if (IsSubWord)
2569     // Use RISBG to rotate Src2 into position and use it to replace the
2570     // field in RotatedOldVal.
2571     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
2572       .addReg(RotatedOldVal).addReg(Src2.getReg())
2573       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
2574   if (IsSubWord)
2575     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
2576       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
2577   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
2578     .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
2579   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2580     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
2581   MBB->addSuccessor(LoopMBB);
2582   MBB->addSuccessor(DoneMBB);
2583
2584   MI->eraseFromParent();
2585   return DoneMBB;
2586 }
2587
2588 // Implement EmitInstrWithCustomInserter for pseudo
2589 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
2590 // instruction that should be used to compare the current field with the
2591 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
2592 // for when the current field should be kept.  BitSize is the width of
2593 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
2594 MachineBasicBlock *
2595 SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI,
2596                                             MachineBasicBlock *MBB,
2597                                             unsigned CompareOpcode,
2598                                             unsigned KeepOldMask,
2599                                             unsigned BitSize) const {
2600   const SystemZInstrInfo *TII = TM.getInstrInfo();
2601   MachineFunction &MF = *MBB->getParent();
2602   MachineRegisterInfo &MRI = MF.getRegInfo();
2603   bool IsSubWord = (BitSize < 32);
2604
2605   // Extract the operands.  Base can be a register or a frame index.
2606   unsigned Dest        = MI->getOperand(0).getReg();
2607   MachineOperand Base  = earlyUseOperand(MI->getOperand(1));
2608   int64_t  Disp        = MI->getOperand(2).getImm();
2609   unsigned Src2        = MI->getOperand(3).getReg();
2610   unsigned BitShift    = (IsSubWord ? MI->getOperand(4).getReg() : 0);
2611   unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
2612   DebugLoc DL          = MI->getDebugLoc();
2613   if (IsSubWord)
2614     BitSize = MI->getOperand(6).getImm();
2615
2616   // Subword operations use 32-bit registers.
2617   const TargetRegisterClass *RC = (BitSize <= 32 ?
2618                                    &SystemZ::GR32BitRegClass :
2619                                    &SystemZ::GR64BitRegClass);
2620   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
2621   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
2622
2623   // Get the right opcodes for the displacement.
2624   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
2625   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
2626   assert(LOpcode && CSOpcode && "Displacement out of range");
2627
2628   // Create virtual registers for temporary results.
2629   unsigned OrigVal       = MRI.createVirtualRegister(RC);
2630   unsigned OldVal        = MRI.createVirtualRegister(RC);
2631   unsigned NewVal        = MRI.createVirtualRegister(RC);
2632   unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
2633   unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
2634   unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
2635
2636   // Insert 3 basic blocks for the loop.
2637   MachineBasicBlock *StartMBB  = MBB;
2638   MachineBasicBlock *DoneMBB   = splitBlockBefore(MI, MBB);
2639   MachineBasicBlock *LoopMBB   = emitBlockAfter(StartMBB);
2640   MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
2641   MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
2642
2643   //  StartMBB:
2644   //   ...
2645   //   %OrigVal     = L Disp(%Base)
2646   //   # fall through to LoopMMB
2647   MBB = StartMBB;
2648   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
2649     .addOperand(Base).addImm(Disp).addReg(0);
2650   MBB->addSuccessor(LoopMBB);
2651
2652   //  LoopMBB:
2653   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
2654   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
2655   //   CompareOpcode %RotatedOldVal, %Src2
2656   //   BRC KeepOldMask, UpdateMBB
2657   MBB = LoopMBB;
2658   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
2659     .addReg(OrigVal).addMBB(StartMBB)
2660     .addReg(Dest).addMBB(UpdateMBB);
2661   if (IsSubWord)
2662     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
2663       .addReg(OldVal).addReg(BitShift).addImm(0);
2664   BuildMI(MBB, DL, TII->get(CompareOpcode))
2665     .addReg(RotatedOldVal).addReg(Src2);
2666   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2667     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
2668   MBB->addSuccessor(UpdateMBB);
2669   MBB->addSuccessor(UseAltMBB);
2670
2671   //  UseAltMBB:
2672   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
2673   //   # fall through to UpdateMMB
2674   MBB = UseAltMBB;
2675   if (IsSubWord)
2676     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
2677       .addReg(RotatedOldVal).addReg(Src2)
2678       .addImm(32).addImm(31 + BitSize).addImm(0);
2679   MBB->addSuccessor(UpdateMBB);
2680
2681   //  UpdateMBB:
2682   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
2683   //                        [ %RotatedAltVal, UseAltMBB ]
2684   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
2685   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
2686   //   JNE LoopMBB
2687   //   # fall through to DoneMMB
2688   MBB = UpdateMBB;
2689   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
2690     .addReg(RotatedOldVal).addMBB(LoopMBB)
2691     .addReg(RotatedAltVal).addMBB(UseAltMBB);
2692   if (IsSubWord)
2693     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
2694       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
2695   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
2696     .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
2697   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2698     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
2699   MBB->addSuccessor(LoopMBB);
2700   MBB->addSuccessor(DoneMBB);
2701
2702   MI->eraseFromParent();
2703   return DoneMBB;
2704 }
2705
2706 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
2707 // instruction MI.
2708 MachineBasicBlock *
2709 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI,
2710                                           MachineBasicBlock *MBB) const {
2711   const SystemZInstrInfo *TII = TM.getInstrInfo();
2712   MachineFunction &MF = *MBB->getParent();
2713   MachineRegisterInfo &MRI = MF.getRegInfo();
2714
2715   // Extract the operands.  Base can be a register or a frame index.
2716   unsigned Dest        = MI->getOperand(0).getReg();
2717   MachineOperand Base  = earlyUseOperand(MI->getOperand(1));
2718   int64_t  Disp        = MI->getOperand(2).getImm();
2719   unsigned OrigCmpVal  = MI->getOperand(3).getReg();
2720   unsigned OrigSwapVal = MI->getOperand(4).getReg();
2721   unsigned BitShift    = MI->getOperand(5).getReg();
2722   unsigned NegBitShift = MI->getOperand(6).getReg();
2723   int64_t  BitSize     = MI->getOperand(7).getImm();
2724   DebugLoc DL          = MI->getDebugLoc();
2725
2726   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
2727
2728   // Get the right opcodes for the displacement.
2729   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
2730   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
2731   assert(LOpcode && CSOpcode && "Displacement out of range");
2732
2733   // Create virtual registers for temporary results.
2734   unsigned OrigOldVal   = MRI.createVirtualRegister(RC);
2735   unsigned OldVal       = MRI.createVirtualRegister(RC);
2736   unsigned CmpVal       = MRI.createVirtualRegister(RC);
2737   unsigned SwapVal      = MRI.createVirtualRegister(RC);
2738   unsigned StoreVal     = MRI.createVirtualRegister(RC);
2739   unsigned RetryOldVal  = MRI.createVirtualRegister(RC);
2740   unsigned RetryCmpVal  = MRI.createVirtualRegister(RC);
2741   unsigned RetrySwapVal = MRI.createVirtualRegister(RC);
2742
2743   // Insert 2 basic blocks for the loop.
2744   MachineBasicBlock *StartMBB = MBB;
2745   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
2746   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
2747   MachineBasicBlock *SetMBB   = emitBlockAfter(LoopMBB);
2748
2749   //  StartMBB:
2750   //   ...
2751   //   %OrigOldVal     = L Disp(%Base)
2752   //   # fall through to LoopMMB
2753   MBB = StartMBB;
2754   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
2755     .addOperand(Base).addImm(Disp).addReg(0);
2756   MBB->addSuccessor(LoopMBB);
2757
2758   //  LoopMBB:
2759   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
2760   //   %CmpVal        = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
2761   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
2762   //   %Dest          = RLL %OldVal, BitSize(%BitShift)
2763   //                      ^^ The low BitSize bits contain the field
2764   //                         of interest.
2765   //   %RetryCmpVal   = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
2766   //                      ^^ Replace the upper 32-BitSize bits of the
2767   //                         comparison value with those that we loaded,
2768   //                         so that we can use a full word comparison.
2769   //   CR %Dest, %RetryCmpVal
2770   //   JNE DoneMBB
2771   //   # Fall through to SetMBB
2772   MBB = LoopMBB;
2773   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
2774     .addReg(OrigOldVal).addMBB(StartMBB)
2775     .addReg(RetryOldVal).addMBB(SetMBB);
2776   BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
2777     .addReg(OrigCmpVal).addMBB(StartMBB)
2778     .addReg(RetryCmpVal).addMBB(SetMBB);
2779   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
2780     .addReg(OrigSwapVal).addMBB(StartMBB)
2781     .addReg(RetrySwapVal).addMBB(SetMBB);
2782   BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
2783     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
2784   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
2785     .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
2786   BuildMI(MBB, DL, TII->get(SystemZ::CR))
2787     .addReg(Dest).addReg(RetryCmpVal);
2788   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2789     .addImm(SystemZ::CCMASK_ICMP)
2790     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
2791   MBB->addSuccessor(DoneMBB);
2792   MBB->addSuccessor(SetMBB);
2793
2794   //  SetMBB:
2795   //   %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
2796   //                      ^^ Replace the upper 32-BitSize bits of the new
2797   //                         value with those that we loaded.
2798   //   %StoreVal    = RLL %RetrySwapVal, -BitSize(%NegBitShift)
2799   //                      ^^ Rotate the new field to its proper position.
2800   //   %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
2801   //   JNE LoopMBB
2802   //   # fall through to ExitMMB
2803   MBB = SetMBB;
2804   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
2805     .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
2806   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
2807     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
2808   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
2809     .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp);
2810   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2811     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
2812   MBB->addSuccessor(LoopMBB);
2813   MBB->addSuccessor(DoneMBB);
2814
2815   MI->eraseFromParent();
2816   return DoneMBB;
2817 }
2818
2819 // Emit an extension from a GR32 or GR64 to a GR128.  ClearEven is true
2820 // if the high register of the GR128 value must be cleared or false if
2821 // it's "don't care".  SubReg is subreg_l32 when extending a GR32
2822 // and subreg_l64 when extending a GR64.
2823 MachineBasicBlock *
2824 SystemZTargetLowering::emitExt128(MachineInstr *MI,
2825                                   MachineBasicBlock *MBB,
2826                                   bool ClearEven, unsigned SubReg) const {
2827   const SystemZInstrInfo *TII = TM.getInstrInfo();
2828   MachineFunction &MF = *MBB->getParent();
2829   MachineRegisterInfo &MRI = MF.getRegInfo();
2830   DebugLoc DL = MI->getDebugLoc();
2831
2832   unsigned Dest  = MI->getOperand(0).getReg();
2833   unsigned Src   = MI->getOperand(1).getReg();
2834   unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
2835
2836   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
2837   if (ClearEven) {
2838     unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
2839     unsigned Zero64   = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
2840
2841     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
2842       .addImm(0);
2843     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
2844       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
2845     In128 = NewIn128;
2846   }
2847   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
2848     .addReg(In128).addReg(Src).addImm(SubReg);
2849
2850   MI->eraseFromParent();
2851   return MBB;
2852 }
2853
2854 MachineBasicBlock *
2855 SystemZTargetLowering::emitMemMemWrapper(MachineInstr *MI,
2856                                          MachineBasicBlock *MBB,
2857                                          unsigned Opcode) const {
2858   const SystemZInstrInfo *TII = TM.getInstrInfo();
2859   MachineFunction &MF = *MBB->getParent();
2860   MachineRegisterInfo &MRI = MF.getRegInfo();
2861   DebugLoc DL = MI->getDebugLoc();
2862
2863   MachineOperand DestBase = earlyUseOperand(MI->getOperand(0));
2864   uint64_t       DestDisp = MI->getOperand(1).getImm();
2865   MachineOperand SrcBase  = earlyUseOperand(MI->getOperand(2));
2866   uint64_t       SrcDisp  = MI->getOperand(3).getImm();
2867   uint64_t       Length   = MI->getOperand(4).getImm();
2868
2869   // When generating more than one CLC, all but the last will need to
2870   // branch to the end when a difference is found.
2871   MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
2872                                splitBlockAfter(MI, MBB) : 0);
2873
2874   // Check for the loop form, in which operand 5 is the trip count.
2875   if (MI->getNumExplicitOperands() > 5) {
2876     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
2877
2878     uint64_t StartCountReg = MI->getOperand(5).getReg();
2879     uint64_t StartSrcReg   = forceReg(MI, SrcBase, TII);
2880     uint64_t StartDestReg  = (HaveSingleBase ? StartSrcReg :
2881                               forceReg(MI, DestBase, TII));
2882
2883     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
2884     uint64_t ThisSrcReg  = MRI.createVirtualRegister(RC);
2885     uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg :
2886                             MRI.createVirtualRegister(RC));
2887     uint64_t NextSrcReg  = MRI.createVirtualRegister(RC);
2888     uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg :
2889                             MRI.createVirtualRegister(RC));
2890
2891     RC = &SystemZ::GR64BitRegClass;
2892     uint64_t ThisCountReg = MRI.createVirtualRegister(RC);
2893     uint64_t NextCountReg = MRI.createVirtualRegister(RC);
2894
2895     MachineBasicBlock *StartMBB = MBB;
2896     MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
2897     MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
2898     MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
2899
2900     //  StartMBB:
2901     //   # fall through to LoopMMB
2902     MBB->addSuccessor(LoopMBB);
2903
2904     //  LoopMBB:
2905     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
2906     //                      [ %NextDestReg, NextMBB ]
2907     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
2908     //                     [ %NextSrcReg, NextMBB ]
2909     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
2910     //                       [ %NextCountReg, NextMBB ]
2911     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
2912     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
2913     //   ( JLH EndMBB )
2914     //
2915     // The prefetch is used only for MVC.  The JLH is used only for CLC.
2916     MBB = LoopMBB;
2917
2918     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
2919       .addReg(StartDestReg).addMBB(StartMBB)
2920       .addReg(NextDestReg).addMBB(NextMBB);
2921     if (!HaveSingleBase)
2922       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
2923         .addReg(StartSrcReg).addMBB(StartMBB)
2924         .addReg(NextSrcReg).addMBB(NextMBB);
2925     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
2926       .addReg(StartCountReg).addMBB(StartMBB)
2927       .addReg(NextCountReg).addMBB(NextMBB);
2928     if (Opcode == SystemZ::MVC)
2929       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
2930         .addImm(SystemZ::PFD_WRITE)
2931         .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
2932     BuildMI(MBB, DL, TII->get(Opcode))
2933       .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
2934       .addReg(ThisSrcReg).addImm(SrcDisp);
2935     if (EndMBB) {
2936       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2937         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
2938         .addMBB(EndMBB);
2939       MBB->addSuccessor(EndMBB);
2940       MBB->addSuccessor(NextMBB);
2941     }
2942
2943     // NextMBB:
2944     //   %NextDestReg = LA 256(%ThisDestReg)
2945     //   %NextSrcReg = LA 256(%ThisSrcReg)
2946     //   %NextCountReg = AGHI %ThisCountReg, -1
2947     //   CGHI %NextCountReg, 0
2948     //   JLH LoopMBB
2949     //   # fall through to DoneMMB
2950     //
2951     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
2952     MBB = NextMBB;
2953
2954     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
2955       .addReg(ThisDestReg).addImm(256).addReg(0);
2956     if (!HaveSingleBase)
2957       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
2958         .addReg(ThisSrcReg).addImm(256).addReg(0);
2959     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
2960       .addReg(ThisCountReg).addImm(-1);
2961     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
2962       .addReg(NextCountReg).addImm(0);
2963     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2964       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
2965       .addMBB(LoopMBB);
2966     MBB->addSuccessor(LoopMBB);
2967     MBB->addSuccessor(DoneMBB);
2968
2969     DestBase = MachineOperand::CreateReg(NextDestReg, false);
2970     SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
2971     Length &= 255;
2972     MBB = DoneMBB;
2973   }
2974   // Handle any remaining bytes with straight-line code.
2975   while (Length > 0) {
2976     uint64_t ThisLength = std::min(Length, uint64_t(256));
2977     // The previous iteration might have created out-of-range displacements.
2978     // Apply them using LAY if so.
2979     if (!isUInt<12>(DestDisp)) {
2980       unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
2981       BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg)
2982         .addOperand(DestBase).addImm(DestDisp).addReg(0);
2983       DestBase = MachineOperand::CreateReg(Reg, false);
2984       DestDisp = 0;
2985     }
2986     if (!isUInt<12>(SrcDisp)) {
2987       unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
2988       BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg)
2989         .addOperand(SrcBase).addImm(SrcDisp).addReg(0);
2990       SrcBase = MachineOperand::CreateReg(Reg, false);
2991       SrcDisp = 0;
2992     }
2993     BuildMI(*MBB, MI, DL, TII->get(Opcode))
2994       .addOperand(DestBase).addImm(DestDisp).addImm(ThisLength)
2995       .addOperand(SrcBase).addImm(SrcDisp);
2996     DestDisp += ThisLength;
2997     SrcDisp += ThisLength;
2998     Length -= ThisLength;
2999     // If there's another CLC to go, branch to the end if a difference
3000     // was found.
3001     if (EndMBB && Length > 0) {
3002       MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
3003       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
3004         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
3005         .addMBB(EndMBB);
3006       MBB->addSuccessor(EndMBB);
3007       MBB->addSuccessor(NextMBB);
3008       MBB = NextMBB;
3009     }
3010   }
3011   if (EndMBB) {
3012     MBB->addSuccessor(EndMBB);
3013     MBB = EndMBB;
3014     MBB->addLiveIn(SystemZ::CC);
3015   }
3016
3017   MI->eraseFromParent();
3018   return MBB;
3019 }
3020
3021 // Decompose string pseudo-instruction MI into a loop that continually performs
3022 // Opcode until CC != 3.
3023 MachineBasicBlock *
3024 SystemZTargetLowering::emitStringWrapper(MachineInstr *MI,
3025                                          MachineBasicBlock *MBB,
3026                                          unsigned Opcode) const {
3027   const SystemZInstrInfo *TII = TM.getInstrInfo();
3028   MachineFunction &MF = *MBB->getParent();
3029   MachineRegisterInfo &MRI = MF.getRegInfo();
3030   DebugLoc DL = MI->getDebugLoc();
3031
3032   uint64_t End1Reg   = MI->getOperand(0).getReg();
3033   uint64_t Start1Reg = MI->getOperand(1).getReg();
3034   uint64_t Start2Reg = MI->getOperand(2).getReg();
3035   uint64_t CharReg   = MI->getOperand(3).getReg();
3036
3037   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
3038   uint64_t This1Reg = MRI.createVirtualRegister(RC);
3039   uint64_t This2Reg = MRI.createVirtualRegister(RC);
3040   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
3041
3042   MachineBasicBlock *StartMBB = MBB;
3043   MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
3044   MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
3045
3046   //  StartMBB:
3047   //   # fall through to LoopMMB
3048   MBB->addSuccessor(LoopMBB);
3049
3050   //  LoopMBB:
3051   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
3052   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
3053   //   R0L = %CharReg
3054   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
3055   //   JO LoopMBB
3056   //   # fall through to DoneMMB
3057   //
3058   // The load of R0L can be hoisted by post-RA LICM.
3059   MBB = LoopMBB;
3060
3061   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
3062     .addReg(Start1Reg).addMBB(StartMBB)
3063     .addReg(End1Reg).addMBB(LoopMBB);
3064   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
3065     .addReg(Start2Reg).addMBB(StartMBB)
3066     .addReg(End2Reg).addMBB(LoopMBB);
3067   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
3068   BuildMI(MBB, DL, TII->get(Opcode))
3069     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
3070     .addReg(This1Reg).addReg(This2Reg);
3071   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
3072     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
3073   MBB->addSuccessor(LoopMBB);
3074   MBB->addSuccessor(DoneMBB);
3075
3076   DoneMBB->addLiveIn(SystemZ::CC);
3077
3078   MI->eraseFromParent();
3079   return DoneMBB;
3080 }
3081
3082 MachineBasicBlock *SystemZTargetLowering::
3083 EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const {
3084   switch (MI->getOpcode()) {
3085   case SystemZ::Select32Mux:
3086   case SystemZ::Select32:
3087   case SystemZ::SelectF32:
3088   case SystemZ::Select64:
3089   case SystemZ::SelectF64:
3090   case SystemZ::SelectF128:
3091     return emitSelect(MI, MBB);
3092
3093   case SystemZ::CondStore8Mux:
3094     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
3095   case SystemZ::CondStore8MuxInv:
3096     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
3097   case SystemZ::CondStore16Mux:
3098     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
3099   case SystemZ::CondStore16MuxInv:
3100     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
3101   case SystemZ::CondStore8:
3102     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
3103   case SystemZ::CondStore8Inv:
3104     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
3105   case SystemZ::CondStore16:
3106     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
3107   case SystemZ::CondStore16Inv:
3108     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
3109   case SystemZ::CondStore32:
3110     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
3111   case SystemZ::CondStore32Inv:
3112     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
3113   case SystemZ::CondStore64:
3114     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
3115   case SystemZ::CondStore64Inv:
3116     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
3117   case SystemZ::CondStoreF32:
3118     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
3119   case SystemZ::CondStoreF32Inv:
3120     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
3121   case SystemZ::CondStoreF64:
3122     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
3123   case SystemZ::CondStoreF64Inv:
3124     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
3125
3126   case SystemZ::AEXT128_64:
3127     return emitExt128(MI, MBB, false, SystemZ::subreg_l64);
3128   case SystemZ::ZEXT128_32:
3129     return emitExt128(MI, MBB, true, SystemZ::subreg_l32);
3130   case SystemZ::ZEXT128_64:
3131     return emitExt128(MI, MBB, true, SystemZ::subreg_l64);
3132
3133   case SystemZ::ATOMIC_SWAPW:
3134     return emitAtomicLoadBinary(MI, MBB, 0, 0);
3135   case SystemZ::ATOMIC_SWAP_32:
3136     return emitAtomicLoadBinary(MI, MBB, 0, 32);
3137   case SystemZ::ATOMIC_SWAP_64:
3138     return emitAtomicLoadBinary(MI, MBB, 0, 64);
3139
3140   case SystemZ::ATOMIC_LOADW_AR:
3141     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
3142   case SystemZ::ATOMIC_LOADW_AFI:
3143     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
3144   case SystemZ::ATOMIC_LOAD_AR:
3145     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
3146   case SystemZ::ATOMIC_LOAD_AHI:
3147     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
3148   case SystemZ::ATOMIC_LOAD_AFI:
3149     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
3150   case SystemZ::ATOMIC_LOAD_AGR:
3151     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
3152   case SystemZ::ATOMIC_LOAD_AGHI:
3153     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
3154   case SystemZ::ATOMIC_LOAD_AGFI:
3155     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
3156
3157   case SystemZ::ATOMIC_LOADW_SR:
3158     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
3159   case SystemZ::ATOMIC_LOAD_SR:
3160     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
3161   case SystemZ::ATOMIC_LOAD_SGR:
3162     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
3163
3164   case SystemZ::ATOMIC_LOADW_NR:
3165     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
3166   case SystemZ::ATOMIC_LOADW_NILH:
3167     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
3168   case SystemZ::ATOMIC_LOAD_NR:
3169     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
3170   case SystemZ::ATOMIC_LOAD_NILL:
3171     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
3172   case SystemZ::ATOMIC_LOAD_NILH:
3173     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
3174   case SystemZ::ATOMIC_LOAD_NILF:
3175     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
3176   case SystemZ::ATOMIC_LOAD_NGR:
3177     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
3178   case SystemZ::ATOMIC_LOAD_NILL64:
3179     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
3180   case SystemZ::ATOMIC_LOAD_NILH64:
3181     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
3182   case SystemZ::ATOMIC_LOAD_NIHL64:
3183     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
3184   case SystemZ::ATOMIC_LOAD_NIHH64:
3185     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
3186   case SystemZ::ATOMIC_LOAD_NILF64:
3187     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
3188   case SystemZ::ATOMIC_LOAD_NIHF64:
3189     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
3190
3191   case SystemZ::ATOMIC_LOADW_OR:
3192     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
3193   case SystemZ::ATOMIC_LOADW_OILH:
3194     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
3195   case SystemZ::ATOMIC_LOAD_OR:
3196     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
3197   case SystemZ::ATOMIC_LOAD_OILL:
3198     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
3199   case SystemZ::ATOMIC_LOAD_OILH:
3200     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
3201   case SystemZ::ATOMIC_LOAD_OILF:
3202     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
3203   case SystemZ::ATOMIC_LOAD_OGR:
3204     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
3205   case SystemZ::ATOMIC_LOAD_OILL64:
3206     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
3207   case SystemZ::ATOMIC_LOAD_OILH64:
3208     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
3209   case SystemZ::ATOMIC_LOAD_OIHL64:
3210     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
3211   case SystemZ::ATOMIC_LOAD_OIHH64:
3212     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
3213   case SystemZ::ATOMIC_LOAD_OILF64:
3214     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
3215   case SystemZ::ATOMIC_LOAD_OIHF64:
3216     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
3217
3218   case SystemZ::ATOMIC_LOADW_XR:
3219     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
3220   case SystemZ::ATOMIC_LOADW_XILF:
3221     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
3222   case SystemZ::ATOMIC_LOAD_XR:
3223     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
3224   case SystemZ::ATOMIC_LOAD_XILF:
3225     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
3226   case SystemZ::ATOMIC_LOAD_XGR:
3227     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
3228   case SystemZ::ATOMIC_LOAD_XILF64:
3229     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
3230   case SystemZ::ATOMIC_LOAD_XIHF64:
3231     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
3232
3233   case SystemZ::ATOMIC_LOADW_NRi:
3234     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
3235   case SystemZ::ATOMIC_LOADW_NILHi:
3236     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
3237   case SystemZ::ATOMIC_LOAD_NRi:
3238     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
3239   case SystemZ::ATOMIC_LOAD_NILLi:
3240     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
3241   case SystemZ::ATOMIC_LOAD_NILHi:
3242     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
3243   case SystemZ::ATOMIC_LOAD_NILFi:
3244     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
3245   case SystemZ::ATOMIC_LOAD_NGRi:
3246     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
3247   case SystemZ::ATOMIC_LOAD_NILL64i:
3248     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
3249   case SystemZ::ATOMIC_LOAD_NILH64i:
3250     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
3251   case SystemZ::ATOMIC_LOAD_NIHL64i:
3252     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
3253   case SystemZ::ATOMIC_LOAD_NIHH64i:
3254     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
3255   case SystemZ::ATOMIC_LOAD_NILF64i:
3256     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
3257   case SystemZ::ATOMIC_LOAD_NIHF64i:
3258     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
3259
3260   case SystemZ::ATOMIC_LOADW_MIN:
3261     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3262                                 SystemZ::CCMASK_CMP_LE, 0);
3263   case SystemZ::ATOMIC_LOAD_MIN_32:
3264     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3265                                 SystemZ::CCMASK_CMP_LE, 32);
3266   case SystemZ::ATOMIC_LOAD_MIN_64:
3267     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
3268                                 SystemZ::CCMASK_CMP_LE, 64);
3269
3270   case SystemZ::ATOMIC_LOADW_MAX:
3271     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3272                                 SystemZ::CCMASK_CMP_GE, 0);
3273   case SystemZ::ATOMIC_LOAD_MAX_32:
3274     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3275                                 SystemZ::CCMASK_CMP_GE, 32);
3276   case SystemZ::ATOMIC_LOAD_MAX_64:
3277     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
3278                                 SystemZ::CCMASK_CMP_GE, 64);
3279
3280   case SystemZ::ATOMIC_LOADW_UMIN:
3281     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3282                                 SystemZ::CCMASK_CMP_LE, 0);
3283   case SystemZ::ATOMIC_LOAD_UMIN_32:
3284     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3285                                 SystemZ::CCMASK_CMP_LE, 32);
3286   case SystemZ::ATOMIC_LOAD_UMIN_64:
3287     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
3288                                 SystemZ::CCMASK_CMP_LE, 64);
3289
3290   case SystemZ::ATOMIC_LOADW_UMAX:
3291     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3292                                 SystemZ::CCMASK_CMP_GE, 0);
3293   case SystemZ::ATOMIC_LOAD_UMAX_32:
3294     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3295                                 SystemZ::CCMASK_CMP_GE, 32);
3296   case SystemZ::ATOMIC_LOAD_UMAX_64:
3297     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
3298                                 SystemZ::CCMASK_CMP_GE, 64);
3299
3300   case SystemZ::ATOMIC_CMP_SWAPW:
3301     return emitAtomicCmpSwapW(MI, MBB);
3302   case SystemZ::MVCSequence:
3303   case SystemZ::MVCLoop:
3304     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
3305   case SystemZ::NCSequence:
3306   case SystemZ::NCLoop:
3307     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
3308   case SystemZ::OCSequence:
3309   case SystemZ::OCLoop:
3310     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
3311   case SystemZ::XCSequence:
3312   case SystemZ::XCLoop:
3313     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
3314   case SystemZ::CLCSequence:
3315   case SystemZ::CLCLoop:
3316     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
3317   case SystemZ::CLSTLoop:
3318     return emitStringWrapper(MI, MBB, SystemZ::CLST);
3319   case SystemZ::MVSTLoop:
3320     return emitStringWrapper(MI, MBB, SystemZ::MVST);
3321   case SystemZ::SRSTLoop:
3322     return emitStringWrapper(MI, MBB, SystemZ::SRST);
3323   default:
3324     llvm_unreachable("Unexpected instr type to insert");
3325   }
3326 }