63101a9d000a2f95ad08109a1ad911b39119b4f1
[oota-llvm.git] / lib / Target / SystemZ / SystemZInstrInfo.cpp
1 //===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the SystemZ implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "SystemZInstrInfo.h"
15 #include "SystemZInstrBuilder.h"
16 #include "SystemZTargetMachine.h"
17 #include "llvm/CodeGen/LiveVariables.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
19
20 using namespace llvm;
21
22 #define GET_INSTRINFO_CTOR_DTOR
23 #define GET_INSTRMAP_INFO
24 #include "SystemZGenInstrInfo.inc"
25
26 // Return a mask with Count low bits set.
27 static uint64_t allOnes(unsigned int Count) {
28   return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1;
29 }
30
31 // Reg should be a 32-bit GPR.  Return true if it is a high register rather
32 // than a low register.
33 static bool isHighReg(unsigned int Reg) {
34   if (SystemZ::GRH32BitRegClass.contains(Reg))
35     return true;
36   assert(SystemZ::GR32BitRegClass.contains(Reg) && "Invalid GRX32");
37   return false;
38 }
39
40 // Pin the vtable to this file.
41 void SystemZInstrInfo::anchor() {}
42
43 SystemZInstrInfo::SystemZInstrInfo(SystemZSubtarget &sti)
44   : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP),
45     RI(), STI(sti) {
46 }
47
48 // MI is a 128-bit load or store.  Split it into two 64-bit loads or stores,
49 // each having the opcode given by NewOpcode.
50 void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI,
51                                  unsigned NewOpcode) const {
52   MachineBasicBlock *MBB = MI->getParent();
53   MachineFunction &MF = *MBB->getParent();
54
55   // Get two load or store instructions.  Use the original instruction for one
56   // of them (arbitrarily the second here) and create a clone for the other.
57   MachineInstr *EarlierMI = MF.CloneMachineInstr(MI);
58   MBB->insert(MI, EarlierMI);
59
60   // Set up the two 64-bit registers.
61   MachineOperand &HighRegOp = EarlierMI->getOperand(0);
62   MachineOperand &LowRegOp = MI->getOperand(0);
63   HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64));
64   LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64));
65
66   // The address in the first (high) instruction is already correct.
67   // Adjust the offset in the second (low) instruction.
68   MachineOperand &HighOffsetOp = EarlierMI->getOperand(2);
69   MachineOperand &LowOffsetOp = MI->getOperand(2);
70   LowOffsetOp.setImm(LowOffsetOp.getImm() + 8);
71
72   // Set the opcodes.
73   unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm());
74   unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm());
75   assert(HighOpcode && LowOpcode && "Both offsets should be in range");
76
77   EarlierMI->setDesc(get(HighOpcode));
78   MI->setDesc(get(LowOpcode));
79 }
80
81 // Split ADJDYNALLOC instruction MI.
82 void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const {
83   MachineBasicBlock *MBB = MI->getParent();
84   MachineFunction &MF = *MBB->getParent();
85   MachineFrameInfo *MFFrame = MF.getFrameInfo();
86   MachineOperand &OffsetMO = MI->getOperand(2);
87
88   uint64_t Offset = (MFFrame->getMaxCallFrameSize() +
89                      SystemZMC::CallFrameSize +
90                      OffsetMO.getImm());
91   unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset);
92   assert(NewOpcode && "No support for huge argument lists yet");
93   MI->setDesc(get(NewOpcode));
94   OffsetMO.setImm(Offset);
95 }
96
97 // MI is an RI-style pseudo instruction.  Replace it with LowOpcode
98 // if the first operand is a low GR32 and HighOpcode if the first operand
99 // is a high GR32.  ConvertHigh is true if LowOpcode takes a signed operand
100 // and HighOpcode takes an unsigned 32-bit operand.  In those cases,
101 // MI has the same kind of operand as LowOpcode, so needs to be converted
102 // if HighOpcode is used.
103 void SystemZInstrInfo::expandRIPseudo(MachineInstr *MI, unsigned LowOpcode,
104                                       unsigned HighOpcode,
105                                       bool ConvertHigh) const {
106   unsigned Reg = MI->getOperand(0).getReg();
107   bool IsHigh = isHighReg(Reg);
108   MI->setDesc(get(IsHigh ? HighOpcode : LowOpcode));
109   if (IsHigh && ConvertHigh)
110     MI->getOperand(1).setImm(uint32_t(MI->getOperand(1).getImm()));
111 }
112
113 // MI is a three-operand RIE-style pseudo instruction.  Replace it with
114 // LowOpcode3 if the registers are both low GR32s, otherwise use a move
115 // followed by HighOpcode or LowOpcode, depending on whether the target
116 // is a high or low GR32.
117 void SystemZInstrInfo::expandRIEPseudo(MachineInstr *MI, unsigned LowOpcode,
118                                        unsigned LowOpcodeK,
119                                        unsigned HighOpcode) const {
120   unsigned DestReg = MI->getOperand(0).getReg();
121   unsigned SrcReg = MI->getOperand(1).getReg();
122   bool DestIsHigh = isHighReg(DestReg);
123   bool SrcIsHigh = isHighReg(SrcReg);
124   if (!DestIsHigh && !SrcIsHigh)
125     MI->setDesc(get(LowOpcodeK));
126   else {
127     emitGRX32Move(*MI->getParent(), MI, MI->getDebugLoc(),
128                   DestReg, SrcReg, SystemZ::LR, 32,
129                   MI->getOperand(1).isKill());
130     MI->setDesc(get(DestIsHigh ? HighOpcode : LowOpcode));
131     MI->getOperand(1).setReg(DestReg);
132   }
133 }
134
135 // MI is an RXY-style pseudo instruction.  Replace it with LowOpcode
136 // if the first operand is a low GR32 and HighOpcode if the first operand
137 // is a high GR32.
138 void SystemZInstrInfo::expandRXYPseudo(MachineInstr *MI, unsigned LowOpcode,
139                                        unsigned HighOpcode) const {
140   unsigned Reg = MI->getOperand(0).getReg();
141   unsigned Opcode = getOpcodeForOffset(isHighReg(Reg) ? HighOpcode : LowOpcode,
142                                        MI->getOperand(2).getImm());
143   MI->setDesc(get(Opcode));
144 }
145
146 // MI is an RR-style pseudo instruction that zero-extends the low Size bits
147 // of one GRX32 into another.  Replace it with LowOpcode if both operands
148 // are low registers, otherwise use RISB[LH]G.
149 void SystemZInstrInfo::expandZExtPseudo(MachineInstr *MI, unsigned LowOpcode,
150                                         unsigned Size) const {
151   emitGRX32Move(*MI->getParent(), MI, MI->getDebugLoc(),
152                 MI->getOperand(0).getReg(), MI->getOperand(1).getReg(),
153                 LowOpcode, Size, MI->getOperand(1).isKill());
154   MI->eraseFromParent();
155 }
156
157 // Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR
158 // DestReg before MBBI in MBB.  Use LowLowOpcode when both DestReg and SrcReg
159 // are low registers, otherwise use RISB[LH]G.  Size is the number of bits
160 // taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR).
161 // KillSrc is true if this move is the last use of SrcReg.
162 void SystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB,
163                                      MachineBasicBlock::iterator MBBI,
164                                      DebugLoc DL, unsigned DestReg,
165                                      unsigned SrcReg, unsigned LowLowOpcode,
166                                      unsigned Size, bool KillSrc) const {
167   unsigned Opcode;
168   bool DestIsHigh = isHighReg(DestReg);
169   bool SrcIsHigh = isHighReg(SrcReg);
170   if (DestIsHigh && SrcIsHigh)
171     Opcode = SystemZ::RISBHH;
172   else if (DestIsHigh && !SrcIsHigh)
173     Opcode = SystemZ::RISBHL;
174   else if (!DestIsHigh && SrcIsHigh)
175     Opcode = SystemZ::RISBLH;
176   else {
177     BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg)
178       .addReg(SrcReg, getKillRegState(KillSrc));
179     return;
180   }
181   unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0);
182   BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
183     .addReg(DestReg, RegState::Undef)
184     .addReg(SrcReg, getKillRegState(KillSrc))
185     .addImm(32 - Size).addImm(128 + 31).addImm(Rotate);
186 }
187
188 // If MI is a simple load or store for a frame object, return the register
189 // it loads or stores and set FrameIndex to the index of the frame object.
190 // Return 0 otherwise.
191 //
192 // Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
193 static int isSimpleMove(const MachineInstr *MI, int &FrameIndex,
194                         unsigned Flag) {
195   const MCInstrDesc &MCID = MI->getDesc();
196   if ((MCID.TSFlags & Flag) &&
197       MI->getOperand(1).isFI() &&
198       MI->getOperand(2).getImm() == 0 &&
199       MI->getOperand(3).getReg() == 0) {
200     FrameIndex = MI->getOperand(1).getIndex();
201     return MI->getOperand(0).getReg();
202   }
203   return 0;
204 }
205
206 unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
207                                                int &FrameIndex) const {
208   return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad);
209 }
210
211 unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
212                                               int &FrameIndex) const {
213   return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore);
214 }
215
216 bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr *MI,
217                                        int &DestFrameIndex,
218                                        int &SrcFrameIndex) const {
219   // Check for MVC 0(Length,FI1),0(FI2)
220   const MachineFrameInfo *MFI = MI->getParent()->getParent()->getFrameInfo();
221   if (MI->getOpcode() != SystemZ::MVC ||
222       !MI->getOperand(0).isFI() ||
223       MI->getOperand(1).getImm() != 0 ||
224       !MI->getOperand(3).isFI() ||
225       MI->getOperand(4).getImm() != 0)
226     return false;
227
228   // Check that Length covers the full slots.
229   int64_t Length = MI->getOperand(2).getImm();
230   unsigned FI1 = MI->getOperand(0).getIndex();
231   unsigned FI2 = MI->getOperand(3).getIndex();
232   if (MFI->getObjectSize(FI1) != Length ||
233       MFI->getObjectSize(FI2) != Length)
234     return false;
235
236   DestFrameIndex = FI1;
237   SrcFrameIndex = FI2;
238   return true;
239 }
240
241 bool SystemZInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
242                                      MachineBasicBlock *&TBB,
243                                      MachineBasicBlock *&FBB,
244                                      SmallVectorImpl<MachineOperand> &Cond,
245                                      bool AllowModify) const {
246   // Most of the code and comments here are boilerplate.
247
248   // Start from the bottom of the block and work up, examining the
249   // terminator instructions.
250   MachineBasicBlock::iterator I = MBB.end();
251   while (I != MBB.begin()) {
252     --I;
253     if (I->isDebugValue())
254       continue;
255
256     // Working from the bottom, when we see a non-terminator instruction, we're
257     // done.
258     if (!isUnpredicatedTerminator(I))
259       break;
260
261     // A terminator that isn't a branch can't easily be handled by this
262     // analysis.
263     if (!I->isBranch())
264       return true;
265
266     // Can't handle indirect branches.
267     SystemZII::Branch Branch(getBranchInfo(I));
268     if (!Branch.Target->isMBB())
269       return true;
270
271     // Punt on compound branches.
272     if (Branch.Type != SystemZII::BranchNormal)
273       return true;
274
275     if (Branch.CCMask == SystemZ::CCMASK_ANY) {
276       // Handle unconditional branches.
277       if (!AllowModify) {
278         TBB = Branch.Target->getMBB();
279         continue;
280       }
281
282       // If the block has any instructions after a JMP, delete them.
283       while (std::next(I) != MBB.end())
284         std::next(I)->eraseFromParent();
285
286       Cond.clear();
287       FBB = nullptr;
288
289       // Delete the JMP if it's equivalent to a fall-through.
290       if (MBB.isLayoutSuccessor(Branch.Target->getMBB())) {
291         TBB = nullptr;
292         I->eraseFromParent();
293         I = MBB.end();
294         continue;
295       }
296
297       // TBB is used to indicate the unconditinal destination.
298       TBB = Branch.Target->getMBB();
299       continue;
300     }
301
302     // Working from the bottom, handle the first conditional branch.
303     if (Cond.empty()) {
304       // FIXME: add X86-style branch swap
305       FBB = TBB;
306       TBB = Branch.Target->getMBB();
307       Cond.push_back(MachineOperand::CreateImm(Branch.CCValid));
308       Cond.push_back(MachineOperand::CreateImm(Branch.CCMask));
309       continue;
310     }
311
312     // Handle subsequent conditional branches.
313     assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch");
314
315     // Only handle the case where all conditional branches branch to the same
316     // destination.
317     if (TBB != Branch.Target->getMBB())
318       return true;
319
320     // If the conditions are the same, we can leave them alone.
321     unsigned OldCCValid = Cond[0].getImm();
322     unsigned OldCCMask = Cond[1].getImm();
323     if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask)
324       continue;
325
326     // FIXME: Try combining conditions like X86 does.  Should be easy on Z!
327     return false;
328   }
329
330   return false;
331 }
332
333 unsigned SystemZInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
334   // Most of the code and comments here are boilerplate.
335   MachineBasicBlock::iterator I = MBB.end();
336   unsigned Count = 0;
337
338   while (I != MBB.begin()) {
339     --I;
340     if (I->isDebugValue())
341       continue;
342     if (!I->isBranch())
343       break;
344     if (!getBranchInfo(I).Target->isMBB())
345       break;
346     // Remove the branch.
347     I->eraseFromParent();
348     I = MBB.end();
349     ++Count;
350   }
351
352   return Count;
353 }
354
355 bool SystemZInstrInfo::
356 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
357   assert(Cond.size() == 2 && "Invalid condition");
358   Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm());
359   return false;
360 }
361
362 unsigned
363 SystemZInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
364                                MachineBasicBlock *FBB,
365                                const SmallVectorImpl<MachineOperand> &Cond,
366                                DebugLoc DL) const {
367   // In this function we output 32-bit branches, which should always
368   // have enough range.  They can be shortened and relaxed by later code
369   // in the pipeline, if desired.
370
371   // Shouldn't be a fall through.
372   assert(TBB && "InsertBranch must not be told to insert a fallthrough");
373   assert((Cond.size() == 2 || Cond.size() == 0) &&
374          "SystemZ branch conditions have one component!");
375
376   if (Cond.empty()) {
377     // Unconditional branch?
378     assert(!FBB && "Unconditional branch with multiple successors!");
379     BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB);
380     return 1;
381   }
382
383   // Conditional branch.
384   unsigned Count = 0;
385   unsigned CCValid = Cond[0].getImm();
386   unsigned CCMask = Cond[1].getImm();
387   BuildMI(&MBB, DL, get(SystemZ::BRC))
388     .addImm(CCValid).addImm(CCMask).addMBB(TBB);
389   ++Count;
390
391   if (FBB) {
392     // Two-way Conditional branch. Insert the second branch.
393     BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB);
394     ++Count;
395   }
396   return Count;
397 }
398
399 bool SystemZInstrInfo::analyzeCompare(const MachineInstr *MI,
400                                       unsigned &SrcReg, unsigned &SrcReg2,
401                                       int &Mask, int &Value) const {
402   assert(MI->isCompare() && "Caller should have checked for a comparison");
403
404   if (MI->getNumExplicitOperands() == 2 &&
405       MI->getOperand(0).isReg() &&
406       MI->getOperand(1).isImm()) {
407     SrcReg = MI->getOperand(0).getReg();
408     SrcReg2 = 0;
409     Value = MI->getOperand(1).getImm();
410     Mask = ~0;
411     return true;
412   }
413
414   return false;
415 }
416
417 // If Reg is a virtual register, return its definition, otherwise return null.
418 static MachineInstr *getDef(unsigned Reg,
419                             const MachineRegisterInfo *MRI) {
420   if (TargetRegisterInfo::isPhysicalRegister(Reg))
421     return nullptr;
422   return MRI->getUniqueVRegDef(Reg);
423 }
424
425 // Return true if MI is a shift of type Opcode by Imm bits.
426 static bool isShift(MachineInstr *MI, int Opcode, int64_t Imm) {
427   return (MI->getOpcode() == Opcode &&
428           !MI->getOperand(2).getReg() &&
429           MI->getOperand(3).getImm() == Imm);
430 }
431
432 // If the destination of MI has no uses, delete it as dead.
433 static void eraseIfDead(MachineInstr *MI, const MachineRegisterInfo *MRI) {
434   if (MRI->use_nodbg_empty(MI->getOperand(0).getReg()))
435     MI->eraseFromParent();
436 }
437
438 // Compare compares SrcReg against zero.  Check whether SrcReg contains
439 // the result of an IPM sequence whose input CC survives until Compare,
440 // and whether Compare is therefore redundant.  Delete it and return
441 // true if so.
442 static bool removeIPMBasedCompare(MachineInstr *Compare, unsigned SrcReg,
443                                   const MachineRegisterInfo *MRI,
444                                   const TargetRegisterInfo *TRI) {
445   MachineInstr *LGFR = nullptr;
446   MachineInstr *RLL = getDef(SrcReg, MRI);
447   if (RLL && RLL->getOpcode() == SystemZ::LGFR) {
448     LGFR = RLL;
449     RLL = getDef(LGFR->getOperand(1).getReg(), MRI);
450   }
451   if (!RLL || !isShift(RLL, SystemZ::RLL, 31))
452     return false;
453
454   MachineInstr *SRL = getDef(RLL->getOperand(1).getReg(), MRI);
455   if (!SRL || !isShift(SRL, SystemZ::SRL, SystemZ::IPM_CC))
456     return false;
457
458   MachineInstr *IPM = getDef(SRL->getOperand(1).getReg(), MRI);
459   if (!IPM || IPM->getOpcode() != SystemZ::IPM)
460     return false;
461
462   // Check that there are no assignments to CC between the IPM and Compare,
463   if (IPM->getParent() != Compare->getParent())
464     return false;
465   MachineBasicBlock::iterator MBBI = IPM, MBBE = Compare;
466   for (++MBBI; MBBI != MBBE; ++MBBI) {
467     MachineInstr *MI = MBBI;
468     if (MI->modifiesRegister(SystemZ::CC, TRI))
469       return false;
470   }
471
472   Compare->eraseFromParent();
473   if (LGFR)
474     eraseIfDead(LGFR, MRI);
475   eraseIfDead(RLL, MRI);
476   eraseIfDead(SRL, MRI);
477   eraseIfDead(IPM, MRI);
478
479   return true;
480 }
481
482 bool
483 SystemZInstrInfo::optimizeCompareInstr(MachineInstr *Compare,
484                                        unsigned SrcReg, unsigned SrcReg2,
485                                        int Mask, int Value,
486                                        const MachineRegisterInfo *MRI) const {
487   assert(!SrcReg2 && "Only optimizing constant comparisons so far");
488   bool IsLogical = (Compare->getDesc().TSFlags & SystemZII::IsLogical) != 0;
489   if (Value == 0 &&
490       !IsLogical &&
491       removeIPMBasedCompare(Compare, SrcReg, MRI, &RI))
492     return true;
493   return false;
494 }
495
496 // If Opcode is a move that has a conditional variant, return that variant,
497 // otherwise return 0.
498 static unsigned getConditionalMove(unsigned Opcode) {
499   switch (Opcode) {
500   case SystemZ::LR:  return SystemZ::LOCR;
501   case SystemZ::LGR: return SystemZ::LOCGR;
502   default:           return 0;
503   }
504 }
505
506 bool SystemZInstrInfo::isPredicable(MachineInstr *MI) const {
507   unsigned Opcode = MI->getOpcode();
508   if (STI.hasLoadStoreOnCond() &&
509       getConditionalMove(Opcode))
510     return true;
511   return false;
512 }
513
514 bool SystemZInstrInfo::
515 isProfitableToIfCvt(MachineBasicBlock &MBB,
516                     unsigned NumCycles, unsigned ExtraPredCycles,
517                     const BranchProbability &Probability) const {
518   // For now only convert single instructions.
519   return NumCycles == 1;
520 }
521
522 bool SystemZInstrInfo::
523 isProfitableToIfCvt(MachineBasicBlock &TMBB,
524                     unsigned NumCyclesT, unsigned ExtraPredCyclesT,
525                     MachineBasicBlock &FMBB,
526                     unsigned NumCyclesF, unsigned ExtraPredCyclesF,
527                     const BranchProbability &Probability) const {
528   // For now avoid converting mutually-exclusive cases.
529   return false;
530 }
531
532 bool SystemZInstrInfo::
533 PredicateInstruction(MachineInstr *MI,
534                      const SmallVectorImpl<MachineOperand> &Pred) const {
535   assert(Pred.size() == 2 && "Invalid condition");
536   unsigned CCValid = Pred[0].getImm();
537   unsigned CCMask = Pred[1].getImm();
538   assert(CCMask > 0 && CCMask < 15 && "Invalid predicate");
539   unsigned Opcode = MI->getOpcode();
540   if (STI.hasLoadStoreOnCond()) {
541     if (unsigned CondOpcode = getConditionalMove(Opcode)) {
542       MI->setDesc(get(CondOpcode));
543       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
544         .addImm(CCValid).addImm(CCMask)
545         .addReg(SystemZ::CC, RegState::Implicit);
546       return true;
547     }
548   }
549   return false;
550 }
551
552 void
553 SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
554                               MachineBasicBlock::iterator MBBI, DebugLoc DL,
555                               unsigned DestReg, unsigned SrcReg,
556                               bool KillSrc) const {
557   // Split 128-bit GPR moves into two 64-bit moves.  This handles ADDR128 too.
558   if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) {
559     copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64),
560                 RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc);
561     copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64),
562                 RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc);
563     return;
564   }
565
566   if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) {
567     emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc);
568     return;
569   }
570
571   // Everything else needs only one instruction.
572   unsigned Opcode;
573   if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg))
574     Opcode = SystemZ::LGR;
575   else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg))
576     Opcode = SystemZ::LER;
577   else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg))
578     Opcode = SystemZ::LDR;
579   else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg))
580     Opcode = SystemZ::LXR;
581   else if (SystemZ::VR128BitRegClass.contains(DestReg, SrcReg))
582     Opcode = SystemZ::VLR;
583   else
584     llvm_unreachable("Impossible reg-to-reg copy");
585
586   BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
587     .addReg(SrcReg, getKillRegState(KillSrc));
588 }
589
590 void
591 SystemZInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
592                                       MachineBasicBlock::iterator MBBI,
593                                       unsigned SrcReg, bool isKill,
594                                       int FrameIdx,
595                                       const TargetRegisterClass *RC,
596                                       const TargetRegisterInfo *TRI) const {
597   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
598
599   // Callers may expect a single instruction, so keep 128-bit moves
600   // together for now and lower them after register allocation.
601   unsigned LoadOpcode, StoreOpcode;
602   getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
603   addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode))
604                     .addReg(SrcReg, getKillRegState(isKill)), FrameIdx);
605 }
606
607 void
608 SystemZInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
609                                        MachineBasicBlock::iterator MBBI,
610                                        unsigned DestReg, int FrameIdx,
611                                        const TargetRegisterClass *RC,
612                                        const TargetRegisterInfo *TRI) const {
613   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
614
615   // Callers may expect a single instruction, so keep 128-bit moves
616   // together for now and lower them after register allocation.
617   unsigned LoadOpcode, StoreOpcode;
618   getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
619   addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg),
620                     FrameIdx);
621 }
622
623 // Return true if MI is a simple load or store with a 12-bit displacement
624 // and no index.  Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
625 static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) {
626   const MCInstrDesc &MCID = MI->getDesc();
627   return ((MCID.TSFlags & Flag) &&
628           isUInt<12>(MI->getOperand(2).getImm()) &&
629           MI->getOperand(3).getReg() == 0);
630 }
631
632 namespace {
633 struct LogicOp {
634   LogicOp() : RegSize(0), ImmLSB(0), ImmSize(0) {}
635   LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize)
636     : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {}
637
638   explicit operator bool() const { return RegSize; }
639
640   unsigned RegSize, ImmLSB, ImmSize;
641 };
642 } // end anonymous namespace
643
644 static LogicOp interpretAndImmediate(unsigned Opcode) {
645   switch (Opcode) {
646   case SystemZ::NILMux: return LogicOp(32,  0, 16);
647   case SystemZ::NIHMux: return LogicOp(32, 16, 16);
648   case SystemZ::NILL64: return LogicOp(64,  0, 16);
649   case SystemZ::NILH64: return LogicOp(64, 16, 16);
650   case SystemZ::NIHL64: return LogicOp(64, 32, 16);
651   case SystemZ::NIHH64: return LogicOp(64, 48, 16);
652   case SystemZ::NIFMux: return LogicOp(32,  0, 32);
653   case SystemZ::NILF64: return LogicOp(64,  0, 32);
654   case SystemZ::NIHF64: return LogicOp(64, 32, 32);
655   default:              return LogicOp();
656   }
657 }
658
659 // Used to return from convertToThreeAddress after replacing two-address
660 // instruction OldMI with three-address instruction NewMI.
661 static MachineInstr *finishConvertToThreeAddress(MachineInstr *OldMI,
662                                                  MachineInstr *NewMI,
663                                                  LiveVariables *LV) {
664   if (LV) {
665     unsigned NumOps = OldMI->getNumOperands();
666     for (unsigned I = 1; I < NumOps; ++I) {
667       MachineOperand &Op = OldMI->getOperand(I);
668       if (Op.isReg() && Op.isKill())
669         LV->replaceKillInstruction(Op.getReg(), OldMI, NewMI);
670     }
671   }
672   return NewMI;
673 }
674
675 MachineInstr *
676 SystemZInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
677                                         MachineBasicBlock::iterator &MBBI,
678                                         LiveVariables *LV) const {
679   MachineInstr *MI = MBBI;
680   MachineBasicBlock *MBB = MI->getParent();
681   MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
682
683   unsigned Opcode = MI->getOpcode();
684   unsigned NumOps = MI->getNumOperands();
685
686   // Try to convert something like SLL into SLLK, if supported.
687   // We prefer to keep the two-operand form where possible both
688   // because it tends to be shorter and because some instructions
689   // have memory forms that can be used during spilling.
690   if (STI.hasDistinctOps()) {
691     MachineOperand &Dest = MI->getOperand(0);
692     MachineOperand &Src = MI->getOperand(1);
693     unsigned DestReg = Dest.getReg();
694     unsigned SrcReg = Src.getReg();
695     // AHIMux is only really a three-operand instruction when both operands
696     // are low registers.  Try to constrain both operands to be low if
697     // possible.
698     if (Opcode == SystemZ::AHIMux &&
699         TargetRegisterInfo::isVirtualRegister(DestReg) &&
700         TargetRegisterInfo::isVirtualRegister(SrcReg) &&
701         MRI.getRegClass(DestReg)->contains(SystemZ::R1L) &&
702         MRI.getRegClass(SrcReg)->contains(SystemZ::R1L)) {
703       MRI.constrainRegClass(DestReg, &SystemZ::GR32BitRegClass);
704       MRI.constrainRegClass(SrcReg, &SystemZ::GR32BitRegClass);
705     }
706     int ThreeOperandOpcode = SystemZ::getThreeOperandOpcode(Opcode);
707     if (ThreeOperandOpcode >= 0) {
708       MachineInstrBuilder MIB =
709         BuildMI(*MBB, MBBI, MI->getDebugLoc(), get(ThreeOperandOpcode))
710         .addOperand(Dest);
711       // Keep the kill state, but drop the tied flag.
712       MIB.addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg());
713       // Keep the remaining operands as-is.
714       for (unsigned I = 2; I < NumOps; ++I)
715         MIB.addOperand(MI->getOperand(I));
716       return finishConvertToThreeAddress(MI, MIB, LV);
717     }
718   }
719
720   // Try to convert an AND into an RISBG-type instruction.
721   if (LogicOp And = interpretAndImmediate(Opcode)) {
722     uint64_t Imm = MI->getOperand(2).getImm() << And.ImmLSB;
723     // AND IMMEDIATE leaves the other bits of the register unchanged.
724     Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB);
725     unsigned Start, End;
726     if (isRxSBGMask(Imm, And.RegSize, Start, End)) {
727       unsigned NewOpcode;
728       if (And.RegSize == 64) {
729         NewOpcode = SystemZ::RISBG;
730         // Prefer RISBGN if available, since it does not clobber CC.
731         if (STI.hasMiscellaneousExtensions())
732           NewOpcode = SystemZ::RISBGN;
733       } else {
734         NewOpcode = SystemZ::RISBMux;
735         Start &= 31;
736         End &= 31;
737       }
738       MachineOperand &Dest = MI->getOperand(0);
739       MachineOperand &Src = MI->getOperand(1);
740       MachineInstrBuilder MIB =
741         BuildMI(*MBB, MI, MI->getDebugLoc(), get(NewOpcode))
742         .addOperand(Dest).addReg(0)
743         .addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg())
744         .addImm(Start).addImm(End + 128).addImm(0);
745       return finishConvertToThreeAddress(MI, MIB, LV);
746     }
747   }
748   return nullptr;
749 }
750
751 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
752                                                       MachineInstr *MI,
753                                                       ArrayRef<unsigned> Ops,
754                                                       int FrameIndex) const {
755   const MachineFrameInfo *MFI = MF.getFrameInfo();
756   unsigned Size = MFI->getObjectSize(FrameIndex);
757   unsigned Opcode = MI->getOpcode();
758
759   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
760     if ((Opcode == SystemZ::LA || Opcode == SystemZ::LAY) &&
761         isInt<8>(MI->getOperand(2).getImm()) &&
762         !MI->getOperand(3).getReg()) {
763       // LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST
764       return BuildMI(MF, MI->getDebugLoc(), get(SystemZ::AGSI))
765         .addFrameIndex(FrameIndex).addImm(0)
766         .addImm(MI->getOperand(2).getImm());
767     }
768     return nullptr;
769   }
770
771   // All other cases require a single operand.
772   if (Ops.size() != 1)
773     return nullptr;
774
775   unsigned OpNum = Ops[0];
776   assert(Size == MF.getRegInfo()
777          .getRegClass(MI->getOperand(OpNum).getReg())->getSize() &&
778          "Invalid size combination");
779
780   if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) &&
781       OpNum == 0 &&
782       isInt<8>(MI->getOperand(2).getImm())) {
783     // A(G)HI %reg, CONST -> A(G)SI %mem, CONST
784     Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI);
785     return BuildMI(MF, MI->getDebugLoc(), get(Opcode))
786       .addFrameIndex(FrameIndex).addImm(0)
787       .addImm(MI->getOperand(2).getImm());
788   }
789
790   if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) {
791     bool Op0IsGPR = (Opcode == SystemZ::LGDR);
792     bool Op1IsGPR = (Opcode == SystemZ::LDGR);
793     // If we're spilling the destination of an LDGR or LGDR, store the
794     // source register instead.
795     if (OpNum == 0) {
796       unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD;
797       return BuildMI(MF, MI->getDebugLoc(), get(StoreOpcode))
798         .addOperand(MI->getOperand(1)).addFrameIndex(FrameIndex)
799         .addImm(0).addReg(0);
800     }
801     // If we're spilling the source of an LDGR or LGDR, load the
802     // destination register instead.
803     if (OpNum == 1) {
804       unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD;
805       unsigned Dest = MI->getOperand(0).getReg();
806       return BuildMI(MF, MI->getDebugLoc(), get(LoadOpcode), Dest)
807         .addFrameIndex(FrameIndex).addImm(0).addReg(0);
808     }
809   }
810
811   // Look for cases where the source of a simple store or the destination
812   // of a simple load is being spilled.  Try to use MVC instead.
813   //
814   // Although MVC is in practice a fast choice in these cases, it is still
815   // logically a bytewise copy.  This means that we cannot use it if the
816   // load or store is volatile.  We also wouldn't be able to use MVC if
817   // the two memories partially overlap, but that case cannot occur here,
818   // because we know that one of the memories is a full frame index.
819   //
820   // For performance reasons, we also want to avoid using MVC if the addresses
821   // might be equal.  We don't worry about that case here, because spill slot
822   // coloring happens later, and because we have special code to remove
823   // MVCs that turn out to be redundant.
824   if (OpNum == 0 && MI->hasOneMemOperand()) {
825     MachineMemOperand *MMO = *MI->memoperands_begin();
826     if (MMO->getSize() == Size && !MMO->isVolatile()) {
827       // Handle conversion of loads.
828       if (isSimpleBD12Move(MI, SystemZII::SimpleBDXLoad)) {
829         return BuildMI(MF, MI->getDebugLoc(), get(SystemZ::MVC))
830           .addFrameIndex(FrameIndex).addImm(0).addImm(Size)
831           .addOperand(MI->getOperand(1)).addImm(MI->getOperand(2).getImm())
832           .addMemOperand(MMO);
833       }
834       // Handle conversion of stores.
835       if (isSimpleBD12Move(MI, SystemZII::SimpleBDXStore)) {
836         return BuildMI(MF, MI->getDebugLoc(), get(SystemZ::MVC))
837           .addOperand(MI->getOperand(1)).addImm(MI->getOperand(2).getImm())
838           .addImm(Size).addFrameIndex(FrameIndex).addImm(0)
839           .addMemOperand(MMO);
840       }
841     }
842   }
843
844   // If the spilled operand is the final one, try to change <INSN>R
845   // into <INSN>.
846   int MemOpcode = SystemZ::getMemOpcode(Opcode);
847   if (MemOpcode >= 0) {
848     unsigned NumOps = MI->getNumExplicitOperands();
849     if (OpNum == NumOps - 1) {
850       const MCInstrDesc &MemDesc = get(MemOpcode);
851       uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags);
852       assert(AccessBytes != 0 && "Size of access should be known");
853       assert(AccessBytes <= Size && "Access outside the frame index");
854       uint64_t Offset = Size - AccessBytes;
855       MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(MemOpcode));
856       for (unsigned I = 0; I < OpNum; ++I)
857         MIB.addOperand(MI->getOperand(I));
858       MIB.addFrameIndex(FrameIndex).addImm(Offset);
859       if (MemDesc.TSFlags & SystemZII::HasIndex)
860         MIB.addReg(0);
861       return MIB;
862     }
863   }
864
865   return nullptr;
866 }
867
868 MachineInstr *
869 SystemZInstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI,
870                                         ArrayRef<unsigned> Ops,
871                                         MachineInstr *LoadMI) const {
872   return nullptr;
873 }
874
875 bool
876 SystemZInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
877   switch (MI->getOpcode()) {
878   case SystemZ::L128:
879     splitMove(MI, SystemZ::LG);
880     return true;
881
882   case SystemZ::ST128:
883     splitMove(MI, SystemZ::STG);
884     return true;
885
886   case SystemZ::LX:
887     splitMove(MI, SystemZ::LD);
888     return true;
889
890   case SystemZ::STX:
891     splitMove(MI, SystemZ::STD);
892     return true;
893
894   case SystemZ::LBMux:
895     expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH);
896     return true;
897
898   case SystemZ::LHMux:
899     expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH);
900     return true;
901
902   case SystemZ::LLCRMux:
903     expandZExtPseudo(MI, SystemZ::LLCR, 8);
904     return true;
905
906   case SystemZ::LLHRMux:
907     expandZExtPseudo(MI, SystemZ::LLHR, 16);
908     return true;
909
910   case SystemZ::LLCMux:
911     expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH);
912     return true;
913
914   case SystemZ::LLHMux:
915     expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH);
916     return true;
917
918   case SystemZ::LMux:
919     expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH);
920     return true;
921
922   case SystemZ::STCMux:
923     expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH);
924     return true;
925
926   case SystemZ::STHMux:
927     expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH);
928     return true;
929
930   case SystemZ::STMux:
931     expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH);
932     return true;
933
934   case SystemZ::LHIMux:
935     expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true);
936     return true;
937
938   case SystemZ::IIFMux:
939     expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false);
940     return true;
941
942   case SystemZ::IILMux:
943     expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false);
944     return true;
945
946   case SystemZ::IIHMux:
947     expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false);
948     return true;
949
950   case SystemZ::NIFMux:
951     expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false);
952     return true;
953
954   case SystemZ::NILMux:
955     expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false);
956     return true;
957
958   case SystemZ::NIHMux:
959     expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false);
960     return true;
961
962   case SystemZ::OIFMux:
963     expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false);
964     return true;
965
966   case SystemZ::OILMux:
967     expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false);
968     return true;
969
970   case SystemZ::OIHMux:
971     expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false);
972     return true;
973
974   case SystemZ::XIFMux:
975     expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false);
976     return true;
977
978   case SystemZ::TMLMux:
979     expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false);
980     return true;
981
982   case SystemZ::TMHMux:
983     expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false);
984     return true;
985
986   case SystemZ::AHIMux:
987     expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false);
988     return true;
989
990   case SystemZ::AHIMuxK:
991     expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH);
992     return true;
993
994   case SystemZ::AFIMux:
995     expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false);
996     return true;
997
998   case SystemZ::CFIMux:
999     expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false);
1000     return true;
1001
1002   case SystemZ::CLFIMux:
1003     expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false);
1004     return true;
1005
1006   case SystemZ::CMux:
1007     expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF);
1008     return true;
1009
1010   case SystemZ::CLMux:
1011     expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF);
1012     return true;
1013
1014   case SystemZ::RISBMux: {
1015     bool DestIsHigh = isHighReg(MI->getOperand(0).getReg());
1016     bool SrcIsHigh = isHighReg(MI->getOperand(2).getReg());
1017     if (SrcIsHigh == DestIsHigh)
1018       MI->setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL));
1019     else {
1020       MI->setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH));
1021       MI->getOperand(5).setImm(MI->getOperand(5).getImm() ^ 32);
1022     }
1023     return true;
1024   }
1025
1026   case SystemZ::ADJDYNALLOC:
1027     splitAdjDynAlloc(MI);
1028     return true;
1029
1030   default:
1031     return false;
1032   }
1033 }
1034
1035 uint64_t SystemZInstrInfo::getInstSizeInBytes(const MachineInstr *MI) const {
1036   if (MI->getOpcode() == TargetOpcode::INLINEASM) {
1037     const MachineFunction *MF = MI->getParent()->getParent();
1038     const char *AsmStr = MI->getOperand(0).getSymbolName();
1039     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
1040   }
1041   return MI->getDesc().getSize();
1042 }
1043
1044 SystemZII::Branch
1045 SystemZInstrInfo::getBranchInfo(const MachineInstr *MI) const {
1046   switch (MI->getOpcode()) {
1047   case SystemZ::BR:
1048   case SystemZ::J:
1049   case SystemZ::JG:
1050     return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY,
1051                              SystemZ::CCMASK_ANY, &MI->getOperand(0));
1052
1053   case SystemZ::BRC:
1054   case SystemZ::BRCL:
1055     return SystemZII::Branch(SystemZII::BranchNormal,
1056                              MI->getOperand(0).getImm(),
1057                              MI->getOperand(1).getImm(), &MI->getOperand(2));
1058
1059   case SystemZ::BRCT:
1060     return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP,
1061                              SystemZ::CCMASK_CMP_NE, &MI->getOperand(2));
1062
1063   case SystemZ::BRCTG:
1064     return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP,
1065                              SystemZ::CCMASK_CMP_NE, &MI->getOperand(2));
1066
1067   case SystemZ::CIJ:
1068   case SystemZ::CRJ:
1069     return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP,
1070                              MI->getOperand(2).getImm(), &MI->getOperand(3));
1071
1072   case SystemZ::CLIJ:
1073   case SystemZ::CLRJ:
1074     return SystemZII::Branch(SystemZII::BranchCL, SystemZ::CCMASK_ICMP,
1075                              MI->getOperand(2).getImm(), &MI->getOperand(3));
1076
1077   case SystemZ::CGIJ:
1078   case SystemZ::CGRJ:
1079     return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP,
1080                              MI->getOperand(2).getImm(), &MI->getOperand(3));
1081
1082   case SystemZ::CLGIJ:
1083   case SystemZ::CLGRJ:
1084     return SystemZII::Branch(SystemZII::BranchCLG, SystemZ::CCMASK_ICMP,
1085                              MI->getOperand(2).getImm(), &MI->getOperand(3));
1086
1087   default:
1088     llvm_unreachable("Unrecognized branch opcode");
1089   }
1090 }
1091
1092 void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC,
1093                                            unsigned &LoadOpcode,
1094                                            unsigned &StoreOpcode) const {
1095   if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) {
1096     LoadOpcode = SystemZ::L;
1097     StoreOpcode = SystemZ::ST;
1098   } else if (RC == &SystemZ::GRH32BitRegClass) {
1099     LoadOpcode = SystemZ::LFH;
1100     StoreOpcode = SystemZ::STFH;
1101   } else if (RC == &SystemZ::GRX32BitRegClass) {
1102     LoadOpcode = SystemZ::LMux;
1103     StoreOpcode = SystemZ::STMux;
1104   } else if (RC == &SystemZ::GR64BitRegClass ||
1105              RC == &SystemZ::ADDR64BitRegClass) {
1106     LoadOpcode = SystemZ::LG;
1107     StoreOpcode = SystemZ::STG;
1108   } else if (RC == &SystemZ::GR128BitRegClass ||
1109              RC == &SystemZ::ADDR128BitRegClass) {
1110     LoadOpcode = SystemZ::L128;
1111     StoreOpcode = SystemZ::ST128;
1112   } else if (RC == &SystemZ::FP32BitRegClass) {
1113     LoadOpcode = SystemZ::LE;
1114     StoreOpcode = SystemZ::STE;
1115   } else if (RC == &SystemZ::FP64BitRegClass) {
1116     LoadOpcode = SystemZ::LD;
1117     StoreOpcode = SystemZ::STD;
1118   } else if (RC == &SystemZ::FP128BitRegClass) {
1119     LoadOpcode = SystemZ::LX;
1120     StoreOpcode = SystemZ::STX;
1121   } else if (RC == &SystemZ::VF128BitRegClass ||
1122              RC == &SystemZ::VR128BitRegClass) {
1123     LoadOpcode = SystemZ::VL;
1124     StoreOpcode = SystemZ::VST;
1125   } else
1126     llvm_unreachable("Unsupported regclass to load or store");
1127 }
1128
1129 unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode,
1130                                               int64_t Offset) const {
1131   const MCInstrDesc &MCID = get(Opcode);
1132   int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset);
1133   if (isUInt<12>(Offset) && isUInt<12>(Offset2)) {
1134     // Get the instruction to use for unsigned 12-bit displacements.
1135     int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode);
1136     if (Disp12Opcode >= 0)
1137       return Disp12Opcode;
1138
1139     // All address-related instructions can use unsigned 12-bit
1140     // displacements.
1141     return Opcode;
1142   }
1143   if (isInt<20>(Offset) && isInt<20>(Offset2)) {
1144     // Get the instruction to use for signed 20-bit displacements.
1145     int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode);
1146     if (Disp20Opcode >= 0)
1147       return Disp20Opcode;
1148
1149     // Check whether Opcode allows signed 20-bit displacements.
1150     if (MCID.TSFlags & SystemZII::Has20BitOffset)
1151       return Opcode;
1152   }
1153   return 0;
1154 }
1155
1156 unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const {
1157   switch (Opcode) {
1158   case SystemZ::L:      return SystemZ::LT;
1159   case SystemZ::LY:     return SystemZ::LT;
1160   case SystemZ::LG:     return SystemZ::LTG;
1161   case SystemZ::LGF:    return SystemZ::LTGF;
1162   case SystemZ::LR:     return SystemZ::LTR;
1163   case SystemZ::LGFR:   return SystemZ::LTGFR;
1164   case SystemZ::LGR:    return SystemZ::LTGR;
1165   case SystemZ::LER:    return SystemZ::LTEBR;
1166   case SystemZ::LDR:    return SystemZ::LTDBR;
1167   case SystemZ::LXR:    return SystemZ::LTXBR;
1168   // On zEC12 we prefer to use RISBGN.  But if there is a chance to
1169   // actually use the condition code, we may turn it back into RISGB.
1170   // Note that RISBG is not really a "load-and-test" instruction,
1171   // but sets the same condition code values, so is OK to use here.
1172   case SystemZ::RISBGN: return SystemZ::RISBG;
1173   default:              return 0;
1174   }
1175 }
1176
1177 // Return true if Mask matches the regexp 0*1+0*, given that zero masks
1178 // have already been filtered out.  Store the first set bit in LSB and
1179 // the number of set bits in Length if so.
1180 static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) {
1181   unsigned First = findFirstSet(Mask);
1182   uint64_t Top = (Mask >> First) + 1;
1183   if ((Top & -Top) == Top) {
1184     LSB = First;
1185     Length = findFirstSet(Top);
1186     return true;
1187   }
1188   return false;
1189 }
1190
1191 bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize,
1192                                    unsigned &Start, unsigned &End) const {
1193   // Reject trivial all-zero masks.
1194   Mask &= allOnes(BitSize);
1195   if (Mask == 0)
1196     return false;
1197
1198   // Handle the 1+0+ or 0+1+0* cases.  Start then specifies the index of
1199   // the msb and End specifies the index of the lsb.
1200   unsigned LSB, Length;
1201   if (isStringOfOnes(Mask, LSB, Length)) {
1202     Start = 63 - (LSB + Length - 1);
1203     End = 63 - LSB;
1204     return true;
1205   }
1206
1207   // Handle the wrap-around 1+0+1+ cases.  Start then specifies the msb
1208   // of the low 1s and End specifies the lsb of the high 1s.
1209   if (isStringOfOnes(Mask ^ allOnes(BitSize), LSB, Length)) {
1210     assert(LSB > 0 && "Bottom bit must be set");
1211     assert(LSB + Length < BitSize && "Top bit must be set");
1212     Start = 63 - (LSB - 1);
1213     End = 63 - (LSB + Length);
1214     return true;
1215   }
1216
1217   return false;
1218 }
1219
1220 unsigned SystemZInstrInfo::getCompareAndBranch(unsigned Opcode,
1221                                                const MachineInstr *MI) const {
1222   switch (Opcode) {
1223   case SystemZ::CR:
1224     return SystemZ::CRJ;
1225   case SystemZ::CGR:
1226     return SystemZ::CGRJ;
1227   case SystemZ::CHI:
1228     return MI && isInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CIJ : 0;
1229   case SystemZ::CGHI:
1230     return MI && isInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CGIJ : 0;
1231   case SystemZ::CLR:
1232     return SystemZ::CLRJ;
1233   case SystemZ::CLGR:
1234     return SystemZ::CLGRJ;
1235   case SystemZ::CLFI:
1236     return MI && isUInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CLIJ : 0;
1237   case SystemZ::CLGFI:
1238     return MI && isUInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CLGIJ : 0;
1239   default:
1240     return 0;
1241   }
1242 }
1243
1244 void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB,
1245                                      MachineBasicBlock::iterator MBBI,
1246                                      unsigned Reg, uint64_t Value) const {
1247   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
1248   unsigned Opcode;
1249   if (isInt<16>(Value))
1250     Opcode = SystemZ::LGHI;
1251   else if (SystemZ::isImmLL(Value))
1252     Opcode = SystemZ::LLILL;
1253   else if (SystemZ::isImmLH(Value)) {
1254     Opcode = SystemZ::LLILH;
1255     Value >>= 16;
1256   } else {
1257     assert(isInt<32>(Value) && "Huge values not handled yet");
1258     Opcode = SystemZ::LGFI;
1259   }
1260   BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value);
1261 }