1 //===-- SystemZTargetMachine.cpp - Define TargetMachine for SystemZ -------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 #include "SystemZTargetMachine.h"
11 #include "SystemZTargetTransformInfo.h"
12 #include "llvm/CodeGen/Passes.h"
13 #include "llvm/Support/TargetRegistry.h"
14 #include "llvm/Transforms/Scalar.h"
15 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
19 extern "C" void LLVMInitializeSystemZTarget() {
20 // Register the target.
21 RegisterTargetMachine<SystemZTargetMachine> X(TheSystemZTarget);
24 // Determine whether we use the vector ABI.
25 static bool UsesVectorABI(StringRef CPU, StringRef FS) {
26 // We use the vector ABI whenever the vector facility is avaiable.
27 // This is the case by default if CPU is z13 or later, and can be
28 // overridden via "[+-]vector" feature string elements.
29 bool VectorABI = true;
30 if (CPU.empty() || CPU == "generic" ||
31 CPU == "z10" || CPU == "z196" || CPU == "zEC12")
34 SmallVector<StringRef, 3> Features;
35 FS.split(Features, ',', -1, false /* KeepEmpty */);
36 for (auto &Feature : Features) {
37 if (Feature == "vector" || Feature == "+vector")
39 if (Feature == "-vector")
46 static std::string computeDataLayout(const Triple &TT, StringRef CPU,
48 bool VectorABI = UsesVectorABI(CPU, FS);
55 Ret += DataLayout::getManglingComponent(TT);
57 // Make sure that global data has at least 16 bits of alignment by
58 // default, so that we can refer to it using LARL. We don't have any
59 // special requirements for stack variables though.
60 Ret += "-i1:8:16-i8:8:16";
62 // 64-bit integers are naturally aligned.
65 // 128-bit floats are aligned only to 64 bits.
68 // When using the vector ABI, 128-bit vectors are also aligned to 64 bits.
72 // We prefer 16 bits of aligned for all globals; see above.
75 // Integer registers are 32 or 64 bits.
81 SystemZTargetMachine::SystemZTargetMachine(const Target &T, const Triple &TT,
82 StringRef CPU, StringRef FS,
83 const TargetOptions &Options,
84 Reloc::Model RM, CodeModel::Model CM,
86 : LLVMTargetMachine(T, computeDataLayout(TT, CPU, FS), TT, CPU, FS, Options,
88 TLOF(make_unique<TargetLoweringObjectFileELF>()),
89 Subtarget(TT, CPU, FS, *this) {
93 SystemZTargetMachine::~SystemZTargetMachine() {}
96 /// SystemZ Code Generator Pass Configuration Options.
97 class SystemZPassConfig : public TargetPassConfig {
99 SystemZPassConfig(SystemZTargetMachine *TM, PassManagerBase &PM)
100 : TargetPassConfig(TM, PM) {}
102 SystemZTargetMachine &getSystemZTargetMachine() const {
103 return getTM<SystemZTargetMachine>();
106 void addIRPasses() override;
107 bool addInstSelector() override;
108 void addPreSched2() override;
109 void addPreEmitPass() override;
111 } // end anonymous namespace
113 void SystemZPassConfig::addIRPasses() {
114 TargetPassConfig::addIRPasses();
117 bool SystemZPassConfig::addInstSelector() {
118 addPass(createSystemZISelDag(getSystemZTargetMachine(), getOptLevel()));
120 if (getOptLevel() != CodeGenOpt::None)
121 addPass(createSystemZLDCleanupPass(getSystemZTargetMachine()));
126 void SystemZPassConfig::addPreSched2() {
127 if (getOptLevel() != CodeGenOpt::None &&
128 getSystemZTargetMachine().getSubtargetImpl()->hasLoadStoreOnCond())
129 addPass(&IfConverterID);
132 void SystemZPassConfig::addPreEmitPass() {
134 // Do instruction shortening before compare elimination because some
135 // vector instructions will be shortened into opcodes that compare
136 // elimination recognizes.
137 if (getOptLevel() != CodeGenOpt::None)
138 addPass(createSystemZShortenInstPass(getSystemZTargetMachine()), false);
140 // We eliminate comparisons here rather than earlier because some
141 // transformations can change the set of available CC values and we
142 // generally want those transformations to have priority. This is
143 // especially true in the commonest case where the result of the comparison
144 // is used by a single in-range branch instruction, since we will then
145 // be able to fuse the compare and the branch instead.
147 // For example, two-address NILF can sometimes be converted into
148 // three-address RISBLG. NILF produces a CC value that indicates whether
149 // the low word is zero, but RISBLG does not modify CC at all. On the
150 // other hand, 64-bit ANDs like NILL can sometimes be converted to RISBG.
151 // The CC value produced by NILL isn't useful for our purposes, but the
152 // value produced by RISBG can be used for any comparison with zero
153 // (not just equality). So there are some transformations that lose
154 // CC values (while still being worthwhile) and others that happen to make
155 // the CC result more useful than it was originally.
157 // Another reason is that we only want to use BRANCH ON COUNT in cases
158 // where we know that the count register is not going to be spilled.
160 // Doing it so late makes it more likely that a register will be reused
161 // between the comparison and the branch, but it isn't clear whether
162 // preventing that would be a win or not.
163 if (getOptLevel() != CodeGenOpt::None)
164 addPass(createSystemZElimComparePass(getSystemZTargetMachine()), false);
165 addPass(createSystemZLongBranchPass(getSystemZTargetMachine()));
168 TargetPassConfig *SystemZTargetMachine::createPassConfig(PassManagerBase &PM) {
169 return new SystemZPassConfig(this, PM);
172 TargetIRAnalysis SystemZTargetMachine::getTargetIRAnalysis() {
173 return TargetIRAnalysis([this](const Function &F) {
174 return TargetTransformInfo(SystemZTTIImpl(this, F));