1 //===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the target-independent interfaces which should be
11 // implemented by each target which is using a TableGen based code generator.
13 //===----------------------------------------------------------------------===//
16 //===----------------------------------------------------------------------===//
18 // Value types - These values correspond to the register types defined in the
19 // ValueTypes.h file. If you update anything here, you must update it there as
22 class ValueType<int size, int value> {
23 string Namespace = "MVT";
28 def OtherVT: ValueType<0 , 0>; // "Other" value
29 def i1 : ValueType<1 , 1>; // One bit boolean value
30 def i8 : ValueType<8 , 2>; // 8-bit integer value
31 def i16 : ValueType<16 , 3>; // 16-bit integer value
32 def i32 : ValueType<32 , 4>; // 32-bit integer value
33 def i64 : ValueType<64 , 5>; // 64-bit integer value
34 def i128 : ValueType<128, 6>; // 128-bit integer value
35 def f32 : ValueType<32 , 7>; // 32-bit floating point value
36 def f64 : ValueType<64 , 8>; // 64-bit floating point value
37 def f80 : ValueType<80 , 9>; // 80-bit floating point value
38 def f128 : ValueType<128, 10>; // 128-bit floating point value
39 def FlagVT : ValueType<0 , 11>; // Condition code or machine flag
40 def isVoid : ValueType<0 , 12>; // Produces no value
41 def Vector : ValueType<0 , 13>; // Abstract vector value
42 def v16i8 : ValueType<128, 14>; // 16 x i8 vector value
43 def v8i16 : ValueType<128, 15>; // 8 x i16 vector value
44 def v4i32 : ValueType<128, 16>; // 4 x i32 vector value
45 def v2i64 : ValueType<128, 17>; // 2 x i64 vector value
46 def v4f32 : ValueType<128, 18>; // 4 x f32 vector value
47 def v2f64 : ValueType<128, 19>; // 2 x f64 vector value
49 //===----------------------------------------------------------------------===//
50 // Register file description - These classes are used to fill in the target
51 // description classes.
53 class RegisterClass; // Forward def
55 // Register - You should define one instance of this class for each register
56 // in the target machine. String n will become the "name" of the register.
57 class Register<string n> {
58 string Namespace = "";
61 // SpillSize - If this value is set to a non-zero value, it is the size in
62 // bits of the spill slot required to hold this register. If this value is
63 // set to zero, the information is inferred from any register classes the
64 // register belongs to.
67 // SpillAlignment - This value is used to specify the alignment required for
68 // spilling the register. Like SpillSize, this should only be explicitly
69 // specified if the register is not in a register class.
70 int SpillAlignment = 0;
72 // Aliases - A list of registers that this register overlaps with. A read or
73 // modification of this register can potentially read or modifie the aliased
76 list<Register> Aliases = [];
79 // RegisterGroup - This can be used to define instances of Register which
80 // need to specify aliases.
81 // List "aliases" specifies which registers are aliased to this one. This
82 // allows the code generator to be careful not to put two values with
83 // overlapping live ranges into registers which alias.
84 class RegisterGroup<string n, list<Register> aliases> : Register<n> {
85 let Aliases = aliases;
88 // RegisterClass - Now that all of the registers are defined, and aliases
89 // between registers are defined, specify which registers belong to which
90 // register classes. This also defines the default allocation order of
91 // registers by register allocators.
93 class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
94 list<Register> regList> {
95 string Namespace = namespace;
97 // RegType - Specify the ValueType of the registers in this register class.
98 // Note that all registers in a register class must have the same ValueType.
100 list<ValueType> RegTypes = regTypes;
102 // Size - Specify the spill size in bits of the registers. A default value of
103 // zero lets tablgen pick an appropriate size.
106 // Alignment - Specify the alignment required of the registers when they are
107 // stored or loaded to memory.
109 int Alignment = alignment;
111 // MemberList - Specify which registers are in this class. If the
112 // allocation_order_* method are not specified, this also defines the order of
113 // allocation used by the register allocator.
115 list<Register> MemberList = regList;
117 // MethodProtos/MethodBodies - These members can be used to insert arbitrary
118 // code into a generated register class. The normal usage of this is to
119 // overload virtual methods.
120 code MethodProtos = [{}];
121 code MethodBodies = [{}];
125 //===----------------------------------------------------------------------===//
126 // Pull in the common support for scheduling
128 include "../TargetSchedule.td"
130 class Predicate; // Forward def
132 //===----------------------------------------------------------------------===//
133 // Instruction set description - These classes correspond to the C++ classes in
134 // the Target/TargetInstrInfo.h file.
137 string Name = ""; // The opcode string for this instruction
138 string Namespace = "";
140 dag OperandList; // An dag containing the MI operand list.
141 string AsmString = ""; // The .s format to print the instruction with.
143 // Pattern - Set to the DAG pattern for this instruction, if we know of one,
144 // otherwise, uninitialized.
147 // The follow state will eventually be inferred automatically from the
148 // instruction pattern.
150 list<Register> Uses = []; // Default to using no non-operand registers
151 list<Register> Defs = []; // Default to modifying no non-operand registers
153 // Predicates - List of predicates which will be turned into isel matching
155 list<Predicate> Predicates = [];
157 // These bits capture information about the high-level semantics of the
159 bit isReturn = 0; // Is this instruction a return instruction?
160 bit isBranch = 0; // Is this instruction a branch instruction?
161 bit isBarrier = 0; // Can control flow fall through this instruction?
162 bit isCall = 0; // Is this instruction a call instruction?
163 bit isLoad = 0; // Is this instruction a load instruction?
164 bit isStore = 0; // Is this instruction a store instruction?
165 bit isTwoAddress = 0; // Is this a two address instruction?
166 bit isConvertibleToThreeAddress = 0; // Can this 2-addr instruction promote?
167 bit isCommutable = 0; // Is this 3 operand instruction commutable?
168 bit isTerminator = 0; // Is this part of the terminator for a basic block?
169 bit hasDelaySlot = 0; // Does this instruction have an delay slot?
170 bit usesCustomDAGSchedInserter = 0; // Pseudo instr needing special help.
171 bit hasCtrlDep = 0; // Does this instruction r/w ctrl-flow chains?
172 bit noResults = 0; // Does this instruction produce no results?
174 InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
177 /// Predicates - These are extra conditionals which are turned into instruction
178 /// selector matching code. Currently each predicate is just a string.
179 class Predicate<string cond> {
180 string CondString = cond;
183 class Requires<list<Predicate> preds> {
184 list<Predicate> Predicates = preds;
187 /// ops definition - This is just a simple marker used to identify the operands
188 /// list for an instruction. This should be used like this:
189 /// (ops R32:$dst, R32:$src) or something similar.
192 /// variable_ops definition - Mark this instruction as taking a variable number
196 /// Operand Types - These provide the built-in operand types that may be used
197 /// by a target. Targets can optionally provide their own operand types as
198 /// needed, though this should not be needed for RISC targets.
199 class Operand<ValueType ty> {
201 string PrintMethod = "printOperand";
202 int NumMIOperands = 1;
203 dag MIOperandInfo = (ops);
206 def i1imm : Operand<i1>;
207 def i8imm : Operand<i8>;
208 def i16imm : Operand<i16>;
209 def i32imm : Operand<i32>;
210 def i64imm : Operand<i64>;
212 // InstrInfo - This class should only be instantiated once to provide parameters
213 // which are global to the the target machine.
216 // If the target wants to associate some target-specific information with each
217 // instruction, it should provide these two lists to indicate how to assemble
218 // the target specific information into the 32 bits available.
220 list<string> TSFlagsFields = [];
221 list<int> TSFlagsShifts = [];
223 // Target can specify its instructions in either big or little-endian formats.
224 // For instance, while both Sparc and PowerPC are big-endian platforms, the
225 // Sparc manual specifies its instructions in the format [31..0] (big), while
226 // PowerPC specifies them using the format [0..31] (little).
227 bit isLittleEndianEncoding = 0;
230 // Standard Instructions.
231 def PHI : Instruction {
232 let OperandList = (ops variable_ops);
233 let AsmString = "PHINODE";
235 def INLINEASM : Instruction {
236 let OperandList = (ops variable_ops);
240 //===----------------------------------------------------------------------===//
241 // AsmWriter - This class can be implemented by targets that need to customize
242 // the format of the .s file writer.
244 // Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
245 // on X86 for example).
248 // AsmWriterClassName - This specifies the suffix to use for the asmwriter
249 // class. Generated AsmWriter classes are always prefixed with the target
251 string AsmWriterClassName = "AsmPrinter";
253 // InstFormatName - AsmWriters can specify the name of the format string to
254 // print instructions with.
255 string InstFormatName = "AsmString";
257 // Variant - AsmWriters can be of multiple different variants. Variants are
258 // used to support targets that need to emit assembly code in ways that are
259 // mostly the same for different targets, but have minor differences in
260 // syntax. If the asmstring contains {|} characters in them, this integer
261 // will specify which alternative to use. For example "{x|y|z}" with Variant
262 // == 1, will expand to "y".
265 def DefaultAsmWriter : AsmWriter;
268 //===----------------------------------------------------------------------===//
269 // Target - This class contains the "global" target information
272 // CalleeSavedRegisters - As you might guess, this is a list of the callee
273 // saved registers for a target.
274 list<Register> CalleeSavedRegisters = [];
276 // PointerType - Specify the value type to be used to represent pointers in
277 // this target. Typically this is an i32 or i64 type.
278 ValueType PointerType;
280 // InstructionSet - Instruction set description for this target.
281 InstrInfo InstructionSet;
283 // AssemblyWriters - The AsmWriter instances available for this target.
284 list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
287 //===----------------------------------------------------------------------===//
288 // SubtargetFeature - A characteristic of the chip set.
290 class SubtargetFeature<string n, string a, string v, string d> {
291 // Name - Feature name. Used by command line (-mattr=) to determine the
292 // appropriate target chip.
296 // Attribute - Attribute to be set by feature.
298 string Attribute = a;
300 // Value - Value the attribute to be set to by feature.
304 // Desc - Feature description. Used by command line (-mattr=) to display help
310 //===----------------------------------------------------------------------===//
311 // Processor chip sets - These values represent each of the chip sets supported
312 // by the scheduler. Each Processor definition requires corresponding
313 // instruction itineraries.
315 class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f> {
316 // Name - Chip set name. Used by command line (-mcpu=) to determine the
317 // appropriate target chip.
321 // ProcItin - The scheduling information for the target processor.
323 ProcessorItineraries ProcItin = pi;
325 // Features - list of
326 list<SubtargetFeature> Features = f;
329 //===----------------------------------------------------------------------===//
330 // Pull in the common support for DAG isel generation
332 include "../TargetSelectionDAG.td"