55ab8ebe7b0b3ce7c6f4d0d7a37a274807f80dfb
[oota-llvm.git] / lib / Target / X86 / Disassembler / X86DisassemblerDecoder.c
1 /*===-- X86DisassemblerDecoder.c - Disassembler decoder ------------*- C -*-===*
2  *
3  *                     The LLVM Compiler Infrastructure
4  *
5  * This file is distributed under the University of Illinois Open Source
6  * License. See LICENSE.TXT for details.
7  *
8  *===----------------------------------------------------------------------===*
9  *
10  * This file is part of the X86 Disassembler.
11  * It contains the implementation of the instruction decoder.
12  * Documentation for the disassembler can be found in X86Disassembler.h.
13  *
14  *===----------------------------------------------------------------------===*/
15
16 #include <stdarg.h>   /* for va_*()       */
17 #include <stdio.h>    /* for vsnprintf()  */
18 #include <stdlib.h>   /* for exit()       */
19 #include <string.h>   /* for memset()     */
20
21 #include "X86DisassemblerDecoder.h"
22
23 #include "X86GenDisassemblerTables.inc"
24
25 #define TRUE  1
26 #define FALSE 0
27
28 typedef int8_t bool;
29
30 #ifndef NDEBUG
31 #define debug(s) do { x86DisassemblerDebug(__FILE__, __LINE__, s); } while (0)
32 #else
33 #define debug(s) do { } while (0)
34 #endif
35
36
37 /*
38  * contextForAttrs - Client for the instruction context table.  Takes a set of
39  *   attributes and returns the appropriate decode context.
40  *
41  * @param attrMask  - Attributes, from the enumeration attributeBits.
42  * @return          - The InstructionContext to use when looking up an
43  *                    an instruction with these attributes.
44  */
45 static InstructionContext contextForAttrs(uint8_t attrMask) {
46   return CONTEXTS_SYM[attrMask];
47 }
48
49 /*
50  * modRMRequired - Reads the appropriate instruction table to determine whether
51  *   the ModR/M byte is required to decode a particular instruction.
52  *
53  * @param type        - The opcode type (i.e., how many bytes it has).
54  * @param insnContext - The context for the instruction, as returned by
55  *                      contextForAttrs.
56  * @param opcode      - The last byte of the instruction's opcode, not counting
57  *                      ModR/M extensions and escapes.
58  * @return            - TRUE if the ModR/M byte is required, FALSE otherwise.
59  */
60 static int modRMRequired(OpcodeType type,
61                          InstructionContext insnContext,
62                          uint8_t opcode) {
63   const struct ContextDecision* decision = 0;
64
65   switch (type) {
66   case ONEBYTE:
67     decision = &ONEBYTE_SYM;
68     break;
69   case TWOBYTE:
70     decision = &TWOBYTE_SYM;
71     break;
72   case THREEBYTE_38:
73     decision = &THREEBYTE38_SYM;
74     break;
75   case THREEBYTE_3A:
76     decision = &THREEBYTE3A_SYM;
77     break;
78   case THREEBYTE_A6:
79     decision = &THREEBYTEA6_SYM;
80     break;
81   case THREEBYTE_A7:
82     decision = &THREEBYTEA7_SYM;
83     break;
84   }
85
86   return decision->opcodeDecisions[insnContext].modRMDecisions[opcode].
87     modrm_type != MODRM_ONEENTRY;
88 }
89
90 /*
91  * decode - Reads the appropriate instruction table to obtain the unique ID of
92  *   an instruction.
93  *
94  * @param type        - See modRMRequired().
95  * @param insnContext - See modRMRequired().
96  * @param opcode      - See modRMRequired().
97  * @param modRM       - The ModR/M byte if required, or any value if not.
98  * @return            - The UID of the instruction, or 0 on failure.
99  */
100 static InstrUID decode(OpcodeType type,
101                        InstructionContext insnContext,
102                        uint8_t opcode,
103                        uint8_t modRM) {
104   const struct ModRMDecision* dec = 0;
105
106   switch (type) {
107   case ONEBYTE:
108     dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
109     break;
110   case TWOBYTE:
111     dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
112     break;
113   case THREEBYTE_38:
114     dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
115     break;
116   case THREEBYTE_3A:
117     dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
118     break;
119   case THREEBYTE_A6:
120     dec = &THREEBYTEA6_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
121     break;
122   case THREEBYTE_A7:
123     dec = &THREEBYTEA7_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
124     break;
125   }
126
127   switch (dec->modrm_type) {
128   default:
129     debug("Corrupt table!  Unknown modrm_type");
130     return 0;
131   case MODRM_ONEENTRY:
132     return modRMTable[dec->instructionIDs];
133   case MODRM_SPLITRM:
134     if (modFromModRM(modRM) == 0x3)
135       return modRMTable[dec->instructionIDs+1];
136     return modRMTable[dec->instructionIDs];
137   case MODRM_SPLITREG:
138     if (modFromModRM(modRM) == 0x3)
139       return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)+8];
140     return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)];
141   case MODRM_SPLITMISC:
142     if (modFromModRM(modRM) == 0x3)
143       return modRMTable[dec->instructionIDs+(modRM & 0x3f)+8];
144     return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)];
145   case MODRM_FULL:
146     return modRMTable[dec->instructionIDs+modRM];
147   }
148 }
149
150 /*
151  * specifierForUID - Given a UID, returns the name and operand specification for
152  *   that instruction.
153  *
154  * @param uid - The unique ID for the instruction.  This should be returned by
155  *              decode(); specifierForUID will not check bounds.
156  * @return    - A pointer to the specification for that instruction.
157  */
158 static const struct InstructionSpecifier *specifierForUID(InstrUID uid) {
159   return &INSTRUCTIONS_SYM[uid];
160 }
161
162 /*
163  * consumeByte - Uses the reader function provided by the user to consume one
164  *   byte from the instruction's memory and advance the cursor.
165  *
166  * @param insn  - The instruction with the reader function to use.  The cursor
167  *                for this instruction is advanced.
168  * @param byte  - A pointer to a pre-allocated memory buffer to be populated
169  *                with the data read.
170  * @return      - 0 if the read was successful; nonzero otherwise.
171  */
172 static int consumeByte(struct InternalInstruction* insn, uint8_t* byte) {
173   int ret = insn->reader(insn->readerArg, byte, insn->readerCursor);
174
175   if (!ret)
176     ++(insn->readerCursor);
177
178   return ret;
179 }
180
181 /*
182  * lookAtByte - Like consumeByte, but does not advance the cursor.
183  *
184  * @param insn  - See consumeByte().
185  * @param byte  - See consumeByte().
186  * @return      - See consumeByte().
187  */
188 static int lookAtByte(struct InternalInstruction* insn, uint8_t* byte) {
189   return insn->reader(insn->readerArg, byte, insn->readerCursor);
190 }
191
192 static void unconsumeByte(struct InternalInstruction* insn) {
193   insn->readerCursor--;
194 }
195
196 #define CONSUME_FUNC(name, type)                                  \
197   static int name(struct InternalInstruction* insn, type* ptr) {  \
198     type combined = 0;                                            \
199     unsigned offset;                                              \
200     for (offset = 0; offset < sizeof(type); ++offset) {           \
201       uint8_t byte;                                               \
202       int ret = insn->reader(insn->readerArg,                     \
203                              &byte,                               \
204                              insn->readerCursor + offset);        \
205       if (ret)                                                    \
206         return ret;                                               \
207       combined = combined | ((uint64_t)byte << (offset * 8));     \
208     }                                                             \
209     *ptr = combined;                                              \
210     insn->readerCursor += sizeof(type);                           \
211     return 0;                                                     \
212   }
213
214 /*
215  * consume* - Use the reader function provided by the user to consume data
216  *   values of various sizes from the instruction's memory and advance the
217  *   cursor appropriately.  These readers perform endian conversion.
218  *
219  * @param insn    - See consumeByte().
220  * @param ptr     - A pointer to a pre-allocated memory of appropriate size to
221  *                  be populated with the data read.
222  * @return        - See consumeByte().
223  */
224 CONSUME_FUNC(consumeInt8, int8_t)
225 CONSUME_FUNC(consumeInt16, int16_t)
226 CONSUME_FUNC(consumeInt32, int32_t)
227 CONSUME_FUNC(consumeUInt16, uint16_t)
228 CONSUME_FUNC(consumeUInt32, uint32_t)
229 CONSUME_FUNC(consumeUInt64, uint64_t)
230
231 /*
232  * dbgprintf - Uses the logging function provided by the user to log a single
233  *   message, typically without a carriage-return.
234  *
235  * @param insn    - The instruction containing the logging function.
236  * @param format  - See printf().
237  * @param ...     - See printf().
238  */
239 static void dbgprintf(struct InternalInstruction* insn,
240                       const char* format,
241                       ...) {
242   char buffer[256];
243   va_list ap;
244
245   if (!insn->dlog)
246     return;
247
248   va_start(ap, format);
249   (void)vsnprintf(buffer, sizeof(buffer), format, ap);
250   va_end(ap);
251
252   insn->dlog(insn->dlogArg, buffer);
253
254   return;
255 }
256
257 /*
258  * setPrefixPresent - Marks that a particular prefix is present at a particular
259  *   location.
260  *
261  * @param insn      - The instruction to be marked as having the prefix.
262  * @param prefix    - The prefix that is present.
263  * @param location  - The location where the prefix is located (in the address
264  *                    space of the instruction's reader).
265  */
266 static void setPrefixPresent(struct InternalInstruction* insn,
267                                     uint8_t prefix,
268                                     uint64_t location)
269 {
270   insn->prefixPresent[prefix] = 1;
271   insn->prefixLocations[prefix] = location;
272 }
273
274 /*
275  * isPrefixAtLocation - Queries an instruction to determine whether a prefix is
276  *   present at a given location.
277  *
278  * @param insn      - The instruction to be queried.
279  * @param prefix    - The prefix.
280  * @param location  - The location to query.
281  * @return          - Whether the prefix is at that location.
282  */
283 static BOOL isPrefixAtLocation(struct InternalInstruction* insn,
284                                uint8_t prefix,
285                                uint64_t location)
286 {
287   if (insn->prefixPresent[prefix] == 1 &&
288      insn->prefixLocations[prefix] == location)
289     return TRUE;
290   else
291     return FALSE;
292 }
293
294 /*
295  * readPrefixes - Consumes all of an instruction's prefix bytes, and marks the
296  *   instruction as having them.  Also sets the instruction's default operand,
297  *   address, and other relevant data sizes to report operands correctly.
298  *
299  * @param insn  - The instruction whose prefixes are to be read.
300  * @return      - 0 if the instruction could be read until the end of the prefix
301  *                bytes, and no prefixes conflicted; nonzero otherwise.
302  */
303 static int readPrefixes(struct InternalInstruction* insn) {
304   BOOL isPrefix = TRUE;
305   BOOL prefixGroups[4] = { FALSE };
306   uint64_t prefixLocation;
307   uint8_t byte = 0;
308
309   BOOL hasAdSize = FALSE;
310   BOOL hasOpSize = FALSE;
311
312   dbgprintf(insn, "readPrefixes()");
313
314   while (isPrefix) {
315     prefixLocation = insn->readerCursor;
316
317     if (consumeByte(insn, &byte))
318       return -1;
319
320     /*
321      * If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then
322      * break and let it be disassembled as a normal "instruction".
323      */
324     if (insn->readerCursor - 1 == insn->startLocation
325         && (byte == 0xf0 || byte == 0xf2 || byte == 0xf3)) {
326       uint8_t nextByte;
327       if (byte == 0xf0)
328         break;
329       if (lookAtByte(insn, &nextByte))
330         return -1;
331       /*
332        * If the byte is 0xf2 or 0xf3, and any of the following conditions are
333        * met:
334        * - it is followed by a LOCK (0xf0) prefix
335        * - it is followed by an xchg instruction
336        * then it should be disassembled as a xacquire/xrelease not repne/rep.
337        */
338       if ((byte == 0xf2 || byte == 0xf3) &&
339           ((nextByte == 0xf0) |
340           ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90)))
341         insn->xAcquireRelease = TRUE;
342       /*
343        * Also if the byte is 0xf3, and the following condition is met:
344        * - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or
345        *                       "mov mem, imm" (opcode 0xc6/0xc7) instructions.
346        * then it should be disassembled as an xrelease not rep.
347        */
348       if (byte == 0xf3 &&
349           (nextByte == 0x88 || nextByte == 0x89 ||
350            nextByte == 0xc6 || nextByte == 0xc7))
351         insn->xAcquireRelease = TRUE;
352       if (insn->mode == MODE_64BIT && (nextByte & 0xf0) == 0x40) {
353         if (consumeByte(insn, &nextByte))
354           return -1;
355         if (lookAtByte(insn, &nextByte))
356           return -1;
357         unconsumeByte(insn);
358       }
359       if (nextByte != 0x0f && nextByte != 0x90)
360         break;
361     }
362
363     switch (byte) {
364     case 0xf0:  /* LOCK */
365     case 0xf2:  /* REPNE/REPNZ */
366     case 0xf3:  /* REP or REPE/REPZ */
367       if (prefixGroups[0])
368         dbgprintf(insn, "Redundant Group 1 prefix");
369       prefixGroups[0] = TRUE;
370       setPrefixPresent(insn, byte, prefixLocation);
371       break;
372     case 0x2e:  /* CS segment override -OR- Branch not taken */
373     case 0x36:  /* SS segment override -OR- Branch taken */
374     case 0x3e:  /* DS segment override */
375     case 0x26:  /* ES segment override */
376     case 0x64:  /* FS segment override */
377     case 0x65:  /* GS segment override */
378       switch (byte) {
379       case 0x2e:
380         insn->segmentOverride = SEG_OVERRIDE_CS;
381         break;
382       case 0x36:
383         insn->segmentOverride = SEG_OVERRIDE_SS;
384         break;
385       case 0x3e:
386         insn->segmentOverride = SEG_OVERRIDE_DS;
387         break;
388       case 0x26:
389         insn->segmentOverride = SEG_OVERRIDE_ES;
390         break;
391       case 0x64:
392         insn->segmentOverride = SEG_OVERRIDE_FS;
393         break;
394       case 0x65:
395         insn->segmentOverride = SEG_OVERRIDE_GS;
396         break;
397       default:
398         debug("Unhandled override");
399         return -1;
400       }
401       if (prefixGroups[1])
402         dbgprintf(insn, "Redundant Group 2 prefix");
403       prefixGroups[1] = TRUE;
404       setPrefixPresent(insn, byte, prefixLocation);
405       break;
406     case 0x66:  /* Operand-size override */
407       if (prefixGroups[2])
408         dbgprintf(insn, "Redundant Group 3 prefix");
409       prefixGroups[2] = TRUE;
410       hasOpSize = TRUE;
411       setPrefixPresent(insn, byte, prefixLocation);
412       break;
413     case 0x67:  /* Address-size override */
414       if (prefixGroups[3])
415         dbgprintf(insn, "Redundant Group 4 prefix");
416       prefixGroups[3] = TRUE;
417       hasAdSize = TRUE;
418       setPrefixPresent(insn, byte, prefixLocation);
419       break;
420     default:    /* Not a prefix byte */
421       isPrefix = FALSE;
422       break;
423     }
424
425     if (isPrefix)
426       dbgprintf(insn, "Found prefix 0x%hhx", byte);
427   }
428
429   insn->vexSize = 0;
430
431   if (byte == 0xc4) {
432     uint8_t byte1;
433
434     if (lookAtByte(insn, &byte1)) {
435       dbgprintf(insn, "Couldn't read second byte of VEX");
436       return -1;
437     }
438
439     if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) {
440       insn->vexSize = 3;
441       insn->necessaryPrefixLocation = insn->readerCursor - 1;
442     }
443     else {
444       unconsumeByte(insn);
445       insn->necessaryPrefixLocation = insn->readerCursor - 1;
446     }
447
448     if (insn->vexSize == 3) {
449       insn->vexPrefix[0] = byte;
450       consumeByte(insn, &insn->vexPrefix[1]);
451       consumeByte(insn, &insn->vexPrefix[2]);
452
453       /* We simulate the REX prefix for simplicity's sake */
454
455       if (insn->mode == MODE_64BIT) {
456         insn->rexPrefix = 0x40
457                         | (wFromVEX3of3(insn->vexPrefix[2]) << 3)
458                         | (rFromVEX2of3(insn->vexPrefix[1]) << 2)
459                         | (xFromVEX2of3(insn->vexPrefix[1]) << 1)
460                         | (bFromVEX2of3(insn->vexPrefix[1]) << 0);
461       }
462
463       switch (ppFromVEX3of3(insn->vexPrefix[2]))
464       {
465       default:
466         break;
467       case VEX_PREFIX_66:
468         hasOpSize = TRUE;
469         break;
470       }
471
472       dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx 0x%hhx", insn->vexPrefix[0], insn->vexPrefix[1], insn->vexPrefix[2]);
473     }
474   }
475   else if (byte == 0xc5) {
476     uint8_t byte1;
477
478     if (lookAtByte(insn, &byte1)) {
479       dbgprintf(insn, "Couldn't read second byte of VEX");
480       return -1;
481     }
482
483     if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) {
484       insn->vexSize = 2;
485     }
486     else {
487       unconsumeByte(insn);
488     }
489
490     if (insn->vexSize == 2) {
491       insn->vexPrefix[0] = byte;
492       consumeByte(insn, &insn->vexPrefix[1]);
493
494       if (insn->mode == MODE_64BIT) {
495         insn->rexPrefix = 0x40
496                         | (rFromVEX2of2(insn->vexPrefix[1]) << 2);
497       }
498
499       switch (ppFromVEX2of2(insn->vexPrefix[1]))
500       {
501       default:
502         break;
503       case VEX_PREFIX_66:
504         hasOpSize = TRUE;
505         break;
506       }
507
508       dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx", insn->vexPrefix[0], insn->vexPrefix[1]);
509     }
510   }
511   else {
512     if (insn->mode == MODE_64BIT) {
513       if ((byte & 0xf0) == 0x40) {
514         uint8_t opcodeByte;
515
516         if (lookAtByte(insn, &opcodeByte) || ((opcodeByte & 0xf0) == 0x40)) {
517           dbgprintf(insn, "Redundant REX prefix");
518           return -1;
519         }
520
521         insn->rexPrefix = byte;
522         insn->necessaryPrefixLocation = insn->readerCursor - 2;
523
524         dbgprintf(insn, "Found REX prefix 0x%hhx", byte);
525       } else {
526         unconsumeByte(insn);
527         insn->necessaryPrefixLocation = insn->readerCursor - 1;
528       }
529     } else {
530       unconsumeByte(insn);
531       insn->necessaryPrefixLocation = insn->readerCursor - 1;
532     }
533   }
534
535   if (insn->mode == MODE_16BIT) {
536     insn->registerSize       = (hasOpSize ? 4 : 2);
537     insn->addressSize        = (hasAdSize ? 4 : 2);
538     insn->displacementSize   = (hasAdSize ? 4 : 2);
539     insn->immediateSize      = (hasOpSize ? 4 : 2);
540   } else if (insn->mode == MODE_32BIT) {
541     insn->registerSize       = (hasOpSize ? 2 : 4);
542     insn->addressSize        = (hasAdSize ? 2 : 4);
543     insn->displacementSize   = (hasAdSize ? 2 : 4);
544     insn->immediateSize      = (hasOpSize ? 2 : 4);
545   } else if (insn->mode == MODE_64BIT) {
546     if (insn->rexPrefix && wFromREX(insn->rexPrefix)) {
547       insn->registerSize       = 8;
548       insn->addressSize        = (hasAdSize ? 4 : 8);
549       insn->displacementSize   = 4;
550       insn->immediateSize      = 4;
551     } else if (insn->rexPrefix) {
552       insn->registerSize       = (hasOpSize ? 2 : 4);
553       insn->addressSize        = (hasAdSize ? 4 : 8);
554       insn->displacementSize   = (hasOpSize ? 2 : 4);
555       insn->immediateSize      = (hasOpSize ? 2 : 4);
556     } else {
557       insn->registerSize       = (hasOpSize ? 2 : 4);
558       insn->addressSize        = (hasAdSize ? 4 : 8);
559       insn->displacementSize   = (hasOpSize ? 2 : 4);
560       insn->immediateSize      = (hasOpSize ? 2 : 4);
561     }
562   }
563
564   return 0;
565 }
566
567 /*
568  * readOpcode - Reads the opcode (excepting the ModR/M byte in the case of
569  *   extended or escape opcodes).
570  *
571  * @param insn  - The instruction whose opcode is to be read.
572  * @return      - 0 if the opcode could be read successfully; nonzero otherwise.
573  */
574 static int readOpcode(struct InternalInstruction* insn) {
575   /* Determine the length of the primary opcode */
576
577   uint8_t current;
578
579   dbgprintf(insn, "readOpcode()");
580
581   insn->opcodeType = ONEBYTE;
582
583   if (insn->vexSize == 3)
584   {
585     switch (mmmmmFromVEX2of3(insn->vexPrefix[1]))
586     {
587     default:
588       dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)", mmmmmFromVEX2of3(insn->vexPrefix[1]));
589       return -1;
590     case 0:
591       break;
592     case VEX_LOB_0F:
593       insn->twoByteEscape = 0x0f;
594       insn->opcodeType = TWOBYTE;
595       return consumeByte(insn, &insn->opcode);
596     case VEX_LOB_0F38:
597       insn->twoByteEscape = 0x0f;
598       insn->threeByteEscape = 0x38;
599       insn->opcodeType = THREEBYTE_38;
600       return consumeByte(insn, &insn->opcode);
601     case VEX_LOB_0F3A:
602       insn->twoByteEscape = 0x0f;
603       insn->threeByteEscape = 0x3a;
604       insn->opcodeType = THREEBYTE_3A;
605       return consumeByte(insn, &insn->opcode);
606     }
607   }
608   else if (insn->vexSize == 2)
609   {
610     insn->twoByteEscape = 0x0f;
611     insn->opcodeType = TWOBYTE;
612     return consumeByte(insn, &insn->opcode);
613   }
614
615   if (consumeByte(insn, &current))
616     return -1;
617
618   if (current == 0x0f) {
619     dbgprintf(insn, "Found a two-byte escape prefix (0x%hhx)", current);
620
621     insn->twoByteEscape = current;
622
623     if (consumeByte(insn, &current))
624       return -1;
625
626     if (current == 0x38) {
627       dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
628
629       insn->threeByteEscape = current;
630
631       if (consumeByte(insn, &current))
632         return -1;
633
634       insn->opcodeType = THREEBYTE_38;
635     } else if (current == 0x3a) {
636       dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
637
638       insn->threeByteEscape = current;
639
640       if (consumeByte(insn, &current))
641         return -1;
642
643       insn->opcodeType = THREEBYTE_3A;
644     } else if (current == 0xa6) {
645       dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
646
647       insn->threeByteEscape = current;
648
649       if (consumeByte(insn, &current))
650         return -1;
651
652       insn->opcodeType = THREEBYTE_A6;
653     } else if (current == 0xa7) {
654       dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
655
656       insn->threeByteEscape = current;
657
658       if (consumeByte(insn, &current))
659         return -1;
660
661       insn->opcodeType = THREEBYTE_A7;
662     } else {
663       dbgprintf(insn, "Didn't find a three-byte escape prefix");
664
665       insn->opcodeType = TWOBYTE;
666     }
667   }
668
669   /*
670    * At this point we have consumed the full opcode.
671    * Anything we consume from here on must be unconsumed.
672    */
673
674   insn->opcode = current;
675
676   return 0;
677 }
678
679 static int readModRM(struct InternalInstruction* insn);
680
681 /*
682  * getIDWithAttrMask - Determines the ID of an instruction, consuming
683  *   the ModR/M byte as appropriate for extended and escape opcodes,
684  *   and using a supplied attribute mask.
685  *
686  * @param instructionID - A pointer whose target is filled in with the ID of the
687  *                        instruction.
688  * @param insn          - The instruction whose ID is to be determined.
689  * @param attrMask      - The attribute mask to search.
690  * @return              - 0 if the ModR/M could be read when needed or was not
691  *                        needed; nonzero otherwise.
692  */
693 static int getIDWithAttrMask(uint16_t* instructionID,
694                              struct InternalInstruction* insn,
695                              uint8_t attrMask) {
696   BOOL hasModRMExtension;
697
698   uint8_t instructionClass;
699
700   instructionClass = contextForAttrs(attrMask);
701
702   hasModRMExtension = modRMRequired(insn->opcodeType,
703                                     instructionClass,
704                                     insn->opcode);
705
706   if (hasModRMExtension) {
707     if (readModRM(insn))
708       return -1;
709
710     *instructionID = decode(insn->opcodeType,
711                             instructionClass,
712                             insn->opcode,
713                             insn->modRM);
714   } else {
715     *instructionID = decode(insn->opcodeType,
716                             instructionClass,
717                             insn->opcode,
718                             0);
719   }
720
721   return 0;
722 }
723
724 /*
725  * is16BitEquivalent - Determines whether two instruction names refer to
726  * equivalent instructions but one is 16-bit whereas the other is not.
727  *
728  * @param orig  - The instruction that is not 16-bit
729  * @param equiv - The instruction that is 16-bit
730  */
731 static BOOL is16BitEquivalent(const char* orig, const char* equiv) {
732   off_t i;
733
734   for (i = 0;; i++) {
735     if (orig[i] == '\0' && equiv[i] == '\0')
736       return TRUE;
737     if (orig[i] == '\0' || equiv[i] == '\0')
738       return FALSE;
739     if (orig[i] != equiv[i]) {
740       if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W')
741         continue;
742       if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1')
743         continue;
744       if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6')
745         continue;
746       return FALSE;
747     }
748   }
749 }
750
751 /*
752  * getID - Determines the ID of an instruction, consuming the ModR/M byte as
753  *   appropriate for extended and escape opcodes.  Determines the attributes and
754  *   context for the instruction before doing so.
755  *
756  * @param insn  - The instruction whose ID is to be determined.
757  * @return      - 0 if the ModR/M could be read when needed or was not needed;
758  *                nonzero otherwise.
759  */
760 static int getID(struct InternalInstruction* insn, const void *miiArg) {
761   uint8_t attrMask;
762   uint16_t instructionID;
763
764   dbgprintf(insn, "getID()");
765
766   attrMask = ATTR_NONE;
767
768   if (insn->mode == MODE_64BIT)
769     attrMask |= ATTR_64BIT;
770
771   if (insn->vexSize) {
772     attrMask |= ATTR_VEX;
773
774     if (insn->vexSize == 3) {
775       switch (ppFromVEX3of3(insn->vexPrefix[2])) {
776       case VEX_PREFIX_66:
777         attrMask |= ATTR_OPSIZE;
778         break;
779       case VEX_PREFIX_F3:
780         attrMask |= ATTR_XS;
781         break;
782       case VEX_PREFIX_F2:
783         attrMask |= ATTR_XD;
784         break;
785       }
786
787       if (lFromVEX3of3(insn->vexPrefix[2]))
788         attrMask |= ATTR_VEXL;
789     }
790     else if (insn->vexSize == 2) {
791       switch (ppFromVEX2of2(insn->vexPrefix[1])) {
792       case VEX_PREFIX_66:
793         attrMask |= ATTR_OPSIZE;
794         break;
795       case VEX_PREFIX_F3:
796         attrMask |= ATTR_XS;
797         break;
798       case VEX_PREFIX_F2:
799         attrMask |= ATTR_XD;
800         break;
801       }
802
803       if (lFromVEX2of2(insn->vexPrefix[1]))
804         attrMask |= ATTR_VEXL;
805     }
806     else {
807       return -1;
808     }
809   }
810   else {
811     if (isPrefixAtLocation(insn, 0x66, insn->necessaryPrefixLocation))
812       attrMask |= ATTR_OPSIZE;
813     else if (isPrefixAtLocation(insn, 0x67, insn->necessaryPrefixLocation))
814       attrMask |= ATTR_ADSIZE;
815     else if (isPrefixAtLocation(insn, 0xf3, insn->necessaryPrefixLocation))
816       attrMask |= ATTR_XS;
817     else if (isPrefixAtLocation(insn, 0xf2, insn->necessaryPrefixLocation))
818       attrMask |= ATTR_XD;
819   }
820
821   if (insn->rexPrefix & 0x08)
822     attrMask |= ATTR_REXW;
823
824   if (getIDWithAttrMask(&instructionID, insn, attrMask))
825     return -1;
826
827   /* The following clauses compensate for limitations of the tables. */
828
829   if ((attrMask & ATTR_VEXL) && (attrMask & ATTR_REXW) &&
830       !(attrMask & ATTR_OPSIZE)) {
831     /*
832      * Some VEX instructions ignore the L-bit, but use the W-bit. Normally L-bit
833      * has precedence since there are no L-bit with W-bit entries in the tables.
834      * So if the L-bit isn't significant we should use the W-bit instead.
835      * We only need to do this if the instruction doesn't specify OpSize since
836      * there is a VEX_L_W_OPSIZE table.
837      */
838
839     const struct InstructionSpecifier *spec;
840     uint16_t instructionIDWithWBit;
841     const struct InstructionSpecifier *specWithWBit;
842
843     spec = specifierForUID(instructionID);
844
845     if (getIDWithAttrMask(&instructionIDWithWBit,
846                           insn,
847                           (attrMask & (~ATTR_VEXL)) | ATTR_REXW)) {
848       insn->instructionID = instructionID;
849       insn->spec = spec;
850       return 0;
851     }
852
853     specWithWBit = specifierForUID(instructionIDWithWBit);
854
855     if (instructionID != instructionIDWithWBit) {
856       insn->instructionID = instructionIDWithWBit;
857       insn->spec = specWithWBit;
858     } else {
859       insn->instructionID = instructionID;
860       insn->spec = spec;
861     }
862     return 0;
863   }
864
865   if (insn->prefixPresent[0x66] && !(attrMask & ATTR_OPSIZE)) {
866     /*
867      * The instruction tables make no distinction between instructions that
868      * allow OpSize anywhere (i.e., 16-bit operations) and that need it in a
869      * particular spot (i.e., many MMX operations).  In general we're
870      * conservative, but in the specific case where OpSize is present but not
871      * in the right place we check if there's a 16-bit operation.
872      */
873
874     const struct InstructionSpecifier *spec;
875     uint16_t instructionIDWithOpsize;
876     const char *specName, *specWithOpSizeName;
877
878     spec = specifierForUID(instructionID);
879
880     if (getIDWithAttrMask(&instructionIDWithOpsize,
881                           insn,
882                           attrMask | ATTR_OPSIZE)) {
883       /*
884        * ModRM required with OpSize but not present; give up and return version
885        * without OpSize set
886        */
887
888       insn->instructionID = instructionID;
889       insn->spec = spec;
890       return 0;
891     }
892
893     specName = x86DisassemblerGetInstrName(instructionID, miiArg);
894     specWithOpSizeName =
895       x86DisassemblerGetInstrName(instructionIDWithOpsize, miiArg);
896
897     if (is16BitEquivalent(specName, specWithOpSizeName)) {
898       insn->instructionID = instructionIDWithOpsize;
899       insn->spec = specifierForUID(instructionIDWithOpsize);
900     } else {
901       insn->instructionID = instructionID;
902       insn->spec = spec;
903     }
904     return 0;
905   }
906
907   if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 &&
908       insn->rexPrefix & 0x01) {
909     /*
910      * NOOP shouldn't decode as NOOP if REX.b is set. Instead
911      * it should decode as XCHG %r8, %eax.
912      */
913
914     const struct InstructionSpecifier *spec;
915     uint16_t instructionIDWithNewOpcode;
916     const struct InstructionSpecifier *specWithNewOpcode;
917
918     spec = specifierForUID(instructionID);
919
920     /* Borrow opcode from one of the other XCHGar opcodes */
921     insn->opcode = 0x91;
922
923     if (getIDWithAttrMask(&instructionIDWithNewOpcode,
924                           insn,
925                           attrMask)) {
926       insn->opcode = 0x90;
927
928       insn->instructionID = instructionID;
929       insn->spec = spec;
930       return 0;
931     }
932
933     specWithNewOpcode = specifierForUID(instructionIDWithNewOpcode);
934
935     /* Change back */
936     insn->opcode = 0x90;
937
938     insn->instructionID = instructionIDWithNewOpcode;
939     insn->spec = specWithNewOpcode;
940
941     return 0;
942   }
943
944   insn->instructionID = instructionID;
945   insn->spec = specifierForUID(insn->instructionID);
946
947   return 0;
948 }
949
950 /*
951  * readSIB - Consumes the SIB byte to determine addressing information for an
952  *   instruction.
953  *
954  * @param insn  - The instruction whose SIB byte is to be read.
955  * @return      - 0 if the SIB byte was successfully read; nonzero otherwise.
956  */
957 static int readSIB(struct InternalInstruction* insn) {
958   SIBIndex sibIndexBase = 0;
959   SIBBase sibBaseBase = 0;
960   uint8_t index, base;
961
962   dbgprintf(insn, "readSIB()");
963
964   if (insn->consumedSIB)
965     return 0;
966
967   insn->consumedSIB = TRUE;
968
969   switch (insn->addressSize) {
970   case 2:
971     dbgprintf(insn, "SIB-based addressing doesn't work in 16-bit mode");
972     return -1;
973     break;
974   case 4:
975     sibIndexBase = SIB_INDEX_EAX;
976     sibBaseBase = SIB_BASE_EAX;
977     break;
978   case 8:
979     sibIndexBase = SIB_INDEX_RAX;
980     sibBaseBase = SIB_BASE_RAX;
981     break;
982   }
983
984   if (consumeByte(insn, &insn->sib))
985     return -1;
986
987   index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3);
988
989   switch (index) {
990   case 0x4:
991     insn->sibIndex = SIB_INDEX_NONE;
992     break;
993   default:
994     insn->sibIndex = (SIBIndex)(sibIndexBase + index);
995     if (insn->sibIndex == SIB_INDEX_sib ||
996         insn->sibIndex == SIB_INDEX_sib64)
997       insn->sibIndex = SIB_INDEX_NONE;
998     break;
999   }
1000
1001   switch (scaleFromSIB(insn->sib)) {
1002   case 0:
1003     insn->sibScale = 1;
1004     break;
1005   case 1:
1006     insn->sibScale = 2;
1007     break;
1008   case 2:
1009     insn->sibScale = 4;
1010     break;
1011   case 3:
1012     insn->sibScale = 8;
1013     break;
1014   }
1015
1016   base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3);
1017
1018   switch (base) {
1019   case 0x5:
1020     switch (modFromModRM(insn->modRM)) {
1021     case 0x0:
1022       insn->eaDisplacement = EA_DISP_32;
1023       insn->sibBase = SIB_BASE_NONE;
1024       break;
1025     case 0x1:
1026       insn->eaDisplacement = EA_DISP_8;
1027       insn->sibBase = (insn->addressSize == 4 ?
1028                        SIB_BASE_EBP : SIB_BASE_RBP);
1029       break;
1030     case 0x2:
1031       insn->eaDisplacement = EA_DISP_32;
1032       insn->sibBase = (insn->addressSize == 4 ?
1033                        SIB_BASE_EBP : SIB_BASE_RBP);
1034       break;
1035     case 0x3:
1036       debug("Cannot have Mod = 0b11 and a SIB byte");
1037       return -1;
1038     }
1039     break;
1040   default:
1041     insn->sibBase = (SIBBase)(sibBaseBase + base);
1042     break;
1043   }
1044
1045   return 0;
1046 }
1047
1048 /*
1049  * readDisplacement - Consumes the displacement of an instruction.
1050  *
1051  * @param insn  - The instruction whose displacement is to be read.
1052  * @return      - 0 if the displacement byte was successfully read; nonzero
1053  *                otherwise.
1054  */
1055 static int readDisplacement(struct InternalInstruction* insn) {
1056   int8_t d8;
1057   int16_t d16;
1058   int32_t d32;
1059
1060   dbgprintf(insn, "readDisplacement()");
1061
1062   if (insn->consumedDisplacement)
1063     return 0;
1064
1065   insn->consumedDisplacement = TRUE;
1066   insn->displacementOffset = insn->readerCursor - insn->startLocation;
1067
1068   switch (insn->eaDisplacement) {
1069   case EA_DISP_NONE:
1070     insn->consumedDisplacement = FALSE;
1071     break;
1072   case EA_DISP_8:
1073     if (consumeInt8(insn, &d8))
1074       return -1;
1075     insn->displacement = d8;
1076     break;
1077   case EA_DISP_16:
1078     if (consumeInt16(insn, &d16))
1079       return -1;
1080     insn->displacement = d16;
1081     break;
1082   case EA_DISP_32:
1083     if (consumeInt32(insn, &d32))
1084       return -1;
1085     insn->displacement = d32;
1086     break;
1087   }
1088
1089   insn->consumedDisplacement = TRUE;
1090   return 0;
1091 }
1092
1093 /*
1094  * readModRM - Consumes all addressing information (ModR/M byte, SIB byte, and
1095  *   displacement) for an instruction and interprets it.
1096  *
1097  * @param insn  - The instruction whose addressing information is to be read.
1098  * @return      - 0 if the information was successfully read; nonzero otherwise.
1099  */
1100 static int readModRM(struct InternalInstruction* insn) {
1101   uint8_t mod, rm, reg;
1102
1103   dbgprintf(insn, "readModRM()");
1104
1105   if (insn->consumedModRM)
1106     return 0;
1107
1108   if (consumeByte(insn, &insn->modRM))
1109     return -1;
1110   insn->consumedModRM = TRUE;
1111
1112   mod     = modFromModRM(insn->modRM);
1113   rm      = rmFromModRM(insn->modRM);
1114   reg     = regFromModRM(insn->modRM);
1115
1116   /*
1117    * This goes by insn->registerSize to pick the correct register, which messes
1118    * up if we're using (say) XMM or 8-bit register operands.  That gets fixed in
1119    * fixupReg().
1120    */
1121   switch (insn->registerSize) {
1122   case 2:
1123     insn->regBase = MODRM_REG_AX;
1124     insn->eaRegBase = EA_REG_AX;
1125     break;
1126   case 4:
1127     insn->regBase = MODRM_REG_EAX;
1128     insn->eaRegBase = EA_REG_EAX;
1129     break;
1130   case 8:
1131     insn->regBase = MODRM_REG_RAX;
1132     insn->eaRegBase = EA_REG_RAX;
1133     break;
1134   }
1135
1136   reg |= rFromREX(insn->rexPrefix) << 3;
1137   rm  |= bFromREX(insn->rexPrefix) << 3;
1138
1139   insn->reg = (Reg)(insn->regBase + reg);
1140
1141   switch (insn->addressSize) {
1142   case 2:
1143     insn->eaBaseBase = EA_BASE_BX_SI;
1144
1145     switch (mod) {
1146     case 0x0:
1147       if (rm == 0x6) {
1148         insn->eaBase = EA_BASE_NONE;
1149         insn->eaDisplacement = EA_DISP_16;
1150         if (readDisplacement(insn))
1151           return -1;
1152       } else {
1153         insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1154         insn->eaDisplacement = EA_DISP_NONE;
1155       }
1156       break;
1157     case 0x1:
1158       insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1159       insn->eaDisplacement = EA_DISP_8;
1160       if (readDisplacement(insn))
1161         return -1;
1162       break;
1163     case 0x2:
1164       insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1165       insn->eaDisplacement = EA_DISP_16;
1166       if (readDisplacement(insn))
1167         return -1;
1168       break;
1169     case 0x3:
1170       insn->eaBase = (EABase)(insn->eaRegBase + rm);
1171       if (readDisplacement(insn))
1172         return -1;
1173       break;
1174     }
1175     break;
1176   case 4:
1177   case 8:
1178     insn->eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX);
1179
1180     switch (mod) {
1181     case 0x0:
1182       insn->eaDisplacement = EA_DISP_NONE; /* readSIB may override this */
1183       switch (rm) {
1184       case 0x4:
1185       case 0xc:   /* in case REXW.b is set */
1186         insn->eaBase = (insn->addressSize == 4 ?
1187                         EA_BASE_sib : EA_BASE_sib64);
1188         readSIB(insn);
1189         if (readDisplacement(insn))
1190           return -1;
1191         break;
1192       case 0x5:
1193         insn->eaBase = EA_BASE_NONE;
1194         insn->eaDisplacement = EA_DISP_32;
1195         if (readDisplacement(insn))
1196           return -1;
1197         break;
1198       default:
1199         insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1200         break;
1201       }
1202       break;
1203     case 0x1:
1204     case 0x2:
1205       insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32);
1206       switch (rm) {
1207       case 0x4:
1208       case 0xc:   /* in case REXW.b is set */
1209         insn->eaBase = EA_BASE_sib;
1210         readSIB(insn);
1211         if (readDisplacement(insn))
1212           return -1;
1213         break;
1214       default:
1215         insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1216         if (readDisplacement(insn))
1217           return -1;
1218         break;
1219       }
1220       break;
1221     case 0x3:
1222       insn->eaDisplacement = EA_DISP_NONE;
1223       insn->eaBase = (EABase)(insn->eaRegBase + rm);
1224       break;
1225     }
1226     break;
1227   } /* switch (insn->addressSize) */
1228
1229   return 0;
1230 }
1231
1232 #define GENERIC_FIXUP_FUNC(name, base, prefix)            \
1233   static uint8_t name(struct InternalInstruction *insn,   \
1234                       OperandType type,                   \
1235                       uint8_t index,                      \
1236                       uint8_t *valid) {                   \
1237     *valid = 1;                                           \
1238     switch (type) {                                       \
1239     default:                                              \
1240       debug("Unhandled register type");                   \
1241       *valid = 0;                                         \
1242       return 0;                                           \
1243     case TYPE_Rv:                                         \
1244       return base + index;                                \
1245     case TYPE_R8:                                         \
1246       if (insn->rexPrefix &&                              \
1247          index >= 4 && index <= 7) {                      \
1248         return prefix##_SPL + (index - 4);                \
1249       } else {                                            \
1250         return prefix##_AL + index;                       \
1251       }                                                   \
1252     case TYPE_R16:                                        \
1253       return prefix##_AX + index;                         \
1254     case TYPE_R32:                                        \
1255       return prefix##_EAX + index;                        \
1256     case TYPE_R64:                                        \
1257       return prefix##_RAX + index;                        \
1258     case TYPE_XMM256:                                     \
1259       return prefix##_YMM0 + index;                       \
1260     case TYPE_XMM128:                                     \
1261     case TYPE_XMM64:                                      \
1262     case TYPE_XMM32:                                      \
1263     case TYPE_XMM:                                        \
1264       return prefix##_XMM0 + index;                       \
1265     case TYPE_MM64:                                       \
1266     case TYPE_MM32:                                       \
1267     case TYPE_MM:                                         \
1268       if (index > 7)                                      \
1269         *valid = 0;                                       \
1270       return prefix##_MM0 + index;                        \
1271     case TYPE_SEGMENTREG:                                 \
1272       if (index > 5)                                      \
1273         *valid = 0;                                       \
1274       return prefix##_ES + index;                         \
1275     case TYPE_DEBUGREG:                                   \
1276       if (index > 7)                                      \
1277         *valid = 0;                                       \
1278       return prefix##_DR0 + index;                        \
1279     case TYPE_CONTROLREG:                                 \
1280       if (index > 8)                                      \
1281         *valid = 0;                                       \
1282       return prefix##_CR0 + index;                        \
1283     }                                                     \
1284   }
1285
1286 /*
1287  * fixup*Value - Consults an operand type to determine the meaning of the
1288  *   reg or R/M field.  If the operand is an XMM operand, for example, an
1289  *   operand would be XMM0 instead of AX, which readModRM() would otherwise
1290  *   misinterpret it as.
1291  *
1292  * @param insn  - The instruction containing the operand.
1293  * @param type  - The operand type.
1294  * @param index - The existing value of the field as reported by readModRM().
1295  * @param valid - The address of a uint8_t.  The target is set to 1 if the
1296  *                field is valid for the register class; 0 if not.
1297  * @return      - The proper value.
1298  */
1299 GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase,    MODRM_REG)
1300 GENERIC_FIXUP_FUNC(fixupRMValue,  insn->eaRegBase,  EA_REG)
1301
1302 /*
1303  * fixupReg - Consults an operand specifier to determine which of the
1304  *   fixup*Value functions to use in correcting readModRM()'ss interpretation.
1305  *
1306  * @param insn  - See fixup*Value().
1307  * @param op    - The operand specifier.
1308  * @return      - 0 if fixup was successful; -1 if the register returned was
1309  *                invalid for its class.
1310  */
1311 static int fixupReg(struct InternalInstruction *insn,
1312                     const struct OperandSpecifier *op) {
1313   uint8_t valid;
1314
1315   dbgprintf(insn, "fixupReg()");
1316
1317   switch ((OperandEncoding)op->encoding) {
1318   default:
1319     debug("Expected a REG or R/M encoding in fixupReg");
1320     return -1;
1321   case ENCODING_VVVV:
1322     insn->vvvv = (Reg)fixupRegValue(insn,
1323                                     (OperandType)op->type,
1324                                     insn->vvvv,
1325                                     &valid);
1326     if (!valid)
1327       return -1;
1328     break;
1329   case ENCODING_REG:
1330     insn->reg = (Reg)fixupRegValue(insn,
1331                                    (OperandType)op->type,
1332                                    insn->reg - insn->regBase,
1333                                    &valid);
1334     if (!valid)
1335       return -1;
1336     break;
1337   case ENCODING_RM:
1338     if (insn->eaBase >= insn->eaRegBase) {
1339       insn->eaBase = (EABase)fixupRMValue(insn,
1340                                           (OperandType)op->type,
1341                                           insn->eaBase - insn->eaRegBase,
1342                                           &valid);
1343       if (!valid)
1344         return -1;
1345     }
1346     break;
1347   }
1348
1349   return 0;
1350 }
1351
1352 /*
1353  * readOpcodeModifier - Reads an operand from the opcode field of an
1354  *   instruction.  Handles AddRegFrm instructions.
1355  *
1356  * @param insn    - The instruction whose opcode field is to be read.
1357  * @param inModRM - Indicates that the opcode field is to be read from the
1358  *                  ModR/M extension; useful for escape opcodes
1359  * @return        - 0 on success; nonzero otherwise.
1360  */
1361 static int readOpcodeModifier(struct InternalInstruction* insn) {
1362   dbgprintf(insn, "readOpcodeModifier()");
1363
1364   if (insn->consumedOpcodeModifier)
1365     return 0;
1366
1367   insn->consumedOpcodeModifier = TRUE;
1368
1369   switch (insn->spec->modifierType) {
1370   default:
1371     debug("Unknown modifier type.");
1372     return -1;
1373   case MODIFIER_NONE:
1374     debug("No modifier but an operand expects one.");
1375     return -1;
1376   case MODIFIER_OPCODE:
1377     insn->opcodeModifier = insn->opcode - insn->spec->modifierBase;
1378     return 0;
1379   case MODIFIER_MODRM:
1380     insn->opcodeModifier = insn->modRM - insn->spec->modifierBase;
1381     return 0;
1382   }
1383 }
1384
1385 /*
1386  * readOpcodeRegister - Reads an operand from the opcode field of an
1387  *   instruction and interprets it appropriately given the operand width.
1388  *   Handles AddRegFrm instructions.
1389  *
1390  * @param insn  - See readOpcodeModifier().
1391  * @param size  - The width (in bytes) of the register being specified.
1392  *                1 means AL and friends, 2 means AX, 4 means EAX, and 8 means
1393  *                RAX.
1394  * @return      - 0 on success; nonzero otherwise.
1395  */
1396 static int readOpcodeRegister(struct InternalInstruction* insn, uint8_t size) {
1397   dbgprintf(insn, "readOpcodeRegister()");
1398
1399   if (readOpcodeModifier(insn))
1400     return -1;
1401
1402   if (size == 0)
1403     size = insn->registerSize;
1404
1405   switch (size) {
1406   case 1:
1407     insn->opcodeRegister = (Reg)(MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3)
1408                                                   | insn->opcodeModifier));
1409     if (insn->rexPrefix &&
1410         insn->opcodeRegister >= MODRM_REG_AL + 0x4 &&
1411         insn->opcodeRegister < MODRM_REG_AL + 0x8) {
1412       insn->opcodeRegister = (Reg)(MODRM_REG_SPL
1413                                    + (insn->opcodeRegister - MODRM_REG_AL - 4));
1414     }
1415
1416     break;
1417   case 2:
1418     insn->opcodeRegister = (Reg)(MODRM_REG_AX
1419                                  + ((bFromREX(insn->rexPrefix) << 3)
1420                                     | insn->opcodeModifier));
1421     break;
1422   case 4:
1423     insn->opcodeRegister = (Reg)(MODRM_REG_EAX
1424                                  + ((bFromREX(insn->rexPrefix) << 3)
1425                                     | insn->opcodeModifier));
1426     break;
1427   case 8:
1428     insn->opcodeRegister = (Reg)(MODRM_REG_RAX
1429                                  + ((bFromREX(insn->rexPrefix) << 3)
1430                                     | insn->opcodeModifier));
1431     break;
1432   }
1433
1434   return 0;
1435 }
1436
1437 /*
1438  * readImmediate - Consumes an immediate operand from an instruction, given the
1439  *   desired operand size.
1440  *
1441  * @param insn  - The instruction whose operand is to be read.
1442  * @param size  - The width (in bytes) of the operand.
1443  * @return      - 0 if the immediate was successfully consumed; nonzero
1444  *                otherwise.
1445  */
1446 static int readImmediate(struct InternalInstruction* insn, uint8_t size) {
1447   uint8_t imm8;
1448   uint16_t imm16;
1449   uint32_t imm32;
1450   uint64_t imm64;
1451
1452   dbgprintf(insn, "readImmediate()");
1453
1454   if (insn->numImmediatesConsumed == 2) {
1455     debug("Already consumed two immediates");
1456     return -1;
1457   }
1458
1459   if (size == 0)
1460     size = insn->immediateSize;
1461   else
1462     insn->immediateSize = size;
1463   insn->immediateOffset = insn->readerCursor - insn->startLocation;
1464
1465   switch (size) {
1466   case 1:
1467     if (consumeByte(insn, &imm8))
1468       return -1;
1469     insn->immediates[insn->numImmediatesConsumed] = imm8;
1470     break;
1471   case 2:
1472     if (consumeUInt16(insn, &imm16))
1473       return -1;
1474     insn->immediates[insn->numImmediatesConsumed] = imm16;
1475     break;
1476   case 4:
1477     if (consumeUInt32(insn, &imm32))
1478       return -1;
1479     insn->immediates[insn->numImmediatesConsumed] = imm32;
1480     break;
1481   case 8:
1482     if (consumeUInt64(insn, &imm64))
1483       return -1;
1484     insn->immediates[insn->numImmediatesConsumed] = imm64;
1485     break;
1486   }
1487
1488   insn->numImmediatesConsumed++;
1489
1490   return 0;
1491 }
1492
1493 /*
1494  * readVVVV - Consumes vvvv from an instruction if it has a VEX prefix.
1495  *
1496  * @param insn  - The instruction whose operand is to be read.
1497  * @return      - 0 if the vvvv was successfully consumed; nonzero
1498  *                otherwise.
1499  */
1500 static int readVVVV(struct InternalInstruction* insn) {
1501   dbgprintf(insn, "readVVVV()");
1502
1503   if (insn->vexSize == 3)
1504     insn->vvvv = vvvvFromVEX3of3(insn->vexPrefix[2]);
1505   else if (insn->vexSize == 2)
1506     insn->vvvv = vvvvFromVEX2of2(insn->vexPrefix[1]);
1507   else
1508     return -1;
1509
1510   if (insn->mode != MODE_64BIT)
1511     insn->vvvv &= 0x7;
1512
1513   return 0;
1514 }
1515
1516 /*
1517  * readOperands - Consults the specifier for an instruction and consumes all
1518  *   operands for that instruction, interpreting them as it goes.
1519  *
1520  * @param insn  - The instruction whose operands are to be read and interpreted.
1521  * @return      - 0 if all operands could be read; nonzero otherwise.
1522  */
1523 static int readOperands(struct InternalInstruction* insn) {
1524   int index;
1525   int hasVVVV, needVVVV;
1526   int sawRegImm = 0;
1527
1528   dbgprintf(insn, "readOperands()");
1529
1530   /* If non-zero vvvv specified, need to make sure one of the operands
1531      uses it. */
1532   hasVVVV = !readVVVV(insn);
1533   needVVVV = hasVVVV && (insn->vvvv != 0);
1534
1535   for (index = 0; index < X86_MAX_OPERANDS; ++index) {
1536     switch (x86OperandSets[insn->spec->operands][index].encoding) {
1537     case ENCODING_NONE:
1538       break;
1539     case ENCODING_REG:
1540     case ENCODING_RM:
1541       if (readModRM(insn))
1542         return -1;
1543       if (fixupReg(insn, &x86OperandSets[insn->spec->operands][index]))
1544         return -1;
1545       break;
1546     case ENCODING_CB:
1547     case ENCODING_CW:
1548     case ENCODING_CD:
1549     case ENCODING_CP:
1550     case ENCODING_CO:
1551     case ENCODING_CT:
1552       dbgprintf(insn, "We currently don't hande code-offset encodings");
1553       return -1;
1554     case ENCODING_IB:
1555       if (sawRegImm) {
1556         /* Saw a register immediate so don't read again and instead split the
1557            previous immediate.  FIXME: This is a hack. */
1558         insn->immediates[insn->numImmediatesConsumed] =
1559           insn->immediates[insn->numImmediatesConsumed - 1] & 0xf;
1560         ++insn->numImmediatesConsumed;
1561         break;
1562       }
1563       if (readImmediate(insn, 1))
1564         return -1;
1565       if (x86OperandSets[insn->spec->operands][index].type == TYPE_IMM3 &&
1566           insn->immediates[insn->numImmediatesConsumed - 1] > 7)
1567         return -1;
1568       if (x86OperandSets[insn->spec->operands][index].type == TYPE_IMM5 &&
1569           insn->immediates[insn->numImmediatesConsumed - 1] > 31)
1570         return -1;
1571       if (x86OperandSets[insn->spec->operands][index].type == TYPE_XMM128 ||
1572           x86OperandSets[insn->spec->operands][index].type == TYPE_XMM256)
1573         sawRegImm = 1;
1574       break;
1575     case ENCODING_IW:
1576       if (readImmediate(insn, 2))
1577         return -1;
1578       break;
1579     case ENCODING_ID:
1580       if (readImmediate(insn, 4))
1581         return -1;
1582       break;
1583     case ENCODING_IO:
1584       if (readImmediate(insn, 8))
1585         return -1;
1586       break;
1587     case ENCODING_Iv:
1588       if (readImmediate(insn, insn->immediateSize))
1589         return -1;
1590       break;
1591     case ENCODING_Ia:
1592       if (readImmediate(insn, insn->addressSize))
1593         return -1;
1594       break;
1595     case ENCODING_RB:
1596       if (readOpcodeRegister(insn, 1))
1597         return -1;
1598       break;
1599     case ENCODING_RW:
1600       if (readOpcodeRegister(insn, 2))
1601         return -1;
1602       break;
1603     case ENCODING_RD:
1604       if (readOpcodeRegister(insn, 4))
1605         return -1;
1606       break;
1607     case ENCODING_RO:
1608       if (readOpcodeRegister(insn, 8))
1609         return -1;
1610       break;
1611     case ENCODING_Rv:
1612       if (readOpcodeRegister(insn, 0))
1613         return -1;
1614       break;
1615     case ENCODING_I:
1616       if (readOpcodeModifier(insn))
1617         return -1;
1618       break;
1619     case ENCODING_VVVV:
1620       needVVVV = 0; /* Mark that we have found a VVVV operand. */
1621       if (!hasVVVV)
1622         return -1;
1623       if (fixupReg(insn, &x86OperandSets[insn->spec->operands][index]))
1624         return -1;
1625       break;
1626     case ENCODING_DUP:
1627       break;
1628     default:
1629       dbgprintf(insn, "Encountered an operand with an unknown encoding.");
1630       return -1;
1631     }
1632   }
1633
1634   /* If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail */
1635   if (needVVVV) return -1;
1636
1637   return 0;
1638 }
1639
1640 /*
1641  * decodeInstruction - Reads and interprets a full instruction provided by the
1642  *   user.
1643  *
1644  * @param insn      - A pointer to the instruction to be populated.  Must be
1645  *                    pre-allocated.
1646  * @param reader    - The function to be used to read the instruction's bytes.
1647  * @param readerArg - A generic argument to be passed to the reader to store
1648  *                    any internal state.
1649  * @param logger    - If non-NULL, the function to be used to write log messages
1650  *                    and warnings.
1651  * @param loggerArg - A generic argument to be passed to the logger to store
1652  *                    any internal state.
1653  * @param startLoc  - The address (in the reader's address space) of the first
1654  *                    byte in the instruction.
1655  * @param mode      - The mode (real mode, IA-32e, or IA-32e in 64-bit mode) to
1656  *                    decode the instruction in.
1657  * @return          - 0 if the instruction's memory could be read; nonzero if
1658  *                    not.
1659  */
1660 int decodeInstruction(struct InternalInstruction* insn,
1661                       byteReader_t reader,
1662                       const void* readerArg,
1663                       dlog_t logger,
1664                       void* loggerArg,
1665                       const void* miiArg,
1666                       uint64_t startLoc,
1667                       DisassemblerMode mode) {
1668   memset(insn, 0, sizeof(struct InternalInstruction));
1669
1670   insn->reader = reader;
1671   insn->readerArg = readerArg;
1672   insn->dlog = logger;
1673   insn->dlogArg = loggerArg;
1674   insn->startLocation = startLoc;
1675   insn->readerCursor = startLoc;
1676   insn->mode = mode;
1677   insn->numImmediatesConsumed = 0;
1678
1679   if (readPrefixes(insn)       ||
1680       readOpcode(insn)         ||
1681       getID(insn, miiArg)      ||
1682       insn->instructionID == 0 ||
1683       readOperands(insn))
1684     return -1;
1685
1686   insn->operands = &x86OperandSets[insn->spec->operands][0];
1687
1688   insn->length = insn->readerCursor - insn->startLocation;
1689
1690   dbgprintf(insn, "Read from 0x%llx to 0x%llx: length %zu",
1691             startLoc, insn->readerCursor, insn->length);
1692
1693   if (insn->length > 15)
1694     dbgprintf(insn, "Instruction exceeds 15-byte limit");
1695
1696   return 0;
1697 }