X86 table-generator and disassembler support for the AVX
[oota-llvm.git] / lib / Target / X86 / Disassembler / X86DisassemblerDecoderCommon.h
1 /*===- X86DisassemblerDecoderCommon.h - Disassembler decoder -------*- C -*-==*
2  *
3  *                     The LLVM Compiler Infrastructure
4  *
5  * This file is distributed under the University of Illinois Open Source
6  * License. See LICENSE.TXT for details.
7  *
8  *===----------------------------------------------------------------------===*
9  *
10  * This file is part of the X86 Disassembler.
11  * It contains common definitions used by both the disassembler and the table
12  *  generator.
13  * Documentation for the disassembler can be found in X86Disassembler.h.
14  *
15  *===----------------------------------------------------------------------===*/
16
17 /*
18  * This header file provides those definitions that need to be shared between
19  * the decoder and the table generator in a C-friendly manner.
20  */
21
22 #ifndef X86DISASSEMBLERDECODERCOMMON_H
23 #define X86DISASSEMBLERDECODERCOMMON_H
24
25 #include "llvm/Support/DataTypes.h"
26
27 #define INSTRUCTIONS_SYM  x86DisassemblerInstrSpecifiers
28 #define CONTEXTS_SYM      x86DisassemblerContexts
29 #define ONEBYTE_SYM       x86DisassemblerOneByteOpcodes
30 #define TWOBYTE_SYM       x86DisassemblerTwoByteOpcodes
31 #define THREEBYTE38_SYM   x86DisassemblerThreeByte38Opcodes
32 #define THREEBYTE3A_SYM   x86DisassemblerThreeByte3AOpcodes
33
34 #define INSTRUCTIONS_STR  "x86DisassemblerInstrSpecifiers"
35 #define CONTEXTS_STR      "x86DisassemblerContexts"
36 #define ONEBYTE_STR       "x86DisassemblerOneByteOpcodes"
37 #define TWOBYTE_STR       "x86DisassemblerTwoByteOpcodes"
38 #define THREEBYTE38_STR   "x86DisassemblerThreeByte38Opcodes"
39 #define THREEBYTE3A_STR   "x86DisassemblerThreeByte3AOpcodes"
40
41 /*
42  * Attributes of an instruction that must be known before the opcode can be
43  * processed correctly.  Most of these indicate the presence of particular
44  * prefixes, but ATTR_64BIT is simply an attribute of the decoding context.
45  */
46 #define ATTRIBUTE_BITS          \
47   ENUM_ENTRY(ATTR_NONE,   0x00) \
48   ENUM_ENTRY(ATTR_64BIT,  0x01) \
49   ENUM_ENTRY(ATTR_XS,     0x02) \
50   ENUM_ENTRY(ATTR_XD,     0x04) \
51   ENUM_ENTRY(ATTR_REXW,   0x08) \
52   ENUM_ENTRY(ATTR_OPSIZE, 0x10) \
53   ENUM_ENTRY(ATTR_VEX,    0x20) \
54   ENUM_ENTRY(ATTR_VEXL,   0x40)
55
56 #define ENUM_ENTRY(n, v) n = v,
57 enum attributeBits {
58   ATTRIBUTE_BITS
59   ATTR_max
60 };
61 #undef ENUM_ENTRY
62
63 /*
64  * Combinations of the above attributes that are relevant to instruction
65  * decode.  Although other combinations are possible, they can be reduced to
66  * these without affecting the ultimately decoded instruction.
67  */
68
69 /*           Class name           Rank  Rationale for rank assignment         */
70 #define INSTRUCTION_CONTEXTS                                                   \
71   ENUM_ENTRY(IC,                    0,  "says nothing about the instruction")  \
72   ENUM_ENTRY(IC_64BIT,              1,  "says the instruction applies in "     \
73                                         "64-bit mode but no more")             \
74   ENUM_ENTRY(IC_OPSIZE,             3,  "requires an OPSIZE prefix, so "       \
75                                         "operands change width")               \
76   ENUM_ENTRY(IC_XD,                 2,  "may say something about the opcode "  \
77                                         "but not the operands")                \
78   ENUM_ENTRY(IC_XS,                 2,  "may say something about the opcode "  \
79                                         "but not the operands")                \
80   ENUM_ENTRY(IC_64BIT_REXW,         4,  "requires a REX.W prefix, so operands "\
81                                         "change width; overrides IC_OPSIZE")   \
82   ENUM_ENTRY(IC_64BIT_OPSIZE,       3,  "Just as meaningful as IC_OPSIZE")     \
83   ENUM_ENTRY(IC_64BIT_XD,           5,  "XD instructions are SSE; REX.W is "   \
84                                         "secondary")                           \
85   ENUM_ENTRY(IC_64BIT_XS,           5,  "Just as meaningful as IC_64BIT_XD")   \
86   ENUM_ENTRY(IC_64BIT_REXW_XS,      6,  "OPSIZE could mean a different "       \
87                                         "opcode")                              \
88   ENUM_ENTRY(IC_64BIT_REXW_XD,      6,  "Just as meaningful as "               \
89                                         "IC_64BIT_REXW_XS")                    \
90   ENUM_ENTRY(IC_64BIT_REXW_OPSIZE,  7,  "The Dynamic Duo!  Prefer over all "   \
91                                         "else because this changes most "      \
92                                         "operands' meaning")                   \
93   ENUM_ENTRY(IC_VEX,                1,  "requires a VEX prefix")               \
94   ENUM_ENTRY(IC_VEX_XS,             2,  "requires VEX and the XS prefix")      \
95   ENUM_ENTRY(IC_VEX_XD,             2,  "requires VEX and the XD prefix")      \
96   ENUM_ENTRY(IC_VEX_OPSIZE,         2,  "requires VEX and the OpSize prefix")  \
97   ENUM_ENTRY(IC_VEX_W,              3,  "requires VEX and the W prefix")       \
98   ENUM_ENTRY(IC_VEX_W_XS,           4,  "requires VEX, W, and XS prefix")      \
99   ENUM_ENTRY(IC_VEX_W_XD,           4,  "requires VEX, W, and XD prefix")      \
100   ENUM_ENTRY(IC_VEX_W_OPSIZE,       4,  "requires VEX, W, and OpSize")         \
101   ENUM_ENTRY(IC_VEX_L,              3,  "requires VEX and the L prefix")       \
102   ENUM_ENTRY(IC_VEX_L_XS,           4,  "requires VEX and the L and XS prefix")\
103   ENUM_ENTRY(IC_VEX_L_XD,           4,  "requires VEX and the L and XS prefix")\
104   ENUM_ENTRY(IC_VEX_L_OPSIZE,       4,  "requires VEX, L, and OpSize")
105
106
107 #define ENUM_ENTRY(n, r, d) n,    
108 typedef enum {
109   INSTRUCTION_CONTEXTS
110   IC_max
111 } InstructionContext;
112 #undef ENUM_ENTRY
113
114 /*
115  * Opcode types, which determine which decode table to use, both in the Intel
116  * manual and also for the decoder.
117  */
118 typedef enum {
119   ONEBYTE       = 0,
120   TWOBYTE       = 1,
121   THREEBYTE_38  = 2,
122   THREEBYTE_3A  = 3
123 } OpcodeType;
124
125 /*
126  * The following structs are used for the hierarchical decode table.  After
127  * determining the instruction's class (i.e., which IC_* constant applies to
128  * it), the decoder reads the opcode.  Some instructions require specific
129  * values of the ModR/M byte, so the ModR/M byte indexes into the final table.
130  *
131  * If a ModR/M byte is not required, "required" is left unset, and the values
132  * for each instructionID are identical.
133  */
134  
135 typedef uint16_t InstrUID;
136
137 /*
138  * ModRMDecisionType - describes the type of ModR/M decision, allowing the 
139  * consumer to determine the number of entries in it.
140  *
141  * MODRM_ONEENTRY - No matter what the value of the ModR/M byte is, the decoded
142  *                  instruction is the same.
143  * MODRM_SPLITRM  - If the ModR/M byte is between 0x00 and 0xbf, the opcode
144  *                  corresponds to one instruction; otherwise, it corresponds to
145  *                  a different instruction.
146  * MODRM_FULL     - Potentially, each value of the ModR/M byte could correspond
147  *                  to a different instruction.
148  */
149
150 #define MODRMTYPES            \
151   ENUM_ENTRY(MODRM_ONEENTRY)  \
152   ENUM_ENTRY(MODRM_SPLITRM)   \
153   ENUM_ENTRY(MODRM_FULL)
154
155 #define ENUM_ENTRY(n) n,    
156 typedef enum {
157   MODRMTYPES
158   MODRM_max
159 } ModRMDecisionType;
160 #undef ENUM_ENTRY
161
162 /*
163  * ModRMDecision - Specifies whether a ModR/M byte is needed and (if so) which 
164  *  instruction each possible value of the ModR/M byte corresponds to.  Once
165  *  this information is known, we have narrowed down to a single instruction.
166  */
167 struct ModRMDecision {
168   uint8_t     modrm_type;
169   
170   /* The macro below must be defined wherever this file is included. */
171   INSTRUCTION_IDS
172 };
173
174 /*
175  * OpcodeDecision - Specifies which set of ModR/M->instruction tables to look at
176  *   given a particular opcode.
177  */
178 struct OpcodeDecision {
179   struct ModRMDecision modRMDecisions[256];
180 };
181
182 /*
183  * ContextDecision - Specifies which opcode->instruction tables to look at given
184  *   a particular context (set of attributes).  Since there are many possible
185  *   contexts, the decoder first uses CONTEXTS_SYM to determine which context
186  *   applies given a specific set of attributes.  Hence there are only IC_max
187  *   entries in this table, rather than 2^(ATTR_max).
188  */
189 struct ContextDecision {
190   struct OpcodeDecision opcodeDecisions[IC_max];
191 };
192
193 /* 
194  * Physical encodings of instruction operands.
195  */
196
197 #define ENCODINGS                                                              \
198   ENUM_ENTRY(ENCODING_NONE,   "")                                              \
199   ENUM_ENTRY(ENCODING_REG,    "Register operand in ModR/M byte.")              \
200   ENUM_ENTRY(ENCODING_RM,     "R/M operand in ModR/M byte.")                   \
201   ENUM_ENTRY(ENCODING_VVVV,   "Register operand in VEX.vvvv byte.")            \
202   ENUM_ENTRY(ENCODING_CB,     "1-byte code offset (possible new CS value)")    \
203   ENUM_ENTRY(ENCODING_CW,     "2-byte")                                        \
204   ENUM_ENTRY(ENCODING_CD,     "4-byte")                                        \
205   ENUM_ENTRY(ENCODING_CP,     "6-byte")                                        \
206   ENUM_ENTRY(ENCODING_CO,     "8-byte")                                        \
207   ENUM_ENTRY(ENCODING_CT,     "10-byte")                                       \
208   ENUM_ENTRY(ENCODING_IB,     "1-byte immediate")                              \
209   ENUM_ENTRY(ENCODING_IW,     "2-byte")                                        \
210   ENUM_ENTRY(ENCODING_ID,     "4-byte")                                        \
211   ENUM_ENTRY(ENCODING_IO,     "8-byte")                                        \
212   ENUM_ENTRY(ENCODING_RB,     "(AL..DIL, R8L..R15L) Register code added to "   \
213                               "the opcode byte")                               \
214   ENUM_ENTRY(ENCODING_RW,     "(AX..DI, R8W..R15W)")                           \
215   ENUM_ENTRY(ENCODING_RD,     "(EAX..EDI, R8D..R15D)")                         \
216   ENUM_ENTRY(ENCODING_RO,     "(RAX..RDI, R8..R15)")                           \
217   ENUM_ENTRY(ENCODING_I,      "Position on floating-point stack added to the " \
218                               "opcode byte")                                   \
219                                                                                \
220   ENUM_ENTRY(ENCODING_Iv,     "Immediate of operand size")                     \
221   ENUM_ENTRY(ENCODING_Ia,     "Immediate of address size")                     \
222   ENUM_ENTRY(ENCODING_Rv,     "Register code of operand size added to the "    \
223                               "opcode byte")                                   \
224   ENUM_ENTRY(ENCODING_DUP,    "Duplicate of another operand; ID is encoded "   \
225                               "in type")
226
227 #define ENUM_ENTRY(n, d) n,    
228   typedef enum {
229     ENCODINGS
230     ENCODING_max
231   } OperandEncoding;
232 #undef ENUM_ENTRY
233
234 /* 
235  * Semantic interpretations of instruction operands.
236  */
237
238 #define TYPES                                                                  \
239   ENUM_ENTRY(TYPE_NONE,       "")                                              \
240   ENUM_ENTRY(TYPE_REL8,       "1-byte immediate address")                      \
241   ENUM_ENTRY(TYPE_REL16,      "2-byte")                                        \
242   ENUM_ENTRY(TYPE_REL32,      "4-byte")                                        \
243   ENUM_ENTRY(TYPE_REL64,      "8-byte")                                        \
244   ENUM_ENTRY(TYPE_PTR1616,    "2+2-byte segment+offset address")               \
245   ENUM_ENTRY(TYPE_PTR1632,    "2+4-byte")                                      \
246   ENUM_ENTRY(TYPE_PTR1664,    "2+8-byte")                                      \
247   ENUM_ENTRY(TYPE_R8,         "1-byte register operand")                       \
248   ENUM_ENTRY(TYPE_R16,        "2-byte")                                        \
249   ENUM_ENTRY(TYPE_R32,        "4-byte")                                        \
250   ENUM_ENTRY(TYPE_R64,        "8-byte")                                        \
251   ENUM_ENTRY(TYPE_IMM8,       "1-byte immediate operand")                      \
252   ENUM_ENTRY(TYPE_IMM16,      "2-byte")                                        \
253   ENUM_ENTRY(TYPE_IMM32,      "4-byte")                                        \
254   ENUM_ENTRY(TYPE_IMM64,      "8-byte")                                        \
255   ENUM_ENTRY(TYPE_IMM3,       "1-byte immediate operand between 0 and 7")      \
256   ENUM_ENTRY(TYPE_RM8,        "1-byte register or memory operand")             \
257   ENUM_ENTRY(TYPE_RM16,       "2-byte")                                        \
258   ENUM_ENTRY(TYPE_RM32,       "4-byte")                                        \
259   ENUM_ENTRY(TYPE_RM64,       "8-byte")                                        \
260   ENUM_ENTRY(TYPE_M,          "Memory operand")                                \
261   ENUM_ENTRY(TYPE_M8,         "1-byte")                                        \
262   ENUM_ENTRY(TYPE_M16,        "2-byte")                                        \
263   ENUM_ENTRY(TYPE_M32,        "4-byte")                                        \
264   ENUM_ENTRY(TYPE_M64,        "8-byte")                                        \
265   ENUM_ENTRY(TYPE_LEA,        "Effective address")                             \
266   ENUM_ENTRY(TYPE_M128,       "16-byte (SSE/SSE2)")                            \
267   ENUM_ENTRY(TYPE_M256,       "256-byte (AVX)")                                \
268   ENUM_ENTRY(TYPE_M1616,      "2+2-byte segment+offset address")               \
269   ENUM_ENTRY(TYPE_M1632,      "2+4-byte")                                      \
270   ENUM_ENTRY(TYPE_M1664,      "2+8-byte")                                      \
271   ENUM_ENTRY(TYPE_M16_32,     "2+4-byte two-part memory operand (LIDT, LGDT)") \
272   ENUM_ENTRY(TYPE_M16_16,     "2+2-byte (BOUND)")                              \
273   ENUM_ENTRY(TYPE_M32_32,     "4+4-byte (BOUND)")                              \
274   ENUM_ENTRY(TYPE_M16_64,     "2+8-byte (LIDT, LGDT)")                         \
275   ENUM_ENTRY(TYPE_MOFFS8,     "1-byte memory offset (relative to segment "     \
276                               "base)")                                         \
277   ENUM_ENTRY(TYPE_MOFFS16,    "2-byte")                                        \
278   ENUM_ENTRY(TYPE_MOFFS32,    "4-byte")                                        \
279   ENUM_ENTRY(TYPE_MOFFS64,    "8-byte")                                        \
280   ENUM_ENTRY(TYPE_SREG,       "Byte with single bit set: 0 = ES, 1 = CS, "     \
281                               "2 = SS, 3 = DS, 4 = FS, 5 = GS")                \
282   ENUM_ENTRY(TYPE_M32FP,      "32-bit IEE754 memory floating-point operand")   \
283   ENUM_ENTRY(TYPE_M64FP,      "64-bit")                                        \
284   ENUM_ENTRY(TYPE_M80FP,      "80-bit extended")                               \
285   ENUM_ENTRY(TYPE_M16INT,     "2-byte memory integer operand for use in "      \
286                               "floating-point instructions")                   \
287   ENUM_ENTRY(TYPE_M32INT,     "4-byte")                                        \
288   ENUM_ENTRY(TYPE_M64INT,     "8-byte")                                        \
289   ENUM_ENTRY(TYPE_ST,         "Position on the floating-point stack")          \
290   ENUM_ENTRY(TYPE_MM,         "MMX register operand")                          \
291   ENUM_ENTRY(TYPE_MM32,       "4-byte MMX register or memory operand")         \
292   ENUM_ENTRY(TYPE_MM64,       "8-byte")                                        \
293   ENUM_ENTRY(TYPE_XMM,        "XMM register operand")                          \
294   ENUM_ENTRY(TYPE_XMM32,      "4-byte XMM register or memory operand")         \
295   ENUM_ENTRY(TYPE_XMM64,      "8-byte")                                        \
296   ENUM_ENTRY(TYPE_XMM128,     "16-byte")                                       \
297   ENUM_ENTRY(TYPE_XMM256,     "32-byte")                                       \
298   ENUM_ENTRY(TYPE_XMM0,       "Implicit use of XMM0")                          \
299   ENUM_ENTRY(TYPE_SEGMENTREG, "Segment register operand")                      \
300   ENUM_ENTRY(TYPE_DEBUGREG,   "Debug register operand")                        \
301   ENUM_ENTRY(TYPE_CONTROLREG, "Control register operand")                      \
302                                                                                \
303   ENUM_ENTRY(TYPE_Mv,         "Memory operand of operand size")                \
304   ENUM_ENTRY(TYPE_Rv,         "Register operand of operand size")              \
305   ENUM_ENTRY(TYPE_IMMv,       "Immediate operand of operand size")             \
306   ENUM_ENTRY(TYPE_RELv,       "Immediate address of operand size")             \
307   ENUM_ENTRY(TYPE_DUP0,       "Duplicate of operand 0")                        \
308   ENUM_ENTRY(TYPE_DUP1,       "operand 1")                                     \
309   ENUM_ENTRY(TYPE_DUP2,       "operand 2")                                     \
310   ENUM_ENTRY(TYPE_DUP3,       "operand 3")                                     \
311   ENUM_ENTRY(TYPE_DUP4,       "operand 4")                                     \
312   ENUM_ENTRY(TYPE_M512,       "512-bit FPU/MMX/XMM/MXCSR state")
313
314 #define ENUM_ENTRY(n, d) n,    
315 typedef enum {
316   TYPES
317   TYPE_max
318 } OperandType;
319 #undef ENUM_ENTRY
320
321 /* 
322  * OperandSpecifier - The specification for how to extract and interpret one
323  *   operand.
324  */
325 struct OperandSpecifier {
326   OperandEncoding  encoding;
327   OperandType      type;
328 };
329
330 /*
331  * Indicates where the opcode modifier (if any) is to be found.  Extended
332  * opcodes with AddRegFrm have the opcode modifier in the ModR/M byte.
333  */
334
335 #define MODIFIER_TYPES        \
336   ENUM_ENTRY(MODIFIER_NONE)   \
337   ENUM_ENTRY(MODIFIER_OPCODE) \
338   ENUM_ENTRY(MODIFIER_MODRM)
339
340 #define ENUM_ENTRY(n) n,
341 typedef enum {
342   MODIFIER_TYPES
343   MODIFIER_max
344 } ModifierType;
345 #undef ENUM_ENTRY
346
347 #define X86_MAX_OPERANDS 5
348
349 /*
350  * The specification for how to extract and interpret a full instruction and
351  * its operands.
352  */
353 struct InstructionSpecifier {
354   ModifierType modifierType;
355   uint8_t modifierBase;
356   struct OperandSpecifier operands[X86_MAX_OPERANDS];
357   
358   /* The macro below must be defined wherever this file is included. */
359   INSTRUCTION_SPECIFIER_FIELDS
360 };
361
362 /*
363  * Decoding mode for the Intel disassembler.  16-bit, 32-bit, and 64-bit mode
364  * are supported, and represent real mode, IA-32e, and IA-32e in 64-bit mode,
365  * respectively.
366  */
367 typedef enum {
368   MODE_16BIT,
369   MODE_32BIT,
370   MODE_64BIT
371 } DisassemblerMode;
372
373 #endif