1 //===---------------------------------------------------------------------===//
2 // Random ideas for the X86 backend: SSE-specific stuff.
3 //===---------------------------------------------------------------------===//
5 - Consider eliminating the unaligned SSE load intrinsics, replacing them with
6 unaligned LLVM load instructions.
8 //===---------------------------------------------------------------------===//
10 Expand libm rounding functions inline: Significant speedups possible.
11 http://gcc.gnu.org/ml/gcc-patches/2006-10/msg00909.html
13 //===---------------------------------------------------------------------===//
15 When compiled with unsafemath enabled, "main" should enable SSE DAZ mode and
18 //===---------------------------------------------------------------------===//
20 Think about doing i64 math in SSE regs.
22 //===---------------------------------------------------------------------===//
24 This testcase should have no SSE instructions in it, and only one load from
27 double %test3(bool %B) {
28 %C = select bool %B, double 123.412, double 523.01123123
32 Currently, the select is being lowered, which prevents the dag combiner from
33 turning 'select (load CPI1), (load CPI2)' -> 'load (select CPI1, CPI2)'
35 The pattern isel got this one right.
37 //===---------------------------------------------------------------------===//
39 SSE doesn't have [mem] op= reg instructions. If we have an SSE instruction
44 and the register allocator decides to spill X, it is cheaper to emit this as:
55 ..and this uses one fewer register (so this should be done at load folding
56 time, not at spiller time). *Note* however that this can only be done
57 if Y is dead. Here's a testcase:
59 @.str_3 = external global [15 x i8]
60 declare void @printf(i32, ...)
65 no_exit.i7: ; preds = %no_exit.i7, %build_tree.exit
66 %tmp.0.1.0.i9 = phi double [ 0.000000e+00, %build_tree.exit ],
67 [ %tmp.34.i18, %no_exit.i7 ]
68 %tmp.0.0.0.i10 = phi double [ 0.000000e+00, %build_tree.exit ],
69 [ %tmp.28.i16, %no_exit.i7 ]
70 %tmp.28.i16 = add double %tmp.0.0.0.i10, 0.000000e+00
71 %tmp.34.i18 = add double %tmp.0.1.0.i9, 0.000000e+00
72 br i1 false, label %Compute_Tree.exit23, label %no_exit.i7
74 Compute_Tree.exit23: ; preds = %no_exit.i7
75 tail call void (i32, ...)* @printf( i32 0 )
76 store double %tmp.34.i18, double* null
85 *** movsd %XMM2, QWORD PTR [%ESP + 8]
86 *** addsd %XMM2, %XMM1
87 *** movsd QWORD PTR [%ESP + 8], %XMM2
88 jmp .BBmain_1 # no_exit.i7
90 This is a bugpoint reduced testcase, which is why the testcase doesn't make
91 much sense (e.g. its an infinite loop). :)
93 //===---------------------------------------------------------------------===//
95 SSE should implement 'select_cc' using 'emulated conditional moves' that use
96 pcmp/pand/pandn/por to do a selection instead of a conditional branch:
98 double %X(double %Y, double %Z, double %A, double %B) {
99 %C = setlt double %A, %B
100 %z = add double %Z, 0.0 ;; select operand is not a load
101 %D = select bool %C, double %Y, double %z
110 addsd 24(%esp), %xmm0
111 movsd 32(%esp), %xmm1
112 movsd 16(%esp), %xmm2
113 ucomisd 40(%esp), %xmm1
123 //===---------------------------------------------------------------------===//
125 It's not clear whether we should use pxor or xorps / xorpd to clear XMM
126 registers. The choice may depend on subtarget information. We should do some
127 more experiments on different x86 machines.
129 //===---------------------------------------------------------------------===//
131 Lower memcpy / memset to a series of SSE 128 bit move instructions when it's
134 //===---------------------------------------------------------------------===//
137 if (copysign(1.0, x) == copysign(1.0, y))
142 //===---------------------------------------------------------------------===//
144 Use movhps to update upper 64-bits of a v4sf value. Also movlps on lower half
147 //===---------------------------------------------------------------------===//
149 Better codegen for vector_shuffles like this { x, 0, 0, 0 } or { x, 0, x, 0}.
150 Perhaps use pxor / xorp* to clear a XMM register first?
152 //===---------------------------------------------------------------------===//
154 How to decide when to use the "floating point version" of logical ops? Here are
157 movaps LCPI5_5, %xmm2
160 mulps 8656(%ecx), %xmm3
161 addps 8672(%ecx), %xmm3
167 movaps LCPI5_5, %xmm1
170 mulps 8656(%ecx), %xmm3
171 addps 8672(%ecx), %xmm3
175 movaps %xmm3, 112(%esp)
178 Due to some minor source change, the later case ended up using orps and movaps
179 instead of por and movdqa. Does it matter?
181 //===---------------------------------------------------------------------===//
183 X86RegisterInfo::copyRegToReg() returns X86::MOVAPSrr for VR128. Is it possible
184 to choose between movaps, movapd, and movdqa based on types of source and
187 How about andps, andpd, and pand? Do we really care about the type of the packed
188 elements? If not, why not always use the "ps" variants which are likely to be
191 //===---------------------------------------------------------------------===//
193 External test Nurbs exposed some problems. Look for
194 __ZN15Nurbs_SSE_Cubic17TessellateSurfaceE, bb cond_next140. This is what icc
197 movaps (%edx), %xmm2 #59.21
198 movaps (%edx), %xmm5 #60.21
199 movaps (%edx), %xmm4 #61.21
200 movaps (%edx), %xmm3 #62.21
201 movl 40(%ecx), %ebp #69.49
202 shufps $0, %xmm2, %xmm5 #60.21
203 movl 100(%esp), %ebx #69.20
204 movl (%ebx), %edi #69.20
205 imull %ebp, %edi #69.49
206 addl (%eax), %edi #70.33
207 shufps $85, %xmm2, %xmm4 #61.21
208 shufps $170, %xmm2, %xmm3 #62.21
209 shufps $255, %xmm2, %xmm2 #63.21
210 lea (%ebp,%ebp,2), %ebx #69.49
212 lea -3(%edi,%ebx), %ebx #70.33
214 addl 32(%ecx), %ebx #68.37
215 testb $15, %bl #91.13
216 jne L_B1.24 # Prob 5% #91.13
218 This is the llvm code after instruction scheduling:
220 cond_next140 (0xa910740, LLVM BB @0xa90beb0):
221 %reg1078 = MOV32ri -3
222 %reg1079 = ADD32rm %reg1078, %reg1068, 1, %NOREG, 0
223 %reg1037 = MOV32rm %reg1024, 1, %NOREG, 40
224 %reg1080 = IMUL32rr %reg1079, %reg1037
225 %reg1081 = MOV32rm %reg1058, 1, %NOREG, 0
226 %reg1038 = LEA32r %reg1081, 1, %reg1080, -3
227 %reg1036 = MOV32rm %reg1024, 1, %NOREG, 32
228 %reg1082 = SHL32ri %reg1038, 4
229 %reg1039 = ADD32rr %reg1036, %reg1082
230 %reg1083 = MOVAPSrm %reg1059, 1, %NOREG, 0
231 %reg1034 = SHUFPSrr %reg1083, %reg1083, 170
232 %reg1032 = SHUFPSrr %reg1083, %reg1083, 0
233 %reg1035 = SHUFPSrr %reg1083, %reg1083, 255
234 %reg1033 = SHUFPSrr %reg1083, %reg1083, 85
235 %reg1040 = MOV32rr %reg1039
236 %reg1084 = AND32ri8 %reg1039, 15
238 JE mbb<cond_next204,0xa914d30>
240 Still ok. After register allocation:
242 cond_next140 (0xa910740, LLVM BB @0xa90beb0):
244 %EDX = MOV32rm <fi#3>, 1, %NOREG, 0
245 ADD32rm %EAX<def&use>, %EDX, 1, %NOREG, 0
246 %EDX = MOV32rm <fi#7>, 1, %NOREG, 0
247 %EDX = MOV32rm %EDX, 1, %NOREG, 40
248 IMUL32rr %EAX<def&use>, %EDX
249 %ESI = MOV32rm <fi#5>, 1, %NOREG, 0
250 %ESI = MOV32rm %ESI, 1, %NOREG, 0
251 MOV32mr <fi#4>, 1, %NOREG, 0, %ESI
252 %EAX = LEA32r %ESI, 1, %EAX, -3
253 %ESI = MOV32rm <fi#7>, 1, %NOREG, 0
254 %ESI = MOV32rm %ESI, 1, %NOREG, 32
256 SHL32ri %EDI<def&use>, 4
257 ADD32rr %EDI<def&use>, %ESI
258 %XMM0 = MOVAPSrm %ECX, 1, %NOREG, 0
259 %XMM1 = MOVAPSrr %XMM0
260 SHUFPSrr %XMM1<def&use>, %XMM1, 170
261 %XMM2 = MOVAPSrr %XMM0
262 SHUFPSrr %XMM2<def&use>, %XMM2, 0
263 %XMM3 = MOVAPSrr %XMM0
264 SHUFPSrr %XMM3<def&use>, %XMM3, 255
265 SHUFPSrr %XMM0<def&use>, %XMM0, 85
267 AND32ri8 %EBX<def&use>, 15
269 JE mbb<cond_next204,0xa914d30>
271 This looks really bad. The problem is shufps is a destructive opcode. Since it
272 appears as operand two in more than one shufps ops. It resulted in a number of
273 copies. Note icc also suffers from the same problem. Either the instruction
274 selector should select pshufd or The register allocator can made the two-address
275 to three-address transformation.
277 It also exposes some other problems. See MOV32ri -3 and the spills.
279 //===---------------------------------------------------------------------===//
281 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=25500
283 LLVM is producing bad code.
285 LBB_main_4: # cond_true44
296 jne LBB_main_4 # cond_true44
298 There are two problems. 1) No need to two loop induction variables. We can
299 compare against 262144 * 16. 2) Known register coalescer issue. We should
300 be able eliminate one of the movaps:
302 addps %xmm2, %xmm1 <=== Commute!
305 movaps %xmm1, %xmm1 <=== Eliminate!
312 jne LBB_main_4 # cond_true44
314 //===---------------------------------------------------------------------===//
318 __m128 test(float a) {
319 return _mm_set_ps(0.0, 0.0, 0.0, a*a);
330 Because mulss doesn't modify the top 3 elements, the top elements of
331 xmm1 are already zero'd. We could compile this to:
337 //===---------------------------------------------------------------------===//
339 Here's a sick and twisted idea. Consider code like this:
341 __m128 test(__m128 a) {
342 float b = *(float*)&A;
344 return _mm_set_ps(0.0, 0.0, 0.0, b);
347 This might compile to this code:
349 movaps c(%esp), %xmm1
354 Now consider if the ... code caused xmm1 to get spilled. This might produce
357 movaps c(%esp), %xmm1
358 movaps %xmm1, c2(%esp)
362 movaps c2(%esp), %xmm1
366 However, since the reload is only used by these instructions, we could
367 "fold" it into the uses, producing something like this:
369 movaps c(%esp), %xmm1
370 movaps %xmm1, c2(%esp)
373 movss c2(%esp), %xmm0
376 ... saving two instructions.
378 The basic idea is that a reload from a spill slot, can, if only one 4-byte
379 chunk is used, bring in 3 zeros the the one element instead of 4 elements.
380 This can be used to simplify a variety of shuffle operations, where the
381 elements are fixed zeros.
383 //===---------------------------------------------------------------------===//
387 #include <emmintrin.h>
388 void test(__m128d *r, __m128d *A, double B) {
389 *r = _mm_loadl_pd(*A, &B);
395 movsd 24(%esp), %xmm0
407 movl 4(%esp), %edx #3.6
408 movl 8(%esp), %eax #3.6
409 movapd (%eax), %xmm0 #4.22
410 movlpd 12(%esp), %xmm0 #4.8
411 movapd %xmm0, (%edx) #4.3
414 So icc is smart enough to know that B is in memory so it doesn't load it and
415 store it back to stack.
417 This should be fixed by eliminating the llvm.x86.sse2.loadl.pd intrinsic,
418 lowering it to a load+insertelement instead. Already match the load+shuffle
419 as movlpd, so this should be easy. We already get optimal code for:
421 define void @test2(<2 x double>* %r, <2 x double>* %A, double %B) {
423 %tmp2 = load <2 x double>* %A, align 16
424 %tmp8 = insertelement <2 x double> %tmp2, double %B, i32 0
425 store <2 x double> %tmp8, <2 x double>* %r, align 16
429 //===---------------------------------------------------------------------===//
433 #include <xmmintrin.h>
434 __m128i doload64(unsigned long long x) { return _mm_loadl_epi64(&x);}
435 __m128i doload64_2(unsigned long long *x) { return _mm_loadl_epi64(x);}
437 These are very similar routines, but we generate significantly worse code for
438 the first one on x86-32:
454 The problem is that the argument lowering logic splits the i64 argument into
455 2x i32 loads early, the f64 insert doesn't match. Here's a reduced testcase:
457 define fastcc double @doload64(i64 %x) nounwind {
459 %tmp717 = bitcast i64 %x to double ; <double> [#uses=1]
475 instead of movsd from the stack.
477 //===---------------------------------------------------------------------===//
479 __m128d test1( __m128d A, __m128d B) {
480 return _mm_shuffle_pd(A, B, 0x3);
485 shufpd $3, %xmm1, %xmm0
487 Perhaps it's better to use unpckhpd instead?
489 unpckhpd %xmm1, %xmm0
491 Don't know if unpckhpd is faster. But it is shorter.
493 //===---------------------------------------------------------------------===//
495 This code generates ugly code, probably due to costs being off or something:
497 define void @test(float* %P, <4 x float>* %P2 ) {
498 %xFloat0.688 = load float* %P
499 %tmp = load <4 x float>* %P2
500 %inFloat3.713 = insertelement <4 x float> %tmp, float 0.0, i32 3
501 store <4 x float> %inFloat3.713, <4 x float>* %P2
512 shufps $50, %xmm1, %xmm2
513 shufps $132, %xmm2, %xmm0
517 Would it be better to generate:
523 pinsrw $6, %eax, %xmm0
524 pinsrw $7, %eax, %xmm0
530 //===---------------------------------------------------------------------===//
532 Some useful information in the Apple Altivec / SSE Migration Guide:
534 http://developer.apple.com/documentation/Performance/Conceptual/
535 Accelerate_sse_migration/index.html
537 e.g. SSE select using and, andnot, or. Various SSE compare translations.
539 //===---------------------------------------------------------------------===//
541 Add hooks to commute some CMPP operations.
543 //===---------------------------------------------------------------------===//
545 Apply the same transformation that merged four float into a single 128-bit load
546 to loads from constant pool.
548 //===---------------------------------------------------------------------===//
550 Floating point max / min are commutable when -enable-unsafe-fp-path is
551 specified. We should turn int_x86_sse_max_ss and X86ISD::FMIN etc. into other
552 nodes which are selected to max / min instructions that are marked commutable.
554 //===---------------------------------------------------------------------===//
556 We should compile this:
557 #include <xmmintrin.h>
563 void swizzle (const void *a, vector4_t * b, vector4_t * c) {
564 b->v = _mm_loadl_pi (b->v, (__m64 *) a);
565 c->v = _mm_loadl_pi (c->v, ((__m64 *) a) + 1);
576 movlps 8(%eax), %xmm0
590 movlps 8(%ecx), %xmm0
594 //===---------------------------------------------------------------------===//
596 These functions should produce the same code:
598 #include <emmintrin.h>
600 typedef long long __m128i __attribute__ ((__vector_size__ (16)));
602 int foo(__m128i* val) {
603 return __builtin_ia32_vec_ext_v4si(*val, 1);
605 int bar(__m128i* val) {
613 We currently produce (with -m64):
616 pshufd $1, (%rdi), %xmm0
623 //===---------------------------------------------------------------------===//
625 We should materialize vector constants like "all ones" and "signbit" with
628 cmpeqps xmm1, xmm1 ; xmm1 = all-ones
631 cmpeqps xmm1, xmm1 ; xmm1 = all-ones
632 psrlq xmm1, 31 ; xmm1 = all 100000000000...
634 instead of using a load from the constant pool. The later is important for
635 ABS/NEG/copysign etc.
637 //===---------------------------------------------------------------------===//
641 #include <xmmintrin.h>
643 void x(unsigned short n) {
644 a = _mm_slli_epi32 (a, n);
647 a = _mm_slli_epi32 (a, n);
650 compile to ( -O3 -static -fomit-frame-pointer):
665 "y" looks good, but "x" does silly movzwl stuff around into a GPR. It seems
666 like movd would be sufficient in both cases as the value is already zero
667 extended in the 32-bit stack slot IIRC. For signed short, it should also be
668 save, as a really-signed value would be undefined for pslld.
671 //===---------------------------------------------------------------------===//
674 int t1(double d) { return signbit(d); }
676 This currently compiles to:
678 movsd 16(%esp), %xmm0
685 We should use movmskp{s|d} instead.
687 //===---------------------------------------------------------------------===//
689 CodeGen/X86/vec_align.ll tests whether we can turn 4 scalar loads into a single
690 (aligned) vector load. This functionality has a couple of problems.
692 1. The code to infer alignment from loads of globals is in the X86 backend,
693 not the dag combiner. This is because dagcombine2 needs to be able to see
694 through the X86ISD::Wrapper node, which DAGCombine can't really do.
695 2. The code for turning 4 x load into a single vector load is target
696 independent and should be moved to the dag combiner.
697 3. The code for turning 4 x load into a vector load can only handle a direct
698 load from a global or a direct load from the stack. It should be generalized
699 to handle any load from P, P+4, P+8, P+12, where P can be anything.
700 4. The alignment inference code cannot handle loads from globals in non-static
701 mode because it doesn't look through the extra dyld stub load. If you try
702 vec_align.ll without -relocation-model=static, you'll see what I mean.
704 //===---------------------------------------------------------------------===//
706 We should lower store(fneg(load p), q) into an integer load+xor+store, which
707 eliminates a constant pool load. For example, consider:
709 define i64 @ccosf(float %z.0, float %z.1) nounwind readonly {
711 %tmp6 = sub float -0.000000e+00, %z.1 ; <float> [#uses=1]
712 %tmp20 = tail call i64 @ccoshf( float %tmp6, float %z.0 ) nounwind readonly
716 This currently compiles to:
718 LCPI1_0: # <4 x float>
719 .long 2147483648 # float -0
720 .long 2147483648 # float -0
721 .long 2147483648 # float -0
722 .long 2147483648 # float -0
725 movss 16(%esp), %xmm0
727 movss 20(%esp), %xmm0
734 Note the load into xmm0, then xor (to negate), then store. In PIC mode,
735 this code computes the pic base and does two loads to do the constant pool
736 load, so the improvement is much bigger.
738 The tricky part about this xform is that the argument load/store isn't exposed
739 until post-legalize, and at that point, the fneg has been custom expanded into
740 an X86 fxor. This means that we need to handle this case in the x86 backend
741 instead of in target independent code.
743 //===---------------------------------------------------------------------===//
745 Non-SSE4 insert into 16 x i8 is atrociously bad.
747 //===---------------------------------------------------------------------===//
749 <2 x i64> extract is substantially worse than <2 x f64>, even if the destination
752 //===---------------------------------------------------------------------===//
754 SSE4 extract-to-mem ops aren't being pattern matched because of the AssertZext
755 sitting between the truncate and the extract.
757 //===---------------------------------------------------------------------===//
759 INSERTPS can match any insert (extract, imm1), imm2 for 4 x float, and insert
760 any number of 0.0 simultaneously. Currently we only use it for simple
763 See comments in LowerINSERT_VECTOR_ELT_SSE4.
765 //===---------------------------------------------------------------------===//
767 On a random note, SSE2 should declare insert/extract of 2 x f64 as legal, not
768 Custom. All combinations of insert/extract reg-reg, reg-mem, and mem-reg are
769 legal, it'll just take a few extra patterns written in the .td file.
771 Note: this is not a code quality issue; the custom lowered code happens to be
772 right, but we shouldn't have to custom lower anything. This is probably related
773 to <2 x i64> ops being so bad.
775 //===---------------------------------------------------------------------===//
777 'select' on vectors and scalars could be a whole lot better. We currently
778 lower them to conditional branches. On x86-64 for example, we compile this:
780 double test(double a, double b, double c, double d) { return a<b ? c : d; }
802 For unpredictable branches, the later is much more efficient. This should
803 just be a matter of having scalar sse map to SELECT_CC and custom expanding
806 //===---------------------------------------------------------------------===//
808 Take the following code:
810 #include <xmmintrin.h>
811 __m128i doload64(short x) {return _mm_set_epi16(x,x,x,x,x,x,x,x);}
813 LLVM currently generates the following on x86:
817 punpcklwd %xmm0, %xmm0
818 pshufd $0, %xmm0, %xmm0
821 gcc's generated code:
824 punpcklwd %xmm0, %xmm0
825 pshufd $0, %xmm0, %xmm0
828 LLVM should be able to generate the same thing as gcc. This looks like it is
829 just a matter of matching (scalar_to_vector (load x)) to movd.
831 //===---------------------------------------------------------------------===//