FastISel: Factor out common code; NFC intended
[oota-llvm.git] / lib / Target / X86 / X86CallFrameOptimization.cpp
1 //===----- X86CallFrameOptimization.cpp - Optimize x86 call sequences -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a pass that optimizes call sequences on x86.
11 // Currently, it converts movs of function parameters onto the stack into
12 // pushes. This is beneficial for two main reasons:
13 // 1) The push instruction encoding is much smaller than an esp-relative mov
14 // 2) It is possible to push memory arguments directly. So, if the
15 //    the transformation is preformed pre-reg-alloc, it can help relieve
16 //    register pressure.
17 //
18 //===----------------------------------------------------------------------===//
19
20 #include <algorithm>
21
22 #include "X86.h"
23 #include "X86InstrInfo.h"
24 #include "X86Subtarget.h"
25 #include "X86MachineFunctionInfo.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/CodeGen/MachineFunctionPass.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/Passes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetInstrInfo.h"
35
36 using namespace llvm;
37
38 #define DEBUG_TYPE "x86-cf-opt"
39
40 static cl::opt<bool>
41     NoX86CFOpt("no-x86-call-frame-opt",
42                cl::desc("Avoid optimizing x86 call frames for size"),
43                cl::init(false), cl::Hidden);
44
45 namespace {
46 class X86CallFrameOptimization : public MachineFunctionPass {
47 public:
48   X86CallFrameOptimization() : MachineFunctionPass(ID) {}
49
50   bool runOnMachineFunction(MachineFunction &MF) override;
51
52 private:
53   // Information we know about a particular call site
54   struct CallContext {
55     CallContext()
56         : Call(nullptr), SPCopy(nullptr), ExpectedDist(0),
57           MovVector(4, nullptr), NoStackParams(false), UsePush(false){}
58
59     // Actuall call instruction
60     MachineInstr *Call;
61
62     // A copy of the stack pointer
63     MachineInstr *SPCopy;
64
65     // The total displacement of all passed parameters
66     int64_t ExpectedDist;
67
68     // The sequence of movs used to pass the parameters
69     SmallVector<MachineInstr *, 4> MovVector;
70
71     // True if this call site has no stack parameters
72     bool NoStackParams;
73
74     // True of this callsite can use push instructions
75     bool UsePush;
76   };
77
78   typedef DenseMap<MachineInstr *, CallContext> ContextMap;
79
80   bool isLegal(MachineFunction &MF);
81
82   bool isProfitable(MachineFunction &MF, ContextMap &CallSeqMap);
83
84   void collectCallInfo(MachineFunction &MF, MachineBasicBlock &MBB,
85                        MachineBasicBlock::iterator I, CallContext &Context);
86
87   bool adjustCallSequence(MachineFunction &MF, MachineBasicBlock::iterator I,
88                           const CallContext &Context);
89
90   MachineInstr *canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup,
91                                    unsigned Reg);
92
93   enum InstClassification { Convert, Skip, Exit };
94
95   InstClassification classifyInstruction(MachineBasicBlock &MBB,
96                                          MachineBasicBlock::iterator MI,
97                                          const X86RegisterInfo &RegInfo,
98                                          DenseSet<unsigned int> &UsedRegs);
99
100   const char *getPassName() const override { return "X86 Optimize Call Frame"; }
101
102   const TargetInstrInfo *TII;
103   const TargetFrameLowering *TFL;
104   const MachineRegisterInfo *MRI;
105   static char ID;
106 };
107
108 char X86CallFrameOptimization::ID = 0;
109 }
110
111 FunctionPass *llvm::createX86CallFrameOptimization() {
112   return new X86CallFrameOptimization();
113 }
114
115 // This checks whether the transformation is legal.
116 // Also returns false in cases where it's potentially legal, but
117 // we don't even want to try.
118 bool X86CallFrameOptimization::isLegal(MachineFunction &MF) {
119   if (NoX86CFOpt.getValue())
120     return false;
121
122   // We currently only support call sequences where *all* parameters.
123   // are passed on the stack.
124   // No point in running this in 64-bit mode, since some arguments are
125   // passed in-register in all common calling conventions, so the pattern
126   // we're looking for will never match.
127   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
128   if (STI.is64Bit())
129     return false;
130
131   // You would expect straight-line code between call-frame setup and
132   // call-frame destroy. You would be wrong. There are circumstances (e.g.
133   // CMOV_GR8 expansion of a select that feeds a function call!) where we can
134   // end up with the setup and the destroy in different basic blocks.
135   // This is bad, and breaks SP adjustment.
136   // So, check that all of the frames in the function are closed inside
137   // the same block, and, for good measure, that there are no nested frames.
138   unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
139   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
140   for (MachineBasicBlock &BB : MF) {
141     bool InsideFrameSequence = false;
142     for (MachineInstr &MI : BB) {
143       if (MI.getOpcode() == FrameSetupOpcode) {
144         if (InsideFrameSequence)
145           return false;
146         InsideFrameSequence = true;
147       } else if (MI.getOpcode() == FrameDestroyOpcode) {
148         if (!InsideFrameSequence)
149           return false;
150         InsideFrameSequence = false;
151       }
152     }
153
154     if (InsideFrameSequence)
155       return false;
156   }
157
158   return true;
159 }
160
161 // Check whether this trasnformation is profitable for a particular
162 // function - in terms of code size.
163 bool X86CallFrameOptimization::isProfitable(MachineFunction &MF, 
164   ContextMap &CallSeqMap) {
165   // This transformation is always a win when we do not expect to have
166   // a reserved call frame. Under other circumstances, it may be either
167   // a win or a loss, and requires a heuristic.
168   bool CannotReserveFrame = MF.getFrameInfo()->hasVarSizedObjects();
169   if (CannotReserveFrame)
170     return true;
171
172   // Don't do this when not optimizing for size.
173   if (!MF.getFunction()->optForSize())
174     return false;
175
176   unsigned StackAlign = TFL->getStackAlignment();
177
178   int64_t Advantage = 0;
179   for (auto CC : CallSeqMap) {
180     // Call sites where no parameters are passed on the stack
181     // do not affect the cost, since there needs to be no
182     // stack adjustment.
183     if (CC.second.NoStackParams)
184       continue;
185
186     if (!CC.second.UsePush) {
187       // If we don't use pushes for a particular call site,
188       // we pay for not having a reserved call frame with an
189       // additional sub/add esp pair. The cost is ~3 bytes per instruction,
190       // depending on the size of the constant.
191       // TODO: Callee-pop functions should have a smaller penalty, because
192       // an add is needed even with a reserved call frame.
193       Advantage -= 6;
194     } else {
195       // We can use pushes. First, account for the fixed costs.
196       // We'll need a add after the call.
197       Advantage -= 3;
198       // If we have to realign the stack, we'll also need and sub before
199       if (CC.second.ExpectedDist % StackAlign)
200         Advantage -= 3;
201       // Now, for each push, we save ~3 bytes. For small constants, we actually,
202       // save more (up to 5 bytes), but 3 should be a good approximation.
203       Advantage += (CC.second.ExpectedDist / 4) * 3;
204     }
205   }
206
207   return (Advantage >= 0);
208 }
209
210 bool X86CallFrameOptimization::runOnMachineFunction(MachineFunction &MF) {
211   TII = MF.getSubtarget().getInstrInfo();
212   TFL = MF.getSubtarget().getFrameLowering();
213   MRI = &MF.getRegInfo();
214
215   if (!isLegal(MF))
216     return false;
217
218   unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
219
220   bool Changed = false;
221
222   ContextMap CallSeqMap;
223
224   for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
225     for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ++I)
226       if (I->getOpcode() == FrameSetupOpcode) {
227         CallContext &Context = CallSeqMap[I];
228         collectCallInfo(MF, *BB, I, Context);
229       }
230
231   if (!isProfitable(MF, CallSeqMap))
232     return false;
233
234   for (auto CC : CallSeqMap)
235     if (CC.second.UsePush)
236       Changed |= adjustCallSequence(MF, CC.first, CC.second);
237
238   return Changed;
239 }
240
241 X86CallFrameOptimization::InstClassification
242 X86CallFrameOptimization::classifyInstruction(
243     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
244     const X86RegisterInfo &RegInfo, DenseSet<unsigned int> &UsedRegs) {
245   if (MI == MBB.end())
246     return Exit;
247
248   // The instructions we actually care about are movs onto the stack
249   int Opcode = MI->getOpcode();
250   if (Opcode == X86::MOV32mi || Opcode == X86::MOV32mr)
251     return Convert;
252
253   // Not all calling conventions have only stack MOVs between the stack
254   // adjust and the call.
255
256   // We want to tolerate other instructions, to cover more cases.
257   // In particular:
258   // a) PCrel calls, where we expect an additional COPY of the basereg.
259   // b) Passing frame-index addresses.
260   // c) Calling conventions that have inreg parameters. These generate
261   //    both copies and movs into registers.
262   // To avoid creating lots of special cases, allow any instruction
263   // that does not write into memory, does not def or use the stack
264   // pointer, and does not def any register that was used by a preceding
265   // push.
266   // (Reading from memory is allowed, even if referenced through a
267   // frame index, since these will get adjusted properly in PEI)
268
269   // The reason for the last condition is that the pushes can't replace
270   // the movs in place, because the order must be reversed.
271   // So if we have a MOV32mr that uses EDX, then an instruction that defs
272   // EDX, and then the call, after the transformation the push will use
273   // the modified version of EDX, and not the original one.
274   // Since we are still in SSA form at this point, we only need to
275   // make sure we don't clobber any *physical* registers that were
276   // used by an earlier mov that will become a push.
277
278   if (MI->isCall() || MI->mayStore())
279     return Exit;
280
281   for (const MachineOperand &MO : MI->operands()) {
282     if (!MO.isReg())
283       continue;
284     unsigned int Reg = MO.getReg();
285     if (!RegInfo.isPhysicalRegister(Reg))
286       continue;
287     if (RegInfo.regsOverlap(Reg, RegInfo.getStackRegister()))
288       return Exit;
289     if (MO.isDef()) {
290       for (unsigned int U : UsedRegs)
291         if (RegInfo.regsOverlap(Reg, U))
292           return Exit;
293     }
294   }
295
296   return Skip;
297 }
298
299 void X86CallFrameOptimization::collectCallInfo(MachineFunction &MF,
300                                                MachineBasicBlock &MBB,
301                                                MachineBasicBlock::iterator I,
302                                                CallContext &Context) {
303   // Check that this particular call sequence is amenable to the
304   // transformation.
305   const X86RegisterInfo &RegInfo = *static_cast<const X86RegisterInfo *>(
306                                        MF.getSubtarget().getRegisterInfo());
307   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
308
309   // We expect to enter this at the beginning of a call sequence
310   assert(I->getOpcode() == TII->getCallFrameSetupOpcode());
311   MachineBasicBlock::iterator FrameSetup = I++;
312
313   // How much do we adjust the stack? This puts an upper bound on
314   // the number of parameters actually passed on it.
315   unsigned int MaxAdjust = FrameSetup->getOperand(0).getImm() / 4;
316
317   // A zero adjustment means no stack parameters
318   if (!MaxAdjust) {
319     Context.NoStackParams = true;
320     return;
321   }
322
323   // For globals in PIC mode, we can have some LEAs here.
324   // Ignore them, they don't bother us.
325   // TODO: Extend this to something that covers more cases.
326   while (I->getOpcode() == X86::LEA32r)
327     ++I;
328
329   // We expect a copy instruction here.
330   // TODO: The copy instruction is a lowering artifact.
331   //       We should also support a copy-less version, where the stack
332   //       pointer is used directly.
333   if (!I->isCopy() || !I->getOperand(0).isReg())
334     return;
335   Context.SPCopy = I++;
336
337   unsigned StackPtr = Context.SPCopy->getOperand(0).getReg();
338
339   // Scan the call setup sequence for the pattern we're looking for.
340   // We only handle a simple case - a sequence of MOV32mi or MOV32mr
341   // instructions, that push a sequence of 32-bit values onto the stack, with
342   // no gaps between them.
343   if (MaxAdjust > 4)
344     Context.MovVector.resize(MaxAdjust, nullptr);
345
346   InstClassification Classification;
347   DenseSet<unsigned int> UsedRegs;
348
349   while ((Classification = classifyInstruction(MBB, I, RegInfo, UsedRegs)) !=
350          Exit) {
351     if (Classification == Skip) {
352       ++I;
353       continue;
354     }
355
356     // We know the instruction is a MOV32mi/MOV32mr.
357     // We only want movs of the form:
358     // movl imm/r32, k(%esp)
359     // If we run into something else, bail.
360     // Note that AddrBaseReg may, counter to its name, not be a register,
361     // but rather a frame index.
362     // TODO: Support the fi case. This should probably work now that we
363     // have the infrastructure to track the stack pointer within a call
364     // sequence.
365     if (!I->getOperand(X86::AddrBaseReg).isReg() ||
366         (I->getOperand(X86::AddrBaseReg).getReg() != StackPtr) ||
367         !I->getOperand(X86::AddrScaleAmt).isImm() ||
368         (I->getOperand(X86::AddrScaleAmt).getImm() != 1) ||
369         (I->getOperand(X86::AddrIndexReg).getReg() != X86::NoRegister) ||
370         (I->getOperand(X86::AddrSegmentReg).getReg() != X86::NoRegister) ||
371         !I->getOperand(X86::AddrDisp).isImm())
372       return;
373
374     int64_t StackDisp = I->getOperand(X86::AddrDisp).getImm();
375     assert(StackDisp >= 0 &&
376            "Negative stack displacement when passing parameters");
377
378     // We really don't want to consider the unaligned case.
379     if (StackDisp % 4)
380       return;
381     StackDisp /= 4;
382
383     assert((size_t)StackDisp < Context.MovVector.size() &&
384            "Function call has more parameters than the stack is adjusted for.");
385
386     // If the same stack slot is being filled twice, something's fishy.
387     if (Context.MovVector[StackDisp] != nullptr)
388       return;
389     Context.MovVector[StackDisp] = I;
390
391     for (const MachineOperand &MO : I->uses()) {
392       if (!MO.isReg())
393         continue;
394       unsigned int Reg = MO.getReg();
395       if (RegInfo.isPhysicalRegister(Reg))
396         UsedRegs.insert(Reg);
397     }
398
399     ++I;
400   }
401
402   // We now expect the end of the sequence. If we stopped early,
403   // or reached the end of the block without finding a call, bail.
404   if (I == MBB.end() || !I->isCall())
405     return;
406
407   Context.Call = I;
408   if ((++I)->getOpcode() != FrameDestroyOpcode)
409     return;
410
411   // Now, go through the vector, and see that we don't have any gaps,
412   // but only a series of 32-bit MOVs.
413   auto MMI = Context.MovVector.begin(), MME = Context.MovVector.end();
414   for (; MMI != MME; ++MMI, Context.ExpectedDist += 4)
415     if (*MMI == nullptr)
416       break;
417
418   // If the call had no parameters, do nothing
419   if (MMI == Context.MovVector.begin())
420     return;
421
422   // We are either at the last parameter, or a gap.
423   // Make sure it's not a gap
424   for (; MMI != MME; ++MMI)
425     if (*MMI != nullptr)
426       return;
427
428   Context.UsePush = true;
429   return;
430 }
431
432 bool X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF,
433                                                   MachineBasicBlock::iterator I,
434                                                   const CallContext &Context) {
435   // Ok, we can in fact do the transformation for this call.
436   // Do not remove the FrameSetup instruction, but adjust the parameters.
437   // PEI will end up finalizing the handling of this.
438   MachineBasicBlock::iterator FrameSetup = I;
439   MachineBasicBlock &MBB = *(I->getParent());
440   FrameSetup->getOperand(1).setImm(Context.ExpectedDist);
441
442   DebugLoc DL = I->getDebugLoc();
443   // Now, iterate through the vector in reverse order, and replace the movs
444   // with pushes. MOVmi/MOVmr doesn't have any defs, so no need to
445   // replace uses.
446   for (int Idx = (Context.ExpectedDist / 4) - 1; Idx >= 0; --Idx) {
447     MachineBasicBlock::iterator MOV = *Context.MovVector[Idx];
448     MachineOperand PushOp = MOV->getOperand(X86::AddrNumOperands);
449     if (MOV->getOpcode() == X86::MOV32mi) {
450       unsigned PushOpcode = X86::PUSHi32;
451       // If the operand is a small (8-bit) immediate, we can use a
452       // PUSH instruction with a shorter encoding.
453       // Note that isImm() may fail even though this is a MOVmi, because
454       // the operand can also be a symbol.
455       if (PushOp.isImm()) {
456         int64_t Val = PushOp.getImm();
457         if (isInt<8>(Val))
458           PushOpcode = X86::PUSH32i8;
459       }
460       BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode)).addOperand(PushOp);
461     } else {
462       unsigned int Reg = PushOp.getReg();
463
464       // If PUSHrmm is not slow on this target, try to fold the source of the
465       // push into the instruction.
466       const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
467       bool SlowPUSHrmm = ST.isAtom() || ST.isSLM();
468
469       // Check that this is legal to fold. Right now, we're extremely
470       // conservative about that.
471       MachineInstr *DefMov = nullptr;
472       if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) {
473         MachineInstr *Push =
474             BuildMI(MBB, Context.Call, DL, TII->get(X86::PUSH32rmm));
475
476         unsigned NumOps = DefMov->getDesc().getNumOperands();
477         for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
478           Push->addOperand(DefMov->getOperand(i));
479
480         DefMov->eraseFromParent();
481       } else {
482         BuildMI(MBB, Context.Call, DL, TII->get(X86::PUSH32r))
483             .addReg(Reg)
484             .getInstr();
485       }
486     }
487
488     MBB.erase(MOV);
489   }
490
491   // The stack-pointer copy is no longer used in the call sequences.
492   // There should not be any other users, but we can't commit to that, so:
493   if (MRI->use_empty(Context.SPCopy->getOperand(0).getReg()))
494     Context.SPCopy->eraseFromParent();
495
496   // Once we've done this, we need to make sure PEI doesn't assume a reserved
497   // frame.
498   X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
499   FuncInfo->setHasPushSequences(true);
500
501   return true;
502 }
503
504 MachineInstr *X86CallFrameOptimization::canFoldIntoRegPush(
505     MachineBasicBlock::iterator FrameSetup, unsigned Reg) {
506   // Do an extremely restricted form of load folding.
507   // ISel will often create patterns like:
508   // movl    4(%edi), %eax
509   // movl    8(%edi), %ecx
510   // movl    12(%edi), %edx
511   // movl    %edx, 8(%esp)
512   // movl    %ecx, 4(%esp)
513   // movl    %eax, (%esp)
514   // call
515   // Get rid of those with prejudice.
516   if (!TargetRegisterInfo::isVirtualRegister(Reg))
517     return nullptr;
518
519   // Make sure this is the only use of Reg.
520   if (!MRI->hasOneNonDBGUse(Reg))
521     return nullptr;
522
523   MachineBasicBlock::iterator DefMI = MRI->getVRegDef(Reg);
524
525   // Make sure the def is a MOV from memory.
526   // If the def is an another block, give up.
527   if (DefMI->getOpcode() != X86::MOV32rm ||
528       DefMI->getParent() != FrameSetup->getParent())
529     return nullptr;
530
531   // Make sure we don't have any instructions between DefMI and the
532   // push that make folding the load illegal.
533   for (auto I = DefMI; I != FrameSetup; ++I)
534     if (I->isLoadFoldBarrier())
535       return nullptr;
536
537   return DefMI;
538 }