Add accessors for the PPC 403 bank registers.
[oota-llvm.git] / lib / Target / X86 / X86FloatingPoint.cpp
1 //===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the pass which converts floating point instructions from
11 // pseudo registers into register stack instructions.  This pass uses live
12 // variable information to indicate where the FPn registers are used and their
13 // lifetimes.
14 //
15 // The x87 hardware tracks liveness of the stack registers, so it is necessary
16 // to implement exact liveness tracking between basic blocks. The CFG edges are
17 // partitioned into bundles where the same FP registers must be live in
18 // identical stack positions. Instructions are inserted at the end of each basic
19 // block to rearrange the live registers to match the outgoing bundle.
20 //
21 // This approach avoids splitting critical edges at the potential cost of more
22 // live register shuffling instructions when critical edges are present.
23 //
24 //===----------------------------------------------------------------------===//
25
26 #include "X86.h"
27 #include "X86InstrInfo.h"
28 #include "llvm/ADT/BitVector.h"
29 #include "llvm/ADT/DepthFirstIterator.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/CodeGen/EdgeBundles.h"
36 #include "llvm/CodeGen/MachineFunctionPass.h"
37 #include "llvm/CodeGen/MachineInstrBuilder.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/CodeGen/LivePhysRegs.h"
40 #include "llvm/CodeGen/Passes.h"
41 #include "llvm/IR/InlineAsm.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Target/TargetInstrInfo.h"
46 #include "llvm/Target/TargetMachine.h"
47 #include "llvm/Target/TargetSubtargetInfo.h"
48 #include <algorithm>
49 using namespace llvm;
50
51 #define DEBUG_TYPE "x86-codegen"
52
53 STATISTIC(NumFXCH, "Number of fxch instructions inserted");
54 STATISTIC(NumFP  , "Number of floating point instructions");
55
56 namespace {
57   const unsigned ScratchFPReg = 7;
58
59   struct FPS : public MachineFunctionPass {
60     static char ID;
61     FPS() : MachineFunctionPass(ID) {
62       initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
63       // This is really only to keep valgrind quiet.
64       // The logic in isLive() is too much for it.
65       memset(Stack, 0, sizeof(Stack));
66       memset(RegMap, 0, sizeof(RegMap));
67     }
68
69     void getAnalysisUsage(AnalysisUsage &AU) const override {
70       AU.setPreservesCFG();
71       AU.addRequired<EdgeBundles>();
72       AU.addPreservedID(MachineLoopInfoID);
73       AU.addPreservedID(MachineDominatorsID);
74       MachineFunctionPass::getAnalysisUsage(AU);
75     }
76
77     bool runOnMachineFunction(MachineFunction &MF) override;
78
79     const char *getPassName() const override { return "X86 FP Stackifier"; }
80
81   private:
82     const TargetInstrInfo *TII; // Machine instruction info.
83
84     // Two CFG edges are related if they leave the same block, or enter the same
85     // block. The transitive closure of an edge under this relation is a
86     // LiveBundle. It represents a set of CFG edges where the live FP stack
87     // registers must be allocated identically in the x87 stack.
88     //
89     // A LiveBundle is usually all the edges leaving a block, or all the edges
90     // entering a block, but it can contain more edges if critical edges are
91     // present.
92     //
93     // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
94     // but the exact mapping of FP registers to stack slots is fixed later.
95     struct LiveBundle {
96       // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
97       unsigned Mask;
98
99       // Number of pre-assigned live registers in FixStack. This is 0 when the
100       // stack order has not yet been fixed.
101       unsigned FixCount;
102
103       // Assigned stack order for live-in registers.
104       // FixStack[i] == getStackEntry(i) for all i < FixCount.
105       unsigned char FixStack[8];
106
107       LiveBundle() : Mask(0), FixCount(0) {}
108
109       // Have the live registers been assigned a stack order yet?
110       bool isFixed() const { return !Mask || FixCount; }
111     };
112
113     // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
114     // with no live FP registers.
115     SmallVector<LiveBundle, 8> LiveBundles;
116
117     // The edge bundle analysis provides indices into the LiveBundles vector.
118     EdgeBundles *Bundles;
119
120     // Return a bitmask of FP registers in block's live-in list.
121     static unsigned calcLiveInMask(MachineBasicBlock *MBB) {
122       unsigned Mask = 0;
123       for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
124            E = MBB->livein_end(); I != E; ++I) {
125         unsigned Reg = *I;
126         if (Reg < X86::FP0 || Reg > X86::FP6)
127           continue;
128         Mask |= 1 << (Reg - X86::FP0);
129       }
130       return Mask;
131     }
132
133     // Partition all the CFG edges into LiveBundles.
134     void bundleCFG(MachineFunction &MF);
135
136     MachineBasicBlock *MBB;     // Current basic block
137
138     // The hardware keeps track of how many FP registers are live, so we have
139     // to model that exactly. Usually, each live register corresponds to an
140     // FP<n> register, but when dealing with calls, returns, and inline
141     // assembly, it is sometimes necessary to have live scratch registers.
142     unsigned Stack[8];          // FP<n> Registers in each stack slot...
143     unsigned StackTop;          // The current top of the FP stack.
144
145     enum {
146       NumFPRegs = 8             // Including scratch pseudo-registers.
147     };
148
149     // For each live FP<n> register, point to its Stack[] entry.
150     // The first entries correspond to FP0-FP6, the rest are scratch registers
151     // used when we need slightly different live registers than what the
152     // register allocator thinks.
153     unsigned RegMap[NumFPRegs];
154
155     // Set up our stack model to match the incoming registers to MBB.
156     void setupBlockStack();
157
158     // Shuffle live registers to match the expectations of successor blocks.
159     void finishBlockStack();
160
161 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
162     void dumpStack() const {
163       dbgs() << "Stack contents:";
164       for (unsigned i = 0; i != StackTop; ++i) {
165         dbgs() << " FP" << Stack[i];
166         assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
167       }
168     }
169 #endif
170
171     /// getSlot - Return the stack slot number a particular register number is
172     /// in.
173     unsigned getSlot(unsigned RegNo) const {
174       assert(RegNo < NumFPRegs && "Regno out of range!");
175       return RegMap[RegNo];
176     }
177
178     /// isLive - Is RegNo currently live in the stack?
179     bool isLive(unsigned RegNo) const {
180       unsigned Slot = getSlot(RegNo);
181       return Slot < StackTop && Stack[Slot] == RegNo;
182     }
183
184     /// getStackEntry - Return the X86::FP<n> register in register ST(i).
185     unsigned getStackEntry(unsigned STi) const {
186       if (STi >= StackTop)
187         report_fatal_error("Access past stack top!");
188       return Stack[StackTop-1-STi];
189     }
190
191     /// getSTReg - Return the X86::ST(i) register which contains the specified
192     /// FP<RegNo> register.
193     unsigned getSTReg(unsigned RegNo) const {
194       return StackTop - 1 - getSlot(RegNo) + X86::ST0;
195     }
196
197     // pushReg - Push the specified FP<n> register onto the stack.
198     void pushReg(unsigned Reg) {
199       assert(Reg < NumFPRegs && "Register number out of range!");
200       if (StackTop >= 8)
201         report_fatal_error("Stack overflow!");
202       Stack[StackTop] = Reg;
203       RegMap[Reg] = StackTop++;
204     }
205
206     bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
207     void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
208       DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
209       if (isAtTop(RegNo)) return;
210
211       unsigned STReg = getSTReg(RegNo);
212       unsigned RegOnTop = getStackEntry(0);
213
214       // Swap the slots the regs are in.
215       std::swap(RegMap[RegNo], RegMap[RegOnTop]);
216
217       // Swap stack slot contents.
218       if (RegMap[RegOnTop] >= StackTop)
219         report_fatal_error("Access past stack top!");
220       std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
221
222       // Emit an fxch to update the runtime processors version of the state.
223       BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
224       ++NumFXCH;
225     }
226
227     void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
228       DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
229       unsigned STReg = getSTReg(RegNo);
230       pushReg(AsReg);   // New register on top of stack
231
232       BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
233     }
234
235     /// popStackAfter - Pop the current value off of the top of the FP stack
236     /// after the specified instruction.
237     void popStackAfter(MachineBasicBlock::iterator &I);
238
239     /// freeStackSlotAfter - Free the specified register from the register
240     /// stack, so that it is no longer in a register.  If the register is
241     /// currently at the top of the stack, we just pop the current instruction,
242     /// otherwise we store the current top-of-stack into the specified slot,
243     /// then pop the top of stack.
244     void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
245
246     /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
247     /// instruction.
248     MachineBasicBlock::iterator
249     freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
250
251     /// Adjust the live registers to be the set in Mask.
252     void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
253
254     /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is
255     /// st(0), FP reg FixStack[1] is st(1) etc.
256     void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
257                          MachineBasicBlock::iterator I);
258
259     bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
260
261     void handleCall(MachineBasicBlock::iterator &I);
262     void handleZeroArgFP(MachineBasicBlock::iterator &I);
263     void handleOneArgFP(MachineBasicBlock::iterator &I);
264     void handleOneArgFPRW(MachineBasicBlock::iterator &I);
265     void handleTwoArgFP(MachineBasicBlock::iterator &I);
266     void handleCompareFP(MachineBasicBlock::iterator &I);
267     void handleCondMovFP(MachineBasicBlock::iterator &I);
268     void handleSpecialFP(MachineBasicBlock::iterator &I);
269
270     // Check if a COPY instruction is using FP registers.
271     static bool isFPCopy(MachineInstr *MI) {
272       unsigned DstReg = MI->getOperand(0).getReg();
273       unsigned SrcReg = MI->getOperand(1).getReg();
274
275       return X86::RFP80RegClass.contains(DstReg) ||
276         X86::RFP80RegClass.contains(SrcReg);
277     }
278
279     void setKillFlags(MachineBasicBlock &MBB) const;
280   };
281   char FPS::ID = 0;
282 }
283
284 FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
285
286 /// getFPReg - Return the X86::FPx register number for the specified operand.
287 /// For example, this returns 3 for X86::FP3.
288 static unsigned getFPReg(const MachineOperand &MO) {
289   assert(MO.isReg() && "Expected an FP register!");
290   unsigned Reg = MO.getReg();
291   assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
292   return Reg - X86::FP0;
293 }
294
295 /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
296 /// register references into FP stack references.
297 ///
298 bool FPS::runOnMachineFunction(MachineFunction &MF) {
299   // We only need to run this pass if there are any FP registers used in this
300   // function.  If it is all integer, there is nothing for us to do!
301   bool FPIsUsed = false;
302
303   assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
304   for (unsigned i = 0; i <= 6; ++i)
305     if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
306       FPIsUsed = true;
307       break;
308     }
309
310   // Early exit.
311   if (!FPIsUsed) return false;
312
313   Bundles = &getAnalysis<EdgeBundles>();
314   TII = MF.getSubtarget().getInstrInfo();
315
316   // Prepare cross-MBB liveness.
317   bundleCFG(MF);
318
319   StackTop = 0;
320
321   // Process the function in depth first order so that we process at least one
322   // of the predecessors for every reachable block in the function.
323   SmallPtrSet<MachineBasicBlock*, 8> Processed;
324   MachineBasicBlock *Entry = MF.begin();
325
326   bool Changed = false;
327   for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> >
328          I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
329        I != E; ++I)
330     Changed |= processBasicBlock(MF, **I);
331
332   // Process any unreachable blocks in arbitrary order now.
333   if (MF.size() != Processed.size())
334     for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
335       if (Processed.insert(BB))
336         Changed |= processBasicBlock(MF, *BB);
337
338   LiveBundles.clear();
339
340   return Changed;
341 }
342
343 /// bundleCFG - Scan all the basic blocks to determine consistent live-in and
344 /// live-out sets for the FP registers. Consistent means that the set of
345 /// registers live-out from a block is identical to the live-in set of all
346 /// successors. This is not enforced by the normal live-in lists since
347 /// registers may be implicitly defined, or not used by all successors.
348 void FPS::bundleCFG(MachineFunction &MF) {
349   assert(LiveBundles.empty() && "Stale data in LiveBundles");
350   LiveBundles.resize(Bundles->getNumBundles());
351
352   // Gather the actual live-in masks for all MBBs.
353   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
354     MachineBasicBlock *MBB = I;
355     const unsigned Mask = calcLiveInMask(MBB);
356     if (!Mask)
357       continue;
358     // Update MBB ingoing bundle mask.
359     LiveBundles[Bundles->getBundle(MBB->getNumber(), false)].Mask |= Mask;
360   }
361 }
362
363 /// processBasicBlock - Loop over all of the instructions in the basic block,
364 /// transforming FP instructions into their stack form.
365 ///
366 bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
367   bool Changed = false;
368   MBB = &BB;
369
370   setKillFlags(BB);
371   setupBlockStack();
372
373   for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
374     MachineInstr *MI = I;
375     uint64_t Flags = MI->getDesc().TSFlags;
376
377     unsigned FPInstClass = Flags & X86II::FPTypeMask;
378     if (MI->isInlineAsm())
379       FPInstClass = X86II::SpecialFP;
380
381     if (MI->isCopy() && isFPCopy(MI))
382       FPInstClass = X86II::SpecialFP;
383
384     if (MI->isImplicitDef() &&
385         X86::RFP80RegClass.contains(MI->getOperand(0).getReg()))
386       FPInstClass = X86II::SpecialFP;
387
388     if (MI->isCall())
389       FPInstClass = X86II::SpecialFP;
390
391     if (FPInstClass == X86II::NotFP)
392       continue;  // Efficiently ignore non-fp insts!
393
394     MachineInstr *PrevMI = nullptr;
395     if (I != BB.begin())
396       PrevMI = std::prev(I);
397
398     ++NumFP;  // Keep track of # of pseudo instrs
399     DEBUG(dbgs() << "\nFPInst:\t" << *MI);
400
401     // Get dead variables list now because the MI pointer may be deleted as part
402     // of processing!
403     SmallVector<unsigned, 8> DeadRegs;
404     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
405       const MachineOperand &MO = MI->getOperand(i);
406       if (MO.isReg() && MO.isDead())
407         DeadRegs.push_back(MO.getReg());
408     }
409
410     switch (FPInstClass) {
411     case X86II::ZeroArgFP:  handleZeroArgFP(I); break;
412     case X86II::OneArgFP:   handleOneArgFP(I);  break;  // fstp ST(0)
413     case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
414     case X86II::TwoArgFP:   handleTwoArgFP(I);  break;
415     case X86II::CompareFP:  handleCompareFP(I); break;
416     case X86II::CondMovFP:  handleCondMovFP(I); break;
417     case X86II::SpecialFP:  handleSpecialFP(I); break;
418     default: llvm_unreachable("Unknown FP Type!");
419     }
420
421     // Check to see if any of the values defined by this instruction are dead
422     // after definition.  If so, pop them.
423     for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
424       unsigned Reg = DeadRegs[i];
425       // Check if Reg is live on the stack. An inline-asm register operand that
426       // is in the clobber list and marked dead might not be live on the stack.
427       if (Reg >= X86::FP0 && Reg <= X86::FP6 && isLive(Reg-X86::FP0)) {
428         DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
429         freeStackSlotAfter(I, Reg-X86::FP0);
430       }
431     }
432
433     // Print out all of the instructions expanded to if -debug
434     DEBUG(
435       MachineBasicBlock::iterator PrevI(PrevMI);
436       if (I == PrevI) {
437         dbgs() << "Just deleted pseudo instruction\n";
438       } else {
439         MachineBasicBlock::iterator Start = I;
440         // Rewind to first instruction newly inserted.
441         while (Start != BB.begin() && std::prev(Start) != PrevI) --Start;
442         dbgs() << "Inserted instructions:\n\t";
443         Start->print(dbgs(), &MF.getTarget());
444         while (++Start != std::next(I)) {}
445       }
446       dumpStack();
447     );
448     (void)PrevMI;
449
450     Changed = true;
451   }
452
453   finishBlockStack();
454
455   return Changed;
456 }
457
458 /// setupBlockStack - Use the live bundles to set up our model of the stack
459 /// to match predecessors' live out stack.
460 void FPS::setupBlockStack() {
461   DEBUG(dbgs() << "\nSetting up live-ins for BB#" << MBB->getNumber()
462                << " derived from " << MBB->getName() << ".\n");
463   StackTop = 0;
464   // Get the live-in bundle for MBB.
465   const LiveBundle &Bundle =
466     LiveBundles[Bundles->getBundle(MBB->getNumber(), false)];
467
468   if (!Bundle.Mask) {
469     DEBUG(dbgs() << "Block has no FP live-ins.\n");
470     return;
471   }
472
473   // Depth-first iteration should ensure that we always have an assigned stack.
474   assert(Bundle.isFixed() && "Reached block before any predecessors");
475
476   // Push the fixed live-in registers.
477   for (unsigned i = Bundle.FixCount; i > 0; --i) {
478     MBB->addLiveIn(X86::ST0+i-1);
479     DEBUG(dbgs() << "Live-in st(" << (i-1) << "): %FP"
480                  << unsigned(Bundle.FixStack[i-1]) << '\n');
481     pushReg(Bundle.FixStack[i-1]);
482   }
483
484   // Kill off unwanted live-ins. This can happen with a critical edge.
485   // FIXME: We could keep these live registers around as zombies. They may need
486   // to be revived at the end of a short block. It might save a few instrs.
487   adjustLiveRegs(calcLiveInMask(MBB), MBB->begin());
488   DEBUG(MBB->dump());
489 }
490
491 /// finishBlockStack - Revive live-outs that are implicitly defined out of
492 /// MBB. Shuffle live registers to match the expected fixed stack of any
493 /// predecessors, and ensure that all predecessors are expecting the same
494 /// stack.
495 void FPS::finishBlockStack() {
496   // The RET handling below takes care of return blocks for us.
497   if (MBB->succ_empty())
498     return;
499
500   DEBUG(dbgs() << "Setting up live-outs for BB#" << MBB->getNumber()
501                << " derived from " << MBB->getName() << ".\n");
502
503   // Get MBB's live-out bundle.
504   unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true);
505   LiveBundle &Bundle = LiveBundles[BundleIdx];
506
507   // We may need to kill and define some registers to match successors.
508   // FIXME: This can probably be combined with the shuffle below.
509   MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
510   adjustLiveRegs(Bundle.Mask, Term);
511
512   if (!Bundle.Mask) {
513     DEBUG(dbgs() << "No live-outs.\n");
514     return;
515   }
516
517   // Has the stack order been fixed yet?
518   DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
519   if (Bundle.isFixed()) {
520     DEBUG(dbgs() << "Shuffling stack to match.\n");
521     shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
522   } else {
523     // Not fixed yet, we get to choose.
524     DEBUG(dbgs() << "Fixing stack order now.\n");
525     Bundle.FixCount = StackTop;
526     for (unsigned i = 0; i < StackTop; ++i)
527       Bundle.FixStack[i] = getStackEntry(i);
528   }
529 }
530
531
532 //===----------------------------------------------------------------------===//
533 // Efficient Lookup Table Support
534 //===----------------------------------------------------------------------===//
535
536 namespace {
537   struct TableEntry {
538     uint16_t from;
539     uint16_t to;
540     bool operator<(const TableEntry &TE) const { return from < TE.from; }
541     friend bool operator<(const TableEntry &TE, unsigned V) {
542       return TE.from < V;
543     }
544     friend bool LLVM_ATTRIBUTE_UNUSED operator<(unsigned V,
545                                                 const TableEntry &TE) {
546       return V < TE.from;
547     }
548   };
549 }
550
551 #ifndef NDEBUG
552 static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
553   for (unsigned i = 0; i != NumEntries-1; ++i)
554     if (!(Table[i] < Table[i+1])) return false;
555   return true;
556 }
557 #endif
558
559 static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
560   const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
561   if (I != Table+N && I->from == Opcode)
562     return I->to;
563   return -1;
564 }
565
566 #ifdef NDEBUG
567 #define ASSERT_SORTED(TABLE)
568 #else
569 #define ASSERT_SORTED(TABLE)                                              \
570   { static bool TABLE##Checked = false;                                   \
571     if (!TABLE##Checked) {                                                \
572        assert(TableIsSorted(TABLE, array_lengthof(TABLE)) &&              \
573               "All lookup tables must be sorted for efficient access!");  \
574        TABLE##Checked = true;                                             \
575     }                                                                     \
576   }
577 #endif
578
579 //===----------------------------------------------------------------------===//
580 // Register File -> Register Stack Mapping Methods
581 //===----------------------------------------------------------------------===//
582
583 // OpcodeTable - Sorted map of register instructions to their stack version.
584 // The first element is an register file pseudo instruction, the second is the
585 // concrete X86 instruction which uses the register stack.
586 //
587 static const TableEntry OpcodeTable[] = {
588   { X86::ABS_Fp32     , X86::ABS_F     },
589   { X86::ABS_Fp64     , X86::ABS_F     },
590   { X86::ABS_Fp80     , X86::ABS_F     },
591   { X86::ADD_Fp32m    , X86::ADD_F32m  },
592   { X86::ADD_Fp64m    , X86::ADD_F64m  },
593   { X86::ADD_Fp64m32  , X86::ADD_F32m  },
594   { X86::ADD_Fp80m32  , X86::ADD_F32m  },
595   { X86::ADD_Fp80m64  , X86::ADD_F64m  },
596   { X86::ADD_FpI16m32 , X86::ADD_FI16m },
597   { X86::ADD_FpI16m64 , X86::ADD_FI16m },
598   { X86::ADD_FpI16m80 , X86::ADD_FI16m },
599   { X86::ADD_FpI32m32 , X86::ADD_FI32m },
600   { X86::ADD_FpI32m64 , X86::ADD_FI32m },
601   { X86::ADD_FpI32m80 , X86::ADD_FI32m },
602   { X86::CHS_Fp32     , X86::CHS_F     },
603   { X86::CHS_Fp64     , X86::CHS_F     },
604   { X86::CHS_Fp80     , X86::CHS_F     },
605   { X86::CMOVBE_Fp32  , X86::CMOVBE_F  },
606   { X86::CMOVBE_Fp64  , X86::CMOVBE_F  },
607   { X86::CMOVBE_Fp80  , X86::CMOVBE_F  },
608   { X86::CMOVB_Fp32   , X86::CMOVB_F   },
609   { X86::CMOVB_Fp64   , X86::CMOVB_F  },
610   { X86::CMOVB_Fp80   , X86::CMOVB_F  },
611   { X86::CMOVE_Fp32   , X86::CMOVE_F  },
612   { X86::CMOVE_Fp64   , X86::CMOVE_F   },
613   { X86::CMOVE_Fp80   , X86::CMOVE_F   },
614   { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
615   { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
616   { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
617   { X86::CMOVNB_Fp32  , X86::CMOVNB_F  },
618   { X86::CMOVNB_Fp64  , X86::CMOVNB_F  },
619   { X86::CMOVNB_Fp80  , X86::CMOVNB_F  },
620   { X86::CMOVNE_Fp32  , X86::CMOVNE_F  },
621   { X86::CMOVNE_Fp64  , X86::CMOVNE_F  },
622   { X86::CMOVNE_Fp80  , X86::CMOVNE_F  },
623   { X86::CMOVNP_Fp32  , X86::CMOVNP_F  },
624   { X86::CMOVNP_Fp64  , X86::CMOVNP_F  },
625   { X86::CMOVNP_Fp80  , X86::CMOVNP_F  },
626   { X86::CMOVP_Fp32   , X86::CMOVP_F   },
627   { X86::CMOVP_Fp64   , X86::CMOVP_F   },
628   { X86::CMOVP_Fp80   , X86::CMOVP_F   },
629   { X86::COS_Fp32     , X86::COS_F     },
630   { X86::COS_Fp64     , X86::COS_F     },
631   { X86::COS_Fp80     , X86::COS_F     },
632   { X86::DIVR_Fp32m   , X86::DIVR_F32m },
633   { X86::DIVR_Fp64m   , X86::DIVR_F64m },
634   { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
635   { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
636   { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
637   { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
638   { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
639   { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
640   { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
641   { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
642   { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
643   { X86::DIV_Fp32m    , X86::DIV_F32m  },
644   { X86::DIV_Fp64m    , X86::DIV_F64m  },
645   { X86::DIV_Fp64m32  , X86::DIV_F32m  },
646   { X86::DIV_Fp80m32  , X86::DIV_F32m  },
647   { X86::DIV_Fp80m64  , X86::DIV_F64m  },
648   { X86::DIV_FpI16m32 , X86::DIV_FI16m },
649   { X86::DIV_FpI16m64 , X86::DIV_FI16m },
650   { X86::DIV_FpI16m80 , X86::DIV_FI16m },
651   { X86::DIV_FpI32m32 , X86::DIV_FI32m },
652   { X86::DIV_FpI32m64 , X86::DIV_FI32m },
653   { X86::DIV_FpI32m80 , X86::DIV_FI32m },
654   { X86::ILD_Fp16m32  , X86::ILD_F16m  },
655   { X86::ILD_Fp16m64  , X86::ILD_F16m  },
656   { X86::ILD_Fp16m80  , X86::ILD_F16m  },
657   { X86::ILD_Fp32m32  , X86::ILD_F32m  },
658   { X86::ILD_Fp32m64  , X86::ILD_F32m  },
659   { X86::ILD_Fp32m80  , X86::ILD_F32m  },
660   { X86::ILD_Fp64m32  , X86::ILD_F64m  },
661   { X86::ILD_Fp64m64  , X86::ILD_F64m  },
662   { X86::ILD_Fp64m80  , X86::ILD_F64m  },
663   { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
664   { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
665   { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
666   { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
667   { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
668   { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
669   { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
670   { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
671   { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
672   { X86::IST_Fp16m32  , X86::IST_F16m  },
673   { X86::IST_Fp16m64  , X86::IST_F16m  },
674   { X86::IST_Fp16m80  , X86::IST_F16m  },
675   { X86::IST_Fp32m32  , X86::IST_F32m  },
676   { X86::IST_Fp32m64  , X86::IST_F32m  },
677   { X86::IST_Fp32m80  , X86::IST_F32m  },
678   { X86::IST_Fp64m32  , X86::IST_FP64m },
679   { X86::IST_Fp64m64  , X86::IST_FP64m },
680   { X86::IST_Fp64m80  , X86::IST_FP64m },
681   { X86::LD_Fp032     , X86::LD_F0     },
682   { X86::LD_Fp064     , X86::LD_F0     },
683   { X86::LD_Fp080     , X86::LD_F0     },
684   { X86::LD_Fp132     , X86::LD_F1     },
685   { X86::LD_Fp164     , X86::LD_F1     },
686   { X86::LD_Fp180     , X86::LD_F1     },
687   { X86::LD_Fp32m     , X86::LD_F32m   },
688   { X86::LD_Fp32m64   , X86::LD_F32m   },
689   { X86::LD_Fp32m80   , X86::LD_F32m   },
690   { X86::LD_Fp64m     , X86::LD_F64m   },
691   { X86::LD_Fp64m80   , X86::LD_F64m   },
692   { X86::LD_Fp80m     , X86::LD_F80m   },
693   { X86::MUL_Fp32m    , X86::MUL_F32m  },
694   { X86::MUL_Fp64m    , X86::MUL_F64m  },
695   { X86::MUL_Fp64m32  , X86::MUL_F32m  },
696   { X86::MUL_Fp80m32  , X86::MUL_F32m  },
697   { X86::MUL_Fp80m64  , X86::MUL_F64m  },
698   { X86::MUL_FpI16m32 , X86::MUL_FI16m },
699   { X86::MUL_FpI16m64 , X86::MUL_FI16m },
700   { X86::MUL_FpI16m80 , X86::MUL_FI16m },
701   { X86::MUL_FpI32m32 , X86::MUL_FI32m },
702   { X86::MUL_FpI32m64 , X86::MUL_FI32m },
703   { X86::MUL_FpI32m80 , X86::MUL_FI32m },
704   { X86::SIN_Fp32     , X86::SIN_F     },
705   { X86::SIN_Fp64     , X86::SIN_F     },
706   { X86::SIN_Fp80     , X86::SIN_F     },
707   { X86::SQRT_Fp32    , X86::SQRT_F    },
708   { X86::SQRT_Fp64    , X86::SQRT_F    },
709   { X86::SQRT_Fp80    , X86::SQRT_F    },
710   { X86::ST_Fp32m     , X86::ST_F32m   },
711   { X86::ST_Fp64m     , X86::ST_F64m   },
712   { X86::ST_Fp64m32   , X86::ST_F32m   },
713   { X86::ST_Fp80m32   , X86::ST_F32m   },
714   { X86::ST_Fp80m64   , X86::ST_F64m   },
715   { X86::ST_FpP80m    , X86::ST_FP80m  },
716   { X86::SUBR_Fp32m   , X86::SUBR_F32m },
717   { X86::SUBR_Fp64m   , X86::SUBR_F64m },
718   { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
719   { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
720   { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
721   { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
722   { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
723   { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
724   { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
725   { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
726   { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
727   { X86::SUB_Fp32m    , X86::SUB_F32m  },
728   { X86::SUB_Fp64m    , X86::SUB_F64m  },
729   { X86::SUB_Fp64m32  , X86::SUB_F32m  },
730   { X86::SUB_Fp80m32  , X86::SUB_F32m  },
731   { X86::SUB_Fp80m64  , X86::SUB_F64m  },
732   { X86::SUB_FpI16m32 , X86::SUB_FI16m },
733   { X86::SUB_FpI16m64 , X86::SUB_FI16m },
734   { X86::SUB_FpI16m80 , X86::SUB_FI16m },
735   { X86::SUB_FpI32m32 , X86::SUB_FI32m },
736   { X86::SUB_FpI32m64 , X86::SUB_FI32m },
737   { X86::SUB_FpI32m80 , X86::SUB_FI32m },
738   { X86::TST_Fp32     , X86::TST_F     },
739   { X86::TST_Fp64     , X86::TST_F     },
740   { X86::TST_Fp80     , X86::TST_F     },
741   { X86::UCOM_FpIr32  , X86::UCOM_FIr  },
742   { X86::UCOM_FpIr64  , X86::UCOM_FIr  },
743   { X86::UCOM_FpIr80  , X86::UCOM_FIr  },
744   { X86::UCOM_Fpr32   , X86::UCOM_Fr   },
745   { X86::UCOM_Fpr64   , X86::UCOM_Fr   },
746   { X86::UCOM_Fpr80   , X86::UCOM_Fr   },
747 };
748
749 static unsigned getConcreteOpcode(unsigned Opcode) {
750   ASSERT_SORTED(OpcodeTable);
751   int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
752   assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
753   return Opc;
754 }
755
756 //===----------------------------------------------------------------------===//
757 // Helper Methods
758 //===----------------------------------------------------------------------===//
759
760 // PopTable - Sorted map of instructions to their popping version.  The first
761 // element is an instruction, the second is the version which pops.
762 //
763 static const TableEntry PopTable[] = {
764   { X86::ADD_FrST0 , X86::ADD_FPrST0  },
765
766   { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
767   { X86::DIV_FrST0 , X86::DIV_FPrST0  },
768
769   { X86::IST_F16m  , X86::IST_FP16m   },
770   { X86::IST_F32m  , X86::IST_FP32m   },
771
772   { X86::MUL_FrST0 , X86::MUL_FPrST0  },
773
774   { X86::ST_F32m   , X86::ST_FP32m    },
775   { X86::ST_F64m   , X86::ST_FP64m    },
776   { X86::ST_Frr    , X86::ST_FPrr     },
777
778   { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
779   { X86::SUB_FrST0 , X86::SUB_FPrST0  },
780
781   { X86::UCOM_FIr  , X86::UCOM_FIPr   },
782
783   { X86::UCOM_FPr  , X86::UCOM_FPPr   },
784   { X86::UCOM_Fr   , X86::UCOM_FPr    },
785 };
786
787 /// popStackAfter - Pop the current value off of the top of the FP stack after
788 /// the specified instruction.  This attempts to be sneaky and combine the pop
789 /// into the instruction itself if possible.  The iterator is left pointing to
790 /// the last instruction, be it a new pop instruction inserted, or the old
791 /// instruction if it was modified in place.
792 ///
793 void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
794   MachineInstr* MI = I;
795   DebugLoc dl = MI->getDebugLoc();
796   ASSERT_SORTED(PopTable);
797   if (StackTop == 0)
798     report_fatal_error("Cannot pop empty stack!");
799   RegMap[Stack[--StackTop]] = ~0;     // Update state
800
801   // Check to see if there is a popping version of this instruction...
802   int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
803   if (Opcode != -1) {
804     I->setDesc(TII->get(Opcode));
805     if (Opcode == X86::UCOM_FPPr)
806       I->RemoveOperand(0);
807   } else {    // Insert an explicit pop
808     I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
809   }
810 }
811
812 /// freeStackSlotAfter - Free the specified register from the register stack, so
813 /// that it is no longer in a register.  If the register is currently at the top
814 /// of the stack, we just pop the current instruction, otherwise we store the
815 /// current top-of-stack into the specified slot, then pop the top of stack.
816 void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
817   if (getStackEntry(0) == FPRegNo) {  // already at the top of stack? easy.
818     popStackAfter(I);
819     return;
820   }
821
822   // Otherwise, store the top of stack into the dead slot, killing the operand
823   // without having to add in an explicit xchg then pop.
824   //
825   I = freeStackSlotBefore(++I, FPRegNo);
826 }
827
828 /// freeStackSlotBefore - Free the specified register without trying any
829 /// folding.
830 MachineBasicBlock::iterator
831 FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
832   unsigned STReg    = getSTReg(FPRegNo);
833   unsigned OldSlot  = getSlot(FPRegNo);
834   unsigned TopReg   = Stack[StackTop-1];
835   Stack[OldSlot]    = TopReg;
836   RegMap[TopReg]    = OldSlot;
837   RegMap[FPRegNo]   = ~0;
838   Stack[--StackTop] = ~0;
839   return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr)).addReg(STReg);
840 }
841
842 /// adjustLiveRegs - Kill and revive registers such that exactly the FP
843 /// registers with a bit in Mask are live.
844 void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
845   unsigned Defs = Mask;
846   unsigned Kills = 0;
847   for (unsigned i = 0; i < StackTop; ++i) {
848     unsigned RegNo = Stack[i];
849     if (!(Defs & (1 << RegNo)))
850       // This register is live, but we don't want it.
851       Kills |= (1 << RegNo);
852     else
853       // We don't need to imp-def this live register.
854       Defs &= ~(1 << RegNo);
855   }
856   assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
857
858   // Produce implicit-defs for free by using killed registers.
859   while (Kills && Defs) {
860     unsigned KReg = countTrailingZeros(Kills);
861     unsigned DReg = countTrailingZeros(Defs);
862     DEBUG(dbgs() << "Renaming %FP" << KReg << " as imp %FP" << DReg << "\n");
863     std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
864     std::swap(RegMap[KReg], RegMap[DReg]);
865     Kills &= ~(1 << KReg);
866     Defs &= ~(1 << DReg);
867   }
868
869   // Kill registers by popping.
870   if (Kills && I != MBB->begin()) {
871     MachineBasicBlock::iterator I2 = std::prev(I);
872     while (StackTop) {
873       unsigned KReg = getStackEntry(0);
874       if (!(Kills & (1 << KReg)))
875         break;
876       DEBUG(dbgs() << "Popping %FP" << KReg << "\n");
877       popStackAfter(I2);
878       Kills &= ~(1 << KReg);
879     }
880   }
881
882   // Manually kill the rest.
883   while (Kills) {
884     unsigned KReg = countTrailingZeros(Kills);
885     DEBUG(dbgs() << "Killing %FP" << KReg << "\n");
886     freeStackSlotBefore(I, KReg);
887     Kills &= ~(1 << KReg);
888   }
889
890   // Load zeros for all the imp-defs.
891   while(Defs) {
892     unsigned DReg = countTrailingZeros(Defs);
893     DEBUG(dbgs() << "Defining %FP" << DReg << " as 0\n");
894     BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
895     pushReg(DReg);
896     Defs &= ~(1 << DReg);
897   }
898
899   // Now we should have the correct registers live.
900   DEBUG(dumpStack());
901   assert(StackTop == CountPopulation_32(Mask) && "Live count mismatch");
902 }
903
904 /// shuffleStackTop - emit fxch instructions before I to shuffle the top
905 /// FixCount entries into the order given by FixStack.
906 /// FIXME: Is there a better algorithm than insertion sort?
907 void FPS::shuffleStackTop(const unsigned char *FixStack,
908                           unsigned FixCount,
909                           MachineBasicBlock::iterator I) {
910   // Move items into place, starting from the desired stack bottom.
911   while (FixCount--) {
912     // Old register at position FixCount.
913     unsigned OldReg = getStackEntry(FixCount);
914     // Desired register at position FixCount.
915     unsigned Reg = FixStack[FixCount];
916     if (Reg == OldReg)
917       continue;
918     // (Reg st0) (OldReg st0) = (Reg OldReg st0)
919     moveToTop(Reg, I);
920     if (FixCount > 0)
921       moveToTop(OldReg, I);
922   }
923   DEBUG(dumpStack());
924 }
925
926
927 //===----------------------------------------------------------------------===//
928 // Instruction transformation implementation
929 //===----------------------------------------------------------------------===//
930
931 void FPS::handleCall(MachineBasicBlock::iterator &I) {
932   unsigned STReturns = 0;
933
934   for (const auto &MO : I->operands()) {
935     if (!MO.isReg())
936       continue;
937
938     unsigned R = MO.getReg() - X86::FP0;
939
940     if (R < 8) {
941       assert(MO.isDef() && MO.isImplicit());
942       STReturns |= 1 << R;
943     }
944   }
945
946   unsigned N = CountTrailingOnes_32(STReturns);
947
948   // FP registers used for function return must be consecutive starting at
949   // FP0.
950   assert(STReturns == 0 || (isMask_32(STReturns) && N <= 2));
951
952   for (unsigned I = 0; I < N; ++I)
953     pushReg(N - I - 1);
954 }
955
956 /// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem>
957 ///
958 void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
959   MachineInstr *MI = I;
960   unsigned DestReg = getFPReg(MI->getOperand(0));
961
962   // Change from the pseudo instruction to the concrete instruction.
963   MI->RemoveOperand(0);   // Remove the explicit ST(0) operand
964   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
965
966   // Result gets pushed on the stack.
967   pushReg(DestReg);
968 }
969
970 /// handleOneArgFP - fst <mem>, ST(0)
971 ///
972 void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
973   MachineInstr *MI = I;
974   unsigned NumOps = MI->getDesc().getNumOperands();
975   assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
976          "Can only handle fst* & ftst instructions!");
977
978   // Is this the last use of the source register?
979   unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
980   bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
981
982   // FISTP64m is strange because there isn't a non-popping versions.
983   // If we have one _and_ we don't want to pop the operand, duplicate the value
984   // on the stack instead of moving it.  This ensure that popping the value is
985   // always ok.
986   // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
987   //
988   if (!KillsSrc &&
989       (MI->getOpcode() == X86::IST_Fp64m32 ||
990        MI->getOpcode() == X86::ISTT_Fp16m32 ||
991        MI->getOpcode() == X86::ISTT_Fp32m32 ||
992        MI->getOpcode() == X86::ISTT_Fp64m32 ||
993        MI->getOpcode() == X86::IST_Fp64m64 ||
994        MI->getOpcode() == X86::ISTT_Fp16m64 ||
995        MI->getOpcode() == X86::ISTT_Fp32m64 ||
996        MI->getOpcode() == X86::ISTT_Fp64m64 ||
997        MI->getOpcode() == X86::IST_Fp64m80 ||
998        MI->getOpcode() == X86::ISTT_Fp16m80 ||
999        MI->getOpcode() == X86::ISTT_Fp32m80 ||
1000        MI->getOpcode() == X86::ISTT_Fp64m80 ||
1001        MI->getOpcode() == X86::ST_FpP80m)) {
1002     duplicateToTop(Reg, ScratchFPReg, I);
1003   } else {
1004     moveToTop(Reg, I);            // Move to the top of the stack...
1005   }
1006
1007   // Convert from the pseudo instruction to the concrete instruction.
1008   MI->RemoveOperand(NumOps-1);    // Remove explicit ST(0) operand
1009   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1010
1011   if (MI->getOpcode() == X86::IST_FP64m ||
1012       MI->getOpcode() == X86::ISTT_FP16m ||
1013       MI->getOpcode() == X86::ISTT_FP32m ||
1014       MI->getOpcode() == X86::ISTT_FP64m ||
1015       MI->getOpcode() == X86::ST_FP80m) {
1016     if (StackTop == 0)
1017       report_fatal_error("Stack empty??");
1018     --StackTop;
1019   } else if (KillsSrc) { // Last use of operand?
1020     popStackAfter(I);
1021   }
1022 }
1023
1024
1025 /// handleOneArgFPRW: Handle instructions that read from the top of stack and
1026 /// replace the value with a newly computed value.  These instructions may have
1027 /// non-fp operands after their FP operands.
1028 ///
1029 ///  Examples:
1030 ///     R1 = fchs R2
1031 ///     R1 = fadd R2, [mem]
1032 ///
1033 void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
1034   MachineInstr *MI = I;
1035 #ifndef NDEBUG
1036   unsigned NumOps = MI->getDesc().getNumOperands();
1037   assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
1038 #endif
1039
1040   // Is this the last use of the source register?
1041   unsigned Reg = getFPReg(MI->getOperand(1));
1042   bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
1043
1044   if (KillsSrc) {
1045     // If this is the last use of the source register, just make sure it's on
1046     // the top of the stack.
1047     moveToTop(Reg, I);
1048     if (StackTop == 0)
1049       report_fatal_error("Stack cannot be empty!");
1050     --StackTop;
1051     pushReg(getFPReg(MI->getOperand(0)));
1052   } else {
1053     // If this is not the last use of the source register, _copy_ it to the top
1054     // of the stack.
1055     duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
1056   }
1057
1058   // Change from the pseudo instruction to the concrete instruction.
1059   MI->RemoveOperand(1);   // Drop the source operand.
1060   MI->RemoveOperand(0);   // Drop the destination operand.
1061   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1062 }
1063
1064
1065 //===----------------------------------------------------------------------===//
1066 // Define tables of various ways to map pseudo instructions
1067 //
1068
1069 // ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i)
1070 static const TableEntry ForwardST0Table[] = {
1071   { X86::ADD_Fp32  , X86::ADD_FST0r },
1072   { X86::ADD_Fp64  , X86::ADD_FST0r },
1073   { X86::ADD_Fp80  , X86::ADD_FST0r },
1074   { X86::DIV_Fp32  , X86::DIV_FST0r },
1075   { X86::DIV_Fp64  , X86::DIV_FST0r },
1076   { X86::DIV_Fp80  , X86::DIV_FST0r },
1077   { X86::MUL_Fp32  , X86::MUL_FST0r },
1078   { X86::MUL_Fp64  , X86::MUL_FST0r },
1079   { X86::MUL_Fp80  , X86::MUL_FST0r },
1080   { X86::SUB_Fp32  , X86::SUB_FST0r },
1081   { X86::SUB_Fp64  , X86::SUB_FST0r },
1082   { X86::SUB_Fp80  , X86::SUB_FST0r },
1083 };
1084
1085 // ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0)
1086 static const TableEntry ReverseST0Table[] = {
1087   { X86::ADD_Fp32  , X86::ADD_FST0r  },   // commutative
1088   { X86::ADD_Fp64  , X86::ADD_FST0r  },   // commutative
1089   { X86::ADD_Fp80  , X86::ADD_FST0r  },   // commutative
1090   { X86::DIV_Fp32  , X86::DIVR_FST0r },
1091   { X86::DIV_Fp64  , X86::DIVR_FST0r },
1092   { X86::DIV_Fp80  , X86::DIVR_FST0r },
1093   { X86::MUL_Fp32  , X86::MUL_FST0r  },   // commutative
1094   { X86::MUL_Fp64  , X86::MUL_FST0r  },   // commutative
1095   { X86::MUL_Fp80  , X86::MUL_FST0r  },   // commutative
1096   { X86::SUB_Fp32  , X86::SUBR_FST0r },
1097   { X86::SUB_Fp64  , X86::SUBR_FST0r },
1098   { X86::SUB_Fp80  , X86::SUBR_FST0r },
1099 };
1100
1101 // ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i)
1102 static const TableEntry ForwardSTiTable[] = {
1103   { X86::ADD_Fp32  , X86::ADD_FrST0  },   // commutative
1104   { X86::ADD_Fp64  , X86::ADD_FrST0  },   // commutative
1105   { X86::ADD_Fp80  , X86::ADD_FrST0  },   // commutative
1106   { X86::DIV_Fp32  , X86::DIVR_FrST0 },
1107   { X86::DIV_Fp64  , X86::DIVR_FrST0 },
1108   { X86::DIV_Fp80  , X86::DIVR_FrST0 },
1109   { X86::MUL_Fp32  , X86::MUL_FrST0  },   // commutative
1110   { X86::MUL_Fp64  , X86::MUL_FrST0  },   // commutative
1111   { X86::MUL_Fp80  , X86::MUL_FrST0  },   // commutative
1112   { X86::SUB_Fp32  , X86::SUBR_FrST0 },
1113   { X86::SUB_Fp64  , X86::SUBR_FrST0 },
1114   { X86::SUB_Fp80  , X86::SUBR_FrST0 },
1115 };
1116
1117 // ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0)
1118 static const TableEntry ReverseSTiTable[] = {
1119   { X86::ADD_Fp32  , X86::ADD_FrST0 },
1120   { X86::ADD_Fp64  , X86::ADD_FrST0 },
1121   { X86::ADD_Fp80  , X86::ADD_FrST0 },
1122   { X86::DIV_Fp32  , X86::DIV_FrST0 },
1123   { X86::DIV_Fp64  , X86::DIV_FrST0 },
1124   { X86::DIV_Fp80  , X86::DIV_FrST0 },
1125   { X86::MUL_Fp32  , X86::MUL_FrST0 },
1126   { X86::MUL_Fp64  , X86::MUL_FrST0 },
1127   { X86::MUL_Fp80  , X86::MUL_FrST0 },
1128   { X86::SUB_Fp32  , X86::SUB_FrST0 },
1129   { X86::SUB_Fp64  , X86::SUB_FrST0 },
1130   { X86::SUB_Fp80  , X86::SUB_FrST0 },
1131 };
1132
1133
1134 /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
1135 /// instructions which need to be simplified and possibly transformed.
1136 ///
1137 /// Result: ST(0) = fsub  ST(0), ST(i)
1138 ///         ST(i) = fsub  ST(0), ST(i)
1139 ///         ST(0) = fsubr ST(0), ST(i)
1140 ///         ST(i) = fsubr ST(0), ST(i)
1141 ///
1142 void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
1143   ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1144   ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1145   MachineInstr *MI = I;
1146
1147   unsigned NumOperands = MI->getDesc().getNumOperands();
1148   assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
1149   unsigned Dest = getFPReg(MI->getOperand(0));
1150   unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1151   unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
1152   bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1153   bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
1154   DebugLoc dl = MI->getDebugLoc();
1155
1156   unsigned TOS = getStackEntry(0);
1157
1158   // One of our operands must be on the top of the stack.  If neither is yet, we
1159   // need to move one.
1160   if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS?
1161     // We can choose to move either operand to the top of the stack.  If one of
1162     // the operands is killed by this instruction, we want that one so that we
1163     // can update right on top of the old version.
1164     if (KillsOp0) {
1165       moveToTop(Op0, I);         // Move dead operand to TOS.
1166       TOS = Op0;
1167     } else if (KillsOp1) {
1168       moveToTop(Op1, I);
1169       TOS = Op1;
1170     } else {
1171       // All of the operands are live after this instruction executes, so we
1172       // cannot update on top of any operand.  Because of this, we must
1173       // duplicate one of the stack elements to the top.  It doesn't matter
1174       // which one we pick.
1175       //
1176       duplicateToTop(Op0, Dest, I);
1177       Op0 = TOS = Dest;
1178       KillsOp0 = true;
1179     }
1180   } else if (!KillsOp0 && !KillsOp1) {
1181     // If we DO have one of our operands at the top of the stack, but we don't
1182     // have a dead operand, we must duplicate one of the operands to a new slot
1183     // on the stack.
1184     duplicateToTop(Op0, Dest, I);
1185     Op0 = TOS = Dest;
1186     KillsOp0 = true;
1187   }
1188
1189   // Now we know that one of our operands is on the top of the stack, and at
1190   // least one of our operands is killed by this instruction.
1191   assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
1192          "Stack conditions not set up right!");
1193
1194   // We decide which form to use based on what is on the top of the stack, and
1195   // which operand is killed by this instruction.
1196   const TableEntry *InstTable;
1197   bool isForward = TOS == Op0;
1198   bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
1199   if (updateST0) {
1200     if (isForward)
1201       InstTable = ForwardST0Table;
1202     else
1203       InstTable = ReverseST0Table;
1204   } else {
1205     if (isForward)
1206       InstTable = ForwardSTiTable;
1207     else
1208       InstTable = ReverseSTiTable;
1209   }
1210
1211   int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
1212                       MI->getOpcode());
1213   assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
1214
1215   // NotTOS - The register which is not on the top of stack...
1216   unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
1217
1218   // Replace the old instruction with a new instruction
1219   MBB->remove(I++);
1220   I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
1221
1222   // If both operands are killed, pop one off of the stack in addition to
1223   // overwriting the other one.
1224   if (KillsOp0 && KillsOp1 && Op0 != Op1) {
1225     assert(!updateST0 && "Should have updated other operand!");
1226     popStackAfter(I);   // Pop the top of stack
1227   }
1228
1229   // Update stack information so that we know the destination register is now on
1230   // the stack.
1231   unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
1232   assert(UpdatedSlot < StackTop && Dest < 7);
1233   Stack[UpdatedSlot]   = Dest;
1234   RegMap[Dest]         = UpdatedSlot;
1235   MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
1236 }
1237
1238 /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
1239 /// register arguments and no explicit destinations.
1240 ///
1241 void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
1242   ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1243   ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1244   MachineInstr *MI = I;
1245
1246   unsigned NumOperands = MI->getDesc().getNumOperands();
1247   assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
1248   unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1249   unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
1250   bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1251   bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
1252
1253   // Make sure the first operand is on the top of stack, the other one can be
1254   // anywhere.
1255   moveToTop(Op0, I);
1256
1257   // Change from the pseudo instruction to the concrete instruction.
1258   MI->getOperand(0).setReg(getSTReg(Op1));
1259   MI->RemoveOperand(1);
1260   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1261
1262   // If any of the operands are killed by this instruction, free them.
1263   if (KillsOp0) freeStackSlotAfter(I, Op0);
1264   if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
1265 }
1266
1267 /// handleCondMovFP - Handle two address conditional move instructions.  These
1268 /// instructions move a st(i) register to st(0) iff a condition is true.  These
1269 /// instructions require that the first operand is at the top of the stack, but
1270 /// otherwise don't modify the stack at all.
1271 void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
1272   MachineInstr *MI = I;
1273
1274   unsigned Op0 = getFPReg(MI->getOperand(0));
1275   unsigned Op1 = getFPReg(MI->getOperand(2));
1276   bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
1277
1278   // The first operand *must* be on the top of the stack.
1279   moveToTop(Op0, I);
1280
1281   // Change the second operand to the stack register that the operand is in.
1282   // Change from the pseudo instruction to the concrete instruction.
1283   MI->RemoveOperand(0);
1284   MI->RemoveOperand(1);
1285   MI->getOperand(0).setReg(getSTReg(Op1));
1286   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1287
1288   // If we kill the second operand, make sure to pop it from the stack.
1289   if (Op0 != Op1 && KillsOp1) {
1290     // Get this value off of the register stack.
1291     freeStackSlotAfter(I, Op1);
1292   }
1293 }
1294
1295
1296 /// handleSpecialFP - Handle special instructions which behave unlike other
1297 /// floating point instructions.  This is primarily intended for use by pseudo
1298 /// instructions.
1299 ///
1300 void FPS::handleSpecialFP(MachineBasicBlock::iterator &Inst) {
1301   MachineInstr *MI = Inst;
1302
1303   if (MI->isCall()) {
1304     handleCall(Inst);
1305     return;
1306   }
1307
1308   switch (MI->getOpcode()) {
1309   default: llvm_unreachable("Unknown SpecialFP instruction!");
1310   case TargetOpcode::COPY: {
1311     // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP.
1312     const MachineOperand &MO1 = MI->getOperand(1);
1313     const MachineOperand &MO0 = MI->getOperand(0);
1314     bool KillsSrc = MI->killsRegister(MO1.getReg());
1315
1316     // FP <- FP copy.
1317     unsigned DstFP = getFPReg(MO0);
1318     unsigned SrcFP = getFPReg(MO1);
1319     assert(isLive(SrcFP) && "Cannot copy dead register");
1320     if (KillsSrc) {
1321       // If the input operand is killed, we can just change the owner of the
1322       // incoming stack slot into the result.
1323       unsigned Slot = getSlot(SrcFP);
1324       Stack[Slot] = DstFP;
1325       RegMap[DstFP] = Slot;
1326     } else {
1327       // For COPY we just duplicate the specified value to a new stack slot.
1328       // This could be made better, but would require substantial changes.
1329       duplicateToTop(SrcFP, DstFP, Inst);
1330     }
1331     break;
1332   }
1333
1334   case TargetOpcode::IMPLICIT_DEF: {
1335     // All FP registers must be explicitly defined, so load a 0 instead.
1336     unsigned Reg = MI->getOperand(0).getReg() - X86::FP0;
1337     DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n');
1338     BuildMI(*MBB, Inst, MI->getDebugLoc(), TII->get(X86::LD_F0));
1339     pushReg(Reg);
1340     break;
1341   }
1342
1343   case TargetOpcode::INLINEASM: {
1344     // The inline asm MachineInstr currently only *uses* FP registers for the
1345     // 'f' constraint.  These should be turned into the current ST(x) register
1346     // in the machine instr.
1347     //
1348     // There are special rules for x87 inline assembly. The compiler must know
1349     // exactly how many registers are popped and pushed implicitly by the asm.
1350     // Otherwise it is not possible to restore the stack state after the inline
1351     // asm.
1352     //
1353     // There are 3 kinds of input operands:
1354     //
1355     // 1. Popped inputs. These must appear at the stack top in ST0-STn. A
1356     //    popped input operand must be in a fixed stack slot, and it is either
1357     //    tied to an output operand, or in the clobber list. The MI has ST use
1358     //    and def operands for these inputs.
1359     //
1360     // 2. Fixed inputs. These inputs appear in fixed stack slots, but are
1361     //    preserved by the inline asm. The fixed stack slots must be STn-STm
1362     //    following the popped inputs. A fixed input operand cannot be tied to
1363     //    an output or appear in the clobber list. The MI has ST use operands
1364     //    and no defs for these inputs.
1365     //
1366     // 3. Preserved inputs. These inputs use the "f" constraint which is
1367     //    represented as an FP register. The inline asm won't change these
1368     //    stack slots.
1369     //
1370     // Outputs must be in ST registers, FP outputs are not allowed. Clobbered
1371     // registers do not count as output operands. The inline asm changes the
1372     // stack as if it popped all the popped inputs and then pushed all the
1373     // output operands.
1374
1375     // Scan the assembly for ST registers used, defined and clobbered. We can
1376     // only tell clobbers from defs by looking at the asm descriptor.
1377     unsigned STUses = 0, STDefs = 0, STClobbers = 0, STDeadDefs = 0;
1378     unsigned NumOps = 0;
1379     SmallSet<unsigned, 1> FRegIdx;
1380     unsigned RCID;
1381
1382     for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands();
1383          i != e && MI->getOperand(i).isImm(); i += 1 + NumOps) {
1384       unsigned Flags = MI->getOperand(i).getImm();
1385
1386       NumOps = InlineAsm::getNumOperandRegisters(Flags);
1387       if (NumOps != 1)
1388         continue;
1389       const MachineOperand &MO = MI->getOperand(i + 1);
1390       if (!MO.isReg())
1391         continue;
1392       unsigned STReg = MO.getReg() - X86::FP0;
1393       if (STReg >= 8)
1394         continue;
1395
1396       // If the flag has a register class constraint, this must be an operand
1397       // with constraint "f". Record its index and continue.
1398       if (InlineAsm::hasRegClassConstraint(Flags, RCID)) {
1399         FRegIdx.insert(i + 1);
1400         continue;
1401       }
1402
1403       switch (InlineAsm::getKind(Flags)) {
1404       case InlineAsm::Kind_RegUse:
1405         STUses |= (1u << STReg);
1406         break;
1407       case InlineAsm::Kind_RegDef:
1408       case InlineAsm::Kind_RegDefEarlyClobber:
1409         STDefs |= (1u << STReg);
1410         if (MO.isDead())
1411           STDeadDefs |= (1u << STReg);
1412         break;
1413       case InlineAsm::Kind_Clobber:
1414         STClobbers |= (1u << STReg);
1415         break;
1416       default:
1417         break;
1418       }
1419     }
1420
1421     if (STUses && !isMask_32(STUses))
1422       MI->emitError("fixed input regs must be last on the x87 stack");
1423     unsigned NumSTUses = CountTrailingOnes_32(STUses);
1424
1425     // Defs must be contiguous from the stack top. ST0-STn.
1426     if (STDefs && !isMask_32(STDefs)) {
1427       MI->emitError("output regs must be last on the x87 stack");
1428       STDefs = NextPowerOf2(STDefs) - 1;
1429     }
1430     unsigned NumSTDefs = CountTrailingOnes_32(STDefs);
1431
1432     // So must the clobbered stack slots. ST0-STm, m >= n.
1433     if (STClobbers && !isMask_32(STDefs | STClobbers))
1434       MI->emitError("clobbers must be last on the x87 stack");
1435
1436     // Popped inputs are the ones that are also clobbered or defined.
1437     unsigned STPopped = STUses & (STDefs | STClobbers);
1438     if (STPopped && !isMask_32(STPopped))
1439       MI->emitError("implicitly popped regs must be last on the x87 stack");
1440     unsigned NumSTPopped = CountTrailingOnes_32(STPopped);
1441
1442     DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops "
1443                  << NumSTPopped << ", and defines " << NumSTDefs << " regs.\n");
1444
1445 #ifndef NDEBUG
1446     // If any input operand uses constraint "f", all output register
1447     // constraints must be early-clobber defs.
1448     for (unsigned I = 0, E = MI->getNumOperands(); I < E; ++I)
1449       if (FRegIdx.count(I)) {
1450         assert((1 << getFPReg(MI->getOperand(I)) & STDefs) == 0 &&
1451                "Operands with constraint \"f\" cannot overlap with defs");
1452       }
1453 #endif
1454
1455     // Collect all FP registers (register operands with constraints "t", "u",
1456     // and "f") to kill afer the instruction.
1457     unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff;
1458     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1459       MachineOperand &Op = MI->getOperand(i);
1460       if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1461         continue;
1462       unsigned FPReg = getFPReg(Op);
1463
1464       // If we kill this operand, make sure to pop it from the stack after the
1465       // asm.  We just remember it for now, and pop them all off at the end in
1466       // a batch.
1467       if (Op.isUse() && Op.isKill())
1468         FPKills |= 1U << FPReg;
1469     }
1470
1471     // Do not include registers that are implicitly popped by defs/clobbers.
1472     FPKills &= ~(STDefs | STClobbers);
1473
1474     // Now we can rearrange the live registers to match what was requested.
1475     unsigned char STUsesArray[8];
1476
1477     for (unsigned I = 0; I < NumSTUses; ++I)
1478       STUsesArray[I] = I;
1479
1480     shuffleStackTop(STUsesArray, NumSTUses, Inst);
1481     DEBUG({dbgs() << "Before asm: "; dumpStack();});
1482
1483     // With the stack layout fixed, rewrite the FP registers.
1484     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1485       MachineOperand &Op = MI->getOperand(i);
1486       if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1487         continue;
1488
1489       unsigned FPReg = getFPReg(Op);
1490
1491       if (FRegIdx.count(i))
1492         // Operand with constraint "f".
1493         Op.setReg(getSTReg(FPReg));
1494       else
1495         // Operand with a single register class constraint ("t" or "u").
1496         Op.setReg(X86::ST0 + FPReg);
1497     }
1498
1499     // Simulate the inline asm popping its inputs and pushing its outputs.
1500     StackTop -= NumSTPopped;
1501
1502     for (unsigned i = 0; i < NumSTDefs; ++i)
1503       pushReg(NumSTDefs - i - 1);
1504
1505     // If this asm kills any FP registers (is the last use of them) we must
1506     // explicitly emit pop instructions for them.  Do this now after the asm has
1507     // executed so that the ST(x) numbers are not off (which would happen if we
1508     // did this inline with operand rewriting).
1509     //
1510     // Note: this might be a non-optimal pop sequence.  We might be able to do
1511     // better by trying to pop in stack order or something.
1512     while (FPKills) {
1513       unsigned FPReg = countTrailingZeros(FPKills);
1514       if (isLive(FPReg))
1515         freeStackSlotAfter(Inst, FPReg);
1516       FPKills &= ~(1U << FPReg);
1517     }
1518
1519     // Don't delete the inline asm!
1520     return;
1521   }
1522
1523   case X86::WIN_FTOL_32:
1524   case X86::WIN_FTOL_64: {
1525     // Push the operand into ST0.
1526     MachineOperand &Op = MI->getOperand(0);
1527     assert(Op.isUse() && Op.isReg() &&
1528       Op.getReg() >= X86::FP0 && Op.getReg() <= X86::FP6);
1529     unsigned FPReg = getFPReg(Op);
1530     if (Op.isKill())
1531       moveToTop(FPReg, Inst);
1532     else
1533       duplicateToTop(FPReg, FPReg, Inst);
1534
1535     // Emit the call. This will pop the operand.
1536     BuildMI(*MBB, Inst, MI->getDebugLoc(), TII->get(X86::CALLpcrel32))
1537       .addExternalSymbol("_ftol2")
1538       .addReg(X86::ST0, RegState::ImplicitKill)
1539       .addReg(X86::ECX, RegState::ImplicitDefine)
1540       .addReg(X86::EAX, RegState::Define | RegState::Implicit)
1541       .addReg(X86::EDX, RegState::Define | RegState::Implicit)
1542       .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
1543     --StackTop;
1544
1545     break;
1546   }
1547
1548   case X86::RETQ:
1549   case X86::RETL:
1550   case X86::RETIL:
1551   case X86::RETIQ:
1552     // If RET has an FP register use operand, pass the first one in ST(0) and
1553     // the second one in ST(1).
1554
1555     // Find the register operands.
1556     unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
1557     unsigned LiveMask = 0;
1558
1559     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1560       MachineOperand &Op = MI->getOperand(i);
1561       if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1562         continue;
1563       // FP Register uses must be kills unless there are two uses of the same
1564       // register, in which case only one will be a kill.
1565       assert(Op.isUse() &&
1566              (Op.isKill() ||                        // Marked kill.
1567               getFPReg(Op) == FirstFPRegOp ||       // Second instance.
1568               MI->killsRegister(Op.getReg())) &&    // Later use is marked kill.
1569              "Ret only defs operands, and values aren't live beyond it");
1570
1571       if (FirstFPRegOp == ~0U)
1572         FirstFPRegOp = getFPReg(Op);
1573       else {
1574         assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1575         SecondFPRegOp = getFPReg(Op);
1576       }
1577       LiveMask |= (1 << getFPReg(Op));
1578
1579       // Remove the operand so that later passes don't see it.
1580       MI->RemoveOperand(i);
1581       --i, --e;
1582     }
1583
1584     // We may have been carrying spurious live-ins, so make sure only the returned
1585     // registers are left live.
1586     adjustLiveRegs(LiveMask, MI);
1587     if (!LiveMask) return;  // Quick check to see if any are possible.
1588
1589     // There are only four possibilities here:
1590     // 1) we are returning a single FP value.  In this case, it has to be in
1591     //    ST(0) already, so just declare success by removing the value from the
1592     //    FP Stack.
1593     if (SecondFPRegOp == ~0U) {
1594       // Assert that the top of stack contains the right FP register.
1595       assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1596              "Top of stack not the right register for RET!");
1597
1598       // Ok, everything is good, mark the value as not being on the stack
1599       // anymore so that our assertion about the stack being empty at end of
1600       // block doesn't fire.
1601       StackTop = 0;
1602       return;
1603     }
1604
1605     // Otherwise, we are returning two values:
1606     // 2) If returning the same value for both, we only have one thing in the FP
1607     //    stack.  Consider:  RET FP1, FP1
1608     if (StackTop == 1) {
1609       assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1610              "Stack misconfiguration for RET!");
1611
1612       // Duplicate the TOS so that we return it twice.  Just pick some other FPx
1613       // register to hold it.
1614       unsigned NewReg = ScratchFPReg;
1615       duplicateToTop(FirstFPRegOp, NewReg, MI);
1616       FirstFPRegOp = NewReg;
1617     }
1618
1619     /// Okay we know we have two different FPx operands now:
1620     assert(StackTop == 2 && "Must have two values live!");
1621
1622     /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1623     ///    in ST(1).  In this case, emit an fxch.
1624     if (getStackEntry(0) == SecondFPRegOp) {
1625       assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1626       moveToTop(FirstFPRegOp, MI);
1627     }
1628
1629     /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1630     /// ST(1).  Just remove both from our understanding of the stack and return.
1631     assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
1632     assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
1633     StackTop = 0;
1634     return;
1635   }
1636
1637   Inst = MBB->erase(Inst);  // Remove the pseudo instruction
1638
1639   // We want to leave I pointing to the previous instruction, but what if we
1640   // just erased the first instruction?
1641   if (Inst == MBB->begin()) {
1642     DEBUG(dbgs() << "Inserting dummy KILL\n");
1643     Inst = BuildMI(*MBB, Inst, DebugLoc(), TII->get(TargetOpcode::KILL));
1644   } else
1645     --Inst;
1646 }
1647
1648 void FPS::setKillFlags(MachineBasicBlock &MBB) const {
1649   const TargetRegisterInfo *TRI =
1650       MBB.getParent()->getSubtarget().getRegisterInfo();
1651   LivePhysRegs LPR(TRI);
1652
1653   LPR.addLiveOuts(&MBB);
1654
1655   for (MachineBasicBlock::reverse_iterator I = MBB.rbegin(), E = MBB.rend();
1656        I != E; ++I) {
1657     BitVector Defs(8);
1658     SmallVector<MachineOperand *, 2> Uses;
1659     MachineInstr &MI = *I;
1660
1661     for (auto &MO : I->operands()) {
1662       if (!MO.isReg())
1663         continue;
1664
1665       unsigned Reg = MO.getReg() - X86::FP0;
1666
1667       if (Reg >= 8)
1668         continue;
1669
1670       if (MO.isDef()) {
1671         Defs.set(Reg);
1672         if (!LPR.contains(MO.getReg()))
1673           MO.setIsDead();
1674       } else
1675         Uses.push_back(&MO);
1676     }
1677
1678     for (auto *MO : Uses)
1679       if (Defs.test(getFPReg(*MO)) || !LPR.contains(MO->getReg()))
1680         MO->setIsKill();
1681
1682     LPR.stepBackward(MI);
1683   }
1684 }