1 //===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the pass which converts floating point instructions from
11 // pseudo registers into register stack instructions. This pass uses live
12 // variable information to indicate where the FPn registers are used and their
15 // The x87 hardware tracks liveness of the stack registers, so it is necessary
16 // to implement exact liveness tracking between basic blocks. The CFG edges are
17 // partitioned into bundles where the same FP registers must be live in
18 // identical stack positions. Instructions are inserted at the end of each basic
19 // block to rearrange the live registers to match the outgoing bundle.
21 // This approach avoids splitting critical edges at the potential cost of more
22 // live register shuffling instructions when critical edges are present.
24 //===----------------------------------------------------------------------===//
27 #include "X86InstrInfo.h"
28 #include "llvm/ADT/BitVector.h"
29 #include "llvm/ADT/DepthFirstIterator.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/CodeGen/EdgeBundles.h"
36 #include "llvm/CodeGen/MachineFunctionPass.h"
37 #include "llvm/CodeGen/MachineInstrBuilder.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/CodeGen/LivePhysRegs.h"
40 #include "llvm/CodeGen/Passes.h"
41 #include "llvm/IR/InlineAsm.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Target/TargetInstrInfo.h"
46 #include "llvm/Target/TargetMachine.h"
47 #include "llvm/Target/TargetSubtargetInfo.h"
51 #define DEBUG_TYPE "x86-codegen"
53 STATISTIC(NumFXCH, "Number of fxch instructions inserted");
54 STATISTIC(NumFP , "Number of floating point instructions");
57 const unsigned ScratchFPReg = 7;
59 struct FPS : public MachineFunctionPass {
61 FPS() : MachineFunctionPass(ID) {
62 initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
63 // This is really only to keep valgrind quiet.
64 // The logic in isLive() is too much for it.
65 memset(Stack, 0, sizeof(Stack));
66 memset(RegMap, 0, sizeof(RegMap));
69 void getAnalysisUsage(AnalysisUsage &AU) const override {
71 AU.addRequired<EdgeBundles>();
72 AU.addPreservedID(MachineLoopInfoID);
73 AU.addPreservedID(MachineDominatorsID);
74 MachineFunctionPass::getAnalysisUsage(AU);
77 bool runOnMachineFunction(MachineFunction &MF) override;
79 const char *getPassName() const override { return "X86 FP Stackifier"; }
82 const TargetInstrInfo *TII; // Machine instruction info.
84 // Two CFG edges are related if they leave the same block, or enter the same
85 // block. The transitive closure of an edge under this relation is a
86 // LiveBundle. It represents a set of CFG edges where the live FP stack
87 // registers must be allocated identically in the x87 stack.
89 // A LiveBundle is usually all the edges leaving a block, or all the edges
90 // entering a block, but it can contain more edges if critical edges are
93 // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
94 // but the exact mapping of FP registers to stack slots is fixed later.
96 // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
99 // Number of pre-assigned live registers in FixStack. This is 0 when the
100 // stack order has not yet been fixed.
103 // Assigned stack order for live-in registers.
104 // FixStack[i] == getStackEntry(i) for all i < FixCount.
105 unsigned char FixStack[8];
107 LiveBundle() : Mask(0), FixCount(0) {}
109 // Have the live registers been assigned a stack order yet?
110 bool isFixed() const { return !Mask || FixCount; }
113 // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
114 // with no live FP registers.
115 SmallVector<LiveBundle, 8> LiveBundles;
117 // The edge bundle analysis provides indices into the LiveBundles vector.
118 EdgeBundles *Bundles;
120 // Return a bitmask of FP registers in block's live-in list.
121 static unsigned calcLiveInMask(MachineBasicBlock *MBB) {
123 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
124 E = MBB->livein_end(); I != E; ++I) {
126 if (Reg < X86::FP0 || Reg > X86::FP6)
128 Mask |= 1 << (Reg - X86::FP0);
133 // Partition all the CFG edges into LiveBundles.
134 void bundleCFG(MachineFunction &MF);
136 MachineBasicBlock *MBB; // Current basic block
138 // The hardware keeps track of how many FP registers are live, so we have
139 // to model that exactly. Usually, each live register corresponds to an
140 // FP<n> register, but when dealing with calls, returns, and inline
141 // assembly, it is sometimes necessary to have live scratch registers.
142 unsigned Stack[8]; // FP<n> Registers in each stack slot...
143 unsigned StackTop; // The current top of the FP stack.
146 NumFPRegs = 8 // Including scratch pseudo-registers.
149 // For each live FP<n> register, point to its Stack[] entry.
150 // The first entries correspond to FP0-FP6, the rest are scratch registers
151 // used when we need slightly different live registers than what the
152 // register allocator thinks.
153 unsigned RegMap[NumFPRegs];
155 // Set up our stack model to match the incoming registers to MBB.
156 void setupBlockStack();
158 // Shuffle live registers to match the expectations of successor blocks.
159 void finishBlockStack();
161 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
162 void dumpStack() const {
163 dbgs() << "Stack contents:";
164 for (unsigned i = 0; i != StackTop; ++i) {
165 dbgs() << " FP" << Stack[i];
166 assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
171 /// getSlot - Return the stack slot number a particular register number is
173 unsigned getSlot(unsigned RegNo) const {
174 assert(RegNo < NumFPRegs && "Regno out of range!");
175 return RegMap[RegNo];
178 /// isLive - Is RegNo currently live in the stack?
179 bool isLive(unsigned RegNo) const {
180 unsigned Slot = getSlot(RegNo);
181 return Slot < StackTop && Stack[Slot] == RegNo;
184 /// getStackEntry - Return the X86::FP<n> register in register ST(i).
185 unsigned getStackEntry(unsigned STi) const {
187 report_fatal_error("Access past stack top!");
188 return Stack[StackTop-1-STi];
191 /// getSTReg - Return the X86::ST(i) register which contains the specified
192 /// FP<RegNo> register.
193 unsigned getSTReg(unsigned RegNo) const {
194 return StackTop - 1 - getSlot(RegNo) + X86::ST0;
197 // pushReg - Push the specified FP<n> register onto the stack.
198 void pushReg(unsigned Reg) {
199 assert(Reg < NumFPRegs && "Register number out of range!");
201 report_fatal_error("Stack overflow!");
202 Stack[StackTop] = Reg;
203 RegMap[Reg] = StackTop++;
206 bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
207 void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
208 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
209 if (isAtTop(RegNo)) return;
211 unsigned STReg = getSTReg(RegNo);
212 unsigned RegOnTop = getStackEntry(0);
214 // Swap the slots the regs are in.
215 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
217 // Swap stack slot contents.
218 if (RegMap[RegOnTop] >= StackTop)
219 report_fatal_error("Access past stack top!");
220 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
222 // Emit an fxch to update the runtime processors version of the state.
223 BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
227 void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
228 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
229 unsigned STReg = getSTReg(RegNo);
230 pushReg(AsReg); // New register on top of stack
232 BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
235 /// popStackAfter - Pop the current value off of the top of the FP stack
236 /// after the specified instruction.
237 void popStackAfter(MachineBasicBlock::iterator &I);
239 /// freeStackSlotAfter - Free the specified register from the register
240 /// stack, so that it is no longer in a register. If the register is
241 /// currently at the top of the stack, we just pop the current instruction,
242 /// otherwise we store the current top-of-stack into the specified slot,
243 /// then pop the top of stack.
244 void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
246 /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
248 MachineBasicBlock::iterator
249 freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
251 /// Adjust the live registers to be the set in Mask.
252 void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
254 /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is
255 /// st(0), FP reg FixStack[1] is st(1) etc.
256 void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
257 MachineBasicBlock::iterator I);
259 bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
261 void handleCall(MachineBasicBlock::iterator &I);
262 void handleZeroArgFP(MachineBasicBlock::iterator &I);
263 void handleOneArgFP(MachineBasicBlock::iterator &I);
264 void handleOneArgFPRW(MachineBasicBlock::iterator &I);
265 void handleTwoArgFP(MachineBasicBlock::iterator &I);
266 void handleCompareFP(MachineBasicBlock::iterator &I);
267 void handleCondMovFP(MachineBasicBlock::iterator &I);
268 void handleSpecialFP(MachineBasicBlock::iterator &I);
270 // Check if a COPY instruction is using FP registers.
271 static bool isFPCopy(MachineInstr *MI) {
272 unsigned DstReg = MI->getOperand(0).getReg();
273 unsigned SrcReg = MI->getOperand(1).getReg();
275 return X86::RFP80RegClass.contains(DstReg) ||
276 X86::RFP80RegClass.contains(SrcReg);
279 void setKillFlags(MachineBasicBlock &MBB) const;
284 FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
286 /// getFPReg - Return the X86::FPx register number for the specified operand.
287 /// For example, this returns 3 for X86::FP3.
288 static unsigned getFPReg(const MachineOperand &MO) {
289 assert(MO.isReg() && "Expected an FP register!");
290 unsigned Reg = MO.getReg();
291 assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
292 return Reg - X86::FP0;
295 /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
296 /// register references into FP stack references.
298 bool FPS::runOnMachineFunction(MachineFunction &MF) {
299 // We only need to run this pass if there are any FP registers used in this
300 // function. If it is all integer, there is nothing for us to do!
301 bool FPIsUsed = false;
303 assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
304 for (unsigned i = 0; i <= 6; ++i)
305 if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
311 if (!FPIsUsed) return false;
313 Bundles = &getAnalysis<EdgeBundles>();
314 TII = MF.getSubtarget().getInstrInfo();
316 // Prepare cross-MBB liveness.
321 // Process the function in depth first order so that we process at least one
322 // of the predecessors for every reachable block in the function.
323 SmallPtrSet<MachineBasicBlock*, 8> Processed;
324 MachineBasicBlock *Entry = MF.begin();
326 bool Changed = false;
327 for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> >
328 I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
330 Changed |= processBasicBlock(MF, **I);
332 // Process any unreachable blocks in arbitrary order now.
333 if (MF.size() != Processed.size())
334 for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
335 if (Processed.insert(BB))
336 Changed |= processBasicBlock(MF, *BB);
343 /// bundleCFG - Scan all the basic blocks to determine consistent live-in and
344 /// live-out sets for the FP registers. Consistent means that the set of
345 /// registers live-out from a block is identical to the live-in set of all
346 /// successors. This is not enforced by the normal live-in lists since
347 /// registers may be implicitly defined, or not used by all successors.
348 void FPS::bundleCFG(MachineFunction &MF) {
349 assert(LiveBundles.empty() && "Stale data in LiveBundles");
350 LiveBundles.resize(Bundles->getNumBundles());
352 // Gather the actual live-in masks for all MBBs.
353 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
354 MachineBasicBlock *MBB = I;
355 const unsigned Mask = calcLiveInMask(MBB);
358 // Update MBB ingoing bundle mask.
359 LiveBundles[Bundles->getBundle(MBB->getNumber(), false)].Mask |= Mask;
363 /// processBasicBlock - Loop over all of the instructions in the basic block,
364 /// transforming FP instructions into their stack form.
366 bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
367 bool Changed = false;
373 for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
374 MachineInstr *MI = I;
375 uint64_t Flags = MI->getDesc().TSFlags;
377 unsigned FPInstClass = Flags & X86II::FPTypeMask;
378 if (MI->isInlineAsm())
379 FPInstClass = X86II::SpecialFP;
381 if (MI->isCopy() && isFPCopy(MI))
382 FPInstClass = X86II::SpecialFP;
384 if (MI->isImplicitDef() &&
385 X86::RFP80RegClass.contains(MI->getOperand(0).getReg()))
386 FPInstClass = X86II::SpecialFP;
389 FPInstClass = X86II::SpecialFP;
391 if (FPInstClass == X86II::NotFP)
392 continue; // Efficiently ignore non-fp insts!
394 MachineInstr *PrevMI = nullptr;
396 PrevMI = std::prev(I);
398 ++NumFP; // Keep track of # of pseudo instrs
399 DEBUG(dbgs() << "\nFPInst:\t" << *MI);
401 // Get dead variables list now because the MI pointer may be deleted as part
403 SmallVector<unsigned, 8> DeadRegs;
404 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
405 const MachineOperand &MO = MI->getOperand(i);
406 if (MO.isReg() && MO.isDead())
407 DeadRegs.push_back(MO.getReg());
410 switch (FPInstClass) {
411 case X86II::ZeroArgFP: handleZeroArgFP(I); break;
412 case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0)
413 case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
414 case X86II::TwoArgFP: handleTwoArgFP(I); break;
415 case X86II::CompareFP: handleCompareFP(I); break;
416 case X86II::CondMovFP: handleCondMovFP(I); break;
417 case X86II::SpecialFP: handleSpecialFP(I); break;
418 default: llvm_unreachable("Unknown FP Type!");
421 // Check to see if any of the values defined by this instruction are dead
422 // after definition. If so, pop them.
423 for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
424 unsigned Reg = DeadRegs[i];
425 // Check if Reg is live on the stack. An inline-asm register operand that
426 // is in the clobber list and marked dead might not be live on the stack.
427 if (Reg >= X86::FP0 && Reg <= X86::FP6 && isLive(Reg-X86::FP0)) {
428 DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
429 freeStackSlotAfter(I, Reg-X86::FP0);
433 // Print out all of the instructions expanded to if -debug
435 MachineBasicBlock::iterator PrevI(PrevMI);
437 dbgs() << "Just deleted pseudo instruction\n";
439 MachineBasicBlock::iterator Start = I;
440 // Rewind to first instruction newly inserted.
441 while (Start != BB.begin() && std::prev(Start) != PrevI) --Start;
442 dbgs() << "Inserted instructions:\n\t";
443 Start->print(dbgs(), &MF.getTarget());
444 while (++Start != std::next(I)) {}
458 /// setupBlockStack - Use the live bundles to set up our model of the stack
459 /// to match predecessors' live out stack.
460 void FPS::setupBlockStack() {
461 DEBUG(dbgs() << "\nSetting up live-ins for BB#" << MBB->getNumber()
462 << " derived from " << MBB->getName() << ".\n");
464 // Get the live-in bundle for MBB.
465 const LiveBundle &Bundle =
466 LiveBundles[Bundles->getBundle(MBB->getNumber(), false)];
469 DEBUG(dbgs() << "Block has no FP live-ins.\n");
473 // Depth-first iteration should ensure that we always have an assigned stack.
474 assert(Bundle.isFixed() && "Reached block before any predecessors");
476 // Push the fixed live-in registers.
477 for (unsigned i = Bundle.FixCount; i > 0; --i) {
478 MBB->addLiveIn(X86::ST0+i-1);
479 DEBUG(dbgs() << "Live-in st(" << (i-1) << "): %FP"
480 << unsigned(Bundle.FixStack[i-1]) << '\n');
481 pushReg(Bundle.FixStack[i-1]);
484 // Kill off unwanted live-ins. This can happen with a critical edge.
485 // FIXME: We could keep these live registers around as zombies. They may need
486 // to be revived at the end of a short block. It might save a few instrs.
487 adjustLiveRegs(calcLiveInMask(MBB), MBB->begin());
491 /// finishBlockStack - Revive live-outs that are implicitly defined out of
492 /// MBB. Shuffle live registers to match the expected fixed stack of any
493 /// predecessors, and ensure that all predecessors are expecting the same
495 void FPS::finishBlockStack() {
496 // The RET handling below takes care of return blocks for us.
497 if (MBB->succ_empty())
500 DEBUG(dbgs() << "Setting up live-outs for BB#" << MBB->getNumber()
501 << " derived from " << MBB->getName() << ".\n");
503 // Get MBB's live-out bundle.
504 unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true);
505 LiveBundle &Bundle = LiveBundles[BundleIdx];
507 // We may need to kill and define some registers to match successors.
508 // FIXME: This can probably be combined with the shuffle below.
509 MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
510 adjustLiveRegs(Bundle.Mask, Term);
513 DEBUG(dbgs() << "No live-outs.\n");
517 // Has the stack order been fixed yet?
518 DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
519 if (Bundle.isFixed()) {
520 DEBUG(dbgs() << "Shuffling stack to match.\n");
521 shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
523 // Not fixed yet, we get to choose.
524 DEBUG(dbgs() << "Fixing stack order now.\n");
525 Bundle.FixCount = StackTop;
526 for (unsigned i = 0; i < StackTop; ++i)
527 Bundle.FixStack[i] = getStackEntry(i);
532 //===----------------------------------------------------------------------===//
533 // Efficient Lookup Table Support
534 //===----------------------------------------------------------------------===//
540 bool operator<(const TableEntry &TE) const { return from < TE.from; }
541 friend bool operator<(const TableEntry &TE, unsigned V) {
544 friend bool LLVM_ATTRIBUTE_UNUSED operator<(unsigned V,
545 const TableEntry &TE) {
552 static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
553 for (unsigned i = 0; i != NumEntries-1; ++i)
554 if (!(Table[i] < Table[i+1])) return false;
559 static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
560 const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
561 if (I != Table+N && I->from == Opcode)
567 #define ASSERT_SORTED(TABLE)
569 #define ASSERT_SORTED(TABLE) \
570 { static bool TABLE##Checked = false; \
571 if (!TABLE##Checked) { \
572 assert(TableIsSorted(TABLE, array_lengthof(TABLE)) && \
573 "All lookup tables must be sorted for efficient access!"); \
574 TABLE##Checked = true; \
579 //===----------------------------------------------------------------------===//
580 // Register File -> Register Stack Mapping Methods
581 //===----------------------------------------------------------------------===//
583 // OpcodeTable - Sorted map of register instructions to their stack version.
584 // The first element is an register file pseudo instruction, the second is the
585 // concrete X86 instruction which uses the register stack.
587 static const TableEntry OpcodeTable[] = {
588 { X86::ABS_Fp32 , X86::ABS_F },
589 { X86::ABS_Fp64 , X86::ABS_F },
590 { X86::ABS_Fp80 , X86::ABS_F },
591 { X86::ADD_Fp32m , X86::ADD_F32m },
592 { X86::ADD_Fp64m , X86::ADD_F64m },
593 { X86::ADD_Fp64m32 , X86::ADD_F32m },
594 { X86::ADD_Fp80m32 , X86::ADD_F32m },
595 { X86::ADD_Fp80m64 , X86::ADD_F64m },
596 { X86::ADD_FpI16m32 , X86::ADD_FI16m },
597 { X86::ADD_FpI16m64 , X86::ADD_FI16m },
598 { X86::ADD_FpI16m80 , X86::ADD_FI16m },
599 { X86::ADD_FpI32m32 , X86::ADD_FI32m },
600 { X86::ADD_FpI32m64 , X86::ADD_FI32m },
601 { X86::ADD_FpI32m80 , X86::ADD_FI32m },
602 { X86::CHS_Fp32 , X86::CHS_F },
603 { X86::CHS_Fp64 , X86::CHS_F },
604 { X86::CHS_Fp80 , X86::CHS_F },
605 { X86::CMOVBE_Fp32 , X86::CMOVBE_F },
606 { X86::CMOVBE_Fp64 , X86::CMOVBE_F },
607 { X86::CMOVBE_Fp80 , X86::CMOVBE_F },
608 { X86::CMOVB_Fp32 , X86::CMOVB_F },
609 { X86::CMOVB_Fp64 , X86::CMOVB_F },
610 { X86::CMOVB_Fp80 , X86::CMOVB_F },
611 { X86::CMOVE_Fp32 , X86::CMOVE_F },
612 { X86::CMOVE_Fp64 , X86::CMOVE_F },
613 { X86::CMOVE_Fp80 , X86::CMOVE_F },
614 { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
615 { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
616 { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
617 { X86::CMOVNB_Fp32 , X86::CMOVNB_F },
618 { X86::CMOVNB_Fp64 , X86::CMOVNB_F },
619 { X86::CMOVNB_Fp80 , X86::CMOVNB_F },
620 { X86::CMOVNE_Fp32 , X86::CMOVNE_F },
621 { X86::CMOVNE_Fp64 , X86::CMOVNE_F },
622 { X86::CMOVNE_Fp80 , X86::CMOVNE_F },
623 { X86::CMOVNP_Fp32 , X86::CMOVNP_F },
624 { X86::CMOVNP_Fp64 , X86::CMOVNP_F },
625 { X86::CMOVNP_Fp80 , X86::CMOVNP_F },
626 { X86::CMOVP_Fp32 , X86::CMOVP_F },
627 { X86::CMOVP_Fp64 , X86::CMOVP_F },
628 { X86::CMOVP_Fp80 , X86::CMOVP_F },
629 { X86::COS_Fp32 , X86::COS_F },
630 { X86::COS_Fp64 , X86::COS_F },
631 { X86::COS_Fp80 , X86::COS_F },
632 { X86::DIVR_Fp32m , X86::DIVR_F32m },
633 { X86::DIVR_Fp64m , X86::DIVR_F64m },
634 { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
635 { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
636 { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
637 { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
638 { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
639 { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
640 { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
641 { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
642 { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
643 { X86::DIV_Fp32m , X86::DIV_F32m },
644 { X86::DIV_Fp64m , X86::DIV_F64m },
645 { X86::DIV_Fp64m32 , X86::DIV_F32m },
646 { X86::DIV_Fp80m32 , X86::DIV_F32m },
647 { X86::DIV_Fp80m64 , X86::DIV_F64m },
648 { X86::DIV_FpI16m32 , X86::DIV_FI16m },
649 { X86::DIV_FpI16m64 , X86::DIV_FI16m },
650 { X86::DIV_FpI16m80 , X86::DIV_FI16m },
651 { X86::DIV_FpI32m32 , X86::DIV_FI32m },
652 { X86::DIV_FpI32m64 , X86::DIV_FI32m },
653 { X86::DIV_FpI32m80 , X86::DIV_FI32m },
654 { X86::ILD_Fp16m32 , X86::ILD_F16m },
655 { X86::ILD_Fp16m64 , X86::ILD_F16m },
656 { X86::ILD_Fp16m80 , X86::ILD_F16m },
657 { X86::ILD_Fp32m32 , X86::ILD_F32m },
658 { X86::ILD_Fp32m64 , X86::ILD_F32m },
659 { X86::ILD_Fp32m80 , X86::ILD_F32m },
660 { X86::ILD_Fp64m32 , X86::ILD_F64m },
661 { X86::ILD_Fp64m64 , X86::ILD_F64m },
662 { X86::ILD_Fp64m80 , X86::ILD_F64m },
663 { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
664 { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
665 { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
666 { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
667 { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
668 { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
669 { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
670 { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
671 { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
672 { X86::IST_Fp16m32 , X86::IST_F16m },
673 { X86::IST_Fp16m64 , X86::IST_F16m },
674 { X86::IST_Fp16m80 , X86::IST_F16m },
675 { X86::IST_Fp32m32 , X86::IST_F32m },
676 { X86::IST_Fp32m64 , X86::IST_F32m },
677 { X86::IST_Fp32m80 , X86::IST_F32m },
678 { X86::IST_Fp64m32 , X86::IST_FP64m },
679 { X86::IST_Fp64m64 , X86::IST_FP64m },
680 { X86::IST_Fp64m80 , X86::IST_FP64m },
681 { X86::LD_Fp032 , X86::LD_F0 },
682 { X86::LD_Fp064 , X86::LD_F0 },
683 { X86::LD_Fp080 , X86::LD_F0 },
684 { X86::LD_Fp132 , X86::LD_F1 },
685 { X86::LD_Fp164 , X86::LD_F1 },
686 { X86::LD_Fp180 , X86::LD_F1 },
687 { X86::LD_Fp32m , X86::LD_F32m },
688 { X86::LD_Fp32m64 , X86::LD_F32m },
689 { X86::LD_Fp32m80 , X86::LD_F32m },
690 { X86::LD_Fp64m , X86::LD_F64m },
691 { X86::LD_Fp64m80 , X86::LD_F64m },
692 { X86::LD_Fp80m , X86::LD_F80m },
693 { X86::MUL_Fp32m , X86::MUL_F32m },
694 { X86::MUL_Fp64m , X86::MUL_F64m },
695 { X86::MUL_Fp64m32 , X86::MUL_F32m },
696 { X86::MUL_Fp80m32 , X86::MUL_F32m },
697 { X86::MUL_Fp80m64 , X86::MUL_F64m },
698 { X86::MUL_FpI16m32 , X86::MUL_FI16m },
699 { X86::MUL_FpI16m64 , X86::MUL_FI16m },
700 { X86::MUL_FpI16m80 , X86::MUL_FI16m },
701 { X86::MUL_FpI32m32 , X86::MUL_FI32m },
702 { X86::MUL_FpI32m64 , X86::MUL_FI32m },
703 { X86::MUL_FpI32m80 , X86::MUL_FI32m },
704 { X86::SIN_Fp32 , X86::SIN_F },
705 { X86::SIN_Fp64 , X86::SIN_F },
706 { X86::SIN_Fp80 , X86::SIN_F },
707 { X86::SQRT_Fp32 , X86::SQRT_F },
708 { X86::SQRT_Fp64 , X86::SQRT_F },
709 { X86::SQRT_Fp80 , X86::SQRT_F },
710 { X86::ST_Fp32m , X86::ST_F32m },
711 { X86::ST_Fp64m , X86::ST_F64m },
712 { X86::ST_Fp64m32 , X86::ST_F32m },
713 { X86::ST_Fp80m32 , X86::ST_F32m },
714 { X86::ST_Fp80m64 , X86::ST_F64m },
715 { X86::ST_FpP80m , X86::ST_FP80m },
716 { X86::SUBR_Fp32m , X86::SUBR_F32m },
717 { X86::SUBR_Fp64m , X86::SUBR_F64m },
718 { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
719 { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
720 { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
721 { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
722 { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
723 { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
724 { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
725 { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
726 { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
727 { X86::SUB_Fp32m , X86::SUB_F32m },
728 { X86::SUB_Fp64m , X86::SUB_F64m },
729 { X86::SUB_Fp64m32 , X86::SUB_F32m },
730 { X86::SUB_Fp80m32 , X86::SUB_F32m },
731 { X86::SUB_Fp80m64 , X86::SUB_F64m },
732 { X86::SUB_FpI16m32 , X86::SUB_FI16m },
733 { X86::SUB_FpI16m64 , X86::SUB_FI16m },
734 { X86::SUB_FpI16m80 , X86::SUB_FI16m },
735 { X86::SUB_FpI32m32 , X86::SUB_FI32m },
736 { X86::SUB_FpI32m64 , X86::SUB_FI32m },
737 { X86::SUB_FpI32m80 , X86::SUB_FI32m },
738 { X86::TST_Fp32 , X86::TST_F },
739 { X86::TST_Fp64 , X86::TST_F },
740 { X86::TST_Fp80 , X86::TST_F },
741 { X86::UCOM_FpIr32 , X86::UCOM_FIr },
742 { X86::UCOM_FpIr64 , X86::UCOM_FIr },
743 { X86::UCOM_FpIr80 , X86::UCOM_FIr },
744 { X86::UCOM_Fpr32 , X86::UCOM_Fr },
745 { X86::UCOM_Fpr64 , X86::UCOM_Fr },
746 { X86::UCOM_Fpr80 , X86::UCOM_Fr },
749 static unsigned getConcreteOpcode(unsigned Opcode) {
750 ASSERT_SORTED(OpcodeTable);
751 int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
752 assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
756 //===----------------------------------------------------------------------===//
758 //===----------------------------------------------------------------------===//
760 // PopTable - Sorted map of instructions to their popping version. The first
761 // element is an instruction, the second is the version which pops.
763 static const TableEntry PopTable[] = {
764 { X86::ADD_FrST0 , X86::ADD_FPrST0 },
766 { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
767 { X86::DIV_FrST0 , X86::DIV_FPrST0 },
769 { X86::IST_F16m , X86::IST_FP16m },
770 { X86::IST_F32m , X86::IST_FP32m },
772 { X86::MUL_FrST0 , X86::MUL_FPrST0 },
774 { X86::ST_F32m , X86::ST_FP32m },
775 { X86::ST_F64m , X86::ST_FP64m },
776 { X86::ST_Frr , X86::ST_FPrr },
778 { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
779 { X86::SUB_FrST0 , X86::SUB_FPrST0 },
781 { X86::UCOM_FIr , X86::UCOM_FIPr },
783 { X86::UCOM_FPr , X86::UCOM_FPPr },
784 { X86::UCOM_Fr , X86::UCOM_FPr },
787 /// popStackAfter - Pop the current value off of the top of the FP stack after
788 /// the specified instruction. This attempts to be sneaky and combine the pop
789 /// into the instruction itself if possible. The iterator is left pointing to
790 /// the last instruction, be it a new pop instruction inserted, or the old
791 /// instruction if it was modified in place.
793 void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
794 MachineInstr* MI = I;
795 DebugLoc dl = MI->getDebugLoc();
796 ASSERT_SORTED(PopTable);
798 report_fatal_error("Cannot pop empty stack!");
799 RegMap[Stack[--StackTop]] = ~0; // Update state
801 // Check to see if there is a popping version of this instruction...
802 int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
804 I->setDesc(TII->get(Opcode));
805 if (Opcode == X86::UCOM_FPPr)
807 } else { // Insert an explicit pop
808 I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
812 /// freeStackSlotAfter - Free the specified register from the register stack, so
813 /// that it is no longer in a register. If the register is currently at the top
814 /// of the stack, we just pop the current instruction, otherwise we store the
815 /// current top-of-stack into the specified slot, then pop the top of stack.
816 void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
817 if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy.
822 // Otherwise, store the top of stack into the dead slot, killing the operand
823 // without having to add in an explicit xchg then pop.
825 I = freeStackSlotBefore(++I, FPRegNo);
828 /// freeStackSlotBefore - Free the specified register without trying any
830 MachineBasicBlock::iterator
831 FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
832 unsigned STReg = getSTReg(FPRegNo);
833 unsigned OldSlot = getSlot(FPRegNo);
834 unsigned TopReg = Stack[StackTop-1];
835 Stack[OldSlot] = TopReg;
836 RegMap[TopReg] = OldSlot;
837 RegMap[FPRegNo] = ~0;
838 Stack[--StackTop] = ~0;
839 return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr)).addReg(STReg);
842 /// adjustLiveRegs - Kill and revive registers such that exactly the FP
843 /// registers with a bit in Mask are live.
844 void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
845 unsigned Defs = Mask;
847 for (unsigned i = 0; i < StackTop; ++i) {
848 unsigned RegNo = Stack[i];
849 if (!(Defs & (1 << RegNo)))
850 // This register is live, but we don't want it.
851 Kills |= (1 << RegNo);
853 // We don't need to imp-def this live register.
854 Defs &= ~(1 << RegNo);
856 assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
858 // Produce implicit-defs for free by using killed registers.
859 while (Kills && Defs) {
860 unsigned KReg = countTrailingZeros(Kills);
861 unsigned DReg = countTrailingZeros(Defs);
862 DEBUG(dbgs() << "Renaming %FP" << KReg << " as imp %FP" << DReg << "\n");
863 std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
864 std::swap(RegMap[KReg], RegMap[DReg]);
865 Kills &= ~(1 << KReg);
866 Defs &= ~(1 << DReg);
869 // Kill registers by popping.
870 if (Kills && I != MBB->begin()) {
871 MachineBasicBlock::iterator I2 = std::prev(I);
873 unsigned KReg = getStackEntry(0);
874 if (!(Kills & (1 << KReg)))
876 DEBUG(dbgs() << "Popping %FP" << KReg << "\n");
878 Kills &= ~(1 << KReg);
882 // Manually kill the rest.
884 unsigned KReg = countTrailingZeros(Kills);
885 DEBUG(dbgs() << "Killing %FP" << KReg << "\n");
886 freeStackSlotBefore(I, KReg);
887 Kills &= ~(1 << KReg);
890 // Load zeros for all the imp-defs.
892 unsigned DReg = countTrailingZeros(Defs);
893 DEBUG(dbgs() << "Defining %FP" << DReg << " as 0\n");
894 BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
896 Defs &= ~(1 << DReg);
899 // Now we should have the correct registers live.
901 assert(StackTop == CountPopulation_32(Mask) && "Live count mismatch");
904 /// shuffleStackTop - emit fxch instructions before I to shuffle the top
905 /// FixCount entries into the order given by FixStack.
906 /// FIXME: Is there a better algorithm than insertion sort?
907 void FPS::shuffleStackTop(const unsigned char *FixStack,
909 MachineBasicBlock::iterator I) {
910 // Move items into place, starting from the desired stack bottom.
912 // Old register at position FixCount.
913 unsigned OldReg = getStackEntry(FixCount);
914 // Desired register at position FixCount.
915 unsigned Reg = FixStack[FixCount];
918 // (Reg st0) (OldReg st0) = (Reg OldReg st0)
921 moveToTop(OldReg, I);
927 //===----------------------------------------------------------------------===//
928 // Instruction transformation implementation
929 //===----------------------------------------------------------------------===//
931 void FPS::handleCall(MachineBasicBlock::iterator &I) {
932 unsigned STReturns = 0;
934 for (const auto &MO : I->operands()) {
938 unsigned R = MO.getReg() - X86::FP0;
941 assert(MO.isDef() && MO.isImplicit());
946 unsigned N = CountTrailingOnes_32(STReturns);
948 // FP registers used for function return must be consecutive starting at
950 assert(STReturns == 0 || (isMask_32(STReturns) && N <= 2));
952 for (unsigned I = 0; I < N; ++I)
956 /// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
958 void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
959 MachineInstr *MI = I;
960 unsigned DestReg = getFPReg(MI->getOperand(0));
962 // Change from the pseudo instruction to the concrete instruction.
963 MI->RemoveOperand(0); // Remove the explicit ST(0) operand
964 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
966 // Result gets pushed on the stack.
970 /// handleOneArgFP - fst <mem>, ST(0)
972 void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
973 MachineInstr *MI = I;
974 unsigned NumOps = MI->getDesc().getNumOperands();
975 assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
976 "Can only handle fst* & ftst instructions!");
978 // Is this the last use of the source register?
979 unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
980 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
982 // FISTP64m is strange because there isn't a non-popping versions.
983 // If we have one _and_ we don't want to pop the operand, duplicate the value
984 // on the stack instead of moving it. This ensure that popping the value is
986 // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
989 (MI->getOpcode() == X86::IST_Fp64m32 ||
990 MI->getOpcode() == X86::ISTT_Fp16m32 ||
991 MI->getOpcode() == X86::ISTT_Fp32m32 ||
992 MI->getOpcode() == X86::ISTT_Fp64m32 ||
993 MI->getOpcode() == X86::IST_Fp64m64 ||
994 MI->getOpcode() == X86::ISTT_Fp16m64 ||
995 MI->getOpcode() == X86::ISTT_Fp32m64 ||
996 MI->getOpcode() == X86::ISTT_Fp64m64 ||
997 MI->getOpcode() == X86::IST_Fp64m80 ||
998 MI->getOpcode() == X86::ISTT_Fp16m80 ||
999 MI->getOpcode() == X86::ISTT_Fp32m80 ||
1000 MI->getOpcode() == X86::ISTT_Fp64m80 ||
1001 MI->getOpcode() == X86::ST_FpP80m)) {
1002 duplicateToTop(Reg, ScratchFPReg, I);
1004 moveToTop(Reg, I); // Move to the top of the stack...
1007 // Convert from the pseudo instruction to the concrete instruction.
1008 MI->RemoveOperand(NumOps-1); // Remove explicit ST(0) operand
1009 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1011 if (MI->getOpcode() == X86::IST_FP64m ||
1012 MI->getOpcode() == X86::ISTT_FP16m ||
1013 MI->getOpcode() == X86::ISTT_FP32m ||
1014 MI->getOpcode() == X86::ISTT_FP64m ||
1015 MI->getOpcode() == X86::ST_FP80m) {
1017 report_fatal_error("Stack empty??");
1019 } else if (KillsSrc) { // Last use of operand?
1025 /// handleOneArgFPRW: Handle instructions that read from the top of stack and
1026 /// replace the value with a newly computed value. These instructions may have
1027 /// non-fp operands after their FP operands.
1031 /// R1 = fadd R2, [mem]
1033 void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
1034 MachineInstr *MI = I;
1036 unsigned NumOps = MI->getDesc().getNumOperands();
1037 assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
1040 // Is this the last use of the source register?
1041 unsigned Reg = getFPReg(MI->getOperand(1));
1042 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
1045 // If this is the last use of the source register, just make sure it's on
1046 // the top of the stack.
1049 report_fatal_error("Stack cannot be empty!");
1051 pushReg(getFPReg(MI->getOperand(0)));
1053 // If this is not the last use of the source register, _copy_ it to the top
1055 duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
1058 // Change from the pseudo instruction to the concrete instruction.
1059 MI->RemoveOperand(1); // Drop the source operand.
1060 MI->RemoveOperand(0); // Drop the destination operand.
1061 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1065 //===----------------------------------------------------------------------===//
1066 // Define tables of various ways to map pseudo instructions
1069 // ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
1070 static const TableEntry ForwardST0Table[] = {
1071 { X86::ADD_Fp32 , X86::ADD_FST0r },
1072 { X86::ADD_Fp64 , X86::ADD_FST0r },
1073 { X86::ADD_Fp80 , X86::ADD_FST0r },
1074 { X86::DIV_Fp32 , X86::DIV_FST0r },
1075 { X86::DIV_Fp64 , X86::DIV_FST0r },
1076 { X86::DIV_Fp80 , X86::DIV_FST0r },
1077 { X86::MUL_Fp32 , X86::MUL_FST0r },
1078 { X86::MUL_Fp64 , X86::MUL_FST0r },
1079 { X86::MUL_Fp80 , X86::MUL_FST0r },
1080 { X86::SUB_Fp32 , X86::SUB_FST0r },
1081 { X86::SUB_Fp64 , X86::SUB_FST0r },
1082 { X86::SUB_Fp80 , X86::SUB_FST0r },
1085 // ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
1086 static const TableEntry ReverseST0Table[] = {
1087 { X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative
1088 { X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative
1089 { X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative
1090 { X86::DIV_Fp32 , X86::DIVR_FST0r },
1091 { X86::DIV_Fp64 , X86::DIVR_FST0r },
1092 { X86::DIV_Fp80 , X86::DIVR_FST0r },
1093 { X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative
1094 { X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative
1095 { X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative
1096 { X86::SUB_Fp32 , X86::SUBR_FST0r },
1097 { X86::SUB_Fp64 , X86::SUBR_FST0r },
1098 { X86::SUB_Fp80 , X86::SUBR_FST0r },
1101 // ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
1102 static const TableEntry ForwardSTiTable[] = {
1103 { X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative
1104 { X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative
1105 { X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative
1106 { X86::DIV_Fp32 , X86::DIVR_FrST0 },
1107 { X86::DIV_Fp64 , X86::DIVR_FrST0 },
1108 { X86::DIV_Fp80 , X86::DIVR_FrST0 },
1109 { X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative
1110 { X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative
1111 { X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative
1112 { X86::SUB_Fp32 , X86::SUBR_FrST0 },
1113 { X86::SUB_Fp64 , X86::SUBR_FrST0 },
1114 { X86::SUB_Fp80 , X86::SUBR_FrST0 },
1117 // ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
1118 static const TableEntry ReverseSTiTable[] = {
1119 { X86::ADD_Fp32 , X86::ADD_FrST0 },
1120 { X86::ADD_Fp64 , X86::ADD_FrST0 },
1121 { X86::ADD_Fp80 , X86::ADD_FrST0 },
1122 { X86::DIV_Fp32 , X86::DIV_FrST0 },
1123 { X86::DIV_Fp64 , X86::DIV_FrST0 },
1124 { X86::DIV_Fp80 , X86::DIV_FrST0 },
1125 { X86::MUL_Fp32 , X86::MUL_FrST0 },
1126 { X86::MUL_Fp64 , X86::MUL_FrST0 },
1127 { X86::MUL_Fp80 , X86::MUL_FrST0 },
1128 { X86::SUB_Fp32 , X86::SUB_FrST0 },
1129 { X86::SUB_Fp64 , X86::SUB_FrST0 },
1130 { X86::SUB_Fp80 , X86::SUB_FrST0 },
1134 /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
1135 /// instructions which need to be simplified and possibly transformed.
1137 /// Result: ST(0) = fsub ST(0), ST(i)
1138 /// ST(i) = fsub ST(0), ST(i)
1139 /// ST(0) = fsubr ST(0), ST(i)
1140 /// ST(i) = fsubr ST(0), ST(i)
1142 void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
1143 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1144 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1145 MachineInstr *MI = I;
1147 unsigned NumOperands = MI->getDesc().getNumOperands();
1148 assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
1149 unsigned Dest = getFPReg(MI->getOperand(0));
1150 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1151 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
1152 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1153 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
1154 DebugLoc dl = MI->getDebugLoc();
1156 unsigned TOS = getStackEntry(0);
1158 // One of our operands must be on the top of the stack. If neither is yet, we
1159 // need to move one.
1160 if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
1161 // We can choose to move either operand to the top of the stack. If one of
1162 // the operands is killed by this instruction, we want that one so that we
1163 // can update right on top of the old version.
1165 moveToTop(Op0, I); // Move dead operand to TOS.
1167 } else if (KillsOp1) {
1171 // All of the operands are live after this instruction executes, so we
1172 // cannot update on top of any operand. Because of this, we must
1173 // duplicate one of the stack elements to the top. It doesn't matter
1174 // which one we pick.
1176 duplicateToTop(Op0, Dest, I);
1180 } else if (!KillsOp0 && !KillsOp1) {
1181 // If we DO have one of our operands at the top of the stack, but we don't
1182 // have a dead operand, we must duplicate one of the operands to a new slot
1184 duplicateToTop(Op0, Dest, I);
1189 // Now we know that one of our operands is on the top of the stack, and at
1190 // least one of our operands is killed by this instruction.
1191 assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
1192 "Stack conditions not set up right!");
1194 // We decide which form to use based on what is on the top of the stack, and
1195 // which operand is killed by this instruction.
1196 const TableEntry *InstTable;
1197 bool isForward = TOS == Op0;
1198 bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
1201 InstTable = ForwardST0Table;
1203 InstTable = ReverseST0Table;
1206 InstTable = ForwardSTiTable;
1208 InstTable = ReverseSTiTable;
1211 int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
1213 assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
1215 // NotTOS - The register which is not on the top of stack...
1216 unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
1218 // Replace the old instruction with a new instruction
1220 I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
1222 // If both operands are killed, pop one off of the stack in addition to
1223 // overwriting the other one.
1224 if (KillsOp0 && KillsOp1 && Op0 != Op1) {
1225 assert(!updateST0 && "Should have updated other operand!");
1226 popStackAfter(I); // Pop the top of stack
1229 // Update stack information so that we know the destination register is now on
1231 unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
1232 assert(UpdatedSlot < StackTop && Dest < 7);
1233 Stack[UpdatedSlot] = Dest;
1234 RegMap[Dest] = UpdatedSlot;
1235 MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
1238 /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
1239 /// register arguments and no explicit destinations.
1241 void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
1242 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1243 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1244 MachineInstr *MI = I;
1246 unsigned NumOperands = MI->getDesc().getNumOperands();
1247 assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
1248 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1249 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
1250 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1251 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
1253 // Make sure the first operand is on the top of stack, the other one can be
1257 // Change from the pseudo instruction to the concrete instruction.
1258 MI->getOperand(0).setReg(getSTReg(Op1));
1259 MI->RemoveOperand(1);
1260 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1262 // If any of the operands are killed by this instruction, free them.
1263 if (KillsOp0) freeStackSlotAfter(I, Op0);
1264 if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
1267 /// handleCondMovFP - Handle two address conditional move instructions. These
1268 /// instructions move a st(i) register to st(0) iff a condition is true. These
1269 /// instructions require that the first operand is at the top of the stack, but
1270 /// otherwise don't modify the stack at all.
1271 void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
1272 MachineInstr *MI = I;
1274 unsigned Op0 = getFPReg(MI->getOperand(0));
1275 unsigned Op1 = getFPReg(MI->getOperand(2));
1276 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
1278 // The first operand *must* be on the top of the stack.
1281 // Change the second operand to the stack register that the operand is in.
1282 // Change from the pseudo instruction to the concrete instruction.
1283 MI->RemoveOperand(0);
1284 MI->RemoveOperand(1);
1285 MI->getOperand(0).setReg(getSTReg(Op1));
1286 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1288 // If we kill the second operand, make sure to pop it from the stack.
1289 if (Op0 != Op1 && KillsOp1) {
1290 // Get this value off of the register stack.
1291 freeStackSlotAfter(I, Op1);
1296 /// handleSpecialFP - Handle special instructions which behave unlike other
1297 /// floating point instructions. This is primarily intended for use by pseudo
1300 void FPS::handleSpecialFP(MachineBasicBlock::iterator &Inst) {
1301 MachineInstr *MI = Inst;
1308 switch (MI->getOpcode()) {
1309 default: llvm_unreachable("Unknown SpecialFP instruction!");
1310 case TargetOpcode::COPY: {
1311 // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP.
1312 const MachineOperand &MO1 = MI->getOperand(1);
1313 const MachineOperand &MO0 = MI->getOperand(0);
1314 bool KillsSrc = MI->killsRegister(MO1.getReg());
1317 unsigned DstFP = getFPReg(MO0);
1318 unsigned SrcFP = getFPReg(MO1);
1319 assert(isLive(SrcFP) && "Cannot copy dead register");
1321 // If the input operand is killed, we can just change the owner of the
1322 // incoming stack slot into the result.
1323 unsigned Slot = getSlot(SrcFP);
1324 Stack[Slot] = DstFP;
1325 RegMap[DstFP] = Slot;
1327 // For COPY we just duplicate the specified value to a new stack slot.
1328 // This could be made better, but would require substantial changes.
1329 duplicateToTop(SrcFP, DstFP, Inst);
1334 case TargetOpcode::IMPLICIT_DEF: {
1335 // All FP registers must be explicitly defined, so load a 0 instead.
1336 unsigned Reg = MI->getOperand(0).getReg() - X86::FP0;
1337 DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n');
1338 BuildMI(*MBB, Inst, MI->getDebugLoc(), TII->get(X86::LD_F0));
1343 case TargetOpcode::INLINEASM: {
1344 // The inline asm MachineInstr currently only *uses* FP registers for the
1345 // 'f' constraint. These should be turned into the current ST(x) register
1346 // in the machine instr.
1348 // There are special rules for x87 inline assembly. The compiler must know
1349 // exactly how many registers are popped and pushed implicitly by the asm.
1350 // Otherwise it is not possible to restore the stack state after the inline
1353 // There are 3 kinds of input operands:
1355 // 1. Popped inputs. These must appear at the stack top in ST0-STn. A
1356 // popped input operand must be in a fixed stack slot, and it is either
1357 // tied to an output operand, or in the clobber list. The MI has ST use
1358 // and def operands for these inputs.
1360 // 2. Fixed inputs. These inputs appear in fixed stack slots, but are
1361 // preserved by the inline asm. The fixed stack slots must be STn-STm
1362 // following the popped inputs. A fixed input operand cannot be tied to
1363 // an output or appear in the clobber list. The MI has ST use operands
1364 // and no defs for these inputs.
1366 // 3. Preserved inputs. These inputs use the "f" constraint which is
1367 // represented as an FP register. The inline asm won't change these
1370 // Outputs must be in ST registers, FP outputs are not allowed. Clobbered
1371 // registers do not count as output operands. The inline asm changes the
1372 // stack as if it popped all the popped inputs and then pushed all the
1375 // Scan the assembly for ST registers used, defined and clobbered. We can
1376 // only tell clobbers from defs by looking at the asm descriptor.
1377 unsigned STUses = 0, STDefs = 0, STClobbers = 0, STDeadDefs = 0;
1378 unsigned NumOps = 0;
1379 SmallSet<unsigned, 1> FRegIdx;
1382 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands();
1383 i != e && MI->getOperand(i).isImm(); i += 1 + NumOps) {
1384 unsigned Flags = MI->getOperand(i).getImm();
1386 NumOps = InlineAsm::getNumOperandRegisters(Flags);
1389 const MachineOperand &MO = MI->getOperand(i + 1);
1392 unsigned STReg = MO.getReg() - X86::FP0;
1396 // If the flag has a register class constraint, this must be an operand
1397 // with constraint "f". Record its index and continue.
1398 if (InlineAsm::hasRegClassConstraint(Flags, RCID)) {
1399 FRegIdx.insert(i + 1);
1403 switch (InlineAsm::getKind(Flags)) {
1404 case InlineAsm::Kind_RegUse:
1405 STUses |= (1u << STReg);
1407 case InlineAsm::Kind_RegDef:
1408 case InlineAsm::Kind_RegDefEarlyClobber:
1409 STDefs |= (1u << STReg);
1411 STDeadDefs |= (1u << STReg);
1413 case InlineAsm::Kind_Clobber:
1414 STClobbers |= (1u << STReg);
1421 if (STUses && !isMask_32(STUses))
1422 MI->emitError("fixed input regs must be last on the x87 stack");
1423 unsigned NumSTUses = CountTrailingOnes_32(STUses);
1425 // Defs must be contiguous from the stack top. ST0-STn.
1426 if (STDefs && !isMask_32(STDefs)) {
1427 MI->emitError("output regs must be last on the x87 stack");
1428 STDefs = NextPowerOf2(STDefs) - 1;
1430 unsigned NumSTDefs = CountTrailingOnes_32(STDefs);
1432 // So must the clobbered stack slots. ST0-STm, m >= n.
1433 if (STClobbers && !isMask_32(STDefs | STClobbers))
1434 MI->emitError("clobbers must be last on the x87 stack");
1436 // Popped inputs are the ones that are also clobbered or defined.
1437 unsigned STPopped = STUses & (STDefs | STClobbers);
1438 if (STPopped && !isMask_32(STPopped))
1439 MI->emitError("implicitly popped regs must be last on the x87 stack");
1440 unsigned NumSTPopped = CountTrailingOnes_32(STPopped);
1442 DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops "
1443 << NumSTPopped << ", and defines " << NumSTDefs << " regs.\n");
1446 // If any input operand uses constraint "f", all output register
1447 // constraints must be early-clobber defs.
1448 for (unsigned I = 0, E = MI->getNumOperands(); I < E; ++I)
1449 if (FRegIdx.count(I)) {
1450 assert((1 << getFPReg(MI->getOperand(I)) & STDefs) == 0 &&
1451 "Operands with constraint \"f\" cannot overlap with defs");
1455 // Collect all FP registers (register operands with constraints "t", "u",
1456 // and "f") to kill afer the instruction.
1457 unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff;
1458 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1459 MachineOperand &Op = MI->getOperand(i);
1460 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1462 unsigned FPReg = getFPReg(Op);
1464 // If we kill this operand, make sure to pop it from the stack after the
1465 // asm. We just remember it for now, and pop them all off at the end in
1467 if (Op.isUse() && Op.isKill())
1468 FPKills |= 1U << FPReg;
1471 // Do not include registers that are implicitly popped by defs/clobbers.
1472 FPKills &= ~(STDefs | STClobbers);
1474 // Now we can rearrange the live registers to match what was requested.
1475 unsigned char STUsesArray[8];
1477 for (unsigned I = 0; I < NumSTUses; ++I)
1480 shuffleStackTop(STUsesArray, NumSTUses, Inst);
1481 DEBUG({dbgs() << "Before asm: "; dumpStack();});
1483 // With the stack layout fixed, rewrite the FP registers.
1484 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1485 MachineOperand &Op = MI->getOperand(i);
1486 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1489 unsigned FPReg = getFPReg(Op);
1491 if (FRegIdx.count(i))
1492 // Operand with constraint "f".
1493 Op.setReg(getSTReg(FPReg));
1495 // Operand with a single register class constraint ("t" or "u").
1496 Op.setReg(X86::ST0 + FPReg);
1499 // Simulate the inline asm popping its inputs and pushing its outputs.
1500 StackTop -= NumSTPopped;
1502 for (unsigned i = 0; i < NumSTDefs; ++i)
1503 pushReg(NumSTDefs - i - 1);
1505 // If this asm kills any FP registers (is the last use of them) we must
1506 // explicitly emit pop instructions for them. Do this now after the asm has
1507 // executed so that the ST(x) numbers are not off (which would happen if we
1508 // did this inline with operand rewriting).
1510 // Note: this might be a non-optimal pop sequence. We might be able to do
1511 // better by trying to pop in stack order or something.
1513 unsigned FPReg = countTrailingZeros(FPKills);
1515 freeStackSlotAfter(Inst, FPReg);
1516 FPKills &= ~(1U << FPReg);
1519 // Don't delete the inline asm!
1523 case X86::WIN_FTOL_32:
1524 case X86::WIN_FTOL_64: {
1525 // Push the operand into ST0.
1526 MachineOperand &Op = MI->getOperand(0);
1527 assert(Op.isUse() && Op.isReg() &&
1528 Op.getReg() >= X86::FP0 && Op.getReg() <= X86::FP6);
1529 unsigned FPReg = getFPReg(Op);
1531 moveToTop(FPReg, Inst);
1533 duplicateToTop(FPReg, FPReg, Inst);
1535 // Emit the call. This will pop the operand.
1536 BuildMI(*MBB, Inst, MI->getDebugLoc(), TII->get(X86::CALLpcrel32))
1537 .addExternalSymbol("_ftol2")
1538 .addReg(X86::ST0, RegState::ImplicitKill)
1539 .addReg(X86::ECX, RegState::ImplicitDefine)
1540 .addReg(X86::EAX, RegState::Define | RegState::Implicit)
1541 .addReg(X86::EDX, RegState::Define | RegState::Implicit)
1542 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
1552 // If RET has an FP register use operand, pass the first one in ST(0) and
1553 // the second one in ST(1).
1555 // Find the register operands.
1556 unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
1557 unsigned LiveMask = 0;
1559 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1560 MachineOperand &Op = MI->getOperand(i);
1561 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1563 // FP Register uses must be kills unless there are two uses of the same
1564 // register, in which case only one will be a kill.
1565 assert(Op.isUse() &&
1566 (Op.isKill() || // Marked kill.
1567 getFPReg(Op) == FirstFPRegOp || // Second instance.
1568 MI->killsRegister(Op.getReg())) && // Later use is marked kill.
1569 "Ret only defs operands, and values aren't live beyond it");
1571 if (FirstFPRegOp == ~0U)
1572 FirstFPRegOp = getFPReg(Op);
1574 assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1575 SecondFPRegOp = getFPReg(Op);
1577 LiveMask |= (1 << getFPReg(Op));
1579 // Remove the operand so that later passes don't see it.
1580 MI->RemoveOperand(i);
1584 // We may have been carrying spurious live-ins, so make sure only the returned
1585 // registers are left live.
1586 adjustLiveRegs(LiveMask, MI);
1587 if (!LiveMask) return; // Quick check to see if any are possible.
1589 // There are only four possibilities here:
1590 // 1) we are returning a single FP value. In this case, it has to be in
1591 // ST(0) already, so just declare success by removing the value from the
1593 if (SecondFPRegOp == ~0U) {
1594 // Assert that the top of stack contains the right FP register.
1595 assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1596 "Top of stack not the right register for RET!");
1598 // Ok, everything is good, mark the value as not being on the stack
1599 // anymore so that our assertion about the stack being empty at end of
1600 // block doesn't fire.
1605 // Otherwise, we are returning two values:
1606 // 2) If returning the same value for both, we only have one thing in the FP
1607 // stack. Consider: RET FP1, FP1
1608 if (StackTop == 1) {
1609 assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1610 "Stack misconfiguration for RET!");
1612 // Duplicate the TOS so that we return it twice. Just pick some other FPx
1613 // register to hold it.
1614 unsigned NewReg = ScratchFPReg;
1615 duplicateToTop(FirstFPRegOp, NewReg, MI);
1616 FirstFPRegOp = NewReg;
1619 /// Okay we know we have two different FPx operands now:
1620 assert(StackTop == 2 && "Must have two values live!");
1622 /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1623 /// in ST(1). In this case, emit an fxch.
1624 if (getStackEntry(0) == SecondFPRegOp) {
1625 assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1626 moveToTop(FirstFPRegOp, MI);
1629 /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1630 /// ST(1). Just remove both from our understanding of the stack and return.
1631 assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
1632 assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
1637 Inst = MBB->erase(Inst); // Remove the pseudo instruction
1639 // We want to leave I pointing to the previous instruction, but what if we
1640 // just erased the first instruction?
1641 if (Inst == MBB->begin()) {
1642 DEBUG(dbgs() << "Inserting dummy KILL\n");
1643 Inst = BuildMI(*MBB, Inst, DebugLoc(), TII->get(TargetOpcode::KILL));
1648 void FPS::setKillFlags(MachineBasicBlock &MBB) const {
1649 const TargetRegisterInfo *TRI =
1650 MBB.getParent()->getSubtarget().getRegisterInfo();
1651 LivePhysRegs LPR(TRI);
1653 LPR.addLiveOuts(&MBB);
1655 for (MachineBasicBlock::reverse_iterator I = MBB.rbegin(), E = MBB.rend();
1658 SmallVector<MachineOperand *, 2> Uses;
1659 MachineInstr &MI = *I;
1661 for (auto &MO : I->operands()) {
1665 unsigned Reg = MO.getReg() - X86::FP0;
1672 if (!LPR.contains(MO.getReg()))
1675 Uses.push_back(&MO);
1678 for (auto *MO : Uses)
1679 if (Defs.test(getFPReg(*MO)) || !LPR.contains(MO->getReg()))
1682 LPR.stepBackward(MI);