1 //===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the interfaces that X86 uses to lower LLVM code into a
13 //===----------------------------------------------------------------------===//
15 #include "X86ISelLowering.h"
16 #include "Utils/X86ShuffleDecode.h"
17 #include "X86CallingConv.h"
18 #include "X86InstrBuilder.h"
19 #include "X86MachineFunctionInfo.h"
20 #include "X86TargetMachine.h"
21 #include "X86TargetObjectFile.h"
22 #include "llvm/ADT/SmallBitVector.h"
23 #include "llvm/ADT/SmallSet.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/StringSwitch.h"
27 #include "llvm/ADT/VariadicFunction.h"
28 #include "llvm/CodeGen/IntrinsicLowering.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineJumpTableInfo.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/IR/CallSite.h"
36 #include "llvm/IR/CallingConv.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GlobalAlias.h"
41 #include "llvm/IR/GlobalVariable.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/MC/MCAsmInfo.h"
45 #include "llvm/MC/MCContext.h"
46 #include "llvm/MC/MCExpr.h"
47 #include "llvm/MC/MCSymbol.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/MathExtras.h"
52 #include "llvm/Target/TargetOptions.h"
53 #include "X86IntrinsicsInfo.h"
59 #define DEBUG_TYPE "x86-isel"
61 STATISTIC(NumTailCalls, "Number of tail calls");
63 static cl::opt<bool> ExperimentalVectorWideningLegalization(
64 "x86-experimental-vector-widening-legalization", cl::init(false),
65 cl::desc("Enable an experimental vector type legalization through widening "
66 "rather than promotion."),
69 static cl::opt<bool> ExperimentalVectorShuffleLowering(
70 "x86-experimental-vector-shuffle-lowering", cl::init(false),
71 cl::desc("Enable an experimental vector shuffle lowering code path."),
74 // Forward declarations.
75 static SDValue getMOVL(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue V1,
78 static SDValue ExtractSubVector(SDValue Vec, unsigned IdxVal,
79 SelectionDAG &DAG, SDLoc dl,
80 unsigned vectorWidth) {
81 assert((vectorWidth == 128 || vectorWidth == 256) &&
82 "Unsupported vector width");
83 EVT VT = Vec.getValueType();
84 EVT ElVT = VT.getVectorElementType();
85 unsigned Factor = VT.getSizeInBits()/vectorWidth;
86 EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
87 VT.getVectorNumElements()/Factor);
89 // Extract from UNDEF is UNDEF.
90 if (Vec.getOpcode() == ISD::UNDEF)
91 return DAG.getUNDEF(ResultVT);
93 // Extract the relevant vectorWidth bits. Generate an EXTRACT_SUBVECTOR
94 unsigned ElemsPerChunk = vectorWidth / ElVT.getSizeInBits();
96 // This is the index of the first element of the vectorWidth-bit chunk
98 unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / vectorWidth)
101 // If the input is a buildvector just emit a smaller one.
102 if (Vec.getOpcode() == ISD::BUILD_VECTOR)
103 return DAG.getNode(ISD::BUILD_VECTOR, dl, ResultVT,
104 makeArrayRef(Vec->op_begin()+NormalizedIdxVal,
107 SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
108 SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
114 /// Generate a DAG to grab 128-bits from a vector > 128 bits. This
115 /// sets things up to match to an AVX VEXTRACTF128 / VEXTRACTI128
116 /// or AVX-512 VEXTRACTF32x4 / VEXTRACTI32x4
117 /// instructions or a simple subregister reference. Idx is an index in the
118 /// 128 bits we want. It need not be aligned to a 128-bit bounday. That makes
119 /// lowering EXTRACT_VECTOR_ELT operations easier.
120 static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
121 SelectionDAG &DAG, SDLoc dl) {
122 assert((Vec.getValueType().is256BitVector() ||
123 Vec.getValueType().is512BitVector()) && "Unexpected vector size!");
124 return ExtractSubVector(Vec, IdxVal, DAG, dl, 128);
127 /// Generate a DAG to grab 256-bits from a 512-bit vector.
128 static SDValue Extract256BitVector(SDValue Vec, unsigned IdxVal,
129 SelectionDAG &DAG, SDLoc dl) {
130 assert(Vec.getValueType().is512BitVector() && "Unexpected vector size!");
131 return ExtractSubVector(Vec, IdxVal, DAG, dl, 256);
134 static SDValue InsertSubVector(SDValue Result, SDValue Vec,
135 unsigned IdxVal, SelectionDAG &DAG,
136 SDLoc dl, unsigned vectorWidth) {
137 assert((vectorWidth == 128 || vectorWidth == 256) &&
138 "Unsupported vector width");
139 // Inserting UNDEF is Result
140 if (Vec.getOpcode() == ISD::UNDEF)
142 EVT VT = Vec.getValueType();
143 EVT ElVT = VT.getVectorElementType();
144 EVT ResultVT = Result.getValueType();
146 // Insert the relevant vectorWidth bits.
147 unsigned ElemsPerChunk = vectorWidth/ElVT.getSizeInBits();
149 // This is the index of the first element of the vectorWidth-bit chunk
151 unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/vectorWidth)
154 SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
155 return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
158 /// Generate a DAG to put 128-bits into a vector > 128 bits. This
159 /// sets things up to match to an AVX VINSERTF128/VINSERTI128 or
160 /// AVX-512 VINSERTF32x4/VINSERTI32x4 instructions or a
161 /// simple superregister reference. Idx is an index in the 128 bits
162 /// we want. It need not be aligned to a 128-bit bounday. That makes
163 /// lowering INSERT_VECTOR_ELT operations easier.
164 static SDValue Insert128BitVector(SDValue Result, SDValue Vec,
165 unsigned IdxVal, SelectionDAG &DAG,
167 assert(Vec.getValueType().is128BitVector() && "Unexpected vector size!");
168 return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 128);
171 static SDValue Insert256BitVector(SDValue Result, SDValue Vec,
172 unsigned IdxVal, SelectionDAG &DAG,
174 assert(Vec.getValueType().is256BitVector() && "Unexpected vector size!");
175 return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 256);
178 /// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128
179 /// instructions. This is used because creating CONCAT_VECTOR nodes of
180 /// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower
181 /// large BUILD_VECTORS.
182 static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT,
183 unsigned NumElems, SelectionDAG &DAG,
185 SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
186 return Insert128BitVector(V, V2, NumElems/2, DAG, dl);
189 static SDValue Concat256BitVectors(SDValue V1, SDValue V2, EVT VT,
190 unsigned NumElems, SelectionDAG &DAG,
192 SDValue V = Insert256BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
193 return Insert256BitVector(V, V2, NumElems/2, DAG, dl);
196 static TargetLoweringObjectFile *createTLOF(const Triple &TT) {
197 if (TT.isOSBinFormatMachO()) {
198 if (TT.getArch() == Triple::x86_64)
199 return new X86_64MachoTargetObjectFile();
200 return new TargetLoweringObjectFileMachO();
204 return new X86LinuxTargetObjectFile();
205 if (TT.isOSBinFormatELF())
206 return new TargetLoweringObjectFileELF();
207 if (TT.isKnownWindowsMSVCEnvironment())
208 return new X86WindowsTargetObjectFile();
209 if (TT.isOSBinFormatCOFF())
210 return new TargetLoweringObjectFileCOFF();
211 llvm_unreachable("unknown subtarget type");
214 // FIXME: This should stop caching the target machine as soon as
215 // we can remove resetOperationActions et al.
216 X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
217 : TargetLowering(TM, createTLOF(Triple(TM.getTargetTriple()))) {
218 Subtarget = &TM.getSubtarget<X86Subtarget>();
219 X86ScalarSSEf64 = Subtarget->hasSSE2();
220 X86ScalarSSEf32 = Subtarget->hasSSE1();
221 TD = getDataLayout();
223 resetOperationActions();
226 void X86TargetLowering::resetOperationActions() {
227 const TargetMachine &TM = getTargetMachine();
228 static bool FirstTimeThrough = true;
230 // If none of the target options have changed, then we don't need to reset the
231 // operation actions.
232 if (!FirstTimeThrough && TO == TM.Options) return;
234 if (!FirstTimeThrough) {
235 // Reinitialize the actions.
237 FirstTimeThrough = false;
242 // Set up the TargetLowering object.
243 static const MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
245 // X86 is weird, it always uses i8 for shift amounts and setcc results.
246 setBooleanContents(ZeroOrOneBooleanContent);
247 // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
248 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
250 // For 64-bit since we have so many registers use the ILP scheduler, for
251 // 32-bit code use the register pressure specific scheduling.
252 // For Atom, always use ILP scheduling.
253 if (Subtarget->isAtom())
254 setSchedulingPreference(Sched::ILP);
255 else if (Subtarget->is64Bit())
256 setSchedulingPreference(Sched::ILP);
258 setSchedulingPreference(Sched::RegPressure);
259 const X86RegisterInfo *RegInfo =
260 TM.getSubtarget<X86Subtarget>().getRegisterInfo();
261 setStackPointerRegisterToSaveRestore(RegInfo->getStackRegister());
263 // Bypass expensive divides on Atom when compiling with O2
264 if (Subtarget->hasSlowDivide() && TM.getOptLevel() >= CodeGenOpt::Default) {
265 addBypassSlowDiv(32, 8);
266 if (Subtarget->is64Bit())
267 addBypassSlowDiv(64, 16);
270 if (Subtarget->isTargetKnownWindowsMSVC()) {
271 // Setup Windows compiler runtime calls.
272 setLibcallName(RTLIB::SDIV_I64, "_alldiv");
273 setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
274 setLibcallName(RTLIB::SREM_I64, "_allrem");
275 setLibcallName(RTLIB::UREM_I64, "_aullrem");
276 setLibcallName(RTLIB::MUL_I64, "_allmul");
277 setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
278 setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
279 setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
280 setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
281 setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
283 // The _ftol2 runtime function has an unusual calling conv, which
284 // is modeled by a special pseudo-instruction.
285 setLibcallName(RTLIB::FPTOUINT_F64_I64, nullptr);
286 setLibcallName(RTLIB::FPTOUINT_F32_I64, nullptr);
287 setLibcallName(RTLIB::FPTOUINT_F64_I32, nullptr);
288 setLibcallName(RTLIB::FPTOUINT_F32_I32, nullptr);
291 if (Subtarget->isTargetDarwin()) {
292 // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
293 setUseUnderscoreSetJmp(false);
294 setUseUnderscoreLongJmp(false);
295 } else if (Subtarget->isTargetWindowsGNU()) {
296 // MS runtime is weird: it exports _setjmp, but longjmp!
297 setUseUnderscoreSetJmp(true);
298 setUseUnderscoreLongJmp(false);
300 setUseUnderscoreSetJmp(true);
301 setUseUnderscoreLongJmp(true);
304 // Set up the register classes.
305 addRegisterClass(MVT::i8, &X86::GR8RegClass);
306 addRegisterClass(MVT::i16, &X86::GR16RegClass);
307 addRegisterClass(MVT::i32, &X86::GR32RegClass);
308 if (Subtarget->is64Bit())
309 addRegisterClass(MVT::i64, &X86::GR64RegClass);
311 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
313 // We don't accept any truncstore of integer registers.
314 setTruncStoreAction(MVT::i64, MVT::i32, Expand);
315 setTruncStoreAction(MVT::i64, MVT::i16, Expand);
316 setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
317 setTruncStoreAction(MVT::i32, MVT::i16, Expand);
318 setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
319 setTruncStoreAction(MVT::i16, MVT::i8, Expand);
321 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
323 // SETOEQ and SETUNE require checking two conditions.
324 setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
325 setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
326 setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
327 setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
328 setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
329 setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
331 // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
333 setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote);
334 setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote);
335 setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote);
337 if (Subtarget->is64Bit()) {
338 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
339 setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom);
340 } else if (!TM.Options.UseSoftFloat) {
341 // We have an algorithm for SSE2->double, and we turn this into a
342 // 64-bit FILD followed by conditional FADD for other targets.
343 setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom);
344 // We have an algorithm for SSE2, and we turn this into a 64-bit
345 // FILD for other targets.
346 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Custom);
349 // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
351 setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote);
352 setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote);
354 if (!TM.Options.UseSoftFloat) {
355 // SSE has no i16 to fp conversion, only i32
356 if (X86ScalarSSEf32) {
357 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
358 // f32 and f64 cases are Legal, f80 case is not
359 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
361 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom);
362 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
365 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
366 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Promote);
369 // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64
370 // are Legal, f80 is custom lowered.
371 setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom);
372 setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom);
374 // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
376 setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote);
377 setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote);
379 if (X86ScalarSSEf32) {
380 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote);
381 // f32 and f64 cases are Legal, f80 case is not
382 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
384 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom);
385 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
388 // Handle FP_TO_UINT by promoting the destination to a larger signed
390 setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote);
391 setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote);
392 setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote);
394 if (Subtarget->is64Bit()) {
395 setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand);
396 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
397 } else if (!TM.Options.UseSoftFloat) {
398 // Since AVX is a superset of SSE3, only check for SSE here.
399 if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
400 // Expand FP_TO_UINT into a select.
401 // FIXME: We would like to use a Custom expander here eventually to do
402 // the optimal thing for SSE vs. the default expansion in the legalizer.
403 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand);
405 // With SSE3 we can use fisttpll to convert to a signed i64; without
406 // SSE, we're stuck with a fistpll.
407 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Custom);
410 if (isTargetFTOL()) {
411 // Use the _ftol2 runtime function, which has a pseudo-instruction
412 // to handle its weird calling convention.
413 setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Custom);
416 // TODO: when we have SSE, these could be more efficient, by using movd/movq.
417 if (!X86ScalarSSEf64) {
418 setOperationAction(ISD::BITCAST , MVT::f32 , Expand);
419 setOperationAction(ISD::BITCAST , MVT::i32 , Expand);
420 if (Subtarget->is64Bit()) {
421 setOperationAction(ISD::BITCAST , MVT::f64 , Expand);
422 // Without SSE, i64->f64 goes through memory.
423 setOperationAction(ISD::BITCAST , MVT::i64 , Expand);
427 // Scalar integer divide and remainder are lowered to use operations that
428 // produce two results, to match the available instructions. This exposes
429 // the two-result form to trivial CSE, which is able to combine x/y and x%y
430 // into a single instruction.
432 // Scalar integer multiply-high is also lowered to use two-result
433 // operations, to match the available instructions. However, plain multiply
434 // (low) operations are left as Legal, as there are single-result
435 // instructions for this in x86. Using the two-result multiply instructions
436 // when both high and low results are needed must be arranged by dagcombine.
437 for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
439 setOperationAction(ISD::MULHS, VT, Expand);
440 setOperationAction(ISD::MULHU, VT, Expand);
441 setOperationAction(ISD::SDIV, VT, Expand);
442 setOperationAction(ISD::UDIV, VT, Expand);
443 setOperationAction(ISD::SREM, VT, Expand);
444 setOperationAction(ISD::UREM, VT, Expand);
446 // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
447 setOperationAction(ISD::ADDC, VT, Custom);
448 setOperationAction(ISD::ADDE, VT, Custom);
449 setOperationAction(ISD::SUBC, VT, Custom);
450 setOperationAction(ISD::SUBE, VT, Custom);
453 setOperationAction(ISD::BR_JT , MVT::Other, Expand);
454 setOperationAction(ISD::BRCOND , MVT::Other, Custom);
455 setOperationAction(ISD::BR_CC , MVT::f32, Expand);
456 setOperationAction(ISD::BR_CC , MVT::f64, Expand);
457 setOperationAction(ISD::BR_CC , MVT::f80, Expand);
458 setOperationAction(ISD::BR_CC , MVT::i8, Expand);
459 setOperationAction(ISD::BR_CC , MVT::i16, Expand);
460 setOperationAction(ISD::BR_CC , MVT::i32, Expand);
461 setOperationAction(ISD::BR_CC , MVT::i64, Expand);
462 setOperationAction(ISD::SELECT_CC , MVT::f32, Expand);
463 setOperationAction(ISD::SELECT_CC , MVT::f64, Expand);
464 setOperationAction(ISD::SELECT_CC , MVT::f80, Expand);
465 setOperationAction(ISD::SELECT_CC , MVT::i8, Expand);
466 setOperationAction(ISD::SELECT_CC , MVT::i16, Expand);
467 setOperationAction(ISD::SELECT_CC , MVT::i32, Expand);
468 setOperationAction(ISD::SELECT_CC , MVT::i64, Expand);
469 if (Subtarget->is64Bit())
470 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
471 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal);
472 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
473 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
474 setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand);
475 setOperationAction(ISD::FREM , MVT::f32 , Expand);
476 setOperationAction(ISD::FREM , MVT::f64 , Expand);
477 setOperationAction(ISD::FREM , MVT::f80 , Expand);
478 setOperationAction(ISD::FLT_ROUNDS_ , MVT::i32 , Custom);
480 // Promote the i8 variants and force them on up to i32 which has a shorter
482 setOperationAction(ISD::CTTZ , MVT::i8 , Promote);
483 AddPromotedToType (ISD::CTTZ , MVT::i8 , MVT::i32);
484 setOperationAction(ISD::CTTZ_ZERO_UNDEF , MVT::i8 , Promote);
485 AddPromotedToType (ISD::CTTZ_ZERO_UNDEF , MVT::i8 , MVT::i32);
486 if (Subtarget->hasBMI()) {
487 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16 , Expand);
488 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32 , Expand);
489 if (Subtarget->is64Bit())
490 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
492 setOperationAction(ISD::CTTZ , MVT::i16 , Custom);
493 setOperationAction(ISD::CTTZ , MVT::i32 , Custom);
494 if (Subtarget->is64Bit())
495 setOperationAction(ISD::CTTZ , MVT::i64 , Custom);
498 if (Subtarget->hasLZCNT()) {
499 // When promoting the i8 variants, force them to i32 for a shorter
501 setOperationAction(ISD::CTLZ , MVT::i8 , Promote);
502 AddPromotedToType (ISD::CTLZ , MVT::i8 , MVT::i32);
503 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8 , Promote);
504 AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8 , MVT::i32);
505 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16 , Expand);
506 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32 , Expand);
507 if (Subtarget->is64Bit())
508 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
510 setOperationAction(ISD::CTLZ , MVT::i8 , Custom);
511 setOperationAction(ISD::CTLZ , MVT::i16 , Custom);
512 setOperationAction(ISD::CTLZ , MVT::i32 , Custom);
513 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8 , Custom);
514 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16 , Custom);
515 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32 , Custom);
516 if (Subtarget->is64Bit()) {
517 setOperationAction(ISD::CTLZ , MVT::i64 , Custom);
518 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
522 // Special handling for half-precision floating point conversions.
523 // If we don't have F16C support, then lower half float conversions
524 // into library calls.
525 if (TM.Options.UseSoftFloat || !Subtarget->hasF16C()) {
526 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
527 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
530 // There's never any support for operations beyond MVT::f32.
531 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
532 setOperationAction(ISD::FP16_TO_FP, MVT::f80, Expand);
533 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
534 setOperationAction(ISD::FP_TO_FP16, MVT::f80, Expand);
536 setLoadExtAction(ISD::EXTLOAD, MVT::f16, Expand);
537 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
538 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
539 setTruncStoreAction(MVT::f80, MVT::f16, Expand);
541 if (Subtarget->hasPOPCNT()) {
542 setOperationAction(ISD::CTPOP , MVT::i8 , Promote);
544 setOperationAction(ISD::CTPOP , MVT::i8 , Expand);
545 setOperationAction(ISD::CTPOP , MVT::i16 , Expand);
546 setOperationAction(ISD::CTPOP , MVT::i32 , Expand);
547 if (Subtarget->is64Bit())
548 setOperationAction(ISD::CTPOP , MVT::i64 , Expand);
551 setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom);
553 if (!Subtarget->hasMOVBE())
554 setOperationAction(ISD::BSWAP , MVT::i16 , Expand);
556 // These should be promoted to a larger select which is supported.
557 setOperationAction(ISD::SELECT , MVT::i1 , Promote);
558 // X86 wants to expand cmov itself.
559 setOperationAction(ISD::SELECT , MVT::i8 , Custom);
560 setOperationAction(ISD::SELECT , MVT::i16 , Custom);
561 setOperationAction(ISD::SELECT , MVT::i32 , Custom);
562 setOperationAction(ISD::SELECT , MVT::f32 , Custom);
563 setOperationAction(ISD::SELECT , MVT::f64 , Custom);
564 setOperationAction(ISD::SELECT , MVT::f80 , Custom);
565 setOperationAction(ISD::SETCC , MVT::i8 , Custom);
566 setOperationAction(ISD::SETCC , MVT::i16 , Custom);
567 setOperationAction(ISD::SETCC , MVT::i32 , Custom);
568 setOperationAction(ISD::SETCC , MVT::f32 , Custom);
569 setOperationAction(ISD::SETCC , MVT::f64 , Custom);
570 setOperationAction(ISD::SETCC , MVT::f80 , Custom);
571 if (Subtarget->is64Bit()) {
572 setOperationAction(ISD::SELECT , MVT::i64 , Custom);
573 setOperationAction(ISD::SETCC , MVT::i64 , Custom);
575 setOperationAction(ISD::EH_RETURN , MVT::Other, Custom);
576 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
577 // SjLj exception handling but a light-weight setjmp/longjmp replacement to
578 // support continuation, user-level threading, and etc.. As a result, no
579 // other SjLj exception interfaces are implemented and please don't build
580 // your own exception handling based on them.
581 // LLVM/Clang supports zero-cost DWARF exception handling.
582 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
583 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
586 setOperationAction(ISD::ConstantPool , MVT::i32 , Custom);
587 setOperationAction(ISD::JumpTable , MVT::i32 , Custom);
588 setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom);
589 setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom);
590 if (Subtarget->is64Bit())
591 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
592 setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom);
593 setOperationAction(ISD::BlockAddress , MVT::i32 , Custom);
594 if (Subtarget->is64Bit()) {
595 setOperationAction(ISD::ConstantPool , MVT::i64 , Custom);
596 setOperationAction(ISD::JumpTable , MVT::i64 , Custom);
597 setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom);
598 setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom);
599 setOperationAction(ISD::BlockAddress , MVT::i64 , Custom);
601 // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
602 setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom);
603 setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom);
604 setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom);
605 if (Subtarget->is64Bit()) {
606 setOperationAction(ISD::SHL_PARTS , MVT::i64 , Custom);
607 setOperationAction(ISD::SRA_PARTS , MVT::i64 , Custom);
608 setOperationAction(ISD::SRL_PARTS , MVT::i64 , Custom);
611 if (Subtarget->hasSSE1())
612 setOperationAction(ISD::PREFETCH , MVT::Other, Legal);
614 setOperationAction(ISD::ATOMIC_FENCE , MVT::Other, Custom);
616 // Expand certain atomics
617 for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
619 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Custom);
620 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
621 setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
624 if (Subtarget->hasCmpxchg16b()) {
625 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
628 // FIXME - use subtarget debug flags
629 if (!Subtarget->isTargetDarwin() && !Subtarget->isTargetELF() &&
630 !Subtarget->isTargetCygMing() && !Subtarget->isTargetWin64()) {
631 setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
634 if (Subtarget->is64Bit()) {
635 setExceptionPointerRegister(X86::RAX);
636 setExceptionSelectorRegister(X86::RDX);
638 setExceptionPointerRegister(X86::EAX);
639 setExceptionSelectorRegister(X86::EDX);
641 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
642 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
644 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
645 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
647 setOperationAction(ISD::TRAP, MVT::Other, Legal);
648 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
650 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
651 setOperationAction(ISD::VASTART , MVT::Other, Custom);
652 setOperationAction(ISD::VAEND , MVT::Other, Expand);
653 if (Subtarget->is64Bit() && !Subtarget->isTargetWin64()) {
654 // TargetInfo::X86_64ABIBuiltinVaList
655 setOperationAction(ISD::VAARG , MVT::Other, Custom);
656 setOperationAction(ISD::VACOPY , MVT::Other, Custom);
658 // TargetInfo::CharPtrBuiltinVaList
659 setOperationAction(ISD::VAARG , MVT::Other, Expand);
660 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
663 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
664 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
666 setOperationAction(ISD::DYNAMIC_STACKALLOC, getPointerTy(), Custom);
668 if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
669 // f32 and f64 use SSE.
670 // Set up the FP register classes.
671 addRegisterClass(MVT::f32, &X86::FR32RegClass);
672 addRegisterClass(MVT::f64, &X86::FR64RegClass);
674 // Use ANDPD to simulate FABS.
675 setOperationAction(ISD::FABS , MVT::f64, Custom);
676 setOperationAction(ISD::FABS , MVT::f32, Custom);
678 // Use XORP to simulate FNEG.
679 setOperationAction(ISD::FNEG , MVT::f64, Custom);
680 setOperationAction(ISD::FNEG , MVT::f32, Custom);
682 // Use ANDPD and ORPD to simulate FCOPYSIGN.
683 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
684 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
686 // Lower this to FGETSIGNx86 plus an AND.
687 setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
688 setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
690 // We don't support sin/cos/fmod
691 setOperationAction(ISD::FSIN , MVT::f64, Expand);
692 setOperationAction(ISD::FCOS , MVT::f64, Expand);
693 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
694 setOperationAction(ISD::FSIN , MVT::f32, Expand);
695 setOperationAction(ISD::FCOS , MVT::f32, Expand);
696 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
698 // Expand FP immediates into loads from the stack, except for the special
700 addLegalFPImmediate(APFloat(+0.0)); // xorpd
701 addLegalFPImmediate(APFloat(+0.0f)); // xorps
702 } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
703 // Use SSE for f32, x87 for f64.
704 // Set up the FP register classes.
705 addRegisterClass(MVT::f32, &X86::FR32RegClass);
706 addRegisterClass(MVT::f64, &X86::RFP64RegClass);
708 // Use ANDPS to simulate FABS.
709 setOperationAction(ISD::FABS , MVT::f32, Custom);
711 // Use XORP to simulate FNEG.
712 setOperationAction(ISD::FNEG , MVT::f32, Custom);
714 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
716 // Use ANDPS and ORPS to simulate FCOPYSIGN.
717 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
718 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
720 // We don't support sin/cos/fmod
721 setOperationAction(ISD::FSIN , MVT::f32, Expand);
722 setOperationAction(ISD::FCOS , MVT::f32, Expand);
723 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
725 // Special cases we handle for FP constants.
726 addLegalFPImmediate(APFloat(+0.0f)); // xorps
727 addLegalFPImmediate(APFloat(+0.0)); // FLD0
728 addLegalFPImmediate(APFloat(+1.0)); // FLD1
729 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
730 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
732 if (!TM.Options.UnsafeFPMath) {
733 setOperationAction(ISD::FSIN , MVT::f64, Expand);
734 setOperationAction(ISD::FCOS , MVT::f64, Expand);
735 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
737 } else if (!TM.Options.UseSoftFloat) {
738 // f32 and f64 in x87.
739 // Set up the FP register classes.
740 addRegisterClass(MVT::f64, &X86::RFP64RegClass);
741 addRegisterClass(MVT::f32, &X86::RFP32RegClass);
743 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
744 setOperationAction(ISD::UNDEF, MVT::f32, Expand);
745 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
746 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
748 if (!TM.Options.UnsafeFPMath) {
749 setOperationAction(ISD::FSIN , MVT::f64, Expand);
750 setOperationAction(ISD::FSIN , MVT::f32, Expand);
751 setOperationAction(ISD::FCOS , MVT::f64, Expand);
752 setOperationAction(ISD::FCOS , MVT::f32, Expand);
753 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
754 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
756 addLegalFPImmediate(APFloat(+0.0)); // FLD0
757 addLegalFPImmediate(APFloat(+1.0)); // FLD1
758 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
759 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
760 addLegalFPImmediate(APFloat(+0.0f)); // FLD0
761 addLegalFPImmediate(APFloat(+1.0f)); // FLD1
762 addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
763 addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
766 // We don't support FMA.
767 setOperationAction(ISD::FMA, MVT::f64, Expand);
768 setOperationAction(ISD::FMA, MVT::f32, Expand);
770 // Long double always uses X87.
771 if (!TM.Options.UseSoftFloat) {
772 addRegisterClass(MVT::f80, &X86::RFP80RegClass);
773 setOperationAction(ISD::UNDEF, MVT::f80, Expand);
774 setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
776 APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
777 addLegalFPImmediate(TmpFlt); // FLD0
779 addLegalFPImmediate(TmpFlt); // FLD0/FCHS
782 APFloat TmpFlt2(+1.0);
783 TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
785 addLegalFPImmediate(TmpFlt2); // FLD1
786 TmpFlt2.changeSign();
787 addLegalFPImmediate(TmpFlt2); // FLD1/FCHS
790 if (!TM.Options.UnsafeFPMath) {
791 setOperationAction(ISD::FSIN , MVT::f80, Expand);
792 setOperationAction(ISD::FCOS , MVT::f80, Expand);
793 setOperationAction(ISD::FSINCOS, MVT::f80, Expand);
796 setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
797 setOperationAction(ISD::FCEIL, MVT::f80, Expand);
798 setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
799 setOperationAction(ISD::FRINT, MVT::f80, Expand);
800 setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
801 setOperationAction(ISD::FMA, MVT::f80, Expand);
804 // Always use a library call for pow.
805 setOperationAction(ISD::FPOW , MVT::f32 , Expand);
806 setOperationAction(ISD::FPOW , MVT::f64 , Expand);
807 setOperationAction(ISD::FPOW , MVT::f80 , Expand);
809 setOperationAction(ISD::FLOG, MVT::f80, Expand);
810 setOperationAction(ISD::FLOG2, MVT::f80, Expand);
811 setOperationAction(ISD::FLOG10, MVT::f80, Expand);
812 setOperationAction(ISD::FEXP, MVT::f80, Expand);
813 setOperationAction(ISD::FEXP2, MVT::f80, Expand);
815 // First set operation action for all vector types to either promote
816 // (for widening) or expand (for scalarization). Then we will selectively
817 // turn on ones that can be effectively codegen'd.
818 for (int i = MVT::FIRST_VECTOR_VALUETYPE;
819 i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
820 MVT VT = (MVT::SimpleValueType)i;
821 setOperationAction(ISD::ADD , VT, Expand);
822 setOperationAction(ISD::SUB , VT, Expand);
823 setOperationAction(ISD::FADD, VT, Expand);
824 setOperationAction(ISD::FNEG, VT, Expand);
825 setOperationAction(ISD::FSUB, VT, Expand);
826 setOperationAction(ISD::MUL , VT, Expand);
827 setOperationAction(ISD::FMUL, VT, Expand);
828 setOperationAction(ISD::SDIV, VT, Expand);
829 setOperationAction(ISD::UDIV, VT, Expand);
830 setOperationAction(ISD::FDIV, VT, Expand);
831 setOperationAction(ISD::SREM, VT, Expand);
832 setOperationAction(ISD::UREM, VT, Expand);
833 setOperationAction(ISD::LOAD, VT, Expand);
834 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
835 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT,Expand);
836 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
837 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT,Expand);
838 setOperationAction(ISD::INSERT_SUBVECTOR, VT,Expand);
839 setOperationAction(ISD::FABS, VT, Expand);
840 setOperationAction(ISD::FSIN, VT, Expand);
841 setOperationAction(ISD::FSINCOS, VT, Expand);
842 setOperationAction(ISD::FCOS, VT, Expand);
843 setOperationAction(ISD::FSINCOS, VT, Expand);
844 setOperationAction(ISD::FREM, VT, Expand);
845 setOperationAction(ISD::FMA, VT, Expand);
846 setOperationAction(ISD::FPOWI, VT, Expand);
847 setOperationAction(ISD::FSQRT, VT, Expand);
848 setOperationAction(ISD::FCOPYSIGN, VT, Expand);
849 setOperationAction(ISD::FFLOOR, VT, Expand);
850 setOperationAction(ISD::FCEIL, VT, Expand);
851 setOperationAction(ISD::FTRUNC, VT, Expand);
852 setOperationAction(ISD::FRINT, VT, Expand);
853 setOperationAction(ISD::FNEARBYINT, VT, Expand);
854 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
855 setOperationAction(ISD::MULHS, VT, Expand);
856 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
857 setOperationAction(ISD::MULHU, VT, Expand);
858 setOperationAction(ISD::SDIVREM, VT, Expand);
859 setOperationAction(ISD::UDIVREM, VT, Expand);
860 setOperationAction(ISD::FPOW, VT, Expand);
861 setOperationAction(ISD::CTPOP, VT, Expand);
862 setOperationAction(ISD::CTTZ, VT, Expand);
863 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
864 setOperationAction(ISD::CTLZ, VT, Expand);
865 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
866 setOperationAction(ISD::SHL, VT, Expand);
867 setOperationAction(ISD::SRA, VT, Expand);
868 setOperationAction(ISD::SRL, VT, Expand);
869 setOperationAction(ISD::ROTL, VT, Expand);
870 setOperationAction(ISD::ROTR, VT, Expand);
871 setOperationAction(ISD::BSWAP, VT, Expand);
872 setOperationAction(ISD::SETCC, VT, Expand);
873 setOperationAction(ISD::FLOG, VT, Expand);
874 setOperationAction(ISD::FLOG2, VT, Expand);
875 setOperationAction(ISD::FLOG10, VT, Expand);
876 setOperationAction(ISD::FEXP, VT, Expand);
877 setOperationAction(ISD::FEXP2, VT, Expand);
878 setOperationAction(ISD::FP_TO_UINT, VT, Expand);
879 setOperationAction(ISD::FP_TO_SINT, VT, Expand);
880 setOperationAction(ISD::UINT_TO_FP, VT, Expand);
881 setOperationAction(ISD::SINT_TO_FP, VT, Expand);
882 setOperationAction(ISD::SIGN_EXTEND_INREG, VT,Expand);
883 setOperationAction(ISD::TRUNCATE, VT, Expand);
884 setOperationAction(ISD::SIGN_EXTEND, VT, Expand);
885 setOperationAction(ISD::ZERO_EXTEND, VT, Expand);
886 setOperationAction(ISD::ANY_EXTEND, VT, Expand);
887 setOperationAction(ISD::VSELECT, VT, Expand);
888 setOperationAction(ISD::SELECT_CC, VT, Expand);
889 for (int InnerVT = MVT::FIRST_VECTOR_VALUETYPE;
890 InnerVT <= MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
891 setTruncStoreAction(VT,
892 (MVT::SimpleValueType)InnerVT, Expand);
893 setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
894 setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
896 // N.b. ISD::EXTLOAD legality is basically ignored except for i1-like types,
897 // we have to deal with them whether we ask for Expansion or not. Setting
898 // Expand causes its own optimisation problems though, so leave them legal.
899 if (VT.getVectorElementType() == MVT::i1)
900 setLoadExtAction(ISD::EXTLOAD, VT, Expand);
903 // FIXME: In order to prevent SSE instructions being expanded to MMX ones
904 // with -msoft-float, disable use of MMX as well.
905 if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
906 addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
907 // No operations on x86mmx supported, everything uses intrinsics.
910 // MMX-sized vectors (other than x86mmx) are expected to be expanded
911 // into smaller operations.
912 setOperationAction(ISD::MULHS, MVT::v8i8, Expand);
913 setOperationAction(ISD::MULHS, MVT::v4i16, Expand);
914 setOperationAction(ISD::MULHS, MVT::v2i32, Expand);
915 setOperationAction(ISD::MULHS, MVT::v1i64, Expand);
916 setOperationAction(ISD::AND, MVT::v8i8, Expand);
917 setOperationAction(ISD::AND, MVT::v4i16, Expand);
918 setOperationAction(ISD::AND, MVT::v2i32, Expand);
919 setOperationAction(ISD::AND, MVT::v1i64, Expand);
920 setOperationAction(ISD::OR, MVT::v8i8, Expand);
921 setOperationAction(ISD::OR, MVT::v4i16, Expand);
922 setOperationAction(ISD::OR, MVT::v2i32, Expand);
923 setOperationAction(ISD::OR, MVT::v1i64, Expand);
924 setOperationAction(ISD::XOR, MVT::v8i8, Expand);
925 setOperationAction(ISD::XOR, MVT::v4i16, Expand);
926 setOperationAction(ISD::XOR, MVT::v2i32, Expand);
927 setOperationAction(ISD::XOR, MVT::v1i64, Expand);
928 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Expand);
929 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Expand);
930 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i32, Expand);
931 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Expand);
932 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v1i64, Expand);
933 setOperationAction(ISD::SELECT, MVT::v8i8, Expand);
934 setOperationAction(ISD::SELECT, MVT::v4i16, Expand);
935 setOperationAction(ISD::SELECT, MVT::v2i32, Expand);
936 setOperationAction(ISD::SELECT, MVT::v1i64, Expand);
937 setOperationAction(ISD::BITCAST, MVT::v8i8, Expand);
938 setOperationAction(ISD::BITCAST, MVT::v4i16, Expand);
939 setOperationAction(ISD::BITCAST, MVT::v2i32, Expand);
940 setOperationAction(ISD::BITCAST, MVT::v1i64, Expand);
942 if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
943 addRegisterClass(MVT::v4f32, &X86::VR128RegClass);
945 setOperationAction(ISD::FADD, MVT::v4f32, Legal);
946 setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
947 setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
948 setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
949 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
950 setOperationAction(ISD::FNEG, MVT::v4f32, Custom);
951 setOperationAction(ISD::FABS, MVT::v4f32, Custom);
952 setOperationAction(ISD::LOAD, MVT::v4f32, Legal);
953 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
954 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
955 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
956 setOperationAction(ISD::SELECT, MVT::v4f32, Custom);
959 if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
960 addRegisterClass(MVT::v2f64, &X86::VR128RegClass);
962 // FIXME: Unfortunately, -soft-float and -no-implicit-float mean XMM
963 // registers cannot be used even for integer operations.
964 addRegisterClass(MVT::v16i8, &X86::VR128RegClass);
965 addRegisterClass(MVT::v8i16, &X86::VR128RegClass);
966 addRegisterClass(MVT::v4i32, &X86::VR128RegClass);
967 addRegisterClass(MVT::v2i64, &X86::VR128RegClass);
969 setOperationAction(ISD::ADD, MVT::v16i8, Legal);
970 setOperationAction(ISD::ADD, MVT::v8i16, Legal);
971 setOperationAction(ISD::ADD, MVT::v4i32, Legal);
972 setOperationAction(ISD::ADD, MVT::v2i64, Legal);
973 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
974 setOperationAction(ISD::MUL, MVT::v2i64, Custom);
975 setOperationAction(ISD::UMUL_LOHI, MVT::v4i32, Custom);
976 setOperationAction(ISD::SMUL_LOHI, MVT::v4i32, Custom);
977 setOperationAction(ISD::MULHU, MVT::v8i16, Legal);
978 setOperationAction(ISD::MULHS, MVT::v8i16, Legal);
979 setOperationAction(ISD::SUB, MVT::v16i8, Legal);
980 setOperationAction(ISD::SUB, MVT::v8i16, Legal);
981 setOperationAction(ISD::SUB, MVT::v4i32, Legal);
982 setOperationAction(ISD::SUB, MVT::v2i64, Legal);
983 setOperationAction(ISD::MUL, MVT::v8i16, Legal);
984 setOperationAction(ISD::FADD, MVT::v2f64, Legal);
985 setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
986 setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
987 setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
988 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
989 setOperationAction(ISD::FNEG, MVT::v2f64, Custom);
990 setOperationAction(ISD::FABS, MVT::v2f64, Custom);
992 setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
993 setOperationAction(ISD::SETCC, MVT::v16i8, Custom);
994 setOperationAction(ISD::SETCC, MVT::v8i16, Custom);
995 setOperationAction(ISD::SETCC, MVT::v4i32, Custom);
997 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom);
998 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom);
999 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
1000 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
1001 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
1003 // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
1004 for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
1005 MVT VT = (MVT::SimpleValueType)i;
1006 // Do not attempt to custom lower non-power-of-2 vectors
1007 if (!isPowerOf2_32(VT.getVectorNumElements()))
1009 // Do not attempt to custom lower non-128-bit vectors
1010 if (!VT.is128BitVector())
1012 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
1013 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
1014 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
1017 // We support custom legalizing of sext and anyext loads for specific
1018 // memory vector types which we can load as a scalar (or sequence of
1019 // scalars) and extend in-register to a legal 128-bit vector type. For sext
1020 // loads these must work with a single scalar load.
1021 setLoadExtAction(ISD::SEXTLOAD, MVT::v4i8, Custom);
1022 setLoadExtAction(ISD::SEXTLOAD, MVT::v4i16, Custom);
1023 setLoadExtAction(ISD::SEXTLOAD, MVT::v8i8, Custom);
1024 setLoadExtAction(ISD::EXTLOAD, MVT::v2i8, Custom);
1025 setLoadExtAction(ISD::EXTLOAD, MVT::v2i16, Custom);
1026 setLoadExtAction(ISD::EXTLOAD, MVT::v2i32, Custom);
1027 setLoadExtAction(ISD::EXTLOAD, MVT::v4i8, Custom);
1028 setLoadExtAction(ISD::EXTLOAD, MVT::v4i16, Custom);
1029 setLoadExtAction(ISD::EXTLOAD, MVT::v8i8, Custom);
1031 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
1032 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
1033 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
1034 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
1035 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
1036 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
1038 if (Subtarget->is64Bit()) {
1039 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom);
1040 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
1043 // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
1044 for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
1045 MVT VT = (MVT::SimpleValueType)i;
1047 // Do not attempt to promote non-128-bit vectors
1048 if (!VT.is128BitVector())
1051 setOperationAction(ISD::AND, VT, Promote);
1052 AddPromotedToType (ISD::AND, VT, MVT::v2i64);
1053 setOperationAction(ISD::OR, VT, Promote);
1054 AddPromotedToType (ISD::OR, VT, MVT::v2i64);
1055 setOperationAction(ISD::XOR, VT, Promote);
1056 AddPromotedToType (ISD::XOR, VT, MVT::v2i64);
1057 setOperationAction(ISD::LOAD, VT, Promote);
1058 AddPromotedToType (ISD::LOAD, VT, MVT::v2i64);
1059 setOperationAction(ISD::SELECT, VT, Promote);
1060 AddPromotedToType (ISD::SELECT, VT, MVT::v2i64);
1063 // Custom lower v2i64 and v2f64 selects.
1064 setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
1065 setOperationAction(ISD::LOAD, MVT::v2i64, Legal);
1066 setOperationAction(ISD::SELECT, MVT::v2f64, Custom);
1067 setOperationAction(ISD::SELECT, MVT::v2i64, Custom);
1069 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
1070 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
1072 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
1073 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
1074 // As there is no 64-bit GPR available, we need build a special custom
1075 // sequence to convert from v2i32 to v2f32.
1076 if (!Subtarget->is64Bit())
1077 setOperationAction(ISD::UINT_TO_FP, MVT::v2f32, Custom);
1079 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
1080 setOperationAction(ISD::FP_ROUND, MVT::v2f32, Custom);
1082 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, Legal);
1084 setOperationAction(ISD::BITCAST, MVT::v2i32, Custom);
1085 setOperationAction(ISD::BITCAST, MVT::v4i16, Custom);
1086 setOperationAction(ISD::BITCAST, MVT::v8i8, Custom);
1089 if (!TM.Options.UseSoftFloat && Subtarget->hasSSE41()) {
1090 setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
1091 setOperationAction(ISD::FCEIL, MVT::f32, Legal);
1092 setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
1093 setOperationAction(ISD::FRINT, MVT::f32, Legal);
1094 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
1095 setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
1096 setOperationAction(ISD::FCEIL, MVT::f64, Legal);
1097 setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
1098 setOperationAction(ISD::FRINT, MVT::f64, Legal);
1099 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
1101 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
1102 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
1103 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
1104 setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
1105 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
1106 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
1107 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
1108 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
1109 setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
1110 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
1112 // FIXME: Do we need to handle scalar-to-vector here?
1113 setOperationAction(ISD::MUL, MVT::v4i32, Legal);
1115 setOperationAction(ISD::VSELECT, MVT::v2f64, Custom);
1116 setOperationAction(ISD::VSELECT, MVT::v2i64, Custom);
1117 setOperationAction(ISD::VSELECT, MVT::v4i32, Custom);
1118 setOperationAction(ISD::VSELECT, MVT::v4f32, Custom);
1119 setOperationAction(ISD::VSELECT, MVT::v8i16, Custom);
1120 // There is no BLENDI for byte vectors. We don't need to custom lower
1121 // some vselects for now.
1122 setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
1124 // SSE41 brings specific instructions for doing vector sign extend even in
1125 // cases where we don't have SRA.
1126 setLoadExtAction(ISD::SEXTLOAD, MVT::v2i8, Custom);
1127 setLoadExtAction(ISD::SEXTLOAD, MVT::v2i16, Custom);
1128 setLoadExtAction(ISD::SEXTLOAD, MVT::v2i32, Custom);
1130 // i8 and i16 vectors are custom because the source register and source
1131 // source memory operand types are not the same width. f32 vectors are
1132 // custom since the immediate controlling the insert encodes additional
1134 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
1135 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
1136 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
1137 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
1139 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
1140 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
1141 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
1142 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
1144 // FIXME: these should be Legal, but that's only for the case where
1145 // the index is constant. For now custom expand to deal with that.
1146 if (Subtarget->is64Bit()) {
1147 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom);
1148 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
1152 if (Subtarget->hasSSE2()) {
1153 setOperationAction(ISD::SRL, MVT::v8i16, Custom);
1154 setOperationAction(ISD::SRL, MVT::v16i8, Custom);
1156 setOperationAction(ISD::SHL, MVT::v8i16, Custom);
1157 setOperationAction(ISD::SHL, MVT::v16i8, Custom);
1159 setOperationAction(ISD::SRA, MVT::v8i16, Custom);
1160 setOperationAction(ISD::SRA, MVT::v16i8, Custom);
1162 // In the customized shift lowering, the legal cases in AVX2 will be
1164 setOperationAction(ISD::SRL, MVT::v2i64, Custom);
1165 setOperationAction(ISD::SRL, MVT::v4i32, Custom);
1167 setOperationAction(ISD::SHL, MVT::v2i64, Custom);
1168 setOperationAction(ISD::SHL, MVT::v4i32, Custom);
1170 setOperationAction(ISD::SRA, MVT::v4i32, Custom);
1173 if (!TM.Options.UseSoftFloat && Subtarget->hasFp256()) {
1174 addRegisterClass(MVT::v32i8, &X86::VR256RegClass);
1175 addRegisterClass(MVT::v16i16, &X86::VR256RegClass);
1176 addRegisterClass(MVT::v8i32, &X86::VR256RegClass);
1177 addRegisterClass(MVT::v8f32, &X86::VR256RegClass);
1178 addRegisterClass(MVT::v4i64, &X86::VR256RegClass);
1179 addRegisterClass(MVT::v4f64, &X86::VR256RegClass);
1181 setOperationAction(ISD::LOAD, MVT::v8f32, Legal);
1182 setOperationAction(ISD::LOAD, MVT::v4f64, Legal);
1183 setOperationAction(ISD::LOAD, MVT::v4i64, Legal);
1185 setOperationAction(ISD::FADD, MVT::v8f32, Legal);
1186 setOperationAction(ISD::FSUB, MVT::v8f32, Legal);
1187 setOperationAction(ISD::FMUL, MVT::v8f32, Legal);
1188 setOperationAction(ISD::FDIV, MVT::v8f32, Legal);
1189 setOperationAction(ISD::FSQRT, MVT::v8f32, Legal);
1190 setOperationAction(ISD::FFLOOR, MVT::v8f32, Legal);
1191 setOperationAction(ISD::FCEIL, MVT::v8f32, Legal);
1192 setOperationAction(ISD::FTRUNC, MVT::v8f32, Legal);
1193 setOperationAction(ISD::FRINT, MVT::v8f32, Legal);
1194 setOperationAction(ISD::FNEARBYINT, MVT::v8f32, Legal);
1195 setOperationAction(ISD::FNEG, MVT::v8f32, Custom);
1196 setOperationAction(ISD::FABS, MVT::v8f32, Custom);
1198 setOperationAction(ISD::FADD, MVT::v4f64, Legal);
1199 setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
1200 setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
1201 setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
1202 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
1203 setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
1204 setOperationAction(ISD::FCEIL, MVT::v4f64, Legal);
1205 setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
1206 setOperationAction(ISD::FRINT, MVT::v4f64, Legal);
1207 setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Legal);
1208 setOperationAction(ISD::FNEG, MVT::v4f64, Custom);
1209 setOperationAction(ISD::FABS, MVT::v4f64, Custom);
1211 // (fp_to_int:v8i16 (v8f32 ..)) requires the result type to be promoted
1212 // even though v8i16 is a legal type.
1213 setOperationAction(ISD::FP_TO_SINT, MVT::v8i16, Promote);
1214 setOperationAction(ISD::FP_TO_UINT, MVT::v8i16, Promote);
1215 setOperationAction(ISD::FP_TO_SINT, MVT::v8i32, Legal);
1217 setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Promote);
1218 setOperationAction(ISD::SINT_TO_FP, MVT::v8i32, Legal);
1219 setOperationAction(ISD::FP_ROUND, MVT::v4f32, Legal);
1221 setOperationAction(ISD::UINT_TO_FP, MVT::v8i8, Custom);
1222 setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom);
1224 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, Legal);
1226 setOperationAction(ISD::SRL, MVT::v16i16, Custom);
1227 setOperationAction(ISD::SRL, MVT::v32i8, Custom);
1229 setOperationAction(ISD::SHL, MVT::v16i16, Custom);
1230 setOperationAction(ISD::SHL, MVT::v32i8, Custom);
1232 setOperationAction(ISD::SRA, MVT::v16i16, Custom);
1233 setOperationAction(ISD::SRA, MVT::v32i8, Custom);
1235 setOperationAction(ISD::SETCC, MVT::v32i8, Custom);
1236 setOperationAction(ISD::SETCC, MVT::v16i16, Custom);
1237 setOperationAction(ISD::SETCC, MVT::v8i32, Custom);
1238 setOperationAction(ISD::SETCC, MVT::v4i64, Custom);
1240 setOperationAction(ISD::SELECT, MVT::v4f64, Custom);
1241 setOperationAction(ISD::SELECT, MVT::v4i64, Custom);
1242 setOperationAction(ISD::SELECT, MVT::v8f32, Custom);
1244 setOperationAction(ISD::VSELECT, MVT::v4f64, Custom);
1245 setOperationAction(ISD::VSELECT, MVT::v4i64, Custom);
1246 setOperationAction(ISD::VSELECT, MVT::v8i32, Custom);
1247 setOperationAction(ISD::VSELECT, MVT::v8f32, Custom);
1249 setOperationAction(ISD::SIGN_EXTEND, MVT::v4i64, Custom);
1250 setOperationAction(ISD::SIGN_EXTEND, MVT::v8i32, Custom);
1251 setOperationAction(ISD::SIGN_EXTEND, MVT::v16i16, Custom);
1252 setOperationAction(ISD::ZERO_EXTEND, MVT::v4i64, Custom);
1253 setOperationAction(ISD::ZERO_EXTEND, MVT::v8i32, Custom);
1254 setOperationAction(ISD::ZERO_EXTEND, MVT::v16i16, Custom);
1255 setOperationAction(ISD::ANY_EXTEND, MVT::v4i64, Custom);
1256 setOperationAction(ISD::ANY_EXTEND, MVT::v8i32, Custom);
1257 setOperationAction(ISD::ANY_EXTEND, MVT::v16i16, Custom);
1258 setOperationAction(ISD::TRUNCATE, MVT::v16i8, Custom);
1259 setOperationAction(ISD::TRUNCATE, MVT::v8i16, Custom);
1260 setOperationAction(ISD::TRUNCATE, MVT::v4i32, Custom);
1262 if (Subtarget->hasFMA() || Subtarget->hasFMA4()) {
1263 setOperationAction(ISD::FMA, MVT::v8f32, Legal);
1264 setOperationAction(ISD::FMA, MVT::v4f64, Legal);
1265 setOperationAction(ISD::FMA, MVT::v4f32, Legal);
1266 setOperationAction(ISD::FMA, MVT::v2f64, Legal);
1267 setOperationAction(ISD::FMA, MVT::f32, Legal);
1268 setOperationAction(ISD::FMA, MVT::f64, Legal);
1271 if (Subtarget->hasInt256()) {
1272 setOperationAction(ISD::ADD, MVT::v4i64, Legal);
1273 setOperationAction(ISD::ADD, MVT::v8i32, Legal);
1274 setOperationAction(ISD::ADD, MVT::v16i16, Legal);
1275 setOperationAction(ISD::ADD, MVT::v32i8, Legal);
1277 setOperationAction(ISD::SUB, MVT::v4i64, Legal);
1278 setOperationAction(ISD::SUB, MVT::v8i32, Legal);
1279 setOperationAction(ISD::SUB, MVT::v16i16, Legal);
1280 setOperationAction(ISD::SUB, MVT::v32i8, Legal);
1282 setOperationAction(ISD::MUL, MVT::v4i64, Custom);
1283 setOperationAction(ISD::MUL, MVT::v8i32, Legal);
1284 setOperationAction(ISD::MUL, MVT::v16i16, Legal);
1285 // Don't lower v32i8 because there is no 128-bit byte mul
1287 setOperationAction(ISD::UMUL_LOHI, MVT::v8i32, Custom);
1288 setOperationAction(ISD::SMUL_LOHI, MVT::v8i32, Custom);
1289 setOperationAction(ISD::MULHU, MVT::v16i16, Legal);
1290 setOperationAction(ISD::MULHS, MVT::v16i16, Legal);
1292 setOperationAction(ISD::VSELECT, MVT::v16i16, Custom);
1293 setOperationAction(ISD::VSELECT, MVT::v32i8, Legal);
1295 setOperationAction(ISD::ADD, MVT::v4i64, Custom);
1296 setOperationAction(ISD::ADD, MVT::v8i32, Custom);
1297 setOperationAction(ISD::ADD, MVT::v16i16, Custom);
1298 setOperationAction(ISD::ADD, MVT::v32i8, Custom);
1300 setOperationAction(ISD::SUB, MVT::v4i64, Custom);
1301 setOperationAction(ISD::SUB, MVT::v8i32, Custom);
1302 setOperationAction(ISD::SUB, MVT::v16i16, Custom);
1303 setOperationAction(ISD::SUB, MVT::v32i8, Custom);
1305 setOperationAction(ISD::MUL, MVT::v4i64, Custom);
1306 setOperationAction(ISD::MUL, MVT::v8i32, Custom);
1307 setOperationAction(ISD::MUL, MVT::v16i16, Custom);
1308 // Don't lower v32i8 because there is no 128-bit byte mul
1311 // In the customized shift lowering, the legal cases in AVX2 will be
1313 setOperationAction(ISD::SRL, MVT::v4i64, Custom);
1314 setOperationAction(ISD::SRL, MVT::v8i32, Custom);
1316 setOperationAction(ISD::SHL, MVT::v4i64, Custom);
1317 setOperationAction(ISD::SHL, MVT::v8i32, Custom);
1319 setOperationAction(ISD::SRA, MVT::v8i32, Custom);
1321 // Custom lower several nodes for 256-bit types.
1322 for (int i = MVT::FIRST_VECTOR_VALUETYPE;
1323 i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
1324 MVT VT = (MVT::SimpleValueType)i;
1326 // Extract subvector is special because the value type
1327 // (result) is 128-bit but the source is 256-bit wide.
1328 if (VT.is128BitVector())
1329 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
1331 // Do not attempt to custom lower other non-256-bit vectors
1332 if (!VT.is256BitVector())
1335 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
1336 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
1337 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
1338 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
1339 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
1340 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
1341 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
1344 // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1345 for (int i = MVT::v32i8; i != MVT::v4i64; ++i) {
1346 MVT VT = (MVT::SimpleValueType)i;
1348 // Do not attempt to promote non-256-bit vectors
1349 if (!VT.is256BitVector())
1352 setOperationAction(ISD::AND, VT, Promote);
1353 AddPromotedToType (ISD::AND, VT, MVT::v4i64);
1354 setOperationAction(ISD::OR, VT, Promote);
1355 AddPromotedToType (ISD::OR, VT, MVT::v4i64);
1356 setOperationAction(ISD::XOR, VT, Promote);
1357 AddPromotedToType (ISD::XOR, VT, MVT::v4i64);
1358 setOperationAction(ISD::LOAD, VT, Promote);
1359 AddPromotedToType (ISD::LOAD, VT, MVT::v4i64);
1360 setOperationAction(ISD::SELECT, VT, Promote);
1361 AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
1365 if (!TM.Options.UseSoftFloat && Subtarget->hasAVX512()) {
1366 addRegisterClass(MVT::v16i32, &X86::VR512RegClass);
1367 addRegisterClass(MVT::v16f32, &X86::VR512RegClass);
1368 addRegisterClass(MVT::v8i64, &X86::VR512RegClass);
1369 addRegisterClass(MVT::v8f64, &X86::VR512RegClass);
1371 addRegisterClass(MVT::i1, &X86::VK1RegClass);
1372 addRegisterClass(MVT::v8i1, &X86::VK8RegClass);
1373 addRegisterClass(MVT::v16i1, &X86::VK16RegClass);
1375 setOperationAction(ISD::BR_CC, MVT::i1, Expand);
1376 setOperationAction(ISD::SETCC, MVT::i1, Custom);
1377 setOperationAction(ISD::XOR, MVT::i1, Legal);
1378 setOperationAction(ISD::OR, MVT::i1, Legal);
1379 setOperationAction(ISD::AND, MVT::i1, Legal);
1380 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, Legal);
1381 setOperationAction(ISD::LOAD, MVT::v16f32, Legal);
1382 setOperationAction(ISD::LOAD, MVT::v8f64, Legal);
1383 setOperationAction(ISD::LOAD, MVT::v8i64, Legal);
1384 setOperationAction(ISD::LOAD, MVT::v16i32, Legal);
1385 setOperationAction(ISD::LOAD, MVT::v16i1, Legal);
1387 setOperationAction(ISD::FADD, MVT::v16f32, Legal);
1388 setOperationAction(ISD::FSUB, MVT::v16f32, Legal);
1389 setOperationAction(ISD::FMUL, MVT::v16f32, Legal);
1390 setOperationAction(ISD::FDIV, MVT::v16f32, Legal);
1391 setOperationAction(ISD::FSQRT, MVT::v16f32, Legal);
1392 setOperationAction(ISD::FNEG, MVT::v16f32, Custom);
1394 setOperationAction(ISD::FADD, MVT::v8f64, Legal);
1395 setOperationAction(ISD::FSUB, MVT::v8f64, Legal);
1396 setOperationAction(ISD::FMUL, MVT::v8f64, Legal);
1397 setOperationAction(ISD::FDIV, MVT::v8f64, Legal);
1398 setOperationAction(ISD::FSQRT, MVT::v8f64, Legal);
1399 setOperationAction(ISD::FNEG, MVT::v8f64, Custom);
1400 setOperationAction(ISD::FMA, MVT::v8f64, Legal);
1401 setOperationAction(ISD::FMA, MVT::v16f32, Legal);
1403 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
1404 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
1405 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
1406 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
1407 if (Subtarget->is64Bit()) {
1408 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Legal);
1409 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Legal);
1410 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Legal);
1411 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Legal);
1413 setOperationAction(ISD::FP_TO_SINT, MVT::v16i32, Legal);
1414 setOperationAction(ISD::FP_TO_UINT, MVT::v16i32, Legal);
1415 setOperationAction(ISD::FP_TO_UINT, MVT::v8i32, Legal);
1416 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
1417 setOperationAction(ISD::SINT_TO_FP, MVT::v16i32, Legal);
1418 setOperationAction(ISD::UINT_TO_FP, MVT::v16i32, Legal);
1419 setOperationAction(ISD::UINT_TO_FP, MVT::v8i32, Legal);
1420 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
1421 setOperationAction(ISD::FP_ROUND, MVT::v8f32, Legal);
1422 setOperationAction(ISD::FP_EXTEND, MVT::v8f32, Legal);
1424 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
1425 setOperationAction(ISD::TRUNCATE, MVT::v16i8, Custom);
1426 setOperationAction(ISD::TRUNCATE, MVT::v8i32, Custom);
1427 setOperationAction(ISD::TRUNCATE, MVT::v8i1, Custom);
1428 setOperationAction(ISD::TRUNCATE, MVT::v16i1, Custom);
1429 setOperationAction(ISD::TRUNCATE, MVT::v16i16, Custom);
1430 setOperationAction(ISD::ZERO_EXTEND, MVT::v16i32, Custom);
1431 setOperationAction(ISD::ZERO_EXTEND, MVT::v8i64, Custom);
1432 setOperationAction(ISD::SIGN_EXTEND, MVT::v16i32, Custom);
1433 setOperationAction(ISD::SIGN_EXTEND, MVT::v8i64, Custom);
1434 setOperationAction(ISD::SIGN_EXTEND, MVT::v16i8, Custom);
1435 setOperationAction(ISD::SIGN_EXTEND, MVT::v8i16, Custom);
1436 setOperationAction(ISD::SIGN_EXTEND, MVT::v16i16, Custom);
1438 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f64, Custom);
1439 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i64, Custom);
1440 setOperationAction(ISD::CONCAT_VECTORS, MVT::v16f32, Custom);
1441 setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i32, Custom);
1442 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i1, Custom);
1443 setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i1, Legal);
1445 setOperationAction(ISD::SETCC, MVT::v16i1, Custom);
1446 setOperationAction(ISD::SETCC, MVT::v8i1, Custom);
1448 setOperationAction(ISD::MUL, MVT::v8i64, Custom);
1450 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i1, Custom);
1451 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i1, Custom);
1452 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i1, Custom);
1453 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i1, Custom);
1454 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i1, Custom);
1455 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i1, Custom);
1456 setOperationAction(ISD::SELECT, MVT::v8f64, Custom);
1457 setOperationAction(ISD::SELECT, MVT::v8i64, Custom);
1458 setOperationAction(ISD::SELECT, MVT::v16f32, Custom);
1460 setOperationAction(ISD::ADD, MVT::v8i64, Legal);
1461 setOperationAction(ISD::ADD, MVT::v16i32, Legal);
1463 setOperationAction(ISD::SUB, MVT::v8i64, Legal);
1464 setOperationAction(ISD::SUB, MVT::v16i32, Legal);
1466 setOperationAction(ISD::MUL, MVT::v16i32, Legal);
1468 setOperationAction(ISD::SRL, MVT::v8i64, Custom);
1469 setOperationAction(ISD::SRL, MVT::v16i32, Custom);
1471 setOperationAction(ISD::SHL, MVT::v8i64, Custom);
1472 setOperationAction(ISD::SHL, MVT::v16i32, Custom);
1474 setOperationAction(ISD::SRA, MVT::v8i64, Custom);
1475 setOperationAction(ISD::SRA, MVT::v16i32, Custom);
1477 setOperationAction(ISD::AND, MVT::v8i64, Legal);
1478 setOperationAction(ISD::OR, MVT::v8i64, Legal);
1479 setOperationAction(ISD::XOR, MVT::v8i64, Legal);
1480 setOperationAction(ISD::AND, MVT::v16i32, Legal);
1481 setOperationAction(ISD::OR, MVT::v16i32, Legal);
1482 setOperationAction(ISD::XOR, MVT::v16i32, Legal);
1484 if (Subtarget->hasCDI()) {
1485 setOperationAction(ISD::CTLZ, MVT::v8i64, Legal);
1486 setOperationAction(ISD::CTLZ, MVT::v16i32, Legal);
1489 // Custom lower several nodes.
1490 for (int i = MVT::FIRST_VECTOR_VALUETYPE;
1491 i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
1492 MVT VT = (MVT::SimpleValueType)i;
1494 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
1495 // Extract subvector is special because the value type
1496 // (result) is 256/128-bit but the source is 512-bit wide.
1497 if (VT.is128BitVector() || VT.is256BitVector())
1498 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
1500 if (VT.getVectorElementType() == MVT::i1)
1501 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
1503 // Do not attempt to custom lower other non-512-bit vectors
1504 if (!VT.is512BitVector())
1507 if ( EltSize >= 32) {
1508 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
1509 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
1510 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
1511 setOperationAction(ISD::VSELECT, VT, Legal);
1512 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
1513 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
1514 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
1517 for (int i = MVT::v32i8; i != MVT::v8i64; ++i) {
1518 MVT VT = (MVT::SimpleValueType)i;
1520 // Do not attempt to promote non-256-bit vectors
1521 if (!VT.is512BitVector())
1524 setOperationAction(ISD::SELECT, VT, Promote);
1525 AddPromotedToType (ISD::SELECT, VT, MVT::v8i64);
1529 if (!TM.Options.UseSoftFloat && Subtarget->hasBWI()) {
1530 addRegisterClass(MVT::v32i16, &X86::VR512RegClass);
1531 addRegisterClass(MVT::v64i8, &X86::VR512RegClass);
1533 addRegisterClass(MVT::v32i1, &X86::VK32RegClass);
1534 addRegisterClass(MVT::v64i1, &X86::VK64RegClass);
1536 setOperationAction(ISD::LOAD, MVT::v32i16, Legal);
1537 setOperationAction(ISD::LOAD, MVT::v64i8, Legal);
1538 setOperationAction(ISD::SETCC, MVT::v32i1, Custom);
1539 setOperationAction(ISD::SETCC, MVT::v64i1, Custom);
1541 for (int i = MVT::v32i8; i != MVT::v8i64; ++i) {
1542 const MVT VT = (MVT::SimpleValueType)i;
1544 const unsigned EltSize = VT.getVectorElementType().getSizeInBits();
1546 // Do not attempt to promote non-256-bit vectors
1547 if (!VT.is512BitVector())
1550 if ( EltSize < 32) {
1551 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
1552 setOperationAction(ISD::VSELECT, VT, Legal);
1557 if (!TM.Options.UseSoftFloat && Subtarget->hasVLX()) {
1558 addRegisterClass(MVT::v4i1, &X86::VK4RegClass);
1559 addRegisterClass(MVT::v2i1, &X86::VK2RegClass);
1561 setOperationAction(ISD::SETCC, MVT::v4i1, Custom);
1562 setOperationAction(ISD::SETCC, MVT::v2i1, Custom);
1565 // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1566 // of this type with custom code.
1567 for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
1568 VT != MVT::LAST_VECTOR_VALUETYPE; VT++) {
1569 setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1573 // We want to custom lower some of our intrinsics.
1574 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1575 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
1576 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
1577 if (!Subtarget->is64Bit())
1578 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
1580 // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1581 // handle type legalization for these operations here.
1583 // FIXME: We really should do custom legalization for addition and
1584 // subtraction on x86-32 once PR3203 is fixed. We really can't do much better
1585 // than generic legalization for 64-bit multiplication-with-overflow, though.
1586 for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1587 // Add/Sub/Mul with overflow operations are custom lowered.
1589 setOperationAction(ISD::SADDO, VT, Custom);
1590 setOperationAction(ISD::UADDO, VT, Custom);
1591 setOperationAction(ISD::SSUBO, VT, Custom);
1592 setOperationAction(ISD::USUBO, VT, Custom);
1593 setOperationAction(ISD::SMULO, VT, Custom);
1594 setOperationAction(ISD::UMULO, VT, Custom);
1597 // There are no 8-bit 3-address imul/mul instructions
1598 setOperationAction(ISD::SMULO, MVT::i8, Expand);
1599 setOperationAction(ISD::UMULO, MVT::i8, Expand);
1601 if (!Subtarget->is64Bit()) {
1602 // These libcalls are not available in 32-bit.
1603 setLibcallName(RTLIB::SHL_I128, nullptr);
1604 setLibcallName(RTLIB::SRL_I128, nullptr);
1605 setLibcallName(RTLIB::SRA_I128, nullptr);
1608 // Combine sin / cos into one node or libcall if possible.
1609 if (Subtarget->hasSinCos()) {
1610 setLibcallName(RTLIB::SINCOS_F32, "sincosf");
1611 setLibcallName(RTLIB::SINCOS_F64, "sincos");
1612 if (Subtarget->isTargetDarwin()) {
1613 // For MacOSX, we don't want to the normal expansion of a libcall to
1614 // sincos. We want to issue a libcall to __sincos_stret to avoid memory
1616 setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
1617 setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
1621 if (Subtarget->isTargetWin64()) {
1622 setOperationAction(ISD::SDIV, MVT::i128, Custom);
1623 setOperationAction(ISD::UDIV, MVT::i128, Custom);
1624 setOperationAction(ISD::SREM, MVT::i128, Custom);
1625 setOperationAction(ISD::UREM, MVT::i128, Custom);
1626 setOperationAction(ISD::SDIVREM, MVT::i128, Custom);
1627 setOperationAction(ISD::UDIVREM, MVT::i128, Custom);
1630 // We have target-specific dag combine patterns for the following nodes:
1631 setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1632 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1633 setTargetDAGCombine(ISD::VSELECT);
1634 setTargetDAGCombine(ISD::SELECT);
1635 setTargetDAGCombine(ISD::SHL);
1636 setTargetDAGCombine(ISD::SRA);
1637 setTargetDAGCombine(ISD::SRL);
1638 setTargetDAGCombine(ISD::OR);
1639 setTargetDAGCombine(ISD::AND);
1640 setTargetDAGCombine(ISD::ADD);
1641 setTargetDAGCombine(ISD::FADD);
1642 setTargetDAGCombine(ISD::FSUB);
1643 setTargetDAGCombine(ISD::FMA);
1644 setTargetDAGCombine(ISD::SUB);
1645 setTargetDAGCombine(ISD::LOAD);
1646 setTargetDAGCombine(ISD::STORE);
1647 setTargetDAGCombine(ISD::ZERO_EXTEND);
1648 setTargetDAGCombine(ISD::ANY_EXTEND);
1649 setTargetDAGCombine(ISD::SIGN_EXTEND);
1650 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
1651 setTargetDAGCombine(ISD::TRUNCATE);
1652 setTargetDAGCombine(ISD::SINT_TO_FP);
1653 setTargetDAGCombine(ISD::SETCC);
1654 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1655 setTargetDAGCombine(ISD::BUILD_VECTOR);
1656 if (Subtarget->is64Bit())
1657 setTargetDAGCombine(ISD::MUL);
1658 setTargetDAGCombine(ISD::XOR);
1660 computeRegisterProperties();
1662 // On Darwin, -Os means optimize for size without hurting performance,
1663 // do not reduce the limit.
1664 MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1665 MaxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1666 MaxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1667 MaxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1668 MaxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1669 MaxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1670 setPrefLoopAlignment(4); // 2^4 bytes.
1672 // Predictable cmov don't hurt on atom because it's in-order.
1673 PredictableSelectIsExpensive = !Subtarget->isAtom();
1675 setPrefFunctionAlignment(4); // 2^4 bytes.
1677 verifyIntrinsicTables();
1680 // This has so far only been implemented for 64-bit MachO.
1681 bool X86TargetLowering::useLoadStackGuardNode() const {
1682 return Subtarget->getTargetTriple().getObjectFormat() == Triple::MachO &&
1683 Subtarget->is64Bit();
1686 TargetLoweringBase::LegalizeTypeAction
1687 X86TargetLowering::getPreferredVectorAction(EVT VT) const {
1688 if (ExperimentalVectorWideningLegalization &&
1689 VT.getVectorNumElements() != 1 &&
1690 VT.getVectorElementType().getSimpleVT() != MVT::i1)
1691 return TypeWidenVector;
1693 return TargetLoweringBase::getPreferredVectorAction(VT);
1696 EVT X86TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
1698 return Subtarget->hasAVX512() ? MVT::i1: MVT::i8;
1700 const unsigned NumElts = VT.getVectorNumElements();
1701 const EVT EltVT = VT.getVectorElementType();
1702 if (VT.is512BitVector()) {
1703 if (Subtarget->hasAVX512())
1704 if (EltVT == MVT::i32 || EltVT == MVT::i64 ||
1705 EltVT == MVT::f32 || EltVT == MVT::f64)
1707 case 8: return MVT::v8i1;
1708 case 16: return MVT::v16i1;
1710 if (Subtarget->hasBWI())
1711 if (EltVT == MVT::i8 || EltVT == MVT::i16)
1713 case 32: return MVT::v32i1;
1714 case 64: return MVT::v64i1;
1718 if (VT.is256BitVector() || VT.is128BitVector()) {
1719 if (Subtarget->hasVLX())
1720 if (EltVT == MVT::i32 || EltVT == MVT::i64 ||
1721 EltVT == MVT::f32 || EltVT == MVT::f64)
1723 case 2: return MVT::v2i1;
1724 case 4: return MVT::v4i1;
1725 case 8: return MVT::v8i1;
1727 if (Subtarget->hasBWI() && Subtarget->hasVLX())
1728 if (EltVT == MVT::i8 || EltVT == MVT::i16)
1730 case 8: return MVT::v8i1;
1731 case 16: return MVT::v16i1;
1732 case 32: return MVT::v32i1;
1736 return VT.changeVectorElementTypeToInteger();
1739 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1740 /// the desired ByVal argument alignment.
1741 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1744 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1745 if (VTy->getBitWidth() == 128)
1747 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1748 unsigned EltAlign = 0;
1749 getMaxByValAlign(ATy->getElementType(), EltAlign);
1750 if (EltAlign > MaxAlign)
1751 MaxAlign = EltAlign;
1752 } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1753 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1754 unsigned EltAlign = 0;
1755 getMaxByValAlign(STy->getElementType(i), EltAlign);
1756 if (EltAlign > MaxAlign)
1757 MaxAlign = EltAlign;
1764 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1765 /// function arguments in the caller parameter area. For X86, aggregates
1766 /// that contain SSE vectors are placed at 16-byte boundaries while the rest
1767 /// are at 4-byte boundaries.
1768 unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1769 if (Subtarget->is64Bit()) {
1770 // Max of 8 and alignment of type.
1771 unsigned TyAlign = TD->getABITypeAlignment(Ty);
1778 if (Subtarget->hasSSE1())
1779 getMaxByValAlign(Ty, Align);
1783 /// getOptimalMemOpType - Returns the target specific optimal type for load
1784 /// and store operations as a result of memset, memcpy, and memmove
1785 /// lowering. If DstAlign is zero that means it's safe to destination
1786 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1787 /// means there isn't a need to check it against alignment requirement,
1788 /// probably because the source does not need to be loaded. If 'IsMemset' is
1789 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
1790 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
1791 /// source is constant so it does not need to be loaded.
1792 /// It returns EVT::Other if the type should be determined using generic
1793 /// target-independent logic.
1795 X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1796 unsigned DstAlign, unsigned SrcAlign,
1797 bool IsMemset, bool ZeroMemset,
1799 MachineFunction &MF) const {
1800 const Function *F = MF.getFunction();
1801 if ((!IsMemset || ZeroMemset) &&
1802 !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
1803 Attribute::NoImplicitFloat)) {
1805 (Subtarget->isUnalignedMemAccessFast() ||
1806 ((DstAlign == 0 || DstAlign >= 16) &&
1807 (SrcAlign == 0 || SrcAlign >= 16)))) {
1809 if (Subtarget->hasInt256())
1811 if (Subtarget->hasFp256())
1814 if (Subtarget->hasSSE2())
1816 if (Subtarget->hasSSE1())
1818 } else if (!MemcpyStrSrc && Size >= 8 &&
1819 !Subtarget->is64Bit() &&
1820 Subtarget->hasSSE2()) {
1821 // Do not use f64 to lower memcpy if source is string constant. It's
1822 // better to use i32 to avoid the loads.
1826 if (Subtarget->is64Bit() && Size >= 8)
1831 bool X86TargetLowering::isSafeMemOpType(MVT VT) const {
1833 return X86ScalarSSEf32;
1834 else if (VT == MVT::f64)
1835 return X86ScalarSSEf64;
1840 X86TargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
1845 *Fast = Subtarget->isUnalignedMemAccessFast();
1849 /// getJumpTableEncoding - Return the entry encoding for a jump table in the
1850 /// current function. The returned value is a member of the
1851 /// MachineJumpTableInfo::JTEntryKind enum.
1852 unsigned X86TargetLowering::getJumpTableEncoding() const {
1853 // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1855 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1856 Subtarget->isPICStyleGOT())
1857 return MachineJumpTableInfo::EK_Custom32;
1859 // Otherwise, use the normal jump table encoding heuristics.
1860 return TargetLowering::getJumpTableEncoding();
1864 X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1865 const MachineBasicBlock *MBB,
1866 unsigned uid,MCContext &Ctx) const{
1867 assert(MBB->getParent()->getTarget().getRelocationModel() == Reloc::PIC_ &&
1868 Subtarget->isPICStyleGOT());
1869 // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1871 return MCSymbolRefExpr::Create(MBB->getSymbol(),
1872 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1875 /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1877 SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1878 SelectionDAG &DAG) const {
1879 if (!Subtarget->is64Bit())
1880 // This doesn't have SDLoc associated with it, but is not really the
1881 // same as a Register.
1882 return DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), getPointerTy());
1886 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1887 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1889 const MCExpr *X86TargetLowering::
1890 getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1891 MCContext &Ctx) const {
1892 // X86-64 uses RIP relative addressing based on the jump table label.
1893 if (Subtarget->isPICStyleRIPRel())
1894 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1896 // Otherwise, the reference is relative to the PIC base.
1897 return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1900 // FIXME: Why this routine is here? Move to RegInfo!
1901 std::pair<const TargetRegisterClass*, uint8_t>
1902 X86TargetLowering::findRepresentativeClass(MVT VT) const{
1903 const TargetRegisterClass *RRC = nullptr;
1905 switch (VT.SimpleTy) {
1907 return TargetLowering::findRepresentativeClass(VT);
1908 case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1909 RRC = Subtarget->is64Bit() ? &X86::GR64RegClass : &X86::GR32RegClass;
1912 RRC = &X86::VR64RegClass;
1914 case MVT::f32: case MVT::f64:
1915 case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1916 case MVT::v4f32: case MVT::v2f64:
1917 case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1919 RRC = &X86::VR128RegClass;
1922 return std::make_pair(RRC, Cost);
1925 bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1926 unsigned &Offset) const {
1927 if (!Subtarget->isTargetLinux())
1930 if (Subtarget->is64Bit()) {
1931 // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1933 if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1945 bool X86TargetLowering::isNoopAddrSpaceCast(unsigned SrcAS,
1946 unsigned DestAS) const {
1947 assert(SrcAS != DestAS && "Expected different address spaces!");
1949 return SrcAS < 256 && DestAS < 256;
1952 //===----------------------------------------------------------------------===//
1953 // Return Value Calling Convention Implementation
1954 //===----------------------------------------------------------------------===//
1956 #include "X86GenCallingConv.inc"
1959 X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1960 MachineFunction &MF, bool isVarArg,
1961 const SmallVectorImpl<ISD::OutputArg> &Outs,
1962 LLVMContext &Context) const {
1963 SmallVector<CCValAssign, 16> RVLocs;
1964 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
1965 return CCInfo.CheckReturn(Outs, RetCC_X86);
1968 const MCPhysReg *X86TargetLowering::getScratchRegisters(CallingConv::ID) const {
1969 static const MCPhysReg ScratchRegs[] = { X86::R11, 0 };
1974 X86TargetLowering::LowerReturn(SDValue Chain,
1975 CallingConv::ID CallConv, bool isVarArg,
1976 const SmallVectorImpl<ISD::OutputArg> &Outs,
1977 const SmallVectorImpl<SDValue> &OutVals,
1978 SDLoc dl, SelectionDAG &DAG) const {
1979 MachineFunction &MF = DAG.getMachineFunction();
1980 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1982 SmallVector<CCValAssign, 16> RVLocs;
1983 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, *DAG.getContext());
1984 CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1987 SmallVector<SDValue, 6> RetOps;
1988 RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1989 // Operand #1 = Bytes To Pop
1990 RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1993 // Copy the result values into the output registers.
1994 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1995 CCValAssign &VA = RVLocs[i];
1996 assert(VA.isRegLoc() && "Can only return in registers!");
1997 SDValue ValToCopy = OutVals[i];
1998 EVT ValVT = ValToCopy.getValueType();
2000 // Promote values to the appropriate types
2001 if (VA.getLocInfo() == CCValAssign::SExt)
2002 ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
2003 else if (VA.getLocInfo() == CCValAssign::ZExt)
2004 ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy);
2005 else if (VA.getLocInfo() == CCValAssign::AExt)
2006 ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
2007 else if (VA.getLocInfo() == CCValAssign::BCvt)
2008 ValToCopy = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), ValToCopy);
2010 assert(VA.getLocInfo() != CCValAssign::FPExt &&
2011 "Unexpected FP-extend for return value.");
2013 // If this is x86-64, and we disabled SSE, we can't return FP values,
2014 // or SSE or MMX vectors.
2015 if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
2016 VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
2017 (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
2018 report_fatal_error("SSE register return with SSE disabled");
2020 // Likewise we can't return F64 values with SSE1 only. gcc does so, but
2021 // llvm-gcc has never done it right and no one has noticed, so this
2022 // should be OK for now.
2023 if (ValVT == MVT::f64 &&
2024 (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
2025 report_fatal_error("SSE2 register return with SSE2 disabled");
2027 // Returns in ST0/ST1 are handled specially: these are pushed as operands to
2028 // the RET instruction and handled by the FP Stackifier.
2029 if (VA.getLocReg() == X86::FP0 ||
2030 VA.getLocReg() == X86::FP1) {
2031 // If this is a copy from an xmm register to ST(0), use an FPExtend to
2032 // change the value to the FP stack register class.
2033 if (isScalarFPTypeInSSEReg(VA.getValVT()))
2034 ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
2035 RetOps.push_back(ValToCopy);
2036 // Don't emit a copytoreg.
2040 // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
2041 // which is returned in RAX / RDX.
2042 if (Subtarget->is64Bit()) {
2043 if (ValVT == MVT::x86mmx) {
2044 if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
2045 ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
2046 ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
2048 // If we don't have SSE2 available, convert to v4f32 so the generated
2049 // register is legal.
2050 if (!Subtarget->hasSSE2())
2051 ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
2056 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
2057 Flag = Chain.getValue(1);
2058 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2061 // The x86-64 ABIs require that for returning structs by value we copy
2062 // the sret argument into %rax/%eax (depending on ABI) for the return.
2063 // Win32 requires us to put the sret argument to %eax as well.
2064 // We saved the argument into a virtual register in the entry block,
2065 // so now we copy the value out and into %rax/%eax.
2066 if (DAG.getMachineFunction().getFunction()->hasStructRetAttr() &&
2067 (Subtarget->is64Bit() || Subtarget->isTargetKnownWindowsMSVC())) {
2068 MachineFunction &MF = DAG.getMachineFunction();
2069 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2070 unsigned Reg = FuncInfo->getSRetReturnReg();
2072 "SRetReturnReg should have been set in LowerFormalArguments().");
2073 SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
2076 = (Subtarget->is64Bit() && !Subtarget->isTarget64BitILP32()) ?
2077 X86::RAX : X86::EAX;
2078 Chain = DAG.getCopyToReg(Chain, dl, RetValReg, Val, Flag);
2079 Flag = Chain.getValue(1);
2081 // RAX/EAX now acts like a return value.
2082 RetOps.push_back(DAG.getRegister(RetValReg, getPointerTy()));
2085 RetOps[0] = Chain; // Update chain.
2087 // Add the flag if we have it.
2089 RetOps.push_back(Flag);
2091 return DAG.getNode(X86ISD::RET_FLAG, dl, MVT::Other, RetOps);
2094 bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
2095 if (N->getNumValues() != 1)
2097 if (!N->hasNUsesOfValue(1, 0))
2100 SDValue TCChain = Chain;
2101 SDNode *Copy = *N->use_begin();
2102 if (Copy->getOpcode() == ISD::CopyToReg) {
2103 // If the copy has a glue operand, we conservatively assume it isn't safe to
2104 // perform a tail call.
2105 if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
2107 TCChain = Copy->getOperand(0);
2108 } else if (Copy->getOpcode() != ISD::FP_EXTEND)
2111 bool HasRet = false;
2112 for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
2114 if (UI->getOpcode() != X86ISD::RET_FLAG)
2116 // If we are returning more than one value, we can definitely
2117 // not make a tail call see PR19530
2118 if (UI->getNumOperands() > 4)
2120 if (UI->getNumOperands() == 4 &&
2121 UI->getOperand(UI->getNumOperands()-1).getValueType() != MVT::Glue)
2134 X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
2135 ISD::NodeType ExtendKind) const {
2137 // TODO: Is this also valid on 32-bit?
2138 if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
2139 ReturnMVT = MVT::i8;
2141 ReturnMVT = MVT::i32;
2143 EVT MinVT = getRegisterType(Context, ReturnMVT);
2144 return VT.bitsLT(MinVT) ? MinVT : VT;
2147 /// LowerCallResult - Lower the result values of a call into the
2148 /// appropriate copies out of appropriate physical registers.
2151 X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2152 CallingConv::ID CallConv, bool isVarArg,
2153 const SmallVectorImpl<ISD::InputArg> &Ins,
2154 SDLoc dl, SelectionDAG &DAG,
2155 SmallVectorImpl<SDValue> &InVals) const {
2157 // Assign locations to each value returned by this call.
2158 SmallVector<CCValAssign, 16> RVLocs;
2159 bool Is64Bit = Subtarget->is64Bit();
2160 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2162 CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2164 // Copy all of the result registers out of their specified physreg.
2165 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2166 CCValAssign &VA = RVLocs[i];
2167 EVT CopyVT = VA.getValVT();
2169 // If this is x86-64, and we disabled SSE, we can't return FP values
2170 if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
2171 ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
2172 report_fatal_error("SSE register return with SSE disabled");
2175 // If we prefer to use the value in xmm registers, copy it out as f80 and
2176 // use a truncate to move it from fp stack reg to xmm reg.
2177 if ((VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) &&
2178 isScalarFPTypeInSSEReg(VA.getValVT()))
2181 Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
2182 CopyVT, InFlag).getValue(1);
2183 SDValue Val = Chain.getValue(0);
2185 if (CopyVT != VA.getValVT())
2186 Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
2187 // This truncation won't change the value.
2188 DAG.getIntPtrConstant(1));
2190 InFlag = Chain.getValue(2);
2191 InVals.push_back(Val);
2197 //===----------------------------------------------------------------------===//
2198 // C & StdCall & Fast Calling Convention implementation
2199 //===----------------------------------------------------------------------===//
2200 // StdCall calling convention seems to be standard for many Windows' API
2201 // routines and around. It differs from C calling convention just a little:
2202 // callee should clean up the stack, not caller. Symbols should be also
2203 // decorated in some fancy way :) It doesn't support any vector arguments.
2204 // For info on fast calling convention see Fast Calling Convention (tail call)
2205 // implementation LowerX86_32FastCCCallTo.
2207 /// CallIsStructReturn - Determines whether a call uses struct return
2209 enum StructReturnType {
2214 static StructReturnType
2215 callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
2217 return NotStructReturn;
2219 const ISD::ArgFlagsTy &Flags = Outs[0].Flags;
2220 if (!Flags.isSRet())
2221 return NotStructReturn;
2222 if (Flags.isInReg())
2223 return RegStructReturn;
2224 return StackStructReturn;
2227 /// ArgsAreStructReturn - Determines whether a function uses struct
2228 /// return semantics.
2229 static StructReturnType
2230 argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
2232 return NotStructReturn;
2234 const ISD::ArgFlagsTy &Flags = Ins[0].Flags;
2235 if (!Flags.isSRet())
2236 return NotStructReturn;
2237 if (Flags.isInReg())
2238 return RegStructReturn;
2239 return StackStructReturn;
2242 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2243 /// by "Src" to address "Dst" with size and alignment information specified by
2244 /// the specific parameter attribute. The copy will be passed as a byval
2245 /// function parameter.
2247 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2248 ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2250 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
2252 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
2253 /*isVolatile*/false, /*AlwaysInline=*/true,
2254 MachinePointerInfo(), MachinePointerInfo());
2257 /// IsTailCallConvention - Return true if the calling convention is one that
2258 /// supports tail call optimization.
2259 static bool IsTailCallConvention(CallingConv::ID CC) {
2260 return (CC == CallingConv::Fast || CC == CallingConv::GHC ||
2261 CC == CallingConv::HiPE);
2264 /// \brief Return true if the calling convention is a C calling convention.
2265 static bool IsCCallConvention(CallingConv::ID CC) {
2266 return (CC == CallingConv::C || CC == CallingConv::X86_64_Win64 ||
2267 CC == CallingConv::X86_64_SysV);
2270 bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
2271 if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
2275 CallingConv::ID CalleeCC = CS.getCallingConv();
2276 if (!IsTailCallConvention(CalleeCC) && !IsCCallConvention(CalleeCC))
2282 /// FuncIsMadeTailCallSafe - Return true if the function is being made into
2283 /// a tailcall target by changing its ABI.
2284 static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
2285 bool GuaranteedTailCallOpt) {
2286 return GuaranteedTailCallOpt && IsTailCallConvention(CC);
2290 X86TargetLowering::LowerMemArgument(SDValue Chain,
2291 CallingConv::ID CallConv,
2292 const SmallVectorImpl<ISD::InputArg> &Ins,
2293 SDLoc dl, SelectionDAG &DAG,
2294 const CCValAssign &VA,
2295 MachineFrameInfo *MFI,
2297 // Create the nodes corresponding to a load from this parameter slot.
2298 ISD::ArgFlagsTy Flags = Ins[i].Flags;
2299 bool AlwaysUseMutable = FuncIsMadeTailCallSafe(
2300 CallConv, DAG.getTarget().Options.GuaranteedTailCallOpt);
2301 bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
2304 // If value is passed by pointer we have address passed instead of the value
2306 if (VA.getLocInfo() == CCValAssign::Indirect)
2307 ValVT = VA.getLocVT();
2309 ValVT = VA.getValVT();
2311 // FIXME: For now, all byval parameter objects are marked mutable. This can be
2312 // changed with more analysis.
2313 // In case of tail call optimization mark all arguments mutable. Since they
2314 // could be overwritten by lowering of arguments in case of a tail call.
2315 if (Flags.isByVal()) {
2316 unsigned Bytes = Flags.getByValSize();
2317 if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
2318 int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
2319 return DAG.getFrameIndex(FI, getPointerTy());
2321 int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
2322 VA.getLocMemOffset(), isImmutable);
2323 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2324 return DAG.getLoad(ValVT, dl, Chain, FIN,
2325 MachinePointerInfo::getFixedStack(FI),
2326 false, false, false, 0);
2330 // FIXME: Get this from tablegen.
2331 static ArrayRef<MCPhysReg> get64BitArgumentGPRs(CallingConv::ID CallConv,
2332 const X86Subtarget *Subtarget) {
2333 assert(Subtarget->is64Bit());
2335 if (Subtarget->isCallingConvWin64(CallConv)) {
2336 static const MCPhysReg GPR64ArgRegsWin64[] = {
2337 X86::RCX, X86::RDX, X86::R8, X86::R9
2339 return makeArrayRef(std::begin(GPR64ArgRegsWin64), std::end(GPR64ArgRegsWin64));
2342 static const MCPhysReg GPR64ArgRegs64Bit[] = {
2343 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
2345 return makeArrayRef(std::begin(GPR64ArgRegs64Bit), std::end(GPR64ArgRegs64Bit));
2348 // FIXME: Get this from tablegen.
2349 static ArrayRef<MCPhysReg> get64BitArgumentXMMs(MachineFunction &MF,
2350 CallingConv::ID CallConv,
2351 const X86Subtarget *Subtarget) {
2352 assert(Subtarget->is64Bit());
2353 if (Subtarget->isCallingConvWin64(CallConv)) {
2354 // The XMM registers which might contain var arg parameters are shadowed
2355 // in their paired GPR. So we only need to save the GPR to their home
2357 // TODO: __vectorcall will change this.
2361 const Function *Fn = MF.getFunction();
2362 bool NoImplicitFloatOps = Fn->getAttributes().
2363 hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
2364 assert(!(MF.getTarget().Options.UseSoftFloat && NoImplicitFloatOps) &&
2365 "SSE register cannot be used when SSE is disabled!");
2366 if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
2367 !Subtarget->hasSSE1())
2368 // Kernel mode asks for SSE to be disabled, so there are no XMM argument
2372 static const MCPhysReg XMMArgRegs64Bit[] = {
2373 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2374 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2376 return makeArrayRef(std::begin(XMMArgRegs64Bit), std::end(XMMArgRegs64Bit));
2380 X86TargetLowering::LowerFormalArguments(SDValue Chain,
2381 CallingConv::ID CallConv,
2383 const SmallVectorImpl<ISD::InputArg> &Ins,
2386 SmallVectorImpl<SDValue> &InVals)
2388 MachineFunction &MF = DAG.getMachineFunction();
2389 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2391 const Function* Fn = MF.getFunction();
2392 if (Fn->hasExternalLinkage() &&
2393 Subtarget->isTargetCygMing() &&
2394 Fn->getName() == "main")
2395 FuncInfo->setForceFramePointer(true);
2397 MachineFrameInfo *MFI = MF.getFrameInfo();
2398 bool Is64Bit = Subtarget->is64Bit();
2399 bool IsWin64 = Subtarget->isCallingConvWin64(CallConv);
2401 assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2402 "Var args not supported with calling convention fastcc, ghc or hipe");
2404 // Assign locations to all of the incoming arguments.
2405 SmallVector<CCValAssign, 16> ArgLocs;
2406 CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
2408 // Allocate shadow area for Win64
2410 CCInfo.AllocateStack(32, 8);
2412 CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
2414 unsigned LastVal = ~0U;
2416 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2417 CCValAssign &VA = ArgLocs[i];
2418 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
2420 assert(VA.getValNo() != LastVal &&
2421 "Don't support value assigned to multiple locs yet");
2423 LastVal = VA.getValNo();
2425 if (VA.isRegLoc()) {
2426 EVT RegVT = VA.getLocVT();
2427 const TargetRegisterClass *RC;
2428 if (RegVT == MVT::i32)
2429 RC = &X86::GR32RegClass;
2430 else if (Is64Bit && RegVT == MVT::i64)
2431 RC = &X86::GR64RegClass;
2432 else if (RegVT == MVT::f32)
2433 RC = &X86::FR32RegClass;
2434 else if (RegVT == MVT::f64)
2435 RC = &X86::FR64RegClass;
2436 else if (RegVT.is512BitVector())
2437 RC = &X86::VR512RegClass;
2438 else if (RegVT.is256BitVector())
2439 RC = &X86::VR256RegClass;
2440 else if (RegVT.is128BitVector())
2441 RC = &X86::VR128RegClass;
2442 else if (RegVT == MVT::x86mmx)
2443 RC = &X86::VR64RegClass;
2444 else if (RegVT == MVT::i1)
2445 RC = &X86::VK1RegClass;
2446 else if (RegVT == MVT::v8i1)
2447 RC = &X86::VK8RegClass;
2448 else if (RegVT == MVT::v16i1)
2449 RC = &X86::VK16RegClass;
2450 else if (RegVT == MVT::v32i1)
2451 RC = &X86::VK32RegClass;
2452 else if (RegVT == MVT::v64i1)
2453 RC = &X86::VK64RegClass;
2455 llvm_unreachable("Unknown argument type!");
2457 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2458 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2460 // If this is an 8 or 16-bit value, it is really passed promoted to 32
2461 // bits. Insert an assert[sz]ext to capture this, then truncate to the
2463 if (VA.getLocInfo() == CCValAssign::SExt)
2464 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2465 DAG.getValueType(VA.getValVT()));
2466 else if (VA.getLocInfo() == CCValAssign::ZExt)
2467 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2468 DAG.getValueType(VA.getValVT()));
2469 else if (VA.getLocInfo() == CCValAssign::BCvt)
2470 ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
2472 if (VA.isExtInLoc()) {
2473 // Handle MMX values passed in XMM regs.
2474 if (RegVT.isVector())
2475 ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(), ArgValue);
2477 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2480 assert(VA.isMemLoc());
2481 ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
2484 // If value is passed via pointer - do a load.
2485 if (VA.getLocInfo() == CCValAssign::Indirect)
2486 ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
2487 MachinePointerInfo(), false, false, false, 0);
2489 InVals.push_back(ArgValue);
2492 if (Subtarget->is64Bit() || Subtarget->isTargetKnownWindowsMSVC()) {
2493 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2494 // The x86-64 ABIs require that for returning structs by value we copy
2495 // the sret argument into %rax/%eax (depending on ABI) for the return.
2496 // Win32 requires us to put the sret argument to %eax as well.
2497 // Save the argument into a virtual register so that we can access it
2498 // from the return points.
2499 if (Ins[i].Flags.isSRet()) {
2500 unsigned Reg = FuncInfo->getSRetReturnReg();
2502 MVT PtrTy = getPointerTy();
2503 Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy));
2504 FuncInfo->setSRetReturnReg(Reg);
2506 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[i]);
2507 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
2513 unsigned StackSize = CCInfo.getNextStackOffset();
2514 // Align stack specially for tail calls.
2515 if (FuncIsMadeTailCallSafe(CallConv,
2516 MF.getTarget().Options.GuaranteedTailCallOpt))
2517 StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
2519 // If the function takes variable number of arguments, make a frame index for
2520 // the start of the first vararg value... for expansion of llvm.va_start. We
2521 // can skip this if there are no va_start calls.
2522 if (MFI->hasVAStart() &&
2523 (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
2524 CallConv != CallingConv::X86_ThisCall))) {
2525 FuncInfo->setVarArgsFrameIndex(
2526 MFI->CreateFixedObject(1, StackSize, true));
2529 // 64-bit calling conventions support varargs and register parameters, so we
2530 // have to do extra work to spill them in the prologue or forward them to
2532 if (Is64Bit && isVarArg &&
2533 (MFI->hasVAStart() || MFI->hasMustTailInVarArgFunc())) {
2534 // Find the first unallocated argument registers.
2535 ArrayRef<MCPhysReg> ArgGPRs = get64BitArgumentGPRs(CallConv, Subtarget);
2536 ArrayRef<MCPhysReg> ArgXMMs = get64BitArgumentXMMs(MF, CallConv, Subtarget);
2537 unsigned NumIntRegs =
2538 CCInfo.getFirstUnallocated(ArgGPRs.data(), ArgGPRs.size());
2539 unsigned NumXMMRegs =
2540 CCInfo.getFirstUnallocated(ArgXMMs.data(), ArgXMMs.size());
2541 assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
2542 "SSE register cannot be used when SSE is disabled!");
2544 // Gather all the live in physical registers.
2545 SmallVector<SDValue, 6> LiveGPRs;
2546 SmallVector<SDValue, 8> LiveXMMRegs;
2548 for (MCPhysReg Reg : ArgGPRs.slice(NumIntRegs)) {
2549 unsigned GPR = MF.addLiveIn(Reg, &X86::GR64RegClass);
2551 DAG.getCopyFromReg(Chain, dl, GPR, MVT::i64));
2553 if (!ArgXMMs.empty()) {
2554 unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
2555 ALVal = DAG.getCopyFromReg(Chain, dl, AL, MVT::i8);
2556 for (MCPhysReg Reg : ArgXMMs.slice(NumXMMRegs)) {
2557 unsigned XMMReg = MF.addLiveIn(Reg, &X86::VR128RegClass);
2558 LiveXMMRegs.push_back(
2559 DAG.getCopyFromReg(Chain, dl, XMMReg, MVT::v4f32));
2563 // Store them to the va_list returned by va_start.
2564 if (MFI->hasVAStart()) {
2566 const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering();
2567 // Get to the caller-allocated home save location. Add 8 to account
2568 // for the return address.
2569 int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
2570 FuncInfo->setRegSaveFrameIndex(
2571 MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
2572 // Fixup to set vararg frame on shadow area (4 x i64).
2574 FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
2576 // For X86-64, if there are vararg parameters that are passed via
2577 // registers, then we must store them to their spots on the stack so
2578 // they may be loaded by deferencing the result of va_next.
2579 FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
2580 FuncInfo->setVarArgsFPOffset(ArgGPRs.size() * 8 + NumXMMRegs * 16);
2581 FuncInfo->setRegSaveFrameIndex(MFI->CreateStackObject(
2582 ArgGPRs.size() * 8 + ArgXMMs.size() * 16, 16, false));
2585 // Store the integer parameter registers.
2586 SmallVector<SDValue, 8> MemOps;
2587 SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
2589 unsigned Offset = FuncInfo->getVarArgsGPOffset();
2590 for (SDValue Val : LiveGPRs) {
2591 SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
2592 DAG.getIntPtrConstant(Offset));
2594 DAG.getStore(Val.getValue(1), dl, Val, FIN,
2595 MachinePointerInfo::getFixedStack(
2596 FuncInfo->getRegSaveFrameIndex(), Offset),
2598 MemOps.push_back(Store);
2602 if (!ArgXMMs.empty() && NumXMMRegs != ArgXMMs.size()) {
2603 // Now store the XMM (fp + vector) parameter registers.
2604 SmallVector<SDValue, 12> SaveXMMOps;
2605 SaveXMMOps.push_back(Chain);
2606 SaveXMMOps.push_back(ALVal);
2607 SaveXMMOps.push_back(DAG.getIntPtrConstant(
2608 FuncInfo->getRegSaveFrameIndex()));
2609 SaveXMMOps.push_back(DAG.getIntPtrConstant(
2610 FuncInfo->getVarArgsFPOffset()));
2611 SaveXMMOps.insert(SaveXMMOps.end(), LiveXMMRegs.begin(),
2613 MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2614 MVT::Other, SaveXMMOps));
2617 if (!MemOps.empty())
2618 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
2620 // Add all GPRs, al, and XMMs to the list of forwards. We will add then
2621 // to the liveout set on a musttail call.
2622 assert(MFI->hasMustTailInVarArgFunc());
2623 auto &Forwards = FuncInfo->getForwardedMustTailRegParms();
2624 typedef X86MachineFunctionInfo::Forward Forward;
2626 for (unsigned I = 0, E = LiveGPRs.size(); I != E; ++I) {
2628 MF.getRegInfo().createVirtualRegister(&X86::GR64RegClass);
2629 Chain = DAG.getCopyToReg(Chain, dl, VReg, LiveGPRs[I]);
2630 Forwards.push_back(Forward(VReg, ArgGPRs[NumIntRegs + I], MVT::i64));
2633 if (!ArgXMMs.empty()) {
2635 MF.getRegInfo().createVirtualRegister(&X86::GR8RegClass);
2636 Chain = DAG.getCopyToReg(Chain, dl, ALVReg, ALVal);
2637 Forwards.push_back(Forward(ALVReg, X86::AL, MVT::i8));
2639 for (unsigned I = 0, E = LiveXMMRegs.size(); I != E; ++I) {
2641 MF.getRegInfo().createVirtualRegister(&X86::VR128RegClass);
2642 Chain = DAG.getCopyToReg(Chain, dl, VReg, LiveXMMRegs[I]);
2644 Forward(VReg, ArgXMMs[NumXMMRegs + I], MVT::v4f32));
2650 // Some CCs need callee pop.
2651 if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2652 MF.getTarget().Options.GuaranteedTailCallOpt)) {
2653 FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2655 FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2656 // If this is an sret function, the return should pop the hidden pointer.
2657 if (!Is64Bit && !IsTailCallConvention(CallConv) &&
2658 !Subtarget->getTargetTriple().isOSMSVCRT() &&
2659 argsAreStructReturn(Ins) == StackStructReturn)
2660 FuncInfo->setBytesToPopOnReturn(4);
2664 // RegSaveFrameIndex is X86-64 only.
2665 FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2666 if (CallConv == CallingConv::X86_FastCall ||
2667 CallConv == CallingConv::X86_ThisCall)
2668 // fastcc functions can't have varargs.
2669 FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2672 FuncInfo->setArgumentStackSize(StackSize);
2678 X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2679 SDValue StackPtr, SDValue Arg,
2680 SDLoc dl, SelectionDAG &DAG,
2681 const CCValAssign &VA,
2682 ISD::ArgFlagsTy Flags) const {
2683 unsigned LocMemOffset = VA.getLocMemOffset();
2684 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2685 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2686 if (Flags.isByVal())
2687 return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2689 return DAG.getStore(Chain, dl, Arg, PtrOff,
2690 MachinePointerInfo::getStack(LocMemOffset),
2694 /// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2695 /// optimization is performed and it is required.
2697 X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2698 SDValue &OutRetAddr, SDValue Chain,
2699 bool IsTailCall, bool Is64Bit,
2700 int FPDiff, SDLoc dl) const {
2701 // Adjust the Return address stack slot.
2702 EVT VT = getPointerTy();
2703 OutRetAddr = getReturnAddressFrameIndex(DAG);
2705 // Load the "old" Return address.
2706 OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2707 false, false, false, 0);
2708 return SDValue(OutRetAddr.getNode(), 1);
2711 /// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2712 /// optimization is performed and it is required (FPDiff!=0).
2713 static SDValue EmitTailCallStoreRetAddr(SelectionDAG &DAG, MachineFunction &MF,
2714 SDValue Chain, SDValue RetAddrFrIdx,
2715 EVT PtrVT, unsigned SlotSize,
2716 int FPDiff, SDLoc dl) {
2717 // Store the return address to the appropriate stack slot.
2718 if (!FPDiff) return Chain;
2719 // Calculate the new stack slot for the return address.
2720 int NewReturnAddrFI =
2721 MF.getFrameInfo()->CreateFixedObject(SlotSize, (int64_t)FPDiff - SlotSize,
2723 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, PtrVT);
2724 Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2725 MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2731 X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2732 SmallVectorImpl<SDValue> &InVals) const {
2733 SelectionDAG &DAG = CLI.DAG;
2735 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2736 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
2737 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
2738 SDValue Chain = CLI.Chain;
2739 SDValue Callee = CLI.Callee;
2740 CallingConv::ID CallConv = CLI.CallConv;
2741 bool &isTailCall = CLI.IsTailCall;
2742 bool isVarArg = CLI.IsVarArg;
2744 MachineFunction &MF = DAG.getMachineFunction();
2745 bool Is64Bit = Subtarget->is64Bit();
2746 bool IsWin64 = Subtarget->isCallingConvWin64(CallConv);
2747 StructReturnType SR = callIsStructReturn(Outs);
2748 bool IsSibcall = false;
2749 X86MachineFunctionInfo *X86Info = MF.getInfo<X86MachineFunctionInfo>();
2751 if (MF.getTarget().Options.DisableTailCalls)
2754 bool IsMustTail = CLI.CS && CLI.CS->isMustTailCall();
2756 // Force this to be a tail call. The verifier rules are enough to ensure
2757 // that we can lower this successfully without moving the return address
2760 } else if (isTailCall) {
2761 // Check if it's really possible to do a tail call.
2762 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2763 isVarArg, SR != NotStructReturn,
2764 MF.getFunction()->hasStructRetAttr(), CLI.RetTy,
2765 Outs, OutVals, Ins, DAG);
2767 // Sibcalls are automatically detected tailcalls which do not require
2769 if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2776 assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2777 "Var args not supported with calling convention fastcc, ghc or hipe");
2779 // Analyze operands of the call, assigning locations to each operand.
2780 SmallVector<CCValAssign, 16> ArgLocs;
2781 CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
2783 // Allocate shadow area for Win64
2785 CCInfo.AllocateStack(32, 8);
2787 CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2789 // Get a count of how many bytes are to be pushed on the stack.
2790 unsigned NumBytes = CCInfo.getNextStackOffset();
2792 // This is a sibcall. The memory operands are available in caller's
2793 // own caller's stack.
2795 else if (MF.getTarget().Options.GuaranteedTailCallOpt &&
2796 IsTailCallConvention(CallConv))
2797 NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2800 if (isTailCall && !IsSibcall && !IsMustTail) {
2801 // Lower arguments at fp - stackoffset + fpdiff.
2802 unsigned NumBytesCallerPushed = X86Info->getBytesToPopOnReturn();
2804 FPDiff = NumBytesCallerPushed - NumBytes;
2806 // Set the delta of movement of the returnaddr stackslot.
2807 // But only set if delta is greater than previous delta.
2808 if (FPDiff < X86Info->getTCReturnAddrDelta())
2809 X86Info->setTCReturnAddrDelta(FPDiff);
2812 unsigned NumBytesToPush = NumBytes;
2813 unsigned NumBytesToPop = NumBytes;
2815 // If we have an inalloca argument, all stack space has already been allocated
2816 // for us and be right at the top of the stack. We don't support multiple
2817 // arguments passed in memory when using inalloca.
2818 if (!Outs.empty() && Outs.back().Flags.isInAlloca()) {
2820 if (!ArgLocs.back().isMemLoc())
2821 report_fatal_error("cannot use inalloca attribute on a register "
2823 if (ArgLocs.back().getLocMemOffset() != 0)
2824 report_fatal_error("any parameter with the inalloca attribute must be "
2825 "the only memory argument");
2829 Chain = DAG.getCALLSEQ_START(
2830 Chain, DAG.getIntPtrConstant(NumBytesToPush, true), dl);
2832 SDValue RetAddrFrIdx;
2833 // Load return address for tail calls.
2834 if (isTailCall && FPDiff)
2835 Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2836 Is64Bit, FPDiff, dl);
2838 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2839 SmallVector<SDValue, 8> MemOpChains;
2842 // Walk the register/memloc assignments, inserting copies/loads. In the case
2843 // of tail call optimization arguments are handle later.
2844 const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo *>(
2845 DAG.getSubtarget().getRegisterInfo());
2846 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2847 // Skip inalloca arguments, they have already been written.
2848 ISD::ArgFlagsTy Flags = Outs[i].Flags;
2849 if (Flags.isInAlloca())
2852 CCValAssign &VA = ArgLocs[i];
2853 EVT RegVT = VA.getLocVT();
2854 SDValue Arg = OutVals[i];
2855 bool isByVal = Flags.isByVal();
2857 // Promote the value if needed.
2858 switch (VA.getLocInfo()) {
2859 default: llvm_unreachable("Unknown loc info!");
2860 case CCValAssign::Full: break;
2861 case CCValAssign::SExt:
2862 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2864 case CCValAssign::ZExt:
2865 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2867 case CCValAssign::AExt:
2868 if (RegVT.is128BitVector()) {
2869 // Special case: passing MMX values in XMM registers.
2870 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2871 Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2872 Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2874 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2876 case CCValAssign::BCvt:
2877 Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2879 case CCValAssign::Indirect: {
2880 // Store the argument.
2881 SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2882 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2883 Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2884 MachinePointerInfo::getFixedStack(FI),
2891 if (VA.isRegLoc()) {
2892 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2893 if (isVarArg && IsWin64) {
2894 // Win64 ABI requires argument XMM reg to be copied to the corresponding
2895 // shadow reg if callee is a varargs function.
2896 unsigned ShadowReg = 0;
2897 switch (VA.getLocReg()) {
2898 case X86::XMM0: ShadowReg = X86::RCX; break;
2899 case X86::XMM1: ShadowReg = X86::RDX; break;
2900 case X86::XMM2: ShadowReg = X86::R8; break;
2901 case X86::XMM3: ShadowReg = X86::R9; break;
2904 RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2906 } else if (!IsSibcall && (!isTailCall || isByVal)) {
2907 assert(VA.isMemLoc());
2908 if (!StackPtr.getNode())
2909 StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
2911 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2912 dl, DAG, VA, Flags));
2916 if (!MemOpChains.empty())
2917 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
2919 if (Subtarget->isPICStyleGOT()) {
2920 // ELF / PIC requires GOT in the EBX register before function calls via PLT
2923 RegsToPass.push_back(std::make_pair(unsigned(X86::EBX),
2924 DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), getPointerTy())));
2926 // If we are tail calling and generating PIC/GOT style code load the
2927 // address of the callee into ECX. The value in ecx is used as target of
2928 // the tail jump. This is done to circumvent the ebx/callee-saved problem
2929 // for tail calls on PIC/GOT architectures. Normally we would just put the
2930 // address of GOT into ebx and then call target@PLT. But for tail calls
2931 // ebx would be restored (since ebx is callee saved) before jumping to the
2934 // Note: The actual moving to ECX is done further down.
2935 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2936 if (G && !G->getGlobal()->hasHiddenVisibility() &&
2937 !G->getGlobal()->hasProtectedVisibility())
2938 Callee = LowerGlobalAddress(Callee, DAG);
2939 else if (isa<ExternalSymbolSDNode>(Callee))
2940 Callee = LowerExternalSymbol(Callee, DAG);
2944 if (Is64Bit && isVarArg && !IsWin64 && !IsMustTail) {
2945 // From AMD64 ABI document:
2946 // For calls that may call functions that use varargs or stdargs
2947 // (prototype-less calls or calls to functions containing ellipsis (...) in
2948 // the declaration) %al is used as hidden argument to specify the number
2949 // of SSE registers used. The contents of %al do not need to match exactly
2950 // the number of registers, but must be an ubound on the number of SSE
2951 // registers used and is in the range 0 - 8 inclusive.
2953 // Count the number of XMM registers allocated.
2954 static const MCPhysReg XMMArgRegs[] = {
2955 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2956 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2958 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2959 assert((Subtarget->hasSSE1() || !NumXMMRegs)
2960 && "SSE registers cannot be used when SSE is disabled");
2962 RegsToPass.push_back(std::make_pair(unsigned(X86::AL),
2963 DAG.getConstant(NumXMMRegs, MVT::i8)));
2966 if (Is64Bit && isVarArg && IsMustTail) {
2967 const auto &Forwards = X86Info->getForwardedMustTailRegParms();
2968 for (const auto &F : Forwards) {
2969 SDValue Val = DAG.getCopyFromReg(Chain, dl, F.VReg, F.VT);
2970 RegsToPass.push_back(std::make_pair(unsigned(F.PReg), Val));
2974 // For tail calls lower the arguments to the 'real' stack slots. Sibcalls
2975 // don't need this because the eligibility check rejects calls that require
2976 // shuffling arguments passed in memory.
2977 if (!IsSibcall && isTailCall) {
2978 // Force all the incoming stack arguments to be loaded from the stack
2979 // before any new outgoing arguments are stored to the stack, because the
2980 // outgoing stack slots may alias the incoming argument stack slots, and
2981 // the alias isn't otherwise explicit. This is slightly more conservative
2982 // than necessary, because it means that each store effectively depends
2983 // on every argument instead of just those arguments it would clobber.
2984 SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2986 SmallVector<SDValue, 8> MemOpChains2;
2989 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2990 CCValAssign &VA = ArgLocs[i];
2993 assert(VA.isMemLoc());
2994 SDValue Arg = OutVals[i];
2995 ISD::ArgFlagsTy Flags = Outs[i].Flags;
2996 // Skip inalloca arguments. They don't require any work.
2997 if (Flags.isInAlloca())
2999 // Create frame index.
3000 int32_t Offset = VA.getLocMemOffset()+FPDiff;
3001 uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
3002 FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
3003 FIN = DAG.getFrameIndex(FI, getPointerTy());
3005 if (Flags.isByVal()) {
3006 // Copy relative to framepointer.
3007 SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
3008 if (!StackPtr.getNode())
3009 StackPtr = DAG.getCopyFromReg(Chain, dl,
3010 RegInfo->getStackRegister(),
3012 Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
3014 MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
3018 // Store relative to framepointer.
3019 MemOpChains2.push_back(
3020 DAG.getStore(ArgChain, dl, Arg, FIN,
3021 MachinePointerInfo::getFixedStack(FI),
3026 if (!MemOpChains2.empty())
3027 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
3029 // Store the return address to the appropriate stack slot.
3030 Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx,
3031 getPointerTy(), RegInfo->getSlotSize(),
3035 // Build a sequence of copy-to-reg nodes chained together with token chain
3036 // and flag operands which copy the outgoing args into registers.
3038 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3039 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3040 RegsToPass[i].second, InFlag);
3041 InFlag = Chain.getValue(1);
3044 if (DAG.getTarget().getCodeModel() == CodeModel::Large) {
3045 assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
3046 // In the 64-bit large code model, we have to make all calls
3047 // through a register, since the call instruction's 32-bit
3048 // pc-relative offset may not be large enough to hold the whole
3050 } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3051 // If the callee is a GlobalAddress node (quite common, every direct call
3052 // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
3055 // We should use extra load for direct calls to dllimported functions in
3057 const GlobalValue *GV = G->getGlobal();
3058 if (!GV->hasDLLImportStorageClass()) {
3059 unsigned char OpFlags = 0;
3060 bool ExtraLoad = false;
3061 unsigned WrapperKind = ISD::DELETED_NODE;
3063 // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
3064 // external symbols most go through the PLT in PIC mode. If the symbol
3065 // has hidden or protected visibility, or if it is static or local, then
3066 // we don't need to use the PLT - we can directly call it.
3067 if (Subtarget->isTargetELF() &&
3068 DAG.getTarget().getRelocationModel() == Reloc::PIC_ &&
3069 GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
3070 OpFlags = X86II::MO_PLT;
3071 } else if (Subtarget->isPICStyleStubAny() &&
3072 (GV->isDeclaration() || GV->isWeakForLinker()) &&
3073 (!Subtarget->getTargetTriple().isMacOSX() ||
3074 Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
3075 // PC-relative references to external symbols should go through $stub,
3076 // unless we're building with the leopard linker or later, which
3077 // automatically synthesizes these stubs.
3078 OpFlags = X86II::MO_DARWIN_STUB;
3079 } else if (Subtarget->isPICStyleRIPRel() &&
3080 isa<Function>(GV) &&
3081 cast<Function>(GV)->getAttributes().
3082 hasAttribute(AttributeSet::FunctionIndex,
3083 Attribute::NonLazyBind)) {
3084 // If the function is marked as non-lazy, generate an indirect call
3085 // which loads from the GOT directly. This avoids runtime overhead
3086 // at the cost of eager binding (and one extra byte of encoding).
3087 OpFlags = X86II::MO_GOTPCREL;
3088 WrapperKind = X86ISD::WrapperRIP;
3092 Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
3093 G->getOffset(), OpFlags);
3095 // Add a wrapper if needed.
3096 if (WrapperKind != ISD::DELETED_NODE)
3097 Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
3098 // Add extra indirection if needed.
3100 Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
3101 MachinePointerInfo::getGOT(),
3102 false, false, false, 0);
3104 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3105 unsigned char OpFlags = 0;
3107 // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
3108 // external symbols should go through the PLT.
3109 if (Subtarget->isTargetELF() &&
3110 DAG.getTarget().getRelocationModel() == Reloc::PIC_) {
3111 OpFlags = X86II::MO_PLT;
3112 } else if (Subtarget->isPICStyleStubAny() &&
3113 (!Subtarget->getTargetTriple().isMacOSX() ||
3114 Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
3115 // PC-relative references to external symbols should go through $stub,
3116 // unless we're building with the leopard linker or later, which
3117 // automatically synthesizes these stubs.
3118 OpFlags = X86II::MO_DARWIN_STUB;
3121 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
3123 } else if (Subtarget->isTarget64BitILP32() && Callee->getValueType(0) == MVT::i32) {
3124 // Zero-extend the 32-bit Callee address into a 64-bit according to x32 ABI
3125 Callee = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Callee);
3128 // Returns a chain & a flag for retval copy to use.
3129 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3130 SmallVector<SDValue, 8> Ops;
3132 if (!IsSibcall && isTailCall) {
3133 Chain = DAG.getCALLSEQ_END(Chain,
3134 DAG.getIntPtrConstant(NumBytesToPop, true),
3135 DAG.getIntPtrConstant(0, true), InFlag, dl);
3136 InFlag = Chain.getValue(1);
3139 Ops.push_back(Chain);
3140 Ops.push_back(Callee);
3143 Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
3145 // Add argument registers to the end of the list so that they are known live
3147 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
3148 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
3149 RegsToPass[i].second.getValueType()));
3151 // Add a register mask operand representing the call-preserved registers.
3152 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
3153 const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
3154 assert(Mask && "Missing call preserved mask for calling convention");
3155 Ops.push_back(DAG.getRegisterMask(Mask));
3157 if (InFlag.getNode())
3158 Ops.push_back(InFlag);
3162 //// If this is the first return lowered for this function, add the regs
3163 //// to the liveout set for the function.
3164 // This isn't right, although it's probably harmless on x86; liveouts
3165 // should be computed from returns not tail calls. Consider a void
3166 // function making a tail call to a function returning int.
3167 return DAG.getNode(X86ISD::TC_RETURN, dl, NodeTys, Ops);
3170 Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops);
3171 InFlag = Chain.getValue(1);
3173 // Create the CALLSEQ_END node.
3174 unsigned NumBytesForCalleeToPop;
3175 if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
3176 DAG.getTarget().Options.GuaranteedTailCallOpt))
3177 NumBytesForCalleeToPop = NumBytes; // Callee pops everything
3178 else if (!Is64Bit && !IsTailCallConvention(CallConv) &&
3179 !Subtarget->getTargetTriple().isOSMSVCRT() &&
3180 SR == StackStructReturn)
3181 // If this is a call to a struct-return function, the callee
3182 // pops the hidden struct pointer, so we have to push it back.
3183 // This is common for Darwin/X86, Linux & Mingw32 targets.
3184 // For MSVC Win32 targets, the caller pops the hidden struct pointer.
3185 NumBytesForCalleeToPop = 4;
3187 NumBytesForCalleeToPop = 0; // Callee pops nothing.
3189 // Returns a flag for retval copy to use.
3191 Chain = DAG.getCALLSEQ_END(Chain,
3192 DAG.getIntPtrConstant(NumBytesToPop, true),
3193 DAG.getIntPtrConstant(NumBytesForCalleeToPop,
3196 InFlag = Chain.getValue(1);
3199 // Handle result values, copying them out of physregs into vregs that we
3201 return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
3202 Ins, dl, DAG, InVals);
3205 //===----------------------------------------------------------------------===//
3206 // Fast Calling Convention (tail call) implementation
3207 //===----------------------------------------------------------------------===//
3209 // Like std call, callee cleans arguments, convention except that ECX is
3210 // reserved for storing the tail called function address. Only 2 registers are
3211 // free for argument passing (inreg). Tail call optimization is performed
3213 // * tailcallopt is enabled
3214 // * caller/callee are fastcc
3215 // On X86_64 architecture with GOT-style position independent code only local
3216 // (within module) calls are supported at the moment.
3217 // To keep the stack aligned according to platform abi the function
3218 // GetAlignedArgumentStackSize ensures that argument delta is always multiples
3219 // of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
3220 // If a tail called function callee has more arguments than the caller the
3221 // caller needs to make sure that there is room to move the RETADDR to. This is
3222 // achieved by reserving an area the size of the argument delta right after the
3223 // original RETADDR, but before the saved framepointer or the spilled registers
3224 // e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
3236 /// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
3237 /// for a 16 byte align requirement.
3239 X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
3240 SelectionDAG& DAG) const {
3241 MachineFunction &MF = DAG.getMachineFunction();
3242 const TargetMachine &TM = MF.getTarget();
3243 const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo *>(
3244 TM.getSubtargetImpl()->getRegisterInfo());
3245 const TargetFrameLowering &TFI = *TM.getSubtargetImpl()->getFrameLowering();
3246 unsigned StackAlignment = TFI.getStackAlignment();
3247 uint64_t AlignMask = StackAlignment - 1;
3248 int64_t Offset = StackSize;
3249 unsigned SlotSize = RegInfo->getSlotSize();
3250 if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
3251 // Number smaller than 12 so just add the difference.
3252 Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
3254 // Mask out lower bits, add stackalignment once plus the 12 bytes.
3255 Offset = ((~AlignMask) & Offset) + StackAlignment +
3256 (StackAlignment-SlotSize);
3261 /// MatchingStackOffset - Return true if the given stack call argument is
3262 /// already available in the same position (relatively) of the caller's
3263 /// incoming argument stack.
3265 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
3266 MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
3267 const X86InstrInfo *TII) {
3268 unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
3270 if (Arg.getOpcode() == ISD::CopyFromReg) {
3271 unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
3272 if (!TargetRegisterInfo::isVirtualRegister(VR))
3274 MachineInstr *Def = MRI->getVRegDef(VR);
3277 if (!Flags.isByVal()) {
3278 if (!TII->isLoadFromStackSlot(Def, FI))
3281 unsigned Opcode = Def->getOpcode();
3282 if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
3283 Def->getOperand(1).isFI()) {
3284 FI = Def->getOperand(1).getIndex();
3285 Bytes = Flags.getByValSize();
3289 } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
3290 if (Flags.isByVal())
3291 // ByVal argument is passed in as a pointer but it's now being
3292 // dereferenced. e.g.
3293 // define @foo(%struct.X* %A) {
3294 // tail call @bar(%struct.X* byval %A)
3297 SDValue Ptr = Ld->getBasePtr();
3298 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
3301 FI = FINode->getIndex();
3302 } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
3303 FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
3304 FI = FINode->getIndex();
3305 Bytes = Flags.getByValSize();
3309 assert(FI != INT_MAX);
3310 if (!MFI->isFixedObjectIndex(FI))
3312 return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
3315 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
3316 /// for tail call optimization. Targets which want to do tail call
3317 /// optimization should implement this function.
3319 X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
3320 CallingConv::ID CalleeCC,
3322 bool isCalleeStructRet,
3323 bool isCallerStructRet,
3325 const SmallVectorImpl<ISD::OutputArg> &Outs,
3326 const SmallVectorImpl<SDValue> &OutVals,
3327 const SmallVectorImpl<ISD::InputArg> &Ins,
3328 SelectionDAG &DAG) const {
3329 if (!IsTailCallConvention(CalleeCC) && !IsCCallConvention(CalleeCC))
3332 // If -tailcallopt is specified, make fastcc functions tail-callable.
3333 const MachineFunction &MF = DAG.getMachineFunction();
3334 const Function *CallerF = MF.getFunction();
3336 // If the function return type is x86_fp80 and the callee return type is not,
3337 // then the FP_EXTEND of the call result is not a nop. It's not safe to
3338 // perform a tailcall optimization here.
3339 if (CallerF->getReturnType()->isX86_FP80Ty() && !RetTy->isX86_FP80Ty())
3342 CallingConv::ID CallerCC = CallerF->getCallingConv();
3343 bool CCMatch = CallerCC == CalleeCC;
3344 bool IsCalleeWin64 = Subtarget->isCallingConvWin64(CalleeCC);
3345 bool IsCallerWin64 = Subtarget->isCallingConvWin64(CallerCC);
3347 if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
3348 if (IsTailCallConvention(CalleeCC) && CCMatch)
3353 // Look for obvious safe cases to perform tail call optimization that do not
3354 // require ABI changes. This is what gcc calls sibcall.
3356 // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
3357 // emit a special epilogue.
3358 const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo *>(
3359 DAG.getSubtarget().getRegisterInfo());
3360 if (RegInfo->needsStackRealignment(MF))
3363 // Also avoid sibcall optimization if either caller or callee uses struct
3364 // return semantics.
3365 if (isCalleeStructRet || isCallerStructRet)
3368 // An stdcall/thiscall caller is expected to clean up its arguments; the
3369 // callee isn't going to do that.
3370 // FIXME: this is more restrictive than needed. We could produce a tailcall
3371 // when the stack adjustment matches. For example, with a thiscall that takes
3372 // only one argument.
3373 if (!CCMatch && (CallerCC == CallingConv::X86_StdCall ||
3374 CallerCC == CallingConv::X86_ThisCall))
3377 // Do not sibcall optimize vararg calls unless all arguments are passed via
3379 if (isVarArg && !Outs.empty()) {
3381 // Optimizing for varargs on Win64 is unlikely to be safe without
3382 // additional testing.
3383 if (IsCalleeWin64 || IsCallerWin64)
3386 SmallVector<CCValAssign, 16> ArgLocs;
3387 CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
3390 CCInfo.AnalyzeCallOperands(Outs, CC_X86);
3391 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
3392 if (!ArgLocs[i].isRegLoc())
3396 // If the call result is in ST0 / ST1, it needs to be popped off the x87
3397 // stack. Therefore, if it's not used by the call it is not safe to optimize
3398 // this into a sibcall.
3399 bool Unused = false;
3400 for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3407 SmallVector<CCValAssign, 16> RVLocs;
3408 CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(), RVLocs,
3410 CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
3411 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
3412 CCValAssign &VA = RVLocs[i];
3413 if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)
3418 // If the calling conventions do not match, then we'd better make sure the
3419 // results are returned in the same way as what the caller expects.
3421 SmallVector<CCValAssign, 16> RVLocs1;
3422 CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), RVLocs1,
3424 CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
3426 SmallVector<CCValAssign, 16> RVLocs2;
3427 CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), RVLocs2,
3429 CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
3431 if (RVLocs1.size() != RVLocs2.size())
3433 for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
3434 if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
3436 if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
3438 if (RVLocs1[i].isRegLoc()) {
3439 if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
3442 if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
3448 // If the callee takes no arguments then go on to check the results of the
3450 if (!Outs.empty()) {
3451 // Check if stack adjustment is needed. For now, do not do this if any
3452 // argument is passed on the stack.
3453 SmallVector<CCValAssign, 16> ArgLocs;
3454 CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
3457 // Allocate shadow area for Win64
3459 CCInfo.AllocateStack(32, 8);
3461 CCInfo.AnalyzeCallOperands(Outs, CC_X86);
3462 if (CCInfo.getNextStackOffset()) {
3463 MachineFunction &MF = DAG.getMachineFunction();
3464 if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
3467 // Check if the arguments are already laid out in the right way as
3468 // the caller's fixed stack objects.
3469 MachineFrameInfo *MFI = MF.getFrameInfo();
3470 const MachineRegisterInfo *MRI = &MF.getRegInfo();
3471 const X86InstrInfo *TII =
3472 static_cast<const X86InstrInfo *>(DAG.getSubtarget().getInstrInfo());
3473 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3474 CCValAssign &VA = ArgLocs[i];
3475 SDValue Arg = OutVals[i];
3476 ISD::ArgFlagsTy Flags = Outs[i].Flags;
3477 if (VA.getLocInfo() == CCValAssign::Indirect)
3479 if (!VA.isRegLoc()) {
3480 if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
3487 // If the tailcall address may be in a register, then make sure it's
3488 // possible to register allocate for it. In 32-bit, the call address can
3489 // only target EAX, EDX, or ECX since the tail call must be scheduled after
3490 // callee-saved registers are restored. These happen to be the same
3491 // registers used to pass 'inreg' arguments so watch out for those.
3492 if (!Subtarget->is64Bit() &&
3493 ((!isa<GlobalAddressSDNode>(Callee) &&
3494 !isa<ExternalSymbolSDNode>(Callee)) ||
3495 DAG.getTarget().getRelocationModel() == Reloc::PIC_)) {
3496 unsigned NumInRegs = 0;
3497 // In PIC we need an extra register to formulate the address computation
3499 unsigned MaxInRegs =
3500 (DAG.getTarget().getRelocationModel() == Reloc::PIC_) ? 2 : 3;
3502 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3503 CCValAssign &VA = ArgLocs[i];
3506 unsigned Reg = VA.getLocReg();
3509 case X86::EAX: case X86::EDX: case X86::ECX:
3510 if (++NumInRegs == MaxInRegs)
3522 X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
3523 const TargetLibraryInfo *libInfo) const {
3524 return X86::createFastISel(funcInfo, libInfo);
3527 //===----------------------------------------------------------------------===//
3528 // Other Lowering Hooks
3529 //===----------------------------------------------------------------------===//
3531 static bool MayFoldLoad(SDValue Op) {
3532 return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
3535 static bool MayFoldIntoStore(SDValue Op) {
3536 return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
3539 static bool isTargetShuffle(unsigned Opcode) {
3541 default: return false;
3542 case X86ISD::BLENDI:
3543 case X86ISD::PSHUFB:
3544 case X86ISD::PSHUFD:
3545 case X86ISD::PSHUFHW:
3546 case X86ISD::PSHUFLW:
3548 case X86ISD::PALIGNR:
3549 case X86ISD::MOVLHPS:
3550 case X86ISD::MOVLHPD:
3551 case X86ISD::MOVHLPS:
3552 case X86ISD::MOVLPS:
3553 case X86ISD::MOVLPD:
3554 case X86ISD::MOVSHDUP:
3555 case X86ISD::MOVSLDUP:
3556 case X86ISD::MOVDDUP:
3559 case X86ISD::UNPCKL:
3560 case X86ISD::UNPCKH:
3561 case X86ISD::VPERMILPI:
3562 case X86ISD::VPERM2X128:
3563 case X86ISD::VPERMI:
3568 static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
3569 SDValue V1, SelectionDAG &DAG) {
3571 default: llvm_unreachable("Unknown x86 shuffle node");
3572 case X86ISD::MOVSHDUP:
3573 case X86ISD::MOVSLDUP:
3574 case X86ISD::MOVDDUP:
3575 return DAG.getNode(Opc, dl, VT, V1);
3579 static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
3580 SDValue V1, unsigned TargetMask,
3581 SelectionDAG &DAG) {
3583 default: llvm_unreachable("Unknown x86 shuffle node");
3584 case X86ISD::PSHUFD:
3585 case X86ISD::PSHUFHW:
3586 case X86ISD::PSHUFLW:
3587 case X86ISD::VPERMILPI:
3588 case X86ISD::VPERMI:
3589 return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
3593 static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
3594 SDValue V1, SDValue V2, unsigned TargetMask,
3595 SelectionDAG &DAG) {
3597 default: llvm_unreachable("Unknown x86 shuffle node");
3598 case X86ISD::PALIGNR:
3599 case X86ISD::VALIGN:
3601 case X86ISD::VPERM2X128:
3602 return DAG.getNode(Opc, dl, VT, V1, V2,
3603 DAG.getConstant(TargetMask, MVT::i8));
3607 static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
3608 SDValue V1, SDValue V2, SelectionDAG &DAG) {
3610 default: llvm_unreachable("Unknown x86 shuffle node");
3611 case X86ISD::MOVLHPS:
3612 case X86ISD::MOVLHPD:
3613 case X86ISD::MOVHLPS:
3614 case X86ISD::MOVLPS:
3615 case X86ISD::MOVLPD:
3618 case X86ISD::UNPCKL:
3619 case X86ISD::UNPCKH:
3620 return DAG.getNode(Opc, dl, VT, V1, V2);
3624 SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
3625 MachineFunction &MF = DAG.getMachineFunction();
3626 const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo *>(
3627 DAG.getSubtarget().getRegisterInfo());
3628 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
3629 int ReturnAddrIndex = FuncInfo->getRAIndex();
3631 if (ReturnAddrIndex == 0) {
3632 // Set up a frame object for the return address.
3633 unsigned SlotSize = RegInfo->getSlotSize();
3634 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize,
3637 FuncInfo->setRAIndex(ReturnAddrIndex);
3640 return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
3643 bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
3644 bool hasSymbolicDisplacement) {
3645 // Offset should fit into 32 bit immediate field.
3646 if (!isInt<32>(Offset))
3649 // If we don't have a symbolic displacement - we don't have any extra
3651 if (!hasSymbolicDisplacement)
3654 // FIXME: Some tweaks might be needed for medium code model.
3655 if (M != CodeModel::Small && M != CodeModel::Kernel)
3658 // For small code model we assume that latest object is 16MB before end of 31
3659 // bits boundary. We may also accept pretty large negative constants knowing
3660 // that all objects are in the positive half of address space.
3661 if (M == CodeModel::Small && Offset < 16*1024*1024)
3664 // For kernel code model we know that all object resist in the negative half
3665 // of 32bits address space. We may not accept negative offsets, since they may
3666 // be just off and we may accept pretty large positive ones.
3667 if (M == CodeModel::Kernel && Offset > 0)
3673 /// isCalleePop - Determines whether the callee is required to pop its
3674 /// own arguments. Callee pop is necessary to support tail calls.
3675 bool X86::isCalleePop(CallingConv::ID CallingConv,
3676 bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3677 switch (CallingConv) {
3680 case CallingConv::X86_StdCall:
3681 case CallingConv::X86_FastCall:
3682 case CallingConv::X86_ThisCall:
3684 case CallingConv::Fast:
3685 case CallingConv::GHC:
3686 case CallingConv::HiPE:
3693 /// \brief Return true if the condition is an unsigned comparison operation.
3694 static bool isX86CCUnsigned(unsigned X86CC) {
3696 default: llvm_unreachable("Invalid integer condition!");
3697 case X86::COND_E: return true;
3698 case X86::COND_G: return false;
3699 case X86::COND_GE: return false;
3700 case X86::COND_L: return false;
3701 case X86::COND_LE: return false;
3702 case X86::COND_NE: return true;
3703 case X86::COND_B: return true;
3704 case X86::COND_A: return true;
3705 case X86::COND_BE: return true;
3706 case X86::COND_AE: return true;
3708 llvm_unreachable("covered switch fell through?!");
3711 /// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3712 /// specific condition code, returning the condition code and the LHS/RHS of the
3713 /// comparison to make.
3714 static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3715 SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3717 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3718 if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3719 // X > -1 -> X == 0, jump !sign.
3720 RHS = DAG.getConstant(0, RHS.getValueType());
3721 return X86::COND_NS;
3723 if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3724 // X < 0 -> X == 0, jump on sign.
3727 if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3729 RHS = DAG.getConstant(0, RHS.getValueType());
3730 return X86::COND_LE;
3734 switch (SetCCOpcode) {
3735 default: llvm_unreachable("Invalid integer condition!");
3736 case ISD::SETEQ: return X86::COND_E;
3737 case ISD::SETGT: return X86::COND_G;
3738 case ISD::SETGE: return X86::COND_GE;
3739 case ISD::SETLT: return X86::COND_L;
3740 case ISD::SETLE: return X86::COND_LE;
3741 case ISD::SETNE: return X86::COND_NE;
3742 case ISD::SETULT: return X86::COND_B;
3743 case ISD::SETUGT: return X86::COND_A;
3744 case ISD::SETULE: return X86::COND_BE;
3745 case ISD::SETUGE: return X86::COND_AE;
3749 // First determine if it is required or is profitable to flip the operands.
3751 // If LHS is a foldable load, but RHS is not, flip the condition.
3752 if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3753 !ISD::isNON_EXTLoad(RHS.getNode())) {
3754 SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3755 std::swap(LHS, RHS);
3758 switch (SetCCOpcode) {
3764 std::swap(LHS, RHS);
3768 // On a floating point condition, the flags are set as follows:
3770 // 0 | 0 | 0 | X > Y
3771 // 0 | 0 | 1 | X < Y
3772 // 1 | 0 | 0 | X == Y
3773 // 1 | 1 | 1 | unordered
3774 switch (SetCCOpcode) {
3775 default: llvm_unreachable("Condcode should be pre-legalized away");
3777 case ISD::SETEQ: return X86::COND_E;
3778 case ISD::SETOLT: // flipped
3780 case ISD::SETGT: return X86::COND_A;
3781 case ISD::SETOLE: // flipped
3783 case ISD::SETGE: return X86::COND_AE;
3784 case ISD::SETUGT: // flipped
3786 case ISD::SETLT: return X86::COND_B;
3787 case ISD::SETUGE: // flipped
3789 case ISD::SETLE: return X86::COND_BE;
3791 case ISD::SETNE: return X86::COND_NE;
3792 case ISD::SETUO: return X86::COND_P;
3793 case ISD::SETO: return X86::COND_NP;
3795 case ISD::SETUNE: return X86::COND_INVALID;
3799 /// hasFPCMov - is there a floating point cmov for the specific X86 condition
3800 /// code. Current x86 isa includes the following FP cmov instructions:
3801 /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3802 static bool hasFPCMov(unsigned X86CC) {
3818 /// isFPImmLegal - Returns true if the target can instruction select the
3819 /// specified FP immediate natively. If false, the legalizer will
3820 /// materialize the FP immediate as a load from a constant pool.
3821 bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3822 for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3823 if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3829 /// \brief Returns true if it is beneficial to convert a load of a constant
3830 /// to just the constant itself.
3831 bool X86TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
3833 assert(Ty->isIntegerTy());
3835 unsigned BitSize = Ty->getPrimitiveSizeInBits();
3836 if (BitSize == 0 || BitSize > 64)
3841 /// isUndefOrInRange - Return true if Val is undef or if its value falls within
3842 /// the specified range (L, H].
3843 static bool isUndefOrInRange(int Val, int Low, int Hi) {
3844 return (Val < 0) || (Val >= Low && Val < Hi);
3847 /// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3848 /// specified value.
3849 static bool isUndefOrEqual(int Val, int CmpVal) {
3850 return (Val < 0 || Val == CmpVal);
3853 /// isSequentialOrUndefInRange - Return true if every element in Mask, beginning
3854 /// from position Pos and ending in Pos+Size, falls within the specified
3855 /// sequential range (L, L+Pos]. or is undef.
3856 static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3857 unsigned Pos, unsigned Size, int Low) {
3858 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3859 if (!isUndefOrEqual(Mask[i], Low))
3864 /// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3865 /// is suitable for input to PSHUFD or PSHUFW. That is, it doesn't reference
3866 /// the second operand.
3867 static bool isPSHUFDMask(ArrayRef<int> Mask, MVT VT) {
3868 if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3869 return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3870 if (VT == MVT::v2f64 || VT == MVT::v2i64)
3871 return (Mask[0] < 2 && Mask[1] < 2);
3875 /// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3876 /// is suitable for input to PSHUFHW.
3877 static bool isPSHUFHWMask(ArrayRef<int> Mask, MVT VT, bool HasInt256) {
3878 if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16))
3881 // Lower quadword copied in order or undef.
3882 if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3885 // Upper quadword shuffled.
3886 for (unsigned i = 4; i != 8; ++i)
3887 if (!isUndefOrInRange(Mask[i], 4, 8))
3890 if (VT == MVT::v16i16) {
3891 // Lower quadword copied in order or undef.
3892 if (!isSequentialOrUndefInRange(Mask, 8, 4, 8))
3895 // Upper quadword shuffled.
3896 for (unsigned i = 12; i != 16; ++i)
3897 if (!isUndefOrInRange(Mask[i], 12, 16))
3904 /// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3905 /// is suitable for input to PSHUFLW.
3906 static bool isPSHUFLWMask(ArrayRef<int> Mask, MVT VT, bool HasInt256) {
3907 if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16))
3910 // Upper quadword copied in order.
3911 if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3914 // Lower quadword shuffled.
3915 for (unsigned i = 0; i != 4; ++i)
3916 if (!isUndefOrInRange(Mask[i], 0, 4))
3919 if (VT == MVT::v16i16) {
3920 // Upper quadword copied in order.
3921 if (!isSequentialOrUndefInRange(Mask, 12, 4, 12))
3924 // Lower quadword shuffled.
3925 for (unsigned i = 8; i != 12; ++i)
3926 if (!isUndefOrInRange(Mask[i], 8, 12))
3933 /// \brief Return true if the mask specifies a shuffle of elements that is
3934 /// suitable for input to intralane (palignr) or interlane (valign) vector
3936 static bool isAlignrMask(ArrayRef<int> Mask, MVT VT, bool InterLane) {
3937 unsigned NumElts = VT.getVectorNumElements();
3938 unsigned NumLanes = InterLane ? 1: VT.getSizeInBits()/128;
3939 unsigned NumLaneElts = NumElts/NumLanes;
3941 // Do not handle 64-bit element shuffles with palignr.
3942 if (NumLaneElts == 2)
3945 for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3947 for (i = 0; i != NumLaneElts; ++i) {
3952 // Lane is all undef, go to next lane
3953 if (i == NumLaneElts)
3956 int Start = Mask[i+l];
3958 // Make sure its in this lane in one of the sources
3959 if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3960 !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3963 // If not lane 0, then we must match lane 0
3964 if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3967 // Correct second source to be contiguous with first source
3968 if (Start >= (int)NumElts)
3969 Start -= NumElts - NumLaneElts;
3971 // Make sure we're shifting in the right direction.
3972 if (Start <= (int)(i+l))
3977 // Check the rest of the elements to see if they are consecutive.
3978 for (++i; i != NumLaneElts; ++i) {
3979 int Idx = Mask[i+l];
3981 // Make sure its in this lane
3982 if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3983 !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3986 // If not lane 0, then we must match lane 0
3987 if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3990 if (Idx >= (int)NumElts)
3991 Idx -= NumElts - NumLaneElts;
3993 if (!isUndefOrEqual(Idx, Start+i))
4002 /// \brief Return true if the node specifies a shuffle of elements that is
4003 /// suitable for input to PALIGNR.
4004 static bool isPALIGNRMask(ArrayRef<int> Mask, MVT VT,
4005 const X86Subtarget *Subtarget) {
4006 if ((VT.is128BitVector() && !Subtarget->hasSSSE3()) ||
4007 (VT.is256BitVector() && !Subtarget->hasInt256()) ||
4008 VT.is512BitVector())
4009 // FIXME: Add AVX512BW.
4012 return isAlignrMask(Mask, VT, false);
4015 /// \brief Return true if the node specifies a shuffle of elements that is
4016 /// suitable for input to VALIGN.
4017 static bool isVALIGNMask(ArrayRef<int> Mask, MVT VT,
4018 const X86Subtarget *Subtarget) {
4019 // FIXME: Add AVX512VL.
4020 if (!VT.is512BitVector() || !Subtarget->hasAVX512())
4022 return isAlignrMask(Mask, VT, true);
4025 /// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
4026 /// the two vector operands have swapped position.
4027 static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
4028 unsigned NumElems) {
4029 for (unsigned i = 0; i != NumElems; ++i) {
4033 else if (idx < (int)NumElems)
4034 Mask[i] = idx + NumElems;
4036 Mask[i] = idx - NumElems;
4040 /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
4041 /// specifies a shuffle of elements that is suitable for input to 128/256-bit
4042 /// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
4043 /// reverse of what x86 shuffles want.
4044 static bool isSHUFPMask(ArrayRef<int> Mask, MVT VT, bool Commuted = false) {
4046 unsigned NumElems = VT.getVectorNumElements();
4047 unsigned NumLanes = VT.getSizeInBits()/128;
4048 unsigned NumLaneElems = NumElems/NumLanes;
4050 if (NumLaneElems != 2 && NumLaneElems != 4)
4053 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4054 bool symetricMaskRequired =
4055 (VT.getSizeInBits() >= 256) && (EltSize == 32);
4057 // VSHUFPSY divides the resulting vector into 4 chunks.
4058 // The sources are also splitted into 4 chunks, and each destination
4059 // chunk must come from a different source chunk.
4061 // SRC1 => X7 X6 X5 X4 X3 X2 X1 X0
4062 // SRC2 => Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y9
4064 // DST => Y7..Y4, Y7..Y4, X7..X4, X7..X4,
4065 // Y3..Y0, Y3..Y0, X3..X0, X3..X0
4067 // VSHUFPDY divides the resulting vector into 4 chunks.
4068 // The sources are also splitted into 4 chunks, and each destination
4069 // chunk must come from a different source chunk.
4071 // SRC1 => X3 X2 X1 X0
4072 // SRC2 => Y3 Y2 Y1 Y0
4074 // DST => Y3..Y2, X3..X2, Y1..Y0, X1..X0
4076 SmallVector<int, 4> MaskVal(NumLaneElems, -1);
4077 unsigned HalfLaneElems = NumLaneElems/2;
4078 for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
4079 for (unsigned i = 0; i != NumLaneElems; ++i) {
4080 int Idx = Mask[i+l];
4081 unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
4082 if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
4084 // For VSHUFPSY, the mask of the second half must be the same as the
4085 // first but with the appropriate offsets. This works in the same way as
4086 // VPERMILPS works with masks.
4087 if (!symetricMaskRequired || Idx < 0)
4089 if (MaskVal[i] < 0) {
4090 MaskVal[i] = Idx - l;
4093 if ((signed)(Idx - l) != MaskVal[i])
4101 /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
4102 /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
4103 static bool isMOVHLPSMask(ArrayRef<int> Mask, MVT VT) {
4104 if (!VT.is128BitVector())
4107 unsigned NumElems = VT.getVectorNumElements();
4112 // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
4113 return isUndefOrEqual(Mask[0], 6) &&
4114 isUndefOrEqual(Mask[1], 7) &&
4115 isUndefOrEqual(Mask[2], 2) &&
4116 isUndefOrEqual(Mask[3], 3);
4119 /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
4120 /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
4122 static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, MVT VT) {
4123 if (!VT.is128BitVector())
4126 unsigned NumElems = VT.getVectorNumElements();
4131 return isUndefOrEqual(Mask[0], 2) &&
4132 isUndefOrEqual(Mask[1], 3) &&
4133 isUndefOrEqual(Mask[2], 2) &&
4134 isUndefOrEqual(Mask[3], 3);
4137 /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
4138 /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
4139 static bool isMOVLPMask(ArrayRef<int> Mask, MVT VT) {
4140 if (!VT.is128BitVector())
4143 unsigned NumElems = VT.getVectorNumElements();
4145 if (NumElems != 2 && NumElems != 4)
4148 for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4149 if (!isUndefOrEqual(Mask[i], i + NumElems))
4152 for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
4153 if (!isUndefOrEqual(Mask[i], i))
4159 /// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
4160 /// specifies a shuffle of elements that is suitable for input to MOVLHPS.
4161 static bool isMOVLHPSMask(ArrayRef<int> Mask, MVT VT) {
4162 if (!VT.is128BitVector())
4165 unsigned NumElems = VT.getVectorNumElements();
4167 if (NumElems != 2 && NumElems != 4)
4170 for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4171 if (!isUndefOrEqual(Mask[i], i))
4174 for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4175 if (!isUndefOrEqual(Mask[i + e], i + NumElems))
4181 /// isINSERTPSMask - Return true if the specified VECTOR_SHUFFLE operand
4182 /// specifies a shuffle of elements that is suitable for input to INSERTPS.
4183 /// i. e: If all but one element come from the same vector.
4184 static bool isINSERTPSMask(ArrayRef<int> Mask, MVT VT) {
4185 // TODO: Deal with AVX's VINSERTPS
4186 if (!VT.is128BitVector() || (VT != MVT::v4f32 && VT != MVT::v4i32))
4189 unsigned CorrectPosV1 = 0;
4190 unsigned CorrectPosV2 = 0;
4191 for (int i = 0, e = (int)VT.getVectorNumElements(); i != e; ++i) {
4192 if (Mask[i] == -1) {
4200 else if (Mask[i] == i + 4)
4204 if (CorrectPosV1 == 3 || CorrectPosV2 == 3)
4205 // We have 3 elements (undefs count as elements from any vector) from one
4206 // vector, and one from another.
4213 // Some special combinations that can be optimized.
4216 SDValue Compact8x32ShuffleNode(ShuffleVectorSDNode *SVOp,
4217 SelectionDAG &DAG) {
4218 MVT VT = SVOp->getSimpleValueType(0);
4221 if (VT != MVT::v8i32 && VT != MVT::v8f32)
4224 ArrayRef<int> Mask = SVOp->getMask();
4226 // These are the special masks that may be optimized.
4227 static const int MaskToOptimizeEven[] = {0, 8, 2, 10, 4, 12, 6, 14};
4228 static const int MaskToOptimizeOdd[] = {1, 9, 3, 11, 5, 13, 7, 15};
4229 bool MatchEvenMask = true;
4230 bool MatchOddMask = true;
4231 for (int i=0; i<8; ++i) {
4232 if (!isUndefOrEqual(Mask[i], MaskToOptimizeEven[i]))
4233 MatchEvenMask = false;
4234 if (!isUndefOrEqual(Mask[i], MaskToOptimizeOdd[i]))
4235 MatchOddMask = false;
4238 if (!MatchEvenMask && !MatchOddMask)
4241 SDValue UndefNode = DAG.getNode(ISD::UNDEF, dl, VT);
4243 SDValue Op0 = SVOp->getOperand(0);
4244 SDValue Op1 = SVOp->getOperand(1);
4246 if (MatchEvenMask) {
4247 // Shift the second operand right to 32 bits.
4248 static const int ShiftRightMask[] = {-1, 0, -1, 2, -1, 4, -1, 6 };
4249 Op1 = DAG.getVectorShuffle(VT, dl, Op1, UndefNode, ShiftRightMask);
4251 // Shift the first operand left to 32 bits.
4252 static const int ShiftLeftMask[] = {1, -1, 3, -1, 5, -1, 7, -1 };
4253 Op0 = DAG.getVectorShuffle(VT, dl, Op0, UndefNode, ShiftLeftMask);
4255 static const int BlendMask[] = {0, 9, 2, 11, 4, 13, 6, 15};
4256 return DAG.getVectorShuffle(VT, dl, Op0, Op1, BlendMask);
4259 /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
4260 /// specifies a shuffle of elements that is suitable for input to UNPCKL.
4261 static bool isUNPCKLMask(ArrayRef<int> Mask, MVT VT,
4262 bool HasInt256, bool V2IsSplat = false) {
4264 assert(VT.getSizeInBits() >= 128 &&
4265 "Unsupported vector type for unpckl");
4267 unsigned NumElts = VT.getVectorNumElements();
4268 if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 &&
4269 (!HasInt256 || (NumElts != 16 && NumElts != 32)))
4272 assert((!VT.is512BitVector() || VT.getScalarType().getSizeInBits() >= 32) &&
4273 "Unsupported vector type for unpckh");
4275 // AVX defines UNPCK* to operate independently on 128-bit lanes.
4276 unsigned NumLanes = VT.getSizeInBits()/128;
4277 unsigned NumLaneElts = NumElts/NumLanes;
4279 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
4280 for (unsigned i = 0, j = l; i != NumLaneElts; i += 2, ++j) {
4281 int BitI = Mask[l+i];
4282 int BitI1 = Mask[l+i+1];
4283 if (!isUndefOrEqual(BitI, j))
4286 if (!isUndefOrEqual(BitI1, NumElts))
4289 if (!isUndefOrEqual(BitI1, j + NumElts))
4298 /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
4299 /// specifies a shuffle of elements that is suitable for input to UNPCKH.
4300 static bool isUNPCKHMask(ArrayRef<int> Mask, MVT VT,
4301 bool HasInt256, bool V2IsSplat = false) {
4302 assert(VT.getSizeInBits() >= 128 &&
4303 "Unsupported vector type for unpckh");
4305 unsigned NumElts = VT.getVectorNumElements();
4306 if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 &&
4307 (!HasInt256 || (NumElts != 16 && NumElts != 32)))
4310 assert((!VT.is512BitVector() || VT.getScalarType().getSizeInBits() >= 32) &&
4311 "Unsupported vector type for unpckh");
4313 // AVX defines UNPCK* to operate independently on 128-bit lanes.
4314 unsigned NumLanes = VT.getSizeInBits()/128;
4315 unsigned NumLaneElts = NumElts/NumLanes;
4317 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
4318 for (unsigned i = 0, j = l+NumLaneElts/2; i != NumLaneElts; i += 2, ++j) {
4319 int BitI = Mask[l+i];
4320 int BitI1 = Mask[l+i+1];
4321 if (!isUndefOrEqual(BitI, j))
4324 if (isUndefOrEqual(BitI1, NumElts))
4327 if (!isUndefOrEqual(BitI1, j+NumElts))
4335 /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
4336 /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
4338 static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, MVT VT, bool HasInt256) {
4339 unsigned NumElts = VT.getVectorNumElements();
4340 bool Is256BitVec = VT.is256BitVector();
4342 if (VT.is512BitVector())
4344 assert((VT.is128BitVector() || VT.is256BitVector()) &&
4345 "Unsupported vector type for unpckh");
4347 if (Is256BitVec && NumElts != 4 && NumElts != 8 &&
4348 (!HasInt256 || (NumElts != 16 && NumElts != 32)))
4351 // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
4352 // FIXME: Need a better way to get rid of this, there's no latency difference
4353 // between UNPCKLPD and MOVDDUP, the later should always be checked first and
4354 // the former later. We should also remove the "_undef" special mask.
4355 if (NumElts == 4 && Is256BitVec)
4358 // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
4359 // independently on 128-bit lanes.
4360 unsigned NumLanes = VT.getSizeInBits()/128;
4361 unsigned NumLaneElts = NumElts/NumLanes;
4363 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
4364 for (unsigned i = 0, j = l; i != NumLaneElts; i += 2, ++j) {
4365 int BitI = Mask[l+i];
4366 int BitI1 = Mask[l+i+1];
4368 if (!isUndefOrEqual(BitI, j))
4370 if (!isUndefOrEqual(BitI1, j))
4378 /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
4379 /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
4381 static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, MVT VT, bool HasInt256) {
4382 unsigned NumElts = VT.getVectorNumElements();
4384 if (VT.is512BitVector())
4387 assert((VT.is128BitVector() || VT.is256BitVector()) &&
4388 "Unsupported vector type for unpckh");
4390 if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 &&
4391 (!HasInt256 || (NumElts != 16 && NumElts != 32)))
4394 // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
4395 // independently on 128-bit lanes.
4396 unsigned NumLanes = VT.getSizeInBits()/128;
4397 unsigned NumLaneElts = NumElts/NumLanes;
4399 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
4400 for (unsigned i = 0, j = l+NumLaneElts/2; i != NumLaneElts; i += 2, ++j) {
4401 int BitI = Mask[l+i];
4402 int BitI1 = Mask[l+i+1];
4403 if (!isUndefOrEqual(BitI, j))
4405 if (!isUndefOrEqual(BitI1, j))
4412 // Match for INSERTI64x4 INSERTF64x4 instructions (src0[0], src1[0]) or
4413 // (src1[0], src0[1]), manipulation with 256-bit sub-vectors
4414 static bool isINSERT64x4Mask(ArrayRef<int> Mask, MVT VT, unsigned int *Imm) {
4415 if (!VT.is512BitVector())
4418 unsigned NumElts = VT.getVectorNumElements();
4419 unsigned HalfSize = NumElts/2;
4420 if (isSequentialOrUndefInRange(Mask, 0, HalfSize, 0)) {
4421 if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, NumElts)) {
4426 if (isSequentialOrUndefInRange(Mask, 0, HalfSize, NumElts)) {
4427 if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, HalfSize)) {
4435 /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
4436 /// specifies a shuffle of elements that is suitable for input to MOVSS,
4437 /// MOVSD, and MOVD, i.e. setting the lowest element.
4438 static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
4439 if (VT.getVectorElementType().getSizeInBits() < 32)
4441 if (!VT.is128BitVector())
4444 unsigned NumElts = VT.getVectorNumElements();
4446 if (!isUndefOrEqual(Mask[0], NumElts))
4449 for (unsigned i = 1; i != NumElts; ++i)
4450 if (!isUndefOrEqual(Mask[i], i))
4456 /// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
4457 /// as permutations between 128-bit chunks or halves. As an example: this
4459 /// vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
4460 /// The first half comes from the second half of V1 and the second half from the
4461 /// the second half of V2.
4462 static bool isVPERM2X128Mask(ArrayRef<int> Mask, MVT VT, bool HasFp256) {
4463 if (!HasFp256 || !VT.is256BitVector())
4466 // The shuffle result is divided into half A and half B. In total the two
4467 // sources have 4 halves, namely: C, D, E, F. The final values of A and
4468 // B must come from C, D, E or F.
4469 unsigned HalfSize = VT.getVectorNumElements()/2;
4470 bool MatchA = false, MatchB = false;
4472 // Check if A comes from one of C, D, E, F.
4473 for (unsigned Half = 0; Half != 4; ++Half) {
4474 if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
4480 // Check if B comes from one of C, D, E, F.
4481 for (unsigned Half = 0; Half != 4; ++Half) {
4482 if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
4488 return MatchA && MatchB;
4491 /// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
4492 /// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
4493 static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
4494 MVT VT = SVOp->getSimpleValueType(0);
4496 unsigned HalfSize = VT.getVectorNumElements()/2;
4498 unsigned FstHalf = 0, SndHalf = 0;
4499 for (unsigned i = 0; i < HalfSize; ++i) {
4500 if (SVOp->getMaskElt(i) > 0) {
4501 FstHalf = SVOp->getMaskElt(i)/HalfSize;
4505 for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
4506 if (SVOp->getMaskElt(i) > 0) {
4507 SndHalf = SVOp->getMaskElt(i)/HalfSize;
4512 return (FstHalf | (SndHalf << 4));
4515 // Symetric in-lane mask. Each lane has 4 elements (for imm8)
4516 static bool isPermImmMask(ArrayRef<int> Mask, MVT VT, unsigned& Imm8) {
4517 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4521 unsigned NumElts = VT.getVectorNumElements();
4523 if (VT.is128BitVector() || (VT.is256BitVector() && EltSize == 64)) {
4524 for (unsigned i = 0; i != NumElts; ++i) {
4527 Imm8 |= Mask[i] << (i*2);
4532 unsigned LaneSize = 4;
4533 SmallVector<int, 4> MaskVal(LaneSize, -1);
4535 for (unsigned l = 0; l != NumElts; l += LaneSize) {
4536 for (unsigned i = 0; i != LaneSize; ++i) {
4537 if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
4541 if (MaskVal[i] < 0) {
4542 MaskVal[i] = Mask[i+l] - l;
4543 Imm8 |= MaskVal[i] << (i*2);
4546 if (Mask[i+l] != (signed)(MaskVal[i]+l))
4553 /// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
4554 /// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
4555 /// Note that VPERMIL mask matching is different depending whether theunderlying
4556 /// type is 32 or 64. In the VPERMILPS the high half of the mask should point
4557 /// to the same elements of the low, but to the higher half of the source.
4558 /// In VPERMILPD the two lanes could be shuffled independently of each other
4559 /// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
4560 static bool isVPERMILPMask(ArrayRef<int> Mask, MVT VT) {
4561 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4562 if (VT.getSizeInBits() < 256 || EltSize < 32)
4564 bool symetricMaskRequired = (EltSize == 32);
4565 unsigned NumElts = VT.getVectorNumElements();
4567 unsigned NumLanes = VT.getSizeInBits()/128;
4568 unsigned LaneSize = NumElts/NumLanes;
4569 // 2 or 4 elements in one lane
4571 SmallVector<int, 4> ExpectedMaskVal(LaneSize, -1);
4572 for (unsigned l = 0; l != NumElts; l += LaneSize) {
4573 for (unsigned i = 0; i != LaneSize; ++i) {
4574 if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
4576 if (symetricMaskRequired) {
4577 if (ExpectedMaskVal[i] < 0 && Mask[i+l] >= 0) {
4578 ExpectedMaskVal[i] = Mask[i+l] - l;
4581 if (!isUndefOrEqual(Mask[i+l], ExpectedMaskVal[i]+l))
4589 /// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
4590 /// of what x86 movss want. X86 movs requires the lowest element to be lowest
4591 /// element of vector 2 and the other elements to come from vector 1 in order.
4592 static bool isCommutedMOVLMask(ArrayRef<int> Mask, MVT VT,
4593 bool V2IsSplat = false, bool V2IsUndef = false) {
4594 if (!VT.is128BitVector())
4597 unsigned NumOps = VT.getVectorNumElements();
4598 if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
4601 if (!isUndefOrEqual(Mask[0], 0))
4604 for (unsigned i = 1; i != NumOps; ++i)
4605 if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
4606 (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
4607 (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
4613 /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
4614 /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
4615 /// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
4616 static bool isMOVSHDUPMask(ArrayRef<int> Mask, MVT VT,
4617 const X86Subtarget *Subtarget) {
4618 if (!Subtarget->hasSSE3())
4621 unsigned NumElems = VT.getVectorNumElements();
4623 if ((VT.is128BitVector() && NumElems != 4) ||
4624 (VT.is256BitVector() && NumElems != 8) ||
4625 (VT.is512BitVector() && NumElems != 16))
4628 // "i+1" is the value the indexed mask element must have
4629 for (unsigned i = 0; i != NumElems; i += 2)
4630 if (!isUndefOrEqual(Mask[i], i+1) ||
4631 !isUndefOrEqual(Mask[i+1], i+1))
4637 /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
4638 /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
4639 /// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
4640 static bool isMOVSLDUPMask(ArrayRef<int> Mask, MVT VT,
4641 const X86Subtarget *Subtarget) {
4642 if (!Subtarget->hasSSE3())
4645 unsigned NumElems = VT.getVectorNumElements();
4647 if ((VT.is128BitVector() && NumElems != 4) ||
4648 (VT.is256BitVector() && NumElems != 8) ||
4649 (VT.is512BitVector() && NumElems != 16))
4652 // "i" is the value the indexed mask element must have
4653 for (unsigned i = 0; i != NumElems; i += 2)
4654 if (!isUndefOrEqual(Mask[i], i) ||
4655 !isUndefOrEqual(Mask[i+1], i))
4661 /// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
4662 /// specifies a shuffle of elements that is suitable for input to 256-bit
4663 /// version of MOVDDUP.
4664 static bool isMOVDDUPYMask(ArrayRef<int> Mask, MVT VT, bool HasFp256) {
4665 if (!HasFp256 || !VT.is256BitVector())
4668 unsigned NumElts = VT.getVectorNumElements();
4672 for (unsigned i = 0; i != NumElts/2; ++i)
4673 if (!isUndefOrEqual(Mask[i], 0))
4675 for (unsigned i = NumElts/2; i != NumElts; ++i)
4676 if (!isUndefOrEqual(Mask[i], NumElts/2))
4681 /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
4682 /// specifies a shuffle of elements that is suitable for input to 128-bit
4683 /// version of MOVDDUP.
4684 static bool isMOVDDUPMask(ArrayRef<int> Mask, MVT VT) {
4685 if (!VT.is128BitVector())
4688 unsigned e = VT.getVectorNumElements() / 2;
4689 for (unsigned i = 0; i != e; ++i)
4690 if (!isUndefOrEqual(Mask[i], i))
4692 for (unsigned i = 0; i != e; ++i)
4693 if (!isUndefOrEqual(Mask[e+i], i))
4698 /// isVEXTRACTIndex - Return true if the specified
4699 /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
4700 /// suitable for instruction that extract 128 or 256 bit vectors
4701 static bool isVEXTRACTIndex(SDNode *N, unsigned vecWidth) {
4702 assert((vecWidth == 128 || vecWidth == 256) && "Unexpected vector width");
4703 if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4706 // The index should be aligned on a vecWidth-bit boundary.
4708 cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4710 MVT VT = N->getSimpleValueType(0);
4711 unsigned ElSize = VT.getVectorElementType().getSizeInBits();
4712 bool Result = (Index * ElSize) % vecWidth == 0;
4717 /// isVINSERTIndex - Return true if the specified INSERT_SUBVECTOR
4718 /// operand specifies a subvector insert that is suitable for input to
4719 /// insertion of 128 or 256-bit subvectors
4720 static bool isVINSERTIndex(SDNode *N, unsigned vecWidth) {
4721 assert((vecWidth == 128 || vecWidth == 256) && "Unexpected vector width");
4722 if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4724 // The index should be aligned on a vecWidth-bit boundary.
4726 cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4728 MVT VT = N->getSimpleValueType(0);
4729 unsigned ElSize = VT.getVectorElementType().getSizeInBits();
4730 bool Result = (Index * ElSize) % vecWidth == 0;
4735 bool X86::isVINSERT128Index(SDNode *N) {
4736 return isVINSERTIndex(N, 128);
4739 bool X86::isVINSERT256Index(SDNode *N) {
4740 return isVINSERTIndex(N, 256);
4743 bool X86::isVEXTRACT128Index(SDNode *N) {
4744 return isVEXTRACTIndex(N, 128);
4747 bool X86::isVEXTRACT256Index(SDNode *N) {
4748 return isVEXTRACTIndex(N, 256);
4751 /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
4752 /// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
4753 /// Handles 128-bit and 256-bit.
4754 static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
4755 MVT VT = N->getSimpleValueType(0);
4757 assert((VT.getSizeInBits() >= 128) &&
4758 "Unsupported vector type for PSHUF/SHUFP");
4760 // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
4761 // independently on 128-bit lanes.
4762 unsigned NumElts = VT.getVectorNumElements();
4763 unsigned NumLanes = VT.getSizeInBits()/128;
4764 unsigned NumLaneElts = NumElts/NumLanes;
4766 assert((NumLaneElts == 2 || NumLaneElts == 4 || NumLaneElts == 8) &&
4767 "Only supports 2, 4 or 8 elements per lane");
4769 unsigned Shift = (NumLaneElts >= 4) ? 1 : 0;
4771 for (unsigned i = 0; i != NumElts; ++i) {
4772 int Elt = N->getMaskElt(i);
4773 if (Elt < 0) continue;
4774 Elt &= NumLaneElts - 1;
4775 unsigned ShAmt = (i << Shift) % 8;
4776 Mask |= Elt << ShAmt;
4782 /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
4783 /// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
4784 static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
4785 MVT VT = N->getSimpleValueType(0);
4787 assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4788 "Unsupported vector type for PSHUFHW");
4790 unsigned NumElts = VT.getVectorNumElements();
4793 for (unsigned l = 0; l != NumElts; l += 8) {
4794 // 8 nodes per lane, but we only care about the last 4.
4795 for (unsigned i = 0; i < 4; ++i) {
4796 int Elt = N->getMaskElt(l+i+4);
4797 if (Elt < 0) continue;
4798 Elt &= 0x3; // only 2-bits.
4799 Mask |= Elt << (i * 2);
4806 /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
4807 /// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
4808 static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
4809 MVT VT = N->getSimpleValueType(0);
4811 assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4812 "Unsupported vector type for PSHUFHW");
4814 unsigned NumElts = VT.getVectorNumElements();
4817 for (unsigned l = 0; l != NumElts; l += 8) {
4818 // 8 nodes per lane, but we only care about the first 4.
4819 for (unsigned i = 0; i < 4; ++i) {
4820 int Elt = N->getMaskElt(l+i);
4821 if (Elt < 0) continue;
4822 Elt &= 0x3; // only 2-bits
4823 Mask |= Elt << (i * 2);
4830 /// \brief Return the appropriate immediate to shuffle the specified
4831 /// VECTOR_SHUFFLE mask with the PALIGNR (if InterLane is false) or with
4832 /// VALIGN (if Interlane is true) instructions.
4833 static unsigned getShuffleAlignrImmediate(ShuffleVectorSDNode *SVOp,
4835 MVT VT = SVOp->getSimpleValueType(0);
4836 unsigned EltSize = InterLane ? 1 :
4837 VT.getVectorElementType().getSizeInBits() >> 3;
4839 unsigned NumElts = VT.getVectorNumElements();
4840 unsigned NumLanes = VT.is512BitVector() ? 1 : VT.getSizeInBits()/128;
4841 unsigned NumLaneElts = NumElts/NumLanes;
4845 for (i = 0; i != NumElts; ++i) {
4846 Val = SVOp->getMaskElt(i);
4850 if (Val >= (int)NumElts)
4851 Val -= NumElts - NumLaneElts;
4853 assert(Val - i > 0 && "PALIGNR imm should be positive");
4854 return (Val - i) * EltSize;
4857 /// \brief Return the appropriate immediate to shuffle the specified
4858 /// VECTOR_SHUFFLE mask with the PALIGNR instruction.
4859 static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
4860 return getShuffleAlignrImmediate(SVOp, false);
4863 /// \brief Return the appropriate immediate to shuffle the specified
4864 /// VECTOR_SHUFFLE mask with the VALIGN instruction.
4865 static unsigned getShuffleVALIGNImmediate(ShuffleVectorSDNode *SVOp) {
4866 return getShuffleAlignrImmediate(SVOp, true);
4870 static unsigned getExtractVEXTRACTImmediate(SDNode *N, unsigned vecWidth) {
4871 assert((vecWidth == 128 || vecWidth == 256) && "Unsupported vector width");
4872 if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4873 llvm_unreachable("Illegal extract subvector for VEXTRACT");
4876 cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4878 MVT VecVT = N->getOperand(0).getSimpleValueType();
4879 MVT ElVT = VecVT.getVectorElementType();
4881 unsigned NumElemsPerChunk = vecWidth / ElVT.getSizeInBits();
4882 return Index / NumElemsPerChunk;
4885 static unsigned getInsertVINSERTImmediate(SDNode *N, unsigned vecWidth) {
4886 assert((vecWidth == 128 || vecWidth == 256) && "Unsupported vector width");
4887 if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4888 llvm_unreachable("Illegal insert subvector for VINSERT");
4891 cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4893 MVT VecVT = N->getSimpleValueType(0);
4894 MVT ElVT = VecVT.getVectorElementType();
4896 unsigned NumElemsPerChunk = vecWidth / ElVT.getSizeInBits();
4897 return Index / NumElemsPerChunk;
4900 /// getExtractVEXTRACT128Immediate - Return the appropriate immediate
4901 /// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4902 /// and VINSERTI128 instructions.
4903 unsigned X86::getExtractVEXTRACT128Immediate(SDNode *N) {
4904 return getExtractVEXTRACTImmediate(N, 128);
4907 /// getExtractVEXTRACT256Immediate - Return the appropriate immediate
4908 /// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF64x4
4909 /// and VINSERTI64x4 instructions.
4910 unsigned X86::getExtractVEXTRACT256Immediate(SDNode *N) {
4911 return getExtractVEXTRACTImmediate(N, 256);
4914 /// getInsertVINSERT128Immediate - Return the appropriate immediate
4915 /// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4916 /// and VINSERTI128 instructions.
4917 unsigned X86::getInsertVINSERT128Immediate(SDNode *N) {
4918 return getInsertVINSERTImmediate(N, 128);
4921 /// getInsertVINSERT256Immediate - Return the appropriate immediate
4922 /// to insert at the specified INSERT_SUBVECTOR index with VINSERTF46x4
4923 /// and VINSERTI64x4 instructions.
4924 unsigned X86::getInsertVINSERT256Immediate(SDNode *N) {
4925 return getInsertVINSERTImmediate(N, 256);
4928 /// isZero - Returns true if Elt is a constant integer zero
4929 static bool isZero(SDValue V) {
4930 ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
4931 return C && C->isNullValue();
4934 /// isZeroNode - Returns true if Elt is a constant zero or a floating point
4936 bool X86::isZeroNode(SDValue Elt) {
4939 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Elt))
4940 return CFP->getValueAPF().isPosZero();
4944 /// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4945 /// match movhlps. The lower half elements should come from upper half of
4946 /// V1 (and in order), and the upper half elements should come from the upper
4947 /// half of V2 (and in order).
4948 static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, MVT VT) {
4949 if (!VT.is128BitVector())
4951 if (VT.getVectorNumElements() != 4)
4953 for (unsigned i = 0, e = 2; i != e; ++i)
4954 if (!isUndefOrEqual(Mask[i], i+2))
4956 for (unsigned i = 2; i != 4; ++i)
4957 if (!isUndefOrEqual(Mask[i], i+4))
4962 /// isScalarLoadToVector - Returns true if the node is a scalar load that
4963 /// is promoted to a vector. It also returns the LoadSDNode by reference if
4965 static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = nullptr) {
4966 if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4968 N = N->getOperand(0).getNode();
4969 if (!ISD::isNON_EXTLoad(N))
4972 *LD = cast<LoadSDNode>(N);
4976 // Test whether the given value is a vector value which will be legalized
4978 static bool WillBeConstantPoolLoad(SDNode *N) {
4979 if (N->getOpcode() != ISD::BUILD_VECTOR)
4982 // Check for any non-constant elements.
4983 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4984 switch (N->getOperand(i).getNode()->getOpcode()) {
4986 case ISD::ConstantFP:
4993 // Vectors of all-zeros and all-ones are materialized with special
4994 // instructions rather than being loaded.
4995 return !ISD::isBuildVectorAllZeros(N) &&
4996 !ISD::isBuildVectorAllOnes(N);
4999 /// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
5000 /// match movlp{s|d}. The lower half elements should come from lower half of
5001 /// V1 (and in order), and the upper half elements should come from the upper
5002 /// half of V2 (and in order). And since V1 will become the source of the
5003 /// MOVLP, it must be either a vector load or a scalar load to vector.
5004 static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
5005 ArrayRef<int> Mask, MVT VT) {
5006 if (!VT.is128BitVector())
5009 if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
5011 // Is V2 is a vector load, don't do this transformation. We will try to use
5012 // load folding shufps op.
5013 if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
5016 unsigned NumElems = VT.getVectorNumElements();
5018 if (NumElems != 2 && NumElems != 4)
5020 for (unsigned i = 0, e = NumElems/2; i != e; ++i)
5021 if (!isUndefOrEqual(Mask[i], i))
5023 for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
5024 if (!isUndefOrEqual(Mask[i], i+NumElems))
5029 /// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
5030 /// to an zero vector.
5031 /// FIXME: move to dag combiner / method on ShuffleVectorSDNode
5032 static bool isZeroShuffle(ShuffleVectorSDNode *N) {
5033 SDValue V1 = N->getOperand(0);
5034 SDValue V2 = N->getOperand(1);
5035 unsigned NumElems = N->getValueType(0).getVectorNumElements();
5036 for (unsigned i = 0; i != NumElems; ++i) {
5037 int Idx = N->getMaskElt(i);
5038 if (Idx >= (int)NumElems) {
5039 unsigned Opc = V2.getOpcode();
5040 if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
5042 if (Opc != ISD::BUILD_VECTOR ||
5043 !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
5045 } else if (Idx >= 0) {
5046 unsigned Opc = V1.getOpcode();
5047 if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
5049 if (Opc != ISD::BUILD_VECTOR ||
5050 !X86::isZeroNode(V1.getOperand(Idx)))
5057 /// getZeroVector - Returns a vector of specified type with all zero elements.
5059 static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
5060 SelectionDAG &DAG, SDLoc dl) {
5061 assert(VT.isVector() && "Expected a vector type");
5063 // Always build SSE zero vectors as <4 x i32> bitcasted
5064 // to their dest type. This ensures they get CSE'd.
5066 if (VT.is128BitVector()) { // SSE
5067 if (Subtarget->hasSSE2()) { // SSE2
5068 SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
5069 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
5071 SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
5072 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
5074 } else if (VT.is256BitVector()) { // AVX
5075 if (Subtarget->hasInt256()) { // AVX2
5076 SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
5077 SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
5078 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops);
5080 // 256-bit logic and arithmetic instructions in AVX are all
5081 // floating-point, no support for integer ops. Emit fp zeroed vectors.
5082 SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
5083 SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
5084 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops);
5086 } else if (VT.is512BitVector()) { // AVX-512
5087 SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
5088 SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst,
5089 Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
5090 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i32, Ops);
5091 } else if (VT.getScalarType() == MVT::i1) {
5092 assert(VT.getVectorNumElements() <= 16 && "Unexpected vector type");
5093 SDValue Cst = DAG.getTargetConstant(0, MVT::i1);
5094 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Cst);
5095 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
5097 llvm_unreachable("Unexpected vector type");
5099 return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
5102 /// getOnesVector - Returns a vector of specified type with all bits set.
5103 /// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
5104 /// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
5105 /// Then bitcast to their original type, ensuring they get CSE'd.
5106 static SDValue getOnesVector(MVT VT, bool HasInt256, SelectionDAG &DAG,
5108 assert(VT.isVector() && "Expected a vector type");
5110 SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
5112 if (VT.is256BitVector()) {
5113 if (HasInt256) { // AVX2
5114 SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
5115 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops);
5117 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
5118 Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl);
5120 } else if (VT.is128BitVector()) {
5121 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
5123 llvm_unreachable("Unexpected vector type");
5125 return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
5128 /// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
5129 /// that point to V2 points to its first element.
5130 static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
5131 for (unsigned i = 0; i != NumElems; ++i) {
5132 if (Mask[i] > (int)NumElems) {
5138 /// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
5139 /// operation of specified width.
5140 static SDValue getMOVL(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue V1,
5142 unsigned NumElems = VT.getVectorNumElements();
5143 SmallVector<int, 8> Mask;
5144 Mask.push_back(NumElems);
5145 for (unsigned i = 1; i != NumElems; ++i)
5147 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
5150 /// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
5151 static SDValue getUnpackl(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1,
5153 unsigned NumElems = VT.getVectorNumElements();
5154 SmallVector<int, 8> Mask;
5155 for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
5157 Mask.push_back(i + NumElems);
5159 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
5162 /// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
5163 static SDValue getUnpackh(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1,
5165 unsigned NumElems = VT.getVectorNumElements();
5166 SmallVector<int, 8> Mask;
5167 for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) {
5168 Mask.push_back(i + Half);
5169 Mask.push_back(i + NumElems + Half);
5171 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
5174 // PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
5175 // a generic shuffle instruction because the target has no such instructions.
5176 // Generate shuffles which repeat i16 and i8 several times until they can be
5177 // represented by v4f32 and then be manipulated by target suported shuffles.
5178 static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
5179 MVT VT = V.getSimpleValueType();
5180 int NumElems = VT.getVectorNumElements();
5183 while (NumElems > 4) {
5184 if (EltNo < NumElems/2) {
5185 V = getUnpackl(DAG, dl, VT, V, V);
5187 V = getUnpackh(DAG, dl, VT, V, V);
5188 EltNo -= NumElems/2;
5195 /// getLegalSplat - Generate a legal splat with supported x86 shuffles
5196 static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
5197 MVT VT = V.getSimpleValueType();
5200 if (VT.is128BitVector()) {
5201 V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
5202 int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
5203 V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
5205 } else if (VT.is256BitVector()) {
5206 // To use VPERMILPS to splat scalars, the second half of indicies must
5207 // refer to the higher part, which is a duplication of the lower one,
5208 // because VPERMILPS can only handle in-lane permutations.
5209 int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
5210 EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
5212 V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
5213 V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
5216 llvm_unreachable("Vector size not supported");
5218 return DAG.getNode(ISD::BITCAST, dl, VT, V);
5221 /// PromoteSplat - Splat is promoted to target supported vector shuffles.
5222 static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
5223 MVT SrcVT = SV->getSimpleValueType(0);
5224 SDValue V1 = SV->getOperand(0);
5227 int EltNo = SV->getSplatIndex();
5228 int NumElems = SrcVT.getVectorNumElements();
5229 bool Is256BitVec = SrcVT.is256BitVector();
5231 assert(((SrcVT.is128BitVector() && NumElems > 4) || Is256BitVec) &&
5232 "Unknown how to promote splat for type");
5234 // Extract the 128-bit part containing the splat element and update
5235 // the splat element index when it refers to the higher register.
5237 V1 = Extract128BitVector(V1, EltNo, DAG, dl);
5238 if (EltNo >= NumElems/2)
5239 EltNo -= NumElems/2;
5242 // All i16 and i8 vector types can't be used directly by a generic shuffle
5243 // instruction because the target has no such instruction. Generate shuffles
5244 // which repeat i16 and i8 several times until they fit in i32, and then can
5245 // be manipulated by target suported shuffles.
5246 MVT EltVT = SrcVT.getVectorElementType();
5247 if (EltVT == MVT::i8 || EltVT == MVT::i16)
5248 V1 = PromoteSplati8i16(V1, DAG, EltNo);
5250 // Recreate the 256-bit vector and place the same 128-bit vector
5251 // into the low and high part. This is necessary because we want
5252 // to use VPERM* to shuffle the vectors
5254 V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, SrcVT, V1, V1);
5257 return getLegalSplat(DAG, V1, EltNo);
5260 /// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
5261 /// vector of zero or undef vector. This produces a shuffle where the low
5262 /// element of V2 is swizzled into the zero/undef vector, landing at element
5263 /// Idx. This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3).
5264 static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
5266 const X86Subtarget *Subtarget,
5267 SelectionDAG &DAG) {
5268 MVT VT = V2.getSimpleValueType();
5270 ? getZeroVector(VT, Subtarget, DAG, SDLoc(V2)) : DAG.getUNDEF(VT);
5271 unsigned NumElems = VT.getVectorNumElements();
5272 SmallVector<int, 16> MaskVec;
5273 for (unsigned i = 0; i != NumElems; ++i)
5274 // If this is the insertion idx, put the low elt of V2 here.
5275 MaskVec.push_back(i == Idx ? NumElems : i);
5276 return DAG.getVectorShuffle(VT, SDLoc(V2), V1, V2, &MaskVec[0]);
5279 /// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
5280 /// target specific opcode. Returns true if the Mask could be calculated. Sets
5281 /// IsUnary to true if only uses one source. Note that this will set IsUnary for
5282 /// shuffles which use a single input multiple times, and in those cases it will
5283 /// adjust the mask to only have indices within that single input.
5284 static bool getTargetShuffleMask(SDNode *N, MVT VT,
5285 SmallVectorImpl<int> &Mask, bool &IsUnary) {
5286 unsigned NumElems = VT.getVectorNumElements();
5290 bool IsFakeUnary = false;
5291 switch(N->getOpcode()) {
5292 case X86ISD::BLENDI:
5293 ImmN = N->getOperand(N->getNumOperands()-1);
5294 DecodeBLENDMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
5297 ImmN = N->getOperand(N->getNumOperands()-1);
5298 DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
5299 IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
5301 case X86ISD::UNPCKH:
5302 DecodeUNPCKHMask(VT, Mask);
5303 IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
5305 case X86ISD::UNPCKL:
5306 DecodeUNPCKLMask(VT, Mask);
5307 IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
5309 case X86ISD::MOVHLPS:
5310 DecodeMOVHLPSMask(NumElems, Mask);
5311 IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
5313 case X86ISD::MOVLHPS:
5314 DecodeMOVLHPSMask(NumElems, Mask);
5315 IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
5317 case X86ISD::PALIGNR:
5318 ImmN = N->getOperand(N->getNumOperands()-1);
5319 DecodePALIGNRMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
5321 case X86ISD::PSHUFD:
5322 case X86ISD::VPERMILPI:
5323 ImmN = N->getOperand(N->getNumOperands()-1);
5324 DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
5327 case X86ISD::PSHUFHW:
5328 ImmN = N->getOperand(N->getNumOperands()-1);
5329 DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
5332 case X86ISD::PSHUFLW:
5333 ImmN = N->getOperand(N->getNumOperands()-1);
5334 DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
5337 case X86ISD::PSHUFB: {
5339 SDValue MaskNode = N->getOperand(1);
5340 while (MaskNode->getOpcode() == ISD::BITCAST)
5341 MaskNode = MaskNode->getOperand(0);
5343 if (MaskNode->getOpcode() == ISD::BUILD_VECTOR) {
5344 // If we have a build-vector, then things are easy.
5345 EVT VT = MaskNode.getValueType();
5346 assert(VT.isVector() &&
5347 "Can't produce a non-vector with a build_vector!");
5348 if (!VT.isInteger())
5351 int NumBytesPerElement = VT.getVectorElementType().getSizeInBits() / 8;
5353 SmallVector<uint64_t, 32> RawMask;
5354 for (int i = 0, e = MaskNode->getNumOperands(); i < e; ++i) {
5355 SDValue Op = MaskNode->getOperand(i);
5356 if (Op->getOpcode() == ISD::UNDEF) {
5357 RawMask.push_back((uint64_t)SM_SentinelUndef);
5360 auto *CN = dyn_cast<ConstantSDNode>(Op.getNode());
5363 APInt MaskElement = CN->getAPIntValue();
5365 // We now have to decode the element which could be any integer size and
5366 // extract each byte of it.
5367 for (int j = 0; j < NumBytesPerElement; ++j) {
5368 // Note that this is x86 and so always little endian: the low byte is
5369 // the first byte of the mask.
5370 RawMask.push_back(MaskElement.getLoBits(8).getZExtValue());
5371 MaskElement = MaskElement.lshr(8);
5374 DecodePSHUFBMask(RawMask, Mask);
5378 auto *MaskLoad = dyn_cast<LoadSDNode>(MaskNode);
5382 SDValue Ptr = MaskLoad->getBasePtr();
5383 if (Ptr->getOpcode() == X86ISD::Wrapper)
5384 Ptr = Ptr->getOperand(0);
5386 auto *MaskCP = dyn_cast<ConstantPoolSDNode>(Ptr);
5387 if (!MaskCP || MaskCP->isMachineConstantPoolEntry())
5390 if (auto *C = dyn_cast<Constant>(MaskCP->getConstVal())) {
5391 // FIXME: Support AVX-512 here.
5392 Type *Ty = C->getType();
5393 if (!Ty->isVectorTy() || (Ty->getVectorNumElements() != 16 &&
5394 Ty->getVectorNumElements() != 32))
5397 DecodePSHUFBMask(C, Mask);
5403 case X86ISD::VPERMI:
5404 ImmN = N->getOperand(N->getNumOperands()-1);
5405 DecodeVPERMMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
5409 case X86ISD::MOVSD: {
5410 // The index 0 always comes from the first element of the second source,
5411 // this is why MOVSS and MOVSD are used in the first place. The other
5412 // elements come from the other positions of the first source vector
5413 Mask.push_back(NumElems);
5414 for (unsigned i = 1; i != NumElems; ++i) {
5419 case X86ISD::VPERM2X128:
5420 ImmN = N->getOperand(N->getNumOperands()-1);
5421 DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
5422 if (Mask.empty()) return false;
5424 case X86ISD::MOVSLDUP:
5425 DecodeMOVSLDUPMask(VT, Mask);
5427 case X86ISD::MOVSHDUP:
5428 DecodeMOVSHDUPMask(VT, Mask);
5430 case X86ISD::MOVDDUP:
5431 case X86ISD::MOVLHPD:
5432 case X86ISD::MOVLPD:
5433 case X86ISD::MOVLPS:
5434 // Not yet implemented
5436 default: llvm_unreachable("unknown target shuffle node");
5439 // If we have a fake unary shuffle, the shuffle mask is spread across two
5440 // inputs that are actually the same node. Re-map the mask to always point
5441 // into the first input.
5444 if (M >= (int)Mask.size())
5450 /// getShuffleScalarElt - Returns the scalar element that will make up the ith
5451 /// element of the result of the vector shuffle.
5452 static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
5455 return SDValue(); // Limit search depth.
5457 SDValue V = SDValue(N, 0);
5458 EVT VT = V.getValueType();
5459 unsigned Opcode = V.getOpcode();
5461 // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
5462 if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
5463 int Elt = SV->getMaskElt(Index);
5466 return DAG.getUNDEF(VT.getVectorElementType());
5468 unsigned NumElems = VT.getVectorNumElements();
5469 SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
5470 : SV->getOperand(1);
5471 return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
5474 // Recurse into target specific vector shuffles to find scalars.
5475 if (isTargetShuffle(Opcode)) {
5476 MVT ShufVT = V.getSimpleValueType();
5477 unsigned NumElems = ShufVT.getVectorNumElements();
5478 SmallVector<int, 16> ShuffleMask;
5481 if (!getTargetShuffleMask(N, ShufVT, ShuffleMask, IsUnary))
5484 int Elt = ShuffleMask[Index];
5486 return DAG.getUNDEF(ShufVT.getVectorElementType());
5488 SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
5490 return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
5494 // Actual nodes that may contain scalar elements
5495 if (Opcode == ISD::BITCAST) {
5496 V = V.getOperand(0);
5497 EVT SrcVT = V.getValueType();
5498 unsigned NumElems = VT.getVectorNumElements();
5500 if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
5504 if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5505 return (Index == 0) ? V.getOperand(0)
5506 : DAG.getUNDEF(VT.getVectorElementType());
5508 if (V.getOpcode() == ISD::BUILD_VECTOR)
5509 return V.getOperand(Index);
5514 /// getNumOfConsecutiveZeros - Return the number of elements of a vector
5515 /// shuffle operation which come from a consecutively from a zero. The
5516 /// search can start in two different directions, from left or right.
5517 /// We count undefs as zeros until PreferredNum is reached.
5518 static unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp,
5519 unsigned NumElems, bool ZerosFromLeft,
5521 unsigned PreferredNum = -1U) {
5522 unsigned NumZeros = 0;
5523 for (unsigned i = 0; i != NumElems; ++i) {
5524 unsigned Index = ZerosFromLeft ? i : NumElems - i - 1;
5525 SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0);
5529 if (X86::isZeroNode(Elt))
5531 else if (Elt.getOpcode() == ISD::UNDEF) // Undef as zero up to PreferredNum.
5532 NumZeros = std::min(NumZeros + 1, PreferredNum);
5540 /// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE)
5541 /// correspond consecutively to elements from one of the vector operands,
5542 /// starting from its index OpIdx. Also tell OpNum which source vector operand.
5544 bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp,
5545 unsigned MaskI, unsigned MaskE, unsigned OpIdx,
5546 unsigned NumElems, unsigned &OpNum) {
5547 bool SeenV1 = false;
5548 bool SeenV2 = false;
5550 for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) {
5551 int Idx = SVOp->getMaskElt(i);
5552 // Ignore undef indicies
5556 if (Idx < (int)NumElems)
5561 // Only accept consecutive elements from the same vector
5562 if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
5566 OpNum = SeenV1 ? 0 : 1;
5570 /// isVectorShiftRight - Returns true if the shuffle can be implemented as a
5571 /// logical left shift of a vector.
5572 static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
5573 bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
5575 SVOp->getSimpleValueType(0).getVectorNumElements();
5576 unsigned NumZeros = getNumOfConsecutiveZeros(
5577 SVOp, NumElems, false /* check zeros from right */, DAG,
5578 SVOp->getMaskElt(0));
5584 // Considering the elements in the mask that are not consecutive zeros,
5585 // check if they consecutively come from only one of the source vectors.
5587 // V1 = {X, A, B, C} 0
5589 // vector_shuffle V1, V2 <1, 2, 3, X>
5591 if (!isShuffleMaskConsecutive(SVOp,
5592 0, // Mask Start Index
5593 NumElems-NumZeros, // Mask End Index(exclusive)
5594 NumZeros, // Where to start looking in the src vector
5595 NumElems, // Number of elements in vector
5596 OpSrc)) // Which source operand ?
5601 ShVal = SVOp->getOperand(OpSrc);
5605 /// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
5606 /// logical left shift of a vector.
5607 static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
5608 bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
5610 SVOp->getSimpleValueType(0).getVectorNumElements();
5611 unsigned NumZeros = getNumOfConsecutiveZeros(
5612 SVOp, NumElems, true /* check zeros from left */, DAG,
5613 NumElems - SVOp->getMaskElt(NumElems - 1) - 1);
5619 // Considering the elements in the mask that are not consecutive zeros,
5620 // check if they consecutively come from only one of the source vectors.
5622 // 0 { A, B, X, X } = V2
5624 // vector_shuffle V1, V2 <X, X, 4, 5>
5626 if (!isShuffleMaskConsecutive(SVOp,
5627 NumZeros, // Mask Start Index
5628 NumElems, // Mask End Index(exclusive)
5629 0, // Where to start looking in the src vector
5630 NumElems, // Number of elements in vector
5631 OpSrc)) // Which source operand ?
5636 ShVal = SVOp->getOperand(OpSrc);
5640 /// isVectorShift - Returns true if the shuffle can be implemented as a
5641 /// logical left or right shift of a vector.
5642 static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
5643 bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
5644 // Although the logic below support any bitwidth size, there are no
5645 // shift instructions which handle more than 128-bit vectors.
5646 if (!SVOp->getSimpleValueType(0).is128BitVector())
5649 if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
5650 isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
5656 /// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
5658 static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
5659 unsigned NumNonZero, unsigned NumZero,
5661 const X86Subtarget* Subtarget,
5662 const TargetLowering &TLI) {
5669 for (unsigned i = 0; i < 16; ++i) {
5670 bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
5671 if (ThisIsNonZero && First) {
5673 V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
5675 V = DAG.getUNDEF(MVT::v8i16);
5680 SDValue ThisElt, LastElt;
5681 bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
5682 if (LastIsNonZero) {
5683 LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
5684 MVT::i16, Op.getOperand(i-1));
5686 if (ThisIsNonZero) {
5687 ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
5688 ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
5689 ThisElt, DAG.getConstant(8, MVT::i8));
5691 ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
5695 if (ThisElt.getNode())
5696 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
5697 DAG.getIntPtrConstant(i/2));
5701 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
5704 /// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
5706 static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
5707 unsigned NumNonZero, unsigned NumZero,
5709 const X86Subtarget* Subtarget,
5710 const TargetLowering &TLI) {
5717 for (unsigned i = 0; i < 8; ++i) {
5718 bool isNonZero = (NonZeros & (1 << i)) != 0;
5722 V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
5724 V = DAG.getUNDEF(MVT::v8i16);
5727 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
5728 MVT::v8i16, V, Op.getOperand(i),
5729 DAG.getIntPtrConstant(i));
5736 /// LowerBuildVectorv4x32 - Custom lower build_vector of v4i32 or v4f32.
5737 static SDValue LowerBuildVectorv4x32(SDValue Op, unsigned NumElems,
5738 unsigned NonZeros, unsigned NumNonZero,
5739 unsigned NumZero, SelectionDAG &DAG,
5740 const X86Subtarget *Subtarget,
5741 const TargetLowering &TLI) {
5742 // We know there's at least one non-zero element
5743 unsigned FirstNonZeroIdx = 0;
5744 SDValue FirstNonZero = Op->getOperand(FirstNonZeroIdx);
5745 while (FirstNonZero.getOpcode() == ISD::UNDEF ||
5746 X86::isZeroNode(FirstNonZero)) {
5748 FirstNonZero = Op->getOperand(FirstNonZeroIdx);
5751 if (FirstNonZero.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
5752 !isa<ConstantSDNode>(FirstNonZero.getOperand(1)))
5755 SDValue V = FirstNonZero.getOperand(0);
5756 MVT VVT = V.getSimpleValueType();
5757 if (!Subtarget->hasSSE41() || (VVT != MVT::v4f32 && VVT != MVT::v4i32))
5760 unsigned FirstNonZeroDst =
5761 cast<ConstantSDNode>(FirstNonZero.getOperand(1))->getZExtValue();
5762 unsigned CorrectIdx = FirstNonZeroDst == FirstNonZeroIdx;
5763 unsigned IncorrectIdx = CorrectIdx ? -1U : FirstNonZeroIdx;
5764 unsigned IncorrectDst = CorrectIdx ? -1U : FirstNonZeroDst;
5766 for (unsigned Idx = FirstNonZeroIdx + 1; Idx < NumElems; ++Idx) {
5767 SDValue Elem = Op.getOperand(Idx);
5768 if (Elem.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elem))
5771 // TODO: What else can be here? Deal with it.
5772 if (Elem.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
5775 // TODO: Some optimizations are still possible here
5776 // ex: Getting one element from a vector, and the rest from another.
5777 if (Elem.getOperand(0) != V)
5780 unsigned Dst = cast<ConstantSDNode>(Elem.getOperand(1))->getZExtValue();
5783 else if (IncorrectIdx == -1U) {
5787 // There was already one element with an incorrect index.
5788 // We can't optimize this case to an insertps.
5792 if (NumNonZero == CorrectIdx || NumNonZero == CorrectIdx + 1) {
5794 EVT VT = Op.getSimpleValueType();
5795 unsigned ElementMoveMask = 0;
5796 if (IncorrectIdx == -1U)
5797 ElementMoveMask = FirstNonZeroIdx << 6 | FirstNonZeroIdx << 4;
5799 ElementMoveMask = IncorrectDst << 6 | IncorrectIdx << 4;
5801 SDValue InsertpsMask =
5802 DAG.getIntPtrConstant(ElementMoveMask | (~NonZeros & 0xf));
5803 return DAG.getNode(X86ISD::INSERTPS, dl, VT, V, V, InsertpsMask);
5809 /// getVShift - Return a vector logical shift node.
5811 static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
5812 unsigned NumBits, SelectionDAG &DAG,
5813 const TargetLowering &TLI, SDLoc dl) {
5814 assert(VT.is128BitVector() && "Unknown type for VShift");
5815 EVT ShVT = MVT::v2i64;
5816 unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
5817 SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
5818 return DAG.getNode(ISD::BITCAST, dl, VT,
5819 DAG.getNode(Opc, dl, ShVT, SrcOp,
5820 DAG.getConstant(NumBits,
5821 TLI.getScalarShiftAmountTy(SrcOp.getValueType()))));
5825 LowerAsSplatVectorLoad(SDValue SrcOp, MVT VT, SDLoc dl, SelectionDAG &DAG) {
5827 // Check if the scalar load can be widened into a vector load. And if
5828 // the address is "base + cst" see if the cst can be "absorbed" into
5829 // the shuffle mask.
5830 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
5831 SDValue Ptr = LD->getBasePtr();
5832 if (!ISD::isNormalLoad(LD) || LD->isVolatile())
5834 EVT PVT = LD->getValueType(0);
5835 if (PVT != MVT::i32 && PVT != MVT::f32)
5840 if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
5841 FI = FINode->getIndex();
5843 } else if (DAG.isBaseWithConstantOffset(Ptr) &&
5844 isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
5845 FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
5846 Offset = Ptr.getConstantOperandVal(1);
5847 Ptr = Ptr.getOperand(0);
5852 // FIXME: 256-bit vector instructions don't require a strict alignment,
5853 // improve this code to support it better.
5854 unsigned RequiredAlign = VT.getSizeInBits()/8;
5855 SDValue Chain = LD->getChain();
5856 // Make sure the stack object alignment is at least 16 or 32.
5857 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5858 if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
5859 if (MFI->isFixedObjectIndex(FI)) {
5860 // Can't change the alignment. FIXME: It's possible to compute
5861 // the exact stack offset and reference FI + adjust offset instead.
5862 // If someone *really* cares about this. That's the way to implement it.
5865 MFI->setObjectAlignment(FI, RequiredAlign);
5869 // (Offset % 16 or 32) must be multiple of 4. Then address is then
5870 // Ptr + (Offset & ~15).
5873 if ((Offset % RequiredAlign) & 3)
5875 int64_t StartOffset = Offset & ~(RequiredAlign-1);
5877 Ptr = DAG.getNode(ISD::ADD, SDLoc(Ptr), Ptr.getValueType(),
5878 Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
5880 int EltNo = (Offset - StartOffset) >> 2;
5881 unsigned NumElems = VT.getVectorNumElements();
5883 EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
5884 SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
5885 LD->getPointerInfo().getWithOffset(StartOffset),
5886 false, false, false, 0);
5888 SmallVector<int, 8> Mask;
5889 for (unsigned i = 0; i != NumElems; ++i)
5890 Mask.push_back(EltNo);
5892 return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
5898 /// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
5899 /// vector of type 'VT', see if the elements can be replaced by a single large
5900 /// load which has the same value as a build_vector whose operands are 'elts'.
5902 /// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
5904 /// FIXME: we'd also like to handle the case where the last elements are zero
5905 /// rather than undef via VZEXT_LOAD, but we do not detect that case today.
5906 /// There's even a handy isZeroNode for that purpose.
5907 static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
5908 SDLoc &DL, SelectionDAG &DAG,
5909 bool isAfterLegalize) {
5910 EVT EltVT = VT.getVectorElementType();
5911 unsigned NumElems = Elts.size();
5913 LoadSDNode *LDBase = nullptr;
5914 unsigned LastLoadedElt = -1U;
5916 // For each element in the initializer, see if we've found a load or an undef.
5917 // If we don't find an initial load element, or later load elements are
5918 // non-consecutive, bail out.
5919 for (unsigned i = 0; i < NumElems; ++i) {
5920 SDValue Elt = Elts[i];
5922 if (!Elt.getNode() ||
5923 (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
5926 if (Elt.getNode()->getOpcode() == ISD::UNDEF)
5928 LDBase = cast<LoadSDNode>(Elt.getNode());
5932 if (Elt.getOpcode() == ISD::UNDEF)
5935 LoadSDNode *LD = cast<LoadSDNode>(Elt);
5936 if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
5941 // If we have found an entire vector of loads and undefs, then return a large
5942 // load of the entire vector width starting at the base pointer. If we found
5943 // consecutive loads for the low half, generate a vzext_load node.
5944 if (LastLoadedElt == NumElems - 1) {
5946 if (isAfterLegalize &&
5947 !DAG.getTargetLoweringInfo().isOperationLegal(ISD::LOAD, VT))
5950 SDValue NewLd = SDValue();
5952 if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
5953 NewLd = DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5954 LDBase->getPointerInfo(),
5955 LDBase->isVolatile(), LDBase->isNonTemporal(),
5956 LDBase->isInvariant(), 0);
5957 NewLd = DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5958 LDBase->getPointerInfo(),
5959 LDBase->isVolatile(), LDBase->isNonTemporal(),
5960 LDBase->isInvariant(), LDBase->getAlignment());
5962 if (LDBase->hasAnyUseOfValue(1)) {
5963 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
5965 SDValue(NewLd.getNode(), 1));
5966 DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
5967 DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
5968 SDValue(NewLd.getNode(), 1));
5973 if (NumElems == 4 && LastLoadedElt == 1 &&
5974 DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
5975 SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
5976 SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
5978 DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, MVT::i64,
5979 LDBase->getPointerInfo(),
5980 LDBase->getAlignment(),
5981 false/*isVolatile*/, true/*ReadMem*/,
5984 // Make sure the newly-created LOAD is in the same position as LDBase in
5985 // terms of dependency. We create a TokenFactor for LDBase and ResNode, and
5986 // update uses of LDBase's output chain to use the TokenFactor.
5987 if (LDBase->hasAnyUseOfValue(1)) {
5988 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
5989 SDValue(LDBase, 1), SDValue(ResNode.getNode(), 1));
5990 DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
5991 DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
5992 SDValue(ResNode.getNode(), 1));
5995 return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
6000 /// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
6001 /// to generate a splat value for the following cases:
6002 /// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
6003 /// 2. A splat shuffle which uses a scalar_to_vector node which comes from
6004 /// a scalar load, or a constant.
6005 /// The VBROADCAST node is returned when a pattern is found,
6006 /// or SDValue() otherwise.
6007 static SDValue LowerVectorBroadcast(SDValue Op, const X86Subtarget* Subtarget,
6008 SelectionDAG &DAG) {
6009 // VBROADCAST requires AVX.
6010 // TODO: Splats could be generated for non-AVX CPUs using SSE
6011 // instructions, but there's less potential gain for only 128-bit vectors.
6012 if (!Subtarget->hasAVX())
6015 MVT VT = Op.getSimpleValueType();
6018 assert((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()) &&
6019 "Unsupported vector type for broadcast.");
6024 switch (Op.getOpcode()) {
6026 // Unknown pattern found.
6029 case ISD::BUILD_VECTOR: {
6030 auto *BVOp = cast<BuildVectorSDNode>(Op.getNode());
6031 BitVector UndefElements;
6032 SDValue Splat = BVOp->getSplatValue(&UndefElements);
6034 // We need a splat of a single value to use broadcast, and it doesn't
6035 // make any sense if the value is only in one element of the vector.
6036 if (!Splat || (VT.getVectorNumElements() - UndefElements.count()) <= 1)
6040 ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
6041 Ld.getOpcode() == ISD::ConstantFP);
6043 // Make sure that all of the users of a non-constant load are from the
6044 // BUILD_VECTOR node.
6045 if (!ConstSplatVal && !BVOp->isOnlyUserOf(Ld.getNode()))
6050 case ISD::VECTOR_SHUFFLE: {
6051 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6053 // Shuffles must have a splat mask where the first element is
6055 if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
6058 SDValue Sc = Op.getOperand(0);
6059 if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR &&
6060 Sc.getOpcode() != ISD::BUILD_VECTOR) {
6062 if (!Subtarget->hasInt256())
6065 // Use the register form of the broadcast instruction available on AVX2.
6066 if (VT.getSizeInBits() >= 256)
6067 Sc = Extract128BitVector(Sc, 0, DAG, dl);
6068 return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Sc);
6071 Ld = Sc.getOperand(0);
6072 ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
6073 Ld.getOpcode() == ISD::ConstantFP);
6075 // The scalar_to_vector node and the suspected
6076 // load node must have exactly one user.
6077 // Constants may have multiple users.
6079 // AVX-512 has register version of the broadcast
6080 bool hasRegVer = Subtarget->hasAVX512() && VT.is512BitVector() &&
6081 Ld.getValueType().getSizeInBits() >= 32;
6082 if (!ConstSplatVal && ((!Sc.hasOneUse() || !Ld.hasOneUse()) &&
6089 unsigned ScalarSize = Ld.getValueType().getSizeInBits();
6090 bool IsGE256 = (VT.getSizeInBits() >= 256);
6092 // When optimizing for size, generate up to 5 extra bytes for a broadcast
6093 // instruction to save 8 or more bytes of constant pool data.
6094 // TODO: If multiple splats are generated to load the same constant,
6095 // it may be detrimental to overall size. There needs to be a way to detect
6096 // that condition to know if this is truly a size win.
6097 const Function *F = DAG.getMachineFunction().getFunction();
6098 bool OptForSize = F->getAttributes().
6099 hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
6101 // Handle broadcasting a single constant scalar from the constant pool
6103 // On Sandybridge (no AVX2), it is still better to load a constant vector
6104 // from the constant pool and not to broadcast it from a scalar.
6105 // But override that restriction when optimizing for size.
6106 // TODO: Check if splatting is recommended for other AVX-capable CPUs.
6107 if (ConstSplatVal && (Subtarget->hasAVX2() || OptForSize)) {
6108 EVT CVT = Ld.getValueType();
6109 assert(!CVT.isVector() && "Must not broadcast a vector type");
6111 // Splat f32, i32, v4f64, v4i64 in all cases with AVX2.
6112 // For size optimization, also splat v2f64 and v2i64, and for size opt
6113 // with AVX2, also splat i8 and i16.
6114 // With pattern matching, the VBROADCAST node may become a VMOVDDUP.
6115 if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64) ||
6116 (OptForSize && (ScalarSize == 64 || Subtarget->hasAVX2()))) {
6117 const Constant *C = nullptr;
6118 if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
6119 C = CI->getConstantIntValue();
6120 else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
6121 C = CF->getConstantFPValue();
6123 assert(C && "Invalid constant type");
6125 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6126 SDValue CP = DAG.getConstantPool(C, TLI.getPointerTy());
6127 unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
6128 Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
6129 MachinePointerInfo::getConstantPool(),
6130 false, false, false, Alignment);
6132 return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
6136 bool IsLoad = ISD::isNormalLoad(Ld.getNode());
6138 // Handle AVX2 in-register broadcasts.
6139 if (!IsLoad && Subtarget->hasInt256() &&
6140 (ScalarSize == 32 || (IsGE256 && ScalarSize == 64)))
6141 return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
6143 // The scalar source must be a normal load.
6147 if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64))
6148 return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
6150 // The integer check is needed for the 64-bit into 128-bit so it doesn't match
6151 // double since there is no vbroadcastsd xmm
6152 if (Subtarget->hasInt256() && Ld.getValueType().isInteger()) {
6153 if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64)
6154 return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
6157 // Unsupported broadcast.
6161 /// \brief For an EXTRACT_VECTOR_ELT with a constant index return the real
6162 /// underlying vector and index.
6164 /// Modifies \p ExtractedFromVec to the real vector and returns the real
6166 static int getUnderlyingExtractedFromVec(SDValue &ExtractedFromVec,
6168 int Idx = cast<ConstantSDNode>(ExtIdx)->getZExtValue();
6169 if (!isa<ShuffleVectorSDNode>(ExtractedFromVec))
6172 // For 256-bit vectors, LowerEXTRACT_VECTOR_ELT_SSE4 may have already
6174 // (extract_vector_elt (v8f32 %vreg1), Constant<6>)
6176 // (extract_vector_elt (vector_shuffle<2,u,u,u>
6177 // (extract_subvector (v8f32 %vreg0), Constant<4>),
6180 // In this case the vector is the extract_subvector expression and the index
6181 // is 2, as specified by the shuffle.
6182 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(ExtractedFromVec);
6183 SDValue ShuffleVec = SVOp->getOperand(0);
6184 MVT ShuffleVecVT = ShuffleVec.getSimpleValueType();
6185 assert(ShuffleVecVT.getVectorElementType() ==
6186 ExtractedFromVec.getSimpleValueType().getVectorElementType());
6188 int ShuffleIdx = SVOp->getMaskElt(Idx);
6189 if (isUndefOrInRange(ShuffleIdx, 0, ShuffleVecVT.getVectorNumElements())) {
6190 ExtractedFromVec = ShuffleVec;
6196 static SDValue buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) {
6197 MVT VT = Op.getSimpleValueType();
6199 // Skip if insert_vec_elt is not supported.
6200 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6201 if (!TLI.isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT))
6205 unsigned NumElems = Op.getNumOperands();
6209 SmallVector<unsigned, 4> InsertIndices;
6210 SmallVector<int, 8> Mask(NumElems, -1);
6212 for (unsigned i = 0; i != NumElems; ++i) {
6213 unsigned Opc = Op.getOperand(i).getOpcode();
6215 if (Opc == ISD::UNDEF)
6218 if (Opc != ISD::EXTRACT_VECTOR_ELT) {
6219 // Quit if more than 1 elements need inserting.
6220 if (InsertIndices.size() > 1)
6223 InsertIndices.push_back(i);
6227 SDValue ExtractedFromVec = Op.getOperand(i).getOperand(0);
6228 SDValue ExtIdx = Op.getOperand(i).getOperand(1);
6229 // Quit if non-constant index.
6230 if (!isa<ConstantSDNode>(ExtIdx))
6232 int Idx = getUnderlyingExtractedFromVec(ExtractedFromVec, ExtIdx);
6234 // Quit if extracted from vector of different type.
6235 if (ExtractedFromVec.getValueType() != VT)
6238 if (!VecIn1.getNode())
6239 VecIn1 = ExtractedFromVec;
6240 else if (VecIn1 != ExtractedFromVec) {
6241 if (!VecIn2.getNode())
6242 VecIn2 = ExtractedFromVec;
6243 else if (VecIn2 != ExtractedFromVec)
6244 // Quit if more than 2 vectors to shuffle
6248 if (ExtractedFromVec == VecIn1)
6250 else if (ExtractedFromVec == VecIn2)
6251 Mask[i] = Idx + NumElems;
6254 if (!VecIn1.getNode())
6257 VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
6258 SDValue NV = DAG.getVectorShuffle(VT, DL, VecIn1, VecIn2, &Mask[0]);
6259 for (unsigned i = 0, e = InsertIndices.size(); i != e; ++i) {
6260 unsigned Idx = InsertIndices[i];
6261 NV = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, NV, Op.getOperand(Idx),
6262 DAG.getIntPtrConstant(Idx));
6268 // Lower BUILD_VECTOR operation for v8i1 and v16i1 types.
6270 X86TargetLowering::LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG) const {
6272 MVT VT = Op.getSimpleValueType();
6273 assert((VT.getVectorElementType() == MVT::i1) && (VT.getSizeInBits() <= 16) &&
6274 "Unexpected type in LowerBUILD_VECTORvXi1!");
6277 if (ISD::isBuildVectorAllZeros(Op.getNode())) {
6278 SDValue Cst = DAG.getTargetConstant(0, MVT::i1);
6279 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Cst);
6280 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
6283 if (ISD::isBuildVectorAllOnes(Op.getNode())) {
6284 SDValue Cst = DAG.getTargetConstant(1, MVT::i1);
6285 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Cst);
6286 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
6289 bool AllContants = true;
6290 uint64_t Immediate = 0;
6291 int NonConstIdx = -1;
6292 bool IsSplat = true;
6293 unsigned NumNonConsts = 0;
6294 unsigned NumConsts = 0;
6295 for (unsigned idx = 0, e = Op.getNumOperands(); idx < e; ++idx) {
6296 SDValue In = Op.getOperand(idx);
6297 if (In.getOpcode() == ISD::UNDEF)
6299 if (!isa<ConstantSDNode>(In)) {
6300 AllContants = false;
6306 if (cast<ConstantSDNode>(In)->getZExtValue())
6307 Immediate |= (1ULL << idx);
6309 if (In != Op.getOperand(0))
6314 SDValue FullMask = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1,
6315 DAG.getConstant(Immediate, MVT::i16));
6316 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, FullMask,
6317 DAG.getIntPtrConstant(0));
6320 if (NumNonConsts == 1 && NonConstIdx != 0) {
6323 SDValue VecAsImm = DAG.getConstant(Immediate,
6324 MVT::getIntegerVT(VT.getSizeInBits()));
6325 DstVec = DAG.getNode(ISD::BITCAST, dl, VT, VecAsImm);
6328 DstVec = DAG.getUNDEF(VT);
6329 return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
6330 Op.getOperand(NonConstIdx),
6331 DAG.getIntPtrConstant(NonConstIdx));
6333 if (!IsSplat && (NonConstIdx != 0))
6334 llvm_unreachable("Unsupported BUILD_VECTOR operation");
6335 MVT SelectVT = (VT == MVT::v16i1)? MVT::i16 : MVT::i8;
6338 Select = DAG.getNode(ISD::SELECT, dl, SelectVT, Op.getOperand(0),
6339 DAG.getConstant(-1, SelectVT),
6340 DAG.getConstant(0, SelectVT));
6342 Select = DAG.getNode(ISD::SELECT, dl, SelectVT, Op.getOperand(0),
6343 DAG.getConstant((Immediate | 1), SelectVT),
6344 DAG.getConstant(Immediate, SelectVT));
6345 return DAG.getNode(ISD::BITCAST, dl, VT, Select);
6348 /// \brief Return true if \p N implements a horizontal binop and return the
6349 /// operands for the horizontal binop into V0 and V1.
6351 /// This is a helper function of PerformBUILD_VECTORCombine.
6352 /// This function checks that the build_vector \p N in input implements a
6353 /// horizontal operation. Parameter \p Opcode defines the kind of horizontal
6354 /// operation to match.
6355 /// For example, if \p Opcode is equal to ISD::ADD, then this function
6356 /// checks if \p N implements a horizontal arithmetic add; if instead \p Opcode
6357 /// is equal to ISD::SUB, then this function checks if this is a horizontal
6360 /// This function only analyzes elements of \p N whose indices are
6361 /// in range [BaseIdx, LastIdx).
6362 static bool isHorizontalBinOp(const BuildVectorSDNode *N, unsigned Opcode,
6364 unsigned BaseIdx, unsigned LastIdx,
6365 SDValue &V0, SDValue &V1) {
6366 EVT VT = N->getValueType(0);
6368 assert(BaseIdx * 2 <= LastIdx && "Invalid Indices in input!");
6369 assert(VT.isVector() && VT.getVectorNumElements() >= LastIdx &&
6370 "Invalid Vector in input!");
6372 bool IsCommutable = (Opcode == ISD::ADD || Opcode == ISD::FADD);
6373 bool CanFold = true;
6374 unsigned ExpectedVExtractIdx = BaseIdx;
6375 unsigned NumElts = LastIdx - BaseIdx;
6376 V0 = DAG.getUNDEF(VT);
6377 V1 = DAG.getUNDEF(VT);
6379 // Check if N implements a horizontal binop.
6380 for (unsigned i = 0, e = NumElts; i != e && CanFold; ++i) {
6381 SDValue Op = N->getOperand(i + BaseIdx);
6384 if (Op->getOpcode() == ISD::UNDEF) {
6385 // Update the expected vector extract index.
6386 if (i * 2 == NumElts)
6387 ExpectedVExtractIdx = BaseIdx;
6388 ExpectedVExtractIdx += 2;
6392 CanFold = Op->getOpcode() == Opcode && Op->hasOneUse();
6397 SDValue Op0 = Op.getOperand(0);
6398 SDValue Op1 = Op.getOperand(1);
6400 // Try to match the following pattern:
6401 // (BINOP (extract_vector_elt A, I), (extract_vector_elt A, I+1))
6402 CanFold = (Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6403 Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6404 Op0.getOperand(0) == Op1.getOperand(0) &&
6405 isa<ConstantSDNode>(Op0.getOperand(1)) &&
6406 isa<ConstantSDNode>(Op1.getOperand(1)));
6410 unsigned I0 = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
6411 unsigned I1 = cast<ConstantSDNode>(Op1.getOperand(1))->getZExtValue();
6413 if (i * 2 < NumElts) {
6414 if (V0.getOpcode() == ISD::UNDEF)
6415 V0 = Op0.getOperand(0);
6417 if (V1.getOpcode() == ISD::UNDEF)
6418 V1 = Op0.getOperand(0);
6419 if (i * 2 == NumElts)
6420 ExpectedVExtractIdx = BaseIdx;
6423 SDValue Expected = (i * 2 < NumElts) ? V0 : V1;
6424 if (I0 == ExpectedVExtractIdx)
6425 CanFold = I1 == I0 + 1 && Op0.getOperand(0) == Expected;
6426 else if (IsCommutable && I1 == ExpectedVExtractIdx) {
6427 // Try to match the following dag sequence:
6428 // (BINOP (extract_vector_elt A, I+1), (extract_vector_elt A, I))
6429 CanFold = I0 == I1 + 1 && Op1.getOperand(0) == Expected;
6433 ExpectedVExtractIdx += 2;
6439 /// \brief Emit a sequence of two 128-bit horizontal add/sub followed by
6440 /// a concat_vector.
6442 /// This is a helper function of PerformBUILD_VECTORCombine.
6443 /// This function expects two 256-bit vectors called V0 and V1.
6444 /// At first, each vector is split into two separate 128-bit vectors.
6445 /// Then, the resulting 128-bit vectors are used to implement two
6446 /// horizontal binary operations.
6448 /// The kind of horizontal binary operation is defined by \p X86Opcode.
6450 /// \p Mode specifies how the 128-bit parts of V0 and V1 are passed in input to
6451 /// the two new horizontal binop.
6452 /// When Mode is set, the first horizontal binop dag node would take as input
6453 /// the lower 128-bit of V0 and the upper 128-bit of V0. The second
6454 /// horizontal binop dag node would take as input the lower 128-bit of V1
6455 /// and the upper 128-bit of V1.
6457 /// HADD V0_LO, V0_HI
6458 /// HADD V1_LO, V1_HI
6460 /// Otherwise, the first horizontal binop dag node takes as input the lower
6461 /// 128-bit of V0 and the lower 128-bit of V1, and the second horizontal binop
6462 /// dag node takes the the upper 128-bit of V0 and the upper 128-bit of V1.
6464 /// HADD V0_LO, V1_LO
6465 /// HADD V0_HI, V1_HI
6467 /// If \p isUndefLO is set, then the algorithm propagates UNDEF to the lower
6468 /// 128-bits of the result. If \p isUndefHI is set, then UNDEF is propagated to
6469 /// the upper 128-bits of the result.
6470 static SDValue ExpandHorizontalBinOp(const SDValue &V0, const SDValue &V1,
6471 SDLoc DL, SelectionDAG &DAG,
6472 unsigned X86Opcode, bool Mode,
6473 bool isUndefLO, bool isUndefHI) {
6474 EVT VT = V0.getValueType();
6475 assert(VT.is256BitVector() && VT == V1.getValueType() &&
6476 "Invalid nodes in input!");
6478 unsigned NumElts = VT.getVectorNumElements();
6479 SDValue V0_LO = Extract128BitVector(V0, 0, DAG, DL);
6480 SDValue V0_HI = Extract128BitVector(V0, NumElts/2, DAG, DL);
6481 SDValue V1_LO = Extract128BitVector(V1, 0, DAG, DL);
6482 SDValue V1_HI = Extract128BitVector(V1, NumElts/2, DAG, DL);
6483 EVT NewVT = V0_LO.getValueType();
6485 SDValue LO = DAG.getUNDEF(NewVT);
6486 SDValue HI = DAG.getUNDEF(NewVT);
6489 // Don't emit a horizontal binop if the result is expected to be UNDEF.
6490 if (!isUndefLO && V0->getOpcode() != ISD::UNDEF)
6491 LO = DAG.getNode(X86Opcode, DL, NewVT, V0_LO, V0_HI);
6492 if (!isUndefHI && V1->getOpcode() != ISD::UNDEF)
6493 HI = DAG.getNode(X86Opcode, DL, NewVT, V1_LO, V1_HI);
6495 // Don't emit a horizontal binop if the result is expected to be UNDEF.
6496 if (!isUndefLO && (V0_LO->getOpcode() != ISD::UNDEF ||
6497 V1_LO->getOpcode() != ISD::UNDEF))
6498 LO = DAG.getNode(X86Opcode, DL, NewVT, V0_LO, V1_LO);
6500 if (!isUndefHI && (V0_HI->getOpcode() != ISD::UNDEF ||
6501 V1_HI->getOpcode() != ISD::UNDEF))
6502 HI = DAG.getNode(X86Opcode, DL, NewVT, V0_HI, V1_HI);
6505 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LO, HI);
6508 /// \brief Try to fold a build_vector that performs an 'addsub' into the
6509 /// sequence of 'vadd + vsub + blendi'.
6510 static SDValue matchAddSub(const BuildVectorSDNode *BV, SelectionDAG &DAG,
6511 const X86Subtarget *Subtarget) {
6513 EVT VT = BV->getValueType(0);
6514 unsigned NumElts = VT.getVectorNumElements();
6515 SDValue InVec0 = DAG.getUNDEF(VT);
6516 SDValue InVec1 = DAG.getUNDEF(VT);
6518 assert((VT == MVT::v8f32 || VT == MVT::v4f64 || VT == MVT::v4f32 ||
6519 VT == MVT::v2f64) && "build_vector with an invalid type found!");
6521 // Odd-numbered elements in the input build vector are obtained from
6522 // adding two integer/float elements.
6523 // Even-numbered elements in the input build vector are obtained from
6524 // subtracting two integer/float elements.
6525 unsigned ExpectedOpcode = ISD::FSUB;
6526 unsigned NextExpectedOpcode = ISD::FADD;
6527 bool AddFound = false;
6528 bool SubFound = false;
6530 for (unsigned i = 0, e = NumElts; i != e; i++) {
6531 SDValue Op = BV->getOperand(i);
6533 // Skip 'undef' values.
6534 unsigned Opcode = Op.getOpcode();
6535 if (Opcode == ISD::UNDEF) {
6536 std::swap(ExpectedOpcode, NextExpectedOpcode);
6540 // Early exit if we found an unexpected opcode.
6541 if (Opcode != ExpectedOpcode)
6544 SDValue Op0 = Op.getOperand(0);
6545 SDValue Op1 = Op.getOperand(1);
6547 // Try to match the following pattern:
6548 // (BINOP (extract_vector_elt A, i), (extract_vector_elt B, i))
6549 // Early exit if we cannot match that sequence.
6550 if (Op0.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
6551 Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
6552 !isa<ConstantSDNode>(Op0.getOperand(1)) ||
6553 !isa<ConstantSDNode>(Op1.getOperand(1)) ||
6554 Op0.getOperand(1) != Op1.getOperand(1))
6557 unsigned I0 = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
6561 // We found a valid add/sub node. Update the information accordingly.
6567 // Update InVec0 and InVec1.
6568 if (InVec0.getOpcode() == ISD::UNDEF)
6569 InVec0 = Op0.getOperand(0);
6570 if (InVec1.getOpcode() == ISD::UNDEF)
6571 InVec1 = Op1.getOperand(0);
6573 // Make sure that operands in input to each add/sub node always
6574 // come from a same pair of vectors.
6575 if (InVec0 != Op0.getOperand(0)) {
6576 if (ExpectedOpcode == ISD::FSUB)
6579 // FADD is commutable. Try to commute the operands
6580 // and then test again.
6581 std::swap(Op0, Op1);
6582 if (InVec0 != Op0.getOperand(0))
6586 if (InVec1 != Op1.getOperand(0))
6589 // Update the pair of expected opcodes.
6590 std::swap(ExpectedOpcode, NextExpectedOpcode);
6593 // Don't try to fold this build_vector into an ADDSUB if the inputs are undef.
6594 if (AddFound && SubFound && InVec0.getOpcode() != ISD::UNDEF &&
6595 InVec1.getOpcode() != ISD::UNDEF)
6596 return DAG.getNode(X86ISD::ADDSUB, DL, VT, InVec0, InVec1);
6601 static SDValue PerformBUILD_VECTORCombine(SDNode *N, SelectionDAG &DAG,
6602 const X86Subtarget *Subtarget) {
6604 EVT VT = N->getValueType(0);
6605 unsigned NumElts = VT.getVectorNumElements();
6606 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
6607 SDValue InVec0, InVec1;
6609 // Try to match an ADDSUB.
6610 if ((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
6611 (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) {
6612 SDValue Value = matchAddSub(BV, DAG, Subtarget);
6613 if (Value.getNode())
6617 // Try to match horizontal ADD/SUB.
6618 unsigned NumUndefsLO = 0;
6619 unsigned NumUndefsHI = 0;
6620 unsigned Half = NumElts/2;
6622 // Count the number of UNDEF operands in the build_vector in input.
6623 for (unsigned i = 0, e = Half; i != e; ++i)
6624 if (BV->getOperand(i)->getOpcode() == ISD::UNDEF)
6627 for (unsigned i = Half, e = NumElts; i != e; ++i)
6628 if (BV->getOperand(i)->getOpcode() == ISD::UNDEF)
6631 // Early exit if this is either a build_vector of all UNDEFs or all the
6632 // operands but one are UNDEF.
6633 if (NumUndefsLO + NumUndefsHI + 1 >= NumElts)
6636 if ((VT == MVT::v4f32 || VT == MVT::v2f64) && Subtarget->hasSSE3()) {
6637 // Try to match an SSE3 float HADD/HSUB.
6638 if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, NumElts, InVec0, InVec1))
6639 return DAG.getNode(X86ISD::FHADD, DL, VT, InVec0, InVec1);
6641 if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, NumElts, InVec0, InVec1))
6642 return DAG.getNode(X86ISD::FHSUB, DL, VT, InVec0, InVec1);
6643 } else if ((VT == MVT::v4i32 || VT == MVT::v8i16) && Subtarget->hasSSSE3()) {
6644 // Try to match an SSSE3 integer HADD/HSUB.
6645 if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, NumElts, InVec0, InVec1))
6646 return DAG.getNode(X86ISD::HADD, DL, VT, InVec0, InVec1);
6648 if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, NumElts, InVec0, InVec1))
6649 return DAG.getNode(X86ISD::HSUB, DL, VT, InVec0, InVec1);
6652 if (!Subtarget->hasAVX())
6655 if ((VT == MVT::v8f32 || VT == MVT::v4f64)) {
6656 // Try to match an AVX horizontal add/sub of packed single/double
6657 // precision floating point values from 256-bit vectors.
6658 SDValue InVec2, InVec3;
6659 if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, Half, InVec0, InVec1) &&
6660 isHorizontalBinOp(BV, ISD::FADD, DAG, Half, NumElts, InVec2, InVec3) &&
6661 ((InVec0.getOpcode() == ISD::UNDEF ||
6662 InVec2.getOpcode() == ISD::UNDEF) || InVec0 == InVec2) &&
6663 ((InVec1.getOpcode() == ISD::UNDEF ||
6664 InVec3.getOpcode() == ISD::UNDEF) || InVec1 == InVec3))
6665 return DAG.getNode(X86ISD::FHADD, DL, VT, InVec0, InVec1);
6667 if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, Half, InVec0, InVec1) &&
6668 isHorizontalBinOp(BV, ISD::FSUB, DAG, Half, NumElts, InVec2, InVec3) &&
6669 ((InVec0.getOpcode() == ISD::UNDEF ||
6670 InVec2.getOpcode() == ISD::UNDEF) || InVec0 == InVec2) &&
6671 ((InVec1.getOpcode() == ISD::UNDEF ||
6672 InVec3.getOpcode() == ISD::UNDEF) || InVec1 == InVec3))
6673 return DAG.getNode(X86ISD::FHSUB, DL, VT, InVec0, InVec1);
6674 } else if (VT == MVT::v8i32 || VT == MVT::v16i16) {
6675 // Try to match an AVX2 horizontal add/sub of signed integers.
6676 SDValue InVec2, InVec3;
6678 bool CanFold = true;
6680 if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, Half, InVec0, InVec1) &&
6681 isHorizontalBinOp(BV, ISD::ADD, DAG, Half, NumElts, InVec2, InVec3) &&
6682 ((InVec0.getOpcode() == ISD::UNDEF ||
6683 InVec2.getOpcode() == ISD::UNDEF) || InVec0 == InVec2) &&
6684 ((InVec1.getOpcode() == ISD::UNDEF ||
6685 InVec3.getOpcode() == ISD::UNDEF) || InVec1 == InVec3))
6686 X86Opcode = X86ISD::HADD;
6687 else if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, Half, InVec0, InVec1) &&
6688 isHorizontalBinOp(BV, ISD::SUB, DAG, Half, NumElts, InVec2, InVec3) &&
6689 ((InVec0.getOpcode() == ISD::UNDEF ||
6690 InVec2.getOpcode() == ISD::UNDEF) || InVec0 == InVec2) &&
6691 ((InVec1.getOpcode() == ISD::UNDEF ||
6692 InVec3.getOpcode() == ISD::UNDEF) || InVec1 == InVec3))
6693 X86Opcode = X86ISD::HSUB;
6698 // Fold this build_vector into a single horizontal add/sub.
6699 // Do this only if the target has AVX2.
6700 if (Subtarget->hasAVX2())
6701 return DAG.getNode(X86Opcode, DL, VT, InVec0, InVec1);
6703 // Do not try to expand this build_vector into a pair of horizontal
6704 // add/sub if we can emit a pair of scalar add/sub.
6705 if (NumUndefsLO + 1 == Half || NumUndefsHI + 1 == Half)
6708 // Convert this build_vector into a pair of horizontal binop followed by
6710 bool isUndefLO = NumUndefsLO == Half;
6711 bool isUndefHI = NumUndefsHI == Half;
6712 return ExpandHorizontalBinOp(InVec0, InVec1, DL, DAG, X86Opcode, false,
6713 isUndefLO, isUndefHI);
6717 if ((VT == MVT::v8f32 || VT == MVT::v4f64 || VT == MVT::v8i32 ||
6718 VT == MVT::v16i16) && Subtarget->hasAVX()) {
6720 if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, NumElts, InVec0, InVec1))
6721 X86Opcode = X86ISD::HADD;
6722 else if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, NumElts, InVec0, InVec1))
6723 X86Opcode = X86ISD::HSUB;
6724 else if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, NumElts, InVec0, InVec1))
6725 X86Opcode = X86ISD::FHADD;
6726 else if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, NumElts, InVec0, InVec1))
6727 X86Opcode = X86ISD::FHSUB;
6731 // Don't try to expand this build_vector into a pair of horizontal add/sub
6732 // if we can simply emit a pair of scalar add/sub.
6733 if (NumUndefsLO + 1 == Half || NumUndefsHI + 1 == Half)
6736 // Convert this build_vector into two horizontal add/sub followed by
6738 bool isUndefLO = NumUndefsLO == Half;
6739 bool isUndefHI = NumUndefsHI == Half;
6740 return ExpandHorizontalBinOp(InVec0, InVec1, DL, DAG, X86Opcode, true,
6741 isUndefLO, isUndefHI);
6748 X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
6751 MVT VT = Op.getSimpleValueType();
6752 MVT ExtVT = VT.getVectorElementType();
6753 unsigned NumElems = Op.getNumOperands();
6755 // Generate vectors for predicate vectors.
6756 if (VT.getScalarType() == MVT::i1 && Subtarget->hasAVX512())
6757 return LowerBUILD_VECTORvXi1(Op, DAG);
6759 // Vectors containing all zeros can be matched by pxor and xorps later
6760 if (ISD::isBuildVectorAllZeros(Op.getNode())) {
6761 // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
6762 // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
6763 if (VT == MVT::v4i32 || VT == MVT::v8i32 || VT == MVT::v16i32)
6766 return getZeroVector(VT, Subtarget, DAG, dl);
6769 // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
6770 // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
6771 // vpcmpeqd on 256-bit vectors.
6772 if (Subtarget->hasSSE2() && ISD::isBuildVectorAllOnes(Op.getNode())) {
6773 if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasInt256()))
6776 if (!VT.is512BitVector())
6777 return getOnesVector(VT, Subtarget->hasInt256(), DAG, dl);
6780 SDValue Broadcast = LowerVectorBroadcast(Op, Subtarget, DAG);
6781 if (Broadcast.getNode())
6784 unsigned EVTBits = ExtVT.getSizeInBits();
6786 unsigned NumZero = 0;
6787 unsigned NumNonZero = 0;
6788 unsigned NonZeros = 0;
6789 bool IsAllConstants = true;
6790 SmallSet<SDValue, 8> Values;
6791 for (unsigned i = 0; i < NumElems; ++i) {
6792 SDValue Elt = Op.getOperand(i);
6793 if (Elt.getOpcode() == ISD::UNDEF)
6796 if (Elt.getOpcode() != ISD::Constant &&
6797 Elt.getOpcode() != ISD::ConstantFP)
6798 IsAllConstants = false;
6799 if (X86::isZeroNode(Elt))
6802 NonZeros |= (1 << i);
6807 // All undef vector. Return an UNDEF. All zero vectors were handled above.
6808 if (NumNonZero == 0)
6809 return DAG.getUNDEF(VT);
6811 // Special case for single non-zero, non-undef, element.
6812 if (NumNonZero == 1) {
6813 unsigned Idx = countTrailingZeros(NonZeros);
6814 SDValue Item = Op.getOperand(Idx);
6816 // If this is an insertion of an i64 value on x86-32, and if the top bits of
6817 // the value are obviously zero, truncate the value to i32 and do the
6818 // insertion that way. Only do this if the value is non-constant or if the
6819 // value is a constant being inserted into element 0. It is cheaper to do
6820 // a constant pool load than it is to do a movd + shuffle.
6821 if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
6822 (!IsAllConstants || Idx == 0)) {
6823 if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
6825 assert(VT == MVT::v2i64 && "Expected an SSE value type!");
6826 EVT VecVT = MVT::v4i32;
6827 unsigned VecElts = 4;
6829 // Truncate the value (which may itself be a constant) to i32, and
6830 // convert it to a vector with movd (S2V+shuffle to zero extend).
6831 Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
6832 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
6834 // If using the new shuffle lowering, just directly insert this.
6835 if (ExperimentalVectorShuffleLowering)
6837 ISD::BITCAST, dl, VT,
6838 getShuffleVectorZeroOrUndef(Item, Idx * 2, true, Subtarget, DAG));
6840 Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
6842 // Now we have our 32-bit value zero extended in the low element of
6843 // a vector. If Idx != 0, swizzle it into place.
6845 SmallVector<int, 4> Mask;
6846 Mask.push_back(Idx);
6847 for (unsigned i = 1; i != VecElts; ++i)
6849 Item = DAG.getVectorShuffle(VecVT, dl, Item, DAG.getUNDEF(VecVT),
6852 return DAG.getNode(ISD::BITCAST, dl, VT, Item);
6856 // If we have a constant or non-constant insertion into the low element of
6857 // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
6858 // the rest of the elements. This will be matched as movd/movq/movss/movsd
6859 // depending on what the source datatype is.
6862 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
6864 if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
6865 (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
6866 if (VT.is256BitVector() || VT.is512BitVector()) {
6867 SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
6868 return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
6869 Item, DAG.getIntPtrConstant(0));
6871 assert(VT.is128BitVector() && "Expected an SSE value type!");
6872 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
6873 // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
6874 return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
6877 if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
6878 Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
6879 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
6880 if (VT.is256BitVector()) {
6881 SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
6882 Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl);
6884 assert(VT.is128BitVector() && "Expected an SSE value type!");
6885 Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
6887 return DAG.getNode(ISD::BITCAST, dl, VT, Item);
6891 // Is it a vector logical left shift?
6892 if (NumElems == 2 && Idx == 1 &&
6893 X86::isZeroNode(Op.getOperand(0)) &&
6894 !X86::isZeroNode(Op.getOperand(1))) {
6895 unsigned NumBits = VT.getSizeInBits();
6896 return getVShift(true, VT,
6897 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6898 VT, Op.getOperand(1)),
6899 NumBits/2, DAG, *this, dl);
6902 if (IsAllConstants) // Otherwise, it's better to do a constpool load.
6905 // Otherwise, if this is a vector with i32 or f32 elements, and the element
6906 // is a non-constant being inserted into an element other than the low one,
6907 // we can't use a constant pool load. Instead, use SCALAR_TO_VECTOR (aka
6908 // movd/movss) to move this into the low element, then shuffle it into
6910 if (EVTBits == 32) {
6911 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
6913 // If using the new shuffle lowering, just directly insert this.
6914 if (ExperimentalVectorShuffleLowering)
6915 return getShuffleVectorZeroOrUndef(Item, Idx, NumZero > 0, Subtarget, DAG);
6917 // Turn it into a shuffle of zero and zero-extended scalar to vector.
6918 Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
6919 SmallVector<int, 8> MaskVec;
6920 for (unsigned i = 0; i != NumElems; ++i)
6921 MaskVec.push_back(i == Idx ? 0 : 1);
6922 return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
6926 // Splat is obviously ok. Let legalizer expand it to a shuffle.
6927 if (Values.size() == 1) {
6928 if (EVTBits == 32) {
6929 // Instead of a shuffle like this:
6930 // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
6931 // Check if it's possible to issue this instead.
6932 // shuffle (vload ptr)), undef, <1, 1, 1, 1>
6933 unsigned Idx = countTrailingZeros(NonZeros);
6934 SDValue Item = Op.getOperand(Idx);
6935 if (Op.getNode()->isOnlyUserOf(Item.getNode()))
6936 return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
6941 // A vector full of immediates; various special cases are already
6942 // handled, so this is best done with a single constant-pool load.
6946 // For AVX-length vectors, build the individual 128-bit pieces and use
6947 // shuffles to put them in place.
6948 if (VT.is256BitVector() || VT.is512BitVector()) {
6949 SmallVector<SDValue, 64> V;
6950 for (unsigned i = 0; i != NumElems; ++i)
6951 V.push_back(Op.getOperand(i));
6953 EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
6955 // Build both the lower and upper subvector.
6956 SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT,
6957 makeArrayRef(&V[0], NumElems/2));
6958 SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT,
6959 makeArrayRef(&V[NumElems / 2], NumElems/2));
6961 // Recreate the wider vector with the lower and upper part.
6962 if (VT.is256BitVector())
6963 return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
6964 return Concat256BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
6967 // Let legalizer expand 2-wide build_vectors.
6968 if (EVTBits == 64) {
6969 if (NumNonZero == 1) {
6970 // One half is zero or undef.
6971 unsigned Idx = countTrailingZeros(NonZeros);
6972 SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
6973 Op.getOperand(Idx));
6974 return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
6979 // If element VT is < 32 bits, convert it to inserts into a zero vector.
6980 if (EVTBits == 8 && NumElems == 16) {
6981 SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
6983 if (V.getNode()) return V;
6986 if (EVTBits == 16 && NumElems == 8) {
6987 SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
6989 if (V.getNode()) return V;
6992 // If element VT is == 32 bits and has 4 elems, try to generate an INSERTPS
6993 if (EVTBits == 32 && NumElems == 4) {
6994 SDValue V = LowerBuildVectorv4x32(Op, NumElems, NonZeros, NumNonZero,
6995 NumZero, DAG, Subtarget, *this);
7000 // If element VT is == 32 bits, turn it into a number of shuffles.
7001 SmallVector<SDValue, 8> V(NumElems);
7002 if (NumElems == 4 && NumZero > 0) {
7003 for (unsigned i = 0; i < 4; ++i) {
7004 bool isZero = !(NonZeros & (1 << i));
7006 V[i] = getZeroVector(VT, Subtarget, DAG, dl);
7008 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
7011 for (unsigned i = 0; i < 2; ++i) {
7012 switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
7015 V[i] = V[i*2]; // Must be a zero vector.
7018 V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
7021 V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
7024 V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
7029 bool Reverse1 = (NonZeros & 0x3) == 2;
7030 bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
7034 static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
7035 static_cast<int>(Reverse2 ? NumElems : NumElems+1)
7037 return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
7040 if (Values.size() > 1 && VT.is128BitVector()) {
7041 // Check for a build vector of consecutive loads.
7042 for (unsigned i = 0; i < NumElems; ++i)
7043 V[i] = Op.getOperand(i);
7045 // Check for elements which are consecutive loads.
7046 SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG, false);
7050 // Check for a build vector from mostly shuffle plus few inserting.
7051 SDValue Sh = buildFromShuffleMostly(Op, DAG);
7055 // For SSE 4.1, use insertps to put the high elements into the low element.
7056 if (getSubtarget()->hasSSE41()) {
7058 if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
7059 Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
7061 Result = DAG.getUNDEF(VT);
7063 for (unsigned i = 1; i < NumElems; ++i) {
7064 if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
7065 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
7066 Op.getOperand(i), DAG.getIntPtrConstant(i));
7071 // Otherwise, expand into a number of unpckl*, start by extending each of
7072 // our (non-undef) elements to the full vector width with the element in the
7073 // bottom slot of the vector (which generates no code for SSE).
7074 for (unsigned i = 0; i < NumElems; ++i) {
7075 if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
7076 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
7078 V[i] = DAG.getUNDEF(VT);
7081 // Next, we iteratively mix elements, e.g. for v4f32:
7082 // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
7083 // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
7084 // Step 2: unpcklps X, Y ==> <3, 2, 1, 0>
7085 unsigned EltStride = NumElems >> 1;
7086 while (EltStride != 0) {
7087 for (unsigned i = 0; i < EltStride; ++i) {
7088 // If V[i+EltStride] is undef and this is the first round of mixing,
7089 // then it is safe to just drop this shuffle: V[i] is already in the
7090 // right place, the one element (since it's the first round) being
7091 // inserted as undef can be dropped. This isn't safe for successive
7092 // rounds because they will permute elements within both vectors.
7093 if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
7094 EltStride == NumElems/2)
7097 V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
7106 // LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
7107 // to create 256-bit vectors from two other 128-bit ones.
7108 static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
7110 MVT ResVT = Op.getSimpleValueType();
7112 assert((ResVT.is256BitVector() ||
7113 ResVT.is512BitVector()) && "Value type must be 256-/512-bit wide");
7115 SDValue V1 = Op.getOperand(0);
7116 SDValue V2 = Op.getOperand(1);
7117 unsigned NumElems = ResVT.getVectorNumElements();
7118 if(ResVT.is256BitVector())
7119 return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
7121 if (Op.getNumOperands() == 4) {
7122 MVT HalfVT = MVT::getVectorVT(ResVT.getScalarType(),
7123 ResVT.getVectorNumElements()/2);
7124 SDValue V3 = Op.getOperand(2);
7125 SDValue V4 = Op.getOperand(3);
7126 return Concat256BitVectors(Concat128BitVectors(V1, V2, HalfVT, NumElems/2, DAG, dl),
7127 Concat128BitVectors(V3, V4, HalfVT, NumElems/2, DAG, dl), ResVT, NumElems, DAG, dl);
7129 return Concat256BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
7132 static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
7133 MVT LLVM_ATTRIBUTE_UNUSED VT = Op.getSimpleValueType();
7134 assert((VT.is256BitVector() && Op.getNumOperands() == 2) ||
7135 (VT.is512BitVector() && (Op.getNumOperands() == 2 ||
7136 Op.getNumOperands() == 4)));
7138 // AVX can use the vinsertf128 instruction to create 256-bit vectors
7139 // from two other 128-bit ones.
7141 // 512-bit vector may contain 2 256-bit vectors or 4 128-bit vectors
7142 return LowerAVXCONCAT_VECTORS(Op, DAG);
7146 //===----------------------------------------------------------------------===//
7147 // Vector shuffle lowering
7149 // This is an experimental code path for lowering vector shuffles on x86. It is
7150 // designed to handle arbitrary vector shuffles and blends, gracefully
7151 // degrading performance as necessary. It works hard to recognize idiomatic
7152 // shuffles and lower them to optimal instruction patterns without leaving
7153 // a framework that allows reasonably efficient handling of all vector shuffle
7155 //===----------------------------------------------------------------------===//
7157 /// \brief Tiny helper function to identify a no-op mask.
7159 /// This is a somewhat boring predicate function. It checks whether the mask
7160 /// array input, which is assumed to be a single-input shuffle mask of the kind
7161 /// used by the X86 shuffle instructions (not a fully general
7162 /// ShuffleVectorSDNode mask) requires any shuffles to occur. Both undef and an
7163 /// in-place shuffle are 'no-op's.
7164 static bool isNoopShuffleMask(ArrayRef<int> Mask) {
7165 for (int i = 0, Size = Mask.size(); i < Size; ++i)
7166 if (Mask[i] != -1 && Mask[i] != i)
7171 /// \brief Helper function to classify a mask as a single-input mask.
7173 /// This isn't a generic single-input test because in the vector shuffle
7174 /// lowering we canonicalize single inputs to be the first input operand. This
7175 /// means we can more quickly test for a single input by only checking whether
7176 /// an input from the second operand exists. We also assume that the size of
7177 /// mask corresponds to the size of the input vectors which isn't true in the
7178 /// fully general case.
7179 static bool isSingleInputShuffleMask(ArrayRef<int> Mask) {
7181 if (M >= (int)Mask.size())
7186 /// \brief Test whether there are elements crossing 128-bit lanes in this
7189 /// X86 divides up its shuffles into in-lane and cross-lane shuffle operations
7190 /// and we routinely test for these.
7191 static bool is128BitLaneCrossingShuffleMask(MVT VT, ArrayRef<int> Mask) {
7192 int LaneSize = 128 / VT.getScalarSizeInBits();
7193 int Size = Mask.size();
7194 for (int i = 0; i < Size; ++i)
7195 if (Mask[i] >= 0 && (Mask[i] % Size) / LaneSize != i / LaneSize)
7200 /// \brief Test whether a shuffle mask is equivalent within each 128-bit lane.
7202 /// This checks a shuffle mask to see if it is performing the same
7203 /// 128-bit lane-relative shuffle in each 128-bit lane. This trivially implies
7204 /// that it is also not lane-crossing. It may however involve a blend from the
7205 /// same lane of a second vector.
7207 /// The specific repeated shuffle mask is populated in \p RepeatedMask, as it is
7208 /// non-trivial to compute in the face of undef lanes. The representation is
7209 /// *not* suitable for use with existing 128-bit shuffles as it will contain
7210 /// entries from both V1 and V2 inputs to the wider mask.
7212 is128BitLaneRepeatedShuffleMask(MVT VT, ArrayRef<int> Mask,
7213 SmallVectorImpl<int> &RepeatedMask) {
7214 int LaneSize = 128 / VT.getScalarSizeInBits();
7215 RepeatedMask.resize(LaneSize, -1);
7216 int Size = Mask.size();
7217 for (int i = 0; i < Size; ++i) {
7220 if ((Mask[i] % Size) / LaneSize != i / LaneSize)
7221 // This entry crosses lanes, so there is no way to model this shuffle.
7224 // Ok, handle the in-lane shuffles by detecting if and when they repeat.
7225 if (RepeatedMask[i % LaneSize] == -1)
7226 // This is the first non-undef entry in this slot of a 128-bit lane.
7227 RepeatedMask[i % LaneSize] =
7228 Mask[i] < Size ? Mask[i] % LaneSize : Mask[i] % LaneSize + Size;
7229 else if (RepeatedMask[i % LaneSize] + (i / LaneSize) * LaneSize != Mask[i])
7230 // Found a mismatch with the repeated mask.
7236 // Hide this symbol with an anonymous namespace instead of 'static' so that MSVC
7237 // 2013 will allow us to use it as a non-type template parameter.
7240 /// \brief Implementation of the \c isShuffleEquivalent variadic functor.
7242 /// See its documentation for details.
7243 bool isShuffleEquivalentImpl(ArrayRef<int> Mask, ArrayRef<const int *> Args) {
7244 if (Mask.size() != Args.size())
7246 for (int i = 0, e = Mask.size(); i < e; ++i) {
7247 assert(*Args[i] >= 0 && "Arguments must be positive integers!");
7248 if (Mask[i] != -1 && Mask[i] != *Args[i])
7256 /// \brief Checks whether a shuffle mask is equivalent to an explicit list of
7259 /// This is a fast way to test a shuffle mask against a fixed pattern:
7261 /// if (isShuffleEquivalent(Mask, 3, 2, 1, 0)) { ... }
7263 /// It returns true if the mask is exactly as wide as the argument list, and
7264 /// each element of the mask is either -1 (signifying undef) or the value given
7265 /// in the argument.
7266 static const VariadicFunction1<
7267 bool, ArrayRef<int>, int, isShuffleEquivalentImpl> isShuffleEquivalent = {};
7269 /// \brief Get a 4-lane 8-bit shuffle immediate for a mask.
7271 /// This helper function produces an 8-bit shuffle immediate corresponding to
7272 /// the ubiquitous shuffle encoding scheme used in x86 instructions for
7273 /// shuffling 4 lanes. It can be used with most of the PSHUF instructions for
7276 /// NB: We rely heavily on "undef" masks preserving the input lane.
7277 static SDValue getV4X86ShuffleImm8ForMask(ArrayRef<int> Mask,
7278 SelectionDAG &DAG) {
7279 assert(Mask.size() == 4 && "Only 4-lane shuffle masks");
7280 assert(Mask[0] >= -1 && Mask[0] < 4 && "Out of bound mask element!");
7281 assert(Mask[1] >= -1 && Mask[1] < 4 && "Out of bound mask element!");
7282 assert(Mask[2] >= -1 && Mask[2] < 4 && "Out of bound mask element!");
7283 assert(Mask[3] >= -1 && Mask[3] < 4 && "Out of bound mask element!");
7286 Imm |= (Mask[0] == -1 ? 0 : Mask[0]) << 0;
7287 Imm |= (Mask[1] == -1 ? 1 : Mask[1]) << 2;
7288 Imm |= (Mask[2] == -1 ? 2 : Mask[2]) << 4;
7289 Imm |= (Mask[3] == -1 ? 3 : Mask[3]) << 6;
7290 return DAG.getConstant(Imm, MVT::i8);
7293 /// \brief Try to emit a blend instruction for a shuffle.
7295 /// This doesn't do any checks for the availability of instructions for blending
7296 /// these values. It relies on the availability of the X86ISD::BLENDI pattern to
7297 /// be matched in the backend with the type given. What it does check for is
7298 /// that the shuffle mask is in fact a blend.
7299 static SDValue lowerVectorShuffleAsBlend(SDLoc DL, MVT VT, SDValue V1,
7300 SDValue V2, ArrayRef<int> Mask,
7301 const X86Subtarget *Subtarget,
7302 SelectionDAG &DAG) {
7304 unsigned BlendMask = 0;
7305 for (int i = 0, Size = Mask.size(); i < Size; ++i) {
7306 if (Mask[i] >= Size) {
7307 if (Mask[i] != i + Size)
7308 return SDValue(); // Shuffled V2 input!
7309 BlendMask |= 1u << i;
7312 if (Mask[i] >= 0 && Mask[i] != i)
7313 return SDValue(); // Shuffled V1 input!
7315 switch (VT.SimpleTy) {
7320 return DAG.getNode(X86ISD::BLENDI, DL, VT, V1, V2,
7321 DAG.getConstant(BlendMask, MVT::i8));
7325 assert(Subtarget->hasAVX2() && "256-bit integer blends require AVX2!");
7329 // If we have AVX2 it is faster to use VPBLENDD when the shuffle fits into
7330 // that instruction.
7331 if (Subtarget->hasAVX2()) {
7332 // Scale the blend by the number of 32-bit dwords per element.
7333 int Scale = VT.getScalarSizeInBits() / 32;
7335 for (int i = 0, Size = Mask.size(); i < Size; ++i)
7336 if (Mask[i] >= Size)
7337 for (int j = 0; j < Scale; ++j)
7338 BlendMask |= 1u << (i * Scale + j);
7340 MVT BlendVT = VT.getSizeInBits() > 128 ? MVT::v8i32 : MVT::v4i32;
7341 V1 = DAG.getNode(ISD::BITCAST, DL, BlendVT, V1);
7342 V2 = DAG.getNode(ISD::BITCAST, DL, BlendVT, V2);
7343 return DAG.getNode(ISD::BITCAST, DL, VT,
7344 DAG.getNode(X86ISD::BLENDI, DL, BlendVT, V1, V2,
7345 DAG.getConstant(BlendMask, MVT::i8)));
7349 // For integer shuffles we need to expand the mask and cast the inputs to
7350 // v8i16s prior to blending.
7351 int Scale = 8 / VT.getVectorNumElements();
7353 for (int i = 0, Size = Mask.size(); i < Size; ++i)
7354 if (Mask[i] >= Size)
7355 for (int j = 0; j < Scale; ++j)
7356 BlendMask |= 1u << (i * Scale + j);
7358 V1 = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V1);
7359 V2 = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V2);
7360 return DAG.getNode(ISD::BITCAST, DL, VT,
7361 DAG.getNode(X86ISD::BLENDI, DL, MVT::v8i16, V1, V2,
7362 DAG.getConstant(BlendMask, MVT::i8)));
7366 assert(Subtarget->hasAVX2() && "256-bit integer blends require AVX2!");
7367 SmallVector<int, 8> RepeatedMask;
7368 if (is128BitLaneRepeatedShuffleMask(MVT::v16i16, Mask, RepeatedMask)) {
7369 // We can lower these with PBLENDW which is mirrored across 128-bit lanes.
7370 assert(RepeatedMask.size() == 8 && "Repeated mask size doesn't match!");
7372 for (int i = 0; i < 8; ++i)
7373 if (RepeatedMask[i] >= 16)
7374 BlendMask |= 1u << i;
7375 return DAG.getNode(X86ISD::BLENDI, DL, MVT::v16i16, V1, V2,
7376 DAG.getConstant(BlendMask, MVT::i8));
7381 assert(Subtarget->hasAVX2() && "256-bit integer blends require AVX2!");
7382 // Scale the blend by the number of bytes per element.
7383 int Scale = VT.getScalarSizeInBits() / 8;
7384 assert(Mask.size() * Scale == 32 && "Not a 256-bit vector!");
7386 // Compute the VSELECT mask. Note that VSELECT is really confusing in the
7387 // mix of LLVM's code generator and the x86 backend. We tell the code
7388 // generator that boolean values in the elements of an x86 vector register
7389 // are -1 for true and 0 for false. We then use the LLVM semantics of 'true'
7390 // mapping a select to operand #1, and 'false' mapping to operand #2. The
7391 // reality in x86 is that vector masks (pre-AVX-512) use only the high bit
7392 // of the element (the remaining are ignored) and 0 in that high bit would
7393 // mean operand #1 while 1 in the high bit would mean operand #2. So while
7394 // the LLVM model for boolean values in vector elements gets the relevant
7395 // bit set, it is set backwards and over constrained relative to x86's
7397 SDValue VSELECTMask[32];
7398 for (int i = 0, Size = Mask.size(); i < Size; ++i)
7399 for (int j = 0; j < Scale; ++j)
7400 VSELECTMask[Scale * i + j] =
7401 Mask[i] < 0 ? DAG.getUNDEF(MVT::i8)
7402 : DAG.getConstant(Mask[i] < Size ? -1 : 0, MVT::i8);
7404 V1 = DAG.getNode(ISD::BITCAST, DL, MVT::v32i8, V1);
7405 V2 = DAG.getNode(ISD::BITCAST, DL, MVT::v32i8, V2);
7407 ISD::BITCAST, DL, VT,
7408 DAG.getNode(ISD::VSELECT, DL, MVT::v32i8,
7409 DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8, VSELECTMask),
7414 llvm_unreachable("Not a supported integer vector type!");
7418 /// \brief Generic routine to lower a shuffle and blend as a decomposed set of
7419 /// unblended shuffles followed by an unshuffled blend.
7421 /// This matches the extremely common pattern for handling combined
7422 /// shuffle+blend operations on newer X86 ISAs where we have very fast blend
7424 static SDValue lowerVectorShuffleAsDecomposedShuffleBlend(SDLoc DL, MVT VT,
7428 SelectionDAG &DAG) {
7429 // Shuffle the input elements into the desired positions in V1 and V2 and
7430 // blend them together.
7431 SmallVector<int, 32> V1Mask(Mask.size(), -1);
7432 SmallVector<int, 32> V2Mask(Mask.size(), -1);
7433 SmallVector<int, 32> BlendMask(Mask.size(), -1);
7434 for (int i = 0, Size = Mask.size(); i < Size; ++i)
7435 if (Mask[i] >= 0 && Mask[i] < Size) {
7436 V1Mask[i] = Mask[i];
7438 } else if (Mask[i] >= Size) {
7439 V2Mask[i] = Mask[i] - Size;
7440 BlendMask[i] = i + Size;
7443 V1 = DAG.getVectorShuffle(VT, DL, V1, DAG.getUNDEF(VT), V1Mask);
7444 V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Mask);
7445 return DAG.getVectorShuffle(VT, DL, V1, V2, BlendMask);
7448 /// \brief Try to lower a vector shuffle as a byte rotation.
7450 /// We have a generic PALIGNR instruction in x86 that will do an arbitrary
7451 /// byte-rotation of a the concatentation of two vectors. This routine will
7452 /// try to generically lower a vector shuffle through such an instruction. It
7453 /// does not check for the availability of PALIGNR-based lowerings, only the
7454 /// applicability of this strategy to the given mask. This matches shuffle
7455 /// vectors that look like:
7457 /// v8i16 [11, 12, 13, 14, 15, 0, 1, 2]
7459 /// Essentially it concatenates V1 and V2, shifts right by some number of
7460 /// elements, and takes the low elements as the result. Note that while this is
7461 /// specified as a *right shift* because x86 is little-endian, it is a *left
7462 /// rotate* of the vector lanes.
7464 /// Note that this only handles 128-bit vector widths currently.
7465 static SDValue lowerVectorShuffleAsByteRotate(SDLoc DL, MVT VT, SDValue V1,
7468 SelectionDAG &DAG) {
7469 assert(!isNoopShuffleMask(Mask) && "We shouldn't lower no-op shuffles!");
7471 // We need to detect various ways of spelling a rotation:
7472 // [11, 12, 13, 14, 15, 0, 1, 2]
7473 // [-1, 12, 13, 14, -1, -1, 1, -1]
7474 // [-1, -1, -1, -1, -1, -1, 1, 2]
7475 // [ 3, 4, 5, 6, 7, 8, 9, 10]
7476 // [-1, 4, 5, 6, -1, -1, 9, -1]
7477 // [-1, 4, 5, 6, -1, -1, -1, -1]
7480 for (int i = 0, Size = Mask.size(); i < Size; ++i) {
7483 assert(Mask[i] >= 0 && "Only -1 is a valid negative mask element!");
7485 // Based on the mod-Size value of this mask element determine where
7486 // a rotated vector would have started.
7487 int StartIdx = i - (Mask[i] % Size);
7489 // The identity rotation isn't interesting, stop.
7492 // If we found the tail of a vector the rotation must be the missing
7493 // front. If we found the head of a vector, it must be how much of the head.
7494 int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx;
7497 Rotation = CandidateRotation;
7498 else if (Rotation != CandidateRotation)
7499 // The rotations don't match, so we can't match this mask.
7502 // Compute which value this mask is pointing at.
7503 SDValue MaskV = Mask[i] < Size ? V1 : V2;
7505 // Compute which of the two target values this index should be assigned to.
7506 // This reflects whether the high elements are remaining or the low elements
7508 SDValue &TargetV = StartIdx < 0 ? Hi : Lo;
7510 // Either set up this value if we've not encountered it before, or check
7511 // that it remains consistent.
7514 else if (TargetV != MaskV)
7515 // This may be a rotation, but it pulls from the inputs in some
7516 // unsupported interleaving.
7520 // Check that we successfully analyzed the mask, and normalize the results.
7521 assert(Rotation != 0 && "Failed to locate a viable rotation!");
7522 assert((Lo || Hi) && "Failed to find a rotated input vector!");
7528 // Cast the inputs to v16i8 to match PALIGNR.
7529 Lo = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Lo);
7530 Hi = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Hi);
7532 assert(VT.getSizeInBits() == 128 &&
7533 "Rotate-based lowering only supports 128-bit lowering!");
7534 assert(Mask.size() <= 16 &&
7535 "Can shuffle at most 16 bytes in a 128-bit vector!");
7536 // The actual rotate instruction rotates bytes, so we need to scale the
7537 // rotation based on how many bytes are in the vector.
7538 int Scale = 16 / Mask.size();
7540 return DAG.getNode(ISD::BITCAST, DL, VT,
7541 DAG.getNode(X86ISD::PALIGNR, DL, MVT::v16i8, Hi, Lo,
7542 DAG.getConstant(Rotation * Scale, MVT::i8)));
7545 /// \brief Compute whether each element of a shuffle is zeroable.
7547 /// A "zeroable" vector shuffle element is one which can be lowered to zero.
7548 /// Either it is an undef element in the shuffle mask, the element of the input
7549 /// referenced is undef, or the element of the input referenced is known to be
7550 /// zero. Many x86 shuffles can zero lanes cheaply and we often want to handle
7551 /// as many lanes with this technique as possible to simplify the remaining
7553 static SmallBitVector computeZeroableShuffleElements(ArrayRef<int> Mask,
7554 SDValue V1, SDValue V2) {
7555 SmallBitVector Zeroable(Mask.size(), false);
7557 bool V1IsZero = ISD::isBuildVectorAllZeros(V1.getNode());
7558 bool V2IsZero = ISD::isBuildVectorAllZeros(V2.getNode());
7560 for (int i = 0, Size = Mask.size(); i < Size; ++i) {
7562 // Handle the easy cases.
7563 if (M < 0 || (M >= 0 && M < Size && V1IsZero) || (M >= Size && V2IsZero)) {
7568 // If this is an index into a build_vector node, dig out the input value and
7570 SDValue V = M < Size ? V1 : V2;
7571 if (V.getOpcode() != ISD::BUILD_VECTOR)
7574 SDValue Input = V.getOperand(M % Size);
7575 // The UNDEF opcode check really should be dead code here, but not quite
7576 // worth asserting on (it isn't invalid, just unexpected).
7577 if (Input.getOpcode() == ISD::UNDEF || X86::isZeroNode(Input))
7584 /// \brief Lower a vector shuffle as a zero or any extension.
7586 /// Given a specific number of elements, element bit width, and extension
7587 /// stride, produce either a zero or any extension based on the available
7588 /// features of the subtarget.
7589 static SDValue lowerVectorShuffleAsSpecificZeroOrAnyExtend(
7590 SDLoc DL, MVT VT, int NumElements, int Scale, bool AnyExt, SDValue InputV,
7591 const X86Subtarget *Subtarget, SelectionDAG &DAG) {
7592 assert(Scale > 1 && "Need a scale to extend.");
7593 int EltBits = VT.getSizeInBits() / NumElements;
7594 assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
7595 "Only 8, 16, and 32 bit elements can be extended.");
7596 assert(Scale * EltBits <= 64 && "Cannot zero extend past 64 bits.");
7598 // Found a valid zext mask! Try various lowering strategies based on the
7599 // input type and available ISA extensions.
7600 if (Subtarget->hasSSE41()) {
7601 MVT InputVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits), NumElements);
7602 MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits * Scale),
7603 NumElements / Scale);
7604 InputV = DAG.getNode(ISD::BITCAST, DL, InputVT, InputV);
7605 return DAG.getNode(ISD::BITCAST, DL, VT,
7606 DAG.getNode(X86ISD::VZEXT, DL, ExtVT, InputV));
7609 // For any extends we can cheat for larger element sizes and use shuffle
7610 // instructions that can fold with a load and/or copy.
7611 if (AnyExt && EltBits == 32) {
7612 int PSHUFDMask[4] = {0, -1, 1, -1};
7614 ISD::BITCAST, DL, VT,
7615 DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32,
7616 DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, InputV),
7617 getV4X86ShuffleImm8ForMask(PSHUFDMask, DAG)));
7619 if (AnyExt && EltBits == 16 && Scale > 2) {
7620 int PSHUFDMask[4] = {0, -1, 0, -1};
7621 InputV = DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32,
7622 DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, InputV),
7623 getV4X86ShuffleImm8ForMask(PSHUFDMask, DAG));
7624 int PSHUFHWMask[4] = {1, -1, -1, -1};
7626 ISD::BITCAST, DL, VT,
7627 DAG.getNode(X86ISD::PSHUFHW, DL, MVT::v8i16,
7628 DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, InputV),
7629 getV4X86ShuffleImm8ForMask(PSHUFHWMask, DAG)));
7632 // If this would require more than 2 unpack instructions to expand, use
7633 // pshufb when available. We can only use more than 2 unpack instructions
7634 // when zero extending i8 elements which also makes it easier to use pshufb.
7635 if (Scale > 4 && EltBits == 8 && Subtarget->hasSSSE3()) {
7636 assert(NumElements == 16 && "Unexpected byte vector width!");
7637 SDValue PSHUFBMask[16];
7638 for (int i = 0; i < 16; ++i)
7640 DAG.getConstant((i % Scale == 0) ? i / Scale : 0x80, MVT::i8);
7641 InputV = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, InputV);
7642 return DAG.getNode(ISD::BITCAST, DL, VT,
7643 DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8, InputV,
7644 DAG.getNode(ISD::BUILD_VECTOR, DL,
7645 MVT::v16i8, PSHUFBMask)));
7648 // Otherwise emit a sequence of unpacks.
7650 MVT InputVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits), NumElements);
7651 SDValue Ext = AnyExt ? DAG.getUNDEF(InputVT)
7652 : getZeroVector(InputVT, Subtarget, DAG, DL);
7653 InputV = DAG.getNode(ISD::BITCAST, DL, InputVT, InputV);
7654 InputV = DAG.getNode(X86ISD::UNPCKL, DL, InputVT, InputV, Ext);
7658 } while (Scale > 1);
7659 return DAG.getNode(ISD::BITCAST, DL, VT, InputV);
7662 /// \brief Try to lower a vector shuffle as a zero extension on any micrarch.
7664 /// This routine will try to do everything in its power to cleverly lower
7665 /// a shuffle which happens to match the pattern of a zero extend. It doesn't
7666 /// check for the profitability of this lowering, it tries to aggressively
7667 /// match this pattern. It will use all of the micro-architectural details it
7668 /// can to emit an efficient lowering. It handles both blends with all-zero
7669 /// inputs to explicitly zero-extend and undef-lanes (sometimes undef due to
7670 /// masking out later).
7672 /// The reason we have dedicated lowering for zext-style shuffles is that they
7673 /// are both incredibly common and often quite performance sensitive.
7674 static SDValue lowerVectorShuffleAsZeroOrAnyExtend(
7675 SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
7676 const X86Subtarget *Subtarget, SelectionDAG &DAG) {
7677 SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
7679 int Bits = VT.getSizeInBits();
7680 int NumElements = Mask.size();
7682 // Define a helper function to check a particular ext-scale and lower to it if
7684 auto Lower = [&](int Scale) -> SDValue {
7687 for (int i = 0; i < NumElements; ++i) {
7689 continue; // Valid anywhere but doesn't tell us anything.
7690 if (i % Scale != 0) {
7691 // Each of the extend elements needs to be zeroable.
7695 // We no lorger are in the anyext case.
7700 // Each of the base elements needs to be consecutive indices into the
7701 // same input vector.
7702 SDValue V = Mask[i] < NumElements ? V1 : V2;
7705 else if (InputV != V)
7706 return SDValue(); // Flip-flopping inputs.
7708 if (Mask[i] % NumElements != i / Scale)
7709 return SDValue(); // Non-consecutive strided elemenst.
7712 // If we fail to find an input, we have a zero-shuffle which should always
7713 // have already been handled.
7714 // FIXME: Maybe handle this here in case during blending we end up with one?
7718 return lowerVectorShuffleAsSpecificZeroOrAnyExtend(
7719 DL, VT, NumElements, Scale, AnyExt, InputV, Subtarget, DAG);
7722 // The widest scale possible for extending is to a 64-bit integer.
7723 assert(Bits % 64 == 0 &&
7724 "The number of bits in a vector must be divisible by 64 on x86!");
7725 int NumExtElements = Bits / 64;
7727 // Each iteration, try extending the elements half as much, but into twice as
7729 for (; NumExtElements < NumElements; NumExtElements *= 2) {
7730 assert(NumElements % NumExtElements == 0 &&
7731 "The input vector size must be divisble by the extended size.");
7732 if (SDValue V = Lower(NumElements / NumExtElements))
7736 // No viable ext lowering found.
7740 /// \brief Try to lower insertion of a single element into a zero vector.
7742 /// This is a common pattern that we have especially efficient patterns to lower
7743 /// across all subtarget feature sets.
7744 static SDValue lowerVectorShuffleAsElementInsertion(
7745 MVT VT, SDLoc DL, SDValue V1, SDValue V2, ArrayRef<int> Mask,
7746 const X86Subtarget *Subtarget, SelectionDAG &DAG) {
7747 SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
7749 int V2Index = std::find_if(Mask.begin(), Mask.end(),
7750 [&Mask](int M) { return M >= (int)Mask.size(); }) -
7752 if (Mask.size() == 2) {
7753 if (!Zeroable[V2Index ^ 1]) {
7754 // For 2-wide masks we may be able to just invert the inputs. We use an xor
7755 // with 2 to flip from {2,3} to {0,1} and vice versa.
7756 int InverseMask[2] = {Mask[0] < 0 ? -1 : (Mask[0] ^ 2),
7757 Mask[1] < 0 ? -1 : (Mask[1] ^ 2)};
7758 if (Zeroable[V2Index])
7759 return lowerVectorShuffleAsElementInsertion(VT, DL, V2, V1, InverseMask,
7765 for (int i = 0, Size = Mask.size(); i < Size; ++i)
7766 if (i != V2Index && !Zeroable[i])
7767 return SDValue(); // Not inserting into a zero vector.
7770 // Step over any bitcasts on either input so we can scan the actual
7771 // BUILD_VECTOR nodes.
7772 while (V1.getOpcode() == ISD::BITCAST)
7773 V1 = V1.getOperand(0);
7774 while (V2.getOpcode() == ISD::BITCAST)
7775 V2 = V2.getOperand(0);
7777 // Check for a single input from a SCALAR_TO_VECTOR node.
7778 // FIXME: All of this should be canonicalized into INSERT_VECTOR_ELT and
7779 // all the smarts here sunk into that routine. However, the current
7780 // lowering of BUILD_VECTOR makes that nearly impossible until the old
7781 // vector shuffle lowering is dead.
7782 if (!((V2.getOpcode() == ISD::SCALAR_TO_VECTOR &&
7783 Mask[V2Index] == (int)Mask.size()) ||
7784 V2.getOpcode() == ISD::BUILD_VECTOR))
7787 SDValue V2S = V2.getOperand(Mask[V2Index] - Mask.size());
7789 // First, we need to zext the scalar if it is smaller than an i32.
7791 MVT EltVT = VT.getVectorElementType();
7792 V2S = DAG.getNode(ISD::BITCAST, DL, EltVT, V2S);
7793 if (EltVT == MVT::i8 || EltVT == MVT::i16) {
7794 // Zero-extend directly to i32.
7796 V2S = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, V2S);
7799 V2 = DAG.getNode(X86ISD::VZEXT_MOVL, DL, ExtVT,
7800 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, ExtVT, V2S));
7802 V2 = DAG.getNode(ISD::BITCAST, DL, VT, V2);
7805 // If we have 4 or fewer lanes we can cheaply shuffle the element into
7806 // the desired position. Otherwise it is more efficient to do a vector
7807 // shift left. We know that we can do a vector shift left because all
7808 // the inputs are zero.
7809 if (VT.isFloatingPoint() || VT.getVectorNumElements() <= 4) {
7810 SmallVector<int, 4> V2Shuffle(Mask.size(), 1);
7811 V2Shuffle[V2Index] = 0;
7812 V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Shuffle);
7814 V2 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, V2);
7816 X86ISD::VSHLDQ, DL, MVT::v2i64, V2,
7818 V2Index * EltVT.getSizeInBits(),
7819 DAG.getTargetLoweringInfo().getScalarShiftAmountTy(MVT::v2i64)));
7820 V2 = DAG.getNode(ISD::BITCAST, DL, VT, V2);
7826 /// \brief Handle lowering of 2-lane 64-bit floating point shuffles.
7828 /// This is the basis function for the 2-lane 64-bit shuffles as we have full
7829 /// support for floating point shuffles but not integer shuffles. These
7830 /// instructions will incur a domain crossing penalty on some chips though so
7831 /// it is better to avoid lowering through this for integer vectors where
7833 static SDValue lowerV2F64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
7834 const X86Subtarget *Subtarget,
7835 SelectionDAG &DAG) {
7837 assert(Op.getSimpleValueType() == MVT::v2f64 && "Bad shuffle type!");
7838 assert(V1.getSimpleValueType() == MVT::v2f64 && "Bad operand type!");
7839 assert(V2.getSimpleValueType() == MVT::v2f64 && "Bad operand type!");
7840 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7841 ArrayRef<int> Mask = SVOp->getMask();
7842 assert(Mask.size() == 2 && "Unexpected mask size for v2 shuffle!");
7844 if (isSingleInputShuffleMask(Mask)) {
7845 // Straight shuffle of a single input vector. Simulate this by using the
7846 // single input as both of the "inputs" to this instruction..
7847 unsigned SHUFPDMask = (Mask[0] == 1) | ((Mask[1] == 1) << 1);
7849 if (Subtarget->hasAVX()) {
7850 // If we have AVX, we can use VPERMILPS which will allow folding a load
7851 // into the shuffle.
7852 return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v2f64, V1,
7853 DAG.getConstant(SHUFPDMask, MVT::i8));
7856 return DAG.getNode(X86ISD::SHUFP, SDLoc(Op), MVT::v2f64, V1, V1,
7857 DAG.getConstant(SHUFPDMask, MVT::i8));
7859 assert(Mask[0] >= 0 && Mask[0] < 2 && "Non-canonicalized blend!");
7860 assert(Mask[1] >= 2 && "Non-canonicalized blend!");
7862 // Use dedicated unpack instructions for masks that match their pattern.
7863 if (isShuffleEquivalent(Mask, 0, 2))
7864 return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v2f64, V1, V2);
7865 if (isShuffleEquivalent(Mask, 1, 3))
7866 return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v2f64, V1, V2);
7868 // If we have a single input, insert that into V1 if we can do so cheaply.
7869 if ((Mask[0] >= 2) + (Mask[1] >= 2) == 1)
7870 if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
7871 MVT::v2f64, DL, V1, V2, Mask, Subtarget, DAG))
7874 if (Subtarget->hasSSE41())
7875 if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v2f64, V1, V2, Mask,
7879 unsigned SHUFPDMask = (Mask[0] == 1) | (((Mask[1] - 2) == 1) << 1);
7880 return DAG.getNode(X86ISD::SHUFP, SDLoc(Op), MVT::v2f64, V1, V2,
7881 DAG.getConstant(SHUFPDMask, MVT::i8));
7884 /// \brief Handle lowering of 2-lane 64-bit integer shuffles.
7886 /// Tries to lower a 2-lane 64-bit shuffle using shuffle operations provided by
7887 /// the integer unit to minimize domain crossing penalties. However, for blends
7888 /// it falls back to the floating point shuffle operation with appropriate bit
7890 static SDValue lowerV2I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
7891 const X86Subtarget *Subtarget,
7892 SelectionDAG &DAG) {
7894 assert(Op.getSimpleValueType() == MVT::v2i64 && "Bad shuffle type!");
7895 assert(V1.getSimpleValueType() == MVT::v2i64 && "Bad operand type!");
7896 assert(V2.getSimpleValueType() == MVT::v2i64 && "Bad operand type!");
7897 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7898 ArrayRef<int> Mask = SVOp->getMask();
7899 assert(Mask.size() == 2 && "Unexpected mask size for v2 shuffle!");
7901 if (isSingleInputShuffleMask(Mask)) {
7902 // Straight shuffle of a single input vector. For everything from SSE2
7903 // onward this has a single fast instruction with no scary immediates.
7904 // We have to map the mask as it is actually a v4i32 shuffle instruction.
7905 V1 = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, V1);
7906 int WidenedMask[4] = {
7907 std::max(Mask[0], 0) * 2, std::max(Mask[0], 0) * 2 + 1,
7908 std::max(Mask[1], 0) * 2, std::max(Mask[1], 0) * 2 + 1};
7910 ISD::BITCAST, DL, MVT::v2i64,
7911 DAG.getNode(X86ISD::PSHUFD, SDLoc(Op), MVT::v4i32, V1,
7912 getV4X86ShuffleImm8ForMask(WidenedMask, DAG)));
7915 // Use dedicated unpack instructions for masks that match their pattern.
7916 if (isShuffleEquivalent(Mask, 0, 2))
7917 return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v2i64, V1, V2);
7918 if (isShuffleEquivalent(Mask, 1, 3))
7919 return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v2i64, V1, V2);
7921 // If we have a single input from V2 insert that into V1 if we can do so
7923 if ((Mask[0] >= 2) + (Mask[1] >= 2) == 1)
7924 if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
7925 MVT::v2i64, DL, V1, V2, Mask, Subtarget, DAG))
7928 if (Subtarget->hasSSE41())
7929 if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v2i64, V1, V2, Mask,
7933 // Try to use rotation instructions if available.
7934 if (Subtarget->hasSSSE3())
7935 if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
7936 DL, MVT::v2i64, V1, V2, Mask, DAG))
7939 // We implement this with SHUFPD which is pretty lame because it will likely
7940 // incur 2 cycles of stall for integer vectors on Nehalem and older chips.
7941 // However, all the alternatives are still more cycles and newer chips don't
7942 // have this problem. It would be really nice if x86 had better shuffles here.
7943 V1 = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, V1);
7944 V2 = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, V2);
7945 return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64,
7946 DAG.getVectorShuffle(MVT::v2f64, DL, V1, V2, Mask));
7949 /// \brief Lower a vector shuffle using the SHUFPS instruction.
7951 /// This is a helper routine dedicated to lowering vector shuffles using SHUFPS.
7952 /// It makes no assumptions about whether this is the *best* lowering, it simply
7954 static SDValue lowerVectorShuffleWithSHUFPS(SDLoc DL, MVT VT,
7955 ArrayRef<int> Mask, SDValue V1,
7956 SDValue V2, SelectionDAG &DAG) {
7957 SDValue LowV = V1, HighV = V2;
7958 int NewMask[4] = {Mask[0], Mask[1], Mask[2], Mask[3]};
7961 std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; });
7963 if (NumV2Elements == 1) {
7965 std::find_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; }) -
7968 // Compute the index adjacent to V2Index and in the same half by toggling
7970 int V2AdjIndex = V2Index ^ 1;
7972 if (Mask[V2AdjIndex] == -1) {
7973 // Handles all the cases where we have a single V2 element and an undef.
7974 // This will only ever happen in the high lanes because we commute the
7975 // vector otherwise.
7977 std::swap(LowV, HighV);
7978 NewMask[V2Index] -= 4;
7980 // Handle the case where the V2 element ends up adjacent to a V1 element.
7981 // To make this work, blend them together as the first step.
7982 int V1Index = V2AdjIndex;
7983 int BlendMask[4] = {Mask[V2Index] - 4, 0, Mask[V1Index], 0};
7984 V2 = DAG.getNode(X86ISD::SHUFP, DL, VT, V2, V1,
7985 getV4X86ShuffleImm8ForMask(BlendMask, DAG));
7987 // Now proceed to reconstruct the final blend as we have the necessary
7988 // high or low half formed.
7995 NewMask[V1Index] = 2; // We put the V1 element in V2[2].
7996 NewMask[V2Index] = 0; // We shifted the V2 element into V2[0].
7998 } else if (NumV2Elements == 2) {
7999 if (Mask[0] < 4 && Mask[1] < 4) {
8000 // Handle the easy case where we have V1 in the low lanes and V2 in the
8004 } else if (Mask[2] < 4 && Mask[3] < 4) {
8005 // We also handle the reversed case because this utility may get called
8006 // when we detect a SHUFPS pattern but can't easily commute the shuffle to
8007 // arrange things in the right direction.
8013 // We have a mixture of V1 and V2 in both low and high lanes. Rather than
8014 // trying to place elements directly, just blend them and set up the final
8015 // shuffle to place them.
8017 // The first two blend mask elements are for V1, the second two are for
8019 int BlendMask[4] = {Mask[0] < 4 ? Mask[0] : Mask[1],
8020 Mask[2] < 4 ? Mask[2] : Mask[3],
8021 (Mask[0] >= 4 ? Mask[0] : Mask[1]) - 4,
8022 (Mask[2] >= 4 ? Mask[2] : Mask[3]) - 4};
8023 V1 = DAG.getNode(X86ISD::SHUFP, DL, VT, V1, V2,
8024 getV4X86ShuffleImm8ForMask(BlendMask, DAG));
8026 // Now we do a normal shuffle of V1 by giving V1 as both operands to
8029 NewMask[0] = Mask[0] < 4 ? 0 : 2;
8030 NewMask[1] = Mask[0] < 4 ? 2 : 0;
8031 NewMask[2] = Mask[2] < 4 ? 1 : 3;
8032 NewMask[3] = Mask[2] < 4 ? 3 : 1;
8035 return DAG.getNode(X86ISD::SHUFP, DL, VT, LowV, HighV,
8036 getV4X86ShuffleImm8ForMask(NewMask, DAG));
8039 /// \brief Lower 4-lane 32-bit floating point shuffles.
8041 /// Uses instructions exclusively from the floating point unit to minimize
8042 /// domain crossing penalties, as these are sufficient to implement all v4f32
8044 static SDValue lowerV4F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
8045 const X86Subtarget *Subtarget,
8046 SelectionDAG &DAG) {
8048 assert(Op.getSimpleValueType() == MVT::v4f32 && "Bad shuffle type!");
8049 assert(V1.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
8050 assert(V2.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
8051 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
8052 ArrayRef<int> Mask = SVOp->getMask();
8053 assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
8056 std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; });
8058 if (NumV2Elements == 0) {
8059 if (Subtarget->hasAVX()) {
8060 // If we have AVX, we can use VPERMILPS which will allow folding a load
8061 // into the shuffle.
8062 return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v4f32, V1,
8063 getV4X86ShuffleImm8ForMask(Mask, DAG));
8066 // Otherwise, use a straight shuffle of a single input vector. We pass the
8067 // input vector to both operands to simulate this with a SHUFPS.
8068 return DAG.getNode(X86ISD::SHUFP, DL, MVT::v4f32, V1, V1,
8069 getV4X86ShuffleImm8ForMask(Mask, DAG));
8072 // Use dedicated unpack instructions for masks that match their pattern.
8073 if (isShuffleEquivalent(Mask, 0, 4, 1, 5))
8074 return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v4f32, V1, V2);
8075 if (isShuffleEquivalent(Mask, 2, 6, 3, 7))
8076 return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v4f32, V1, V2);
8078 // There are special ways we can lower some single-element blends. However, we
8079 // have custom ways we can lower more complex single-element blends below that
8080 // we defer to if both this and BLENDPS fail to match, so restrict this to
8081 // when the V2 input is targeting element 0 of the mask -- that is the fast
8083 if (NumV2Elements == 1 && Mask[0] >= 4)
8084 if (SDValue V = lowerVectorShuffleAsElementInsertion(MVT::v4f32, DL, V1, V2,
8085 Mask, Subtarget, DAG))
8088 if (Subtarget->hasSSE41())
8089 if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4f32, V1, V2, Mask,
8093 // Check for whether we can use INSERTPS to perform the blend. We only use
8094 // INSERTPS when the V1 elements are already in the correct locations
8095 // because otherwise we can just always use two SHUFPS instructions which
8096 // are much smaller to encode than a SHUFPS and an INSERTPS.
8097 if (NumV2Elements == 1 && Subtarget->hasSSE41()) {
8099 std::find_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; }) -
8102 // When using INSERTPS we can zero any lane of the destination. Collect
8103 // the zero inputs into a mask and drop them from the lanes of V1 which
8104 // actually need to be present as inputs to the INSERTPS.
8105 SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
8107 // Synthesize a shuffle mask for the non-zero and non-v2 inputs.
8108 bool InsertNeedsShuffle = false;
8110 for (int i = 0; i < 4; ++i)
8114 } else if (Mask[i] != i) {
8115 InsertNeedsShuffle = true;
8120 // We don't want to use INSERTPS or other insertion techniques if it will
8121 // require shuffling anyways.
8122 if (!InsertNeedsShuffle) {
8123 // If all of V1 is zeroable, replace it with undef.
8124 if ((ZMask | 1 << V2Index) == 0xF)
8125 V1 = DAG.getUNDEF(MVT::v4f32);
8127 unsigned InsertPSMask = (Mask[V2Index] - 4) << 6 | V2Index << 4 | ZMask;
8128 assert((InsertPSMask & ~0xFFu) == 0 && "Invalid mask!");
8130 // Insert the V2 element into the desired position.
8131 return DAG.getNode(X86ISD::INSERTPS, DL, MVT::v4f32, V1, V2,
8132 DAG.getConstant(InsertPSMask, MVT::i8));
8136 // Otherwise fall back to a SHUFPS lowering strategy.
8137 return lowerVectorShuffleWithSHUFPS(DL, MVT::v4f32, Mask, V1, V2, DAG);
8140 /// \brief Lower 4-lane i32 vector shuffles.
8142 /// We try to handle these with integer-domain shuffles where we can, but for
8143 /// blends we use the floating point domain blend instructions.
8144 static SDValue lowerV4I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
8145 const X86Subtarget *Subtarget,
8146 SelectionDAG &DAG) {
8148 assert(Op.getSimpleValueType() == MVT::v4i32 && "Bad shuffle type!");
8149 assert(V1.getSimpleValueType() == MVT::v4i32 && "Bad operand type!");
8150 assert(V2.getSimpleValueType() == MVT::v4i32 && "Bad operand type!");
8151 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
8152 ArrayRef<int> Mask = SVOp->getMask();
8153 assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
8156 std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; });
8158 if (NumV2Elements == 0) {
8159 // Straight shuffle of a single input vector. For everything from SSE2
8160 // onward this has a single fast instruction with no scary immediates.
8161 // We coerce the shuffle pattern to be compatible with UNPCK instructions
8162 // but we aren't actually going to use the UNPCK instruction because doing
8163 // so prevents folding a load into this instruction or making a copy.
8164 const int UnpackLoMask[] = {0, 0, 1, 1};
8165 const int UnpackHiMask[] = {2, 2, 3, 3};
8166 if (isShuffleEquivalent(Mask, 0, 0, 1, 1))
8167 Mask = UnpackLoMask;
8168 else if (isShuffleEquivalent(Mask, 2, 2, 3, 3))
8169 Mask = UnpackHiMask;
8171 return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, V1,
8172 getV4X86ShuffleImm8ForMask(Mask, DAG));
8175 // Whenever we can lower this as a zext, that instruction is strictly faster
8176 // than any alternative.
8177 if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(DL, MVT::v4i32, V1, V2,
8178 Mask, Subtarget, DAG))
8181 // Use dedicated unpack instructions for masks that match their pattern.
8182 if (isShuffleEquivalent(Mask, 0, 4, 1, 5))
8183 return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v4i32, V1, V2);
8184 if (isShuffleEquivalent(Mask, 2, 6, 3, 7))
8185 return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v4i32, V1, V2);
8187 // There are special ways we can lower some single-element blends.
8188 if (NumV2Elements == 1)
8189 if (SDValue V = lowerVectorShuffleAsElementInsertion(MVT::v4i32, DL, V1, V2,
8190 Mask, Subtarget, DAG))
8193 if (Subtarget->hasSSE41())
8194 if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4i32, V1, V2, Mask,
8198 // Try to use rotation instructions if available.
8199 if (Subtarget->hasSSSE3())
8200 if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
8201 DL, MVT::v4i32, V1, V2, Mask, DAG))
8204 // We implement this with SHUFPS because it can blend from two vectors.
8205 // Because we're going to eventually use SHUFPS, we use SHUFPS even to build
8206 // up the inputs, bypassing domain shift penalties that we would encur if we
8207 // directly used PSHUFD on Nehalem and older. For newer chips, this isn't
8209 return DAG.getNode(ISD::BITCAST, DL, MVT::v4i32,
8210 DAG.getVectorShuffle(
8212 DAG.getNode(ISD::BITCAST, DL, MVT::v4f32, V1),
8213 DAG.getNode(ISD::BITCAST, DL, MVT::v4f32, V2), Mask));
8216 /// \brief Lowering of single-input v8i16 shuffles is the cornerstone of SSE2
8217 /// shuffle lowering, and the most complex part.
8219 /// The lowering strategy is to try to form pairs of input lanes which are
8220 /// targeted at the same half of the final vector, and then use a dword shuffle
8221 /// to place them onto the right half, and finally unpack the paired lanes into
8222 /// their final position.
8224 /// The exact breakdown of how to form these dword pairs and align them on the
8225 /// correct sides is really tricky. See the comments within the function for
8226 /// more of the details.
8227 static SDValue lowerV8I16SingleInputVectorShuffle(
8228 SDLoc DL, SDValue V, MutableArrayRef<int> Mask,
8229 const X86Subtarget *Subtarget, SelectionDAG &DAG) {
8230 assert(V.getSimpleValueType() == MVT::v8i16 && "Bad input type!");
8231 MutableArrayRef<int> LoMask = Mask.slice(0, 4);
8232 MutableArrayRef<int> HiMask = Mask.slice(4, 4);
8234 SmallVector<int, 4> LoInputs;
8235 std::copy_if(LoMask.begin(), LoMask.end(), std::back_inserter(LoInputs),
8236 [](int M) { return M >= 0; });
8237 std::sort(LoInputs.begin(), LoInputs.end());
8238 LoInputs.erase(std::unique(LoInputs.begin(), LoInputs.end()), LoInputs.end());
8239 SmallVector<int, 4> HiInputs;
8240 std::copy_if(HiMask.begin(), HiMask.end(), std::back_inserter(HiInputs),
8241 [](int M) { return M >= 0; });
8242 std::sort(HiInputs.begin(), HiInputs.end());
8243 HiInputs.erase(std::unique(HiInputs.begin(), HiInputs.end()), HiInputs.end());
8245 std::lower_bound(LoInputs.begin(), LoInputs.end(), 4) - LoInputs.begin();
8246 int NumHToL = LoInputs.size() - NumLToL;
8248 std::lower_bound(HiInputs.begin(), HiInputs.end(), 4) - HiInputs.begin();
8249 int NumHToH = HiInputs.size() - NumLToH;
8250 MutableArrayRef<int> LToLInputs(LoInputs.data(), NumLToL);
8251 MutableArrayRef<int> LToHInputs(HiInputs.data(), NumLToH);
8252 MutableArrayRef<int> HToLInputs(LoInputs.data() + NumLToL, NumHToL);
8253 MutableArrayRef<int> HToHInputs(HiInputs.data() + NumLToH, NumHToH);
8255 // Use dedicated unpack instructions for masks that match their pattern.
8256 if (isShuffleEquivalent(Mask, 0, 0, 1, 1, 2, 2, 3, 3))
8257 return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8i16, V, V);
8258 if (isShuffleEquivalent(Mask, 4, 4, 5, 5, 6, 6, 7, 7))
8259 return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8i16, V, V);
8261 // Try to use rotation instructions if available.
8262 if (Subtarget->hasSSSE3())
8263 if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
8264 DL, MVT::v8i16, V, V, Mask, DAG))
8267 // Simplify the 1-into-3 and 3-into-1 cases with a single pshufd. For all
8268 // such inputs we can swap two of the dwords across the half mark and end up
8269 // with <=2 inputs to each half in each half. Once there, we can fall through
8270 // to the generic code below. For example:
8272 // Input: [a, b, c, d, e, f, g, h] -PSHUFD[0,2,1,3]-> [a, b, e, f, c, d, g, h]
8273 // Mask: [0, 1, 2, 7, 4, 5, 6, 3] -----------------> [0, 1, 4, 7, 2, 3, 6, 5]
8275 // However in some very rare cases we have a 1-into-3 or 3-into-1 on one half
8276 // and an existing 2-into-2 on the other half. In this case we may have to
8277 // pre-shuffle the 2-into-2 half to avoid turning it into a 3-into-1 or
8278 // 1-into-3 which could cause us to cycle endlessly fixing each side in turn.
8279 // Fortunately, we don't have to handle anything but a 2-into-2 pattern
8280 // because any other situation (including a 3-into-1 or 1-into-3 in the other
8281 // half than the one we target for fixing) will be fixed when we re-enter this
8282 // path. We will also combine away any sequence of PSHUFD instructions that
8283 // result into a single instruction. Here is an example of the tricky case:
8285 // Input: [a, b, c, d, e, f, g, h] -PSHUFD[0,2,1,3]-> [a, b, e, f, c, d, g, h]
8286 // Mask: [3, 7, 1, 0, 2, 7, 3, 5] -THIS-IS-BAD!!!!-> [5, 7, 1, 0, 4, 7, 5, 3]
8288 // This now has a 1-into-3 in the high half! Instead, we do two shuffles:
8290 // Input: [a, b, c, d, e, f, g, h] PSHUFHW[0,2,1,3]-> [a, b, c, d, e, g, f, h]
8291 // Mask: [3, 7, 1, 0, 2, 7, 3, 5] -----------------> [3, 7, 1, 0, 2, 7, 3, 6]
8293 // Input: [a, b, c, d, e, g, f, h] -PSHUFD[0,2,1,3]-> [a, b, e, g, c, d, f, h]
8294 // Mask: [3, 7, 1, 0, 2, 7, 3, 6] -----------------> [5, 7, 1, 0, 4, 7, 5, 6]
8296 // The result is fine to be handled by the generic logic.
8297 auto balanceSides = [&](ArrayRef<int> AToAInputs, ArrayRef<int> BToAInputs,
8298 ArrayRef<int> BToBInputs, ArrayRef<int> AToBInputs,
8299 int AOffset, int BOffset) {
8300 assert((AToAInputs.size() == 3 || AToAInputs.size() == 1) &&
8301 "Must call this with A having 3 or 1 inputs from the A half.");
8302 assert((BToAInputs.size() == 1 || BToAInputs.size() == 3) &&
8303 "Must call this with B having 1 or 3 inputs from the B half.");
8304 assert(AToAInputs.size() + BToAInputs.size() == 4 &&
8305 "Must call this with either 3:1 or 1:3 inputs (summing to 4).");
8307 // Compute the index of dword with only one word among the three inputs in
8308 // a half by taking the sum of the half with three inputs and subtracting
8309 // the sum of the actual three inputs. The difference is the remaining
8312 int &TripleDWord = AToAInputs.size() == 3 ? ADWord : BDWord;
8313 int &OneInputDWord = AToAInputs.size() == 3 ? BDWord : ADWord;
8314 int TripleInputOffset = AToAInputs.size() == 3 ? AOffset : BOffset;
8315 ArrayRef<int> TripleInputs = AToAInputs.size() == 3 ? AToAInputs : BToAInputs;
8316 int OneInput = AToAInputs.size() == 3 ? BToAInputs[0] : AToAInputs[0];
8317 int TripleInputSum = 0 + 1 + 2 + 3 + (4 * TripleInputOffset);
8318 int TripleNonInputIdx =
8319 TripleInputSum - std::accumulate(TripleInputs.begin(), TripleInputs.end(), 0);
8320 TripleDWord = TripleNonInputIdx / 2;
8322 // We use xor with one to compute the adjacent DWord to whichever one the
8324 OneInputDWord = (OneInput / 2) ^ 1;
8326 // Check for one tricky case: We're fixing a 3<-1 or a 1<-3 shuffle for AToA
8327 // and BToA inputs. If there is also such a problem with the BToB and AToB
8328 // inputs, we don't try to fix it necessarily -- we'll recurse and see it in
8329 // the next pass. However, if we have a 2<-2 in the BToB and AToB inputs, it
8330 // is essential that we don't *create* a 3<-1 as then we might oscillate.
8331 if (BToBInputs.size() == 2 && AToBInputs.size() == 2) {
8332 // Compute how many inputs will be flipped by swapping these DWords. We
8334 // to balance this to ensure we don't form a 3-1 shuffle in the other
8336 int NumFlippedAToBInputs =
8337 std::count(AToBInputs.begin(), AToBInputs.end(), 2 * ADWord) +
8338 std::count(AToBInputs.begin(), AToBInputs.end(), 2 * ADWord + 1);
8339 int NumFlippedBToBInputs =
8340 std::count(BToBInputs.begin(), BToBInputs.end(), 2 * BDWord) +
8341 std::count(BToBInputs.begin(), BToBInputs.end(), 2 * BDWord + 1);
8342 if ((NumFlippedAToBInputs == 1 &&
8343 (NumFlippedBToBInputs == 0 || NumFlippedBToBInputs == 2)) ||
8344 (NumFlippedBToBInputs == 1 &&
8345 (NumFlippedAToBInputs == 0 || NumFlippedAToBInputs == 2))) {
8346 // We choose whether to fix the A half or B half based on whether that
8347 // half has zero flipped inputs. At zero, we may not be able to fix it
8348 // with that half. We also bias towards fixing the B half because that
8349 // will more commonly be the high half, and we have to bias one way.
8350 auto FixFlippedInputs = [&V, &DL, &Mask, &DAG](int PinnedIdx, int DWord,
8351 ArrayRef<int> Inputs) {
8352 int FixIdx = PinnedIdx ^ 1; // The adjacent slot to the pinned slot.
8353 bool IsFixIdxInput = std::find(Inputs.begin(), Inputs.end(),
8354 PinnedIdx ^ 1) != Inputs.end();
8355 // Determine whether the free index is in the flipped dword or the
8356 // unflipped dword based on where the pinned index is. We use this bit
8357 // in an xor to conditionally select the adjacent dword.
8358 int FixFreeIdx = 2 * (DWord ^ (PinnedIdx / 2 == DWord));
8359 bool IsFixFreeIdxInput = std::find(Inputs.begin(), Inputs.end(),
8360 FixFreeIdx) != Inputs.end();
8361 if (IsFixIdxInput == IsFixFreeIdxInput)
8363 IsFixFreeIdxInput = std::find(Inputs.begin(), Inputs.end(),
8364 FixFreeIdx) != Inputs.end();
8365 assert(IsFixIdxInput != IsFixFreeIdxInput &&
8366 "We need to be changing the number of flipped inputs!");
8367 int PSHUFHalfMask[] = {0, 1, 2, 3};
8368 std::swap(PSHUFHalfMask[FixFreeIdx % 4], PSHUFHalfMask[FixIdx % 4]);
8369 V = DAG.getNode(FixIdx < 4 ? X86ISD::PSHUFLW : X86ISD::PSHUFHW, DL,
8371 getV4X86ShuffleImm8ForMask(PSHUFHalfMask, DAG));
8374 if (M != -1 && M == FixIdx)
8376 else if (M != -1 && M == FixFreeIdx)
8379 if (NumFlippedBToBInputs != 0) {
8381 BToAInputs.size() == 3 ? TripleNonInputIdx : OneInput;
8382 FixFlippedInputs(BPinnedIdx, BDWord, BToBInputs);
8384 assert(NumFlippedAToBInputs != 0 && "Impossible given predicates!");
8386 AToAInputs.size() == 3 ? TripleNonInputIdx : OneInput;
8387 FixFlippedInputs(APinnedIdx, ADWord, AToBInputs);
8392 int PSHUFDMask[] = {0, 1, 2, 3};
8393 PSHUFDMask[ADWord] = BDWord;
8394 PSHUFDMask[BDWord] = ADWord;
8395 V = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16,
8396 DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32,
8397 DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, V),
8398 getV4X86ShuffleImm8ForMask(PSHUFDMask, DAG)));
8400 // Adjust the mask to match the new locations of A and B.
8402 if (M != -1 && M/2 == ADWord)
8403 M = 2 * BDWord + M % 2;
8404 else if (M != -1 && M/2 == BDWord)
8405 M = 2 * ADWord + M % 2;
8407 // Recurse back into this routine to re-compute state now that this isn't
8408 // a 3 and 1 problem.
8409 return DAG.getVectorShuffle(MVT::v8i16, DL, V, DAG.getUNDEF(MVT::v8i16),
8412 if ((NumLToL == 3 && NumHToL == 1) || (NumLToL == 1 && NumHToL == 3))
8413 return balanceSides(LToLInputs, HToLInputs, HToHInputs, LToHInputs, 0, 4);
8414 else if ((NumHToH == 3 && NumLToH == 1) || (NumHToH == 1 && NumLToH == 3))
8415 return balanceSides(HToHInputs, LToHInputs, LToLInputs, HToLInputs, 4, 0);
8417 // At this point there are at most two inputs to the low and high halves from
8418 // each half. That means the inputs can always be grouped into dwords and
8419 // those dwords can then be moved to the correct half with a dword shuffle.
8420 // We use at most one low and one high word shuffle to collect these paired
8421 // inputs into dwords, and finally a dword shuffle to place them.
8422 int PSHUFLMask[4] = {-1, -1, -1, -1};
8423 int PSHUFHMask[4] = {-1, -1, -1, -1};
8424 int PSHUFDMask[4] = {-1, -1, -1, -1};
8426 // First fix the masks for all the inputs that are staying in their
8427 // original halves. This will then dictate the targets of the cross-half
8429 auto fixInPlaceInputs =
8430 [&PSHUFDMask](ArrayRef<int> InPlaceInputs, ArrayRef<int> IncomingInputs,
8431 MutableArrayRef<int> SourceHalfMask,
8432 MutableArrayRef<int> HalfMask, int HalfOffset) {
8433 if (InPlaceInputs.empty())
8435 if (InPlaceInputs.size() == 1) {
8436 SourceHalfMask[InPlaceInputs[0] - HalfOffset] =
8437 InPlaceInputs[0] - HalfOffset;
8438 PSHUFDMask[InPlaceInputs[0] / 2] = InPlaceInputs[0] / 2;
8441 if (IncomingInputs.empty()) {
8442 // Just fix all of the in place inputs.
8443 for (int Input : InPlaceInputs) {
8444 SourceHalfMask[Input - HalfOffset] = Input - HalfOffset;
8445 PSHUFDMask[Input / 2] = Input / 2;
8450 assert(InPlaceInputs.size() == 2 && "Cannot handle 3 or 4 inputs!");
8451 SourceHalfMask[InPlaceInputs[0] - HalfOffset] =
8452 InPlaceInputs[0] - HalfOffset;
8453 // Put the second input next to the first so that they are packed into
8454 // a dword. We find the adjacent index by toggling the low bit.
8455 int AdjIndex = InPlaceInputs[0] ^ 1;
8456 SourceHalfMask[AdjIndex - HalfOffset] = InPlaceInputs[1] - HalfOffset;
8457 std::replace(HalfMask.begin(), HalfMask.end(), InPlaceInputs[1], AdjIndex);
8458 PSHUFDMask[AdjIndex / 2] = AdjIndex / 2;
8460 fixInPlaceInputs(LToLInputs, HToLInputs, PSHUFLMask, LoMask, 0);
8461 fixInPlaceInputs(HToHInputs, LToHInputs, PSHUFHMask, HiMask, 4);
8463 // Now gather the cross-half inputs and place them into a free dword of
8464 // their target half.
8465 // FIXME: This operation could almost certainly be simplified dramatically to
8466 // look more like the 3-1 fixing operation.
8467 auto moveInputsToRightHalf = [&PSHUFDMask](
8468 MutableArrayRef<int> IncomingInputs, ArrayRef<int> ExistingInputs,
8469 MutableArrayRef<int> SourceHalfMask, MutableArrayRef<int> HalfMask,
8470 MutableArrayRef<int> FinalSourceHalfMask, int SourceOffset,
8472 auto isWordClobbered = [](ArrayRef<int> SourceHalfMask, int Word) {
8473 return SourceHalfMask[Word] != -1 && SourceHalfMask[Word] != Word;
8475 auto isDWordClobbered = [&isWordClobbered](ArrayRef<int> SourceHalfMask,
8477 int LowWord = Word & ~1;
8478 int HighWord = Word | 1;
8479 return isWordClobbered(SourceHalfMask, LowWord) ||
8480 isWordClobbered(SourceHalfMask, HighWord);
8483 if (IncomingInputs.empty())
8486 if (ExistingInputs.empty()) {
8487 // Map any dwords with inputs from them into the right half.
8488 for (int Input : IncomingInputs) {
8489 // If the source half mask maps over the inputs, turn those into
8490 // swaps and use the swapped lane.
8491 if (isWordClobbered(SourceHalfMask, Input - SourceOffset)) {
8492 if (SourceHalfMask[SourceHalfMask[Input - SourceOffset]] == -1) {
8493 SourceHalfMask[SourceHalfMask[Input - SourceOffset]] =
8494 Input - SourceOffset;
8495 // We have to swap the uses in our half mask in one sweep.
8496 for (int &M : HalfMask)
8497 if (M == SourceHalfMask[Input - SourceOffset] + SourceOffset)
8499 else if (M == Input)
8500 M = SourceHalfMask[Input - SourceOffset] + SourceOffset;
8502 assert(SourceHalfMask[SourceHalfMask[Input - SourceOffset]] ==
8503 Input - SourceOffset &&
8504 "Previous placement doesn't match!");
8506 // Note that this correctly re-maps both when we do a swap and when
8507 // we observe the other side of the swap above. We rely on that to
8508 // avoid swapping the members of the input list directly.
8509 Input = SourceHalfMask[Input - SourceOffset] + SourceOffset;
8512 // Map the input's dword into the correct half.
8513 if (PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] == -1)
8514 PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] = Input / 2;
8516 assert(PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] ==
8518 "Previous placement doesn't match!");
8521 // And just directly shift any other-half mask elements to be same-half
8522 // as we will have mirrored the dword containing the element into the
8523 // same position within that half.
8524 for (int &M : HalfMask)
8525 if (M >= SourceOffset && M < SourceOffset + 4) {
8526 M = M - SourceOffset + DestOffset;
8527 assert(M >= 0 && "This should never wrap below zero!");
8532 // Ensure we have the input in a viable dword of its current half. This
8533 // is particularly tricky because the original position may be clobbered
8534 // by inputs being moved and *staying* in that half.
8535 if (IncomingInputs.size() == 1) {
8536 if (isWordClobbered(SourceHalfMask, IncomingInputs[0] - SourceOffset)) {
8537 int InputFixed = std::find(std::begin(SourceHalfMask),
8538 std::end(SourceHalfMask), -1) -
8539 std::begin(SourceHalfMask) + SourceOffset;
8540 SourceHalfMask[InputFixed - SourceOffset] =
8541 IncomingInputs[0] - SourceOffset;
8542 std::replace(HalfMask.begin(), HalfMask.end(), IncomingInputs[0],
8544 IncomingInputs[0] = InputFixed;
8546 } else if (IncomingInputs.size() == 2) {
8547 if (IncomingInputs[0] / 2 != IncomingInputs[1] / 2 ||
8548 isDWordClobbered(SourceHalfMask, IncomingInputs[0] - SourceOffset)) {
8549 // We have two non-adjacent or clobbered inputs we need to extract from
8550 // the source half. To do this, we need to map them into some adjacent
8551 // dword slot in the source mask.
8552 int InputsFixed[2] = {IncomingInputs[0] - SourceOffset,
8553 IncomingInputs[1] - SourceOffset};
8555 // If there is a free slot in the source half mask adjacent to one of
8556 // the inputs, place the other input in it. We use (Index XOR 1) to
8557 // compute an adjacent index.
8558 if (!isWordClobbered(SourceHalfMask, InputsFixed[0]) &&
8559 SourceHalfMask[InputsFixed[0] ^ 1] == -1) {
8560 SourceHalfMask[InputsFixed[0]] = InputsFixed[0];
8561 SourceHalfMask[InputsFixed[0] ^ 1] = InputsFixed[1];
8562 InputsFixed[1] = InputsFixed[0] ^ 1;
8563 } else if (!isWordClobbered(SourceHalfMask, InputsFixed[1]) &&
8564 SourceHalfMask[InputsFixed[1] ^ 1] == -1) {
8565 SourceHalfMask[InputsFixed[1]] = InputsFixed[1];
8566 SourceHalfMask[InputsFixed[1] ^ 1] = InputsFixed[0];
8567 InputsFixed[0] = InputsFixed[1] ^ 1;
8568 } else if (SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1)] == -1 &&
8569 SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1) + 1] == -1) {
8570 // The two inputs are in the same DWord but it is clobbered and the
8571 // adjacent DWord isn't used at all. Move both inputs to the free
8573 SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1)] = InputsFixed[0];
8574 SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1) + 1] = InputsFixed[1];
8575 InputsFixed[0] = 2 * ((InputsFixed[0] / 2) ^ 1);
8576 InputsFixed[1] = 2 * ((InputsFixed[0] / 2) ^ 1) + 1;
8578 // The only way we hit this point is if there is no clobbering
8579 // (because there are no off-half inputs to this half) and there is no
8580 // free slot adjacent to one of the inputs. In this case, we have to
8581 // swap an input with a non-input.
8582 for (int i = 0; i < 4; ++i)
8583 assert((SourceHalfMask[i] == -1 || SourceHalfMask[i] == i) &&
8584 "We can't handle any clobbers here!");
8585 assert(InputsFixed[1] != (InputsFixed[0] ^ 1) &&
8586 "Cannot have adjacent inputs here!");
8588 SourceHalfMask[InputsFixed[0] ^ 1] = InputsFixed[1];
8589 SourceHalfMask[InputsFixed[1]] = InputsFixed[0] ^ 1;
8591 // We also have to update the final source mask in this case because
8592 // it may need to undo the above swap.
8593 for (int &M : FinalSourceHalfMask)
8594 if (M == (InputsFixed[0] ^ 1) + SourceOffset)
8595 M = InputsFixed[1] + SourceOffset;
8596 else if (M == InputsFixed[1] + SourceOffset)
8597 M = (InputsFixed[0] ^ 1) + SourceOffset;
8599 InputsFixed[1] = InputsFixed[0] ^ 1;
8602 // Point everything at the fixed inputs.
8603 for (int &M : HalfMask)
8604 if (M == IncomingInputs[0])
8605 M = InputsFixed[0] + SourceOffset;
8606 else if (M == IncomingInputs[1])
8607 M = InputsFixed[1] + SourceOffset;
8609 IncomingInputs[0] = InputsFixed[0] + SourceOffset;
8610 IncomingInputs[1] = InputsFixed[1] + SourceOffset;
8613 llvm_unreachable("Unhandled input size!");
8616 // Now hoist the DWord down to the right half.
8617 int FreeDWord = (PSHUFDMask[DestOffset / 2] == -1 ? 0 : 1) + DestOffset / 2;
8618 assert(PSHUFDMask[FreeDWord] == -1 && "DWord not free");
8619 PSHUFDMask[FreeDWord] = IncomingInputs[0] / 2;
8620 for (int &M : HalfMask)
8621 for (int Input : IncomingInputs)
8623 M = FreeDWord * 2 + Input % 2;
8625 moveInputsToRightHalf(HToLInputs, LToLInputs, PSHUFHMask, LoMask, HiMask,
8626 /*SourceOffset*/ 4, /*DestOffset*/ 0);
8627 moveInputsToRightHalf(LToHInputs, HToHInputs, PSHUFLMask, HiMask, LoMask,
8628 /*SourceOffset*/ 0, /*DestOffset*/ 4);
8630 // Now enact all the shuffles we've computed to move the inputs into their
8632 if (!isNoopShuffleMask(PSHUFLMask))
8633 V = DAG.getNode(X86ISD::PSHUFLW, DL, MVT::v8i16, V,
8634 getV4X86ShuffleImm8ForMask(PSHUFLMask, DAG));
8635 if (!isNoopShuffleMask(PSHUFHMask))
8636 V = DAG.getNode(X86ISD::PSHUFHW, DL, MVT::v8i16, V,
8637 getV4X86ShuffleImm8ForMask(PSHUFHMask, DAG));
8638 if (!isNoopShuffleMask(PSHUFDMask))
8639 V = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16,
8640 DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32,
8641 DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, V),
8642 getV4X86ShuffleImm8ForMask(PSHUFDMask, DAG)));
8644 // At this point, each half should contain all its inputs, and we can then
8645 // just shuffle them into their final position.
8646 assert(std::count_if(LoMask.begin(), LoMask.end(),
8647 [](int M) { return M >= 4; }) == 0 &&
8648 "Failed to lift all the high half inputs to the low mask!");
8649 assert(std::count_if(HiMask.begin(), HiMask.end(),
8650 [](int M) { return M >= 0 && M < 4; }) == 0 &&
8651 "Failed to lift all the low half inputs to the high mask!");
8653 // Do a half shuffle for the low mask.
8654 if (!isNoopShuffleMask(LoMask))
8655 V = DAG.getNode(X86ISD::PSHUFLW, DL, MVT::v8i16, V,
8656 getV4X86ShuffleImm8ForMask(LoMask, DAG));
8658 // Do a half shuffle with the high mask after shifting its values down.
8659 for (int &M : HiMask)
8662 if (!isNoopShuffleMask(HiMask))
8663 V = DAG.getNode(X86ISD::PSHUFHW, DL, MVT::v8i16, V,
8664 getV4X86ShuffleImm8ForMask(HiMask, DAG));
8669 /// \brief Detect whether the mask pattern should be lowered through
8672 /// This essentially tests whether viewing the mask as an interleaving of two
8673 /// sub-sequences reduces the cross-input traffic of a blend operation. If so,
8674 /// lowering it through interleaving is a significantly better strategy.
8675 static bool shouldLowerAsInterleaving(ArrayRef<int> Mask) {
8676 int NumEvenInputs[2] = {0, 0};
8677 int NumOddInputs[2] = {0, 0};
8678 int NumLoInputs[2] = {0, 0};
8679 int NumHiInputs[2] = {0, 0};
8680 for (int i = 0, Size = Mask.size(); i < Size; ++i) {
8684 int InputIdx = Mask[i] >= Size;
8687 ++NumLoInputs[InputIdx];
8689 ++NumHiInputs[InputIdx];
8692 ++NumEvenInputs[InputIdx];
8694 ++NumOddInputs[InputIdx];
8697 // The minimum number of cross-input results for both the interleaved and
8698 // split cases. If interleaving results in fewer cross-input results, return
8700 int InterleavedCrosses = std::min(NumEvenInputs[1] + NumOddInputs[0],
8701 NumEvenInputs[0] + NumOddInputs[1]);
8702 int SplitCrosses = std::min(NumLoInputs[1] + NumHiInputs[0],
8703 NumLoInputs[0] + NumHiInputs[1]);
8704 return InterleavedCrosses < SplitCrosses;
8707 /// \brief Blend two v8i16 vectors using a naive unpack strategy.
8709 /// This strategy only works when the inputs from each vector fit into a single
8710 /// half of that vector, and generally there are not so many inputs as to leave
8711 /// the in-place shuffles required highly constrained (and thus expensive). It
8712 /// shifts all the inputs into a single side of both input vectors and then
8713 /// uses an unpack to interleave these inputs in a single vector. At that
8714 /// point, we will fall back on the generic single input shuffle lowering.
8715 static SDValue lowerV8I16BasicBlendVectorShuffle(SDLoc DL, SDValue V1,
8717 MutableArrayRef<int> Mask,
8718 const X86Subtarget *Subtarget,
8719 SelectionDAG &DAG) {
8720 assert(V1.getSimpleValueType() == MVT::v8i16 && "Bad input type!");
8721 assert(V2.getSimpleValueType() == MVT::v8i16 && "Bad input type!");
8722 SmallVector<int, 3> LoV1Inputs, HiV1Inputs, LoV2Inputs, HiV2Inputs;
8723 for (int i = 0; i < 8; ++i)
8724 if (Mask[i] >= 0 && Mask[i] < 4)
8725 LoV1Inputs.push_back(i);
8726 else if (Mask[i] >= 4 && Mask[i] < 8)
8727 HiV1Inputs.push_back(i);
8728 else if (Mask[i] >= 8 && Mask[i] < 12)
8729 LoV2Inputs.push_back(i);
8730 else if (Mask[i] >= 12)
8731 HiV2Inputs.push_back(i);
8733 int NumV1Inputs = LoV1Inputs.size() + HiV1Inputs.size();
8734 int NumV2Inputs = LoV2Inputs.size() + HiV2Inputs.size();
8737 assert(NumV1Inputs > 0 && NumV1Inputs <= 3 && "At most 3 inputs supported");
8738 assert(NumV2Inputs > 0 && NumV2Inputs <= 3 && "At most 3 inputs supported");
8739 assert(NumV1Inputs + NumV2Inputs <= 4 && "At most 4 combined inputs");
8741 bool MergeFromLo = LoV1Inputs.size() + LoV2Inputs.size() >=
8742 HiV1Inputs.size() + HiV2Inputs.size();
8744 auto moveInputsToHalf = [&](SDValue V, ArrayRef<int> LoInputs,
8745 ArrayRef<int> HiInputs, bool MoveToLo,
8747 ArrayRef<int> GoodInputs = MoveToLo ? LoInputs : HiInputs;
8748 ArrayRef<int> BadInputs = MoveToLo ? HiInputs : LoInputs;
8749 if (BadInputs.empty())
8752 int MoveMask[] = {-1, -1, -1, -1, -1, -1, -1, -1};
8753 int MoveOffset = MoveToLo ? 0 : 4;
8755 if (GoodInputs.empty()) {
8756 for (int BadInput : BadInputs) {
8757 MoveMask[Mask[BadInput] % 4 + MoveOffset] = Mask[BadInput] - MaskOffset;
8758 Mask[BadInput] = Mask[BadInput] % 4 + MoveOffset + MaskOffset;
8761 if (GoodInputs.size() == 2) {
8762 // If the low inputs are spread across two dwords, pack them into
8764 MoveMask[MoveOffset] = Mask[GoodInputs[0]] - MaskOffset;
8765 MoveMask[MoveOffset + 1] = Mask[GoodInputs[1]] - MaskOffset;
8766 Mask[GoodInputs[0]] = MoveOffset + MaskOffset;
8767 Mask[GoodInputs[1]] = MoveOffset + 1 + MaskOffset;
8769 // Otherwise pin the good inputs.
8770 for (int GoodInput : GoodInputs)
8771 MoveMask[Mask[GoodInput] - MaskOffset] = Mask[GoodInput] - MaskOffset;
8774 if (BadInputs.size() == 2) {
8775 // If we have two bad inputs then there may be either one or two good
8776 // inputs fixed in place. Find a fixed input, and then find the *other*
8777 // two adjacent indices by using modular arithmetic.
8779 std::find_if(std::begin(MoveMask) + MoveOffset, std::end(MoveMask),
8780 [](int M) { return M >= 0; }) -
8781 std::begin(MoveMask);
8783 ((((GoodMaskIdx - MoveOffset) & ~1) + 2) % 4) + MoveOffset;
8784 assert(MoveMask[MoveMaskIdx] == -1 && "Expected empty slot");
8785 assert(MoveMask[MoveMaskIdx + 1] == -1 && "Expected empty slot");
8786 MoveMask[MoveMaskIdx] = Mask[BadInputs[0]] - MaskOffset;
8787 MoveMask[MoveMaskIdx + 1] = Mask[BadInputs[1]] - MaskOffset;
8788 Mask[BadInputs[0]] = MoveMaskIdx + MaskOffset;
8789 Mask[BadInputs[1]] = MoveMaskIdx + 1 + MaskOffset;
8791 assert(BadInputs.size() == 1 && "All sizes handled");
8792 int MoveMaskIdx = std::find(std::begin(MoveMask) + MoveOffset,
8793 std::end(MoveMask), -1) -
8794 std::begin(MoveMask);
8795 MoveMask[MoveMaskIdx] = Mask[BadInputs[0]] - MaskOffset;
8796 Mask[BadInputs[0]] = MoveMaskIdx + MaskOffset;
8800 return DAG.getVectorShuffle(MVT::v8i16, DL, V, DAG.getUNDEF(MVT::v8i16),
8803 V1 = moveInputsToHalf(V1, LoV1Inputs, HiV1Inputs, MergeFromLo,
8805 V2 = moveInputsToHalf(V2, LoV2Inputs, HiV2Inputs, MergeFromLo,
8808 // FIXME: Select an interleaving of the merge of V1 and V2 that minimizes
8809 // cross-half traffic in the final shuffle.
8811 // Munge the mask to be a single-input mask after the unpack merges the
8815 M = 2 * (M % 4) + (M / 8);
8817 return DAG.getVectorShuffle(
8818 MVT::v8i16, DL, DAG.getNode(MergeFromLo ? X86ISD::UNPCKL : X86ISD::UNPCKH,
8819 DL, MVT::v8i16, V1, V2),
8820 DAG.getUNDEF(MVT::v8i16), Mask);
8823 /// \brief Generic lowering of 8-lane i16 shuffles.
8825 /// This handles both single-input shuffles and combined shuffle/blends with
8826 /// two inputs. The single input shuffles are immediately delegated to
8827 /// a dedicated lowering routine.
8829 /// The blends are lowered in one of three fundamental ways. If there are few
8830 /// enough inputs, it delegates to a basic UNPCK-based strategy. If the shuffle
8831 /// of the input is significantly cheaper when lowered as an interleaving of
8832 /// the two inputs, try to interleave them. Otherwise, blend the low and high
8833 /// halves of the inputs separately (making them have relatively few inputs)
8834 /// and then concatenate them.
8835 static SDValue lowerV8I16VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
8836 const X86Subtarget *Subtarget,
8837 SelectionDAG &DAG) {
8839 assert(Op.getSimpleValueType() == MVT::v8i16 && "Bad shuffle type!");
8840 assert(V1.getSimpleValueType() == MVT::v8i16 && "Bad operand type!");
8841 assert(V2.getSimpleValueType() == MVT::v8i16 && "Bad operand type!");
8842 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
8843 ArrayRef<int> OrigMask = SVOp->getMask();
8844 int MaskStorage[8] = {OrigMask[0], OrigMask[1], OrigMask[2], OrigMask[3],
8845 OrigMask[4], OrigMask[5], OrigMask[6], OrigMask[7]};
8846 MutableArrayRef<int> Mask(MaskStorage);
8848 assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
8850 // Whenever we can lower this as a zext, that instruction is strictly faster
8851 // than any alternative.
8852 if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(
8853 DL, MVT::v8i16, V1, V2, OrigMask, Subtarget, DAG))
8856 auto isV1 = [](int M) { return M >= 0 && M < 8; };
8857 auto isV2 = [](int M) { return M >= 8; };
8859 int NumV1Inputs = std::count_if(Mask.begin(), Mask.end(), isV1);
8860 int NumV2Inputs = std::count_if(Mask.begin(), Mask.end(), isV2);
8862 if (NumV2Inputs == 0)
8863 return lowerV8I16SingleInputVectorShuffle(DL, V1, Mask, Subtarget, DAG);
8865 assert(NumV1Inputs > 0 && "All single-input shuffles should be canonicalized "
8866 "to be V1-input shuffles.");
8868 // There are special ways we can lower some single-element blends.
8869 if (NumV2Inputs == 1)
8870 if (SDValue V = lowerVectorShuffleAsElementInsertion(MVT::v8i16, DL, V1, V2,
8871 Mask, Subtarget, DAG))
8874 if (Subtarget->hasSSE41())
8875 if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8i16, V1, V2, Mask,
8879 // Try to use rotation instructions if available.
8880 if (Subtarget->hasSSSE3())
8881 if (SDValue Rotate = lowerVectorShuffleAsByteRotate(DL, MVT::v8i16, V1, V2, Mask, DAG))
8884 if (NumV1Inputs + NumV2Inputs <= 4)
8885 return lowerV8I16BasicBlendVectorShuffle(DL, V1, V2, Mask, Subtarget, DAG);
8887 // Check whether an interleaving lowering is likely to be more efficient.
8888 // This isn't perfect but it is a strong heuristic that tends to work well on
8889 // the kinds of shuffles that show up in practice.
8891 // FIXME: Handle 1x, 2x, and 4x interleaving.
8892 if (shouldLowerAsInterleaving(Mask)) {
8893 // FIXME: Figure out whether we should pack these into the low or high
8896 int EMask[8], OMask[8];
8897 for (int i = 0; i < 4; ++i) {
8898 EMask[i] = Mask[2*i];
8899 OMask[i] = Mask[2*i + 1];
8904 SDValue Evens = DAG.getVectorShuffle(MVT::v8i16, DL, V1, V2, EMask);
8905 SDValue Odds = DAG.getVectorShuffle(MVT::v8i16, DL, V1, V2, OMask);
8907 return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8i16, Evens, Odds);
8910 int LoBlendMask[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
8911 int HiBlendMask[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
8913 for (int i = 0; i < 4; ++i) {
8914 LoBlendMask[i] = Mask[i];
8915 HiBlendMask[i] = Mask[i + 4];
8918 SDValue LoV = DAG.getVectorShuffle(MVT::v8i16, DL, V1, V2, LoBlendMask);
8919 SDValue HiV = DAG.getVectorShuffle(MVT::v8i16, DL, V1, V2, HiBlendMask);
8920 LoV = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, LoV);
8921 HiV = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, HiV);
8923 return DAG.getNode(ISD::BITCAST, DL, MVT::v8i16,
8924 DAG.getNode(X86ISD::UNPCKL, DL, MVT::v2i64, LoV, HiV));
8927 /// \brief Check whether a compaction lowering can be done by dropping even
8928 /// elements and compute how many times even elements must be dropped.
8930 /// This handles shuffles which take every Nth element where N is a power of
8931 /// two. Example shuffle masks:
8933 /// N = 1: 0, 2, 4, 6, 8, 10, 12, 14, 0, 2, 4, 6, 8, 10, 12, 14
8934 /// N = 1: 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30
8935 /// N = 2: 0, 4, 8, 12, 0, 4, 8, 12, 0, 4, 8, 12, 0, 4, 8, 12
8936 /// N = 2: 0, 4, 8, 12, 16, 20, 24, 28, 0, 4, 8, 12, 16, 20, 24, 28
8937 /// N = 3: 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8
8938 /// N = 3: 0, 8, 16, 24, 0, 8, 16, 24, 0, 8, 16, 24, 0, 8, 16, 24
8940 /// Any of these lanes can of course be undef.
8942 /// This routine only supports N <= 3.
8943 /// FIXME: Evaluate whether either AVX or AVX-512 have any opportunities here
8946 /// \returns N above, or the number of times even elements must be dropped if
8947 /// there is such a number. Otherwise returns zero.
8948 static int canLowerByDroppingEvenElements(ArrayRef<int> Mask) {
8949 // Figure out whether we're looping over two inputs or just one.
8950 bool IsSingleInput = isSingleInputShuffleMask(Mask);
8952 // The modulus for the shuffle vector entries is based on whether this is
8953 // a single input or not.
8954 int ShuffleModulus = Mask.size() * (IsSingleInput ? 1 : 2);
8955 assert(isPowerOf2_32((uint32_t)ShuffleModulus) &&
8956 "We should only be called with masks with a power-of-2 size!");
8958 uint64_t ModMask = (uint64_t)ShuffleModulus - 1;
8960 // We track whether the input is viable for all power-of-2 strides 2^1, 2^2,
8961 // and 2^3 simultaneously. This is because we may have ambiguity with
8962 // partially undef inputs.
8963 bool ViableForN[3] = {true, true, true};
8965 for (int i = 0, e = Mask.size(); i < e; ++i) {
8966 // Ignore undef lanes, we'll optimistically collapse them to the pattern we
8971 bool IsAnyViable = false;
8972 for (unsigned j = 0; j != array_lengthof(ViableForN); ++j)
8973 if (ViableForN[j]) {
8976 // The shuffle mask must be equal to (i * 2^N) % M.
8977 if ((uint64_t)Mask[i] == (((uint64_t)i << N) & ModMask))
8980 ViableForN[j] = false;
8982 // Early exit if we exhaust the possible powers of two.
8987 for (unsigned j = 0; j != array_lengthof(ViableForN); ++j)
8991 // Return 0 as there is no viable power of two.
8995 /// \brief Generic lowering of v16i8 shuffles.
8997 /// This is a hybrid strategy to lower v16i8 vectors. It first attempts to
8998 /// detect any complexity reducing interleaving. If that doesn't help, it uses
8999 /// UNPCK to spread the i8 elements across two i16-element vectors, and uses
9000 /// the existing lowering for v8i16 blends on each half, finally PACK-ing them
9002 static SDValue lowerV16I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
9003 const X86Subtarget *Subtarget,
9004 SelectionDAG &DAG) {
9006 assert(Op.getSimpleValueType() == MVT::v16i8 && "Bad shuffle type!");
9007 assert(V1.getSimpleValueType() == MVT::v16i8 && "Bad operand type!");
9008 assert(V2.getSimpleValueType() == MVT::v16i8 && "Bad operand type!");
9009 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9010 ArrayRef<int> OrigMask = SVOp->getMask();
9011 assert(OrigMask.size() == 16 && "Unexpected mask size for v16 shuffle!");
9013 // Try to use rotation instructions if available.
9014 if (Subtarget->hasSSSE3())
9015 if (SDValue Rotate = lowerVectorShuffleAsByteRotate(DL, MVT::v16i8, V1, V2,
9019 // Try to use a zext lowering.
9020 if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(
9021 DL, MVT::v16i8, V1, V2, OrigMask, Subtarget, DAG))
9024 int MaskStorage[16] = {
9025 OrigMask[0], OrigMask[1], OrigMask[2], OrigMask[3],
9026 OrigMask[4], OrigMask[5], OrigMask[6], OrigMask[7],
9027 OrigMask[8], OrigMask[9], OrigMask[10], OrigMask[11],
9028 OrigMask[12], OrigMask[13], OrigMask[14], OrigMask[15]};
9029 MutableArrayRef<int> Mask(MaskStorage);
9030 MutableArrayRef<int> LoMask = Mask.slice(0, 8);
9031 MutableArrayRef<int> HiMask = Mask.slice(8, 8);
9034 std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 16; });
9036 // For single-input shuffles, there are some nicer lowering tricks we can use.
9037 if (NumV2Elements == 0) {
9038 // Check whether we can widen this to an i16 shuffle by duplicating bytes.
9039 // Notably, this handles splat and partial-splat shuffles more efficiently.
9040 // However, it only makes sense if the pre-duplication shuffle simplifies
9041 // things significantly. Currently, this means we need to be able to
9042 // express the pre-duplication shuffle as an i16 shuffle.
9044 // FIXME: We should check for other patterns which can be widened into an
9045 // i16 shuffle as well.
9046 auto canWidenViaDuplication = [](ArrayRef<int> Mask) {
9047 for (int i = 0; i < 16; i += 2)
9048 if (Mask[i] != -1 && Mask[i + 1] != -1 && Mask[i] != Mask[i + 1])
9053 auto tryToWidenViaDuplication = [&]() -> SDValue {
9054 if (!canWidenViaDuplication(Mask))
9056 SmallVector<int, 4> LoInputs;
9057 std::copy_if(Mask.begin(), Mask.end(), std::back_inserter(LoInputs),
9058 [](int M) { return M >= 0 && M < 8; });
9059 std::sort(LoInputs.begin(), LoInputs.end());
9060 LoInputs.erase(std::unique(LoInputs.begin(), LoInputs.end()),
9062 SmallVector<int, 4> HiInputs;
9063 std::copy_if(Mask.begin(), Mask.end(), std::back_inserter(HiInputs),
9064 [](int M) { return M >= 8; });
9065 std::sort(HiInputs.begin(), HiInputs.end());
9066 HiInputs.erase(std::unique(HiInputs.begin(), HiInputs.end()),
9069 bool TargetLo = LoInputs.size() >= HiInputs.size();
9070 ArrayRef<int> InPlaceInputs = TargetLo ? LoInputs : HiInputs;
9071 ArrayRef<int> MovingInputs = TargetLo ? HiInputs : LoInputs;
9073 int PreDupI16Shuffle[] = {-1, -1, -1, -1, -1, -1, -1, -1};
9074 SmallDenseMap<int, int, 8> LaneMap;
9075 for (int I : InPlaceInputs) {
9076 PreDupI16Shuffle[I/2] = I/2;
9079 int j = TargetLo ? 0 : 4, je = j + 4;
9080 for (int i = 0, ie = MovingInputs.size(); i < ie; ++i) {
9081 // Check if j is already a shuffle of this input. This happens when
9082 // there are two adjacent bytes after we move the low one.
9083 if (PreDupI16Shuffle[j] != MovingInputs[i] / 2) {
9084 // If we haven't yet mapped the input, search for a slot into which
9086 while (j < je && PreDupI16Shuffle[j] != -1)
9090 // We can't place the inputs into a single half with a simple i16 shuffle, so bail.
9093 // Map this input with the i16 shuffle.
9094 PreDupI16Shuffle[j] = MovingInputs[i] / 2;
9097 // Update the lane map based on the mapping we ended up with.
9098 LaneMap[MovingInputs[i]] = 2 * j + MovingInputs[i] % 2;
9101 ISD::BITCAST, DL, MVT::v16i8,
9102 DAG.getVectorShuffle(MVT::v8i16, DL,
9103 DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V1),
9104 DAG.getUNDEF(MVT::v8i16), PreDupI16Shuffle));
9106 // Unpack the bytes to form the i16s that will be shuffled into place.
9107 V1 = DAG.getNode(TargetLo ? X86ISD::UNPCKL : X86ISD::UNPCKH, DL,
9108 MVT::v16i8, V1, V1);
9110 int PostDupI16Shuffle[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
9111 for (int i = 0; i < 16; ++i)
9112 if (Mask[i] != -1) {
9113 int MappedMask = LaneMap[Mask[i]] - (TargetLo ? 0 : 8);
9114 assert(MappedMask < 8 && "Invalid v8 shuffle mask!");
9115 if (PostDupI16Shuffle[i / 2] == -1)
9116 PostDupI16Shuffle[i / 2] = MappedMask;
9118 assert(PostDupI16Shuffle[i / 2] == MappedMask &&
9119 "Conflicting entrties in the original shuffle!");
9122 ISD::BITCAST, DL, MVT::v16i8,
9123 DAG.getVectorShuffle(MVT::v8i16, DL,
9124 DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V1),
9125 DAG.getUNDEF(MVT::v8i16), PostDupI16Shuffle));
9127 if (SDValue V = tryToWidenViaDuplication())
9131 // Check whether an interleaving lowering is likely to be more efficient.
9132 // This isn't perfect but it is a strong heuristic that tends to work well on
9133 // the kinds of shuffles that show up in practice.
9135 // FIXME: We need to handle other interleaving widths (i16, i32, ...).
9136 if (shouldLowerAsInterleaving(Mask)) {
9137 // FIXME: Figure out whether we should pack these into the low or high
9140 int EMask[16], OMask[16];
9141 for (int i = 0; i < 8; ++i) {
9142 EMask[i] = Mask[2*i];
9143 OMask[i] = Mask[2*i + 1];
9148 SDValue Evens = DAG.getVectorShuffle(MVT::v16i8, DL, V1, V2, EMask);
9149 SDValue Odds = DAG.getVectorShuffle(MVT::v16i8, DL, V1, V2, OMask);
9151 return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16i8, Evens, Odds);
9154 // Check for SSSE3 which lets us lower all v16i8 shuffles much more directly
9155 // with PSHUFB. It is important to do this before we attempt to generate any
9156 // blends but after all of the single-input lowerings. If the single input
9157 // lowerings can find an instruction sequence that is faster than a PSHUFB, we
9158 // want to preserve that and we can DAG combine any longer sequences into
9159 // a PSHUFB in the end. But once we start blending from multiple inputs,
9160 // the complexity of DAG combining bad patterns back into PSHUFB is too high,
9161 // and there are *very* few patterns that would actually be faster than the
9162 // PSHUFB approach because of its ability to zero lanes.
9164 // FIXME: The only exceptions to the above are blends which are exact
9165 // interleavings with direct instructions supporting them. We currently don't
9166 // handle those well here.
9167 if (Subtarget->hasSSSE3()) {
9170 for (int i = 0; i < 16; ++i)
9171 if (Mask[i] == -1) {
9172 V1Mask[i] = V2Mask[i] = DAG.getUNDEF(MVT::i8);
9174 V1Mask[i] = DAG.getConstant(Mask[i] < 16 ? Mask[i] : 0x80, MVT::i8);
9176 DAG.getConstant(Mask[i] < 16 ? 0x80 : Mask[i] - 16, MVT::i8);
9178 V1 = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8, V1,
9179 DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v16i8, V1Mask));
9180 if (isSingleInputShuffleMask(Mask))
9181 return V1; // Single inputs are easy.
9183 // Otherwise, blend the two.
9184 V2 = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8, V2,
9185 DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v16i8, V2Mask));
9186 return DAG.getNode(ISD::OR, DL, MVT::v16i8, V1, V2);
9189 // There are special ways we can lower some single-element blends.
9190 if (NumV2Elements == 1)
9191 if (SDValue V = lowerVectorShuffleAsElementInsertion(MVT::v16i8, DL, V1, V2,
9192 Mask, Subtarget, DAG))
9195 // Check whether a compaction lowering can be done. This handles shuffles
9196 // which take every Nth element for some even N. See the helper function for
9199 // We special case these as they can be particularly efficiently handled with
9200 // the PACKUSB instruction on x86 and they show up in common patterns of
9201 // rearranging bytes to truncate wide elements.
9202 if (int NumEvenDrops = canLowerByDroppingEvenElements(Mask)) {
9203 // NumEvenDrops is the power of two stride of the elements. Another way of
9204 // thinking about it is that we need to drop the even elements this many
9205 // times to get the original input.
9206 bool IsSingleInput = isSingleInputShuffleMask(Mask);
9208 // First we need to zero all the dropped bytes.
9209 assert(NumEvenDrops <= 3 &&
9210 "No support for dropping even elements more than 3 times.");
9211 // We use the mask type to pick which bytes are preserved based on how many
9212 // elements are dropped.
9213 MVT MaskVTs[] = { MVT::v8i16, MVT::v4i32, MVT::v2i64 };
9214 SDValue ByteClearMask =
9215 DAG.getNode(ISD::BITCAST, DL, MVT::v16i8,
9216 DAG.getConstant(0xFF, MaskVTs[NumEvenDrops - 1]));
9217 V1 = DAG.getNode(ISD::AND, DL, MVT::v16i8, V1, ByteClearMask);
9219 V2 = DAG.getNode(ISD::AND, DL, MVT::v16i8, V2, ByteClearMask);
9221 // Now pack things back together.
9222 V1 = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V1);
9223 V2 = IsSingleInput ? V1 : DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V2);
9224 SDValue Result = DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, V1, V2);
9225 for (int i = 1; i < NumEvenDrops; ++i) {
9226 Result = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, Result);
9227 Result = DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, Result, Result);
9233 int V1LoBlendMask[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
9234 int V1HiBlendMask[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
9235 int V2LoBlendMask[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
9236 int V2HiBlendMask[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
9238 auto buildBlendMasks = [](MutableArrayRef<int> HalfMask,
9239 MutableArrayRef<int> V1HalfBlendMask,
9240 MutableArrayRef<int> V2HalfBlendMask) {
9241 for (int i = 0; i < 8; ++i)
9242 if (HalfMask[i] >= 0 && HalfMask[i] < 16) {
9243 V1HalfBlendMask[i] = HalfMask[i];
9245 } else if (HalfMask[i] >= 16) {
9246 V2HalfBlendMask[i] = HalfMask[i] - 16;
9247 HalfMask[i] = i + 8;
9250 buildBlendMasks(LoMask, V1LoBlendMask, V2LoBlendMask);
9251 buildBlendMasks(HiMask, V1HiBlendMask, V2HiBlendMask);
9253 SDValue Zero = getZeroVector(MVT::v8i16, Subtarget, DAG, DL);
9255 auto buildLoAndHiV8s = [&](SDValue V, MutableArrayRef<int> LoBlendMask,
9256 MutableArrayRef<int> HiBlendMask) {
9258 // Check if any of the odd lanes in the v16i8 are used. If not, we can mask
9259 // them out and avoid using UNPCK{L,H} to extract the elements of V as
9261 if (std::none_of(LoBlendMask.begin(), LoBlendMask.end(),
9262 [](int M) { return M >= 0 && M % 2 == 1; }) &&
9263 std::none_of(HiBlendMask.begin(), HiBlendMask.end(),
9264 [](int M) { return M >= 0 && M % 2 == 1; })) {
9265 // Use a mask to drop the high bytes.
9266 V1 = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V);
9267 V1 = DAG.getNode(ISD::AND, DL, MVT::v8i16, V1,
9268 DAG.getConstant(0x00FF, MVT::v8i16));
9270 // This will be a single vector shuffle instead of a blend so nuke V2.
9271 V2 = DAG.getUNDEF(MVT::v8i16);
9273 // Squash the masks to point directly into V1.
9274 for (int &M : LoBlendMask)
9277 for (int &M : HiBlendMask)
9281 // Otherwise just unpack the low half of V into V1 and the high half into
9282 // V2 so that we can blend them as i16s.
9283 V1 = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16,
9284 DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16i8, V, Zero));
9285 V2 = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16,
9286 DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16i8, V, Zero));
9289 SDValue BlendedLo = DAG.getVectorShuffle(MVT::v8i16, DL, V1, V2, LoBlendMask);
9290 SDValue BlendedHi = DAG.getVectorShuffle(MVT::v8i16, DL, V1, V2, HiBlendMask);
9291 return std::make_pair(BlendedLo, BlendedHi);
9293 SDValue V1Lo, V1Hi, V2Lo, V2Hi;
9294 std::tie(V1Lo, V1Hi) = buildLoAndHiV8s(V1, V1LoBlendMask, V1HiBlendMask);
9295 std::tie(V2Lo, V2Hi) = buildLoAndHiV8s(V2, V2LoBlendMask, V2HiBlendMask);
9297 SDValue LoV = DAG.getVectorShuffle(MVT::v8i16, DL, V1Lo, V2Lo, LoMask);
9298 SDValue HiV = DAG.getVectorShuffle(MVT::v8i16, DL, V1Hi, V2Hi, HiMask);
9300 return DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, LoV, HiV);
9303 /// \brief Dispatching routine to lower various 128-bit x86 vector shuffles.
9305 /// This routine breaks down the specific type of 128-bit shuffle and
9306 /// dispatches to the lowering routines accordingly.
9307 static SDValue lower128BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2,
9308 MVT VT, const X86Subtarget *Subtarget,
9309 SelectionDAG &DAG) {
9310 switch (VT.SimpleTy) {
9312 return lowerV2I64VectorShuffle(Op, V1, V2, Subtarget, DAG);
9314 return lowerV2F64VectorShuffle(Op, V1, V2, Subtarget, DAG);
9316 return lowerV4I32VectorShuffle(Op, V1, V2, Subtarget, DAG);
9318 return lowerV4F32VectorShuffle(Op, V1, V2, Subtarget, DAG);
9320 return lowerV8I16VectorShuffle(Op, V1, V2, Subtarget, DAG);
9322 return lowerV16I8VectorShuffle(Op, V1, V2, Subtarget, DAG);
9325 llvm_unreachable("Unimplemented!");
9329 /// \brief Generic routine to split a 256-bit vector shuffle into 128-bit
9332 /// There is a severely limited set of shuffles available in AVX1 for 256-bit
9333 /// vectors resulting in routinely needing to split the shuffle into two 128-bit
9334 /// shuffles. This can be done generically for any 256-bit vector shuffle and so
9335 /// we encode the logic here for specific shuffle lowering routines to bail to
9336 /// when they exhaust the features avaible to more directly handle the shuffle.
9337 static SDValue splitAndLower256BitVectorShuffle(SDLoc DL, MVT VT, SDValue V1,
9338 SDValue V2, ArrayRef<int> Mask,
9339 SelectionDAG &DAG) {
9340 assert(VT.getSizeInBits() == 256 && "Only for 256-bit vector shuffles!");
9341 assert(V1.getSimpleValueType() == VT && "Bad operand type!");
9342 assert(V2.getSimpleValueType() == VT && "Bad operand type!");
9344 ArrayRef<int> LoMask = Mask.slice(0, Mask.size()/2);
9345 ArrayRef<int> HiMask = Mask.slice(Mask.size()/2);
9347 int NumElements = VT.getVectorNumElements();
9348 int SplitNumElements = NumElements / 2;
9349 MVT ScalarVT = VT.getScalarType();
9350 MVT SplitVT = MVT::getVectorVT(ScalarVT, NumElements / 2);
9352 SDValue LoV1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, V1,
9353 DAG.getIntPtrConstant(0));
9354 SDValue HiV1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, V1,
9355 DAG.getIntPtrConstant(SplitNumElements));
9356 SDValue LoV2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, V2,
9357 DAG.getIntPtrConstant(0));
9358 SDValue HiV2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, V2,
9359 DAG.getIntPtrConstant(SplitNumElements));
9361 // Now create two 4-way blends of these half-width vectors.
9362 auto HalfBlend = [&](ArrayRef<int> HalfMask) {
9363 SmallVector<int, 16> V1BlendMask, V2BlendMask, BlendMask;
9364 for (int i = 0; i < SplitNumElements; ++i) {
9365 int M = HalfMask[i];
9366 if (M >= NumElements) {
9367 V2BlendMask.push_back(M - NumElements);
9368 V1BlendMask.push_back(-1);
9369 BlendMask.push_back(SplitNumElements + i);
9370 } else if (M >= 0) {
9371 V2BlendMask.push_back(-1);
9372 V1BlendMask.push_back(M);
9373 BlendMask.push_back(i);
9375 V2BlendMask.push_back(-1);
9376 V1BlendMask.push_back(-1);
9377 BlendMask.push_back(-1);
9380 SDValue V1Blend = DAG.getVectorShuffle(SplitVT, DL, LoV1, HiV1, V1BlendMask);
9381 SDValue V2Blend = DAG.getVectorShuffle(SplitVT, DL, LoV2, HiV2, V2BlendMask);
9382 return DAG.getVectorShuffle(SplitVT, DL, V1Blend, V2Blend, BlendMask);
9384 SDValue Lo = HalfBlend(LoMask);
9385 SDValue Hi = HalfBlend(HiMask);
9386 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
9389 /// \brief Lower a vector shuffle crossing multiple 128-bit lanes as
9390 /// a permutation and blend of those lanes.
9392 /// This essentially blends the out-of-lane inputs to each lane into the lane
9393 /// from a permuted copy of the vector. This lowering strategy results in four
9394 /// instructions in the worst case for a single-input cross lane shuffle which
9395 /// is lower than any other fully general cross-lane shuffle strategy I'm aware
9396 /// of. Special cases for each particular shuffle pattern should be handled
9397 /// prior to trying this lowering.
9398 static SDValue lowerVectorShuffleAsLanePermuteAndBlend(SDLoc DL, MVT VT,
9399 SDValue V1, SDValue V2,
9401 SelectionDAG &DAG) {
9402 // FIXME: This should probably be generalized for 512-bit vectors as well.
9403 assert(VT.getSizeInBits() == 256 && "Only for 256-bit vector shuffles!");
9404 int LaneSize = Mask.size() / 2;
9406 // If there are only inputs from one 128-bit lane, splitting will in fact be
9407 // less expensive. The flags track wether the given lane contains an element
9408 // that crosses to another lane.
9409 bool LaneCrossing[2] = {false, false};
9410 for (int i = 0, Size = Mask.size(); i < Size; ++i)
9411 if (Mask[i] >= 0 && (Mask[i] % Size) / LaneSize != i / LaneSize)
9412 LaneCrossing[(Mask[i] % Size) / LaneSize] = true;
9413 if (!LaneCrossing[0] || !LaneCrossing[1])
9414 return splitAndLower256BitVectorShuffle(DL, VT, V1, V2, Mask, DAG);
9416 if (isSingleInputShuffleMask(Mask)) {
9417 SmallVector<int, 32> FlippedBlendMask;
9418 for (int i = 0, Size = Mask.size(); i < Size; ++i)
9419 FlippedBlendMask.push_back(
9420 Mask[i] < 0 ? -1 : (((Mask[i] % Size) / LaneSize == i / LaneSize)
9422 : Mask[i] % LaneSize +
9423 (i / LaneSize) * LaneSize + Size));
9425 // Flip the vector, and blend the results which should now be in-lane. The
9426 // VPERM2X128 mask uses the low 2 bits for the low source and bits 4 and
9427 // 5 for the high source. The value 3 selects the high half of source 2 and
9428 // the value 2 selects the low half of source 2. We only use source 2 to
9429 // allow folding it into a memory operand.
9430 unsigned PERMMask = 3 | 2 << 4;
9431 SDValue Flipped = DAG.getNode(X86ISD::VPERM2X128, DL, VT, DAG.getUNDEF(VT),
9432 V1, DAG.getConstant(PERMMask, MVT::i8));
9433 return DAG.getVectorShuffle(VT, DL, V1, Flipped, FlippedBlendMask);
9436 // This now reduces to two single-input shuffles of V1 and V2 which at worst
9437 // will be handled by the above logic and a blend of the results, much like
9438 // other patterns in AVX.
9439 return lowerVectorShuffleAsDecomposedShuffleBlend(DL, VT, V1, V2, Mask, DAG);
9442 /// \brief Handle lowering of 4-lane 64-bit floating point shuffles.
9444 /// Also ends up handling lowering of 4-lane 64-bit integer shuffles when AVX2
9445 /// isn't available.
9446 static SDValue lowerV4F64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
9447 const X86Subtarget *Subtarget,
9448 SelectionDAG &DAG) {
9450 assert(V1.getSimpleValueType() == MVT::v4f64 && "Bad operand type!");
9451 assert(V2.getSimpleValueType() == MVT::v4f64 && "Bad operand type!");
9452 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9453 ArrayRef<int> Mask = SVOp->getMask();
9454 assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
9456 if (isSingleInputShuffleMask(Mask)) {
9457 if (!is128BitLaneCrossingShuffleMask(MVT::v4f64, Mask)) {
9458 // Non-half-crossing single input shuffles can be lowerid with an
9459 // interleaved permutation.
9460 unsigned VPERMILPMask = (Mask[0] == 1) | ((Mask[1] == 1) << 1) |
9461 ((Mask[2] == 3) << 2) | ((Mask[3] == 3) << 3);
9462 return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v4f64, V1,
9463 DAG.getConstant(VPERMILPMask, MVT::i8));
9466 // With AVX2 we have direct support for this permutation.
9467 if (Subtarget->hasAVX2())
9468 return DAG.getNode(X86ISD::VPERMI, DL, MVT::v4f64, V1,
9469 getV4X86ShuffleImm8ForMask(Mask, DAG));
9471 // Otherwise, fall back.
9472 return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v4f64, V1, V2, Mask,
9476 // X86 has dedicated unpack instructions that can handle specific blend
9477 // operations: UNPCKH and UNPCKL.
9478 if (isShuffleEquivalent(Mask, 0, 4, 2, 6))
9479 return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v4f64, V1, V2);
9480 if (isShuffleEquivalent(Mask, 1, 5, 3, 7))
9481 return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v4f64, V1, V2);
9483 // If we have a single input to the zero element, insert that into V1 if we
9484 // can do so cheaply.
9486 std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; });
9487 if (NumV2Elements == 1 && Mask[0] >= 4)
9488 if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
9489 MVT::v4f64, DL, V1, V2, Mask, Subtarget, DAG))
9492 if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4f64, V1, V2, Mask,
9496 // Check if the blend happens to exactly fit that of SHUFPD.
9497 if ((Mask[0] == -1 || Mask[0] < 2) &&
9498 (Mask[1] == -1 || (Mask[1] >= 4 && Mask[1] < 6)) &&
9499 (Mask[2] == -1 || (Mask[2] >= 2 && Mask[2] < 4)) &&
9500 (Mask[3] == -1 || Mask[3] >= 6)) {
9501 unsigned SHUFPDMask = (Mask[0] == 1) | ((Mask[1] == 5) << 1) |
9502 ((Mask[2] == 3) << 2) | ((Mask[3] == 7) << 3);
9503 return DAG.getNode(X86ISD::SHUFP, DL, MVT::v4f64, V1, V2,
9504 DAG.getConstant(SHUFPDMask, MVT::i8));
9506 if ((Mask[0] == -1 || (Mask[0] >= 4 && Mask[0] < 6)) &&
9507 (Mask[1] == -1 || Mask[1] < 2) &&
9508 (Mask[2] == -1 || Mask[2] >= 6) &&
9509 (Mask[3] == -1 || (Mask[3] >= 2 && Mask[3] < 4))) {
9510 unsigned SHUFPDMask = (Mask[0] == 5) | ((Mask[1] == 1) << 1) |
9511 ((Mask[2] == 7) << 2) | ((Mask[3] == 3) << 3);
9512 return DAG.getNode(X86ISD::SHUFP, DL, MVT::v4f64, V2, V1,
9513 DAG.getConstant(SHUFPDMask, MVT::i8));
9516 // Otherwise fall back on generic blend lowering.
9517 return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v4f64, V1, V2,
9521 /// \brief Handle lowering of 4-lane 64-bit integer shuffles.
9523 /// This routine is only called when we have AVX2 and thus a reasonable
9524 /// instruction set for v4i64 shuffling..
9525 static SDValue lowerV4I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
9526 const X86Subtarget *Subtarget,
9527 SelectionDAG &DAG) {
9529 assert(V1.getSimpleValueType() == MVT::v4i64 && "Bad operand type!");
9530 assert(V2.getSimpleValueType() == MVT::v4i64 && "Bad operand type!");
9531 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9532 ArrayRef<int> Mask = SVOp->getMask();
9533 assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
9534 assert(Subtarget->hasAVX2() && "We can only lower v4i64 with AVX2!");
9536 if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4i64, V1, V2, Mask,
9540 // When the shuffle is mirrored between the 128-bit lanes of the unit, we can
9541 // use lower latency instructions that will operate on both 128-bit lanes.
9542 SmallVector<int, 2> RepeatedMask;
9543 if (is128BitLaneRepeatedShuffleMask(MVT::v4i64, Mask, RepeatedMask)) {
9544 if (isSingleInputShuffleMask(Mask)) {
9545 int PSHUFDMask[] = {-1, -1, -1, -1};
9546 for (int i = 0; i < 2; ++i)
9547 if (RepeatedMask[i] >= 0) {
9548 PSHUFDMask[2 * i] = 2 * RepeatedMask[i];
9549 PSHUFDMask[2 * i + 1] = 2 * RepeatedMask[i] + 1;
9552 ISD::BITCAST, DL, MVT::v4i64,
9553 DAG.getNode(X86ISD::PSHUFD, DL, MVT::v8i32,
9554 DAG.getNode(ISD::BITCAST, DL, MVT::v8i32, V1),
9555 getV4X86ShuffleImm8ForMask(PSHUFDMask, DAG)));
9558 // Use dedicated unpack instructions for masks that match their pattern.
9559 if (isShuffleEquivalent(Mask, 0, 4, 2, 6))
9560 return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v4i64, V1, V2);
9561 if (isShuffleEquivalent(Mask, 1, 5, 3, 7))
9562 return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v4i64, V1, V2);
9565 // AVX2 provides a direct instruction for permuting a single input across
9567 if (isSingleInputShuffleMask(Mask))
9568 return DAG.getNode(X86ISD::VPERMI, DL, MVT::v4i64, V1,
9569 getV4X86ShuffleImm8ForMask(Mask, DAG));
9571 // Otherwise fall back on generic blend lowering.
9572 return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v4i64, V1, V2,
9576 /// \brief Handle lowering of 8-lane 32-bit floating point shuffles.
9578 /// Also ends up handling lowering of 8-lane 32-bit integer shuffles when AVX2
9579 /// isn't available.
9580 static SDValue lowerV8F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
9581 const X86Subtarget *Subtarget,
9582 SelectionDAG &DAG) {
9584 assert(V1.getSimpleValueType() == MVT::v8f32 && "Bad operand type!");
9585 assert(V2.getSimpleValueType() == MVT::v8f32 && "Bad operand type!");
9586 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9587 ArrayRef<int> Mask = SVOp->getMask();
9588 assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
9590 if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8f32, V1, V2, Mask,
9594 // If the shuffle mask is repeated in each 128-bit lane, we have many more
9595 // options to efficiently lower the shuffle.
9596 SmallVector<int, 4> RepeatedMask;
9597 if (is128BitLaneRepeatedShuffleMask(MVT::v8f32, Mask, RepeatedMask)) {
9598 assert(RepeatedMask.size() == 4 &&
9599 "Repeated masks must be half the mask width!");
9600 if (isSingleInputShuffleMask(Mask))
9601 return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v8f32, V1,
9602 getV4X86ShuffleImm8ForMask(RepeatedMask, DAG));
9604 // Use dedicated unpack instructions for masks that match their pattern.
9605 if (isShuffleEquivalent(Mask, 0, 8, 1, 9, 4, 12, 5, 13))
9606 return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8f32, V1, V2);
9607 if (isShuffleEquivalent(Mask, 2, 10, 3, 11, 6, 14, 7, 15))
9608 return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8f32, V1, V2);
9610 // Otherwise, fall back to a SHUFPS sequence. Here it is important that we
9611 // have already handled any direct blends. We also need to squash the
9612 // repeated mask into a simulated v4f32 mask.
9613 for (int i = 0; i < 4; ++i)
9614 if (RepeatedMask[i] >= 8)
9615 RepeatedMask[i] -= 4;
9616 return lowerVectorShuffleWithSHUFPS(DL, MVT::v8f32, RepeatedMask, V1, V2, DAG);
9619 // If we have a single input shuffle with different shuffle patterns in the
9620 // two 128-bit lanes use the variable mask to VPERMILPS.
9621 if (isSingleInputShuffleMask(Mask)) {
9622 SDValue VPermMask[8];
9623 for (int i = 0; i < 8; ++i)
9624 VPermMask[i] = Mask[i] < 0 ? DAG.getUNDEF(MVT::i32)
9625 : DAG.getConstant(Mask[i], MVT::i32);
9626 if (!is128BitLaneCrossingShuffleMask(MVT::v8f32, Mask))
9628 X86ISD::VPERMILPV, DL, MVT::v8f32, V1,
9629 DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i32, VPermMask));
9631 if (Subtarget->hasAVX2())
9632 return DAG.getNode(X86ISD::VPERMV, DL, MVT::v8f32,
9633 DAG.getNode(ISD::BITCAST, DL, MVT::v8f32,
9634 DAG.getNode(ISD::BUILD_VECTOR, DL,
9635 MVT::v8i32, VPermMask)),
9638 // Otherwise, fall back.
9639 return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v8f32, V1, V2, Mask,
9643 // Otherwise fall back on generic blend lowering.
9644 return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v8f32, V1, V2,
9648 /// \brief Handle lowering of 8-lane 32-bit integer shuffles.
9650 /// This routine is only called when we have AVX2 and thus a reasonable
9651 /// instruction set for v8i32 shuffling..
9652 static SDValue lowerV8I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
9653 const X86Subtarget *Subtarget,
9654 SelectionDAG &DAG) {
9656 assert(V1.getSimpleValueType() == MVT::v8i32 && "Bad operand type!");
9657 assert(V2.getSimpleValueType() == MVT::v8i32 && "Bad operand type!");
9658 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9659 ArrayRef<int> Mask = SVOp->getMask();
9660 assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
9661 assert(Subtarget->hasAVX2() && "We can only lower v8i32 with AVX2!");
9663 if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8i32, V1, V2, Mask,
9667 // If the shuffle mask is repeated in each 128-bit lane we can use more
9668 // efficient instructions that mirror the shuffles across the two 128-bit
9670 SmallVector<int, 4> RepeatedMask;
9671 if (is128BitLaneRepeatedShuffleMask(MVT::v8i32, Mask, RepeatedMask)) {
9672 assert(RepeatedMask.size() == 4 && "Unexpected repeated mask size!");
9673 if (isSingleInputShuffleMask(Mask))
9674 return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v8i32, V1,
9675 getV4X86ShuffleImm8ForMask(RepeatedMask, DAG));
9677 // Use dedicated unpack instructions for masks that match their pattern.
9678 if (isShuffleEquivalent(Mask, 0, 8, 1, 9, 4, 12, 5, 13))
9679 return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8i32, V1, V2);
9680 if (isShuffleEquivalent(Mask, 2, 10, 3, 11, 6, 14, 7, 15))
9681 return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8i32, V1, V2);
9684 // If the shuffle patterns aren't repeated but it is a single input, directly
9685 // generate a cross-lane VPERMD instruction.
9686 if (isSingleInputShuffleMask(Mask)) {
9687 SDValue VPermMask[8];
9688 for (int i = 0; i < 8; ++i)
9689 VPermMask[i] = Mask[i] < 0 ? DAG.getUNDEF(MVT::i32)
9690 : DAG.getConstant(Mask[i], MVT::i32);
9692 X86ISD::VPERMV, DL, MVT::v8i32,
9693 DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i32, VPermMask), V1);
9696 // Otherwise fall back on generic blend lowering.
9697 return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v8i32, V1, V2,
9701 /// \brief Handle lowering of 16-lane 16-bit integer shuffles.
9703 /// This routine is only called when we have AVX2 and thus a reasonable
9704 /// instruction set for v16i16 shuffling..
9705 static SDValue lowerV16I16VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
9706 const X86Subtarget *Subtarget,
9707 SelectionDAG &DAG) {
9709 assert(V1.getSimpleValueType() == MVT::v16i16 && "Bad operand type!");
9710 assert(V2.getSimpleValueType() == MVT::v16i16 && "Bad operand type!");
9711 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9712 ArrayRef<int> Mask = SVOp->getMask();
9713 assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
9714 assert(Subtarget->hasAVX2() && "We can only lower v16i16 with AVX2!");
9716 // There are no generalized cross-lane shuffle operations available on i16
9718 if (is128BitLaneCrossingShuffleMask(MVT::v16i16, Mask))
9719 return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v16i16, V1, V2,
9722 if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v16i16, V1, V2, Mask,
9726 // Use dedicated unpack instructions for masks that match their pattern.
9727 if (isShuffleEquivalent(Mask,
9728 // First 128-bit lane:
9729 0, 16, 1, 17, 2, 18, 3, 19,
9730 // Second 128-bit lane:
9731 8, 24, 9, 25, 10, 26, 11, 27))
9732 return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16i16, V1, V2);
9733 if (isShuffleEquivalent(Mask,
9734 // First 128-bit lane:
9735 4, 20, 5, 21, 6, 22, 7, 23,
9736 // Second 128-bit lane:
9737 12, 28, 13, 29, 14, 30, 15, 31))
9738 return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16i16, V1, V2);
9740 if (isSingleInputShuffleMask(Mask)) {
9741 SDValue PSHUFBMask[32];
9742 for (int i = 0; i < 16; ++i) {
9743 if (Mask[i] == -1) {
9744 PSHUFBMask[2 * i] = PSHUFBMask[2 * i + 1] = DAG.getUNDEF(MVT::i8);
9748 int M = i < 8 ? Mask[i] : Mask[i] - 8;
9749 assert(M >= 0 && M < 8 && "Invalid single-input mask!");
9750 PSHUFBMask[2 * i] = DAG.getConstant(2 * M, MVT::i8);
9751 PSHUFBMask[2 * i + 1] = DAG.getConstant(2 * M + 1, MVT::i8);
9754 ISD::BITCAST, DL, MVT::v16i16,
9756 X86ISD::PSHUFB, DL, MVT::v32i8,
9757 DAG.getNode(ISD::BITCAST, DL, MVT::v32i8, V1),
9758 DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8, PSHUFBMask)));
9761 // Otherwise fall back on generic blend lowering.
9762 return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v16i16, V1, V2,
9766 /// \brief Handle lowering of 32-lane 8-bit integer shuffles.
9768 /// This routine is only called when we have AVX2 and thus a reasonable
9769 /// instruction set for v32i8 shuffling..
9770 static SDValue lowerV32I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
9771 const X86Subtarget *Subtarget,
9772 SelectionDAG &DAG) {
9774 assert(V1.getSimpleValueType() == MVT::v32i8 && "Bad operand type!");
9775 assert(V2.getSimpleValueType() == MVT::v32i8 && "Bad operand type!");
9776 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9777 ArrayRef<int> Mask = SVOp->getMask();
9778 assert(Mask.size() == 32 && "Unexpected mask size for v32 shuffle!");
9779 assert(Subtarget->hasAVX2() && "We can only lower v32i8 with AVX2!");
9781 // There are no generalized cross-lane shuffle operations available on i8
9783 if (is128BitLaneCrossingShuffleMask(MVT::v32i8, Mask))
9784 return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v32i8, V1, V2,
9787 if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v32i8, V1, V2, Mask,
9791 // Use dedicated unpack instructions for masks that match their pattern.
9792 // Note that these are repeated 128-bit lane unpacks, not unpacks across all
9794 if (isShuffleEquivalent(
9796 // First 128-bit lane:
9797 0, 32, 1, 33, 2, 34, 3, 35, 4, 36, 5, 37, 6, 38, 7, 39,
9798 // Second 128-bit lane:
9799 16, 48, 17, 49, 18, 50, 19, 51, 20, 52, 21, 53, 22, 54, 23, 55))
9800 return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v32i8, V1, V2);
9801 if (isShuffleEquivalent(
9803 // First 128-bit lane:
9804 8, 40, 9, 41, 10, 42, 11, 43, 12, 44, 13, 45, 14, 46, 15, 47,
9805 // Second 128-bit lane:
9806 24, 56, 25, 57, 26, 58, 27, 59, 28, 60, 29, 61, 30, 62, 31, 63))
9807 return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v32i8, V1, V2);
9809 if (isSingleInputShuffleMask(Mask)) {
9810 SDValue PSHUFBMask[32];
9811 for (int i = 0; i < 32; ++i)
9814 ? DAG.getUNDEF(MVT::i8)
9815 : DAG.getConstant(Mask[i] < 16 ? Mask[i] : Mask[i] - 16, MVT::i8);
9818 X86ISD::PSHUFB, DL, MVT::v32i8, V1,
9819 DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8, PSHUFBMask));
9822 // Otherwise fall back on generic blend lowering.
9823 return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v32i8, V1, V2,
9827 /// \brief High-level routine to lower various 256-bit x86 vector shuffles.
9829 /// This routine either breaks down the specific type of a 256-bit x86 vector
9830 /// shuffle or splits it into two 128-bit shuffles and fuses the results back
9831 /// together based on the available instructions.
9832 static SDValue lower256BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2,
9833 MVT VT, const X86Subtarget *Subtarget,
9834 SelectionDAG &DAG) {
9836 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9837 ArrayRef<int> Mask = SVOp->getMask();
9839 // There is a really nice hard cut-over between AVX1 and AVX2 that means we can
9840 // check for those subtargets here and avoid much of the subtarget querying in
9841 // the per-vector-type lowering routines. With AVX1 we have essentially *zero*
9842 // ability to manipulate a 256-bit vector with integer types. Since we'll use
9843 // floating point types there eventually, just immediately cast everything to
9844 // a float and operate entirely in that domain.
9845 if (VT.isInteger() && !Subtarget->hasAVX2()) {
9846 int ElementBits = VT.getScalarSizeInBits();
9847 if (ElementBits < 32)
9848 // No floating point type available, decompose into 128-bit vectors.
9849 return splitAndLower256BitVectorShuffle(DL, VT, V1, V2, Mask, DAG);
9851 MVT FpVT = MVT::getVectorVT(MVT::getFloatingPointVT(ElementBits),
9852 VT.getVectorNumElements());
9853 V1 = DAG.getNode(ISD::BITCAST, DL, FpVT, V1);
9854 V2 = DAG.getNode(ISD::BITCAST, DL, FpVT, V2);
9855 return DAG.getNode(ISD::BITCAST, DL, VT,
9856 DAG.getVectorShuffle(FpVT, DL, V1, V2, Mask));
9859 switch (VT.SimpleTy) {
9861 return lowerV4F64VectorShuffle(Op, V1, V2, Subtarget, DAG);
9863 return lowerV4I64VectorShuffle(Op, V1, V2, Subtarget, DAG);
9865 return lowerV8F32VectorShuffle(Op, V1, V2, Subtarget, DAG);
9867 return lowerV8I32VectorShuffle(Op, V1, V2, Subtarget, DAG);
9869 return lowerV16I16VectorShuffle(Op, V1, V2, Subtarget, DAG);
9871 return lowerV32I8VectorShuffle(Op, V1, V2, Subtarget, DAG);
9874 llvm_unreachable("Not a valid 256-bit x86 vector type!");
9878 /// \brief Helper function to test whether a shuffle mask could be
9879 /// simplified by widening the elements being shuffled.
9881 /// Appends the mask for wider elements in WidenedMask if valid. Otherwise
9882 /// leaves it in an unspecified state.
9884 /// NOTE: This must handle normal vector shuffle masks and *target* vector
9885 /// shuffle masks. The latter have the special property of a '-2' representing
9886 /// a zero-ed lane of a vector.
9887 static bool canWidenShuffleElements(ArrayRef<int> Mask,
9888 SmallVectorImpl<int> &WidenedMask) {
9889 for (int i = 0, Size = Mask.size(); i < Size; i += 2) {
9890 // If both elements are undef, its trivial.
9891 if (Mask[i] == SM_SentinelUndef && Mask[i + 1] == SM_SentinelUndef) {
9892 WidenedMask.push_back(SM_SentinelUndef);
9896 // Check for an undef mask and a mask value properly aligned to fit with
9897 // a pair of values. If we find such a case, use the non-undef mask's value.
9898 if (Mask[i] == SM_SentinelUndef && Mask[i + 1] >= 0 && Mask[i + 1] % 2 == 1) {
9899 WidenedMask.push_back(Mask[i + 1] / 2);
9902 if (Mask[i + 1] == SM_SentinelUndef && Mask[i] >= 0 && Mask[i] % 2 == 0) {
9903 WidenedMask.push_back(Mask[i] / 2);
9907 // When zeroing, we need to spread the zeroing across both lanes to widen.
9908 if (Mask[i] == SM_SentinelZero || Mask[i + 1] == SM_SentinelZero) {
9909 if ((Mask[i] == SM_SentinelZero || Mask[i] == SM_SentinelUndef) &&
9910 (Mask[i + 1] == SM_SentinelZero || Mask[i + 1] == SM_SentinelUndef)) {
9911 WidenedMask.push_back(SM_SentinelZero);
9917 // Finally check if the two mask values are adjacent and aligned with
9919 if (Mask[i] != SM_SentinelUndef && Mask[i] % 2 == 0 && Mask[i] + 1 == Mask[i + 1]) {
9920 WidenedMask.push_back(Mask[i] / 2);
9924 // Otherwise we can't safely widen the elements used in this shuffle.
9927 assert(WidenedMask.size() == Mask.size() / 2 &&
9928 "Incorrect size of mask after widening the elements!");
9933 /// \brief Top-level lowering for x86 vector shuffles.
9935 /// This handles decomposition, canonicalization, and lowering of all x86
9936 /// vector shuffles. Most of the specific lowering strategies are encapsulated
9937 /// above in helper routines. The canonicalization attempts to widen shuffles
9938 /// to involve fewer lanes of wider elements, consolidate symmetric patterns
9939 /// s.t. only one of the two inputs needs to be tested, etc.
9940 static SDValue lowerVectorShuffle(SDValue Op, const X86Subtarget *Subtarget,
9941 SelectionDAG &DAG) {
9942 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9943 ArrayRef<int> Mask = SVOp->getMask();
9944 SDValue V1 = Op.getOperand(0);
9945 SDValue V2 = Op.getOperand(1);
9946 MVT VT = Op.getSimpleValueType();
9947 int NumElements = VT.getVectorNumElements();
9950 assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
9952 bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
9953 bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
9954 if (V1IsUndef && V2IsUndef)
9955 return DAG.getUNDEF(VT);
9957 // When we create a shuffle node we put the UNDEF node to second operand,
9958 // but in some cases the first operand may be transformed to UNDEF.
9959 // In this case we should just commute the node.
9961 return DAG.getCommutedVectorShuffle(*SVOp);
9963 // Check for non-undef masks pointing at an undef vector and make the masks
9964 // undef as well. This makes it easier to match the shuffle based solely on
9968 if (M >= NumElements) {
9969 SmallVector<int, 8> NewMask(Mask.begin(), Mask.end());
9970 for (int &M : NewMask)
9971 if (M >= NumElements)
9973 return DAG.getVectorShuffle(VT, dl, V1, V2, NewMask);
9976 // For integer vector shuffles, try to collapse them into a shuffle of fewer
9977 // lanes but wider integers. We cap this to not form integers larger than i64
9978 // but it might be interesting to form i128 integers to handle flipping the
9979 // low and high halves of AVX 256-bit vectors.
9980 SmallVector<int, 16> WidenedMask;
9981 if (VT.isInteger() && VT.getScalarSizeInBits() < 64 &&
9982 canWidenShuffleElements(Mask, WidenedMask)) {
9984 MVT::getVectorVT(MVT::getIntegerVT(VT.getScalarSizeInBits() * 2),
9985 VT.getVectorNumElements() / 2);
9986 V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
9987 V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
9988 return DAG.getNode(ISD::BITCAST, dl, VT,
9989 DAG.getVectorShuffle(NewVT, dl, V1, V2, WidenedMask));
9992 int NumV1Elements = 0, NumUndefElements = 0, NumV2Elements = 0;
9993 for (int M : SVOp->getMask())
9996 else if (M < NumElements)
10001 // Commute the shuffle as needed such that more elements come from V1 than
10002 // V2. This allows us to match the shuffle pattern strictly on how many
10003 // elements come from V1 without handling the symmetric cases.
10004 if (NumV2Elements > NumV1Elements)
10005 return DAG.getCommutedVectorShuffle(*SVOp);
10007 // When the number of V1 and V2 elements are the same, try to minimize the
10008 // number of uses of V2 in the low half of the vector. When that is tied,
10009 // ensure that the sum of indices for V1 is equal to or lower than the sum
10011 if (NumV1Elements == NumV2Elements) {
10012 int LowV1Elements = 0, LowV2Elements = 0;
10013 for (int M : SVOp->getMask().slice(0, NumElements / 2))
10014 if (M >= NumElements)
10018 if (LowV2Elements > LowV1Elements) {
10019 return DAG.getCommutedVectorShuffle(*SVOp);
10020 } else if (LowV2Elements == LowV1Elements) {
10021 int SumV1Indices = 0, SumV2Indices = 0;
10022 for (int i = 0, Size = SVOp->getMask().size(); i < Size; ++i)
10023 if (SVOp->getMask()[i] >= NumElements)
10025 else if (SVOp->getMask()[i] >= 0)
10027 if (SumV2Indices < SumV1Indices)
10028 return DAG.getCommutedVectorShuffle(*SVOp);
10032 // For each vector width, delegate to a specialized lowering routine.
10033 if (VT.getSizeInBits() == 128)
10034 return lower128BitVectorShuffle(Op, V1, V2, VT, Subtarget, DAG);
10036 if (VT.getSizeInBits() == 256)
10037 return lower256BitVectorShuffle(Op, V1, V2, VT, Subtarget, DAG);
10039 llvm_unreachable("Unimplemented!");
10043 //===----------------------------------------------------------------------===//
10044 // Legacy vector shuffle lowering
10046 // This code is the legacy code handling vector shuffles until the above
10047 // replaces its functionality and performance.
10048 //===----------------------------------------------------------------------===//
10050 static bool isBlendMask(ArrayRef<int> MaskVals, MVT VT, bool hasSSE41,
10051 bool hasInt256, unsigned *MaskOut = nullptr) {
10052 MVT EltVT = VT.getVectorElementType();
10054 // There is no blend with immediate in AVX-512.
10055 if (VT.is512BitVector())
10058 if (!hasSSE41 || EltVT == MVT::i8)
10060 if (!hasInt256 && VT == MVT::v16i16)
10063 unsigned MaskValue = 0;
10064 unsigned NumElems = VT.getVectorNumElements();
10065 // There are 2 lanes if (NumElems > 8), and 1 lane otherwise.
10066 unsigned NumLanes = (NumElems - 1) / 8 + 1;
10067 unsigned NumElemsInLane = NumElems / NumLanes;
10069 // Blend for v16i16 should be symetric for the both lanes.
10070 for (unsigned i = 0; i < NumElemsInLane; ++i) {
10072 int SndLaneEltIdx = (NumLanes == 2) ? MaskVals[i + NumElemsInLane] : -1;
10073 int EltIdx = MaskVals[i];
10075 if ((EltIdx < 0 || EltIdx == (int)i) &&
10076 (SndLaneEltIdx < 0 || SndLaneEltIdx == (int)(i + NumElemsInLane)))
10079 if (((unsigned)EltIdx == (i + NumElems)) &&
10080 (SndLaneEltIdx < 0 ||
10081 (unsigned)SndLaneEltIdx == i + NumElems + NumElemsInLane))
10082 MaskValue |= (1 << i);
10088 *MaskOut = MaskValue;
10092 // Try to lower a shuffle node into a simple blend instruction.
10093 // This function assumes isBlendMask returns true for this
10094 // SuffleVectorSDNode
10095 static SDValue LowerVECTOR_SHUFFLEtoBlend(ShuffleVectorSDNode *SVOp,
10096 unsigned MaskValue,
10097 const X86Subtarget *Subtarget,
10098 SelectionDAG &DAG) {
10099 MVT VT = SVOp->getSimpleValueType(0);
10100 MVT EltVT = VT.getVectorElementType();
10101 assert(isBlendMask(SVOp->getMask(), VT, Subtarget->hasSSE41(),
10102 Subtarget->hasInt256() && "Trying to lower a "
10103 "VECTOR_SHUFFLE to a Blend but "
10104 "with the wrong mask"));
10105 SDValue V1 = SVOp->getOperand(0);
10106 SDValue V2 = SVOp->getOperand(1);
10108 unsigned NumElems = VT.getVectorNumElements();
10110 // Convert i32 vectors to floating point if it is not AVX2.
10111 // AVX2 introduced VPBLENDD instruction for 128 and 256-bit vectors.
10113 if (EltVT == MVT::i64 || (EltVT == MVT::i32 && !Subtarget->hasInt256())) {
10114 BlendVT = MVT::getVectorVT(MVT::getFloatingPointVT(EltVT.getSizeInBits()),
10116 V1 = DAG.getNode(ISD::BITCAST, dl, VT, V1);
10117 V2 = DAG.getNode(ISD::BITCAST, dl, VT, V2);
10120 SDValue Ret = DAG.getNode(X86ISD::BLENDI, dl, BlendVT, V1, V2,
10121 DAG.getConstant(MaskValue, MVT::i32));
10122 return DAG.getNode(ISD::BITCAST, dl, VT, Ret);
10125 /// In vector type \p VT, return true if the element at index \p InputIdx
10126 /// falls on a different 128-bit lane than \p OutputIdx.
10127 static bool ShuffleCrosses128bitLane(MVT VT, unsigned InputIdx,
10128 unsigned OutputIdx) {
10129 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
10130 return InputIdx * EltSize / 128 != OutputIdx * EltSize / 128;
10133 /// Generate a PSHUFB if possible. Selects elements from \p V1 according to
10134 /// \p MaskVals. MaskVals[OutputIdx] = InputIdx specifies that we want to
10135 /// shuffle the element at InputIdx in V1 to OutputIdx in the result. If \p
10136 /// MaskVals refers to elements outside of \p V1 or is undef (-1), insert a
10138 static SDValue getPSHUFB(ArrayRef<int> MaskVals, SDValue V1, SDLoc &dl,
10139 SelectionDAG &DAG) {
10140 MVT VT = V1.getSimpleValueType();
10141 assert(VT.is128BitVector() || VT.is256BitVector());
10143 MVT EltVT = VT.getVectorElementType();
10144 unsigned EltSizeInBytes = EltVT.getSizeInBits() / 8;
10145 unsigned NumElts = VT.getVectorNumElements();
10147 SmallVector<SDValue, 32> PshufbMask;
10148 for (unsigned OutputIdx = 0; OutputIdx < NumElts; ++OutputIdx) {
10149 int InputIdx = MaskVals[OutputIdx];
10150 unsigned InputByteIdx;
10152 if (InputIdx < 0 || NumElts <= (unsigned)InputIdx)
10153 InputByteIdx = 0x80;
10155 // Cross lane is not allowed.
10156 if (ShuffleCrosses128bitLane(VT, InputIdx, OutputIdx))
10158 InputByteIdx = InputIdx * EltSizeInBytes;
10159 // Index is an byte offset within the 128-bit lane.
10160 InputByteIdx &= 0xf;
10163 for (unsigned j = 0; j < EltSizeInBytes; ++j) {
10164 PshufbMask.push_back(DAG.getConstant(InputByteIdx, MVT::i8));
10165 if (InputByteIdx != 0x80)
10170 MVT ShufVT = MVT::getVectorVT(MVT::i8, PshufbMask.size());
10172 V1 = DAG.getNode(ISD::BITCAST, dl, ShufVT, V1);
10173 return DAG.getNode(X86ISD::PSHUFB, dl, ShufVT, V1,
10174 DAG.getNode(ISD::BUILD_VECTOR, dl, ShufVT, PshufbMask));
10177 // v8i16 shuffles - Prefer shuffles in the following order:
10178 // 1. [all] pshuflw, pshufhw, optional move
10179 // 2. [ssse3] 1 x pshufb
10180 // 3. [ssse3] 2 x pshufb + 1 x por
10181 // 4. [all] mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
10183 LowerVECTOR_SHUFFLEv8i16(SDValue Op, const X86Subtarget *Subtarget,
10184 SelectionDAG &DAG) {
10185 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
10186 SDValue V1 = SVOp->getOperand(0);
10187 SDValue V2 = SVOp->getOperand(1);
10189 SmallVector<int, 8> MaskVals;
10191 // Determine if more than 1 of the words in each of the low and high quadwords
10192 // of the result come from the same quadword of one of the two inputs. Undef
10193 // mask values count as coming from any quadword, for better codegen.
10195 // Lo/HiQuad[i] = j indicates how many words from the ith quad of the input
10196 // feeds this quad. For i, 0 and 1 refer to V1, 2 and 3 refer to V2.
10197 unsigned LoQuad[] = { 0, 0, 0, 0 };
10198 unsigned HiQuad[] = { 0, 0, 0, 0 };
10199 // Indices of quads used.
10200 std::bitset<4> InputQuads;
10201 for (unsigned i = 0; i < 8; ++i) {
10202 unsigned *Quad = i < 4 ? LoQuad : HiQuad;
10203 int EltIdx = SVOp->getMaskElt(i);
10204 MaskVals.push_back(EltIdx);
10212 ++Quad[EltIdx / 4];
10213 InputQuads.set(EltIdx / 4);
10216 int BestLoQuad = -1;
10217 unsigned MaxQuad = 1;
10218 for (unsigned i = 0; i < 4; ++i) {
10219 if (LoQuad[i] > MaxQuad) {
10221 MaxQuad = LoQuad[i];
10225 int BestHiQuad = -1;
10227 for (unsigned i = 0; i < 4; ++i) {
10228 if (HiQuad[i] > MaxQuad) {
10230 MaxQuad = HiQuad[i];
10234 // For SSSE3, If all 8 words of the result come from only 1 quadword of each
10235 // of the two input vectors, shuffle them into one input vector so only a
10236 // single pshufb instruction is necessary. If there are more than 2 input
10237 // quads, disable the next transformation since it does not help SSSE3.
10238 bool V1Used = InputQuads[0] || InputQuads[1];
10239 bool V2Used = InputQuads[2] || InputQuads[3];
10240 if (Subtarget->hasSSSE3()) {
10241 if (InputQuads.count() == 2 && V1Used && V2Used) {
10242 BestLoQuad = InputQuads[0] ? 0 : 1;
10243 BestHiQuad = InputQuads[2] ? 2 : 3;
10245 if (InputQuads.count() > 2) {
10251 // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
10252 // the shuffle mask. If a quad is scored as -1, that means that it contains
10253 // words from all 4 input quadwords.
10255 if (BestLoQuad >= 0 || BestHiQuad >= 0) {
10257 BestLoQuad < 0 ? 0 : BestLoQuad,
10258 BestHiQuad < 0 ? 1 : BestHiQuad
10260 NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
10261 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
10262 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
10263 NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
10265 // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
10266 // source words for the shuffle, to aid later transformations.
10267 bool AllWordsInNewV = true;
10268 bool InOrder[2] = { true, true };
10269 for (unsigned i = 0; i != 8; ++i) {
10270 int idx = MaskVals[i];
10272 InOrder[i/4] = false;
10273 if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
10275 AllWordsInNewV = false;
10279 bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
10280 if (AllWordsInNewV) {
10281 for (int i = 0; i != 8; ++i) {
10282 int idx = MaskVals[i];
10285 idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
10286 if ((idx != i) && idx < 4)
10288 if ((idx != i) && idx > 3)
10297 // If we've eliminated the use of V2, and the new mask is a pshuflw or
10298 // pshufhw, that's as cheap as it gets. Return the new shuffle.
10299 if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
10300 unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
10301 unsigned TargetMask = 0;
10302 NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
10303 DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
10304 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
10305 TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp):
10306 getShufflePSHUFLWImmediate(SVOp);
10307 V1 = NewV.getOperand(0);
10308 return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
10312 // Promote splats to a larger type which usually leads to more efficient code.
10313 // FIXME: Is this true if pshufb is available?
10314 if (SVOp->isSplat())
10315 return PromoteSplat(SVOp, DAG);
10317 // If we have SSSE3, and all words of the result are from 1 input vector,
10318 // case 2 is generated, otherwise case 3 is generated. If no SSSE3
10319 // is present, fall back to case 4.
10320 if (Subtarget->hasSSSE3()) {
10321 SmallVector<SDValue,16> pshufbMask;
10323 // If we have elements from both input vectors, set the high bit of the
10324 // shuffle mask element to zero out elements that come from V2 in the V1
10325 // mask, and elements that come from V1 in the V2 mask, so that the two
10326 // results can be OR'd together.
10327 bool TwoInputs = V1Used && V2Used;
10328 V1 = getPSHUFB(MaskVals, V1, dl, DAG);
10330 return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
10332 // Calculate the shuffle mask for the second input, shuffle it, and
10333 // OR it with the first shuffled input.
10334 CommuteVectorShuffleMask(MaskVals, 8);
10335 V2 = getPSHUFB(MaskVals, V2, dl, DAG);
10336 V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
10337 return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
10340 // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
10341 // and update MaskVals with new element order.
10342 std::bitset<8> InOrder;
10343 if (BestLoQuad >= 0) {
10344 int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
10345 for (int i = 0; i != 4; ++i) {
10346 int idx = MaskVals[i];
10349 } else if ((idx / 4) == BestLoQuad) {
10350 MaskV[i] = idx & 3;
10354 NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
10357 if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSE2()) {
10358 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
10359 NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
10360 NewV.getOperand(0),
10361 getShufflePSHUFLWImmediate(SVOp), DAG);
10365 // If BestHi >= 0, generate a pshufhw to put the high elements in order,
10366 // and update MaskVals with the new element order.
10367 if (BestHiQuad >= 0) {
10368 int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
10369 for (unsigned i = 4; i != 8; ++i) {
10370 int idx = MaskVals[i];
10373 } else if ((idx / 4) == BestHiQuad) {
10374 MaskV[i] = (idx & 3) + 4;
10378 NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
10381 if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSE2()) {
10382 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
10383 NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
10384 NewV.getOperand(0),
10385 getShufflePSHUFHWImmediate(SVOp), DAG);
10389 // In case BestHi & BestLo were both -1, which means each quadword has a word
10390 // from each of the four input quadwords, calculate the InOrder bitvector now
10391 // before falling through to the insert/extract cleanup.
10392 if (BestLoQuad == -1 && BestHiQuad == -1) {
10394 for (int i = 0; i != 8; ++i)
10395 if (MaskVals[i] < 0 || MaskVals[i] == i)
10399 // The other elements are put in the right place using pextrw and pinsrw.
10400 for (unsigned i = 0; i != 8; ++i) {
10403 int EltIdx = MaskVals[i];
10406 SDValue ExtOp = (EltIdx < 8) ?
10407 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
10408 DAG.getIntPtrConstant(EltIdx)) :
10409 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
10410 DAG.getIntPtrConstant(EltIdx - 8));
10411 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
10412 DAG.getIntPtrConstant(i));
10417 /// \brief v16i16 shuffles
10419 /// FIXME: We only support generation of a single pshufb currently. We can
10420 /// generalize the other applicable cases from LowerVECTOR_SHUFFLEv8i16 as
10421 /// well (e.g 2 x pshufb + 1 x por).
10423 LowerVECTOR_SHUFFLEv16i16(SDValue Op, SelectionDAG &DAG) {
10424 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
10425 SDValue V1 = SVOp->getOperand(0);
10426 SDValue V2 = SVOp->getOperand(1);
10429 if (V2.getOpcode() != ISD::UNDEF)
10432 SmallVector<int, 16> MaskVals(SVOp->getMask().begin(), SVOp->getMask().end());
10433 return getPSHUFB(MaskVals, V1, dl, DAG);
10436 // v16i8 shuffles - Prefer shuffles in the following order:
10437 // 1. [ssse3] 1 x pshufb
10438 // 2. [ssse3] 2 x pshufb + 1 x por
10439 // 3. [all] v8i16 shuffle + N x pextrw + rotate + pinsrw
10440 static SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
10441 const X86Subtarget* Subtarget,
10442 SelectionDAG &DAG) {
10443 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10444 SDValue V1 = SVOp->getOperand(0);
10445 SDValue V2 = SVOp->getOperand(1);
10447 ArrayRef<int> MaskVals = SVOp->getMask();
10449 // Promote splats to a larger type which usually leads to more efficient code.
10450 // FIXME: Is this true if pshufb is available?
10451 if (SVOp->isSplat())
10452 return PromoteSplat(SVOp, DAG);
10454 // If we have SSSE3, case 1 is generated when all result bytes come from
10455 // one of the inputs. Otherwise, case 2 is generated. If no SSSE3 is
10456 // present, fall back to case 3.
10458 // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
10459 if (Subtarget->hasSSSE3()) {
10460 SmallVector<SDValue,16> pshufbMask;
10462 // If all result elements are from one input vector, then only translate
10463 // undef mask values to 0x80 (zero out result) in the pshufb mask.
10465 // Otherwise, we have elements from both input vectors, and must zero out
10466 // elements that come from V2 in the first mask, and V1 in the second mask
10467 // so that we can OR them together.
10468 for (unsigned i = 0; i != 16; ++i) {
10469 int EltIdx = MaskVals[i];
10470 if (EltIdx < 0 || EltIdx >= 16)
10472 pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
10474 V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
10475 DAG.getNode(ISD::BUILD_VECTOR, dl,
10476 MVT::v16i8, pshufbMask));
10478 // As PSHUFB will zero elements with negative indices, it's safe to ignore
10479 // the 2nd operand if it's undefined or zero.
10480 if (V2.getOpcode() == ISD::UNDEF ||
10481 ISD::isBuildVectorAllZeros(V2.getNode()))
10484 // Calculate the shuffle mask for the second input, shuffle it, and
10485 // OR it with the first shuffled input.
10486 pshufbMask.clear();
10487 for (unsigned i = 0; i != 16; ++i) {
10488 int EltIdx = MaskVals[i];
10489 EltIdx = (EltIdx < 16) ? 0x80 : EltIdx - 16;
10490 pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
10492 V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
10493 DAG.getNode(ISD::BUILD_VECTOR, dl,
10494 MVT::v16i8, pshufbMask));
10495 return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
10498 // No SSSE3 - Calculate in place words and then fix all out of place words
10499 // With 0-16 extracts & inserts. Worst case is 16 bytes out of order from
10500 // the 16 different words that comprise the two doublequadword input vectors.
10501 V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
10502 V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
10504 for (int i = 0; i != 8; ++i) {
10505 int Elt0 = MaskVals[i*2];
10506 int Elt1 = MaskVals[i*2+1];
10508 // This word of the result is all undef, skip it.
10509 if (Elt0 < 0 && Elt1 < 0)
10512 // This word of the result is already in the correct place, skip it.
10513 if ((Elt0 == i*2) && (Elt1 == i*2+1))
10516 SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
10517 SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
10520 // If Elt0 and Elt1 are defined, are consecutive, and can be load
10521 // using a single extract together, load it and store it.
10522 if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
10523 InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
10524 DAG.getIntPtrConstant(Elt1 / 2));
10525 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
10526 DAG.getIntPtrConstant(i));
10530 // If Elt1 is defined, extract it from the appropriate source. If the
10531 // source byte is not also odd, shift the extracted word left 8 bits
10532 // otherwise clear the bottom 8 bits if we need to do an or.
10534 InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
10535 DAG.getIntPtrConstant(Elt1 / 2));
10536 if ((Elt1 & 1) == 0)
10537 InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
10539 TLI.getShiftAmountTy(InsElt.getValueType())));
10540 else if (Elt0 >= 0)
10541 InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
10542 DAG.getConstant(0xFF00, MVT::i16));
10544 // If Elt0 is defined, extract it from the appropriate source. If the
10545 // source byte is not also even, shift the extracted word right 8 bits. If
10546 // Elt1 was also defined, OR the extracted values together before
10547 // inserting them in the result.
10549 SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
10550 Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
10551 if ((Elt0 & 1) != 0)
10552 InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
10554 TLI.getShiftAmountTy(InsElt0.getValueType())));
10555 else if (Elt1 >= 0)
10556 InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
10557 DAG.getConstant(0x00FF, MVT::i16));
10558 InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
10561 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
10562 DAG.getIntPtrConstant(i));
10564 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
10567 // v32i8 shuffles - Translate to VPSHUFB if possible.
10569 SDValue LowerVECTOR_SHUFFLEv32i8(ShuffleVectorSDNode *SVOp,
10570 const X86Subtarget *Subtarget,
10571 SelectionDAG &DAG) {
10572 MVT VT = SVOp->getSimpleValueType(0);
10573 SDValue V1 = SVOp->getOperand(0);
10574 SDValue V2 = SVOp->getOperand(1);
10576 SmallVector<int, 32> MaskVals(SVOp->getMask().begin(), SVOp->getMask().end());
10578 bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
10579 bool V1IsAllZero = ISD::isBuildVectorAllZeros(V1.getNode());
10580 bool V2IsAllZero = ISD::isBuildVectorAllZeros(V2.getNode());
10582 // VPSHUFB may be generated if
10583 // (1) one of input vector is undefined or zeroinitializer.
10584 // The mask value 0x80 puts 0 in the corresponding slot of the vector.
10585 // And (2) the mask indexes don't cross the 128-bit lane.
10586 if (VT != MVT::v32i8 || !Subtarget->hasInt256() ||
10587 (!V2IsUndef && !V2IsAllZero && !V1IsAllZero))
10590 if (V1IsAllZero && !V2IsAllZero) {
10591 CommuteVectorShuffleMask(MaskVals, 32);
10594 return getPSHUFB(MaskVals, V1, dl, DAG);
10597 /// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
10598 /// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
10599 /// done when every pair / quad of shuffle mask elements point to elements in
10600 /// the right sequence. e.g.
10601 /// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
10603 SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
10604 SelectionDAG &DAG) {
10605 MVT VT = SVOp->getSimpleValueType(0);
10607 unsigned NumElems = VT.getVectorNumElements();
10610 switch (VT.SimpleTy) {
10611 default: llvm_unreachable("Unexpected!");
10614 return SDValue(SVOp, 0);
10615 case MVT::v4f32: NewVT = MVT::v2f64; Scale = 2; break;
10616 case MVT::v4i32: NewVT = MVT::v2i64; Scale = 2; break;
10617 case MVT::v8i16: NewVT = MVT::v4i32; Scale = 2; break;
10618 case MVT::v16i8: NewVT = MVT::v4i32; Scale = 4; break;
10619 case MVT::v16i16: NewVT = MVT::v8i32; Scale = 2; break;
10620 case MVT::v32i8: NewVT = MVT::v8i32; Scale = 4; break;
10623 SmallVector<int, 8> MaskVec;
10624 for (unsigned i = 0; i != NumElems; i += Scale) {
10626 for (unsigned j = 0; j != Scale; ++j) {
10627 int EltIdx = SVOp->getMaskElt(i+j);
10631 StartIdx = (EltIdx / Scale);
10632 if (EltIdx != (int)(StartIdx*Scale + j))
10635 MaskVec.push_back(StartIdx);
10638 SDValue V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(0));
10639 SDValue V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(1));
10640 return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
10643 /// getVZextMovL - Return a zero-extending vector move low node.
10645 static SDValue getVZextMovL(MVT VT, MVT OpVT,
10646 SDValue SrcOp, SelectionDAG &DAG,
10647 const X86Subtarget *Subtarget, SDLoc dl) {
10648 if (VT == MVT::v2f64 || VT == MVT::v4f32) {
10649 LoadSDNode *LD = nullptr;
10650 if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
10651 LD = dyn_cast<LoadSDNode>(SrcOp);
10653 // movssrr and movsdrr do not clear top bits. Try to use movd, movq
10655 MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
10656 if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
10657 SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
10658 SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
10659 SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
10661 OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
10662 return DAG.getNode(ISD::BITCAST, dl, VT,
10663 DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
10664 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
10666 SrcOp.getOperand(0)
10672 return DAG.getNode(ISD::BITCAST, dl, VT,
10673 DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
10674 DAG.getNode(ISD::BITCAST, dl,
10678 /// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
10679 /// which could not be matched by any known target speficic shuffle
10681 LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
10683 SDValue NewOp = Compact8x32ShuffleNode(SVOp, DAG);
10684 if (NewOp.getNode())
10687 MVT VT = SVOp->getSimpleValueType(0);
10689 unsigned NumElems = VT.getVectorNumElements();
10690 unsigned NumLaneElems = NumElems / 2;
10693 MVT EltVT = VT.getVectorElementType();
10694 MVT NVT = MVT::getVectorVT(EltVT, NumLaneElems);
10697 SmallVector<int, 16> Mask;
10698 for (unsigned l = 0; l < 2; ++l) {
10699 // Build a shuffle mask for the output, discovering on the fly which
10700 // input vectors to use as shuffle operands (recorded in InputUsed).
10701 // If building a suitable shuffle vector proves too hard, then bail
10702 // out with UseBuildVector set.
10703 bool UseBuildVector = false;
10704 int InputUsed[2] = { -1, -1 }; // Not yet discovered.
10705 unsigned LaneStart = l * NumLaneElems;
10706 for (unsigned i = 0; i != NumLaneElems; ++i) {
10707 // The mask element. This indexes into the input.
10708 int Idx = SVOp->getMaskElt(i+LaneStart);
10710 // the mask element does not index into any input vector.
10711 Mask.push_back(-1);
10715 // The input vector this mask element indexes into.
10716 int Input = Idx / NumLaneElems;
10718 // Turn the index into an offset from the start of the input vector.
10719 Idx -= Input * NumLaneElems;
10721 // Find or create a shuffle vector operand to hold this input.
10723 for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
10724 if (InputUsed[OpNo] == Input)
10725 // This input vector is already an operand.
10727 if (InputUsed[OpNo] < 0) {
10728 // Create a new operand for this input vector.
10729 InputUsed[OpNo] = Input;
10734 if (OpNo >= array_lengthof(InputUsed)) {
10735 // More than two input vectors used! Give up on trying to create a
10736 // shuffle vector. Insert all elements into a BUILD_VECTOR instead.
10737 UseBuildVector = true;
10741 // Add the mask index for the new shuffle vector.
10742 Mask.push_back(Idx + OpNo * NumLaneElems);
10745 if (UseBuildVector) {
10746 SmallVector<SDValue, 16> SVOps;
10747 for (unsigned i = 0; i != NumLaneElems; ++i) {
10748 // The mask element. This indexes into the input.
10749 int Idx = SVOp->getMaskElt(i+LaneStart);
10751 SVOps.push_back(DAG.getUNDEF(EltVT));
10755 // The input vector this mask element indexes into.
10756 int Input = Idx / NumElems;
10758 // Turn the index into an offset from the start of the input vector.
10759 Idx -= Input * NumElems;
10761 // Extract the vector element by hand.
10762 SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
10763 SVOp->getOperand(Input),
10764 DAG.getIntPtrConstant(Idx)));
10767 // Construct the output using a BUILD_VECTOR.
10768 Output[l] = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, SVOps);
10769 } else if (InputUsed[0] < 0) {
10770 // No input vectors were used! The result is undefined.
10771 Output[l] = DAG.getUNDEF(NVT);
10773 SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2),
10774 (InputUsed[0] % 2) * NumLaneElems,
10776 // If only one input was used, use an undefined vector for the other.
10777 SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) :
10778 Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2),
10779 (InputUsed[1] % 2) * NumLaneElems, DAG, dl);
10780 // At least one input vector was used. Create a new shuffle vector.
10781 Output[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]);
10787 // Concatenate the result back
10788 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Output[0], Output[1]);
10791 /// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
10792 /// 4 elements, and match them with several different shuffle types.
10794 LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
10795 SDValue V1 = SVOp->getOperand(0);
10796 SDValue V2 = SVOp->getOperand(1);
10798 MVT VT = SVOp->getSimpleValueType(0);
10800 assert(VT.is128BitVector() && "Unsupported vector size");
10802 std::pair<int, int> Locs[4];
10803 int Mask1[] = { -1, -1, -1, -1 };
10804 SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
10806 unsigned NumHi = 0;
10807 unsigned NumLo = 0;
10808 for (unsigned i = 0; i != 4; ++i) {
10809 int Idx = PermMask[i];
10811 Locs[i] = std::make_pair(-1, -1);
10813 assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
10815 Locs[i] = std::make_pair(0, NumLo);
10816 Mask1[NumLo] = Idx;
10819 Locs[i] = std::make_pair(1, NumHi);
10821 Mask1[2+NumHi] = Idx;
10827 if (NumLo <= 2 && NumHi <= 2) {
10828 // If no more than two elements come from either vector. This can be
10829 // implemented with two shuffles. First shuffle gather the elements.
10830 // The second shuffle, which takes the first shuffle as both of its
10831 // vector operands, put the elements into the right order.
10832 V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
10834 int Mask2[] = { -1, -1, -1, -1 };
10836 for (unsigned i = 0; i != 4; ++i)
10837 if (Locs[i].first != -1) {
10838 unsigned Idx = (i < 2) ? 0 : 4;
10839 Idx += Locs[i].first * 2 + Locs[i].second;
10843 return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
10846 if (NumLo == 3 || NumHi == 3) {
10847 // Otherwise, we must have three elements from one vector, call it X, and
10848 // one element from the other, call it Y. First, use a shufps to build an
10849 // intermediate vector with the one element from Y and the element from X
10850 // that will be in the same half in the final destination (the indexes don't
10851 // matter). Then, use a shufps to build the final vector, taking the half
10852 // containing the element from Y from the intermediate, and the other half
10855 // Normalize it so the 3 elements come from V1.
10856 CommuteVectorShuffleMask(PermMask, 4);
10860 // Find the element from V2.
10862 for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
10863 int Val = PermMask[HiIndex];
10870 Mask1[0] = PermMask[HiIndex];
10872 Mask1[2] = PermMask[HiIndex^1];
10874 V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
10876 if (HiIndex >= 2) {
10877 Mask1[0] = PermMask[0];
10878 Mask1[1] = PermMask[1];
10879 Mask1[2] = HiIndex & 1 ? 6 : 4;
10880 Mask1[3] = HiIndex & 1 ? 4 : 6;
10881 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
10884 Mask1[0] = HiIndex & 1 ? 2 : 0;
10885 Mask1[1] = HiIndex & 1 ? 0 : 2;
10886 Mask1[2] = PermMask[2];
10887 Mask1[3] = PermMask[3];
10892 return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
10895 // Break it into (shuffle shuffle_hi, shuffle_lo).
10896 int LoMask[] = { -1, -1, -1, -1 };
10897 int HiMask[] = { -1, -1, -1, -1 };
10899 int *MaskPtr = LoMask;
10900 unsigned MaskIdx = 0;
10901 unsigned LoIdx = 0;
10902 unsigned HiIdx = 2;
10903 for (unsigned i = 0; i != 4; ++i) {
10910 int Idx = PermMask[i];
10912 Locs[i] = std::make_pair(-1, -1);
10913 } else if (Idx < 4) {
10914 Locs[i] = std::make_pair(MaskIdx, LoIdx);
10915 MaskPtr[LoIdx] = Idx;
10918 Locs[i] = std::make_pair(MaskIdx, HiIdx);
10919 MaskPtr[HiIdx] = Idx;
10924 SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
10925 SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
10926 int MaskOps[] = { -1, -1, -1, -1 };
10927 for (unsigned i = 0; i != 4; ++i)
10928 if (Locs[i].first != -1)
10929 MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
10930 return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
10933 static bool MayFoldVectorLoad(SDValue V) {
10934 while (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
10935 V = V.getOperand(0);
10937 if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
10938 V = V.getOperand(0);
10939 if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
10940 V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
10941 // BUILD_VECTOR (load), undef
10942 V = V.getOperand(0);
10944 return MayFoldLoad(V);
10948 SDValue getMOVDDup(SDValue &Op, SDLoc &dl, SDValue V1, SelectionDAG &DAG) {
10949 MVT VT = Op.getSimpleValueType();
10951 // Canonizalize to v2f64.
10952 V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
10953 return DAG.getNode(ISD::BITCAST, dl, VT,
10954 getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
10959 SDValue getMOVLowToHigh(SDValue &Op, SDLoc &dl, SelectionDAG &DAG,
10961 SDValue V1 = Op.getOperand(0);
10962 SDValue V2 = Op.getOperand(1);
10963 MVT VT = Op.getSimpleValueType();
10965 assert(VT != MVT::v2i64 && "unsupported shuffle type");
10967 if (HasSSE2 && VT == MVT::v2f64)
10968 return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
10970 // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
10971 return DAG.getNode(ISD::BITCAST, dl, VT,
10972 getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
10973 DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
10974 DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
10978 SDValue getMOVHighToLow(SDValue &Op, SDLoc &dl, SelectionDAG &DAG) {
10979 SDValue V1 = Op.getOperand(0);
10980 SDValue V2 = Op.getOperand(1);
10981 MVT VT = Op.getSimpleValueType();
10983 assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
10984 "unsupported shuffle type");
10986 if (V2.getOpcode() == ISD::UNDEF)
10990 return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
10994 SDValue getMOVLP(SDValue &Op, SDLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
10995 SDValue V1 = Op.getOperand(0);
10996 SDValue V2 = Op.getOperand(1);
10997 MVT VT = Op.getSimpleValueType();
10998 unsigned NumElems = VT.getVectorNumElements();
11000 // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
11001 // operand of these instructions is only memory, so check if there's a
11002 // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
11004 bool CanFoldLoad = false;
11006 // Trivial case, when V2 comes from a load.
11007 if (MayFoldVectorLoad(V2))
11008 CanFoldLoad = true;
11010 // When V1 is a load, it can be folded later into a store in isel, example:
11011 // (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
11013 // (MOVLPSmr addr:$src1, VR128:$src2)
11014 // So, recognize this potential and also use MOVLPS or MOVLPD
11015 else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
11016 CanFoldLoad = true;
11018 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
11020 if (HasSSE2 && NumElems == 2)
11021 return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
11024 // If we don't care about the second element, proceed to use movss.
11025 if (SVOp->getMaskElt(1) != -1)
11026 return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
11029 // movl and movlp will both match v2i64, but v2i64 is never matched by
11030 // movl earlier because we make it strict to avoid messing with the movlp load
11031 // folding logic (see the code above getMOVLP call). Match it here then,
11032 // this is horrible, but will stay like this until we move all shuffle
11033 // matching to x86 specific nodes. Note that for the 1st condition all
11034 // types are matched with movsd.
11036 // FIXME: isMOVLMask should be checked and matched before getMOVLP,
11037 // as to remove this logic from here, as much as possible
11038 if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
11039 return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
11040 return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
11043 assert(VT != MVT::v4i32 && "unsupported shuffle type");
11045 // Invert the operand order and use SHUFPS to match it.
11046 return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
11047 getShuffleSHUFImmediate(SVOp), DAG);
11050 static SDValue NarrowVectorLoadToElement(LoadSDNode *Load, unsigned Index,
11051 SelectionDAG &DAG) {
11053 MVT VT = Load->getSimpleValueType(0);
11054 MVT EVT = VT.getVectorElementType();
11055 SDValue Addr = Load->getOperand(1);
11056 SDValue NewAddr = DAG.getNode(
11057 ISD::ADD, dl, Addr.getSimpleValueType(), Addr,
11058 DAG.getConstant(Index * EVT.getStoreSize(), Addr.getSimpleValueType()));
11061 DAG.getLoad(EVT, dl, Load->getChain(), NewAddr,
11062 DAG.getMachineFunction().getMachineMemOperand(
11063 Load->getMemOperand(), 0, EVT.getStoreSize()));
11067 // It is only safe to call this function if isINSERTPSMask is true for
11068 // this shufflevector mask.
11069 static SDValue getINSERTPS(ShuffleVectorSDNode *SVOp, SDLoc &dl,
11070 SelectionDAG &DAG) {
11071 // Generate an insertps instruction when inserting an f32 from memory onto a
11072 // v4f32 or when copying a member from one v4f32 to another.
11073 // We also use it for transferring i32 from one register to another,
11074 // since it simply copies the same bits.
11075 // If we're transferring an i32 from memory to a specific element in a
11076 // register, we output a generic DAG that will match the PINSRD
11078 MVT VT = SVOp->getSimpleValueType(0);
11079 MVT EVT = VT.getVectorElementType();
11080 SDValue V1 = SVOp->getOperand(0);
11081 SDValue V2 = SVOp->getOperand(1);
11082 auto Mask = SVOp->getMask();
11083 assert((VT == MVT::v4f32 || VT == MVT::v4i32) &&
11084 "unsupported vector type for insertps/pinsrd");
11086 auto FromV1Predicate = [](const int &i) { return i < 4 && i > -1; };
11087 auto FromV2Predicate = [](const int &i) { return i >= 4; };
11088 int FromV1 = std::count_if(Mask.begin(), Mask.end(), FromV1Predicate);
11092 unsigned DestIndex;
11096 DestIndex = std::find_if(Mask.begin(), Mask.end(), FromV1Predicate) -
11099 // If we have 1 element from each vector, we have to check if we're
11100 // changing V1's element's place. If so, we're done. Otherwise, we
11101 // should assume we're changing V2's element's place and behave
11103 int FromV2 = std::count_if(Mask.begin(), Mask.end(), FromV2Predicate);
11104 assert(DestIndex <= INT32_MAX && "truncated destination index");
11105 if (FromV1 == FromV2 &&
11106 static_cast<int>(DestIndex) == Mask[DestIndex] % 4) {
11110 std::find_if(Mask.begin(), Mask.end(), FromV2Predicate) - Mask.begin();
11113 assert(std::count_if(Mask.begin(), Mask.end(), FromV2Predicate) == 1 &&
11114 "More than one element from V1 and from V2, or no elements from one "
11115 "of the vectors. This case should not have returned true from "
11120 std::find_if(Mask.begin(), Mask.end(), FromV2Predicate) - Mask.begin();
11123 // Get an index into the source vector in the range [0,4) (the mask is
11124 // in the range [0,8) because it can address V1 and V2)
11125 unsigned SrcIndex = Mask[DestIndex] % 4;
11126 if (MayFoldLoad(From)) {
11127 // Trivial case, when From comes from a load and is only used by the
11128 // shuffle. Make it use insertps from the vector that we need from that
11131 NarrowVectorLoadToElement(cast<LoadSDNode>(From), SrcIndex, DAG);
11132 if (!NewLoad.getNode())
11135 if (EVT == MVT::f32) {
11136 // Create this as a scalar to vector to match the instruction pattern.
11137 SDValue LoadScalarToVector =
11138 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, NewLoad);
11139 SDValue InsertpsMask = DAG.getIntPtrConstant(DestIndex << 4);
11140 return DAG.getNode(X86ISD::INSERTPS, dl, VT, To, LoadScalarToVector,
11142 } else { // EVT == MVT::i32
11143 // If we're getting an i32 from memory, use an INSERT_VECTOR_ELT
11144 // instruction, to match the PINSRD instruction, which loads an i32 to a
11145 // certain vector element.
11146 return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, To, NewLoad,
11147 DAG.getConstant(DestIndex, MVT::i32));
11151 // Vector-element-to-vector
11152 SDValue InsertpsMask = DAG.getIntPtrConstant(DestIndex << 4 | SrcIndex << 6);
11153 return DAG.getNode(X86ISD::INSERTPS, dl, VT, To, From, InsertpsMask);
11156 // Reduce a vector shuffle to zext.
11157 static SDValue LowerVectorIntExtend(SDValue Op, const X86Subtarget *Subtarget,
11158 SelectionDAG &DAG) {
11159 // PMOVZX is only available from SSE41.
11160 if (!Subtarget->hasSSE41())
11163 MVT VT = Op.getSimpleValueType();
11165 // Only AVX2 support 256-bit vector integer extending.
11166 if (!Subtarget->hasInt256() && VT.is256BitVector())
11169 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
11171 SDValue V1 = Op.getOperand(0);
11172 SDValue V2 = Op.getOperand(1);
11173 unsigned NumElems = VT.getVectorNumElements();
11175 // Extending is an unary operation and the element type of the source vector
11176 // won't be equal to or larger than i64.
11177 if (V2.getOpcode() != ISD::UNDEF || !VT.isInteger() ||
11178 VT.getVectorElementType() == MVT::i64)
11181 // Find the expansion ratio, e.g. expanding from i8 to i32 has a ratio of 4.
11182 unsigned Shift = 1; // Start from 2, i.e. 1 << 1.
11183 while ((1U << Shift) < NumElems) {
11184 if (SVOp->getMaskElt(1U << Shift) == 1)
11187 // The maximal ratio is 8, i.e. from i8 to i64.
11192 // Check the shuffle mask.
11193 unsigned Mask = (1U << Shift) - 1;
11194 for (unsigned i = 0; i != NumElems; ++i) {
11195 int EltIdx = SVOp->getMaskElt(i);
11196 if ((i & Mask) != 0 && EltIdx != -1)
11198 if ((i & Mask) == 0 && (unsigned)EltIdx != (i >> Shift))
11202 unsigned NBits = VT.getVectorElementType().getSizeInBits() << Shift;
11203 MVT NeVT = MVT::getIntegerVT(NBits);
11204 MVT NVT = MVT::getVectorVT(NeVT, NumElems >> Shift);
11206 if (!DAG.getTargetLoweringInfo().isTypeLegal(NVT))
11209 // Simplify the operand as it's prepared to be fed into shuffle.
11210 unsigned SignificantBits = NVT.getSizeInBits() >> Shift;
11211 if (V1.getOpcode() == ISD::BITCAST &&
11212 V1.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
11213 V1.getOperand(0).getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
11214 V1.getOperand(0).getOperand(0)
11215 .getSimpleValueType().getSizeInBits() == SignificantBits) {
11216 // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast x)
11217 SDValue V = V1.getOperand(0).getOperand(0).getOperand(0);
11218 ConstantSDNode *CIdx =
11219 dyn_cast<ConstantSDNode>(V1.getOperand(0).getOperand(0).getOperand(1));
11220 // If it's foldable, i.e. normal load with single use, we will let code
11221 // selection to fold it. Otherwise, we will short the conversion sequence.
11222 if (CIdx && CIdx->getZExtValue() == 0 &&
11223 (!ISD::isNormalLoad(V.getNode()) || !V.hasOneUse())) {
11224 MVT FullVT = V.getSimpleValueType();
11225 MVT V1VT = V1.getSimpleValueType();
11226 if (FullVT.getSizeInBits() > V1VT.getSizeInBits()) {
11227 // The "ext_vec_elt" node is wider than the result node.
11228 // In this case we should extract subvector from V.
11229 // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast (extract_subvector x)).
11230 unsigned Ratio = FullVT.getSizeInBits() / V1VT.getSizeInBits();
11231 MVT SubVecVT = MVT::getVectorVT(FullVT.getVectorElementType(),
11232 FullVT.getVectorNumElements()/Ratio);
11233 V = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, V,
11234 DAG.getIntPtrConstant(0));
11236 V1 = DAG.getNode(ISD::BITCAST, DL, V1VT, V);
11240 return DAG.getNode(ISD::BITCAST, DL, VT,
11241 DAG.getNode(X86ISD::VZEXT, DL, NVT, V1));
11244 static SDValue NormalizeVectorShuffle(SDValue Op, const X86Subtarget *Subtarget,
11245 SelectionDAG &DAG) {
11246 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
11247 MVT VT = Op.getSimpleValueType();
11249 SDValue V1 = Op.getOperand(0);
11250 SDValue V2 = Op.getOperand(1);
11252 if (isZeroShuffle(SVOp))
11253 return getZeroVector(VT, Subtarget, DAG, dl);
11255 // Handle splat operations
11256 if (SVOp->isSplat()) {
11257 // Use vbroadcast whenever the splat comes from a foldable load
11258 SDValue Broadcast = LowerVectorBroadcast(Op, Subtarget, DAG);
11259 if (Broadcast.getNode())
11263 // Check integer expanding shuffles.
11264 SDValue NewOp = LowerVectorIntExtend(Op, Subtarget, DAG);
11265 if (NewOp.getNode())
11268 // If the shuffle can be profitably rewritten as a narrower shuffle, then
11270 if (VT == MVT::v8i16 || VT == MVT::v16i8 || VT == MVT::v16i16 ||
11271 VT == MVT::v32i8) {
11272 SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
11273 if (NewOp.getNode())
11274 return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
11275 } else if (VT.is128BitVector() && Subtarget->hasSSE2()) {
11276 // FIXME: Figure out a cleaner way to do this.
11277 if (ISD::isBuildVectorAllZeros(V2.getNode())) {
11278 SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
11279 if (NewOp.getNode()) {
11280 MVT NewVT = NewOp.getSimpleValueType();
11281 if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
11282 NewVT, true, false))
11283 return getVZextMovL(VT, NewVT, NewOp.getOperand(0), DAG, Subtarget,
11286 } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
11287 SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
11288 if (NewOp.getNode()) {
11289 MVT NewVT = NewOp.getSimpleValueType();
11290 if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
11291 return getVZextMovL(VT, NewVT, NewOp.getOperand(1), DAG, Subtarget,
11300 X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
11301 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
11302 SDValue V1 = Op.getOperand(0);
11303 SDValue V2 = Op.getOperand(1);
11304 MVT VT = Op.getSimpleValueType();
11306 unsigned NumElems = VT.getVectorNumElements();
11307 bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
11308 bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
11309 bool V1IsSplat = false;
11310 bool V2IsSplat = false;
11311 bool HasSSE2 = Subtarget->hasSSE2();
11312 bool HasFp256 = Subtarget->hasFp256();
11313 bool HasInt256 = Subtarget->hasInt256();
11314 MachineFunction &MF = DAG.getMachineFunction();
11315 bool OptForSize = MF.getFunction()->getAttributes().
11316 hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
11318 // Check if we should use the experimental vector shuffle lowering. If so,
11319 // delegate completely to that code path.
11320 if (ExperimentalVectorShuffleLowering)
11321 return lowerVectorShuffle(Op, Subtarget, DAG);
11323 assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
11325 if (V1IsUndef && V2IsUndef)
11326 return DAG.getUNDEF(VT);
11328 // When we create a shuffle node we put the UNDEF node to second operand,
11329 // but in some cases the first operand may be transformed to UNDEF.
11330 // In this case we should just commute the node.
11332 return DAG.getCommutedVectorShuffle(*SVOp);
11334 // Vector shuffle lowering takes 3 steps:
11336 // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
11337 // narrowing and commutation of operands should be handled.
11338 // 2) Matching of shuffles with known shuffle masks to x86 target specific
11340 // 3) Rewriting of unmatched masks into new generic shuffle operations,
11341 // so the shuffle can be broken into other shuffles and the legalizer can
11342 // try the lowering again.
11344 // The general idea is that no vector_shuffle operation should be left to
11345 // be matched during isel, all of them must be converted to a target specific
11348 // Normalize the input vectors. Here splats, zeroed vectors, profitable
11349 // narrowing and commutation of operands should be handled. The actual code
11350 // doesn't include all of those, work in progress...
11351 SDValue NewOp = NormalizeVectorShuffle(Op, Subtarget, DAG);
11352 if (NewOp.getNode())
11355 SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
11357 // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
11358 // unpckh_undef). Only use pshufd if speed is more important than size.
11359 if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasInt256))
11360 return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
11361 if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasInt256))
11362 return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
11364 if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() &&
11365 V2IsUndef && MayFoldVectorLoad(V1))
11366 return getMOVDDup(Op, dl, V1, DAG);
11368 if (isMOVHLPS_v_undef_Mask(M, VT))
11369 return getMOVHighToLow(Op, dl, DAG);
11371 // Use to match splats
11372 if (HasSSE2 && isUNPCKHMask(M, VT, HasInt256) && V2IsUndef &&
11373 (VT == MVT::v2f64 || VT == MVT::v2i64))
11374 return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
11376 if (isPSHUFDMask(M, VT)) {
11377 // The actual implementation will match the mask in the if above and then
11378 // during isel it can match several different instructions, not only pshufd
11379 // as its name says, sad but true, emulate the behavior for now...
11380 if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
11381 return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
11383 unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
11385 if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
11386 return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
11388 if (HasFp256 && (VT == MVT::v4f32 || VT == MVT::v2f64))
11389 return getTargetShuffleNode(X86ISD::VPERMILPI, dl, VT, V1, TargetMask,
11392 return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
11396 if (isPALIGNRMask(M, VT, Subtarget))
11397 return getTargetShuffleNode(X86ISD::PALIGNR, dl, VT, V1, V2,
11398 getShufflePALIGNRImmediate(SVOp),
11401 if (isVALIGNMask(M, VT, Subtarget))
11402 return getTargetShuffleNode(X86ISD::VALIGN, dl, VT, V1, V2,
11403 getShuffleVALIGNImmediate(SVOp),
11406 // Check if this can be converted into a logical shift.
11407 bool isLeft = false;
11408 unsigned ShAmt = 0;
11410 bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
11411 if (isShift && ShVal.hasOneUse()) {
11412 // If the shifted value has multiple uses, it may be cheaper to use
11413 // v_set0 + movlhps or movhlps, etc.
11414 MVT EltVT = VT.getVectorElementType();
11415 ShAmt *= EltVT.getSizeInBits();
11416 return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
11419 if (isMOVLMask(M, VT)) {
11420 if (ISD::isBuildVectorAllZeros(V1.getNode()))
11421 return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
11422 if (!isMOVLPMask(M, VT)) {
11423 if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
11424 return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
11426 if (VT == MVT::v4i32 || VT == MVT::v4f32)
11427 return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
11431 // FIXME: fold these into legal mask.
11432 if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasInt256))
11433 return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
11435 if (isMOVHLPSMask(M, VT))
11436 return getMOVHighToLow(Op, dl, DAG);
11438 if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget))
11439 return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
11441 if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget))
11442 return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
11444 if (isMOVLPMask(M, VT))
11445 return getMOVLP(Op, dl, DAG, HasSSE2);
11447 if (ShouldXformToMOVHLPS(M, VT) ||
11448 ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT))
11449 return DAG.getCommutedVectorShuffle(*SVOp);
11452 // No better options. Use a vshldq / vsrldq.
11453 MVT EltVT = VT.getVectorElementType();
11454 ShAmt *= EltVT.getSizeInBits();
11455 return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
11458 bool Commuted = false;
11459 // FIXME: This should also accept a bitcast of a splat? Be careful, not
11460 // 1,1,1,1 -> v8i16 though.
11461 BitVector UndefElements;
11462 if (auto *BVOp = dyn_cast<BuildVectorSDNode>(V1.getNode()))
11463 if (BVOp->getConstantSplatNode(&UndefElements) && UndefElements.none())
11465 if (auto *BVOp = dyn_cast<BuildVectorSDNode>(V2.getNode()))
11466 if (BVOp->getConstantSplatNode(&UndefElements) && UndefElements.none())
11469 // Canonicalize the splat or undef, if present, to be on the RHS.
11470 if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
11471 CommuteVectorShuffleMask(M, NumElems);
11473 std::swap(V1IsSplat, V2IsSplat);
11477 if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
11478 // Shuffling low element of v1 into undef, just return v1.
11481 // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
11482 // the instruction selector will not match, so get a canonical MOVL with
11483 // swapped operands to undo the commute.
11484 return getMOVL(DAG, dl, VT, V2, V1);
11487 if (isUNPCKLMask(M, VT, HasInt256))
11488 return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
11490 if (isUNPCKHMask(M, VT, HasInt256))
11491 return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
11494 // Normalize mask so all entries that point to V2 points to its first
11495 // element then try to match unpck{h|l} again. If match, return a
11496 // new vector_shuffle with the corrected mask.p
11497 SmallVector<int, 8> NewMask(M.begin(), M.end());
11498 NormalizeMask(NewMask, NumElems);
11499 if (isUNPCKLMask(NewMask, VT, HasInt256, true))
11500 return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
11501 if (isUNPCKHMask(NewMask, VT, HasInt256, true))
11502 return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
11506 // Commute is back and try unpck* again.
11507 // FIXME: this seems wrong.
11508 CommuteVectorShuffleMask(M, NumElems);
11510 std::swap(V1IsSplat, V2IsSplat);
11512 if (isUNPCKLMask(M, VT, HasInt256))
11513 return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
11515 if (isUNPCKHMask(M, VT, HasInt256))
11516 return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
11519 // Normalize the node to match x86 shuffle ops if needed
11520 if (!V2IsUndef && (isSHUFPMask(M, VT, /* Commuted */ true)))
11521 return DAG.getCommutedVectorShuffle(*SVOp);
11523 // The checks below are all present in isShuffleMaskLegal, but they are
11524 // inlined here right now to enable us to directly emit target specific
11525 // nodes, and remove one by one until they don't return Op anymore.
11527 if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
11528 SVOp->getSplatIndex() == 0 && V2IsUndef) {
11529 if (VT == MVT::v2f64 || VT == MVT::v2i64)
11530 return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
11533 if (isPSHUFHWMask(M, VT, HasInt256))
11534 return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
11535 getShufflePSHUFHWImmediate(SVOp),
11538 if (isPSHUFLWMask(M, VT, HasInt256))
11539 return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
11540 getShufflePSHUFLWImmediate(SVOp),
11543 unsigned MaskValue;
11544 if (isBlendMask(M, VT, Subtarget->hasSSE41(), Subtarget->hasInt256(),
11546 return LowerVECTOR_SHUFFLEtoBlend(SVOp, MaskValue, Subtarget, DAG);
11548 if (isSHUFPMask(M, VT))
11549 return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
11550 getShuffleSHUFImmediate(SVOp), DAG);
11552 if (isUNPCKL_v_undef_Mask(M, VT, HasInt256))
11553 return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
11554 if (isUNPCKH_v_undef_Mask(M, VT, HasInt256))
11555 return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
11557 //===--------------------------------------------------------------------===//
11558 // Generate target specific nodes for 128 or 256-bit shuffles only
11559 // supported in the AVX instruction set.
11562 // Handle VMOVDDUPY permutations
11563 if (V2IsUndef && isMOVDDUPYMask(M, VT, HasFp256))
11564 return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
11566 // Handle VPERMILPS/D* permutations
11567 if (isVPERMILPMask(M, VT)) {
11568 if ((HasInt256 && VT == MVT::v8i32) || VT == MVT::v16i32)
11569 return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
11570 getShuffleSHUFImmediate(SVOp), DAG);
11571 return getTargetShuffleNode(X86ISD::VPERMILPI, dl, VT, V1,
11572 getShuffleSHUFImmediate(SVOp), DAG);
11576 if (VT.is512BitVector() && isINSERT64x4Mask(M, VT, &Idx))
11577 return Insert256BitVector(V1, Extract256BitVector(V2, 0, DAG, dl),
11578 Idx*(NumElems/2), DAG, dl);
11580 // Handle VPERM2F128/VPERM2I128 permutations
11581 if (isVPERM2X128Mask(M, VT, HasFp256))
11582 return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
11583 V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
11585 if (Subtarget->hasSSE41() && isINSERTPSMask(M, VT))
11586 return getINSERTPS(SVOp, dl, DAG);
11589 if (V2IsUndef && HasInt256 && isPermImmMask(M, VT, Imm8))
11590 return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1, Imm8, DAG);
11592 if ((V2IsUndef && HasInt256 && VT.is256BitVector() && NumElems == 8) ||
11593 VT.is512BitVector()) {
11594 MVT MaskEltVT = MVT::getIntegerVT(VT.getVectorElementType().getSizeInBits());
11595 MVT MaskVectorVT = MVT::getVectorVT(MaskEltVT, NumElems);
11596 SmallVector<SDValue, 16> permclMask;
11597 for (unsigned i = 0; i != NumElems; ++i) {
11598 permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MaskEltVT));
11601 SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVectorVT, permclMask);
11603 // Bitcast is for VPERMPS since mask is v8i32 but node takes v8f32
11604 return DAG.getNode(X86ISD::VPERMV, dl, VT,
11605 DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1);
11606 return DAG.getNode(X86ISD::VPERMV3, dl, VT, V1,
11607 DAG.getNode(ISD::BITCAST, dl, VT, Mask), V2);
11610 //===--------------------------------------------------------------------===//
11611 // Since no target specific shuffle was selected for this generic one,
11612 // lower it into other known shuffles. FIXME: this isn't true yet, but
11613 // this is the plan.
11616 // Handle v8i16 specifically since SSE can do byte extraction and insertion.
11617 if (VT == MVT::v8i16) {
11618 SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, Subtarget, DAG);
11619 if (NewOp.getNode())
11623 if (VT == MVT::v16i16 && Subtarget->hasInt256()) {
11624 SDValue NewOp = LowerVECTOR_SHUFFLEv16i16(Op, DAG);
11625 if (NewOp.getNode())
11629 if (VT == MVT::v16i8) {
11630 SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, Subtarget, DAG);
11631 if (NewOp.getNode())
11635 if (VT == MVT::v32i8) {
11636 SDValue NewOp = LowerVECTOR_SHUFFLEv32i8(SVOp, Subtarget, DAG);
11637 if (NewOp.getNode())
11641 // Handle all 128-bit wide vectors with 4 elements, and match them with
11642 // several different shuffle types.
11643 if (NumElems == 4 && VT.is128BitVector())
11644 return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
11646 // Handle general 256-bit shuffles
11647 if (VT.is256BitVector())
11648 return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
11653 // This function assumes its argument is a BUILD_VECTOR of constants or
11654 // undef SDNodes. i.e: ISD::isBuildVectorOfConstantSDNodes(BuildVector) is
11656 static bool BUILD_VECTORtoBlendMask(BuildVectorSDNode *BuildVector,
11657 unsigned &MaskValue) {
11659 unsigned NumElems = BuildVector->getNumOperands();
11660 // There are 2 lanes if (NumElems > 8), and 1 lane otherwise.
11661 unsigned NumLanes = (NumElems - 1) / 8 + 1;
11662 unsigned NumElemsInLane = NumElems / NumLanes;
11664 // Blend for v16i16 should be symetric for the both lanes.
11665 for (unsigned i = 0; i < NumElemsInLane; ++i) {
11666 SDValue EltCond = BuildVector->getOperand(i);
11667 SDValue SndLaneEltCond =
11668 (NumLanes == 2) ? BuildVector->getOperand(i + NumElemsInLane) : EltCond;
11670 int Lane1Cond = -1, Lane2Cond = -1;
11671 if (isa<ConstantSDNode>(EltCond))
11672 Lane1Cond = !isZero(EltCond);
11673 if (isa<ConstantSDNode>(SndLaneEltCond))
11674 Lane2Cond = !isZero(SndLaneEltCond);
11676 if (Lane1Cond == Lane2Cond || Lane2Cond < 0)
11677 // Lane1Cond != 0, means we want the first argument.
11678 // Lane1Cond == 0, means we want the second argument.
11679 // The encoding of this argument is 0 for the first argument, 1
11680 // for the second. Therefore, invert the condition.
11681 MaskValue |= !Lane1Cond << i;
11682 else if (Lane1Cond < 0)
11683 MaskValue |= !Lane2Cond << i;
11690 // Try to lower a vselect node into a simple blend instruction.
11691 static SDValue LowerVSELECTtoBlend(SDValue Op, const X86Subtarget *Subtarget,
11692 SelectionDAG &DAG) {
11693 SDValue Cond = Op.getOperand(0);
11694 SDValue LHS = Op.getOperand(1);
11695 SDValue RHS = Op.getOperand(2);
11697 MVT VT = Op.getSimpleValueType();
11698 MVT EltVT = VT.getVectorElementType();
11699 unsigned NumElems = VT.getVectorNumElements();
11701 // There is no blend with immediate in AVX-512.
11702 if (VT.is512BitVector())
11705 if (!Subtarget->hasSSE41() || EltVT == MVT::i8)
11707 if (!Subtarget->hasInt256() && VT == MVT::v16i16)
11710 if (!ISD::isBuildVectorOfConstantSDNodes(Cond.getNode()))
11713 // Check the mask for BLEND and build the value.
11714 unsigned MaskValue = 0;
11715 if (!BUILD_VECTORtoBlendMask(cast<BuildVectorSDNode>(Cond), MaskValue))
11718 // Convert i32 vectors to floating point if it is not AVX2.
11719 // AVX2 introduced VPBLENDD instruction for 128 and 256-bit vectors.
11721 if (EltVT == MVT::i64 || (EltVT == MVT::i32 && !Subtarget->hasInt256())) {
11722 BlendVT = MVT::getVectorVT(MVT::getFloatingPointVT(EltVT.getSizeInBits()),
11724 LHS = DAG.getNode(ISD::BITCAST, dl, VT, LHS);
11725 RHS = DAG.getNode(ISD::BITCAST, dl, VT, RHS);
11728 SDValue Ret = DAG.getNode(X86ISD::BLENDI, dl, BlendVT, LHS, RHS,
11729 DAG.getConstant(MaskValue, MVT::i32));
11730 return DAG.getNode(ISD::BITCAST, dl, VT, Ret);
11733 SDValue X86TargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const {
11734 // A vselect where all conditions and data are constants can be optimized into
11735 // a single vector load by SelectionDAGLegalize::ExpandBUILD_VECTOR().
11736 if (ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(0).getNode()) &&
11737 ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(1).getNode()) &&
11738 ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(2).getNode()))
11741 SDValue BlendOp = LowerVSELECTtoBlend(Op, Subtarget, DAG);
11742 if (BlendOp.getNode())
11745 // Some types for vselect were previously set to Expand, not Legal or
11746 // Custom. Return an empty SDValue so we fall-through to Expand, after
11747 // the Custom lowering phase.
11748 MVT VT = Op.getSimpleValueType();
11749 switch (VT.SimpleTy) {
11754 if (Subtarget->hasBWI() && Subtarget->hasVLX())
11759 // We couldn't create a "Blend with immediate" node.
11760 // This node should still be legal, but we'll have to emit a blendv*
11765 static SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
11766 MVT VT = Op.getSimpleValueType();
11769 if (!Op.getOperand(0).getSimpleValueType().is128BitVector())
11772 if (VT.getSizeInBits() == 8) {
11773 SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
11774 Op.getOperand(0), Op.getOperand(1));
11775 SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
11776 DAG.getValueType(VT));
11777 return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
11780 if (VT.getSizeInBits() == 16) {
11781 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
11782 // If Idx is 0, it's cheaper to do a move instead of a pextrw.
11784 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
11785 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
11786 DAG.getNode(ISD::BITCAST, dl,
11789 Op.getOperand(1)));
11790 SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
11791 Op.getOperand(0), Op.getOperand(1));
11792 SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
11793 DAG.getValueType(VT));
11794 return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
11797 if (VT == MVT::f32) {
11798 // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
11799 // the result back to FR32 register. It's only worth matching if the
11800 // result has a single use which is a store or a bitcast to i32. And in
11801 // the case of a store, it's not worth it if the index is a constant 0,
11802 // because a MOVSSmr can be used instead, which is smaller and faster.
11803 if (!Op.hasOneUse())
11805 SDNode *User = *Op.getNode()->use_begin();
11806 if ((User->getOpcode() != ISD::STORE ||
11807 (isa<ConstantSDNode>(Op.getOperand(1)) &&
11808 cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
11809 (User->getOpcode() != ISD::BITCAST ||
11810 User->getValueType(0) != MVT::i32))
11812 SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
11813 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
11816 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
11819 if (VT == MVT::i32 || VT == MVT::i64) {
11820 // ExtractPS/pextrq works with constant index.
11821 if (isa<ConstantSDNode>(Op.getOperand(1)))
11827 /// Extract one bit from mask vector, like v16i1 or v8i1.
11828 /// AVX-512 feature.
11830 X86TargetLowering::ExtractBitFromMaskVector(SDValue Op, SelectionDAG &DAG) const {
11831 SDValue Vec = Op.getOperand(0);
11833 MVT VecVT = Vec.getSimpleValueType();
11834 SDValue Idx = Op.getOperand(1);
11835 MVT EltVT = Op.getSimpleValueType();
11837 assert((EltVT == MVT::i1) && "Unexpected operands in ExtractBitFromMaskVector");
11839 // variable index can't be handled in mask registers,
11840 // extend vector to VR512
11841 if (!isa<ConstantSDNode>(Idx)) {
11842 MVT ExtVT = (VecVT == MVT::v8i1 ? MVT::v8i64 : MVT::v16i32);
11843 SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, dl, ExtVT, Vec);
11844 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
11845 ExtVT.getVectorElementType(), Ext, Idx);
11846 return DAG.getNode(ISD::TRUNCATE, dl, EltVT, Elt);
11849 unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
11850 const TargetRegisterClass* rc = getRegClassFor(VecVT);
11851 unsigned MaxSift = rc->getSize()*8 - 1;
11852 Vec = DAG.getNode(X86ISD::VSHLI, dl, VecVT, Vec,
11853 DAG.getConstant(MaxSift - IdxVal, MVT::i8));
11854 Vec = DAG.getNode(X86ISD::VSRLI, dl, VecVT, Vec,
11855 DAG.getConstant(MaxSift, MVT::i8));
11856 return DAG.getNode(X86ISD::VEXTRACT, dl, MVT::i1, Vec,
11857 DAG.getIntPtrConstant(0));
11861 X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
11862 SelectionDAG &DAG) const {
11864 SDValue Vec = Op.getOperand(0);
11865 MVT VecVT = Vec.getSimpleValueType();
11866 SDValue Idx = Op.getOperand(1);
11868 if (Op.getSimpleValueType() == MVT::i1)
11869 return ExtractBitFromMaskVector(Op, DAG);
11871 if (!isa<ConstantSDNode>(Idx)) {
11872 if (VecVT.is512BitVector() ||
11873 (VecVT.is256BitVector() && Subtarget->hasInt256() &&
11874 VecVT.getVectorElementType().getSizeInBits() == 32)) {
11877 MVT::getIntegerVT(VecVT.getVectorElementType().getSizeInBits());
11878 MVT MaskVT = MVT::getVectorVT(MaskEltVT, VecVT.getSizeInBits() /
11879 MaskEltVT.getSizeInBits());
11881 Idx = DAG.getZExtOrTrunc(Idx, dl, MaskEltVT);
11882 SDValue Mask = DAG.getNode(X86ISD::VINSERT, dl, MaskVT,
11883 getZeroVector(MaskVT, Subtarget, DAG, dl),
11884 Idx, DAG.getConstant(0, getPointerTy()));
11885 SDValue Perm = DAG.getNode(X86ISD::VPERMV, dl, VecVT, Mask, Vec);
11886 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(),
11887 Perm, DAG.getConstant(0, getPointerTy()));
11892 // If this is a 256-bit vector result, first extract the 128-bit vector and
11893 // then extract the element from the 128-bit vector.
11894 if (VecVT.is256BitVector() || VecVT.is512BitVector()) {
11896 unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
11897 // Get the 128-bit vector.
11898 Vec = Extract128BitVector(Vec, IdxVal, DAG, dl);
11899 MVT EltVT = VecVT.getVectorElementType();
11901 unsigned ElemsPerChunk = 128 / EltVT.getSizeInBits();
11903 //if (IdxVal >= NumElems/2)
11904 // IdxVal -= NumElems/2;
11905 IdxVal -= (IdxVal/ElemsPerChunk)*ElemsPerChunk;
11906 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
11907 DAG.getConstant(IdxVal, MVT::i32));
11910 assert(VecVT.is128BitVector() && "Unexpected vector length");
11912 if (Subtarget->hasSSE41()) {
11913 SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
11918 MVT VT = Op.getSimpleValueType();
11919 // TODO: handle v16i8.
11920 if (VT.getSizeInBits() == 16) {
11921 SDValue Vec = Op.getOperand(0);
11922 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
11924 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
11925 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
11926 DAG.getNode(ISD::BITCAST, dl,
11928 Op.getOperand(1)));
11929 // Transform it so it match pextrw which produces a 32-bit result.
11930 MVT EltVT = MVT::i32;
11931 SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
11932 Op.getOperand(0), Op.getOperand(1));
11933 SDValue Assert = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
11934 DAG.getValueType(VT));
11935 return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
11938 if (VT.getSizeInBits() == 32) {
11939 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
11943 // SHUFPS the element to the lowest double word, then movss.
11944 int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
11945 MVT VVT = Op.getOperand(0).getSimpleValueType();
11946 SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
11947 DAG.getUNDEF(VVT), Mask);
11948 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
11949 DAG.getIntPtrConstant(0));
11952 if (VT.getSizeInBits() == 64) {
11953 // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
11954 // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
11955 // to match extract_elt for f64.
11956 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
11960 // UNPCKHPD the element to the lowest double word, then movsd.
11961 // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
11962 // to a f64mem, the whole operation is folded into a single MOVHPDmr.
11963 int Mask[2] = { 1, -1 };
11964 MVT VVT = Op.getOperand(0).getSimpleValueType();
11965 SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
11966 DAG.getUNDEF(VVT), Mask);
11967 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
11968 DAG.getIntPtrConstant(0));
11974 /// Insert one bit to mask vector, like v16i1 or v8i1.
11975 /// AVX-512 feature.
11977 X86TargetLowering::InsertBitToMaskVector(SDValue Op, SelectionDAG &DAG) const {
11979 SDValue Vec = Op.getOperand(0);
11980 SDValue Elt = Op.getOperand(1);
11981 SDValue Idx = Op.getOperand(2);
11982 MVT VecVT = Vec.getSimpleValueType();
11984 if (!isa<ConstantSDNode>(Idx)) {
11985 // Non constant index. Extend source and destination,
11986 // insert element and then truncate the result.
11987 MVT ExtVecVT = (VecVT == MVT::v8i1 ? MVT::v8i64 : MVT::v16i32);
11988 MVT ExtEltVT = (VecVT == MVT::v8i1 ? MVT::i64 : MVT::i32);
11989 SDValue ExtOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ExtVecVT,
11990 DAG.getNode(ISD::ZERO_EXTEND, dl, ExtVecVT, Vec),
11991 DAG.getNode(ISD::ZERO_EXTEND, dl, ExtEltVT, Elt), Idx);
11992 return DAG.getNode(ISD::TRUNCATE, dl, VecVT, ExtOp);
11995 unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
11996 SDValue EltInVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Elt);
11997 if (Vec.getOpcode() == ISD::UNDEF)
11998 return DAG.getNode(X86ISD::VSHLI, dl, VecVT, EltInVec,
11999 DAG.getConstant(IdxVal, MVT::i8));
12000 const TargetRegisterClass* rc = getRegClassFor(VecVT);
12001 unsigned MaxSift = rc->getSize()*8 - 1;
12002 EltInVec = DAG.getNode(X86ISD::VSHLI, dl, VecVT, EltInVec,
12003 DAG.getConstant(MaxSift, MVT::i8));
12004 EltInVec = DAG.getNode(X86ISD::VSRLI, dl, VecVT, EltInVec,
12005 DAG.getConstant(MaxSift - IdxVal, MVT::i8));
12006 return DAG.getNode(ISD::OR, dl, VecVT, Vec, EltInVec);
12009 SDValue X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
12010 SelectionDAG &DAG) const {
12011 MVT VT = Op.getSimpleValueType();
12012 MVT EltVT = VT.getVectorElementType();
12014 if (EltVT == MVT::i1)
12015 return InsertBitToMaskVector(Op, DAG);
12018 SDValue N0 = Op.getOperand(0);
12019 SDValue N1 = Op.getOperand(1);
12020 SDValue N2 = Op.getOperand(2);
12021 if (!isa<ConstantSDNode>(N2))
12023 auto *N2C = cast<ConstantSDNode>(N2);
12024 unsigned IdxVal = N2C->getZExtValue();
12026 // If the vector is wider than 128 bits, extract the 128-bit subvector, insert
12027 // into that, and then insert the subvector back into the result.
12028 if (VT.is256BitVector() || VT.is512BitVector()) {
12029 // Get the desired 128-bit vector half.
12030 SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl);
12032 // Insert the element into the desired half.
12033 unsigned NumEltsIn128 = 128 / EltVT.getSizeInBits();
12034 unsigned IdxIn128 = IdxVal - (IdxVal / NumEltsIn128) * NumEltsIn128;
12036 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
12037 DAG.getConstant(IdxIn128, MVT::i32));
12039 // Insert the changed part back to the 256-bit vector
12040 return Insert128BitVector(N0, V, IdxVal, DAG, dl);
12042 assert(VT.is128BitVector() && "Only 128-bit vector types should be left!");
12044 if (Subtarget->hasSSE41()) {
12045 if (EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) {
12047 if (VT == MVT::v8i16) {
12048 Opc = X86ISD::PINSRW;
12050 assert(VT == MVT::v16i8);
12051 Opc = X86ISD::PINSRB;
12054 // Transform it so it match pinsr{b,w} which expects a GR32 as its second
12056 if (N1.getValueType() != MVT::i32)
12057 N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
12058 if (N2.getValueType() != MVT::i32)
12059 N2 = DAG.getIntPtrConstant(IdxVal);
12060 return DAG.getNode(Opc, dl, VT, N0, N1, N2);
12063 if (EltVT == MVT::f32) {
12064 // Bits [7:6] of the constant are the source select. This will always be
12065 // zero here. The DAG Combiner may combine an extract_elt index into
12067 // bits. For example (insert (extract, 3), 2) could be matched by
12069 // the '3' into bits [7:6] of X86ISD::INSERTPS.
12070 // Bits [5:4] of the constant are the destination select. This is the
12071 // value of the incoming immediate.
12072 // Bits [3:0] of the constant are the zero mask. The DAG Combiner may
12073 // combine either bitwise AND or insert of float 0.0 to set these bits.
12074 N2 = DAG.getIntPtrConstant(IdxVal << 4);
12075 // Create this as a scalar to vector..
12076 N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
12077 return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
12080 if (EltVT == MVT::i32 || EltVT == MVT::i64) {
12081 // PINSR* works with constant index.
12086 if (EltVT == MVT::i8)
12089 if (EltVT.getSizeInBits() == 16) {
12090 // Transform it so it match pinsrw which expects a 16-bit value in a GR32
12091 // as its second argument.
12092 if (N1.getValueType() != MVT::i32)
12093 N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
12094 if (N2.getValueType() != MVT::i32)
12095 N2 = DAG.getIntPtrConstant(IdxVal);
12096 return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
12101 static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
12103 MVT OpVT = Op.getSimpleValueType();
12105 // If this is a 256-bit vector result, first insert into a 128-bit
12106 // vector and then insert into the 256-bit vector.
12107 if (!OpVT.is128BitVector()) {
12108 // Insert into a 128-bit vector.
12109 unsigned SizeFactor = OpVT.getSizeInBits()/128;
12110 MVT VT128 = MVT::getVectorVT(OpVT.getVectorElementType(),
12111 OpVT.getVectorNumElements() / SizeFactor);
12113 Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
12115 // Insert the 128-bit vector.
12116 return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl);
12119 if (OpVT == MVT::v1i64 &&
12120 Op.getOperand(0).getValueType() == MVT::i64)
12121 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
12123 SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
12124 assert(OpVT.is128BitVector() && "Expected an SSE type!");
12125 return DAG.getNode(ISD::BITCAST, dl, OpVT,
12126 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
12129 // Lower a node with an EXTRACT_SUBVECTOR opcode. This may result in
12130 // a simple subregister reference or explicit instructions to grab
12131 // upper bits of a vector.
12132 static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
12133 SelectionDAG &DAG) {
12135 SDValue In = Op.getOperand(0);
12136 SDValue Idx = Op.getOperand(1);
12137 unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
12138 MVT ResVT = Op.getSimpleValueType();
12139 MVT InVT = In.getSimpleValueType();
12141 if (Subtarget->hasFp256()) {
12142 if (ResVT.is128BitVector() &&
12143 (InVT.is256BitVector() || InVT.is512BitVector()) &&
12144 isa<ConstantSDNode>(Idx)) {
12145 return Extract128BitVector(In, IdxVal, DAG, dl);
12147 if (ResVT.is256BitVector() && InVT.is512BitVector() &&
12148 isa<ConstantSDNode>(Idx)) {
12149 return Extract256BitVector(In, IdxVal, DAG, dl);
12155 // Lower a node with an INSERT_SUBVECTOR opcode. This may result in a
12156 // simple superregister reference or explicit instructions to insert
12157 // the upper bits of a vector.
12158 static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
12159 SelectionDAG &DAG) {
12160 if (Subtarget->hasFp256()) {
12161 SDLoc dl(Op.getNode());
12162 SDValue Vec = Op.getNode()->getOperand(0);
12163 SDValue SubVec = Op.getNode()->getOperand(1);
12164 SDValue Idx = Op.getNode()->getOperand(2);
12166 if ((Op.getNode()->getSimpleValueType(0).is256BitVector() ||
12167 Op.getNode()->getSimpleValueType(0).is512BitVector()) &&
12168 SubVec.getNode()->getSimpleValueType(0).is128BitVector() &&
12169 isa<ConstantSDNode>(Idx)) {
12170 unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
12171 return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl);
12174 if (Op.getNode()->getSimpleValueType(0).is512BitVector() &&
12175 SubVec.getNode()->getSimpleValueType(0).is256BitVector() &&
12176 isa<ConstantSDNode>(Idx)) {
12177 unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
12178 return Insert256BitVector(Vec, SubVec, IdxVal, DAG, dl);
12184 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
12185 // their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
12186 // one of the above mentioned nodes. It has to be wrapped because otherwise
12187 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
12188 // be used to form addressing mode. These wrapped nodes will be selected
12191 X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
12192 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
12194 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
12195 // global base reg.
12196 unsigned char OpFlag = 0;
12197 unsigned WrapperKind = X86ISD::Wrapper;
12198 CodeModel::Model M = DAG.getTarget().getCodeModel();
12200 if (Subtarget->isPICStyleRIPRel() &&
12201 (M == CodeModel::Small || M == CodeModel::Kernel))
12202 WrapperKind = X86ISD::WrapperRIP;
12203 else if (Subtarget->isPICStyleGOT())
12204 OpFlag = X86II::MO_GOTOFF;
12205 else if (Subtarget->isPICStyleStubPIC())
12206 OpFlag = X86II::MO_PIC_BASE_OFFSET;
12208 SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
12209 CP->getAlignment(),
12210 CP->getOffset(), OpFlag);
12212 Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
12213 // With PIC, the address is actually $g + Offset.
12215 Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
12216 DAG.getNode(X86ISD::GlobalBaseReg,
12217 SDLoc(), getPointerTy()),
12224 SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
12225 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
12227 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
12228 // global base reg.
12229 unsigned char OpFlag = 0;
12230 unsigned WrapperKind = X86ISD::Wrapper;
12231 CodeModel::Model M = DAG.getTarget().getCodeModel();
12233 if (Subtarget->isPICStyleRIPRel() &&
12234 (M == CodeModel::Small || M == CodeModel::Kernel))
12235 WrapperKind = X86ISD::WrapperRIP;
12236 else if (Subtarget->isPICStyleGOT())
12237 OpFlag = X86II::MO_GOTOFF;
12238 else if (Subtarget->isPICStyleStubPIC())
12239 OpFlag = X86II::MO_PIC_BASE_OFFSET;
12241 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
12244 Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
12246 // With PIC, the address is actually $g + Offset.
12248 Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
12249 DAG.getNode(X86ISD::GlobalBaseReg,
12250 SDLoc(), getPointerTy()),
12257 X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
12258 const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
12260 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
12261 // global base reg.
12262 unsigned char OpFlag = 0;
12263 unsigned WrapperKind = X86ISD::Wrapper;
12264 CodeModel::Model M = DAG.getTarget().getCodeModel();
12266 if (Subtarget->isPICStyleRIPRel() &&
12267 (M == CodeModel::Small || M == CodeModel::Kernel)) {
12268 if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
12269 OpFlag = X86II::MO_GOTPCREL;
12270 WrapperKind = X86ISD::WrapperRIP;
12271 } else if (Subtarget->isPICStyleGOT()) {
12272 OpFlag = X86II::MO_GOT;
12273 } else if (Subtarget->isPICStyleStubPIC()) {
12274 OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
12275 } else if (Subtarget->isPICStyleStubNoDynamic()) {
12276 OpFlag = X86II::MO_DARWIN_NONLAZY;
12279 SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
12282 Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
12284 // With PIC, the address is actually $g + Offset.
12285 if (DAG.getTarget().getRelocationModel() == Reloc::PIC_ &&
12286 !Subtarget->is64Bit()) {
12287 Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
12288 DAG.getNode(X86ISD::GlobalBaseReg,
12289 SDLoc(), getPointerTy()),
12293 // For symbols that require a load from a stub to get the address, emit the
12295 if (isGlobalStubReference(OpFlag))
12296 Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
12297 MachinePointerInfo::getGOT(), false, false, false, 0);
12303 X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
12304 // Create the TargetBlockAddressAddress node.
12305 unsigned char OpFlags =
12306 Subtarget->ClassifyBlockAddressReference();
12307 CodeModel::Model M = DAG.getTarget().getCodeModel();
12308 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
12309 int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset();
12311 SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(), Offset,
12314 if (Subtarget->isPICStyleRIPRel() &&
12315 (M == CodeModel::Small || M == CodeModel::Kernel))
12316 Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
12318 Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
12320 // With PIC, the address is actually $g + Offset.
12321 if (isGlobalRelativeToPICBase(OpFlags)) {
12322 Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
12323 DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
12331 X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, SDLoc dl,
12332 int64_t Offset, SelectionDAG &DAG) const {
12333 // Create the TargetGlobalAddress node, folding in the constant
12334 // offset if it is legal.
12335 unsigned char OpFlags =
12336 Subtarget->ClassifyGlobalReference(GV, DAG.getTarget());
12337 CodeModel::Model M = DAG.getTarget().getCodeModel();
12339 if (OpFlags == X86II::MO_NO_FLAG &&
12340 X86::isOffsetSuitableForCodeModel(Offset, M)) {
12341 // A direct static reference to a global.
12342 Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
12345 Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
12348 if (Subtarget->isPICStyleRIPRel() &&
12349 (M == CodeModel::Small || M == CodeModel::Kernel))
12350 Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
12352 Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
12354 // With PIC, the address is actually $g + Offset.
12355 if (isGlobalRelativeToPICBase(OpFlags)) {
12356 Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
12357 DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
12361 // For globals that require a load from a stub to get the address, emit the
12363 if (isGlobalStubReference(OpFlags))
12364 Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
12365 MachinePointerInfo::getGOT(), false, false, false, 0);
12367 // If there was a non-zero offset that we didn't fold, create an explicit
12368 // addition for it.
12370 Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
12371 DAG.getConstant(Offset, getPointerTy()));
12377 X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
12378 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
12379 int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
12380 return LowerGlobalAddress(GV, SDLoc(Op), Offset, DAG);
12384 GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
12385 SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
12386 unsigned char OperandFlags, bool LocalDynamic = false) {
12387 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
12388 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
12390 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
12391 GA->getValueType(0),
12395 X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR
12399 SDValue Ops[] = { Chain, TGA, *InFlag };
12400 Chain = DAG.getNode(CallType, dl, NodeTys, Ops);
12402 SDValue Ops[] = { Chain, TGA };
12403 Chain = DAG.getNode(CallType, dl, NodeTys, Ops);
12406 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
12407 MFI->setAdjustsStack(true);
12409 SDValue Flag = Chain.getValue(1);
12410 return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
12413 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
12415 LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
12418 SDLoc dl(GA); // ? function entry point might be better
12419 SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
12420 DAG.getNode(X86ISD::GlobalBaseReg,
12421 SDLoc(), PtrVT), InFlag);
12422 InFlag = Chain.getValue(1);
12424 return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
12427 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
12429 LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
12431 return GetTLSADDR(DAG, DAG.getEntryNode(), GA, nullptr, PtrVT,
12432 X86::RAX, X86II::MO_TLSGD);
12435 static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA,
12441 // Get the start address of the TLS block for this module.
12442 X86MachineFunctionInfo* MFI = DAG.getMachineFunction()
12443 .getInfo<X86MachineFunctionInfo>();
12444 MFI->incNumLocalDynamicTLSAccesses();
12448 Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, nullptr, PtrVT, X86::RAX,
12449 X86II::MO_TLSLD, /*LocalDynamic=*/true);
12452 SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
12453 DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), InFlag);
12454 InFlag = Chain.getValue(1);
12455 Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX,
12456 X86II::MO_TLSLDM, /*LocalDynamic=*/true);
12459 // Note: the CleanupLocalDynamicTLSPass will remove redundant computations
12463 unsigned char OperandFlags = X86II::MO_DTPOFF;
12464 unsigned WrapperKind = X86ISD::Wrapper;
12465 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
12466 GA->getValueType(0),
12467 GA->getOffset(), OperandFlags);
12468 SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
12470 // Add x@dtpoff with the base.
12471 return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base);
12474 // Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model.
12475 static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
12476 const EVT PtrVT, TLSModel::Model model,
12477 bool is64Bit, bool isPIC) {
12480 // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
12481 Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
12482 is64Bit ? 257 : 256));
12484 SDValue ThreadPointer =
12485 DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), DAG.getIntPtrConstant(0),
12486 MachinePointerInfo(Ptr), false, false, false, 0);
12488 unsigned char OperandFlags = 0;
12489 // Most TLS accesses are not RIP relative, even on x86-64. One exception is
12491 unsigned WrapperKind = X86ISD::Wrapper;
12492 if (model == TLSModel::LocalExec) {
12493 OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
12494 } else if (model == TLSModel::InitialExec) {
12496 OperandFlags = X86II::MO_GOTTPOFF;
12497 WrapperKind = X86ISD::WrapperRIP;
12499 OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF;
12502 llvm_unreachable("Unexpected model");
12505 // emit "addl x@ntpoff,%eax" (local exec)
12506 // or "addl x@indntpoff,%eax" (initial exec)
12507 // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic)
12509 DAG.getTargetGlobalAddress(GA->getGlobal(), dl, GA->getValueType(0),
12510 GA->getOffset(), OperandFlags);
12511 SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
12513 if (model == TLSModel::InitialExec) {
12514 if (isPIC && !is64Bit) {
12515 Offset = DAG.getNode(ISD::ADD, dl, PtrVT,
12516 DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT),
12520 Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
12521 MachinePointerInfo::getGOT(), false, false, false, 0);
12524 // The address of the thread local variable is the add of the thread
12525 // pointer with the offset of the variable.
12526 return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
12530 X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
12532 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
12533 const GlobalValue *GV = GA->getGlobal();
12535 if (Subtarget->isTargetELF()) {
12536 TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
12539 case TLSModel::GeneralDynamic:
12540 if (Subtarget->is64Bit())
12541 return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
12542 return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
12543 case TLSModel::LocalDynamic:
12544 return LowerToTLSLocalDynamicModel(GA, DAG, getPointerTy(),
12545 Subtarget->is64Bit());
12546 case TLSModel::InitialExec:
12547 case TLSModel::LocalExec:
12548 return LowerToTLSExecModel(
12549 GA, DAG, getPointerTy(), model, Subtarget->is64Bit(),
12550 DAG.getTarget().getRelocationModel() == Reloc::PIC_);
12552 llvm_unreachable("Unknown TLS model.");
12555 if (Subtarget->isTargetDarwin()) {
12556 // Darwin only has one model of TLS. Lower to that.
12557 unsigned char OpFlag = 0;
12558 unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
12559 X86ISD::WrapperRIP : X86ISD::Wrapper;
12561 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
12562 // global base reg.
12563 bool PIC32 = (DAG.getTarget().getRelocationModel() == Reloc::PIC_) &&
12564 !Subtarget->is64Bit();
12566 OpFlag = X86II::MO_TLVP_PIC_BASE;
12568 OpFlag = X86II::MO_TLVP;
12570 SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
12571 GA->getValueType(0),
12572 GA->getOffset(), OpFlag);
12573 SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
12575 // With PIC32, the address is actually $g + Offset.
12577 Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
12578 DAG.getNode(X86ISD::GlobalBaseReg,
12579 SDLoc(), getPointerTy()),
12582 // Lowering the machine isd will make sure everything is in the right
12584 SDValue Chain = DAG.getEntryNode();
12585 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
12586 SDValue Args[] = { Chain, Offset };
12587 Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args);
12589 // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
12590 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
12591 MFI->setAdjustsStack(true);
12593 // And our return value (tls address) is in the standard call return value
12595 unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
12596 return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
12597 Chain.getValue(1));
12600 if (Subtarget->isTargetKnownWindowsMSVC() ||
12601 Subtarget->isTargetWindowsGNU()) {
12602 // Just use the implicit TLS architecture
12603 // Need to generate someting similar to:
12604 // mov rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
12606 // mov ecx, dword [rel _tls_index]: Load index (from C runtime)
12607 // mov rcx, qword [rdx+rcx*8]
12608 // mov eax, .tls$:tlsvar
12609 // [rax+rcx] contains the address
12610 // Windows 64bit: gs:0x58
12611 // Windows 32bit: fs:__tls_array
12614 SDValue Chain = DAG.getEntryNode();
12616 // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
12617 // %gs:0x58 (64-bit). On MinGW, __tls_array is not available, so directly
12618 // use its literal value of 0x2C.
12619 Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
12620 ? Type::getInt8PtrTy(*DAG.getContext(),
12622 : Type::getInt32PtrTy(*DAG.getContext(),
12626 Subtarget->is64Bit()
12627 ? DAG.getIntPtrConstant(0x58)
12628 : (Subtarget->isTargetWindowsGNU()
12629 ? DAG.getIntPtrConstant(0x2C)
12630 : DAG.getExternalSymbol("_tls_array", getPointerTy()));
12632 SDValue ThreadPointer =
12633 DAG.getLoad(getPointerTy(), dl, Chain, TlsArray,
12634 MachinePointerInfo(Ptr), false, false, false, 0);
12636 // Load the _tls_index variable
12637 SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
12638 if (Subtarget->is64Bit())
12639 IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
12640 IDX, MachinePointerInfo(), MVT::i32,
12641 false, false, false, 0);
12643 IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
12644 false, false, false, 0);
12646 SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
12648 IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
12650 SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
12651 res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
12652 false, false, false, 0);
12654 // Get the offset of start of .tls section
12655 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
12656 GA->getValueType(0),
12657 GA->getOffset(), X86II::MO_SECREL);
12658 SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
12660 // The address of the thread local variable is the add of the thread
12661 // pointer with the offset of the variable.
12662 return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
12665 llvm_unreachable("TLS not implemented for this target.");
12668 /// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
12669 /// and take a 2 x i32 value to shift plus a shift amount.
12670 static SDValue LowerShiftParts(SDValue Op, SelectionDAG &DAG) {
12671 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
12672 MVT VT = Op.getSimpleValueType();
12673 unsigned VTBits = VT.getSizeInBits();
12675 bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
12676 SDValue ShOpLo = Op.getOperand(0);
12677 SDValue ShOpHi = Op.getOperand(1);
12678 SDValue ShAmt = Op.getOperand(2);
12679 // X86ISD::SHLD and X86ISD::SHRD have defined overflow behavior but the
12680 // generic ISD nodes haven't. Insert an AND to be safe, it's optimized away
12682 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
12683 DAG.getConstant(VTBits - 1, MVT::i8));
12684 SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
12685 DAG.getConstant(VTBits - 1, MVT::i8))
12686 : DAG.getConstant(0, VT);
12688 SDValue Tmp2, Tmp3;
12689 if (Op.getOpcode() == ISD::SHL_PARTS) {
12690 Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
12691 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
12693 Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
12694 Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
12697 // If the shift amount is larger or equal than the width of a part we can't
12698 // rely on the results of shld/shrd. Insert a test and select the appropriate
12699 // values for large shift amounts.
12700 SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
12701 DAG.getConstant(VTBits, MVT::i8));
12702 SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
12703 AndNode, DAG.getConstant(0, MVT::i8));
12706 SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
12707 SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
12708 SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
12710 if (Op.getOpcode() == ISD::SHL_PARTS) {
12711 Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0);
12712 Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1);
12714 Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0);
12715 Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1);
12718 SDValue Ops[2] = { Lo, Hi };
12719 return DAG.getMergeValues(Ops, dl);
12722 SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
12723 SelectionDAG &DAG) const {
12724 MVT SrcVT = Op.getOperand(0).getSimpleValueType();
12726 if (SrcVT.isVector())
12729 assert(SrcVT <= MVT::i64 && SrcVT >= MVT::i16 &&
12730 "Unknown SINT_TO_FP to lower!");
12732 // These are really Legal; return the operand so the caller accepts it as
12734 if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
12736 if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
12737 Subtarget->is64Bit()) {
12742 unsigned Size = SrcVT.getSizeInBits()/8;
12743 MachineFunction &MF = DAG.getMachineFunction();
12744 int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
12745 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
12746 SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
12748 MachinePointerInfo::getFixedStack(SSFI),
12750 return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
12753 SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
12755 SelectionDAG &DAG) const {
12759 bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
12761 Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
12763 Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
12765 unsigned ByteSize = SrcVT.getSizeInBits()/8;
12767 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
12768 MachineMemOperand *MMO;
12770 int SSFI = FI->getIndex();
12772 DAG.getMachineFunction()
12773 .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
12774 MachineMemOperand::MOLoad, ByteSize, ByteSize);
12776 MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
12777 StackSlot = StackSlot.getOperand(1);
12779 SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
12780 SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
12782 Tys, Ops, SrcVT, MMO);
12785 Chain = Result.getValue(1);
12786 SDValue InFlag = Result.getValue(2);
12788 // FIXME: Currently the FST is flagged to the FILD_FLAG. This
12789 // shouldn't be necessary except that RFP cannot be live across
12790 // multiple blocks. When stackifier is fixed, they can be uncoupled.
12791 MachineFunction &MF = DAG.getMachineFunction();
12792 unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
12793 int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
12794 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
12795 Tys = DAG.getVTList(MVT::Other);
12797 Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
12799 MachineMemOperand *MMO =
12800 DAG.getMachineFunction()
12801 .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
12802 MachineMemOperand::MOStore, SSFISize, SSFISize);
12804 Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
12805 Ops, Op.getValueType(), MMO);
12806 Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
12807 MachinePointerInfo::getFixedStack(SSFI),
12808 false, false, false, 0);
12814 // LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
12815 SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
12816 SelectionDAG &DAG) const {
12817 // This algorithm is not obvious. Here it is what we're trying to output:
12820 punpckldq (c0), %xmm0 // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
12821 subpd (c1), %xmm0 // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
12823 haddpd %xmm0, %xmm0
12825 pshufd $0x4e, %xmm0, %xmm1
12831 LLVMContext *Context = DAG.getContext();
12833 // Build some magic constants.
12834 static const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
12835 Constant *C0 = ConstantDataVector::get(*Context, CV0);
12836 SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
12838 SmallVector<Constant*,2> CV1;
12840 ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
12841 APInt(64, 0x4330000000000000ULL))));
12843 ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
12844 APInt(64, 0x4530000000000000ULL))));
12845 Constant *C1 = ConstantVector::get(CV1);
12846 SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
12848 // Load the 64-bit value into an XMM register.
12849 SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
12851 SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
12852 MachinePointerInfo::getConstantPool(),
12853 false, false, false, 16);
12854 SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
12855 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
12858 SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
12859 MachinePointerInfo::getConstantPool(),
12860 false, false, false, 16);
12861 SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
12862 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
12865 if (Subtarget->hasSSE3()) {
12866 // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
12867 Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
12869 SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
12870 SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
12872 Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
12873 DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
12877 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
12878 DAG.getIntPtrConstant(0));
12881 // LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
12882 SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
12883 SelectionDAG &DAG) const {
12885 // FP constant to bias correct the final result.
12886 SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
12889 // Load the 32-bit value into an XMM register.
12890 SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
12893 // Zero out the upper parts of the register.
12894 Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
12896 Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
12897 DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
12898 DAG.getIntPtrConstant(0));
12900 // Or the load with the bias.
12901 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
12902 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
12903 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
12904 MVT::v2f64, Load)),
12905 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
12906 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
12907 MVT::v2f64, Bias)));
12908 Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
12909 DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
12910 DAG.getIntPtrConstant(0));
12912 // Subtract the bias.
12913 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
12915 // Handle final rounding.
12916 EVT DestVT = Op.getValueType();
12918 if (DestVT.bitsLT(MVT::f64))
12919 return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
12920 DAG.getIntPtrConstant(0));
12921 if (DestVT.bitsGT(MVT::f64))
12922 return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
12924 // Handle final rounding.
12928 SDValue X86TargetLowering::lowerUINT_TO_FP_vec(SDValue Op,
12929 SelectionDAG &DAG) const {
12930 SDValue N0 = Op.getOperand(0);
12931 MVT SVT = N0.getSimpleValueType();
12934 assert((SVT == MVT::v4i8 || SVT == MVT::v4i16 ||
12935 SVT == MVT::v8i8 || SVT == MVT::v8i16) &&
12936 "Custom UINT_TO_FP is not supported!");
12938 MVT NVT = MVT::getVectorVT(MVT::i32, SVT.getVectorNumElements());
12939 return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(),
12940 DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N0));
12943 SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
12944 SelectionDAG &DAG) const {
12945 SDValue N0 = Op.getOperand(0);
12948 if (Op.getValueType().isVector())
12949 return lowerUINT_TO_FP_vec(Op, DAG);
12951 // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
12952 // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
12953 // the optimization here.
12954 if (DAG.SignBitIsZero(N0))
12955 return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
12957 MVT SrcVT = N0.getSimpleValueType();
12958 MVT DstVT = Op.getSimpleValueType();
12959 if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
12960 return LowerUINT_TO_FP_i64(Op, DAG);
12961 if (SrcVT == MVT::i32 && X86ScalarSSEf64)
12962 return LowerUINT_TO_FP_i32(Op, DAG);
12963 if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32)
12966 // Make a 64-bit buffer, and use it to build an FILD.
12967 SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
12968 if (SrcVT == MVT::i32) {
12969 SDValue WordOff = DAG.getConstant(4, getPointerTy());
12970 SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
12971 getPointerTy(), StackSlot, WordOff);
12972 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
12973 StackSlot, MachinePointerInfo(),
12975 SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
12976 OffsetSlot, MachinePointerInfo(),
12978 SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
12982 assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
12983 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
12984 StackSlot, MachinePointerInfo(),
12986 // For i64 source, we need to add the appropriate power of 2 if the input
12987 // was negative. This is the same as the optimization in
12988 // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
12989 // we must be careful to do the computation in x87 extended precision, not
12990 // in SSE. (The generic code can't know it's OK to do this, or how to.)
12991 int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
12992 MachineMemOperand *MMO =
12993 DAG.getMachineFunction()
12994 .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
12995 MachineMemOperand::MOLoad, 8, 8);
12997 SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
12998 SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
12999 SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops,
13002 APInt FF(32, 0x5F800000ULL);
13004 // Check whether the sign bit is set.
13005 SDValue SignSet = DAG.getSetCC(dl,
13006 getSetCCResultType(*DAG.getContext(), MVT::i64),
13007 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
13010 // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
13011 SDValue FudgePtr = DAG.getConstantPool(
13012 ConstantInt::get(*DAG.getContext(), FF.zext(64)),
13015 // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
13016 SDValue Zero = DAG.getIntPtrConstant(0);
13017 SDValue Four = DAG.getIntPtrConstant(4);
13018 SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
13020 FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
13022 // Load the value out, extending it from f32 to f80.
13023 // FIXME: Avoid the extend by constructing the right constant pool?
13024 SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
13025 FudgePtr, MachinePointerInfo::getConstantPool(),
13026 MVT::f32, false, false, false, 4);
13027 // Extend everything to 80 bits to force it to be done on x87.
13028 SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
13029 return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
13032 std::pair<SDValue,SDValue>
13033 X86TargetLowering:: FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
13034 bool IsSigned, bool IsReplace) const {
13037 EVT DstTy = Op.getValueType();
13039 if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
13040 assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
13044 assert(DstTy.getSimpleVT() <= MVT::i64 &&
13045 DstTy.getSimpleVT() >= MVT::i16 &&
13046 "Unknown FP_TO_INT to lower!");
13048 // These are really Legal.
13049 if (DstTy == MVT::i32 &&
13050 isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
13051 return std::make_pair(SDValue(), SDValue());
13052 if (Subtarget->is64Bit() &&
13053 DstTy == MVT::i64 &&
13054 isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
13055 return std::make_pair(SDValue(), SDValue());
13057 // We lower FP->int64 either into FISTP64 followed by a load from a temporary
13058 // stack slot, or into the FTOL runtime function.
13059 MachineFunction &MF = DAG.getMachineFunction();
13060 unsigned MemSize = DstTy.getSizeInBits()/8;
13061 int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
13062 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
13065 if (!IsSigned && isIntegerTypeFTOL(DstTy))
13066 Opc = X86ISD::WIN_FTOL;
13068 switch (DstTy.getSimpleVT().SimpleTy) {
13069 default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
13070 case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
13071 case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
13072 case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
13075 SDValue Chain = DAG.getEntryNode();
13076 SDValue Value = Op.getOperand(0);
13077 EVT TheVT = Op.getOperand(0).getValueType();
13078 // FIXME This causes a redundant load/store if the SSE-class value is already
13079 // in memory, such as if it is on the callstack.
13080 if (isScalarFPTypeInSSEReg(TheVT)) {
13081 assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
13082 Chain = DAG.getStore(Chain, DL, Value, StackSlot,
13083 MachinePointerInfo::getFixedStack(SSFI),
13085 SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
13087 Chain, StackSlot, DAG.getValueType(TheVT)
13090 MachineMemOperand *MMO =
13091 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
13092 MachineMemOperand::MOLoad, MemSize, MemSize);
13093 Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, DstTy, MMO);
13094 Chain = Value.getValue(1);
13095 SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
13096 StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
13099 MachineMemOperand *MMO =
13100 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
13101 MachineMemOperand::MOStore, MemSize, MemSize);
13103 if (Opc != X86ISD::WIN_FTOL) {
13104 // Build the FP_TO_INT*_IN_MEM
13105 SDValue Ops[] = { Chain, Value, StackSlot };
13106 SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
13108 return std::make_pair(FIST, StackSlot);
13110 SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
13111 DAG.getVTList(MVT::Other, MVT::Glue),
13113 SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
13114 MVT::i32, ftol.getValue(1));
13115 SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
13116 MVT::i32, eax.getValue(2));
13117 SDValue Ops[] = { eax, edx };
13118 SDValue pair = IsReplace
13119 ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops)
13120 : DAG.getMergeValues(Ops, DL);
13121 return std::make_pair(pair, SDValue());
13125 static SDValue LowerAVXExtend(SDValue Op, SelectionDAG &DAG,
13126 const X86Subtarget *Subtarget) {
13127 MVT VT = Op->getSimpleValueType(0);
13128 SDValue In = Op->getOperand(0);
13129 MVT InVT = In.getSimpleValueType();
13132 // Optimize vectors in AVX mode:
13135 // Use vpunpcklwd for 4 lower elements v8i16 -> v4i32.
13136 // Use vpunpckhwd for 4 upper elements v8i16 -> v4i32.
13137 // Concat upper and lower parts.
13140 // Use vpunpckldq for 4 lower elements v4i32 -> v2i64.
13141 // Use vpunpckhdq for 4 upper elements v4i32 -> v2i64.
13142 // Concat upper and lower parts.
13145 if (((VT != MVT::v16i16) || (InVT != MVT::v16i8)) &&
13146 ((VT != MVT::v8i32) || (InVT != MVT::v8i16)) &&
13147 ((VT != MVT::v4i64) || (InVT != MVT::v4i32)))
13150 if (Subtarget->hasInt256())
13151 return DAG.getNode(X86ISD::VZEXT, dl, VT, In);
13153 SDValue ZeroVec = getZeroVector(InVT, Subtarget, DAG, dl);
13154 SDValue Undef = DAG.getUNDEF(InVT);
13155 bool NeedZero = Op.getOpcode() == ISD::ZERO_EXTEND;
13156 SDValue OpLo = getUnpackl(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
13157 SDValue OpHi = getUnpackh(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
13159 MVT HVT = MVT::getVectorVT(VT.getVectorElementType(),
13160 VT.getVectorNumElements()/2);
13162 OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
13163 OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
13165 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
13168 static SDValue LowerZERO_EXTEND_AVX512(SDValue Op,
13169 SelectionDAG &DAG) {
13170 MVT VT = Op->getSimpleValueType(0);
13171 SDValue In = Op->getOperand(0);
13172 MVT InVT = In.getSimpleValueType();
13174 unsigned int NumElts = VT.getVectorNumElements();
13175 if (NumElts != 8 && NumElts != 16)
13178 if (VT.is512BitVector() && InVT.getVectorElementType() != MVT::i1)
13179 return DAG.getNode(X86ISD::VZEXT, DL, VT, In);
13181 EVT ExtVT = (NumElts == 8)? MVT::v8i64 : MVT::v16i32;
13182 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13183 // Now we have only mask extension
13184 assert(InVT.getVectorElementType() == MVT::i1);
13185 SDValue Cst = DAG.getTargetConstant(1, ExtVT.getScalarType());
13186 const Constant *C = (dyn_cast<ConstantSDNode>(Cst))->getConstantIntValue();
13187 SDValue CP = DAG.getConstantPool(C, TLI.getPointerTy());
13188 unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
13189 SDValue Ld = DAG.getLoad(Cst.getValueType(), DL, DAG.getEntryNode(), CP,
13190 MachinePointerInfo::getConstantPool(),
13191 false, false, false, Alignment);
13193 SDValue Brcst = DAG.getNode(X86ISD::VBROADCASTM, DL, ExtVT, In, Ld);
13194 if (VT.is512BitVector())
13196 return DAG.getNode(X86ISD::VTRUNC, DL, VT, Brcst);
13199 static SDValue LowerANY_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
13200 SelectionDAG &DAG) {
13201 if (Subtarget->hasFp256()) {
13202 SDValue Res = LowerAVXExtend(Op, DAG, Subtarget);
13210 static SDValue LowerZERO_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
13211 SelectionDAG &DAG) {
13213 MVT VT = Op.getSimpleValueType();
13214 SDValue In = Op.getOperand(0);
13215 MVT SVT = In.getSimpleValueType();
13217 if (VT.is512BitVector() || SVT.getVectorElementType() == MVT::i1)
13218 return LowerZERO_EXTEND_AVX512(Op, DAG);
13220 if (Subtarget->hasFp256()) {
13221 SDValue Res = LowerAVXExtend(Op, DAG, Subtarget);
13226 assert(!VT.is256BitVector() || !SVT.is128BitVector() ||
13227 VT.getVectorNumElements() != SVT.getVectorNumElements());
13231 SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
13233 MVT VT = Op.getSimpleValueType();
13234 SDValue In = Op.getOperand(0);
13235 MVT InVT = In.getSimpleValueType();
13237 if (VT == MVT::i1) {
13238 assert((InVT.isInteger() && (InVT.getSizeInBits() <= 64)) &&
13239 "Invalid scalar TRUNCATE operation");
13240 if (InVT.getSizeInBits() >= 32)
13242 In = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, In);
13243 return DAG.getNode(ISD::TRUNCATE, DL, VT, In);
13245 assert(VT.getVectorNumElements() == InVT.getVectorNumElements() &&
13246 "Invalid TRUNCATE operation");
13248 if (InVT.is512BitVector() || VT.getVectorElementType() == MVT::i1) {
13249 if (VT.getVectorElementType().getSizeInBits() >=8)
13250 return DAG.getNode(X86ISD::VTRUNC, DL, VT, In);
13252 assert(VT.getVectorElementType() == MVT::i1 && "Unexpected vector type");
13253 unsigned NumElts = InVT.getVectorNumElements();
13254 assert ((NumElts == 8 || NumElts == 16) && "Unexpected vector type");
13255 if (InVT.getSizeInBits() < 512) {
13256 MVT ExtVT = (NumElts == 16)? MVT::v16i32 : MVT::v8i64;
13257 In = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, In);
13261 SDValue Cst = DAG.getTargetConstant(1, InVT.getVectorElementType());
13262 const Constant *C = (dyn_cast<ConstantSDNode>(Cst))->getConstantIntValue();
13263 SDValue CP = DAG.getConstantPool(C, getPointerTy());
13264 unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
13265 SDValue Ld = DAG.getLoad(Cst.getValueType(), DL, DAG.getEntryNode(), CP,
13266 MachinePointerInfo::getConstantPool(),
13267 false, false, false, Alignment);
13268 SDValue OneV = DAG.getNode(X86ISD::VBROADCAST, DL, InVT, Ld);
13269 SDValue And = DAG.getNode(ISD::AND, DL, InVT, OneV, In);
13270 return DAG.getNode(X86ISD::TESTM, DL, VT, And, And);
13273 if ((VT == MVT::v4i32) && (InVT == MVT::v4i64)) {
13274 // On AVX2, v4i64 -> v4i32 becomes VPERMD.
13275 if (Subtarget->hasInt256()) {
13276 static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
13277 In = DAG.getNode(ISD::BITCAST, DL, MVT::v8i32, In);
13278 In = DAG.getVectorShuffle(MVT::v8i32, DL, In, DAG.getUNDEF(MVT::v8i32),
13280 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, In,
13281 DAG.getIntPtrConstant(0));
13284 SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
13285 DAG.getIntPtrConstant(0));
13286 SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
13287 DAG.getIntPtrConstant(2));
13288 OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo);
13289 OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi);
13290 static const int ShufMask[] = {0, 2, 4, 6};
13291 return DAG.getVectorShuffle(VT, DL, OpLo, OpHi, ShufMask);
13294 if ((VT == MVT::v8i16) && (InVT == MVT::v8i32)) {
13295 // On AVX2, v8i32 -> v8i16 becomed PSHUFB.
13296 if (Subtarget->hasInt256()) {
13297 In = DAG.getNode(ISD::BITCAST, DL, MVT::v32i8, In);
13299 SmallVector<SDValue,32> pshufbMask;
13300 for (unsigned i = 0; i < 2; ++i) {
13301 pshufbMask.push_back(DAG.getConstant(0x0, MVT::i8));
13302 pshufbMask.push_back(DAG.getConstant(0x1, MVT::i8));
13303 pshufbMask.push_back(DAG.getConstant(0x4, MVT::i8));
13304 pshufbMask.push_back(DAG.getConstant(0x5, MVT::i8));
13305 pshufbMask.push_back(DAG.getConstant(0x8, MVT::i8));
13306 pshufbMask.push_back(DAG.getConstant(0x9, MVT::i8));
13307 pshufbMask.push_back(DAG.getConstant(0xc, MVT::i8));
13308 pshufbMask.push_back(DAG.getConstant(0xd, MVT::i8));
13309 for (unsigned j = 0; j < 8; ++j)
13310 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
13312 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8, pshufbMask);
13313 In = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v32i8, In, BV);
13314 In = DAG.getNode(ISD::BITCAST, DL, MVT::v4i64, In);
13316 static const int ShufMask[] = {0, 2, -1, -1};
13317 In = DAG.getVectorShuffle(MVT::v4i64, DL, In, DAG.getUNDEF(MVT::v4i64),
13319 In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
13320 DAG.getIntPtrConstant(0));
13321 return DAG.getNode(ISD::BITCAST, DL, VT, In);
13324 SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
13325 DAG.getIntPtrConstant(0));
13327 SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
13328 DAG.getIntPtrConstant(4));
13330 OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpLo);
13331 OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpHi);
13333 // The PSHUFB mask:
13334 static const int ShufMask1[] = {0, 1, 4, 5, 8, 9, 12, 13,
13335 -1, -1, -1, -1, -1, -1, -1, -1};
13337 SDValue Undef = DAG.getUNDEF(MVT::v16i8);
13338 OpLo = DAG.getVectorShuffle(MVT::v16i8, DL, OpLo, Undef, ShufMask1);
13339 OpHi = DAG.getVectorShuffle(MVT::v16i8, DL, OpHi, Undef, ShufMask1);
13341 OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo);
13342 OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi);
13344 // The MOVLHPS Mask:
13345 static const int ShufMask2[] = {0, 1, 4, 5};
13346 SDValue res = DAG.getVectorShuffle(MVT::v4i32, DL, OpLo, OpHi, ShufMask2);
13347 return DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, res);
13350 // Handle truncation of V256 to V128 using shuffles.
13351 if (!VT.is128BitVector() || !InVT.is256BitVector())
13354 assert(Subtarget->hasFp256() && "256-bit vector without AVX!");
13356 unsigned NumElems = VT.getVectorNumElements();
13357 MVT NVT = MVT::getVectorVT(VT.getVectorElementType(), NumElems * 2);
13359 SmallVector<int, 16> MaskVec(NumElems * 2, -1);
13360 // Prepare truncation shuffle mask
13361 for (unsigned i = 0; i != NumElems; ++i)
13362 MaskVec[i] = i * 2;
13363 SDValue V = DAG.getVectorShuffle(NVT, DL,
13364 DAG.getNode(ISD::BITCAST, DL, NVT, In),
13365 DAG.getUNDEF(NVT), &MaskVec[0]);
13366 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V,
13367 DAG.getIntPtrConstant(0));
13370 SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
13371 SelectionDAG &DAG) const {
13372 assert(!Op.getSimpleValueType().isVector());
13374 std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
13375 /*IsSigned=*/ true, /*IsReplace=*/ false);
13376 SDValue FIST = Vals.first, StackSlot = Vals.second;
13377 // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
13378 if (!FIST.getNode()) return Op;
13380 if (StackSlot.getNode())
13381 // Load the result.
13382 return DAG.getLoad(Op.getValueType(), SDLoc(Op),
13383 FIST, StackSlot, MachinePointerInfo(),
13384 false, false, false, 0);
13386 // The node is the result.
13390 SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
13391 SelectionDAG &DAG) const {
13392 std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
13393 /*IsSigned=*/ false, /*IsReplace=*/ false);
13394 SDValue FIST = Vals.first, StackSlot = Vals.second;
13395 assert(FIST.getNode() && "Unexpected failure");
13397 if (StackSlot.getNode())
13398 // Load the result.
13399 return DAG.getLoad(Op.getValueType(), SDLoc(Op),
13400 FIST, StackSlot, MachinePointerInfo(),
13401 false, false, false, 0);
13403 // The node is the result.
13407 static SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) {
13409 MVT VT = Op.getSimpleValueType();
13410 SDValue In = Op.getOperand(0);
13411 MVT SVT = In.getSimpleValueType();
13413 assert(SVT == MVT::v2f32 && "Only customize MVT::v2f32 type legalization!");
13415 return DAG.getNode(X86ISD::VFPEXT, DL, VT,
13416 DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4f32,
13417 In, DAG.getUNDEF(SVT)));
13420 // The only differences between FABS and FNEG are the mask and the logic op.
13421 static SDValue LowerFABSorFNEG(SDValue Op, SelectionDAG &DAG) {
13422 assert((Op.getOpcode() == ISD::FABS || Op.getOpcode() == ISD::FNEG) &&
13423 "Wrong opcode for lowering FABS or FNEG.");
13425 bool IsFABS = (Op.getOpcode() == ISD::FABS);
13427 MVT VT = Op.getSimpleValueType();
13428 // Assume scalar op for initialization; update for vector if needed.
13429 // Note that there are no scalar bitwise logical SSE/AVX instructions, so we
13430 // generate a 16-byte vector constant and logic op even for the scalar case.
13431 // Using a 16-byte mask allows folding the load of the mask with
13432 // the logic op, so it can save (~4 bytes) on code size.
13434 unsigned NumElts = VT == MVT::f64 ? 2 : 4;
13435 // FIXME: Use function attribute "OptimizeForSize" and/or CodeGenOpt::Level to
13436 // decide if we should generate a 16-byte constant mask when we only need 4 or
13437 // 8 bytes for the scalar case.
13438 if (VT.isVector()) {
13439 EltVT = VT.getVectorElementType();
13440 NumElts = VT.getVectorNumElements();
13443 unsigned EltBits = EltVT.getSizeInBits();
13444 LLVMContext *Context = DAG.getContext();
13445 // For FABS, mask is 0x7f...; for FNEG, mask is 0x80...
13447 IsFABS ? APInt::getSignedMaxValue(EltBits) : APInt::getSignBit(EltBits);
13448 Constant *C = ConstantInt::get(*Context, MaskElt);
13449 C = ConstantVector::getSplat(NumElts, C);
13450 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13451 SDValue CPIdx = DAG.getConstantPool(C, TLI.getPointerTy());
13452 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
13453 SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
13454 MachinePointerInfo::getConstantPool(),
13455 false, false, false, Alignment);
13457 if (VT.isVector()) {
13458 // For a vector, cast operands to a vector type, perform the logic op,
13459 // and cast the result back to the original value type.
13460 MVT VecVT = MVT::getVectorVT(MVT::i64, VT.getSizeInBits() / 64);
13461 SDValue Op0Casted = DAG.getNode(ISD::BITCAST, dl, VecVT, Op.getOperand(0));
13462 SDValue MaskCasted = DAG.getNode(ISD::BITCAST, dl, VecVT, Mask);
13463 unsigned LogicOp = IsFABS ? ISD::AND : ISD::XOR;
13464 return DAG.getNode(ISD::BITCAST, dl, VT,
13465 DAG.getNode(LogicOp, dl, VecVT, Op0Casted, MaskCasted));
13467 // If not vector, then scalar.
13468 unsigned LogicOp = IsFABS ? X86ISD::FAND : X86ISD::FXOR;
13469 return DAG.getNode(LogicOp, dl, VT, Op.getOperand(0), Mask);
13472 static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
13473 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13474 LLVMContext *Context = DAG.getContext();
13475 SDValue Op0 = Op.getOperand(0);
13476 SDValue Op1 = Op.getOperand(1);
13478 MVT VT = Op.getSimpleValueType();
13479 MVT SrcVT = Op1.getSimpleValueType();
13481 // If second operand is smaller, extend it first.
13482 if (SrcVT.bitsLT(VT)) {
13483 Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
13486 // And if it is bigger, shrink it first.
13487 if (SrcVT.bitsGT(VT)) {
13488 Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
13492 // At this point the operands and the result should have the same
13493 // type, and that won't be f80 since that is not custom lowered.
13495 // First get the sign bit of second operand.
13496 SmallVector<Constant*,4> CV;
13497 if (SrcVT == MVT::f64) {
13498 const fltSemantics &Sem = APFloat::IEEEdouble;
13499 CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 1ULL << 63))));
13500 CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 0))));
13502 const fltSemantics &Sem = APFloat::IEEEsingle;
13503 CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 1U << 31))));
13504 CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
13505 CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
13506 CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
13508 Constant *C = ConstantVector::get(CV);
13509 SDValue CPIdx = DAG.getConstantPool(C, TLI.getPointerTy(), 16);
13510 SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
13511 MachinePointerInfo::getConstantPool(),
13512 false, false, false, 16);
13513 SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
13515 // Shift sign bit right or left if the two operands have different types.
13516 if (SrcVT.bitsGT(VT)) {
13517 // Op0 is MVT::f32, Op1 is MVT::f64.
13518 SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
13519 SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
13520 DAG.getConstant(32, MVT::i32));
13521 SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
13522 SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
13523 DAG.getIntPtrConstant(0));
13526 // Clear first operand sign bit.
13528 if (VT == MVT::f64) {
13529 const fltSemantics &Sem = APFloat::IEEEdouble;
13530 CV.push_back(ConstantFP::get(*Context, APFloat(Sem,
13531 APInt(64, ~(1ULL << 63)))));
13532 CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 0))));
13534 const fltSemantics &Sem = APFloat::IEEEsingle;
13535 CV.push_back(ConstantFP::get(*Context, APFloat(Sem,
13536 APInt(32, ~(1U << 31)))));
13537 CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
13538 CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
13539 CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
13541 C = ConstantVector::get(CV);
13542 CPIdx = DAG.getConstantPool(C, TLI.getPointerTy(), 16);
13543 SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
13544 MachinePointerInfo::getConstantPool(),
13545 false, false, false, 16);
13546 SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
13548 // Or the value with the sign bit.
13549 return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
13552 static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) {
13553 SDValue N0 = Op.getOperand(0);
13555 MVT VT = Op.getSimpleValueType();
13557 // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
13558 SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
13559 DAG.getConstant(1, VT));
13560 return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
13563 // LowerVectorAllZeroTest - Check whether an OR'd tree is PTEST-able.
13565 static SDValue LowerVectorAllZeroTest(SDValue Op, const X86Subtarget *Subtarget,
13566 SelectionDAG &DAG) {
13567 assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree.");
13569 if (!Subtarget->hasSSE41())
13572 if (!Op->hasOneUse())
13575 SDNode *N = Op.getNode();
13578 SmallVector<SDValue, 8> Opnds;
13579 DenseMap<SDValue, unsigned> VecInMap;
13580 SmallVector<SDValue, 8> VecIns;
13581 EVT VT = MVT::Other;
13583 // Recognize a special case where a vector is casted into wide integer to
13585 Opnds.push_back(N->getOperand(0));
13586 Opnds.push_back(N->getOperand(1));
13588 for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) {
13589 SmallVectorImpl<SDValue>::const_iterator I = Opnds.begin() + Slot;
13590 // BFS traverse all OR'd operands.
13591 if (I->getOpcode() == ISD::OR) {
13592 Opnds.push_back(I->getOperand(0));
13593 Opnds.push_back(I->getOperand(1));
13594 // Re-evaluate the number of nodes to be traversed.
13595 e += 2; // 2 more nodes (LHS and RHS) are pushed.
13599 // Quit if a non-EXTRACT_VECTOR_ELT
13600 if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13603 // Quit if without a constant index.
13604 SDValue Idx = I->getOperand(1);
13605 if (!isa<ConstantSDNode>(Idx))
13608 SDValue ExtractedFromVec = I->getOperand(0);
13609 DenseMap<SDValue, unsigned>::iterator M = VecInMap.find(ExtractedFromVec);
13610 if (M == VecInMap.end()) {
13611 VT = ExtractedFromVec.getValueType();
13612 // Quit if not 128/256-bit vector.
13613 if (!VT.is128BitVector() && !VT.is256BitVector())
13615 // Quit if not the same type.
13616 if (VecInMap.begin() != VecInMap.end() &&
13617 VT != VecInMap.begin()->first.getValueType())
13619 M = VecInMap.insert(std::make_pair(ExtractedFromVec, 0)).first;
13620 VecIns.push_back(ExtractedFromVec);
13622 M->second |= 1U << cast<ConstantSDNode>(Idx)->getZExtValue();
13625 assert((VT.is128BitVector() || VT.is256BitVector()) &&
13626 "Not extracted from 128-/256-bit vector.");
13628 unsigned FullMask = (1U << VT.getVectorNumElements()) - 1U;
13630 for (DenseMap<SDValue, unsigned>::const_iterator
13631 I = VecInMap.begin(), E = VecInMap.end(); I != E; ++I) {
13632 // Quit if not all elements are used.
13633 if (I->second != FullMask)
13637 EVT TestVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
13639 // Cast all vectors into TestVT for PTEST.
13640 for (unsigned i = 0, e = VecIns.size(); i < e; ++i)
13641 VecIns[i] = DAG.getNode(ISD::BITCAST, DL, TestVT, VecIns[i]);
13643 // If more than one full vectors are evaluated, OR them first before PTEST.
13644 for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) {
13645 // Each iteration will OR 2 nodes and append the result until there is only
13646 // 1 node left, i.e. the final OR'd value of all vectors.
13647 SDValue LHS = VecIns[Slot];
13648 SDValue RHS = VecIns[Slot + 1];
13649 VecIns.push_back(DAG.getNode(ISD::OR, DL, TestVT, LHS, RHS));
13652 return DAG.getNode(X86ISD::PTEST, DL, MVT::i32,
13653 VecIns.back(), VecIns.back());
13656 /// \brief return true if \c Op has a use that doesn't just read flags.
13657 static bool hasNonFlagsUse(SDValue Op) {
13658 for (SDNode::use_iterator UI = Op->use_begin(), UE = Op->use_end(); UI != UE;
13660 SDNode *User = *UI;
13661 unsigned UOpNo = UI.getOperandNo();
13662 if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
13663 // Look pass truncate.
13664 UOpNo = User->use_begin().getOperandNo();
13665 User = *User->use_begin();
13668 if (User->getOpcode() != ISD::BRCOND && User->getOpcode() != ISD::SETCC &&
13669 !(User->getOpcode() == ISD::SELECT && UOpNo == 0))
13675 /// Emit nodes that will be selected as "test Op0,Op0", or something
13677 SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC, SDLoc dl,
13678 SelectionDAG &DAG) const {
13679 if (Op.getValueType() == MVT::i1)
13680 // KORTEST instruction should be selected
13681 return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
13682 DAG.getConstant(0, Op.getValueType()));
13684 // CF and OF aren't always set the way we want. Determine which
13685 // of these we need.
13686 bool NeedCF = false;
13687 bool NeedOF = false;
13690 case X86::COND_A: case X86::COND_AE:
13691 case X86::COND_B: case X86::COND_BE:
13694 case X86::COND_G: case X86::COND_GE:
13695 case X86::COND_L: case X86::COND_LE:
13696 case X86::COND_O: case X86::COND_NO: {
13697 // Check if we really need to set the
13698 // Overflow flag. If NoSignedWrap is present
13699 // that is not actually needed.
13700 switch (Op->getOpcode()) {
13705 const BinaryWithFlagsSDNode *BinNode =
13706 cast<BinaryWithFlagsSDNode>(Op.getNode());
13707 if (BinNode->hasNoSignedWrap())
13717 // See if we can use the EFLAGS value from the operand instead of
13718 // doing a separate TEST. TEST always sets OF and CF to 0, so unless
13719 // we prove that the arithmetic won't overflow, we can't use OF or CF.
13720 if (Op.getResNo() != 0 || NeedOF || NeedCF) {
13721 // Emit a CMP with 0, which is the TEST pattern.
13722 //if (Op.getValueType() == MVT::i1)
13723 // return DAG.getNode(X86ISD::CMP, dl, MVT::i1, Op,
13724 // DAG.getConstant(0, MVT::i1));
13725 return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
13726 DAG.getConstant(0, Op.getValueType()));
13728 unsigned Opcode = 0;
13729 unsigned NumOperands = 0;
13731 // Truncate operations may prevent the merge of the SETCC instruction
13732 // and the arithmetic instruction before it. Attempt to truncate the operands
13733 // of the arithmetic instruction and use a reduced bit-width instruction.
13734 bool NeedTruncation = false;
13735 SDValue ArithOp = Op;
13736 if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) {
13737 SDValue Arith = Op->getOperand(0);
13738 // Both the trunc and the arithmetic op need to have one user each.
13739 if (Arith->hasOneUse())
13740 switch (Arith.getOpcode()) {
13747 NeedTruncation = true;
13753 // NOTICE: In the code below we use ArithOp to hold the arithmetic operation
13754 // which may be the result of a CAST. We use the variable 'Op', which is the
13755 // non-casted variable when we check for possible users.
13756 switch (ArithOp.getOpcode()) {
13758 // Due to an isel shortcoming, be conservative if this add is likely to be
13759 // selected as part of a load-modify-store instruction. When the root node
13760 // in a match is a store, isel doesn't know how to remap non-chain non-flag
13761 // uses of other nodes in the match, such as the ADD in this case. This
13762 // leads to the ADD being left around and reselected, with the result being
13763 // two adds in the output. Alas, even if none our users are stores, that
13764 // doesn't prove we're O.K. Ergo, if we have any parents that aren't
13765 // CopyToReg or SETCC, eschew INC/DEC. A better fix seems to require
13766 // climbing the DAG back to the root, and it doesn't seem to be worth the
13768 for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
13769 UE = Op.getNode()->use_end(); UI != UE; ++UI)
13770 if (UI->getOpcode() != ISD::CopyToReg &&
13771 UI->getOpcode() != ISD::SETCC &&
13772 UI->getOpcode() != ISD::STORE)
13775 if (ConstantSDNode *C =
13776 dyn_cast<ConstantSDNode>(ArithOp.getNode()->getOperand(1))) {
13777 // An add of one will be selected as an INC.
13778 if (C->getAPIntValue() == 1 && !Subtarget->slowIncDec()) {
13779 Opcode = X86ISD::INC;
13784 // An add of negative one (subtract of one) will be selected as a DEC.
13785 if (C->getAPIntValue().isAllOnesValue() && !Subtarget->slowIncDec()) {
13786 Opcode = X86ISD::DEC;
13792 // Otherwise use a regular EFLAGS-setting add.
13793 Opcode = X86ISD::ADD;
13798 // If we have a constant logical shift that's only used in a comparison
13799 // against zero turn it into an equivalent AND. This allows turning it into
13800 // a TEST instruction later.
13801 if ((X86CC == X86::COND_E || X86CC == X86::COND_NE) && Op->hasOneUse() &&
13802 isa<ConstantSDNode>(Op->getOperand(1)) && !hasNonFlagsUse(Op)) {
13803 EVT VT = Op.getValueType();
13804 unsigned BitWidth = VT.getSizeInBits();
13805 unsigned ShAmt = Op->getConstantOperandVal(1);
13806 if (ShAmt >= BitWidth) // Avoid undefined shifts.
13808 APInt Mask = ArithOp.getOpcode() == ISD::SRL
13809 ? APInt::getHighBitsSet(BitWidth, BitWidth - ShAmt)
13810 : APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt);
13811 if (!Mask.isSignedIntN(32)) // Avoid large immediates.
13813 SDValue New = DAG.getNode(ISD::AND, dl, VT, Op->getOperand(0),
13814 DAG.getConstant(Mask, VT));
13815 DAG.ReplaceAllUsesWith(Op, New);
13821 // If the primary and result isn't used, don't bother using X86ISD::AND,
13822 // because a TEST instruction will be better.
13823 if (!hasNonFlagsUse(Op))
13829 // Due to the ISEL shortcoming noted above, be conservative if this op is
13830 // likely to be selected as part of a load-modify-store instruction.
13831 for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
13832 UE = Op.getNode()->use_end(); UI != UE; ++UI)
13833 if (UI->getOpcode() == ISD::STORE)
13836 // Otherwise use a regular EFLAGS-setting instruction.
13837 switch (ArithOp.getOpcode()) {
13838 default: llvm_unreachable("unexpected operator!");
13839 case ISD::SUB: Opcode = X86ISD::SUB; break;
13840 case ISD::XOR: Opcode = X86ISD::XOR; break;
13841 case ISD::AND: Opcode = X86ISD::AND; break;
13843 if (!NeedTruncation && (X86CC == X86::COND_E || X86CC == X86::COND_NE)) {
13844 SDValue EFLAGS = LowerVectorAllZeroTest(Op, Subtarget, DAG);
13845 if (EFLAGS.getNode())
13848 Opcode = X86ISD::OR;
13862 return SDValue(Op.getNode(), 1);
13868 // If we found that truncation is beneficial, perform the truncation and
13870 if (NeedTruncation) {
13871 EVT VT = Op.getValueType();
13872 SDValue WideVal = Op->getOperand(0);
13873 EVT WideVT = WideVal.getValueType();
13874 unsigned ConvertedOp = 0;
13875 // Use a target machine opcode to prevent further DAGCombine
13876 // optimizations that may separate the arithmetic operations
13877 // from the setcc node.
13878 switch (WideVal.getOpcode()) {
13880 case ISD::ADD: ConvertedOp = X86ISD::ADD; break;
13881 case ISD::SUB: ConvertedOp = X86ISD::SUB; break;
13882 case ISD::AND: ConvertedOp = X86ISD::AND; break;
13883 case ISD::OR: ConvertedOp = X86ISD::OR; break;
13884 case ISD::XOR: ConvertedOp = X86ISD::XOR; break;
13888 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13889 if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) {
13890 SDValue V0 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(0));
13891 SDValue V1 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(1));
13892 Op = DAG.getNode(ConvertedOp, dl, VT, V0, V1);
13898 // Emit a CMP with 0, which is the TEST pattern.
13899 return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
13900 DAG.getConstant(0, Op.getValueType()));
13902 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
13903 SmallVector<SDValue, 4> Ops;
13904 for (unsigned i = 0; i != NumOperands; ++i)
13905 Ops.push_back(Op.getOperand(i));
13907 SDValue New = DAG.getNode(Opcode, dl, VTs, Ops);
13908 DAG.ReplaceAllUsesWith(Op, New);
13909 return SDValue(New.getNode(), 1);
13912 /// Emit nodes that will be selected as "cmp Op0,Op1", or something
13914 SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
13915 SDLoc dl, SelectionDAG &DAG) const {
13916 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1)) {
13917 if (C->getAPIntValue() == 0)
13918 return EmitTest(Op0, X86CC, dl, DAG);
13920 if (Op0.getValueType() == MVT::i1)
13921 llvm_unreachable("Unexpected comparison operation for MVT::i1 operands");
13924 if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 ||
13925 Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) {
13926 // Do the comparison at i32 if it's smaller, besides the Atom case.
13927 // This avoids subregister aliasing issues. Keep the smaller reference
13928 // if we're optimizing for size, however, as that'll allow better folding
13929 // of memory operations.
13930 if (Op0.getValueType() != MVT::i32 && Op0.getValueType() != MVT::i64 &&
13931 !DAG.getMachineFunction().getFunction()->getAttributes().hasAttribute(
13932 AttributeSet::FunctionIndex, Attribute::MinSize) &&
13933 !Subtarget->isAtom()) {
13934 unsigned ExtendOp =
13935 isX86CCUnsigned(X86CC) ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND;
13936 Op0 = DAG.getNode(ExtendOp, dl, MVT::i32, Op0);
13937 Op1 = DAG.getNode(ExtendOp, dl, MVT::i32, Op1);
13939 // Use SUB instead of CMP to enable CSE between SUB and CMP.
13940 SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32);
13941 SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs,
13943 return SDValue(Sub.getNode(), 1);
13945 return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
13948 /// Convert a comparison if required by the subtarget.
13949 SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
13950 SelectionDAG &DAG) const {
13951 // If the subtarget does not support the FUCOMI instruction, floating-point
13952 // comparisons have to be converted.
13953 if (Subtarget->hasCMov() ||
13954 Cmp.getOpcode() != X86ISD::CMP ||
13955 !Cmp.getOperand(0).getValueType().isFloatingPoint() ||
13956 !Cmp.getOperand(1).getValueType().isFloatingPoint())
13959 // The instruction selector will select an FUCOM instruction instead of
13960 // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
13961 // build an SDNode sequence that transfers the result from FPSW into EFLAGS:
13962 // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8))))
13964 SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
13965 SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
13966 SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
13967 DAG.getConstant(8, MVT::i8));
13968 SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
13969 return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
13972 static bool isAllOnes(SDValue V) {
13973 ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
13974 return C && C->isAllOnesValue();
13977 /// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
13978 /// if it's possible.
13979 SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
13980 SDLoc dl, SelectionDAG &DAG) const {
13981 SDValue Op0 = And.getOperand(0);
13982 SDValue Op1 = And.getOperand(1);
13983 if (Op0.getOpcode() == ISD::TRUNCATE)
13984 Op0 = Op0.getOperand(0);
13985 if (Op1.getOpcode() == ISD::TRUNCATE)
13986 Op1 = Op1.getOperand(0);
13989 if (Op1.getOpcode() == ISD::SHL)
13990 std::swap(Op0, Op1);
13991 if (Op0.getOpcode() == ISD::SHL) {
13992 if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
13993 if (And00C->getZExtValue() == 1) {
13994 // If we looked past a truncate, check that it's only truncating away
13996 unsigned BitWidth = Op0.getValueSizeInBits();
13997 unsigned AndBitWidth = And.getValueSizeInBits();
13998 if (BitWidth > AndBitWidth) {
14000 DAG.computeKnownBits(Op0, Zeros, Ones);
14001 if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
14005 RHS = Op0.getOperand(1);
14007 } else if (Op1.getOpcode() == ISD::Constant) {
14008 ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
14009 uint64_t AndRHSVal = AndRHS->getZExtValue();
14010 SDValue AndLHS = Op0;
14012 if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
14013 LHS = AndLHS.getOperand(0);
14014 RHS = AndLHS.getOperand(1);
14017 // Use BT if the immediate can't be encoded in a TEST instruction.
14018 if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
14020 RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
14024 if (LHS.getNode()) {
14025 // If LHS is i8, promote it to i32 with any_extend. There is no i8 BT
14026 // instruction. Since the shift amount is in-range-or-undefined, we know
14027 // that doing a bittest on the i32 value is ok. We extend to i32 because
14028 // the encoding for the i16 version is larger than the i32 version.
14029 // Also promote i16 to i32 for performance / code size reason.
14030 if (LHS.getValueType() == MVT::i8 ||
14031 LHS.getValueType() == MVT::i16)
14032 LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
14034 // If the operand types disagree, extend the shift amount to match. Since
14035 // BT ignores high bits (like shifts) we can use anyextend.
14036 if (LHS.getValueType() != RHS.getValueType())
14037 RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
14039 SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
14040 X86::CondCode Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
14041 return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
14042 DAG.getConstant(Cond, MVT::i8), BT);
14048 /// \brief - Turns an ISD::CondCode into a value suitable for SSE floating point
14050 static int translateX86FSETCC(ISD::CondCode SetCCOpcode, SDValue &Op0,
14055 // SSE Condition code mapping:
14064 switch (SetCCOpcode) {
14065 default: llvm_unreachable("Unexpected SETCC condition");
14067 case ISD::SETEQ: SSECC = 0; break;
14069 case ISD::SETGT: Swap = true; // Fallthrough
14071 case ISD::SETOLT: SSECC = 1; break;
14073 case ISD::SETGE: Swap = true; // Fallthrough
14075 case ISD::SETOLE: SSECC = 2; break;
14076 case ISD::SETUO: SSECC = 3; break;
14078 case ISD::SETNE: SSECC = 4; break;
14079 case ISD::SETULE: Swap = true; // Fallthrough
14080 case ISD::SETUGE: SSECC = 5; break;
14081 case ISD::SETULT: Swap = true; // Fallthrough
14082 case ISD::SETUGT: SSECC = 6; break;
14083 case ISD::SETO: SSECC = 7; break;
14085 case ISD::SETONE: SSECC = 8; break;
14088 std::swap(Op0, Op1);
14093 // Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
14094 // ones, and then concatenate the result back.
14095 static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
14096 MVT VT = Op.getSimpleValueType();
14098 assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC &&
14099 "Unsupported value type for operation");
14101 unsigned NumElems = VT.getVectorNumElements();
14103 SDValue CC = Op.getOperand(2);
14105 // Extract the LHS vectors
14106 SDValue LHS = Op.getOperand(0);
14107 SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
14108 SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
14110 // Extract the RHS vectors
14111 SDValue RHS = Op.getOperand(1);
14112 SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
14113 SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
14115 // Issue the operation on the smaller types and concatenate the result back
14116 MVT EltVT = VT.getVectorElementType();
14117 MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
14118 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
14119 DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
14120 DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
14123 static SDValue LowerIntVSETCC_AVX512(SDValue Op, SelectionDAG &DAG,
14124 const X86Subtarget *Subtarget) {
14125 SDValue Op0 = Op.getOperand(0);
14126 SDValue Op1 = Op.getOperand(1);
14127 SDValue CC = Op.getOperand(2);
14128 MVT VT = Op.getSimpleValueType();
14131 assert(Op0.getValueType().getVectorElementType().getSizeInBits() >= 8 &&
14132 Op.getValueType().getScalarType() == MVT::i1 &&
14133 "Cannot set masked compare for this operation");
14135 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
14137 bool Unsigned = false;
14140 switch (SetCCOpcode) {
14141 default: llvm_unreachable("Unexpected SETCC condition");
14142 case ISD::SETNE: SSECC = 4; break;
14143 case ISD::SETEQ: Opc = X86ISD::PCMPEQM; break;
14144 case ISD::SETUGT: SSECC = 6; Unsigned = true; break;
14145 case ISD::SETLT: Swap = true; //fall-through
14146 case ISD::SETGT: Opc = X86ISD::PCMPGTM; break;
14147 case ISD::SETULT: SSECC = 1; Unsigned = true; break;
14148 case ISD::SETUGE: SSECC = 5; Unsigned = true; break; //NLT
14149 case ISD::SETGE: Swap = true; SSECC = 2; break; // LE + swap
14150 case ISD::SETULE: Unsigned = true; //fall-through
14151 case ISD::SETLE: SSECC = 2; break;
14155 std::swap(Op0, Op1);
14157 return DAG.getNode(Opc, dl, VT, Op0, Op1);
14158 Opc = Unsigned ? X86ISD::CMPMU: X86ISD::CMPM;
14159 return DAG.getNode(Opc, dl, VT, Op0, Op1,
14160 DAG.getConstant(SSECC, MVT::i8));
14163 /// \brief Try to turn a VSETULT into a VSETULE by modifying its second
14164 /// operand \p Op1. If non-trivial (for example because it's not constant)
14165 /// return an empty value.
14166 static SDValue ChangeVSETULTtoVSETULE(SDLoc dl, SDValue Op1, SelectionDAG &DAG)
14168 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op1.getNode());
14172 MVT VT = Op1.getSimpleValueType();
14173 MVT EVT = VT.getVectorElementType();
14174 unsigned n = VT.getVectorNumElements();
14175 SmallVector<SDValue, 8> ULTOp1;
14177 for (unsigned i = 0; i < n; ++i) {
14178 ConstantSDNode *Elt = dyn_cast<ConstantSDNode>(BV->getOperand(i));
14179 if (!Elt || Elt->isOpaque() || Elt->getValueType(0) != EVT)
14182 // Avoid underflow.
14183 APInt Val = Elt->getAPIntValue();
14187 ULTOp1.push_back(DAG.getConstant(Val - 1, EVT));
14190 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, ULTOp1);
14193 static SDValue LowerVSETCC(SDValue Op, const X86Subtarget *Subtarget,
14194 SelectionDAG &DAG) {
14195 SDValue Op0 = Op.getOperand(0);
14196 SDValue Op1 = Op.getOperand(1);
14197 SDValue CC = Op.getOperand(2);
14198 MVT VT = Op.getSimpleValueType();
14199 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
14200 bool isFP = Op.getOperand(1).getSimpleValueType().isFloatingPoint();
14205 MVT EltVT = Op0.getSimpleValueType().getVectorElementType();
14206 assert(EltVT == MVT::f32 || EltVT == MVT::f64);
14209 unsigned SSECC = translateX86FSETCC(SetCCOpcode, Op0, Op1);
14210 unsigned Opc = X86ISD::CMPP;
14211 if (Subtarget->hasAVX512() && VT.getVectorElementType() == MVT::i1) {
14212 assert(VT.getVectorNumElements() <= 16);
14213 Opc = X86ISD::CMPM;
14215 // In the two special cases we can't handle, emit two comparisons.
14218 unsigned CombineOpc;
14219 if (SetCCOpcode == ISD::SETUEQ) {
14220 CC0 = 3; CC1 = 0; CombineOpc = ISD::OR;
14222 assert(SetCCOpcode == ISD::SETONE);
14223 CC0 = 7; CC1 = 4; CombineOpc = ISD::AND;
14226 SDValue Cmp0 = DAG.getNode(Opc, dl, VT, Op0, Op1,
14227 DAG.getConstant(CC0, MVT::i8));
14228 SDValue Cmp1 = DAG.getNode(Opc, dl, VT, Op0, Op1,
14229 DAG.getConstant(CC1, MVT::i8));
14230 return DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1);
14232 // Handle all other FP comparisons here.
14233 return DAG.getNode(Opc, dl, VT, Op0, Op1,
14234 DAG.getConstant(SSECC, MVT::i8));
14237 // Break 256-bit integer vector compare into smaller ones.
14238 if (VT.is256BitVector() && !Subtarget->hasInt256())
14239 return Lower256IntVSETCC(Op, DAG);
14241 bool MaskResult = (VT.getVectorElementType() == MVT::i1);
14242 EVT OpVT = Op1.getValueType();
14243 if (Subtarget->hasAVX512()) {
14244 if (Op1.getValueType().is512BitVector() ||
14245 (Subtarget->hasBWI() && Subtarget->hasVLX()) ||
14246 (MaskResult && OpVT.getVectorElementType().getSizeInBits() >= 32))
14247 return LowerIntVSETCC_AVX512(Op, DAG, Subtarget);
14249 // In AVX-512 architecture setcc returns mask with i1 elements,
14250 // But there is no compare instruction for i8 and i16 elements in KNL.
14251 // We are not talking about 512-bit operands in this case, these
14252 // types are illegal.
14254 (OpVT.getVectorElementType().getSizeInBits() < 32 &&
14255 OpVT.getVectorElementType().getSizeInBits() >= 8))
14256 return DAG.getNode(ISD::TRUNCATE, dl, VT,
14257 DAG.getNode(ISD::SETCC, dl, OpVT, Op0, Op1, CC));
14260 // We are handling one of the integer comparisons here. Since SSE only has
14261 // GT and EQ comparisons for integer, swapping operands and multiple
14262 // operations may be required for some comparisons.
14264 bool Swap = false, Invert = false, FlipSigns = false, MinMax = false;
14265 bool Subus = false;
14267 switch (SetCCOpcode) {
14268 default: llvm_unreachable("Unexpected SETCC condition");
14269 case ISD::SETNE: Invert = true;
14270 case ISD::SETEQ: Opc = X86ISD::PCMPEQ; break;
14271 case ISD::SETLT: Swap = true;
14272 case ISD::SETGT: Opc = X86ISD::PCMPGT; break;
14273 case ISD::SETGE: Swap = true;
14274 case ISD::SETLE: Opc = X86ISD::PCMPGT;
14275 Invert = true; break;
14276 case ISD::SETULT: Swap = true;
14277 case ISD::SETUGT: Opc = X86ISD::PCMPGT;
14278 FlipSigns = true; break;
14279 case ISD::SETUGE: Swap = true;
14280 case ISD::SETULE: Opc = X86ISD::PCMPGT;
14281 FlipSigns = true; Invert = true; break;
14284 // Special case: Use min/max operations for SETULE/SETUGE
14285 MVT VET = VT.getVectorElementType();
14287 (Subtarget->hasSSE41() && (VET >= MVT::i8 && VET <= MVT::i32))
14288 || (Subtarget->hasSSE2() && (VET == MVT::i8));
14291 switch (SetCCOpcode) {
14293 case ISD::SETULE: Opc = X86ISD::UMIN; MinMax = true; break;
14294 case ISD::SETUGE: Opc = X86ISD::UMAX; MinMax = true; break;
14297 if (MinMax) { Swap = false; Invert = false; FlipSigns = false; }
14300 bool hasSubus = Subtarget->hasSSE2() && (VET == MVT::i8 || VET == MVT::i16);
14301 if (!MinMax && hasSubus) {
14302 // As another special case, use PSUBUS[BW] when it's profitable. E.g. for
14304 // t = psubus Op0, Op1
14305 // pcmpeq t, <0..0>
14306 switch (SetCCOpcode) {
14308 case ISD::SETULT: {
14309 // If the comparison is against a constant we can turn this into a
14310 // setule. With psubus, setule does not require a swap. This is
14311 // beneficial because the constant in the register is no longer
14312 // destructed as the destination so it can be hoisted out of a loop.
14313 // Only do this pre-AVX since vpcmp* is no longer destructive.
14314 if (Subtarget->hasAVX())
14316 SDValue ULEOp1 = ChangeVSETULTtoVSETULE(dl, Op1, DAG);
14317 if (ULEOp1.getNode()) {
14319 Subus = true; Invert = false; Swap = false;
14323 // Psubus is better than flip-sign because it requires no inversion.
14324 case ISD::SETUGE: Subus = true; Invert = false; Swap = true; break;
14325 case ISD::SETULE: Subus = true; Invert = false; Swap = false; break;
14329 Opc = X86ISD::SUBUS;
14335 std::swap(Op0, Op1);
14337 // Check that the operation in question is available (most are plain SSE2,
14338 // but PCMPGTQ and PCMPEQQ have different requirements).
14339 if (VT == MVT::v2i64) {
14340 if (Opc == X86ISD::PCMPGT && !Subtarget->hasSSE42()) {
14341 assert(Subtarget->hasSSE2() && "Don't know how to lower!");
14343 // First cast everything to the right type.
14344 Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0);
14345 Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1);
14347 // Since SSE has no unsigned integer comparisons, we need to flip the sign
14348 // bits of the inputs before performing those operations. The lower
14349 // compare is always unsigned.
14352 SB = DAG.getConstant(0x80000000U, MVT::v4i32);
14354 SDValue Sign = DAG.getConstant(0x80000000U, MVT::i32);
14355 SDValue Zero = DAG.getConstant(0x00000000U, MVT::i32);
14356 SB = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
14357 Sign, Zero, Sign, Zero);
14359 Op0 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op0, SB);
14360 Op1 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op1, SB);
14362 // Emulate PCMPGTQ with (hi1 > hi2) | ((hi1 == hi2) & (lo1 > lo2))
14363 SDValue GT = DAG.getNode(X86ISD::PCMPGT, dl, MVT::v4i32, Op0, Op1);
14364 SDValue EQ = DAG.getNode(X86ISD::PCMPEQ, dl, MVT::v4i32, Op0, Op1);
14366 // Create masks for only the low parts/high parts of the 64 bit integers.
14367 static const int MaskHi[] = { 1, 1, 3, 3 };
14368 static const int MaskLo[] = { 0, 0, 2, 2 };
14369 SDValue EQHi = DAG.getVectorShuffle(MVT::v4i32, dl, EQ, EQ, MaskHi);
14370 SDValue GTLo = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskLo);
14371 SDValue GTHi = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskHi);
14373 SDValue Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, EQHi, GTLo);
14374 Result = DAG.getNode(ISD::OR, dl, MVT::v4i32, Result, GTHi);
14377 Result = DAG.getNOT(dl, Result, MVT::v4i32);
14379 return DAG.getNode(ISD::BITCAST, dl, VT, Result);
14382 if (Opc == X86ISD::PCMPEQ && !Subtarget->hasSSE41()) {
14383 // If pcmpeqq is missing but pcmpeqd is available synthesize pcmpeqq with
14384 // pcmpeqd + pshufd + pand.
14385 assert(Subtarget->hasSSE2() && !FlipSigns && "Don't know how to lower!");
14387 // First cast everything to the right type.
14388 Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0);
14389 Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1);
14392 SDValue Result = DAG.getNode(Opc, dl, MVT::v4i32, Op0, Op1);
14394 // Make sure the lower and upper halves are both all-ones.
14395 static const int Mask[] = { 1, 0, 3, 2 };
14396 SDValue Shuf = DAG.getVectorShuffle(MVT::v4i32, dl, Result, Result, Mask);
14397 Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, Result, Shuf);
14400 Result = DAG.getNOT(dl, Result, MVT::v4i32);
14402 return DAG.getNode(ISD::BITCAST, dl, VT, Result);
14406 // Since SSE has no unsigned integer comparisons, we need to flip the sign
14407 // bits of the inputs before performing those operations.
14409 EVT EltVT = VT.getVectorElementType();
14410 SDValue SB = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()), VT);
14411 Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SB);
14412 Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SB);
14415 SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
14417 // If the logical-not of the result is required, perform that now.
14419 Result = DAG.getNOT(dl, Result, VT);
14422 Result = DAG.getNode(X86ISD::PCMPEQ, dl, VT, Op0, Result);
14425 Result = DAG.getNode(X86ISD::PCMPEQ, dl, VT, Result,
14426 getZeroVector(VT, Subtarget, DAG, dl));
14431 SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
14433 MVT VT = Op.getSimpleValueType();
14435 if (VT.isVector()) return LowerVSETCC(Op, Subtarget, DAG);
14437 assert(((!Subtarget->hasAVX512() && VT == MVT::i8) || (VT == MVT::i1))
14438 && "SetCC type must be 8-bit or 1-bit integer");
14439 SDValue Op0 = Op.getOperand(0);
14440 SDValue Op1 = Op.getOperand(1);
14442 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
14444 // Optimize to BT if possible.
14445 // Lower (X & (1 << N)) == 0 to BT(X, N).
14446 // Lower ((X >>u N) & 1) != 0 to BT(X, N).
14447 // Lower ((X >>s N) & 1) != 0 to BT(X, N).
14448 if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
14449 Op1.getOpcode() == ISD::Constant &&
14450 cast<ConstantSDNode>(Op1)->isNullValue() &&
14451 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
14452 SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
14453 if (NewSetCC.getNode())
14457 // Look for X == 0, X == 1, X != 0, or X != 1. We can simplify some forms of
14459 if (Op1.getOpcode() == ISD::Constant &&
14460 (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
14461 cast<ConstantSDNode>(Op1)->isNullValue()) &&
14462 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
14464 // If the input is a setcc, then reuse the input setcc or use a new one with
14465 // the inverted condition.
14466 if (Op0.getOpcode() == X86ISD::SETCC) {
14467 X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
14468 bool Invert = (CC == ISD::SETNE) ^
14469 cast<ConstantSDNode>(Op1)->isNullValue();
14473 CCode = X86::GetOppositeBranchCondition(CCode);
14474 SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
14475 DAG.getConstant(CCode, MVT::i8),
14476 Op0.getOperand(1));
14478 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, SetCC);
14482 if ((Op0.getValueType() == MVT::i1) && (Op1.getOpcode() == ISD::Constant) &&
14483 (cast<ConstantSDNode>(Op1)->getZExtValue() == 1) &&
14484 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
14486 ISD::CondCode NewCC = ISD::getSetCCInverse(CC, true);
14487 return DAG.getSetCC(dl, VT, Op0, DAG.getConstant(0, MVT::i1), NewCC);
14490 bool isFP = Op1.getSimpleValueType().isFloatingPoint();
14491 unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
14492 if (X86CC == X86::COND_INVALID)
14495 SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, dl, DAG);
14496 EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
14497 SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
14498 DAG.getConstant(X86CC, MVT::i8), EFLAGS);
14500 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, SetCC);
14504 // isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
14505 static bool isX86LogicalCmp(SDValue Op) {
14506 unsigned Opc = Op.getNode()->getOpcode();
14507 if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI ||
14508 Opc == X86ISD::SAHF)
14510 if (Op.getResNo() == 1 &&
14511 (Opc == X86ISD::ADD ||
14512 Opc == X86ISD::SUB ||
14513 Opc == X86ISD::ADC ||
14514 Opc == X86ISD::SBB ||
14515 Opc == X86ISD::SMUL ||
14516 Opc == X86ISD::UMUL ||
14517 Opc == X86ISD::INC ||
14518 Opc == X86ISD::DEC ||
14519 Opc == X86ISD::OR ||
14520 Opc == X86ISD::XOR ||
14521 Opc == X86ISD::AND))
14524 if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
14530 static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) {
14531 if (V.getOpcode() != ISD::TRUNCATE)
14534 SDValue VOp0 = V.getOperand(0);
14535 unsigned InBits = VOp0.getValueSizeInBits();
14536 unsigned Bits = V.getValueSizeInBits();
14537 return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits));
14540 SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
14541 bool addTest = true;
14542 SDValue Cond = Op.getOperand(0);
14543 SDValue Op1 = Op.getOperand(1);
14544 SDValue Op2 = Op.getOperand(2);
14546 EVT VT = Op1.getValueType();
14549 // Lower fp selects into a CMP/AND/ANDN/OR sequence when the necessary SSE ops
14550 // are available. Otherwise fp cmovs get lowered into a less efficient branch
14551 // sequence later on.
14552 if (Cond.getOpcode() == ISD::SETCC &&
14553 ((Subtarget->hasSSE2() && (VT == MVT::f32 || VT == MVT::f64)) ||
14554 (Subtarget->hasSSE1() && VT == MVT::f32)) &&
14555 VT == Cond.getOperand(0).getValueType() && Cond->hasOneUse()) {
14556 SDValue CondOp0 = Cond.getOperand(0), CondOp1 = Cond.getOperand(1);
14557 int SSECC = translateX86FSETCC(
14558 cast<CondCodeSDNode>(Cond.getOperand(2))->get(), CondOp0, CondOp1);
14561 if (Subtarget->hasAVX512()) {
14562 SDValue Cmp = DAG.getNode(X86ISD::FSETCC, DL, MVT::i1, CondOp0, CondOp1,
14563 DAG.getConstant(SSECC, MVT::i8));
14564 return DAG.getNode(X86ISD::SELECT, DL, VT, Cmp, Op1, Op2);
14566 SDValue Cmp = DAG.getNode(X86ISD::FSETCC, DL, VT, CondOp0, CondOp1,
14567 DAG.getConstant(SSECC, MVT::i8));
14568 SDValue AndN = DAG.getNode(X86ISD::FANDN, DL, VT, Cmp, Op2);
14569 SDValue And = DAG.getNode(X86ISD::FAND, DL, VT, Cmp, Op1);
14570 return DAG.getNode(X86ISD::FOR, DL, VT, AndN, And);
14574 if (Cond.getOpcode() == ISD::SETCC) {
14575 SDValue NewCond = LowerSETCC(Cond, DAG);
14576 if (NewCond.getNode())
14580 // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
14581 // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
14582 // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
14583 // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
14584 if (Cond.getOpcode() == X86ISD::SETCC &&
14585 Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
14586 isZero(Cond.getOperand(1).getOperand(1))) {
14587 SDValue Cmp = Cond.getOperand(1);
14589 unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
14591 if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
14592 (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
14593 SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
14595 SDValue CmpOp0 = Cmp.getOperand(0);
14596 // Apply further optimizations for special cases
14597 // (select (x != 0), -1, 0) -> neg & sbb
14598 // (select (x == 0), 0, -1) -> neg & sbb
14599 if (ConstantSDNode *YC = dyn_cast<ConstantSDNode>(Y))
14600 if (YC->isNullValue() &&
14601 (isAllOnes(Op1) == (CondCode == X86::COND_NE))) {
14602 SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32);
14603 SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs,
14604 DAG.getConstant(0, CmpOp0.getValueType()),
14606 SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
14607 DAG.getConstant(X86::COND_B, MVT::i8),
14608 SDValue(Neg.getNode(), 1));
14612 Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
14613 CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
14614 Cmp = ConvertCmpIfNecessary(Cmp, DAG);
14616 SDValue Res = // Res = 0 or -1.
14617 DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
14618 DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
14620 if (isAllOnes(Op1) != (CondCode == X86::COND_E))
14621 Res = DAG.getNOT(DL, Res, Res.getValueType());
14623 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
14624 if (!N2C || !N2C->isNullValue())
14625 Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
14630 // Look past (and (setcc_carry (cmp ...)), 1).
14631 if (Cond.getOpcode() == ISD::AND &&
14632 Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
14633 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
14634 if (C && C->getAPIntValue() == 1)
14635 Cond = Cond.getOperand(0);
14638 // If condition flag is set by a X86ISD::CMP, then use it as the condition
14639 // setting operand in place of the X86ISD::SETCC.
14640 unsigned CondOpcode = Cond.getOpcode();
14641 if (CondOpcode == X86ISD::SETCC ||
14642 CondOpcode == X86ISD::SETCC_CARRY) {
14643 CC = Cond.getOperand(0);
14645 SDValue Cmp = Cond.getOperand(1);
14646 unsigned Opc = Cmp.getOpcode();
14647 MVT VT = Op.getSimpleValueType();
14649 bool IllegalFPCMov = false;
14650 if (VT.isFloatingPoint() && !VT.isVector() &&
14651 !isScalarFPTypeInSSEReg(VT)) // FPStack?
14652 IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
14654 if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
14655 Opc == X86ISD::BT) { // FIXME
14659 } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
14660 CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
14661 ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
14662 Cond.getOperand(0).getValueType() != MVT::i8)) {
14663 SDValue LHS = Cond.getOperand(0);
14664 SDValue RHS = Cond.getOperand(1);
14665 unsigned X86Opcode;
14668 switch (CondOpcode) {
14669 case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
14670 case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
14671 case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
14672 case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
14673 case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
14674 case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
14675 default: llvm_unreachable("unexpected overflowing operator");
14677 if (CondOpcode == ISD::UMULO)
14678 VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
14681 VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
14683 SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
14685 if (CondOpcode == ISD::UMULO)
14686 Cond = X86Op.getValue(2);
14688 Cond = X86Op.getValue(1);
14690 CC = DAG.getConstant(X86Cond, MVT::i8);
14695 // Look pass the truncate if the high bits are known zero.
14696 if (isTruncWithZeroHighBitsInput(Cond, DAG))
14697 Cond = Cond.getOperand(0);
14699 // We know the result of AND is compared against zero. Try to match
14701 if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
14702 SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
14703 if (NewSetCC.getNode()) {
14704 CC = NewSetCC.getOperand(0);
14705 Cond = NewSetCC.getOperand(1);
14712 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
14713 Cond = EmitTest(Cond, X86::COND_NE, DL, DAG);
14716 // a < b ? -1 : 0 -> RES = ~setcc_carry
14717 // a < b ? 0 : -1 -> RES = setcc_carry
14718 // a >= b ? -1 : 0 -> RES = setcc_carry
14719 // a >= b ? 0 : -1 -> RES = ~setcc_carry
14720 if (Cond.getOpcode() == X86ISD::SUB) {
14721 Cond = ConvertCmpIfNecessary(Cond, DAG);
14722 unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
14724 if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
14725 (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
14726 SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
14727 DAG.getConstant(X86::COND_B, MVT::i8), Cond);
14728 if (isAllOnes(Op1) != (CondCode == X86::COND_B))
14729 return DAG.getNOT(DL, Res, Res.getValueType());
14734 // X86 doesn't have an i8 cmov. If both operands are the result of a truncate
14735 // widen the cmov and push the truncate through. This avoids introducing a new
14736 // branch during isel and doesn't add any extensions.
14737 if (Op.getValueType() == MVT::i8 &&
14738 Op1.getOpcode() == ISD::TRUNCATE && Op2.getOpcode() == ISD::TRUNCATE) {
14739 SDValue T1 = Op1.getOperand(0), T2 = Op2.getOperand(0);
14740 if (T1.getValueType() == T2.getValueType() &&
14741 // Blacklist CopyFromReg to avoid partial register stalls.
14742 T1.getOpcode() != ISD::CopyFromReg && T2.getOpcode()!=ISD::CopyFromReg){
14743 SDVTList VTs = DAG.getVTList(T1.getValueType(), MVT::Glue);
14744 SDValue Cmov = DAG.getNode(X86ISD::CMOV, DL, VTs, T2, T1, CC, Cond);
14745 return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov);
14749 // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
14750 // condition is true.
14751 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
14752 SDValue Ops[] = { Op2, Op1, CC, Cond };
14753 return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops);
14756 static SDValue LowerSIGN_EXTEND_AVX512(SDValue Op, SelectionDAG &DAG) {
14757 MVT VT = Op->getSimpleValueType(0);
14758 SDValue In = Op->getOperand(0);
14759 MVT InVT = In.getSimpleValueType();
14762 unsigned int NumElts = VT.getVectorNumElements();
14763 if (NumElts != 8 && NumElts != 16)
14766 if (VT.is512BitVector() && InVT.getVectorElementType() != MVT::i1)
14767 return DAG.getNode(X86ISD::VSEXT, dl, VT, In);
14769 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14770 assert (InVT.getVectorElementType() == MVT::i1 && "Unexpected vector type");
14772 MVT ExtVT = (NumElts == 8) ? MVT::v8i64 : MVT::v16i32;
14773 Constant *C = ConstantInt::get(*DAG.getContext(),
14774 APInt::getAllOnesValue(ExtVT.getScalarType().getSizeInBits()));
14776 SDValue CP = DAG.getConstantPool(C, TLI.getPointerTy());
14777 unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
14778 SDValue Ld = DAG.getLoad(ExtVT.getScalarType(), dl, DAG.getEntryNode(), CP,
14779 MachinePointerInfo::getConstantPool(),
14780 false, false, false, Alignment);
14781 SDValue Brcst = DAG.getNode(X86ISD::VBROADCASTM, dl, ExtVT, In, Ld);
14782 if (VT.is512BitVector())
14784 return DAG.getNode(X86ISD::VTRUNC, dl, VT, Brcst);
14787 static SDValue LowerSIGN_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
14788 SelectionDAG &DAG) {
14789 MVT VT = Op->getSimpleValueType(0);
14790 SDValue In = Op->getOperand(0);
14791 MVT InVT = In.getSimpleValueType();
14794 if (VT.is512BitVector() || InVT.getVectorElementType() == MVT::i1)
14795 return LowerSIGN_EXTEND_AVX512(Op, DAG);
14797 if ((VT != MVT::v4i64 || InVT != MVT::v4i32) &&
14798 (VT != MVT::v8i32 || InVT != MVT::v8i16) &&
14799 (VT != MVT::v16i16 || InVT != MVT::v16i8))
14802 if (Subtarget->hasInt256())
14803 return DAG.getNode(X86ISD::VSEXT, dl, VT, In);
14805 // Optimize vectors in AVX mode
14806 // Sign extend v8i16 to v8i32 and
14809 // Divide input vector into two parts
14810 // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
14811 // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
14812 // concat the vectors to original VT
14814 unsigned NumElems = InVT.getVectorNumElements();
14815 SDValue Undef = DAG.getUNDEF(InVT);
14817 SmallVector<int,8> ShufMask1(NumElems, -1);
14818 for (unsigned i = 0; i != NumElems/2; ++i)
14821 SDValue OpLo = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask1[0]);
14823 SmallVector<int,8> ShufMask2(NumElems, -1);
14824 for (unsigned i = 0; i != NumElems/2; ++i)
14825 ShufMask2[i] = i + NumElems/2;
14827 SDValue OpHi = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask2[0]);
14829 MVT HalfVT = MVT::getVectorVT(VT.getScalarType(),
14830 VT.getVectorNumElements()/2);
14832 OpLo = DAG.getNode(X86ISD::VSEXT, dl, HalfVT, OpLo);
14833 OpHi = DAG.getNode(X86ISD::VSEXT, dl, HalfVT, OpHi);
14835 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
14838 // Lower vector extended loads using a shuffle. If SSSE3 is not available we
14839 // may emit an illegal shuffle but the expansion is still better than scalar
14840 // code. We generate X86ISD::VSEXT for SEXTLOADs if it's available, otherwise
14841 // we'll emit a shuffle and a arithmetic shift.
14842 // TODO: It is possible to support ZExt by zeroing the undef values during
14843 // the shuffle phase or after the shuffle.
14844 static SDValue LowerExtendedLoad(SDValue Op, const X86Subtarget *Subtarget,
14845 SelectionDAG &DAG) {
14846 MVT RegVT = Op.getSimpleValueType();
14847 assert(RegVT.isVector() && "We only custom lower vector sext loads.");
14848 assert(RegVT.isInteger() &&
14849 "We only custom lower integer vector sext loads.");
14851 // Nothing useful we can do without SSE2 shuffles.
14852 assert(Subtarget->hasSSE2() && "We only custom lower sext loads with SSE2.");
14854 LoadSDNode *Ld = cast<LoadSDNode>(Op.getNode());
14856 EVT MemVT = Ld->getMemoryVT();
14857 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14858 unsigned RegSz = RegVT.getSizeInBits();
14860 ISD::LoadExtType Ext = Ld->getExtensionType();
14862 assert((Ext == ISD::EXTLOAD || Ext == ISD::SEXTLOAD)
14863 && "Only anyext and sext are currently implemented.");
14864 assert(MemVT != RegVT && "Cannot extend to the same type");
14865 assert(MemVT.isVector() && "Must load a vector from memory");
14867 unsigned NumElems = RegVT.getVectorNumElements();
14868 unsigned MemSz = MemVT.getSizeInBits();
14869 assert(RegSz > MemSz && "Register size must be greater than the mem size");
14871 if (Ext == ISD::SEXTLOAD && RegSz == 256 && !Subtarget->hasInt256()) {
14872 // The only way in which we have a legal 256-bit vector result but not the
14873 // integer 256-bit operations needed to directly lower a sextload is if we
14874 // have AVX1 but not AVX2. In that case, we can always emit a sextload to
14875 // a 128-bit vector and a normal sign_extend to 256-bits that should get
14876 // correctly legalized. We do this late to allow the canonical form of
14877 // sextload to persist throughout the rest of the DAG combiner -- it wants
14878 // to fold together any extensions it can, and so will fuse a sign_extend
14879 // of an sextload into a sextload targeting a wider value.
14881 if (MemSz == 128) {
14882 // Just switch this to a normal load.
14883 assert(TLI.isTypeLegal(MemVT) && "If the memory type is a 128-bit type, "
14884 "it must be a legal 128-bit vector "
14886 Load = DAG.getLoad(MemVT, dl, Ld->getChain(), Ld->getBasePtr(),
14887 Ld->getPointerInfo(), Ld->isVolatile(), Ld->isNonTemporal(),
14888 Ld->isInvariant(), Ld->getAlignment());
14890 assert(MemSz < 128 &&
14891 "Can't extend a type wider than 128 bits to a 256 bit vector!");
14892 // Do an sext load to a 128-bit vector type. We want to use the same
14893 // number of elements, but elements half as wide. This will end up being
14894 // recursively lowered by this routine, but will succeed as we definitely
14895 // have all the necessary features if we're using AVX1.
14897 EVT::getIntegerVT(*DAG.getContext(), RegVT.getScalarSizeInBits() / 2);
14898 EVT HalfVecVT = EVT::getVectorVT(*DAG.getContext(), HalfEltVT, NumElems);
14900 DAG.getExtLoad(Ext, dl, HalfVecVT, Ld->getChain(), Ld->getBasePtr(),
14901 Ld->getPointerInfo(), MemVT, Ld->isVolatile(),
14902 Ld->isNonTemporal(), Ld->isInvariant(),
14903 Ld->getAlignment());
14906 // Replace chain users with the new chain.
14907 assert(Load->getNumValues() == 2 && "Loads must carry a chain!");
14908 DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Load.getValue(1));
14910 // Finally, do a normal sign-extend to the desired register.
14911 return DAG.getSExtOrTrunc(Load, dl, RegVT);
14914 // All sizes must be a power of two.
14915 assert(isPowerOf2_32(RegSz * MemSz * NumElems) &&
14916 "Non-power-of-two elements are not custom lowered!");
14918 // Attempt to load the original value using scalar loads.
14919 // Find the largest scalar type that divides the total loaded size.
14920 MVT SclrLoadTy = MVT::i8;
14921 for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14922 tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14923 MVT Tp = (MVT::SimpleValueType)tp;
14924 if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) {
14929 // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
14930 if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 &&
14932 SclrLoadTy = MVT::f64;
14934 // Calculate the number of scalar loads that we need to perform
14935 // in order to load our vector from memory.
14936 unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits();
14938 assert((Ext != ISD::SEXTLOAD || NumLoads == 1) &&
14939 "Can only lower sext loads with a single scalar load!");
14941 unsigned loadRegZize = RegSz;
14942 if (Ext == ISD::SEXTLOAD && RegSz == 256)
14945 // Represent our vector as a sequence of elements which are the
14946 // largest scalar that we can load.
14947 EVT LoadUnitVecVT = EVT::getVectorVT(
14948 *DAG.getContext(), SclrLoadTy, loadRegZize / SclrLoadTy.getSizeInBits());
14950 // Represent the data using the same element type that is stored in
14951 // memory. In practice, we ''widen'' MemVT.
14953 EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
14954 loadRegZize / MemVT.getScalarType().getSizeInBits());
14956 assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() &&
14957 "Invalid vector type");
14959 // We can't shuffle using an illegal type.
14960 assert(TLI.isTypeLegal(WideVecVT) &&
14961 "We only lower types that form legal widened vector types");
14963 SmallVector<SDValue, 8> Chains;
14964 SDValue Ptr = Ld->getBasePtr();
14965 SDValue Increment =
14966 DAG.getConstant(SclrLoadTy.getSizeInBits() / 8, TLI.getPointerTy());
14967 SDValue Res = DAG.getUNDEF(LoadUnitVecVT);
14969 for (unsigned i = 0; i < NumLoads; ++i) {
14970 // Perform a single load.
14971 SDValue ScalarLoad =
14972 DAG.getLoad(SclrLoadTy, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(),
14973 Ld->isVolatile(), Ld->isNonTemporal(), Ld->isInvariant(),
14974 Ld->getAlignment());
14975 Chains.push_back(ScalarLoad.getValue(1));
14976 // Create the first element type using SCALAR_TO_VECTOR in order to avoid
14977 // another round of DAGCombining.
14979 Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad);
14981 Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res,
14982 ScalarLoad, DAG.getIntPtrConstant(i));
14984 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14987 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
14989 // Bitcast the loaded value to a vector of the original element type, in
14990 // the size of the target vector type.
14991 SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Res);
14992 unsigned SizeRatio = RegSz / MemSz;
14994 if (Ext == ISD::SEXTLOAD) {
14995 // If we have SSE4.1, we can directly emit a VSEXT node.
14996 if (Subtarget->hasSSE41()) {
14997 SDValue Sext = DAG.getNode(X86ISD::VSEXT, dl, RegVT, SlicedVec);
14998 DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF);
15002 // Otherwise we'll shuffle the small elements in the high bits of the
15003 // larger type and perform an arithmetic shift. If the shift is not legal
15004 // it's better to scalarize.
15005 assert(TLI.isOperationLegalOrCustom(ISD::SRA, RegVT) &&
15006 "We can't implement a sext load without an arithmetic right shift!");
15008 // Redistribute the loaded elements into the different locations.
15009 SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1);
15010 for (unsigned i = 0; i != NumElems; ++i)
15011 ShuffleVec[i * SizeRatio + SizeRatio - 1] = i;
15013 SDValue Shuff = DAG.getVectorShuffle(
15014 WideVecVT, dl, SlicedVec, DAG.getUNDEF(WideVecVT), &ShuffleVec[0]);
15016 Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
15018 // Build the arithmetic shift.
15019 unsigned Amt = RegVT.getVectorElementType().getSizeInBits() -
15020 MemVT.getVectorElementType().getSizeInBits();
15022 DAG.getNode(ISD::SRA, dl, RegVT, Shuff, DAG.getConstant(Amt, RegVT));
15024 DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF);
15028 // Redistribute the loaded elements into the different locations.
15029 SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1);
15030 for (unsigned i = 0; i != NumElems; ++i)
15031 ShuffleVec[i * SizeRatio] = i;
15033 SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
15034 DAG.getUNDEF(WideVecVT), &ShuffleVec[0]);
15036 // Bitcast to the requested type.
15037 Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
15038 DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF);
15042 // isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
15043 // ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
15044 // from the AND / OR.
15045 static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
15046 Opc = Op.getOpcode();
15047 if (Opc != ISD::OR && Opc != ISD::AND)
15049 return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
15050 Op.getOperand(0).hasOneUse() &&
15051 Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
15052 Op.getOperand(1).hasOneUse());
15055 // isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
15056 // 1 and that the SETCC node has a single use.
15057 static bool isXor1OfSetCC(SDValue Op) {
15058 if (Op.getOpcode() != ISD::XOR)
15060 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
15061 if (N1C && N1C->getAPIntValue() == 1) {
15062 return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
15063 Op.getOperand(0).hasOneUse();
15068 SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
15069 bool addTest = true;
15070 SDValue Chain = Op.getOperand(0);
15071 SDValue Cond = Op.getOperand(1);
15072 SDValue Dest = Op.getOperand(2);
15075 bool Inverted = false;
15077 if (Cond.getOpcode() == ISD::SETCC) {
15078 // Check for setcc([su]{add,sub,mul}o == 0).
15079 if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
15080 isa<ConstantSDNode>(Cond.getOperand(1)) &&
15081 cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
15082 Cond.getOperand(0).getResNo() == 1 &&
15083 (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
15084 Cond.getOperand(0).getOpcode() == ISD::UADDO ||
15085 Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
15086 Cond.getOperand(0).getOpcode() == ISD::USUBO ||
15087 Cond.getOperand(0).getOpcode() == ISD::SMULO ||
15088 Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
15090 Cond = Cond.getOperand(0);
15092 SDValue NewCond = LowerSETCC(Cond, DAG);
15093 if (NewCond.getNode())
15098 // FIXME: LowerXALUO doesn't handle these!!
15099 else if (Cond.getOpcode() == X86ISD::ADD ||
15100 Cond.getOpcode() == X86ISD::SUB ||
15101 Cond.getOpcode() == X86ISD::SMUL ||
15102 Cond.getOpcode() == X86ISD::UMUL)
15103 Cond = LowerXALUO(Cond, DAG);
15106 // Look pass (and (setcc_carry (cmp ...)), 1).
15107 if (Cond.getOpcode() == ISD::AND &&
15108 Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
15109 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
15110 if (C && C->getAPIntValue() == 1)
15111 Cond = Cond.getOperand(0);
15114 // If condition flag is set by a X86ISD::CMP, then use it as the condition
15115 // setting operand in place of the X86ISD::SETCC.
15116 unsigned CondOpcode = Cond.getOpcode();
15117 if (CondOpcode == X86ISD::SETCC ||
15118 CondOpcode == X86ISD::SETCC_CARRY) {
15119 CC = Cond.getOperand(0);
15121 SDValue Cmp = Cond.getOperand(1);
15122 unsigned Opc = Cmp.getOpcode();
15123 // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
15124 if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
15128 switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
15132 // These can only come from an arithmetic instruction with overflow,
15133 // e.g. SADDO, UADDO.
15134 Cond = Cond.getNode()->getOperand(1);
15140 CondOpcode = Cond.getOpcode();
15141 if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
15142 CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
15143 ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
15144 Cond.getOperand(0).getValueType() != MVT::i8)) {
15145 SDValue LHS = Cond.getOperand(0);
15146 SDValue RHS = Cond.getOperand(1);
15147 unsigned X86Opcode;
15150 // Keep this in sync with LowerXALUO, otherwise we might create redundant
15151 // instructions that can't be removed afterwards (i.e. X86ISD::ADD and
15153 switch (CondOpcode) {
15154 case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
15156 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
15158 X86Opcode = X86ISD::INC; X86Cond = X86::COND_O;
15161 X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
15162 case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
15164 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
15166 X86Opcode = X86ISD::DEC; X86Cond = X86::COND_O;
15169 X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
15170 case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
15171 case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
15172 default: llvm_unreachable("unexpected overflowing operator");
15175 X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
15176 if (CondOpcode == ISD::UMULO)
15177 VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
15180 VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
15182 SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
15184 if (CondOpcode == ISD::UMULO)
15185 Cond = X86Op.getValue(2);
15187 Cond = X86Op.getValue(1);
15189 CC = DAG.getConstant(X86Cond, MVT::i8);
15193 if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
15194 SDValue Cmp = Cond.getOperand(0).getOperand(1);
15195 if (CondOpc == ISD::OR) {
15196 // Also, recognize the pattern generated by an FCMP_UNE. We can emit
15197 // two branches instead of an explicit OR instruction with a
15199 if (Cmp == Cond.getOperand(1).getOperand(1) &&
15200 isX86LogicalCmp(Cmp)) {
15201 CC = Cond.getOperand(0).getOperand(0);
15202 Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
15203 Chain, Dest, CC, Cmp);
15204 CC = Cond.getOperand(1).getOperand(0);
15208 } else { // ISD::AND
15209 // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
15210 // two branches instead of an explicit AND instruction with a
15211 // separate test. However, we only do this if this block doesn't
15212 // have a fall-through edge, because this requires an explicit
15213 // jmp when the condition is false.
15214 if (Cmp == Cond.getOperand(1).getOperand(1) &&
15215 isX86LogicalCmp(Cmp) &&
15216 Op.getNode()->hasOneUse()) {
15217 X86::CondCode CCode =
15218 (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
15219 CCode = X86::GetOppositeBranchCondition(CCode);
15220 CC = DAG.getConstant(CCode, MVT::i8);
15221 SDNode *User = *Op.getNode()->use_begin();
15222 // Look for an unconditional branch following this conditional branch.
15223 // We need this because we need to reverse the successors in order
15224 // to implement FCMP_OEQ.
15225 if (User->getOpcode() == ISD::BR) {
15226 SDValue FalseBB = User->getOperand(1);
15228 DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
15229 assert(NewBR == User);
15233 Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
15234 Chain, Dest, CC, Cmp);
15235 X86::CondCode CCode =
15236 (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
15237 CCode = X86::GetOppositeBranchCondition(CCode);
15238 CC = DAG.getConstant(CCode, MVT::i8);
15244 } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
15245 // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
15246 // It should be transformed during dag combiner except when the condition
15247 // is set by a arithmetics with overflow node.
15248 X86::CondCode CCode =
15249 (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
15250 CCode = X86::GetOppositeBranchCondition(CCode);
15251 CC = DAG.getConstant(CCode, MVT::i8);
15252 Cond = Cond.getOperand(0).getOperand(1);
15254 } else if (Cond.getOpcode() == ISD::SETCC &&
15255 cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
15256 // For FCMP_OEQ, we can emit
15257 // two branches instead of an explicit AND instruction with a
15258 // separate test. However, we only do this if this block doesn't
15259 // have a fall-through edge, because this requires an explicit
15260 // jmp when the condition is false.
15261 if (Op.getNode()->hasOneUse()) {
15262 SDNode *User = *Op.getNode()->use_begin();
15263 // Look for an unconditional branch following this conditional branch.
15264 // We need this because we need to reverse the successors in order
15265 // to implement FCMP_OEQ.
15266 if (User->getOpcode() == ISD::BR) {
15267 SDValue FalseBB = User->getOperand(1);
15269 DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
15270 assert(NewBR == User);
15274 SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
15275 Cond.getOperand(0), Cond.getOperand(1));
15276 Cmp = ConvertCmpIfNecessary(Cmp, DAG);
15277 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
15278 Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
15279 Chain, Dest, CC, Cmp);
15280 CC = DAG.getConstant(X86::COND_P, MVT::i8);
15285 } else if (Cond.getOpcode() == ISD::SETCC &&
15286 cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
15287 // For FCMP_UNE, we can emit
15288 // two branches instead of an explicit AND instruction with a
15289 // separate test. However, we only do this if this block doesn't
15290 // have a fall-through edge, because this requires an explicit
15291 // jmp when the condition is false.
15292 if (Op.getNode()->hasOneUse()) {
15293 SDNode *User = *Op.getNode()->use_begin();
15294 // Look for an unconditional branch following this conditional branch.
15295 // We need this because we need to reverse the successors in order
15296 // to implement FCMP_UNE.
15297 if (User->getOpcode() == ISD::BR) {
15298 SDValue FalseBB = User->getOperand(1);
15300 DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
15301 assert(NewBR == User);
15304 SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
15305 Cond.getOperand(0), Cond.getOperand(1));
15306 Cmp = ConvertCmpIfNecessary(Cmp, DAG);
15307 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
15308 Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
15309 Chain, Dest, CC, Cmp);
15310 CC = DAG.getConstant(X86::COND_NP, MVT::i8);
15320 // Look pass the truncate if the high bits are known zero.
15321 if (isTruncWithZeroHighBitsInput(Cond, DAG))
15322 Cond = Cond.getOperand(0);
15324 // We know the result of AND is compared against zero. Try to match
15326 if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
15327 SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
15328 if (NewSetCC.getNode()) {
15329 CC = NewSetCC.getOperand(0);
15330 Cond = NewSetCC.getOperand(1);
15337 X86::CondCode X86Cond = Inverted ? X86::COND_E : X86::COND_NE;
15338 CC = DAG.getConstant(X86Cond, MVT::i8);
15339 Cond = EmitTest(Cond, X86Cond, dl, DAG);
15341 Cond = ConvertCmpIfNecessary(Cond, DAG);
15342 return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
15343 Chain, Dest, CC, Cond);
15346 // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
15347 // Calls to _alloca are needed to probe the stack when allocating more than 4k
15348 // bytes in one go. Touching the stack at 4K increments is necessary to ensure
15349 // that the guard pages used by the OS virtual memory manager are allocated in
15350 // correct sequence.
15352 X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
15353 SelectionDAG &DAG) const {
15354 MachineFunction &MF = DAG.getMachineFunction();
15355 bool SplitStack = MF.shouldSplitStack();
15356 bool Lower = (Subtarget->isOSWindows() && !Subtarget->isTargetMacho()) ||
15361 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15362 SDNode* Node = Op.getNode();
15364 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
15365 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
15366 " not tell us which reg is the stack pointer!");
15367 EVT VT = Node->getValueType(0);
15368 SDValue Tmp1 = SDValue(Node, 0);
15369 SDValue Tmp2 = SDValue(Node, 1);
15370 SDValue Tmp3 = Node->getOperand(2);
15371 SDValue Chain = Tmp1.getOperand(0);
15373 // Chain the dynamic stack allocation so that it doesn't modify the stack
15374 // pointer when other instructions are using the stack.
15375 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true),
15378 SDValue Size = Tmp2.getOperand(1);
15379 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
15380 Chain = SP.getValue(1);
15381 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
15382 const TargetFrameLowering &TFI = *DAG.getSubtarget().getFrameLowering();
15383 unsigned StackAlign = TFI.getStackAlignment();
15384 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
15385 if (Align > StackAlign)
15386 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
15387 DAG.getConstant(-(uint64_t)Align, VT));
15388 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain
15390 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true),
15391 DAG.getIntPtrConstant(0, true), SDValue(),
15394 SDValue Ops[2] = { Tmp1, Tmp2 };
15395 return DAG.getMergeValues(Ops, dl);
15399 SDValue Chain = Op.getOperand(0);
15400 SDValue Size = Op.getOperand(1);
15401 unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
15402 EVT VT = Op.getNode()->getValueType(0);
15404 bool Is64Bit = Subtarget->is64Bit();
15405 EVT SPTy = getPointerTy();
15408 MachineRegisterInfo &MRI = MF.getRegInfo();
15411 // The 64 bit implementation of segmented stacks needs to clobber both r10
15412 // r11. This makes it impossible to use it along with nested parameters.
15413 const Function *F = MF.getFunction();
15415 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
15417 if (I->hasNestAttr())
15418 report_fatal_error("Cannot use segmented stacks with functions that "
15419 "have nested arguments.");
15422 const TargetRegisterClass *AddrRegClass =
15423 getRegClassFor(getPointerTy());
15424 unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
15425 Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
15426 SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
15427 DAG.getRegister(Vreg, SPTy));
15428 SDValue Ops1[2] = { Value, Chain };
15429 return DAG.getMergeValues(Ops1, dl);
15432 const unsigned Reg = (Subtarget->isTarget64BitLP64() ? X86::RAX : X86::EAX);
15434 Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
15435 Flag = Chain.getValue(1);
15436 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
15438 Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
15440 const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo *>(
15441 DAG.getSubtarget().getRegisterInfo());
15442 unsigned SPReg = RegInfo->getStackRegister();
15443 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, SPTy);
15444 Chain = SP.getValue(1);
15447 SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
15448 DAG.getConstant(-(uint64_t)Align, VT));
15449 Chain = DAG.getCopyToReg(Chain, dl, SPReg, SP);
15452 SDValue Ops1[2] = { SP, Chain };
15453 return DAG.getMergeValues(Ops1, dl);
15457 SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
15458 MachineFunction &MF = DAG.getMachineFunction();
15459 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
15461 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
15464 if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
15465 // vastart just stores the address of the VarArgsFrameIndex slot into the
15466 // memory location argument.
15467 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
15469 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
15470 MachinePointerInfo(SV), false, false, 0);
15474 // gp_offset (0 - 6 * 8)
15475 // fp_offset (48 - 48 + 8 * 16)
15476 // overflow_arg_area (point to parameters coming in memory).
15478 SmallVector<SDValue, 8> MemOps;
15479 SDValue FIN = Op.getOperand(1);
15481 SDValue Store = DAG.getStore(Op.getOperand(0), DL,
15482 DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
15484 FIN, MachinePointerInfo(SV), false, false, 0);
15485 MemOps.push_back(Store);
15488 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
15489 FIN, DAG.getIntPtrConstant(4));
15490 Store = DAG.getStore(Op.getOperand(0), DL,
15491 DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
15493 FIN, MachinePointerInfo(SV, 4), false, false, 0);
15494 MemOps.push_back(Store);
15496 // Store ptr to overflow_arg_area
15497 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
15498 FIN, DAG.getIntPtrConstant(4));
15499 SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
15501 Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
15502 MachinePointerInfo(SV, 8),
15504 MemOps.push_back(Store);
15506 // Store ptr to reg_save_area.
15507 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
15508 FIN, DAG.getIntPtrConstant(8));
15509 SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
15511 Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
15512 MachinePointerInfo(SV, 16), false, false, 0);
15513 MemOps.push_back(Store);
15514 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
15517 SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
15518 assert(Subtarget->is64Bit() &&
15519 "LowerVAARG only handles 64-bit va_arg!");
15520 assert((Subtarget->isTargetLinux() ||
15521 Subtarget->isTargetDarwin()) &&
15522 "Unhandled target in LowerVAARG");
15523 assert(Op.getNode()->getNumOperands() == 4);
15524 SDValue Chain = Op.getOperand(0);
15525 SDValue SrcPtr = Op.getOperand(1);
15526 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
15527 unsigned Align = Op.getConstantOperandVal(3);
15530 EVT ArgVT = Op.getNode()->getValueType(0);
15531 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
15532 uint32_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy);
15535 // Decide which area this value should be read from.
15536 // TODO: Implement the AMD64 ABI in its entirety. This simple
15537 // selection mechanism works only for the basic types.
15538 if (ArgVT == MVT::f80) {
15539 llvm_unreachable("va_arg for f80 not yet implemented");
15540 } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
15541 ArgMode = 2; // Argument passed in XMM register. Use fp_offset.
15542 } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
15543 ArgMode = 1; // Argument passed in GPR64 register(s). Use gp_offset.
15545 llvm_unreachable("Unhandled argument type in LowerVAARG");
15548 if (ArgMode == 2) {
15549 // Sanity Check: Make sure using fp_offset makes sense.
15550 assert(!DAG.getTarget().Options.UseSoftFloat &&
15551 !(DAG.getMachineFunction()
15552 .getFunction()->getAttributes()
15553 .hasAttribute(AttributeSet::FunctionIndex,
15554 Attribute::NoImplicitFloat)) &&
15555 Subtarget->hasSSE1());
15558 // Insert VAARG_64 node into the DAG
15559 // VAARG_64 returns two values: Variable Argument Address, Chain
15560 SmallVector<SDValue, 11> InstOps;
15561 InstOps.push_back(Chain);
15562 InstOps.push_back(SrcPtr);
15563 InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
15564 InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
15565 InstOps.push_back(DAG.getConstant(Align, MVT::i32));
15566 SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
15567 SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
15568 VTs, InstOps, MVT::i64,
15569 MachinePointerInfo(SV),
15571 /*Volatile=*/false,
15573 /*WriteMem=*/true);
15574 Chain = VAARG.getValue(1);
15576 // Load the next argument and return it
15577 return DAG.getLoad(ArgVT, dl,
15580 MachinePointerInfo(),
15581 false, false, false, 0);
15584 static SDValue LowerVACOPY(SDValue Op, const X86Subtarget *Subtarget,
15585 SelectionDAG &DAG) {
15586 // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
15587 assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
15588 SDValue Chain = Op.getOperand(0);
15589 SDValue DstPtr = Op.getOperand(1);
15590 SDValue SrcPtr = Op.getOperand(2);
15591 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
15592 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
15595 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
15596 DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
15598 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
15601 // getTargetVShiftByConstNode - Handle vector element shifts where the shift
15602 // amount is a constant. Takes immediate version of shift as input.
15603 static SDValue getTargetVShiftByConstNode(unsigned Opc, SDLoc dl, MVT VT,
15604 SDValue SrcOp, uint64_t ShiftAmt,
15605 SelectionDAG &DAG) {
15606 MVT ElementType = VT.getVectorElementType();
15608 // Fold this packed shift into its first operand if ShiftAmt is 0.
15612 // Check for ShiftAmt >= element width
15613 if (ShiftAmt >= ElementType.getSizeInBits()) {
15614 if (Opc == X86ISD::VSRAI)
15615 ShiftAmt = ElementType.getSizeInBits() - 1;
15617 return DAG.getConstant(0, VT);
15620 assert((Opc == X86ISD::VSHLI || Opc == X86ISD::VSRLI || Opc == X86ISD::VSRAI)
15621 && "Unknown target vector shift-by-constant node");
15623 // Fold this packed vector shift into a build vector if SrcOp is a
15624 // vector of Constants or UNDEFs, and SrcOp valuetype is the same as VT.
15625 if (VT == SrcOp.getSimpleValueType() &&
15626 ISD::isBuildVectorOfConstantSDNodes(SrcOp.getNode())) {
15627 SmallVector<SDValue, 8> Elts;
15628 unsigned NumElts = SrcOp->getNumOperands();
15629 ConstantSDNode *ND;
15632 default: llvm_unreachable(nullptr);
15633 case X86ISD::VSHLI:
15634 for (unsigned i=0; i!=NumElts; ++i) {
15635 SDValue CurrentOp = SrcOp->getOperand(i);
15636 if (CurrentOp->getOpcode() == ISD::UNDEF) {
15637 Elts.push_back(CurrentOp);
15640 ND = cast<ConstantSDNode>(CurrentOp);
15641 const APInt &C = ND->getAPIntValue();
15642 Elts.push_back(DAG.getConstant(C.shl(ShiftAmt), ElementType));
15645 case X86ISD::VSRLI:
15646 for (unsigned i=0; i!=NumElts; ++i) {
15647 SDValue CurrentOp = SrcOp->getOperand(i);
15648 if (CurrentOp->getOpcode() == ISD::UNDEF) {
15649 Elts.push_back(CurrentOp);
15652 ND = cast<ConstantSDNode>(CurrentOp);
15653 const APInt &C = ND->getAPIntValue();
15654 Elts.push_back(DAG.getConstant(C.lshr(ShiftAmt), ElementType));
15657 case X86ISD::VSRAI:
15658 for (unsigned i=0; i!=NumElts; ++i) {
15659 SDValue CurrentOp = SrcOp->getOperand(i);
15660 if (CurrentOp->getOpcode() == ISD::UNDEF) {
15661 Elts.push_back(CurrentOp);
15664 ND = cast<ConstantSDNode>(CurrentOp);
15665 const APInt &C = ND->getAPIntValue();
15666 Elts.push_back(DAG.getConstant(C.ashr(ShiftAmt), ElementType));
15671 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Elts);
15674 return DAG.getNode(Opc, dl, VT, SrcOp, DAG.getConstant(ShiftAmt, MVT::i8));
15677 // getTargetVShiftNode - Handle vector element shifts where the shift amount
15678 // may or may not be a constant. Takes immediate version of shift as input.
15679 static SDValue getTargetVShiftNode(unsigned Opc, SDLoc dl, MVT VT,
15680 SDValue SrcOp, SDValue ShAmt,
15681 SelectionDAG &DAG) {
15682 assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
15684 // Catch shift-by-constant.
15685 if (ConstantSDNode *CShAmt = dyn_cast<ConstantSDNode>(ShAmt))
15686 return getTargetVShiftByConstNode(Opc, dl, VT, SrcOp,
15687 CShAmt->getZExtValue(), DAG);
15689 // Change opcode to non-immediate version
15691 default: llvm_unreachable("Unknown target vector shift node");
15692 case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
15693 case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
15694 case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
15697 // Need to build a vector containing shift amount
15698 // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
15701 ShOps[1] = DAG.getConstant(0, MVT::i32);
15702 ShOps[2] = ShOps[3] = DAG.getUNDEF(MVT::i32);
15703 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, ShOps);
15705 // The return type has to be a 128-bit type with the same element
15706 // type as the input type.
15707 MVT EltVT = VT.getVectorElementType();
15708 EVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits());
15710 ShAmt = DAG.getNode(ISD::BITCAST, dl, ShVT, ShAmt);
15711 return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
15714 /// \brief Return (vselect \p Mask, \p Op, \p PreservedSrc) along with the
15715 /// necessary casting for \p Mask when lowering masking intrinsics.
15716 static SDValue getVectorMaskingNode(SDValue Op, SDValue Mask,
15717 SDValue PreservedSrc, SelectionDAG &DAG) {
15718 EVT VT = Op.getValueType();
15719 EVT MaskVT = EVT::getVectorVT(*DAG.getContext(),
15720 MVT::i1, VT.getVectorNumElements());
15723 assert(MaskVT.isSimple() && "invalid mask type");
15724 return DAG.getNode(ISD::VSELECT, dl, VT,
15725 DAG.getNode(ISD::BITCAST, dl, MaskVT, Mask),
15729 static unsigned getOpcodeForFMAIntrinsic(unsigned IntNo) {
15731 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
15732 case Intrinsic::x86_fma_vfmadd_ps:
15733 case Intrinsic::x86_fma_vfmadd_pd:
15734 case Intrinsic::x86_fma_vfmadd_ps_256:
15735 case Intrinsic::x86_fma_vfmadd_pd_256:
15736 case Intrinsic::x86_fma_mask_vfmadd_ps_512:
15737 case Intrinsic::x86_fma_mask_vfmadd_pd_512:
15738 return X86ISD::FMADD;
15739 case Intrinsic::x86_fma_vfmsub_ps:
15740 case Intrinsic::x86_fma_vfmsub_pd:
15741 case Intrinsic::x86_fma_vfmsub_ps_256:
15742 case Intrinsic::x86_fma_vfmsub_pd_256:
15743 case Intrinsic::x86_fma_mask_vfmsub_ps_512:
15744 case Intrinsic::x86_fma_mask_vfmsub_pd_512:
15745 return X86ISD::FMSUB;
15746 case Intrinsic::x86_fma_vfnmadd_ps:
15747 case Intrinsic::x86_fma_vfnmadd_pd:
15748 case Intrinsic::x86_fma_vfnmadd_ps_256:
15749 case Intrinsic::x86_fma_vfnmadd_pd_256:
15750 case Intrinsic::x86_fma_mask_vfnmadd_ps_512:
15751 case Intrinsic::x86_fma_mask_vfnmadd_pd_512:
15752 return X86ISD::FNMADD;
15753 case Intrinsic::x86_fma_vfnmsub_ps:
15754 case Intrinsic::x86_fma_vfnmsub_pd:
15755 case Intrinsic::x86_fma_vfnmsub_ps_256:
15756 case Intrinsic::x86_fma_vfnmsub_pd_256:
15757 case Intrinsic::x86_fma_mask_vfnmsub_ps_512:
15758 case Intrinsic::x86_fma_mask_vfnmsub_pd_512:
15759 return X86ISD::FNMSUB;
15760 case Intrinsic::x86_fma_vfmaddsub_ps:
15761 case Intrinsic::x86_fma_vfmaddsub_pd:
15762 case Intrinsic::x86_fma_vfmaddsub_ps_256:
15763 case Intrinsic::x86_fma_vfmaddsub_pd_256:
15764 case Intrinsic::x86_fma_mask_vfmaddsub_ps_512:
15765 case Intrinsic::x86_fma_mask_vfmaddsub_pd_512:
15766 return X86ISD::FMADDSUB;
15767 case Intrinsic::x86_fma_vfmsubadd_ps:
15768 case Intrinsic::x86_fma_vfmsubadd_pd:
15769 case Intrinsic::x86_fma_vfmsubadd_ps_256:
15770 case Intrinsic::x86_fma_vfmsubadd_pd_256:
15771 case Intrinsic::x86_fma_mask_vfmsubadd_ps_512:
15772 case Intrinsic::x86_fma_mask_vfmsubadd_pd_512:
15773 return X86ISD::FMSUBADD;
15777 static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
15779 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
15781 const IntrinsicData* IntrData = getIntrinsicWithoutChain(IntNo);
15783 switch(IntrData->Type) {
15784 case INTR_TYPE_1OP:
15785 return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1));
15786 case INTR_TYPE_2OP:
15787 return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1),
15789 case INTR_TYPE_3OP:
15790 return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1),
15791 Op.getOperand(2), Op.getOperand(3));
15792 case COMI: { // Comparison intrinsics
15793 ISD::CondCode CC = (ISD::CondCode)IntrData->Opc1;
15794 SDValue LHS = Op.getOperand(1);
15795 SDValue RHS = Op.getOperand(2);
15796 unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
15797 assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
15798 SDValue Cond = DAG.getNode(IntrData->Opc0, dl, MVT::i32, LHS, RHS);
15799 SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
15800 DAG.getConstant(X86CC, MVT::i8), Cond);
15801 return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
15804 return getTargetVShiftNode(IntrData->Opc0, dl, Op.getSimpleValueType(),
15805 Op.getOperand(1), Op.getOperand(2), DAG);
15812 default: return SDValue(); // Don't custom lower most intrinsics.
15814 // Arithmetic intrinsics.
15815 case Intrinsic::x86_sse2_pmulu_dq:
15816 case Intrinsic::x86_avx2_pmulu_dq:
15817 return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
15818 Op.getOperand(1), Op.getOperand(2));
15820 case Intrinsic::x86_sse41_pmuldq:
15821 case Intrinsic::x86_avx2_pmul_dq:
15822 return DAG.getNode(X86ISD::PMULDQ, dl, Op.getValueType(),
15823 Op.getOperand(1), Op.getOperand(2));
15825 case Intrinsic::x86_sse2_pmulhu_w:
15826 case Intrinsic::x86_avx2_pmulhu_w:
15827 return DAG.getNode(ISD::MULHU, dl, Op.getValueType(),
15828 Op.getOperand(1), Op.getOperand(2));
15830 case Intrinsic::x86_sse2_pmulh_w:
15831 case Intrinsic::x86_avx2_pmulh_w:
15832 return DAG.getNode(ISD::MULHS, dl, Op.getValueType(),
15833 Op.getOperand(1), Op.getOperand(2));
15835 // SSE/SSE2/AVX floating point max/min intrinsics.
15836 case Intrinsic::x86_sse_max_ps:
15837 case Intrinsic::x86_sse2_max_pd:
15838 case Intrinsic::x86_avx_max_ps_256:
15839 case Intrinsic::x86_avx_max_pd_256:
15840 case Intrinsic::x86_sse_min_ps:
15841 case Intrinsic::x86_sse2_min_pd:
15842 case Intrinsic::x86_avx_min_ps_256:
15843 case Intrinsic::x86_avx_min_pd_256: {
15846 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
15847 case Intrinsic::x86_sse_max_ps:
15848 case Intrinsic::x86_sse2_max_pd:
15849 case Intrinsic::x86_avx_max_ps_256:
15850 case Intrinsic::x86_avx_max_pd_256:
15851 Opcode = X86ISD::FMAX;
15853 case Intrinsic::x86_sse_min_ps:
15854 case Intrinsic::x86_sse2_min_pd:
15855 case Intrinsic::x86_avx_min_ps_256:
15856 case Intrinsic::x86_avx_min_pd_256:
15857 Opcode = X86ISD::FMIN;
15860 return DAG.getNode(Opcode, dl, Op.getValueType(),
15861 Op.getOperand(1), Op.getOperand(2));
15864 // AVX2 variable shift intrinsics
15865 case Intrinsic::x86_avx2_psllv_d:
15866 case Intrinsic::x86_avx2_psllv_q:
15867 case Intrinsic::x86_avx2_psllv_d_256:
15868 case Intrinsic::x86_avx2_psllv_q_256:
15869 case Intrinsic::x86_avx2_psrlv_d:
15870 case Intrinsic::x86_avx2_psrlv_q:
15871 case Intrinsic::x86_avx2_psrlv_d_256:
15872 case Intrinsic::x86_avx2_psrlv_q_256:
15873 case Intrinsic::x86_avx2_psrav_d:
15874 case Intrinsic::x86_avx2_psrav_d_256: {
15877 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
15878 case Intrinsic::x86_avx2_psllv_d:
15879 case Intrinsic::x86_avx2_psllv_q:
15880 case Intrinsic::x86_avx2_psllv_d_256:
15881 case Intrinsic::x86_avx2_psllv_q_256:
15884 case Intrinsic::x86_avx2_psrlv_d:
15885 case Intrinsic::x86_avx2_psrlv_q:
15886 case Intrinsic::x86_avx2_psrlv_d_256:
15887 case Intrinsic::x86_avx2_psrlv_q_256:
15890 case Intrinsic::x86_avx2_psrav_d:
15891 case Intrinsic::x86_avx2_psrav_d_256:
15895 return DAG.getNode(Opcode, dl, Op.getValueType(),
15896 Op.getOperand(1), Op.getOperand(2));
15899 case Intrinsic::x86_sse2_packssdw_128:
15900 case Intrinsic::x86_sse2_packsswb_128:
15901 case Intrinsic::x86_avx2_packssdw:
15902 case Intrinsic::x86_avx2_packsswb:
15903 return DAG.getNode(X86ISD::PACKSS, dl, Op.getValueType(),
15904 Op.getOperand(1), Op.getOperand(2));
15906 case Intrinsic::x86_sse2_packuswb_128:
15907 case Intrinsic::x86_sse41_packusdw:
15908 case Intrinsic::x86_avx2_packuswb:
15909 case Intrinsic::x86_avx2_packusdw:
15910 return DAG.getNode(X86ISD::PACKUS, dl, Op.getValueType(),
15911 Op.getOperand(1), Op.getOperand(2));
15913 case Intrinsic::x86_ssse3_pshuf_b_128:
15914 case Intrinsic::x86_avx2_pshuf_b:
15915 return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
15916 Op.getOperand(1), Op.getOperand(2));
15918 case Intrinsic::x86_sse2_pshuf_d:
15919 return DAG.getNode(X86ISD::PSHUFD, dl, Op.getValueType(),
15920 Op.getOperand(1), Op.getOperand(2));
15922 case Intrinsic::x86_sse2_pshufl_w:
15923 return DAG.getNode(X86ISD::PSHUFLW, dl, Op.getValueType(),
15924 Op.getOperand(1), Op.getOperand(2));
15926 case Intrinsic::x86_sse2_pshufh_w:
15927 return DAG.getNode(X86ISD::PSHUFHW, dl, Op.getValueType(),
15928 Op.getOperand(1), Op.getOperand(2));
15930 case Intrinsic::x86_ssse3_psign_b_128:
15931 case Intrinsic::x86_ssse3_psign_w_128:
15932 case Intrinsic::x86_ssse3_psign_d_128:
15933 case Intrinsic::x86_avx2_psign_b:
15934 case Intrinsic::x86_avx2_psign_w:
15935 case Intrinsic::x86_avx2_psign_d:
15936 return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
15937 Op.getOperand(1), Op.getOperand(2));
15939 case Intrinsic::x86_avx2_permd:
15940 case Intrinsic::x86_avx2_permps:
15941 // Operands intentionally swapped. Mask is last operand to intrinsic,
15942 // but second operand for node/instruction.
15943 return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
15944 Op.getOperand(2), Op.getOperand(1));
15946 case Intrinsic::x86_avx512_mask_valign_q_512:
15947 case Intrinsic::x86_avx512_mask_valign_d_512:
15948 // Vector source operands are swapped.
15949 return getVectorMaskingNode(DAG.getNode(X86ISD::VALIGN, dl,
15950 Op.getValueType(), Op.getOperand(2),
15953 Op.getOperand(5), Op.getOperand(4), DAG);
15955 // ptest and testp intrinsics. The intrinsic these come from are designed to
15956 // return an integer value, not just an instruction so lower it to the ptest
15957 // or testp pattern and a setcc for the result.
15958 case Intrinsic::x86_sse41_ptestz:
15959 case Intrinsic::x86_sse41_ptestc:
15960 case Intrinsic::x86_sse41_ptestnzc:
15961 case Intrinsic::x86_avx_ptestz_256:
15962 case Intrinsic::x86_avx_ptestc_256:
15963 case Intrinsic::x86_avx_ptestnzc_256:
15964 case Intrinsic::x86_avx_vtestz_ps:
15965 case Intrinsic::x86_avx_vtestc_ps:
15966 case Intrinsic::x86_avx_vtestnzc_ps:
15967 case Intrinsic::x86_avx_vtestz_pd:
15968 case Intrinsic::x86_avx_vtestc_pd:
15969 case Intrinsic::x86_avx_vtestnzc_pd:
15970 case Intrinsic::x86_avx_vtestz_ps_256:
15971 case Intrinsic::x86_avx_vtestc_ps_256:
15972 case Intrinsic::x86_avx_vtestnzc_ps_256:
15973 case Intrinsic::x86_avx_vtestz_pd_256:
15974 case Intrinsic::x86_avx_vtestc_pd_256:
15975 case Intrinsic::x86_avx_vtestnzc_pd_256: {
15976 bool IsTestPacked = false;
15979 default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
15980 case Intrinsic::x86_avx_vtestz_ps:
15981 case Intrinsic::x86_avx_vtestz_pd:
15982 case Intrinsic::x86_avx_vtestz_ps_256:
15983 case Intrinsic::x86_avx_vtestz_pd_256:
15984 IsTestPacked = true; // Fallthrough
15985 case Intrinsic::x86_sse41_ptestz:
15986 case Intrinsic::x86_avx_ptestz_256:
15988 X86CC = X86::COND_E;
15990 case Intrinsic::x86_avx_vtestc_ps:
15991 case Intrinsic::x86_avx_vtestc_pd:
15992 case Intrinsic::x86_avx_vtestc_ps_256:
15993 case Intrinsic::x86_avx_vtestc_pd_256:
15994 IsTestPacked = true; // Fallthrough
15995 case Intrinsic::x86_sse41_ptestc:
15996 case Intrinsic::x86_avx_ptestc_256:
15998 X86CC = X86::COND_B;
16000 case Intrinsic::x86_avx_vtestnzc_ps:
16001 case Intrinsic::x86_avx_vtestnzc_pd:
16002 case Intrinsic::x86_avx_vtestnzc_ps_256:
16003 case Intrinsic::x86_avx_vtestnzc_pd_256:
16004 IsTestPacked = true; // Fallthrough
16005 case Intrinsic::x86_sse41_ptestnzc:
16006 case Intrinsic::x86_avx_ptestnzc_256:
16008 X86CC = X86::COND_A;
16012 SDValue LHS = Op.getOperand(1);
16013 SDValue RHS = Op.getOperand(2);
16014 unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
16015 SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
16016 SDValue CC = DAG.getConstant(X86CC, MVT::i8);
16017 SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
16018 return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
16020 case Intrinsic::x86_avx512_kortestz_w:
16021 case Intrinsic::x86_avx512_kortestc_w: {
16022 unsigned X86CC = (IntNo == Intrinsic::x86_avx512_kortestz_w)? X86::COND_E: X86::COND_B;
16023 SDValue LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1, Op.getOperand(1));
16024 SDValue RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1, Op.getOperand(2));
16025 SDValue CC = DAG.getConstant(X86CC, MVT::i8);
16026 SDValue Test = DAG.getNode(X86ISD::KORTEST, dl, MVT::i32, LHS, RHS);
16027 SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i1, CC, Test);
16028 return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
16031 case Intrinsic::x86_sse42_pcmpistria128:
16032 case Intrinsic::x86_sse42_pcmpestria128:
16033 case Intrinsic::x86_sse42_pcmpistric128:
16034 case Intrinsic::x86_sse42_pcmpestric128:
16035 case Intrinsic::x86_sse42_pcmpistrio128:
16036 case Intrinsic::x86_sse42_pcmpestrio128:
16037 case Intrinsic::x86_sse42_pcmpistris128:
16038 case Intrinsic::x86_sse42_pcmpestris128:
16039 case Intrinsic::x86_sse42_pcmpistriz128:
16040 case Intrinsic::x86_sse42_pcmpestriz128: {
16044 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
16045 case Intrinsic::x86_sse42_pcmpistria128:
16046 Opcode = X86ISD::PCMPISTRI;
16047 X86CC = X86::COND_A;
16049 case Intrinsic::x86_sse42_pcmpestria128:
16050 Opcode = X86ISD::PCMPESTRI;
16051 X86CC = X86::COND_A;
16053 case Intrinsic::x86_sse42_pcmpistric128:
16054 Opcode = X86ISD::PCMPISTRI;
16055 X86CC = X86::COND_B;
16057 case Intrinsic::x86_sse42_pcmpestric128:
16058 Opcode = X86ISD::PCMPESTRI;
16059 X86CC = X86::COND_B;
16061 case Intrinsic::x86_sse42_pcmpistrio128:
16062 Opcode = X86ISD::PCMPISTRI;
16063 X86CC = X86::COND_O;
16065 case Intrinsic::x86_sse42_pcmpestrio128:
16066 Opcode = X86ISD::PCMPESTRI;
16067 X86CC = X86::COND_O;
16069 case Intrinsic::x86_sse42_pcmpistris128:
16070 Opcode = X86ISD::PCMPISTRI;
16071 X86CC = X86::COND_S;
16073 case Intrinsic::x86_sse42_pcmpestris128:
16074 Opcode = X86ISD::PCMPESTRI;
16075 X86CC = X86::COND_S;
16077 case Intrinsic::x86_sse42_pcmpistriz128:
16078 Opcode = X86ISD::PCMPISTRI;
16079 X86CC = X86::COND_E;
16081 case Intrinsic::x86_sse42_pcmpestriz128:
16082 Opcode = X86ISD::PCMPESTRI;
16083 X86CC = X86::COND_E;
16086 SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end());
16087 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
16088 SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps);
16089 SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
16090 DAG.getConstant(X86CC, MVT::i8),
16091 SDValue(PCMP.getNode(), 1));
16092 return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
16095 case Intrinsic::x86_sse42_pcmpistri128:
16096 case Intrinsic::x86_sse42_pcmpestri128: {
16098 if (IntNo == Intrinsic::x86_sse42_pcmpistri128)
16099 Opcode = X86ISD::PCMPISTRI;
16101 Opcode = X86ISD::PCMPESTRI;
16103 SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end());
16104 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
16105 return DAG.getNode(Opcode, dl, VTs, NewOps);
16108 case Intrinsic::x86_fma_mask_vfmadd_ps_512:
16109 case Intrinsic::x86_fma_mask_vfmadd_pd_512:
16110 case Intrinsic::x86_fma_mask_vfmsub_ps_512:
16111 case Intrinsic::x86_fma_mask_vfmsub_pd_512:
16112 case Intrinsic::x86_fma_mask_vfnmadd_ps_512:
16113 case Intrinsic::x86_fma_mask_vfnmadd_pd_512:
16114 case Intrinsic::x86_fma_mask_vfnmsub_ps_512:
16115 case Intrinsic::x86_fma_mask_vfnmsub_pd_512:
16116 case Intrinsic::x86_fma_mask_vfmaddsub_ps_512:
16117 case Intrinsic::x86_fma_mask_vfmaddsub_pd_512:
16118 case Intrinsic::x86_fma_mask_vfmsubadd_ps_512:
16119 case Intrinsic::x86_fma_mask_vfmsubadd_pd_512: {
16120 auto *SAE = cast<ConstantSDNode>(Op.getOperand(5));
16121 if (SAE->getZExtValue() == X86::STATIC_ROUNDING::CUR_DIRECTION)
16122 return getVectorMaskingNode(DAG.getNode(getOpcodeForFMAIntrinsic(IntNo),
16123 dl, Op.getValueType(),
16127 Op.getOperand(4), Op.getOperand(1), DAG);
16132 case Intrinsic::x86_fma_vfmadd_ps:
16133 case Intrinsic::x86_fma_vfmadd_pd:
16134 case Intrinsic::x86_fma_vfmsub_ps:
16135 case Intrinsic::x86_fma_vfmsub_pd:
16136 case Intrinsic::x86_fma_vfnmadd_ps:
16137 case Intrinsic::x86_fma_vfnmadd_pd:
16138 case Intrinsic::x86_fma_vfnmsub_ps:
16139 case Intrinsic::x86_fma_vfnmsub_pd:
16140 case Intrinsic::x86_fma_vfmaddsub_ps:
16141 case Intrinsic::x86_fma_vfmaddsub_pd:
16142 case Intrinsic::x86_fma_vfmsubadd_ps:
16143 case Intrinsic::x86_fma_vfmsubadd_pd:
16144 case Intrinsic::x86_fma_vfmadd_ps_256:
16145 case Intrinsic::x86_fma_vfmadd_pd_256:
16146 case Intrinsic::x86_fma_vfmsub_ps_256:
16147 case Intrinsic::x86_fma_vfmsub_pd_256:
16148 case Intrinsic::x86_fma_vfnmadd_ps_256:
16149 case Intrinsic::x86_fma_vfnmadd_pd_256:
16150 case Intrinsic::x86_fma_vfnmsub_ps_256:
16151 case Intrinsic::x86_fma_vfnmsub_pd_256:
16152 case Intrinsic::x86_fma_vfmaddsub_ps_256:
16153 case Intrinsic::x86_fma_vfmaddsub_pd_256:
16154 case Intrinsic::x86_fma_vfmsubadd_ps_256:
16155 case Intrinsic::x86_fma_vfmsubadd_pd_256:
16156 return DAG.getNode(getOpcodeForFMAIntrinsic(IntNo), dl, Op.getValueType(),
16157 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
16161 static SDValue getGatherNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
16162 SDValue Src, SDValue Mask, SDValue Base,
16163 SDValue Index, SDValue ScaleOp, SDValue Chain,
16164 const X86Subtarget * Subtarget) {
16166 ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp);
16167 assert(C && "Invalid scale type");
16168 SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8);
16169 EVT MaskVT = MVT::getVectorVT(MVT::i1,
16170 Index.getSimpleValueType().getVectorNumElements());
16172 ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(Mask);
16174 MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), MaskVT);
16176 MaskInReg = DAG.getNode(ISD::BITCAST, dl, MaskVT, Mask);
16177 SDVTList VTs = DAG.getVTList(Op.getValueType(), MaskVT, MVT::Other);
16178 SDValue Disp = DAG.getTargetConstant(0, MVT::i32);
16179 SDValue Segment = DAG.getRegister(0, MVT::i32);
16180 if (Src.getOpcode() == ISD::UNDEF)
16181 Src = getZeroVector(Op.getValueType(), Subtarget, DAG, dl);
16182 SDValue Ops[] = {Src, MaskInReg, Base, Scale, Index, Disp, Segment, Chain};
16183 SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
16184 SDValue RetOps[] = { SDValue(Res, 0), SDValue(Res, 2) };
16185 return DAG.getMergeValues(RetOps, dl);
16188 static SDValue getScatterNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
16189 SDValue Src, SDValue Mask, SDValue Base,
16190 SDValue Index, SDValue ScaleOp, SDValue Chain) {
16192 ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp);
16193 assert(C && "Invalid scale type");
16194 SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8);
16195 SDValue Disp = DAG.getTargetConstant(0, MVT::i32);
16196 SDValue Segment = DAG.getRegister(0, MVT::i32);
16197 EVT MaskVT = MVT::getVectorVT(MVT::i1,
16198 Index.getSimpleValueType().getVectorNumElements());
16200 ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(Mask);
16202 MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), MaskVT);
16204 MaskInReg = DAG.getNode(ISD::BITCAST, dl, MaskVT, Mask);
16205 SDVTList VTs = DAG.getVTList(MaskVT, MVT::Other);
16206 SDValue Ops[] = {Base, Scale, Index, Disp, Segment, MaskInReg, Src, Chain};
16207 SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
16208 return SDValue(Res, 1);
16211 static SDValue getPrefetchNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
16212 SDValue Mask, SDValue Base, SDValue Index,
16213 SDValue ScaleOp, SDValue Chain) {
16215 ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp);
16216 assert(C && "Invalid scale type");
16217 SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8);
16218 SDValue Disp = DAG.getTargetConstant(0, MVT::i32);
16219 SDValue Segment = DAG.getRegister(0, MVT::i32);
16221 MVT::getVectorVT(MVT::i1, Index.getSimpleValueType().getVectorNumElements());
16223 ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(Mask);
16225 MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), MaskVT);
16227 MaskInReg = DAG.getNode(ISD::BITCAST, dl, MaskVT, Mask);
16228 //SDVTList VTs = DAG.getVTList(MVT::Other);
16229 SDValue Ops[] = {MaskInReg, Base, Scale, Index, Disp, Segment, Chain};
16230 SDNode *Res = DAG.getMachineNode(Opc, dl, MVT::Other, Ops);
16231 return SDValue(Res, 0);
16234 // getReadPerformanceCounter - Handles the lowering of builtin intrinsics that
16235 // read performance monitor counters (x86_rdpmc).
16236 static void getReadPerformanceCounter(SDNode *N, SDLoc DL,
16237 SelectionDAG &DAG, const X86Subtarget *Subtarget,
16238 SmallVectorImpl<SDValue> &Results) {
16239 assert(N->getNumOperands() == 3 && "Unexpected number of operands!");
16240 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
16243 // The ECX register is used to select the index of the performance counter
16245 SDValue Chain = DAG.getCopyToReg(N->getOperand(0), DL, X86::ECX,
16247 SDValue rd = DAG.getNode(X86ISD::RDPMC_DAG, DL, Tys, Chain);
16249 // Reads the content of a 64-bit performance counter and returns it in the
16250 // registers EDX:EAX.
16251 if (Subtarget->is64Bit()) {
16252 LO = DAG.getCopyFromReg(rd, DL, X86::RAX, MVT::i64, rd.getValue(1));
16253 HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::RDX, MVT::i64,
16256 LO = DAG.getCopyFromReg(rd, DL, X86::EAX, MVT::i32, rd.getValue(1));
16257 HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::EDX, MVT::i32,
16260 Chain = HI.getValue(1);
16262 if (Subtarget->is64Bit()) {
16263 // The EAX register is loaded with the low-order 32 bits. The EDX register
16264 // is loaded with the supported high-order bits of the counter.
16265 SDValue Tmp = DAG.getNode(ISD::SHL, DL, MVT::i64, HI,
16266 DAG.getConstant(32, MVT::i8));
16267 Results.push_back(DAG.getNode(ISD::OR, DL, MVT::i64, LO, Tmp));
16268 Results.push_back(Chain);
16272 // Use a buildpair to merge the two 32-bit values into a 64-bit one.
16273 SDValue Ops[] = { LO, HI };
16274 SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops);
16275 Results.push_back(Pair);
16276 Results.push_back(Chain);
16279 // getReadTimeStampCounter - Handles the lowering of builtin intrinsics that
16280 // read the time stamp counter (x86_rdtsc and x86_rdtscp). This function is
16281 // also used to custom lower READCYCLECOUNTER nodes.
16282 static void getReadTimeStampCounter(SDNode *N, SDLoc DL, unsigned Opcode,
16283 SelectionDAG &DAG, const X86Subtarget *Subtarget,
16284 SmallVectorImpl<SDValue> &Results) {
16285 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
16286 SDValue rd = DAG.getNode(Opcode, DL, Tys, N->getOperand(0));
16289 // The processor's time-stamp counter (a 64-bit MSR) is stored into the
16290 // EDX:EAX registers. EDX is loaded with the high-order 32 bits of the MSR
16291 // and the EAX register is loaded with the low-order 32 bits.
16292 if (Subtarget->is64Bit()) {
16293 LO = DAG.getCopyFromReg(rd, DL, X86::RAX, MVT::i64, rd.getValue(1));
16294 HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::RDX, MVT::i64,
16297 LO = DAG.getCopyFromReg(rd, DL, X86::EAX, MVT::i32, rd.getValue(1));
16298 HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::EDX, MVT::i32,
16301 SDValue Chain = HI.getValue(1);
16303 if (Opcode == X86ISD::RDTSCP_DAG) {
16304 assert(N->getNumOperands() == 3 && "Unexpected number of operands!");
16306 // Instruction RDTSCP loads the IA32:TSC_AUX_MSR (address C000_0103H) into
16307 // the ECX register. Add 'ecx' explicitly to the chain.
16308 SDValue ecx = DAG.getCopyFromReg(Chain, DL, X86::ECX, MVT::i32,
16310 // Explicitly store the content of ECX at the location passed in input
16311 // to the 'rdtscp' intrinsic.
16312 Chain = DAG.getStore(ecx.getValue(1), DL, ecx, N->getOperand(2),
16313 MachinePointerInfo(), false, false, 0);
16316 if (Subtarget->is64Bit()) {
16317 // The EDX register is loaded with the high-order 32 bits of the MSR, and
16318 // the EAX register is loaded with the low-order 32 bits.
16319 SDValue Tmp = DAG.getNode(ISD::SHL, DL, MVT::i64, HI,
16320 DAG.getConstant(32, MVT::i8));
16321 Results.push_back(DAG.getNode(ISD::OR, DL, MVT::i64, LO, Tmp));
16322 Results.push_back(Chain);
16326 // Use a buildpair to merge the two 32-bit values into a 64-bit one.
16327 SDValue Ops[] = { LO, HI };
16328 SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops);
16329 Results.push_back(Pair);
16330 Results.push_back(Chain);
16333 static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget *Subtarget,
16334 SelectionDAG &DAG) {
16335 SmallVector<SDValue, 2> Results;
16337 getReadTimeStampCounter(Op.getNode(), DL, X86ISD::RDTSC_DAG, DAG, Subtarget,
16339 return DAG.getMergeValues(Results, DL);
16343 static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget *Subtarget,
16344 SelectionDAG &DAG) {
16345 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
16347 const IntrinsicData* IntrData = getIntrinsicWithChain(IntNo);
16352 switch(IntrData->Type) {
16354 llvm_unreachable("Unknown Intrinsic Type");
16358 // Emit the node with the right value type.
16359 SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other);
16360 SDValue Result = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(0));
16362 // If the value returned by RDRAND/RDSEED was valid (CF=1), return 1.
16363 // Otherwise return the value from Rand, which is always 0, casted to i32.
16364 SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)),
16365 DAG.getConstant(1, Op->getValueType(1)),
16366 DAG.getConstant(X86::COND_B, MVT::i32),
16367 SDValue(Result.getNode(), 1) };
16368 SDValue isValid = DAG.getNode(X86ISD::CMOV, dl,
16369 DAG.getVTList(Op->getValueType(1), MVT::Glue),
16372 // Return { result, isValid, chain }.
16373 return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid,
16374 SDValue(Result.getNode(), 2));
16377 //gather(v1, mask, index, base, scale);
16378 SDValue Chain = Op.getOperand(0);
16379 SDValue Src = Op.getOperand(2);
16380 SDValue Base = Op.getOperand(3);
16381 SDValue Index = Op.getOperand(4);
16382 SDValue Mask = Op.getOperand(5);
16383 SDValue Scale = Op.getOperand(6);
16384 return getGatherNode(IntrData->Opc0, Op, DAG, Src, Mask, Base, Index, Scale, Chain,
16388 //scatter(base, mask, index, v1, scale);
16389 SDValue Chain = Op.getOperand(0);
16390 SDValue Base = Op.getOperand(2);
16391 SDValue Mask = Op.getOperand(3);
16392 SDValue Index = Op.getOperand(4);
16393 SDValue Src = Op.getOperand(5);
16394 SDValue Scale = Op.getOperand(6);
16395 return getScatterNode(IntrData->Opc0, Op, DAG, Src, Mask, Base, Index, Scale, Chain);
16398 SDValue Hint = Op.getOperand(6);
16400 if (dyn_cast<ConstantSDNode> (Hint) == nullptr ||
16401 (HintVal = dyn_cast<ConstantSDNode> (Hint)->getZExtValue()) > 1)
16402 llvm_unreachable("Wrong prefetch hint in intrinsic: should be 0 or 1");
16403 unsigned Opcode = (HintVal ? IntrData->Opc1 : IntrData->Opc0);
16404 SDValue Chain = Op.getOperand(0);
16405 SDValue Mask = Op.getOperand(2);
16406 SDValue Index = Op.getOperand(3);
16407 SDValue Base = Op.getOperand(4);
16408 SDValue Scale = Op.getOperand(5);
16409 return getPrefetchNode(Opcode, Op, DAG, Mask, Base, Index, Scale, Chain);
16411 // Read Time Stamp Counter (RDTSC) and Processor ID (RDTSCP).
16413 SmallVector<SDValue, 2> Results;
16414 getReadTimeStampCounter(Op.getNode(), dl, IntrData->Opc0, DAG, Subtarget, Results);
16415 return DAG.getMergeValues(Results, dl);
16417 // Read Performance Monitoring Counters.
16419 SmallVector<SDValue, 2> Results;
16420 getReadPerformanceCounter(Op.getNode(), dl, DAG, Subtarget, Results);
16421 return DAG.getMergeValues(Results, dl);
16423 // XTEST intrinsics.
16425 SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Other);
16426 SDValue InTrans = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(0));
16427 SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
16428 DAG.getConstant(X86::COND_NE, MVT::i8),
16430 SDValue Ret = DAG.getNode(ISD::ZERO_EXTEND, dl, Op->getValueType(0), SetCC);
16431 return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(),
16432 Ret, SDValue(InTrans.getNode(), 1));
16436 SmallVector<SDValue, 2> Results;
16437 SDVTList CFVTs = DAG.getVTList(Op->getValueType(0), MVT::Other);
16438 SDVTList VTs = DAG.getVTList(Op.getOperand(3)->getValueType(0), MVT::Other);
16439 SDValue GenCF = DAG.getNode(X86ISD::ADD, dl, CFVTs, Op.getOperand(2),
16440 DAG.getConstant(-1, MVT::i8));
16441 SDValue Res = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(3),
16442 Op.getOperand(4), GenCF.getValue(1));
16443 SDValue Store = DAG.getStore(Op.getOperand(0), dl, Res.getValue(0),
16444 Op.getOperand(5), MachinePointerInfo(),
16446 SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
16447 DAG.getConstant(X86::COND_B, MVT::i8),
16449 Results.push_back(SetCC);
16450 Results.push_back(Store);
16451 return DAG.getMergeValues(Results, dl);
16456 SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
16457 SelectionDAG &DAG) const {
16458 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
16459 MFI->setReturnAddressIsTaken(true);
16461 if (verifyReturnAddressArgumentIsConstant(Op, DAG))
16464 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
16466 EVT PtrVT = getPointerTy();
16469 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
16470 const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo *>(
16471 DAG.getSubtarget().getRegisterInfo());
16472 SDValue Offset = DAG.getConstant(RegInfo->getSlotSize(), PtrVT);
16473 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
16474 DAG.getNode(ISD::ADD, dl, PtrVT,
16475 FrameAddr, Offset),
16476 MachinePointerInfo(), false, false, false, 0);
16479 // Just load the return address.
16480 SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
16481 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
16482 RetAddrFI, MachinePointerInfo(), false, false, false, 0);
16485 SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
16486 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
16487 MFI->setFrameAddressIsTaken(true);
16489 EVT VT = Op.getValueType();
16490 SDLoc dl(Op); // FIXME probably not meaningful
16491 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
16492 const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo *>(
16493 DAG.getSubtarget().getRegisterInfo());
16494 unsigned FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction());
16495 assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
16496 (FrameReg == X86::EBP && VT == MVT::i32)) &&
16497 "Invalid Frame Register!");
16498 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
16500 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
16501 MachinePointerInfo(),
16502 false, false, false, 0);
16506 // FIXME? Maybe this could be a TableGen attribute on some registers and
16507 // this table could be generated automatically from RegInfo.
16508 unsigned X86TargetLowering::getRegisterByName(const char* RegName,
16510 unsigned Reg = StringSwitch<unsigned>(RegName)
16511 .Case("esp", X86::ESP)
16512 .Case("rsp", X86::RSP)
16516 report_fatal_error("Invalid register name global variable");
16519 SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
16520 SelectionDAG &DAG) const {
16521 const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo *>(
16522 DAG.getSubtarget().getRegisterInfo());
16523 return DAG.getIntPtrConstant(2 * RegInfo->getSlotSize());
16526 SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
16527 SDValue Chain = Op.getOperand(0);
16528 SDValue Offset = Op.getOperand(1);
16529 SDValue Handler = Op.getOperand(2);
16532 EVT PtrVT = getPointerTy();
16533 const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo *>(
16534 DAG.getSubtarget().getRegisterInfo());
16535 unsigned FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction());
16536 assert(((FrameReg == X86::RBP && PtrVT == MVT::i64) ||
16537 (FrameReg == X86::EBP && PtrVT == MVT::i32)) &&
16538 "Invalid Frame Register!");
16539 SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, PtrVT);
16540 unsigned StoreAddrReg = (PtrVT == MVT::i64) ? X86::RCX : X86::ECX;
16542 SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, Frame,
16543 DAG.getIntPtrConstant(RegInfo->getSlotSize()));
16544 StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, StoreAddr, Offset);
16545 Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
16547 Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
16549 return DAG.getNode(X86ISD::EH_RETURN, dl, MVT::Other, Chain,
16550 DAG.getRegister(StoreAddrReg, PtrVT));
16553 SDValue X86TargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
16554 SelectionDAG &DAG) const {
16556 return DAG.getNode(X86ISD::EH_SJLJ_SETJMP, DL,
16557 DAG.getVTList(MVT::i32, MVT::Other),
16558 Op.getOperand(0), Op.getOperand(1));
16561 SDValue X86TargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
16562 SelectionDAG &DAG) const {
16564 return DAG.getNode(X86ISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
16565 Op.getOperand(0), Op.getOperand(1));
16568 static SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
16569 return Op.getOperand(0);
16572 SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
16573 SelectionDAG &DAG) const {
16574 SDValue Root = Op.getOperand(0);
16575 SDValue Trmp = Op.getOperand(1); // trampoline
16576 SDValue FPtr = Op.getOperand(2); // nested function
16577 SDValue Nest = Op.getOperand(3); // 'nest' parameter value
16580 const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
16581 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
16583 if (Subtarget->is64Bit()) {
16584 SDValue OutChains[6];
16586 // Large code-model.
16587 const unsigned char JMP64r = 0xFF; // 64-bit jmp through register opcode.
16588 const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
16590 const unsigned char N86R10 = TRI->getEncodingValue(X86::R10) & 0x7;
16591 const unsigned char N86R11 = TRI->getEncodingValue(X86::R11) & 0x7;
16593 const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
16595 // Load the pointer to the nested function into R11.
16596 unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
16597 SDValue Addr = Trmp;
16598 OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
16599 Addr, MachinePointerInfo(TrmpAddr),
16602 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
16603 DAG.getConstant(2, MVT::i64));
16604 OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
16605 MachinePointerInfo(TrmpAddr, 2),
16608 // Load the 'nest' parameter value into R10.
16609 // R10 is specified in X86CallingConv.td
16610 OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
16611 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
16612 DAG.getConstant(10, MVT::i64));
16613 OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
16614 Addr, MachinePointerInfo(TrmpAddr, 10),
16617 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
16618 DAG.getConstant(12, MVT::i64));
16619 OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
16620 MachinePointerInfo(TrmpAddr, 12),
16623 // Jump to the nested function.
16624 OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
16625 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
16626 DAG.getConstant(20, MVT::i64));
16627 OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
16628 Addr, MachinePointerInfo(TrmpAddr, 20),
16631 unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
16632 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
16633 DAG.getConstant(22, MVT::i64));
16634 OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
16635 MachinePointerInfo(TrmpAddr, 22),
16638 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
16640 const Function *Func =
16641 cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
16642 CallingConv::ID CC = Func->getCallingConv();
16647 llvm_unreachable("Unsupported calling convention");
16648 case CallingConv::C:
16649 case CallingConv::X86_StdCall: {
16650 // Pass 'nest' parameter in ECX.
16651 // Must be kept in sync with X86CallingConv.td
16652 NestReg = X86::ECX;
16654 // Check that ECX wasn't needed by an 'inreg' parameter.
16655 FunctionType *FTy = Func->getFunctionType();
16656 const AttributeSet &Attrs = Func->getAttributes();
16658 if (!Attrs.isEmpty() && !Func->isVarArg()) {
16659 unsigned InRegCount = 0;
16662 for (FunctionType::param_iterator I = FTy->param_begin(),
16663 E = FTy->param_end(); I != E; ++I, ++Idx)
16664 if (Attrs.hasAttribute(Idx, Attribute::InReg))
16665 // FIXME: should only count parameters that are lowered to integers.
16666 InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
16668 if (InRegCount > 2) {
16669 report_fatal_error("Nest register in use - reduce number of inreg"
16675 case CallingConv::X86_FastCall:
16676 case CallingConv::X86_ThisCall:
16677 case CallingConv::Fast:
16678 // Pass 'nest' parameter in EAX.
16679 // Must be kept in sync with X86CallingConv.td
16680 NestReg = X86::EAX;
16684 SDValue OutChains[4];
16685 SDValue Addr, Disp;
16687 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
16688 DAG.getConstant(10, MVT::i32));
16689 Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
16691 // This is storing the opcode for MOV32ri.
16692 const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
16693 const unsigned char N86Reg = TRI->getEncodingValue(NestReg) & 0x7;
16694 OutChains[0] = DAG.getStore(Root, dl,
16695 DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
16696 Trmp, MachinePointerInfo(TrmpAddr),
16699 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
16700 DAG.getConstant(1, MVT::i32));
16701 OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
16702 MachinePointerInfo(TrmpAddr, 1),
16705 const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
16706 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
16707 DAG.getConstant(5, MVT::i32));
16708 OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
16709 MachinePointerInfo(TrmpAddr, 5),
16712 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
16713 DAG.getConstant(6, MVT::i32));
16714 OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
16715 MachinePointerInfo(TrmpAddr, 6),
16718 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
16722 SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
16723 SelectionDAG &DAG) const {
16725 The rounding mode is in bits 11:10 of FPSR, and has the following
16727 00 Round to nearest
16732 FLT_ROUNDS, on the other hand, expects the following:
16739 To perform the conversion, we do:
16740 (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
16743 MachineFunction &MF = DAG.getMachineFunction();
16744 const TargetMachine &TM = MF.getTarget();
16745 const TargetFrameLowering &TFI = *TM.getSubtargetImpl()->getFrameLowering();
16746 unsigned StackAlignment = TFI.getStackAlignment();
16747 MVT VT = Op.getSimpleValueType();
16750 // Save FP Control Word to stack slot
16751 int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
16752 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
16754 MachineMemOperand *MMO =
16755 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
16756 MachineMemOperand::MOStore, 2, 2);
16758 SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
16759 SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
16760 DAG.getVTList(MVT::Other),
16761 Ops, MVT::i16, MMO);
16763 // Load FP Control Word from stack slot
16764 SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
16765 MachinePointerInfo(), false, false, false, 0);
16767 // Transform as necessary
16769 DAG.getNode(ISD::SRL, DL, MVT::i16,
16770 DAG.getNode(ISD::AND, DL, MVT::i16,
16771 CWD, DAG.getConstant(0x800, MVT::i16)),
16772 DAG.getConstant(11, MVT::i8));
16774 DAG.getNode(ISD::SRL, DL, MVT::i16,
16775 DAG.getNode(ISD::AND, DL, MVT::i16,
16776 CWD, DAG.getConstant(0x400, MVT::i16)),
16777 DAG.getConstant(9, MVT::i8));
16780 DAG.getNode(ISD::AND, DL, MVT::i16,
16781 DAG.getNode(ISD::ADD, DL, MVT::i16,
16782 DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
16783 DAG.getConstant(1, MVT::i16)),
16784 DAG.getConstant(3, MVT::i16));
16786 return DAG.getNode((VT.getSizeInBits() < 16 ?
16787 ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
16790 static SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
16791 MVT VT = Op.getSimpleValueType();
16793 unsigned NumBits = VT.getSizeInBits();
16796 Op = Op.getOperand(0);
16797 if (VT == MVT::i8) {
16798 // Zero extend to i32 since there is not an i8 bsr.
16800 Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
16803 // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
16804 SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
16805 Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
16807 // If src is zero (i.e. bsr sets ZF), returns NumBits.
16810 DAG.getConstant(NumBits+NumBits-1, OpVT),
16811 DAG.getConstant(X86::COND_E, MVT::i8),
16814 Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops);
16816 // Finally xor with NumBits-1.
16817 Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
16820 Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
16824 static SDValue LowerCTLZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
16825 MVT VT = Op.getSimpleValueType();
16827 unsigned NumBits = VT.getSizeInBits();
16830 Op = Op.getOperand(0);
16831 if (VT == MVT::i8) {
16832 // Zero extend to i32 since there is not an i8 bsr.
16834 Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
16837 // Issue a bsr (scan bits in reverse).
16838 SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
16839 Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
16841 // And xor with NumBits-1.
16842 Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
16845 Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
16849 static SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
16850 MVT VT = Op.getSimpleValueType();
16851 unsigned NumBits = VT.getSizeInBits();
16853 Op = Op.getOperand(0);
16855 // Issue a bsf (scan bits forward) which also sets EFLAGS.
16856 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
16857 Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
16859 // If src is zero (i.e. bsf sets ZF), returns NumBits.
16862 DAG.getConstant(NumBits, VT),
16863 DAG.getConstant(X86::COND_E, MVT::i8),
16866 return DAG.getNode(X86ISD::CMOV, dl, VT, Ops);
16869 // Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
16870 // ones, and then concatenate the result back.
16871 static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
16872 MVT VT = Op.getSimpleValueType();
16874 assert(VT.is256BitVector() && VT.isInteger() &&
16875 "Unsupported value type for operation");
16877 unsigned NumElems = VT.getVectorNumElements();
16880 // Extract the LHS vectors
16881 SDValue LHS = Op.getOperand(0);
16882 SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
16883 SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
16885 // Extract the RHS vectors
16886 SDValue RHS = Op.getOperand(1);
16887 SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
16888 SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
16890 MVT EltVT = VT.getVectorElementType();
16891 MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
16893 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
16894 DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
16895 DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
16898 static SDValue LowerADD(SDValue Op, SelectionDAG &DAG) {
16899 assert(Op.getSimpleValueType().is256BitVector() &&
16900 Op.getSimpleValueType().isInteger() &&
16901 "Only handle AVX 256-bit vector integer operation");
16902 return Lower256IntArith(Op, DAG);
16905 static SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) {
16906 assert(Op.getSimpleValueType().is256BitVector() &&
16907 Op.getSimpleValueType().isInteger() &&
16908 "Only handle AVX 256-bit vector integer operation");
16909 return Lower256IntArith(Op, DAG);
16912 static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget,
16913 SelectionDAG &DAG) {
16915 MVT VT = Op.getSimpleValueType();
16917 // Decompose 256-bit ops into smaller 128-bit ops.
16918 if (VT.is256BitVector() && !Subtarget->hasInt256())
16919 return Lower256IntArith(Op, DAG);
16921 SDValue A = Op.getOperand(0);
16922 SDValue B = Op.getOperand(1);
16924 // Lower v4i32 mul as 2x shuffle, 2x pmuludq, 2x shuffle.
16925 if (VT == MVT::v4i32) {
16926 assert(Subtarget->hasSSE2() && !Subtarget->hasSSE41() &&
16927 "Should not custom lower when pmuldq is available!");
16929 // Extract the odd parts.
16930 static const int UnpackMask[] = { 1, -1, 3, -1 };
16931 SDValue Aodds = DAG.getVectorShuffle(VT, dl, A, A, UnpackMask);
16932 SDValue Bodds = DAG.getVectorShuffle(VT, dl, B, B, UnpackMask);
16934 // Multiply the even parts.
16935 SDValue Evens = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, A, B);
16936 // Now multiply odd parts.
16937 SDValue Odds = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, Aodds, Bodds);
16939 Evens = DAG.getNode(ISD::BITCAST, dl, VT, Evens);
16940 Odds = DAG.getNode(ISD::BITCAST, dl, VT, Odds);
16942 // Merge the two vectors back together with a shuffle. This expands into 2
16944 static const int ShufMask[] = { 0, 4, 2, 6 };
16945 return DAG.getVectorShuffle(VT, dl, Evens, Odds, ShufMask);
16948 assert((VT == MVT::v2i64 || VT == MVT::v4i64 || VT == MVT::v8i64) &&
16949 "Only know how to lower V2I64/V4I64/V8I64 multiply");
16951 // Ahi = psrlqi(a, 32);
16952 // Bhi = psrlqi(b, 32);
16954 // AloBlo = pmuludq(a, b);
16955 // AloBhi = pmuludq(a, Bhi);
16956 // AhiBlo = pmuludq(Ahi, b);
16958 // AloBhi = psllqi(AloBhi, 32);
16959 // AhiBlo = psllqi(AhiBlo, 32);
16960 // return AloBlo + AloBhi + AhiBlo;
16962 SDValue Ahi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, A, 32, DAG);
16963 SDValue Bhi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, B, 32, DAG);
16965 // Bit cast to 32-bit vectors for MULUDQ
16966 EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 :
16967 (VT == MVT::v4i64) ? MVT::v8i32 : MVT::v16i32;
16968 A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
16969 B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
16970 Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
16971 Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
16973 SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
16974 SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
16975 SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
16977 AloBhi = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, AloBhi, 32, DAG);
16978 AhiBlo = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, AhiBlo, 32, DAG);
16980 SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
16981 return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
16984 SDValue X86TargetLowering::LowerWin64_i128OP(SDValue Op, SelectionDAG &DAG) const {
16985 assert(Subtarget->isTargetWin64() && "Unexpected target");
16986 EVT VT = Op.getValueType();
16987 assert(VT.isInteger() && VT.getSizeInBits() == 128 &&
16988 "Unexpected return type for lowering");
16992 switch (Op->getOpcode()) {
16993 default: llvm_unreachable("Unexpected request for libcall!");
16994 case ISD::SDIV: isSigned = true; LC = RTLIB::SDIV_I128; break;
16995 case ISD::UDIV: isSigned = false; LC = RTLIB::UDIV_I128; break;
16996 case ISD::SREM: isSigned = true; LC = RTLIB::SREM_I128; break;
16997 case ISD::UREM: isSigned = false; LC = RTLIB::UREM_I128; break;
16998 case ISD::SDIVREM: isSigned = true; LC = RTLIB::SDIVREM_I128; break;
16999 case ISD::UDIVREM: isSigned = false; LC = RTLIB::UDIVREM_I128; break;
17003 SDValue InChain = DAG.getEntryNode();
17005 TargetLowering::ArgListTy Args;
17006 TargetLowering::ArgListEntry Entry;
17007 for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) {
17008 EVT ArgVT = Op->getOperand(i).getValueType();
17009 assert(ArgVT.isInteger() && ArgVT.getSizeInBits() == 128 &&
17010 "Unexpected argument type for lowering");
17011 SDValue StackPtr = DAG.CreateStackTemporary(ArgVT, 16);
17012 Entry.Node = StackPtr;
17013 InChain = DAG.getStore(InChain, dl, Op->getOperand(i), StackPtr, MachinePointerInfo(),
17015 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
17016 Entry.Ty = PointerType::get(ArgTy,0);
17017 Entry.isSExt = false;
17018 Entry.isZExt = false;
17019 Args.push_back(Entry);
17022 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
17025 TargetLowering::CallLoweringInfo CLI(DAG);
17026 CLI.setDebugLoc(dl).setChain(InChain)
17027 .setCallee(getLibcallCallingConv(LC),
17028 static_cast<EVT>(MVT::v2i64).getTypeForEVT(*DAG.getContext()),
17029 Callee, std::move(Args), 0)
17030 .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
17032 std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
17033 return DAG.getNode(ISD::BITCAST, dl, VT, CallInfo.first);
17036 static SDValue LowerMUL_LOHI(SDValue Op, const X86Subtarget *Subtarget,
17037 SelectionDAG &DAG) {
17038 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
17039 EVT VT = Op0.getValueType();
17042 assert((VT == MVT::v4i32 && Subtarget->hasSSE2()) ||
17043 (VT == MVT::v8i32 && Subtarget->hasInt256()));
17045 // PMULxD operations multiply each even value (starting at 0) of LHS with
17046 // the related value of RHS and produce a widen result.
17047 // E.g., PMULUDQ <4 x i32> <a|b|c|d>, <4 x i32> <e|f|g|h>
17048 // => <2 x i64> <ae|cg>
17050 // In other word, to have all the results, we need to perform two PMULxD:
17051 // 1. one with the even values.
17052 // 2. one with the odd values.
17053 // To achieve #2, with need to place the odd values at an even position.
17055 // Place the odd value at an even position (basically, shift all values 1
17056 // step to the left):
17057 const int Mask[] = {1, -1, 3, -1, 5, -1, 7, -1};
17058 // <a|b|c|d> => <b|undef|d|undef>
17059 SDValue Odd0 = DAG.getVectorShuffle(VT, dl, Op0, Op0, Mask);
17060 // <e|f|g|h> => <f|undef|h|undef>
17061 SDValue Odd1 = DAG.getVectorShuffle(VT, dl, Op1, Op1, Mask);
17063 // Emit two multiplies, one for the lower 2 ints and one for the higher 2
17065 MVT MulVT = VT == MVT::v4i32 ? MVT::v2i64 : MVT::v4i64;
17066 bool IsSigned = Op->getOpcode() == ISD::SMUL_LOHI;
17068 (!IsSigned || !Subtarget->hasSSE41()) ? X86ISD::PMULUDQ : X86ISD::PMULDQ;
17069 // PMULUDQ <4 x i32> <a|b|c|d>, <4 x i32> <e|f|g|h>
17070 // => <2 x i64> <ae|cg>
17071 SDValue Mul1 = DAG.getNode(ISD::BITCAST, dl, VT,
17072 DAG.getNode(Opcode, dl, MulVT, Op0, Op1));
17073 // PMULUDQ <4 x i32> <b|undef|d|undef>, <4 x i32> <f|undef|h|undef>
17074 // => <2 x i64> <bf|dh>
17075 SDValue Mul2 = DAG.getNode(ISD::BITCAST, dl, VT,
17076 DAG.getNode(Opcode, dl, MulVT, Odd0, Odd1));
17078 // Shuffle it back into the right order.
17079 SDValue Highs, Lows;
17080 if (VT == MVT::v8i32) {
17081 const int HighMask[] = {1, 9, 3, 11, 5, 13, 7, 15};
17082 Highs = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, HighMask);
17083 const int LowMask[] = {0, 8, 2, 10, 4, 12, 6, 14};
17084 Lows = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, LowMask);
17086 const int HighMask[] = {1, 5, 3, 7};
17087 Highs = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, HighMask);
17088 const int LowMask[] = {0, 4, 2, 6};
17089 Lows = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, LowMask);
17092 // If we have a signed multiply but no PMULDQ fix up the high parts of a
17093 // unsigned multiply.
17094 if (IsSigned && !Subtarget->hasSSE41()) {
17096 DAG.getConstant(31, DAG.getTargetLoweringInfo().getShiftAmountTy(VT));
17097 SDValue T1 = DAG.getNode(ISD::AND, dl, VT,
17098 DAG.getNode(ISD::SRA, dl, VT, Op0, ShAmt), Op1);
17099 SDValue T2 = DAG.getNode(ISD::AND, dl, VT,
17100 DAG.getNode(ISD::SRA, dl, VT, Op1, ShAmt), Op0);
17102 SDValue Fixup = DAG.getNode(ISD::ADD, dl, VT, T1, T2);
17103 Highs = DAG.getNode(ISD::SUB, dl, VT, Highs, Fixup);
17106 // The first result of MUL_LOHI is actually the low value, followed by the
17108 SDValue Ops[] = {Lows, Highs};
17109 return DAG.getMergeValues(Ops, dl);
17112 static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG,
17113 const X86Subtarget *Subtarget) {
17114 MVT VT = Op.getSimpleValueType();
17116 SDValue R = Op.getOperand(0);
17117 SDValue Amt = Op.getOperand(1);
17119 // Optimize shl/srl/sra with constant shift amount.
17120 if (auto *BVAmt = dyn_cast<BuildVectorSDNode>(Amt)) {
17121 if (auto *ShiftConst = BVAmt->getConstantSplatNode()) {
17122 uint64_t ShiftAmt = ShiftConst->getZExtValue();
17124 if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
17125 (Subtarget->hasInt256() &&
17126 (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16)) ||
17127 (Subtarget->hasAVX512() &&
17128 (VT == MVT::v8i64 || VT == MVT::v16i32))) {
17129 if (Op.getOpcode() == ISD::SHL)
17130 return getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, R, ShiftAmt,
17132 if (Op.getOpcode() == ISD::SRL)
17133 return getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, R, ShiftAmt,
17135 if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
17136 return getTargetVShiftByConstNode(X86ISD::VSRAI, dl, VT, R, ShiftAmt,
17140 if (VT == MVT::v16i8) {
17141 if (Op.getOpcode() == ISD::SHL) {
17142 // Make a large shift.
17143 SDValue SHL = getTargetVShiftByConstNode(X86ISD::VSHLI, dl,
17144 MVT::v8i16, R, ShiftAmt,
17146 SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
17147 // Zero out the rightmost bits.
17148 SmallVector<SDValue, 16> V(16,
17149 DAG.getConstant(uint8_t(-1U << ShiftAmt),
17151 return DAG.getNode(ISD::AND, dl, VT, SHL,
17152 DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V));
17154 if (Op.getOpcode() == ISD::SRL) {
17155 // Make a large shift.
17156 SDValue SRL = getTargetVShiftByConstNode(X86ISD::VSRLI, dl,
17157 MVT::v8i16, R, ShiftAmt,
17159 SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
17160 // Zero out the leftmost bits.
17161 SmallVector<SDValue, 16> V(16,
17162 DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
17164 return DAG.getNode(ISD::AND, dl, VT, SRL,
17165 DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V));
17167 if (Op.getOpcode() == ISD::SRA) {
17168 if (ShiftAmt == 7) {
17169 // R s>> 7 === R s< 0
17170 SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
17171 return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
17174 // R s>> a === ((R u>> a) ^ m) - m
17175 SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
17176 SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
17178 SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V);
17179 Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
17180 Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
17183 llvm_unreachable("Unknown shift opcode.");
17186 if (Subtarget->hasInt256() && VT == MVT::v32i8) {
17187 if (Op.getOpcode() == ISD::SHL) {
17188 // Make a large shift.
17189 SDValue SHL = getTargetVShiftByConstNode(X86ISD::VSHLI, dl,
17190 MVT::v16i16, R, ShiftAmt,
17192 SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
17193 // Zero out the rightmost bits.
17194 SmallVector<SDValue, 32> V(32,
17195 DAG.getConstant(uint8_t(-1U << ShiftAmt),
17197 return DAG.getNode(ISD::AND, dl, VT, SHL,
17198 DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V));
17200 if (Op.getOpcode() == ISD::SRL) {
17201 // Make a large shift.
17202 SDValue SRL = getTargetVShiftByConstNode(X86ISD::VSRLI, dl,
17203 MVT::v16i16, R, ShiftAmt,
17205 SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
17206 // Zero out the leftmost bits.
17207 SmallVector<SDValue, 32> V(32,
17208 DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
17210 return DAG.getNode(ISD::AND, dl, VT, SRL,
17211 DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V));
17213 if (Op.getOpcode() == ISD::SRA) {
17214 if (ShiftAmt == 7) {
17215 // R s>> 7 === R s< 0
17216 SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
17217 return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
17220 // R s>> a === ((R u>> a) ^ m) - m
17221 SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
17222 SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
17224 SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V);
17225 Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
17226 Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
17229 llvm_unreachable("Unknown shift opcode.");
17234 // Special case in 32-bit mode, where i64 is expanded into high and low parts.
17235 if (!Subtarget->is64Bit() &&
17236 (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64)) &&
17237 Amt.getOpcode() == ISD::BITCAST &&
17238 Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
17239 Amt = Amt.getOperand(0);
17240 unsigned Ratio = Amt.getSimpleValueType().getVectorNumElements() /
17241 VT.getVectorNumElements();
17242 unsigned RatioInLog2 = Log2_32_Ceil(Ratio);
17243 uint64_t ShiftAmt = 0;
17244 for (unsigned i = 0; i != Ratio; ++i) {
17245 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Amt.getOperand(i));
17249 ShiftAmt |= C->getZExtValue() << (i * (1 << (6 - RatioInLog2)));
17251 // Check remaining shift amounts.
17252 for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) {
17253 uint64_t ShAmt = 0;
17254 for (unsigned j = 0; j != Ratio; ++j) {
17255 ConstantSDNode *C =
17256 dyn_cast<ConstantSDNode>(Amt.getOperand(i + j));
17260 ShAmt |= C->getZExtValue() << (j * (1 << (6 - RatioInLog2)));
17262 if (ShAmt != ShiftAmt)
17265 switch (Op.getOpcode()) {
17267 llvm_unreachable("Unknown shift opcode!");
17269 return getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, R, ShiftAmt,
17272 return getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, R, ShiftAmt,
17275 return getTargetVShiftByConstNode(X86ISD::VSRAI, dl, VT, R, ShiftAmt,
17283 static SDValue LowerScalarVariableShift(SDValue Op, SelectionDAG &DAG,
17284 const X86Subtarget* Subtarget) {
17285 MVT VT = Op.getSimpleValueType();
17287 SDValue R = Op.getOperand(0);
17288 SDValue Amt = Op.getOperand(1);
17290 if ((VT == MVT::v2i64 && Op.getOpcode() != ISD::SRA) ||
17291 VT == MVT::v4i32 || VT == MVT::v8i16 ||
17292 (Subtarget->hasInt256() &&
17293 ((VT == MVT::v4i64 && Op.getOpcode() != ISD::SRA) ||
17294 VT == MVT::v8i32 || VT == MVT::v16i16)) ||
17295 (Subtarget->hasAVX512() && (VT == MVT::v8i64 || VT == MVT::v16i32))) {
17297 EVT EltVT = VT.getVectorElementType();
17299 if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
17300 unsigned NumElts = VT.getVectorNumElements();
17302 for (i = 0; i != NumElts; ++i) {
17303 if (Amt.getOperand(i).getOpcode() == ISD::UNDEF)
17307 for (j = i; j != NumElts; ++j) {
17308 SDValue Arg = Amt.getOperand(j);
17309 if (Arg.getOpcode() == ISD::UNDEF) continue;
17310 if (Arg != Amt.getOperand(i))
17313 if (i != NumElts && j == NumElts)
17314 BaseShAmt = Amt.getOperand(i);
17316 if (Amt.getOpcode() == ISD::EXTRACT_SUBVECTOR)
17317 Amt = Amt.getOperand(0);
17318 if (Amt.getOpcode() == ISD::VECTOR_SHUFFLE &&
17319 cast<ShuffleVectorSDNode>(Amt)->isSplat()) {
17320 SDValue InVec = Amt.getOperand(0);
17321 if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
17322 unsigned NumElts = InVec.getValueType().getVectorNumElements();
17324 for (; i != NumElts; ++i) {
17325 SDValue Arg = InVec.getOperand(i);
17326 if (Arg.getOpcode() == ISD::UNDEF) continue;
17330 } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
17331 if (ConstantSDNode *C =
17332 dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
17333 unsigned SplatIdx =
17334 cast<ShuffleVectorSDNode>(Amt)->getSplatIndex();
17335 if (C->getZExtValue() == SplatIdx)
17336 BaseShAmt = InVec.getOperand(1);
17339 if (!BaseShAmt.getNode())
17340 BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Amt,
17341 DAG.getIntPtrConstant(0));
17345 if (BaseShAmt.getNode()) {
17346 if (EltVT.bitsGT(MVT::i32))
17347 BaseShAmt = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BaseShAmt);
17348 else if (EltVT.bitsLT(MVT::i32))
17349 BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, BaseShAmt);
17351 switch (Op.getOpcode()) {
17353 llvm_unreachable("Unknown shift opcode!");
17355 switch (VT.SimpleTy) {
17356 default: return SDValue();
17365 return getTargetVShiftNode(X86ISD::VSHLI, dl, VT, R, BaseShAmt, DAG);
17368 switch (VT.SimpleTy) {
17369 default: return SDValue();
17376 return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, R, BaseShAmt, DAG);
17379 switch (VT.SimpleTy) {
17380 default: return SDValue();
17389 return getTargetVShiftNode(X86ISD::VSRLI, dl, VT, R, BaseShAmt, DAG);
17395 // Special case in 32-bit mode, where i64 is expanded into high and low parts.
17396 if (!Subtarget->is64Bit() &&
17397 (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64) ||
17398 (Subtarget->hasAVX512() && VT == MVT::v8i64)) &&
17399 Amt.getOpcode() == ISD::BITCAST &&
17400 Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
17401 Amt = Amt.getOperand(0);
17402 unsigned Ratio = Amt.getSimpleValueType().getVectorNumElements() /
17403 VT.getVectorNumElements();
17404 std::vector<SDValue> Vals(Ratio);
17405 for (unsigned i = 0; i != Ratio; ++i)
17406 Vals[i] = Amt.getOperand(i);
17407 for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) {
17408 for (unsigned j = 0; j != Ratio; ++j)
17409 if (Vals[j] != Amt.getOperand(i + j))
17412 switch (Op.getOpcode()) {
17414 llvm_unreachable("Unknown shift opcode!");
17416 return DAG.getNode(X86ISD::VSHL, dl, VT, R, Op.getOperand(1));
17418 return DAG.getNode(X86ISD::VSRL, dl, VT, R, Op.getOperand(1));
17420 return DAG.getNode(X86ISD::VSRA, dl, VT, R, Op.getOperand(1));
17427 static SDValue LowerShift(SDValue Op, const X86Subtarget* Subtarget,
17428 SelectionDAG &DAG) {
17429 MVT VT = Op.getSimpleValueType();
17431 SDValue R = Op.getOperand(0);
17432 SDValue Amt = Op.getOperand(1);
17435 assert(VT.isVector() && "Custom lowering only for vector shifts!");
17436 assert(Subtarget->hasSSE2() && "Only custom lower when we have SSE2!");
17438 V = LowerScalarImmediateShift(Op, DAG, Subtarget);
17442 V = LowerScalarVariableShift(Op, DAG, Subtarget);
17446 if (Subtarget->hasAVX512() && (VT == MVT::v16i32 || VT == MVT::v8i64))
17448 // AVX2 has VPSLLV/VPSRAV/VPSRLV.
17449 if (Subtarget->hasInt256()) {
17450 if (Op.getOpcode() == ISD::SRL &&
17451 (VT == MVT::v2i64 || VT == MVT::v4i32 ||
17452 VT == MVT::v4i64 || VT == MVT::v8i32))
17454 if (Op.getOpcode() == ISD::SHL &&
17455 (VT == MVT::v2i64 || VT == MVT::v4i32 ||
17456 VT == MVT::v4i64 || VT == MVT::v8i32))
17458 if (Op.getOpcode() == ISD::SRA && (VT == MVT::v4i32 || VT == MVT::v8i32))
17462 // If possible, lower this packed shift into a vector multiply instead of
17463 // expanding it into a sequence of scalar shifts.
17464 // Do this only if the vector shift count is a constant build_vector.
17465 if (Op.getOpcode() == ISD::SHL &&
17466 (VT == MVT::v8i16 || VT == MVT::v4i32 ||
17467 (Subtarget->hasInt256() && VT == MVT::v16i16)) &&
17468 ISD::isBuildVectorOfConstantSDNodes(Amt.getNode())) {
17469 SmallVector<SDValue, 8> Elts;
17470 EVT SVT = VT.getScalarType();
17471 unsigned SVTBits = SVT.getSizeInBits();
17472 const APInt &One = APInt(SVTBits, 1);
17473 unsigned NumElems = VT.getVectorNumElements();
17475 for (unsigned i=0; i !=NumElems; ++i) {
17476 SDValue Op = Amt->getOperand(i);
17477 if (Op->getOpcode() == ISD::UNDEF) {
17478 Elts.push_back(Op);
17482 ConstantSDNode *ND = cast<ConstantSDNode>(Op);
17483 const APInt &C = APInt(SVTBits, ND->getAPIntValue().getZExtValue());
17484 uint64_t ShAmt = C.getZExtValue();
17485 if (ShAmt >= SVTBits) {
17486 Elts.push_back(DAG.getUNDEF(SVT));
17489 Elts.push_back(DAG.getConstant(One.shl(ShAmt), SVT));
17491 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Elts);
17492 return DAG.getNode(ISD::MUL, dl, VT, R, BV);
17495 // Lower SHL with variable shift amount.
17496 if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
17497 Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(23, VT));
17499 Op = DAG.getNode(ISD::ADD, dl, VT, Op, DAG.getConstant(0x3f800000U, VT));
17500 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
17501 Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
17502 return DAG.getNode(ISD::MUL, dl, VT, Op, R);
17505 // If possible, lower this shift as a sequence of two shifts by
17506 // constant plus a MOVSS/MOVSD instead of scalarizing it.
17508 // (v4i32 (srl A, (build_vector < X, Y, Y, Y>)))
17510 // Could be rewritten as:
17511 // (v4i32 (MOVSS (srl A, <Y,Y,Y,Y>), (srl A, <X,X,X,X>)))
17513 // The advantage is that the two shifts from the example would be
17514 // lowered as X86ISD::VSRLI nodes. This would be cheaper than scalarizing
17515 // the vector shift into four scalar shifts plus four pairs of vector
17517 if ((VT == MVT::v8i16 || VT == MVT::v4i32) &&
17518 ISD::isBuildVectorOfConstantSDNodes(Amt.getNode())) {
17519 unsigned TargetOpcode = X86ISD::MOVSS;
17520 bool CanBeSimplified;
17521 // The splat value for the first packed shift (the 'X' from the example).
17522 SDValue Amt1 = Amt->getOperand(0);
17523 // The splat value for the second packed shift (the 'Y' from the example).
17524 SDValue Amt2 = (VT == MVT::v4i32) ? Amt->getOperand(1) :
17525 Amt->getOperand(2);
17527 // See if it is possible to replace this node with a sequence of
17528 // two shifts followed by a MOVSS/MOVSD
17529 if (VT == MVT::v4i32) {
17530 // Check if it is legal to use a MOVSS.
17531 CanBeSimplified = Amt2 == Amt->getOperand(2) &&
17532 Amt2 == Amt->getOperand(3);
17533 if (!CanBeSimplified) {
17534 // Otherwise, check if we can still simplify this node using a MOVSD.
17535 CanBeSimplified = Amt1 == Amt->getOperand(1) &&
17536 Amt->getOperand(2) == Amt->getOperand(3);
17537 TargetOpcode = X86ISD::MOVSD;
17538 Amt2 = Amt->getOperand(2);
17541 // Do similar checks for the case where the machine value type
17543 CanBeSimplified = Amt1 == Amt->getOperand(1);
17544 for (unsigned i=3; i != 8 && CanBeSimplified; ++i)
17545 CanBeSimplified = Amt2 == Amt->getOperand(i);
17547 if (!CanBeSimplified) {
17548 TargetOpcode = X86ISD::MOVSD;
17549 CanBeSimplified = true;
17550 Amt2 = Amt->getOperand(4);
17551 for (unsigned i=0; i != 4 && CanBeSimplified; ++i)
17552 CanBeSimplified = Amt1 == Amt->getOperand(i);
17553 for (unsigned j=4; j != 8 && CanBeSimplified; ++j)
17554 CanBeSimplified = Amt2 == Amt->getOperand(j);
17558 if (CanBeSimplified && isa<ConstantSDNode>(Amt1) &&
17559 isa<ConstantSDNode>(Amt2)) {
17560 // Replace this node with two shifts followed by a MOVSS/MOVSD.
17561 EVT CastVT = MVT::v4i32;
17563 DAG.getConstant(cast<ConstantSDNode>(Amt1)->getAPIntValue(), VT);
17564 SDValue Shift1 = DAG.getNode(Op->getOpcode(), dl, VT, R, Splat1);
17566 DAG.getConstant(cast<ConstantSDNode>(Amt2)->getAPIntValue(), VT);
17567 SDValue Shift2 = DAG.getNode(Op->getOpcode(), dl, VT, R, Splat2);
17568 if (TargetOpcode == X86ISD::MOVSD)
17569 CastVT = MVT::v2i64;
17570 SDValue BitCast1 = DAG.getNode(ISD::BITCAST, dl, CastVT, Shift1);
17571 SDValue BitCast2 = DAG.getNode(ISD::BITCAST, dl, CastVT, Shift2);
17572 SDValue Result = getTargetShuffleNode(TargetOpcode, dl, CastVT, BitCast2,
17574 return DAG.getNode(ISD::BITCAST, dl, VT, Result);
17578 if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
17579 assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
17582 Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(5, VT));
17583 Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
17585 // Turn 'a' into a mask suitable for VSELECT
17586 SDValue VSelM = DAG.getConstant(0x80, VT);
17587 SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
17588 OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
17590 SDValue CM1 = DAG.getConstant(0x0f, VT);
17591 SDValue CM2 = DAG.getConstant(0x3f, VT);
17593 // r = VSELECT(r, psllw(r & (char16)15, 4), a);
17594 SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
17595 M = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, MVT::v8i16, M, 4, DAG);
17596 M = DAG.getNode(ISD::BITCAST, dl, VT, M);
17597 R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
17600 Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
17601 OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
17602 OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
17604 // r = VSELECT(r, psllw(r & (char16)63, 2), a);
17605 M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
17606 M = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, MVT::v8i16, M, 2, DAG);
17607 M = DAG.getNode(ISD::BITCAST, dl, VT, M);
17608 R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
17611 Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
17612 OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
17613 OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
17615 // return VSELECT(r, r+r, a);
17616 R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
17617 DAG.getNode(ISD::ADD, dl, VT, R, R), R);
17621 // It's worth extending once and using the v8i32 shifts for 16-bit types, but
17622 // the extra overheads to get from v16i8 to v8i32 make the existing SSE
17623 // solution better.
17624 if (Subtarget->hasInt256() && VT == MVT::v8i16) {
17625 MVT NewVT = VT == MVT::v8i16 ? MVT::v8i32 : MVT::v16i16;
17627 Op.getOpcode() == ISD::SRA ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
17628 R = DAG.getNode(ExtOpc, dl, NewVT, R);
17629 Amt = DAG.getNode(ISD::ANY_EXTEND, dl, NewVT, Amt);
17630 return DAG.getNode(ISD::TRUNCATE, dl, VT,
17631 DAG.getNode(Op.getOpcode(), dl, NewVT, R, Amt));
17634 // Decompose 256-bit shifts into smaller 128-bit shifts.
17635 if (VT.is256BitVector()) {
17636 unsigned NumElems = VT.getVectorNumElements();
17637 MVT EltVT = VT.getVectorElementType();
17638 EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
17640 // Extract the two vectors
17641 SDValue V1 = Extract128BitVector(R, 0, DAG, dl);
17642 SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl);
17644 // Recreate the shift amount vectors
17645 SDValue Amt1, Amt2;
17646 if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
17647 // Constant shift amount
17648 SmallVector<SDValue, 4> Amt1Csts;
17649 SmallVector<SDValue, 4> Amt2Csts;
17650 for (unsigned i = 0; i != NumElems/2; ++i)
17651 Amt1Csts.push_back(Amt->getOperand(i));
17652 for (unsigned i = NumElems/2; i != NumElems; ++i)
17653 Amt2Csts.push_back(Amt->getOperand(i));
17655 Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, Amt1Csts);
17656 Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, Amt2Csts);
17658 // Variable shift amount
17659 Amt1 = Extract128BitVector(Amt, 0, DAG, dl);
17660 Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl);
17663 // Issue new vector shifts for the smaller types
17664 V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
17665 V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
17667 // Concatenate the result back
17668 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
17674 static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
17675 // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
17676 // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
17677 // looks for this combo and may remove the "setcc" instruction if the "setcc"
17678 // has only one use.
17679 SDNode *N = Op.getNode();
17680 SDValue LHS = N->getOperand(0);
17681 SDValue RHS = N->getOperand(1);
17682 unsigned BaseOp = 0;
17685 switch (Op.getOpcode()) {
17686 default: llvm_unreachable("Unknown ovf instruction!");
17688 // A subtract of one will be selected as a INC. Note that INC doesn't
17689 // set CF, so we can't do this for UADDO.
17690 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
17692 BaseOp = X86ISD::INC;
17693 Cond = X86::COND_O;
17696 BaseOp = X86ISD::ADD;
17697 Cond = X86::COND_O;
17700 BaseOp = X86ISD::ADD;
17701 Cond = X86::COND_B;
17704 // A subtract of one will be selected as a DEC. Note that DEC doesn't
17705 // set CF, so we can't do this for USUBO.
17706 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
17708 BaseOp = X86ISD::DEC;
17709 Cond = X86::COND_O;
17712 BaseOp = X86ISD::SUB;
17713 Cond = X86::COND_O;
17716 BaseOp = X86ISD::SUB;
17717 Cond = X86::COND_B;
17720 BaseOp = X86ISD::SMUL;
17721 Cond = X86::COND_O;
17723 case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
17724 SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
17726 SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
17729 DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
17730 DAG.getConstant(X86::COND_O, MVT::i32),
17731 SDValue(Sum.getNode(), 2));
17733 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
17737 // Also sets EFLAGS.
17738 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
17739 SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
17742 DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
17743 DAG.getConstant(Cond, MVT::i32),
17744 SDValue(Sum.getNode(), 1));
17746 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
17749 // Sign extension of the low part of vector elements. This may be used either
17750 // when sign extend instructions are not available or if the vector element
17751 // sizes already match the sign-extended size. If the vector elements are in
17752 // their pre-extended size and sign extend instructions are available, that will
17753 // be handled by LowerSIGN_EXTEND.
17754 SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
17755 SelectionDAG &DAG) const {
17757 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
17758 MVT VT = Op.getSimpleValueType();
17760 if (!Subtarget->hasSSE2() || !VT.isVector())
17763 unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
17764 ExtraVT.getScalarType().getSizeInBits();
17766 switch (VT.SimpleTy) {
17767 default: return SDValue();
17770 if (!Subtarget->hasFp256())
17772 if (!Subtarget->hasInt256()) {
17773 // needs to be split
17774 unsigned NumElems = VT.getVectorNumElements();
17776 // Extract the LHS vectors
17777 SDValue LHS = Op.getOperand(0);
17778 SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
17779 SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
17781 MVT EltVT = VT.getVectorElementType();
17782 EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
17784 EVT ExtraEltVT = ExtraVT.getVectorElementType();
17785 unsigned ExtraNumElems = ExtraVT.getVectorNumElements();
17786 ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
17788 SDValue Extra = DAG.getValueType(ExtraVT);
17790 LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
17791 LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
17793 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);
17798 SDValue Op0 = Op.getOperand(0);
17800 // This is a sign extension of some low part of vector elements without
17801 // changing the size of the vector elements themselves:
17802 // Shift-Left + Shift-Right-Algebraic.
17803 SDValue Shl = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, Op0,
17805 return getTargetVShiftByConstNode(X86ISD::VSRAI, dl, VT, Shl, BitsDiff,
17811 /// Returns true if the operand type is exactly twice the native width, and
17812 /// the corresponding cmpxchg8b or cmpxchg16b instruction is available.
17813 /// Used to know whether to use cmpxchg8/16b when expanding atomic operations
17814 /// (otherwise we leave them alone to become __sync_fetch_and_... calls).
17815 bool X86TargetLowering::needsCmpXchgNb(const Type *MemType) const {
17816 const X86Subtarget &Subtarget =
17817 getTargetMachine().getSubtarget<X86Subtarget>();
17818 unsigned OpWidth = MemType->getPrimitiveSizeInBits();
17821 return !Subtarget.is64Bit(); // FIXME this should be Subtarget.hasCmpxchg8b
17822 else if (OpWidth == 128)
17823 return Subtarget.hasCmpxchg16b();
17828 bool X86TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
17829 return needsCmpXchgNb(SI->getValueOperand()->getType());
17832 // Note: this turns large loads into lock cmpxchg8b/16b.
17833 // FIXME: On 32 bits x86, fild/movq might be faster than lock cmpxchg8b.
17834 bool X86TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
17835 auto PTy = cast<PointerType>(LI->getPointerOperand()->getType());
17836 return needsCmpXchgNb(PTy->getElementType());
17839 bool X86TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
17840 const X86Subtarget &Subtarget =
17841 getTargetMachine().getSubtarget<X86Subtarget>();
17842 unsigned NativeWidth = Subtarget.is64Bit() ? 64 : 32;
17843 const Type *MemType = AI->getType();
17845 // If the operand is too big, we must see if cmpxchg8/16b is available
17846 // and default to library calls otherwise.
17847 if (MemType->getPrimitiveSizeInBits() > NativeWidth)
17848 return needsCmpXchgNb(MemType);
17850 AtomicRMWInst::BinOp Op = AI->getOperation();
17853 llvm_unreachable("Unknown atomic operation");
17854 case AtomicRMWInst::Xchg:
17855 case AtomicRMWInst::Add:
17856 case AtomicRMWInst::Sub:
17857 // It's better to use xadd, xsub or xchg for these in all cases.
17859 case AtomicRMWInst::Or:
17860 case AtomicRMWInst::And:
17861 case AtomicRMWInst::Xor:
17862 // If the atomicrmw's result isn't actually used, we can just add a "lock"
17863 // prefix to a normal instruction for these operations.
17864 return !AI->use_empty();
17865 case AtomicRMWInst::Nand:
17866 case AtomicRMWInst::Max:
17867 case AtomicRMWInst::Min:
17868 case AtomicRMWInst::UMax:
17869 case AtomicRMWInst::UMin:
17870 // These always require a non-trivial set of data operations on x86. We must
17871 // use a cmpxchg loop.
17876 static bool hasMFENCE(const X86Subtarget& Subtarget) {
17877 // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
17878 // no-sse2). There isn't any reason to disable it if the target processor
17880 return Subtarget.hasSSE2() || Subtarget.is64Bit();
17884 X86TargetLowering::lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const {
17885 const X86Subtarget &Subtarget =
17886 getTargetMachine().getSubtarget<X86Subtarget>();
17887 unsigned NativeWidth = Subtarget.is64Bit() ? 64 : 32;
17888 const Type *MemType = AI->getType();
17889 // Accesses larger than the native width are turned into cmpxchg/libcalls, so
17890 // there is no benefit in turning such RMWs into loads, and it is actually
17891 // harmful as it introduces a mfence.
17892 if (MemType->getPrimitiveSizeInBits() > NativeWidth)
17895 auto Builder = IRBuilder<>(AI);
17896 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
17897 auto SynchScope = AI->getSynchScope();
17898 // We must restrict the ordering to avoid generating loads with Release or
17899 // ReleaseAcquire orderings.
17900 auto Order = AtomicCmpXchgInst::getStrongestFailureOrdering(AI->getOrdering());
17901 auto Ptr = AI->getPointerOperand();
17903 // Before the load we need a fence. Here is an example lifted from
17904 // http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf showing why a fence
17907 // x.store(1, relaxed);
17908 // r1 = y.fetch_add(0, release);
17910 // y.fetch_add(42, acquire);
17911 // r2 = x.load(relaxed);
17912 // r1 = r2 = 0 is impossible, but becomes possible if the idempotent rmw is
17913 // lowered to just a load without a fence. A mfence flushes the store buffer,
17914 // making the optimization clearly correct.
17915 // FIXME: it is required if isAtLeastRelease(Order) but it is not clear
17916 // otherwise, we might be able to be more agressive on relaxed idempotent
17917 // rmw. In practice, they do not look useful, so we don't try to be
17918 // especially clever.
17919 if (SynchScope == SingleThread) {
17920 // FIXME: we could just insert an X86ISD::MEMBARRIER here, except we are at
17921 // the IR level, so we must wrap it in an intrinsic.
17923 } else if (hasMFENCE(Subtarget)) {
17924 Function *MFence = llvm::Intrinsic::getDeclaration(M,
17925 Intrinsic::x86_sse2_mfence);
17926 Builder.CreateCall(MFence);
17928 // FIXME: it might make sense to use a locked operation here but on a
17929 // different cache-line to prevent cache-line bouncing. In practice it
17930 // is probably a small win, and x86 processors without mfence are rare
17931 // enough that we do not bother.
17935 // Finally we can emit the atomic load.
17936 LoadInst *Loaded = Builder.CreateAlignedLoad(Ptr,
17937 AI->getType()->getPrimitiveSizeInBits());
17938 Loaded->setAtomic(Order, SynchScope);
17939 AI->replaceAllUsesWith(Loaded);
17940 AI->eraseFromParent();
17944 static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget *Subtarget,
17945 SelectionDAG &DAG) {
17947 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
17948 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
17949 SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
17950 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
17952 // The only fence that needs an instruction is a sequentially-consistent
17953 // cross-thread fence.
17954 if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
17955 if (hasMFENCE(*Subtarget))
17956 return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
17958 SDValue Chain = Op.getOperand(0);
17959 SDValue Zero = DAG.getConstant(0, MVT::i32);
17961 DAG.getRegister(X86::ESP, MVT::i32), // Base
17962 DAG.getTargetConstant(1, MVT::i8), // Scale
17963 DAG.getRegister(0, MVT::i32), // Index
17964 DAG.getTargetConstant(0, MVT::i32), // Disp
17965 DAG.getRegister(0, MVT::i32), // Segment.
17969 SDNode *Res = DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops);
17970 return SDValue(Res, 0);
17973 // MEMBARRIER is a compiler barrier; it codegens to a no-op.
17974 return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
17977 static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget *Subtarget,
17978 SelectionDAG &DAG) {
17979 MVT T = Op.getSimpleValueType();
17983 switch(T.SimpleTy) {
17984 default: llvm_unreachable("Invalid value type!");
17985 case MVT::i8: Reg = X86::AL; size = 1; break;
17986 case MVT::i16: Reg = X86::AX; size = 2; break;
17987 case MVT::i32: Reg = X86::EAX; size = 4; break;
17989 assert(Subtarget->is64Bit() && "Node not type legal!");
17990 Reg = X86::RAX; size = 8;
17993 SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
17994 Op.getOperand(2), SDValue());
17995 SDValue Ops[] = { cpIn.getValue(0),
17998 DAG.getTargetConstant(size, MVT::i8),
17999 cpIn.getValue(1) };
18000 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
18001 MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
18002 SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
18006 DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
18007 SDValue EFLAGS = DAG.getCopyFromReg(cpOut.getValue(1), DL, X86::EFLAGS,
18008 MVT::i32, cpOut.getValue(2));
18009 SDValue Success = DAG.getNode(X86ISD::SETCC, DL, Op->getValueType(1),
18010 DAG.getConstant(X86::COND_E, MVT::i8), EFLAGS);
18012 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), cpOut);
18013 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
18014 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), EFLAGS.getValue(1));
18018 static SDValue LowerBITCAST(SDValue Op, const X86Subtarget *Subtarget,
18019 SelectionDAG &DAG) {
18020 MVT SrcVT = Op.getOperand(0).getSimpleValueType();
18021 MVT DstVT = Op.getSimpleValueType();
18023 if (SrcVT == MVT::v2i32 || SrcVT == MVT::v4i16 || SrcVT == MVT::v8i8) {
18024 assert(Subtarget->hasSSE2() && "Requires at least SSE2!");
18025 if (DstVT != MVT::f64)
18026 // This conversion needs to be expanded.
18029 SDValue InVec = Op->getOperand(0);
18031 unsigned NumElts = SrcVT.getVectorNumElements();
18032 EVT SVT = SrcVT.getVectorElementType();
18034 // Widen the vector in input in the case of MVT::v2i32.
18035 // Example: from MVT::v2i32 to MVT::v4i32.
18036 SmallVector<SDValue, 16> Elts;
18037 for (unsigned i = 0, e = NumElts; i != e; ++i)
18038 Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SVT, InVec,
18039 DAG.getIntPtrConstant(i)));
18041 // Explicitly mark the extra elements as Undef.
18042 SDValue Undef = DAG.getUNDEF(SVT);
18043 for (unsigned i = NumElts, e = NumElts * 2; i != e; ++i)
18044 Elts.push_back(Undef);
18046 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumElts * 2);
18047 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, Elts);
18048 SDValue ToV2F64 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, BV);
18049 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, ToV2F64,
18050 DAG.getIntPtrConstant(0));
18053 assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
18054 Subtarget->hasMMX() && "Unexpected custom BITCAST");
18055 assert((DstVT == MVT::i64 ||
18056 (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
18057 "Unexpected custom BITCAST");
18058 // i64 <=> MMX conversions are Legal.
18059 if (SrcVT==MVT::i64 && DstVT.isVector())
18061 if (DstVT==MVT::i64 && SrcVT.isVector())
18063 // MMX <=> MMX conversions are Legal.
18064 if (SrcVT.isVector() && DstVT.isVector())
18066 // All other conversions need to be expanded.
18070 static SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
18071 SDNode *Node = Op.getNode();
18073 EVT T = Node->getValueType(0);
18074 SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
18075 DAG.getConstant(0, T), Node->getOperand(2));
18076 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
18077 cast<AtomicSDNode>(Node)->getMemoryVT(),
18078 Node->getOperand(0),
18079 Node->getOperand(1), negOp,
18080 cast<AtomicSDNode>(Node)->getMemOperand(),
18081 cast<AtomicSDNode>(Node)->getOrdering(),
18082 cast<AtomicSDNode>(Node)->getSynchScope());
18085 static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
18086 SDNode *Node = Op.getNode();
18088 EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
18090 // Convert seq_cst store -> xchg
18091 // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
18092 // FIXME: On 32-bit, store -> fist or movq would be more efficient
18093 // (The only way to get a 16-byte store is cmpxchg16b)
18094 // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
18095 if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
18096 !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
18097 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
18098 cast<AtomicSDNode>(Node)->getMemoryVT(),
18099 Node->getOperand(0),
18100 Node->getOperand(1), Node->getOperand(2),
18101 cast<AtomicSDNode>(Node)->getMemOperand(),
18102 cast<AtomicSDNode>(Node)->getOrdering(),
18103 cast<AtomicSDNode>(Node)->getSynchScope());
18104 return Swap.getValue(1);
18106 // Other atomic stores have a simple pattern.
18110 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
18111 EVT VT = Op.getNode()->getSimpleValueType(0);
18113 // Let legalize expand this if it isn't a legal type yet.
18114 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
18117 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
18120 bool ExtraOp = false;
18121 switch (Op.getOpcode()) {
18122 default: llvm_unreachable("Invalid code");
18123 case ISD::ADDC: Opc = X86ISD::ADD; break;
18124 case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
18125 case ISD::SUBC: Opc = X86ISD::SUB; break;
18126 case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
18130 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
18132 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
18133 Op.getOperand(1), Op.getOperand(2));
18136 static SDValue LowerFSINCOS(SDValue Op, const X86Subtarget *Subtarget,
18137 SelectionDAG &DAG) {
18138 assert(Subtarget->isTargetDarwin() && Subtarget->is64Bit());
18140 // For MacOSX, we want to call an alternative entry point: __sincos_stret,
18141 // which returns the values as { float, float } (in XMM0) or
18142 // { double, double } (which is returned in XMM0, XMM1).
18144 SDValue Arg = Op.getOperand(0);
18145 EVT ArgVT = Arg.getValueType();
18146 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
18148 TargetLowering::ArgListTy Args;
18149 TargetLowering::ArgListEntry Entry;
18153 Entry.isSExt = false;
18154 Entry.isZExt = false;
18155 Args.push_back(Entry);
18157 bool isF64 = ArgVT == MVT::f64;
18158 // Only optimize x86_64 for now. i386 is a bit messy. For f32,
18159 // the small struct {f32, f32} is returned in (eax, edx). For f64,
18160 // the results are returned via SRet in memory.
18161 const char *LibcallName = isF64 ? "__sincos_stret" : "__sincosf_stret";
18162 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
18163 SDValue Callee = DAG.getExternalSymbol(LibcallName, TLI.getPointerTy());
18165 Type *RetTy = isF64
18166 ? (Type*)StructType::get(ArgTy, ArgTy, NULL)
18167 : (Type*)VectorType::get(ArgTy, 4);
18169 TargetLowering::CallLoweringInfo CLI(DAG);
18170 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
18171 .setCallee(CallingConv::C, RetTy, Callee, std::move(Args), 0);
18173 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
18176 // Returned in xmm0 and xmm1.
18177 return CallResult.first;
18179 // Returned in bits 0:31 and 32:64 xmm0.
18180 SDValue SinVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
18181 CallResult.first, DAG.getIntPtrConstant(0));
18182 SDValue CosVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
18183 CallResult.first, DAG.getIntPtrConstant(1));
18184 SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
18185 return DAG.getNode(ISD::MERGE_VALUES, dl, Tys, SinVal, CosVal);
18188 /// LowerOperation - Provide custom lowering hooks for some operations.
18190 SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
18191 switch (Op.getOpcode()) {
18192 default: llvm_unreachable("Should not custom lower this!");
18193 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op,DAG);
18194 case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, Subtarget, DAG);
18195 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
18196 return LowerCMP_SWAP(Op, Subtarget, DAG);
18197 case ISD::ATOMIC_LOAD_SUB: return LowerLOAD_SUB(Op,DAG);
18198 case ISD::ATOMIC_STORE: return LowerATOMIC_STORE(Op,DAG);
18199 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
18200 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
18201 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
18202 case ISD::VSELECT: return LowerVSELECT(Op, DAG);
18203 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
18204 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
18205 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op,Subtarget,DAG);
18206 case ISD::INSERT_SUBVECTOR: return LowerINSERT_SUBVECTOR(Op, Subtarget,DAG);
18207 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
18208 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
18209 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
18210 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
18211 case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
18212 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
18213 case ISD::SHL_PARTS:
18214 case ISD::SRA_PARTS:
18215 case ISD::SRL_PARTS: return LowerShiftParts(Op, DAG);
18216 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
18217 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
18218 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG);
18219 case ISD::ZERO_EXTEND: return LowerZERO_EXTEND(Op, Subtarget, DAG);
18220 case ISD::SIGN_EXTEND: return LowerSIGN_EXTEND(Op, Subtarget, DAG);
18221 case ISD::ANY_EXTEND: return LowerANY_EXTEND(Op, Subtarget, DAG);
18222 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
18223 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
18224 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
18225 case ISD::LOAD: return LowerExtendedLoad(Op, Subtarget, DAG);
18227 case ISD::FNEG: return LowerFABSorFNEG(Op, DAG);
18228 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
18229 case ISD::FGETSIGN: return LowerFGETSIGN(Op, DAG);
18230 case ISD::SETCC: return LowerSETCC(Op, DAG);
18231 case ISD::SELECT: return LowerSELECT(Op, DAG);
18232 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
18233 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
18234 case ISD::VASTART: return LowerVASTART(Op, DAG);
18235 case ISD::VAARG: return LowerVAARG(Op, DAG);
18236 case ISD::VACOPY: return LowerVACOPY(Op, Subtarget, DAG);
18237 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
18238 case ISD::INTRINSIC_VOID:
18239 case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, Subtarget, DAG);
18240 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
18241 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
18242 case ISD::FRAME_TO_ARGS_OFFSET:
18243 return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
18244 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
18245 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
18246 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG);
18247 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG);
18248 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG);
18249 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG);
18250 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
18251 case ISD::CTLZ: return LowerCTLZ(Op, DAG);
18252 case ISD::CTLZ_ZERO_UNDEF: return LowerCTLZ_ZERO_UNDEF(Op, DAG);
18253 case ISD::CTTZ: return LowerCTTZ(Op, DAG);
18254 case ISD::MUL: return LowerMUL(Op, Subtarget, DAG);
18255 case ISD::UMUL_LOHI:
18256 case ISD::SMUL_LOHI: return LowerMUL_LOHI(Op, Subtarget, DAG);
18259 case ISD::SHL: return LowerShift(Op, Subtarget, DAG);
18265 case ISD::UMULO: return LowerXALUO(Op, DAG);
18266 case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, Subtarget,DAG);
18267 case ISD::BITCAST: return LowerBITCAST(Op, Subtarget, DAG);
18271 case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
18272 case ISD::ADD: return LowerADD(Op, DAG);
18273 case ISD::SUB: return LowerSUB(Op, DAG);
18274 case ISD::FSINCOS: return LowerFSINCOS(Op, Subtarget, DAG);
18278 /// ReplaceNodeResults - Replace a node with an illegal result type
18279 /// with a new node built out of custom code.
18280 void X86TargetLowering::ReplaceNodeResults(SDNode *N,
18281 SmallVectorImpl<SDValue>&Results,
18282 SelectionDAG &DAG) const {
18284 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
18285 switch (N->getOpcode()) {
18287 llvm_unreachable("Do not know how to custom type legalize this operation!");
18288 case ISD::SIGN_EXTEND_INREG:
18293 // We don't want to expand or promote these.
18300 case ISD::UDIVREM: {
18301 SDValue V = LowerWin64_i128OP(SDValue(N,0), DAG);
18302 Results.push_back(V);
18305 case ISD::FP_TO_SINT:
18306 case ISD::FP_TO_UINT: {
18307 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
18309 if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
18312 std::pair<SDValue,SDValue> Vals =
18313 FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
18314 SDValue FIST = Vals.first, StackSlot = Vals.second;
18315 if (FIST.getNode()) {
18316 EVT VT = N->getValueType(0);
18317 // Return a load from the stack slot.
18318 if (StackSlot.getNode())
18319 Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
18320 MachinePointerInfo(),
18321 false, false, false, 0));
18323 Results.push_back(FIST);
18327 case ISD::UINT_TO_FP: {
18328 assert(Subtarget->hasSSE2() && "Requires at least SSE2!");
18329 if (N->getOperand(0).getValueType() != MVT::v2i32 ||
18330 N->getValueType(0) != MVT::v2f32)
18332 SDValue ZExtIn = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v2i64,
18334 SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
18336 SDValue VBias = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2f64, Bias, Bias);
18337 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, ZExtIn,
18338 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, VBias));
18339 Or = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or);
18340 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, Or, VBias);
18341 Results.push_back(DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, Sub));
18344 case ISD::FP_ROUND: {
18345 if (!TLI.isTypeLegal(N->getOperand(0).getValueType()))
18347 SDValue V = DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, N->getOperand(0));
18348 Results.push_back(V);
18351 case ISD::INTRINSIC_W_CHAIN: {
18352 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
18354 default : llvm_unreachable("Do not know how to custom type "
18355 "legalize this intrinsic operation!");
18356 case Intrinsic::x86_rdtsc:
18357 return getReadTimeStampCounter(N, dl, X86ISD::RDTSC_DAG, DAG, Subtarget,
18359 case Intrinsic::x86_rdtscp:
18360 return getReadTimeStampCounter(N, dl, X86ISD::RDTSCP_DAG, DAG, Subtarget,
18362 case Intrinsic::x86_rdpmc:
18363 return getReadPerformanceCounter(N, dl, DAG, Subtarget, Results);
18366 case ISD::READCYCLECOUNTER: {
18367 return getReadTimeStampCounter(N, dl, X86ISD::RDTSC_DAG, DAG, Subtarget,
18370 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
18371 EVT T = N->getValueType(0);
18372 assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
18373 bool Regs64bit = T == MVT::i128;
18374 EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
18375 SDValue cpInL, cpInH;
18376 cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
18377 DAG.getConstant(0, HalfT));
18378 cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
18379 DAG.getConstant(1, HalfT));
18380 cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
18381 Regs64bit ? X86::RAX : X86::EAX,
18383 cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
18384 Regs64bit ? X86::RDX : X86::EDX,
18385 cpInH, cpInL.getValue(1));
18386 SDValue swapInL, swapInH;
18387 swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
18388 DAG.getConstant(0, HalfT));
18389 swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
18390 DAG.getConstant(1, HalfT));
18391 swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
18392 Regs64bit ? X86::RBX : X86::EBX,
18393 swapInL, cpInH.getValue(1));
18394 swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
18395 Regs64bit ? X86::RCX : X86::ECX,
18396 swapInH, swapInL.getValue(1));
18397 SDValue Ops[] = { swapInH.getValue(0),
18399 swapInH.getValue(1) };
18400 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
18401 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
18402 unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
18403 X86ISD::LCMPXCHG8_DAG;
18404 SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys, Ops, T, MMO);
18405 SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
18406 Regs64bit ? X86::RAX : X86::EAX,
18407 HalfT, Result.getValue(1));
18408 SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
18409 Regs64bit ? X86::RDX : X86::EDX,
18410 HalfT, cpOutL.getValue(2));
18411 SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
18413 SDValue EFLAGS = DAG.getCopyFromReg(cpOutH.getValue(1), dl, X86::EFLAGS,
18414 MVT::i32, cpOutH.getValue(2));
18416 DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
18417 DAG.getConstant(X86::COND_E, MVT::i8), EFLAGS);
18418 Success = DAG.getZExtOrTrunc(Success, dl, N->getValueType(1));
18420 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF));
18421 Results.push_back(Success);
18422 Results.push_back(EFLAGS.getValue(1));
18425 case ISD::ATOMIC_SWAP:
18426 case ISD::ATOMIC_LOAD_ADD:
18427 case ISD::ATOMIC_LOAD_SUB:
18428 case ISD::ATOMIC_LOAD_AND:
18429 case ISD::ATOMIC_LOAD_OR:
18430 case ISD::ATOMIC_LOAD_XOR:
18431 case ISD::ATOMIC_LOAD_NAND:
18432 case ISD::ATOMIC_LOAD_MIN:
18433 case ISD::ATOMIC_LOAD_MAX:
18434 case ISD::ATOMIC_LOAD_UMIN:
18435 case ISD::ATOMIC_LOAD_UMAX:
18436 case ISD::ATOMIC_LOAD: {
18437 // Delegate to generic TypeLegalization. Situations we can really handle
18438 // should have already been dealt with by AtomicExpandPass.cpp.
18441 case ISD::BITCAST: {
18442 assert(Subtarget->hasSSE2() && "Requires at least SSE2!");
18443 EVT DstVT = N->getValueType(0);
18444 EVT SrcVT = N->getOperand(0)->getValueType(0);
18446 if (SrcVT != MVT::f64 ||
18447 (DstVT != MVT::v2i32 && DstVT != MVT::v4i16 && DstVT != MVT::v8i8))
18450 unsigned NumElts = DstVT.getVectorNumElements();
18451 EVT SVT = DstVT.getVectorElementType();
18452 EVT WiderVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumElts * 2);
18453 SDValue Expanded = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
18454 MVT::v2f64, N->getOperand(0));
18455 SDValue ToVecInt = DAG.getNode(ISD::BITCAST, dl, WiderVT, Expanded);
18457 if (ExperimentalVectorWideningLegalization) {
18458 // If we are legalizing vectors by widening, we already have the desired
18459 // legal vector type, just return it.
18460 Results.push_back(ToVecInt);
18464 SmallVector<SDValue, 8> Elts;
18465 for (unsigned i = 0, e = NumElts; i != e; ++i)
18466 Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SVT,
18467 ToVecInt, DAG.getIntPtrConstant(i)));
18469 Results.push_back(DAG.getNode(ISD::BUILD_VECTOR, dl, DstVT, Elts));
18474 const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
18476 default: return nullptr;
18477 case X86ISD::BSF: return "X86ISD::BSF";
18478 case X86ISD::BSR: return "X86ISD::BSR";
18479 case X86ISD::SHLD: return "X86ISD::SHLD";
18480 case X86ISD::SHRD: return "X86ISD::SHRD";
18481 case X86ISD::FAND: return "X86ISD::FAND";
18482 case X86ISD::FANDN: return "X86ISD::FANDN";
18483 case X86ISD::FOR: return "X86ISD::FOR";
18484 case X86ISD::FXOR: return "X86ISD::FXOR";
18485 case X86ISD::FSRL: return "X86ISD::FSRL";
18486 case X86ISD::FILD: return "X86ISD::FILD";
18487 case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG";
18488 case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
18489 case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
18490 case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
18491 case X86ISD::FLD: return "X86ISD::FLD";
18492 case X86ISD::FST: return "X86ISD::FST";
18493 case X86ISD::CALL: return "X86ISD::CALL";
18494 case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG";
18495 case X86ISD::RDTSCP_DAG: return "X86ISD::RDTSCP_DAG";
18496 case X86ISD::RDPMC_DAG: return "X86ISD::RDPMC_DAG";
18497 case X86ISD::BT: return "X86ISD::BT";
18498 case X86ISD::CMP: return "X86ISD::CMP";
18499 case X86ISD::COMI: return "X86ISD::COMI";
18500 case X86ISD::UCOMI: return "X86ISD::UCOMI";
18501 case X86ISD::CMPM: return "X86ISD::CMPM";
18502 case X86ISD::CMPMU: return "X86ISD::CMPMU";
18503 case X86ISD::SETCC: return "X86ISD::SETCC";
18504 case X86ISD::SETCC_CARRY: return "X86ISD::SETCC_CARRY";
18505 case X86ISD::FSETCC: return "X86ISD::FSETCC";
18506 case X86ISD::CMOV: return "X86ISD::CMOV";
18507 case X86ISD::BRCOND: return "X86ISD::BRCOND";
18508 case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG";
18509 case X86ISD::REP_STOS: return "X86ISD::REP_STOS";
18510 case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS";
18511 case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg";
18512 case X86ISD::Wrapper: return "X86ISD::Wrapper";
18513 case X86ISD::WrapperRIP: return "X86ISD::WrapperRIP";
18514 case X86ISD::PEXTRB: return "X86ISD::PEXTRB";
18515 case X86ISD::PEXTRW: return "X86ISD::PEXTRW";
18516 case X86ISD::INSERTPS: return "X86ISD::INSERTPS";
18517 case X86ISD::PINSRB: return "X86ISD::PINSRB";
18518 case X86ISD::PINSRW: return "X86ISD::PINSRW";
18519 case X86ISD::PSHUFB: return "X86ISD::PSHUFB";
18520 case X86ISD::ANDNP: return "X86ISD::ANDNP";
18521 case X86ISD::PSIGN: return "X86ISD::PSIGN";
18522 case X86ISD::BLENDI: return "X86ISD::BLENDI";
18523 case X86ISD::SUBUS: return "X86ISD::SUBUS";
18524 case X86ISD::HADD: return "X86ISD::HADD";
18525 case X86ISD::HSUB: return "X86ISD::HSUB";
18526 case X86ISD::FHADD: return "X86ISD::FHADD";
18527 case X86ISD::FHSUB: return "X86ISD::FHSUB";
18528 case X86ISD::UMAX: return "X86ISD::UMAX";
18529 case X86ISD::UMIN: return "X86ISD::UMIN";
18530 case X86ISD::SMAX: return "X86ISD::SMAX";
18531 case X86ISD::SMIN: return "X86ISD::SMIN";
18532 case X86ISD::FMAX: return "X86ISD::FMAX";
18533 case X86ISD::FMIN: return "X86ISD::FMIN";
18534 case X86ISD::FMAXC: return "X86ISD::FMAXC";
18535 case X86ISD::FMINC: return "X86ISD::FMINC";
18536 case X86ISD::FRSQRT: return "X86ISD::FRSQRT";
18537 case X86ISD::FRCP: return "X86ISD::FRCP";
18538 case X86ISD::TLSADDR: return "X86ISD::TLSADDR";
18539 case X86ISD::TLSBASEADDR: return "X86ISD::TLSBASEADDR";
18540 case X86ISD::TLSCALL: return "X86ISD::TLSCALL";
18541 case X86ISD::EH_SJLJ_SETJMP: return "X86ISD::EH_SJLJ_SETJMP";
18542 case X86ISD::EH_SJLJ_LONGJMP: return "X86ISD::EH_SJLJ_LONGJMP";
18543 case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN";
18544 case X86ISD::TC_RETURN: return "X86ISD::TC_RETURN";
18545 case X86ISD::FNSTCW16m: return "X86ISD::FNSTCW16m";
18546 case X86ISD::FNSTSW16r: return "X86ISD::FNSTSW16r";
18547 case X86ISD::LCMPXCHG_DAG: return "X86ISD::LCMPXCHG_DAG";
18548 case X86ISD::LCMPXCHG8_DAG: return "X86ISD::LCMPXCHG8_DAG";
18549 case X86ISD::LCMPXCHG16_DAG: return "X86ISD::LCMPXCHG16_DAG";
18550 case X86ISD::VZEXT_MOVL: return "X86ISD::VZEXT_MOVL";
18551 case X86ISD::VZEXT_LOAD: return "X86ISD::VZEXT_LOAD";
18552 case X86ISD::VZEXT: return "X86ISD::VZEXT";
18553 case X86ISD::VSEXT: return "X86ISD::VSEXT";
18554 case X86ISD::VTRUNC: return "X86ISD::VTRUNC";
18555 case X86ISD::VTRUNCM: return "X86ISD::VTRUNCM";
18556 case X86ISD::VINSERT: return "X86ISD::VINSERT";
18557 case X86ISD::VFPEXT: return "X86ISD::VFPEXT";
18558 case X86ISD::VFPROUND: return "X86ISD::VFPROUND";
18559 case X86ISD::VSHLDQ: return "X86ISD::VSHLDQ";
18560 case X86ISD::VSRLDQ: return "X86ISD::VSRLDQ";
18561 case X86ISD::VSHL: return "X86ISD::VSHL";
18562 case X86ISD::VSRL: return "X86ISD::VSRL";
18563 case X86ISD::VSRA: return "X86ISD::VSRA";
18564 case X86ISD::VSHLI: return "X86ISD::VSHLI";
18565 case X86ISD::VSRLI: return "X86ISD::VSRLI";
18566 case X86ISD::VSRAI: return "X86ISD::VSRAI";
18567 case X86ISD::CMPP: return "X86ISD::CMPP";
18568 case X86ISD::PCMPEQ: return "X86ISD::PCMPEQ";
18569 case X86ISD::PCMPGT: return "X86ISD::PCMPGT";
18570 case X86ISD::PCMPEQM: return "X86ISD::PCMPEQM";
18571 case X86ISD::PCMPGTM: return "X86ISD::PCMPGTM";
18572 case X86ISD::ADD: return "X86ISD::ADD";
18573 case X86ISD::SUB: return "X86ISD::SUB";
18574 case X86ISD::ADC: return "X86ISD::ADC";
18575 case X86ISD::SBB: return "X86ISD::SBB";
18576 case X86ISD::SMUL: return "X86ISD::SMUL";
18577 case X86ISD::UMUL: return "X86ISD::UMUL";
18578 case X86ISD::INC: return "X86ISD::INC";
18579 case X86ISD::DEC: return "X86ISD::DEC";
18580 case X86ISD::OR: return "X86ISD::OR";
18581 case X86ISD::XOR: return "X86ISD::XOR";
18582 case X86ISD::AND: return "X86ISD::AND";
18583 case X86ISD::BEXTR: return "X86ISD::BEXTR";
18584 case X86ISD::MUL_IMM: return "X86ISD::MUL_IMM";
18585 case X86ISD::PTEST: return "X86ISD::PTEST";
18586 case X86ISD::TESTP: return "X86ISD::TESTP";
18587 case X86ISD::TESTM: return "X86ISD::TESTM";
18588 case X86ISD::TESTNM: return "X86ISD::TESTNM";
18589 case X86ISD::KORTEST: return "X86ISD::KORTEST";
18590 case X86ISD::PACKSS: return "X86ISD::PACKSS";
18591 case X86ISD::PACKUS: return "X86ISD::PACKUS";
18592 case X86ISD::PALIGNR: return "X86ISD::PALIGNR";
18593 case X86ISD::VALIGN: return "X86ISD::VALIGN";
18594 case X86ISD::PSHUFD: return "X86ISD::PSHUFD";
18595 case X86ISD::PSHUFHW: return "X86ISD::PSHUFHW";
18596 case X86ISD::PSHUFLW: return "X86ISD::PSHUFLW";
18597 case X86ISD::SHUFP: return "X86ISD::SHUFP";
18598 case X86ISD::MOVLHPS: return "X86ISD::MOVLHPS";
18599 case X86ISD::MOVLHPD: return "X86ISD::MOVLHPD";
18600 case X86ISD::MOVHLPS: return "X86ISD::MOVHLPS";
18601 case X86ISD::MOVLPS: return "X86ISD::MOVLPS";
18602 case X86ISD::MOVLPD: return "X86ISD::MOVLPD";
18603 case X86ISD::MOVDDUP: return "X86ISD::MOVDDUP";
18604 case X86ISD::MOVSHDUP: return "X86ISD::MOVSHDUP";
18605 case X86ISD::MOVSLDUP: return "X86ISD::MOVSLDUP";
18606 case X86ISD::MOVSD: return "X86ISD::MOVSD";
18607 case X86ISD::MOVSS: return "X86ISD::MOVSS";
18608 case X86ISD::UNPCKL: return "X86ISD::UNPCKL";
18609 case X86ISD::UNPCKH: return "X86ISD::UNPCKH";
18610 case X86ISD::VBROADCAST: return "X86ISD::VBROADCAST";
18611 case X86ISD::VBROADCASTM: return "X86ISD::VBROADCASTM";
18612 case X86ISD::VEXTRACT: return "X86ISD::VEXTRACT";
18613 case X86ISD::VPERMILPI: return "X86ISD::VPERMILPI";
18614 case X86ISD::VPERM2X128: return "X86ISD::VPERM2X128";
18615 case X86ISD::VPERMV: return "X86ISD::VPERMV";
18616 case X86ISD::VPERMV3: return "X86ISD::VPERMV3";
18617 case X86ISD::VPERMIV3: return "X86ISD::VPERMIV3";
18618 case X86ISD::VPERMI: return "X86ISD::VPERMI";
18619 case X86ISD::PMULUDQ: return "X86ISD::PMULUDQ";
18620 case X86ISD::PMULDQ: return "X86ISD::PMULDQ";
18621 case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
18622 case X86ISD::VAARG_64: return "X86ISD::VAARG_64";
18623 case X86ISD::WIN_ALLOCA: return "X86ISD::WIN_ALLOCA";
18624 case X86ISD::MEMBARRIER: return "X86ISD::MEMBARRIER";
18625 case X86ISD::SEG_ALLOCA: return "X86ISD::SEG_ALLOCA";
18626 case X86ISD::WIN_FTOL: return "X86ISD::WIN_FTOL";
18627 case X86ISD::SAHF: return "X86ISD::SAHF";
18628 case X86ISD::RDRAND: return "X86ISD::RDRAND";
18629 case X86ISD::RDSEED: return "X86ISD::RDSEED";
18630 case X86ISD::FMADD: return "X86ISD::FMADD";
18631 case X86ISD::FMSUB: return "X86ISD::FMSUB";
18632 case X86ISD::FNMADD: return "X86ISD::FNMADD";
18633 case X86ISD::FNMSUB: return "X86ISD::FNMSUB";
18634 case X86ISD::FMADDSUB: return "X86ISD::FMADDSUB";
18635 case X86ISD::FMSUBADD: return "X86ISD::FMSUBADD";
18636 case X86ISD::PCMPESTRI: return "X86ISD::PCMPESTRI";
18637 case X86ISD::PCMPISTRI: return "X86ISD::PCMPISTRI";
18638 case X86ISD::XTEST: return "X86ISD::XTEST";
18642 // isLegalAddressingMode - Return true if the addressing mode represented
18643 // by AM is legal for this target, for a load/store of the specified type.
18644 bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
18646 // X86 supports extremely general addressing modes.
18647 CodeModel::Model M = getTargetMachine().getCodeModel();
18648 Reloc::Model R = getTargetMachine().getRelocationModel();
18650 // X86 allows a sign-extended 32-bit immediate field as a displacement.
18651 if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != nullptr))
18656 Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
18658 // If a reference to this global requires an extra load, we can't fold it.
18659 if (isGlobalStubReference(GVFlags))
18662 // If BaseGV requires a register for the PIC base, we cannot also have a
18663 // BaseReg specified.
18664 if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
18667 // If lower 4G is not available, then we must use rip-relative addressing.
18668 if ((M != CodeModel::Small || R != Reloc::Static) &&
18669 Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
18673 switch (AM.Scale) {
18679 // These scales always work.
18684 // These scales are formed with basereg+scalereg. Only accept if there is
18689 default: // Other stuff never works.
18696 bool X86TargetLowering::isVectorShiftByScalarCheap(Type *Ty) const {
18697 unsigned Bits = Ty->getScalarSizeInBits();
18699 // 8-bit shifts are always expensive, but versions with a scalar amount aren't
18700 // particularly cheaper than those without.
18704 // On AVX2 there are new vpsllv[dq] instructions (and other shifts), that make
18705 // variable shifts just as cheap as scalar ones.
18706 if (Subtarget->hasInt256() && (Bits == 32 || Bits == 64))
18709 // Otherwise, it's significantly cheaper to shift by a scalar amount than by a
18710 // fully general vector.
18714 bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
18715 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
18717 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
18718 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
18719 return NumBits1 > NumBits2;
18722 bool X86TargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
18723 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
18726 if (!isTypeLegal(EVT::getEVT(Ty1)))
18729 assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
18731 // Assuming the caller doesn't have a zeroext or signext return parameter,
18732 // truncation all the way down to i1 is valid.
18736 bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const {
18737 return isInt<32>(Imm);
18740 bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const {
18741 // Can also use sub to handle negated immediates.
18742 return isInt<32>(Imm);
18745 bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
18746 if (!VT1.isInteger() || !VT2.isInteger())
18748 unsigned NumBits1 = VT1.getSizeInBits();
18749 unsigned NumBits2 = VT2.getSizeInBits();
18750 return NumBits1 > NumBits2;
18753 bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
18754 // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
18755 return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
18758 bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
18759 // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
18760 return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
18763 bool X86TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
18764 EVT VT1 = Val.getValueType();
18765 if (isZExtFree(VT1, VT2))
18768 if (Val.getOpcode() != ISD::LOAD)
18771 if (!VT1.isSimple() || !VT1.isInteger() ||
18772 !VT2.isSimple() || !VT2.isInteger())
18775 switch (VT1.getSimpleVT().SimpleTy) {
18780 // X86 has 8, 16, and 32-bit zero-extending loads.
18788 X86TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
18789 if (!(Subtarget->hasFMA() || Subtarget->hasFMA4()))
18792 VT = VT.getScalarType();
18794 if (!VT.isSimple())
18797 switch (VT.getSimpleVT().SimpleTy) {
18808 bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
18809 // i16 instructions are longer (0x66 prefix) and potentially slower.
18810 return !(VT1 == MVT::i32 && VT2 == MVT::i16);
18813 /// isShuffleMaskLegal - Targets can use this to indicate that they only
18814 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
18815 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
18816 /// are assumed to be legal.
18818 X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
18820 if (!VT.isSimple())
18823 MVT SVT = VT.getSimpleVT();
18825 // Very little shuffling can be done for 64-bit vectors right now.
18826 if (VT.getSizeInBits() == 64)
18829 // If this is a single-input shuffle with no 128 bit lane crossings we can
18830 // lower it into pshufb.
18831 if ((SVT.is128BitVector() && Subtarget->hasSSSE3()) ||
18832 (SVT.is256BitVector() && Subtarget->hasInt256())) {
18833 bool isLegal = true;
18834 for (unsigned I = 0, E = M.size(); I != E; ++I) {
18835 if (M[I] >= (int)SVT.getVectorNumElements() ||
18836 ShuffleCrosses128bitLane(SVT, I, M[I])) {
18845 // FIXME: blends, shifts.
18846 return (SVT.getVectorNumElements() == 2 ||
18847 ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
18848 isMOVLMask(M, SVT) ||
18849 isMOVHLPSMask(M, SVT) ||
18850 isSHUFPMask(M, SVT) ||
18851 isPSHUFDMask(M, SVT) ||
18852 isPSHUFHWMask(M, SVT, Subtarget->hasInt256()) ||
18853 isPSHUFLWMask(M, SVT, Subtarget->hasInt256()) ||
18854 isPALIGNRMask(M, SVT, Subtarget) ||
18855 isUNPCKLMask(M, SVT, Subtarget->hasInt256()) ||
18856 isUNPCKHMask(M, SVT, Subtarget->hasInt256()) ||
18857 isUNPCKL_v_undef_Mask(M, SVT, Subtarget->hasInt256()) ||
18858 isUNPCKH_v_undef_Mask(M, SVT, Subtarget->hasInt256()) ||
18859 isBlendMask(M, SVT, Subtarget->hasSSE41(), Subtarget->hasInt256()));
18863 X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
18865 if (!VT.isSimple())
18868 MVT SVT = VT.getSimpleVT();
18869 unsigned NumElts = SVT.getVectorNumElements();
18870 // FIXME: This collection of masks seems suspect.
18873 if (NumElts == 4 && SVT.is128BitVector()) {
18874 return (isMOVLMask(Mask, SVT) ||
18875 isCommutedMOVLMask(Mask, SVT, true) ||
18876 isSHUFPMask(Mask, SVT) ||
18877 isSHUFPMask(Mask, SVT, /* Commuted */ true));
18882 //===----------------------------------------------------------------------===//
18883 // X86 Scheduler Hooks
18884 //===----------------------------------------------------------------------===//
18886 /// Utility function to emit xbegin specifying the start of an RTM region.
18887 static MachineBasicBlock *EmitXBegin(MachineInstr *MI, MachineBasicBlock *MBB,
18888 const TargetInstrInfo *TII) {
18889 DebugLoc DL = MI->getDebugLoc();
18891 const BasicBlock *BB = MBB->getBasicBlock();
18892 MachineFunction::iterator I = MBB;
18895 // For the v = xbegin(), we generate
18906 MachineBasicBlock *thisMBB = MBB;
18907 MachineFunction *MF = MBB->getParent();
18908 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
18909 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
18910 MF->insert(I, mainMBB);
18911 MF->insert(I, sinkMBB);
18913 // Transfer the remainder of BB and its successor edges to sinkMBB.
18914 sinkMBB->splice(sinkMBB->begin(), MBB,
18915 std::next(MachineBasicBlock::iterator(MI)), MBB->end());
18916 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
18920 // # fallthrough to mainMBB
18921 // # abortion to sinkMBB
18922 BuildMI(thisMBB, DL, TII->get(X86::XBEGIN_4)).addMBB(sinkMBB);
18923 thisMBB->addSuccessor(mainMBB);
18924 thisMBB->addSuccessor(sinkMBB);
18928 BuildMI(mainMBB, DL, TII->get(X86::MOV32ri), X86::EAX).addImm(-1);
18929 mainMBB->addSuccessor(sinkMBB);
18932 // EAX is live into the sinkMBB
18933 sinkMBB->addLiveIn(X86::EAX);
18934 BuildMI(*sinkMBB, sinkMBB->begin(), DL,
18935 TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
18938 MI->eraseFromParent();
18942 // FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
18943 // or XMM0_V32I8 in AVX all of this code can be replaced with that
18944 // in the .td file.
18945 static MachineBasicBlock *EmitPCMPSTRM(MachineInstr *MI, MachineBasicBlock *BB,
18946 const TargetInstrInfo *TII) {
18948 switch (MI->getOpcode()) {
18949 default: llvm_unreachable("illegal opcode!");
18950 case X86::PCMPISTRM128REG: Opc = X86::PCMPISTRM128rr; break;
18951 case X86::VPCMPISTRM128REG: Opc = X86::VPCMPISTRM128rr; break;
18952 case X86::PCMPISTRM128MEM: Opc = X86::PCMPISTRM128rm; break;
18953 case X86::VPCMPISTRM128MEM: Opc = X86::VPCMPISTRM128rm; break;
18954 case X86::PCMPESTRM128REG: Opc = X86::PCMPESTRM128rr; break;
18955 case X86::VPCMPESTRM128REG: Opc = X86::VPCMPESTRM128rr; break;
18956 case X86::PCMPESTRM128MEM: Opc = X86::PCMPESTRM128rm; break;
18957 case X86::VPCMPESTRM128MEM: Opc = X86::VPCMPESTRM128rm; break;
18960 DebugLoc dl = MI->getDebugLoc();
18961 MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
18963 unsigned NumArgs = MI->getNumOperands();
18964 for (unsigned i = 1; i < NumArgs; ++i) {
18965 MachineOperand &Op = MI->getOperand(i);
18966 if (!(Op.isReg() && Op.isImplicit()))
18967 MIB.addOperand(Op);
18969 if (MI->hasOneMemOperand())
18970 MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
18972 BuildMI(*BB, MI, dl,
18973 TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
18974 .addReg(X86::XMM0);
18976 MI->eraseFromParent();
18980 // FIXME: Custom handling because TableGen doesn't support multiple implicit
18981 // defs in an instruction pattern
18982 static MachineBasicBlock *EmitPCMPSTRI(MachineInstr *MI, MachineBasicBlock *BB,
18983 const TargetInstrInfo *TII) {
18985 switch (MI->getOpcode()) {
18986 default: llvm_unreachable("illegal opcode!");
18987 case X86::PCMPISTRIREG: Opc = X86::PCMPISTRIrr; break;
18988 case X86::VPCMPISTRIREG: Opc = X86::VPCMPISTRIrr; break;
18989 case X86::PCMPISTRIMEM: Opc = X86::PCMPISTRIrm; break;
18990 case X86::VPCMPISTRIMEM: Opc = X86::VPCMPISTRIrm; break;
18991 case X86::PCMPESTRIREG: Opc = X86::PCMPESTRIrr; break;
18992 case X86::VPCMPESTRIREG: Opc = X86::VPCMPESTRIrr; break;
18993 case X86::PCMPESTRIMEM: Opc = X86::PCMPESTRIrm; break;
18994 case X86::VPCMPESTRIMEM: Opc = X86::VPCMPESTRIrm; break;
18997 DebugLoc dl = MI->getDebugLoc();
18998 MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
19000 unsigned NumArgs = MI->getNumOperands(); // remove the results
19001 for (unsigned i = 1; i < NumArgs; ++i) {
19002 MachineOperand &Op = MI->getOperand(i);
19003 if (!(Op.isReg() && Op.isImplicit()))
19004 MIB.addOperand(Op);
19006 if (MI->hasOneMemOperand())
19007 MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
19009 BuildMI(*BB, MI, dl,
19010 TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
19013 MI->eraseFromParent();
19017 static MachineBasicBlock * EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB,
19018 const TargetInstrInfo *TII,
19019 const X86Subtarget* Subtarget) {
19020 DebugLoc dl = MI->getDebugLoc();
19022 // Address into RAX/EAX, other two args into ECX, EDX.
19023 unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
19024 unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
19025 MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
19026 for (int i = 0; i < X86::AddrNumOperands; ++i)
19027 MIB.addOperand(MI->getOperand(i));
19029 unsigned ValOps = X86::AddrNumOperands;
19030 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
19031 .addReg(MI->getOperand(ValOps).getReg());
19032 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
19033 .addReg(MI->getOperand(ValOps+1).getReg());
19035 // The instruction doesn't actually take any operands though.
19036 BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
19038 MI->eraseFromParent(); // The pseudo is gone now.
19042 MachineBasicBlock *
19043 X86TargetLowering::EmitVAARG64WithCustomInserter(
19045 MachineBasicBlock *MBB) const {
19046 // Emit va_arg instruction on X86-64.
19048 // Operands to this pseudo-instruction:
19049 // 0 ) Output : destination address (reg)
19050 // 1-5) Input : va_list address (addr, i64mem)
19051 // 6 ) ArgSize : Size (in bytes) of vararg type
19052 // 7 ) ArgMode : 0=overflow only, 1=use gp_offset, 2=use fp_offset
19053 // 8 ) Align : Alignment of type
19054 // 9 ) EFLAGS (implicit-def)
19056 assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
19057 assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
19059 unsigned DestReg = MI->getOperand(0).getReg();
19060 MachineOperand &Base = MI->getOperand(1);
19061 MachineOperand &Scale = MI->getOperand(2);
19062 MachineOperand &Index = MI->getOperand(3);
19063 MachineOperand &Disp = MI->getOperand(4);
19064 MachineOperand &Segment = MI->getOperand(5);
19065 unsigned ArgSize = MI->getOperand(6).getImm();
19066 unsigned ArgMode = MI->getOperand(7).getImm();
19067 unsigned Align = MI->getOperand(8).getImm();
19069 // Memory Reference
19070 assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
19071 MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
19072 MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
19074 // Machine Information
19075 const TargetInstrInfo *TII = MBB->getParent()->getSubtarget().getInstrInfo();
19076 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
19077 const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
19078 const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
19079 DebugLoc DL = MI->getDebugLoc();
19081 // struct va_list {
19084 // i64 overflow_area (address)
19085 // i64 reg_save_area (address)
19087 // sizeof(va_list) = 24
19088 // alignment(va_list) = 8
19090 unsigned TotalNumIntRegs = 6;
19091 unsigned TotalNumXMMRegs = 8;
19092 bool UseGPOffset = (ArgMode == 1);
19093 bool UseFPOffset = (ArgMode == 2);
19094 unsigned MaxOffset = TotalNumIntRegs * 8 +
19095 (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
19097 /* Align ArgSize to a multiple of 8 */
19098 unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
19099 bool NeedsAlign = (Align > 8);
19101 MachineBasicBlock *thisMBB = MBB;
19102 MachineBasicBlock *overflowMBB;
19103 MachineBasicBlock *offsetMBB;
19104 MachineBasicBlock *endMBB;
19106 unsigned OffsetDestReg = 0; // Argument address computed by offsetMBB
19107 unsigned OverflowDestReg = 0; // Argument address computed by overflowMBB
19108 unsigned OffsetReg = 0;
19110 if (!UseGPOffset && !UseFPOffset) {
19111 // If we only pull from the overflow region, we don't create a branch.
19112 // We don't need to alter control flow.
19113 OffsetDestReg = 0; // unused
19114 OverflowDestReg = DestReg;
19116 offsetMBB = nullptr;
19117 overflowMBB = thisMBB;
19120 // First emit code to check if gp_offset (or fp_offset) is below the bound.
19121 // If so, pull the argument from reg_save_area. (branch to offsetMBB)
19122 // If not, pull from overflow_area. (branch to overflowMBB)
19127 // offsetMBB overflowMBB
19132 // Registers for the PHI in endMBB
19133 OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
19134 OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
19136 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
19137 MachineFunction *MF = MBB->getParent();
19138 overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
19139 offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
19140 endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
19142 MachineFunction::iterator MBBIter = MBB;
19145 // Insert the new basic blocks
19146 MF->insert(MBBIter, offsetMBB);
19147 MF->insert(MBBIter, overflowMBB);
19148 MF->insert(MBBIter, endMBB);
19150 // Transfer the remainder of MBB and its successor edges to endMBB.
19151 endMBB->splice(endMBB->begin(), thisMBB,
19152 std::next(MachineBasicBlock::iterator(MI)), thisMBB->end());
19153 endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
19155 // Make offsetMBB and overflowMBB successors of thisMBB
19156 thisMBB->addSuccessor(offsetMBB);
19157 thisMBB->addSuccessor(overflowMBB);
19159 // endMBB is a successor of both offsetMBB and overflowMBB
19160 offsetMBB->addSuccessor(endMBB);
19161 overflowMBB->addSuccessor(endMBB);
19163 // Load the offset value into a register
19164 OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
19165 BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
19169 .addDisp(Disp, UseFPOffset ? 4 : 0)
19170 .addOperand(Segment)
19171 .setMemRefs(MMOBegin, MMOEnd);
19173 // Check if there is enough room left to pull this argument.
19174 BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
19176 .addImm(MaxOffset + 8 - ArgSizeA8);
19178 // Branch to "overflowMBB" if offset >= max
19179 // Fall through to "offsetMBB" otherwise
19180 BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
19181 .addMBB(overflowMBB);
19184 // In offsetMBB, emit code to use the reg_save_area.
19186 assert(OffsetReg != 0);
19188 // Read the reg_save_area address.
19189 unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
19190 BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
19195 .addOperand(Segment)
19196 .setMemRefs(MMOBegin, MMOEnd);
19198 // Zero-extend the offset
19199 unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
19200 BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
19203 .addImm(X86::sub_32bit);
19205 // Add the offset to the reg_save_area to get the final address.
19206 BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
19207 .addReg(OffsetReg64)
19208 .addReg(RegSaveReg);
19210 // Compute the offset for the next argument
19211 unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
19212 BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
19214 .addImm(UseFPOffset ? 16 : 8);
19216 // Store it back into the va_list.
19217 BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
19221 .addDisp(Disp, UseFPOffset ? 4 : 0)
19222 .addOperand(Segment)
19223 .addReg(NextOffsetReg)
19224 .setMemRefs(MMOBegin, MMOEnd);
19227 BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
19232 // Emit code to use overflow area
19235 // Load the overflow_area address into a register.
19236 unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
19237 BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
19242 .addOperand(Segment)
19243 .setMemRefs(MMOBegin, MMOEnd);
19245 // If we need to align it, do so. Otherwise, just copy the address
19246 // to OverflowDestReg.
19248 // Align the overflow address
19249 assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
19250 unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
19252 // aligned_addr = (addr + (align-1)) & ~(align-1)
19253 BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
19254 .addReg(OverflowAddrReg)
19257 BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
19259 .addImm(~(uint64_t)(Align-1));
19261 BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
19262 .addReg(OverflowAddrReg);
19265 // Compute the next overflow address after this argument.
19266 // (the overflow address should be kept 8-byte aligned)
19267 unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
19268 BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
19269 .addReg(OverflowDestReg)
19270 .addImm(ArgSizeA8);
19272 // Store the new overflow address.
19273 BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
19278 .addOperand(Segment)
19279 .addReg(NextAddrReg)
19280 .setMemRefs(MMOBegin, MMOEnd);
19282 // If we branched, emit the PHI to the front of endMBB.
19284 BuildMI(*endMBB, endMBB->begin(), DL,
19285 TII->get(X86::PHI), DestReg)
19286 .addReg(OffsetDestReg).addMBB(offsetMBB)
19287 .addReg(OverflowDestReg).addMBB(overflowMBB);
19290 // Erase the pseudo instruction
19291 MI->eraseFromParent();
19296 MachineBasicBlock *
19297 X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
19299 MachineBasicBlock *MBB) const {
19300 // Emit code to save XMM registers to the stack. The ABI says that the
19301 // number of registers to save is given in %al, so it's theoretically
19302 // possible to do an indirect jump trick to avoid saving all of them,
19303 // however this code takes a simpler approach and just executes all
19304 // of the stores if %al is non-zero. It's less code, and it's probably
19305 // easier on the hardware branch predictor, and stores aren't all that
19306 // expensive anyway.
19308 // Create the new basic blocks. One block contains all the XMM stores,
19309 // and one block is the final destination regardless of whether any
19310 // stores were performed.
19311 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
19312 MachineFunction *F = MBB->getParent();
19313 MachineFunction::iterator MBBIter = MBB;
19315 MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
19316 MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
19317 F->insert(MBBIter, XMMSaveMBB);
19318 F->insert(MBBIter, EndMBB);
19320 // Transfer the remainder of MBB and its successor edges to EndMBB.
19321 EndMBB->splice(EndMBB->begin(), MBB,
19322 std::next(MachineBasicBlock::iterator(MI)), MBB->end());
19323 EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
19325 // The original block will now fall through to the XMM save block.
19326 MBB->addSuccessor(XMMSaveMBB);
19327 // The XMMSaveMBB will fall through to the end block.
19328 XMMSaveMBB->addSuccessor(EndMBB);
19330 // Now add the instructions.
19331 const TargetInstrInfo *TII = MBB->getParent()->getSubtarget().getInstrInfo();
19332 DebugLoc DL = MI->getDebugLoc();
19334 unsigned CountReg = MI->getOperand(0).getReg();
19335 int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
19336 int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
19338 if (!Subtarget->isTargetWin64()) {
19339 // If %al is 0, branch around the XMM save block.
19340 BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
19341 BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
19342 MBB->addSuccessor(EndMBB);
19345 // Make sure the last operand is EFLAGS, which gets clobbered by the branch
19346 // that was just emitted, but clearly shouldn't be "saved".
19347 assert((MI->getNumOperands() <= 3 ||
19348 !MI->getOperand(MI->getNumOperands() - 1).isReg() ||
19349 MI->getOperand(MI->getNumOperands() - 1).getReg() == X86::EFLAGS)
19350 && "Expected last argument to be EFLAGS");
19351 unsigned MOVOpc = Subtarget->hasFp256() ? X86::VMOVAPSmr : X86::MOVAPSmr;
19352 // In the XMM save block, save all the XMM argument registers.
19353 for (int i = 3, e = MI->getNumOperands() - 1; i != e; ++i) {
19354 int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
19355 MachineMemOperand *MMO =
19356 F->getMachineMemOperand(
19357 MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
19358 MachineMemOperand::MOStore,
19359 /*Size=*/16, /*Align=*/16);
19360 BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
19361 .addFrameIndex(RegSaveFrameIndex)
19362 .addImm(/*Scale=*/1)
19363 .addReg(/*IndexReg=*/0)
19364 .addImm(/*Disp=*/Offset)
19365 .addReg(/*Segment=*/0)
19366 .addReg(MI->getOperand(i).getReg())
19367 .addMemOperand(MMO);
19370 MI->eraseFromParent(); // The pseudo instruction is gone now.
19375 // The EFLAGS operand of SelectItr might be missing a kill marker
19376 // because there were multiple uses of EFLAGS, and ISel didn't know
19377 // which to mark. Figure out whether SelectItr should have had a
19378 // kill marker, and set it if it should. Returns the correct kill
19380 static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
19381 MachineBasicBlock* BB,
19382 const TargetRegisterInfo* TRI) {
19383 // Scan forward through BB for a use/def of EFLAGS.
19384 MachineBasicBlock::iterator miI(std::next(SelectItr));
19385 for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
19386 const MachineInstr& mi = *miI;
19387 if (mi.readsRegister(X86::EFLAGS))
19389 if (mi.definesRegister(X86::EFLAGS))
19390 break; // Should have kill-flag - update below.
19393 // If we hit the end of the block, check whether EFLAGS is live into a
19395 if (miI == BB->end()) {
19396 for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
19397 sEnd = BB->succ_end();
19398 sItr != sEnd; ++sItr) {
19399 MachineBasicBlock* succ = *sItr;
19400 if (succ->isLiveIn(X86::EFLAGS))
19405 // We found a def, or hit the end of the basic block and EFLAGS wasn't live
19406 // out. SelectMI should have a kill flag on EFLAGS.
19407 SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
19411 MachineBasicBlock *
19412 X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
19413 MachineBasicBlock *BB) const {
19414 const TargetInstrInfo *TII = BB->getParent()->getSubtarget().getInstrInfo();
19415 DebugLoc DL = MI->getDebugLoc();
19417 // To "insert" a SELECT_CC instruction, we actually have to insert the
19418 // diamond control-flow pattern. The incoming instruction knows the
19419 // destination vreg to set, the condition code register to branch on, the
19420 // true/false values to select between, and a branch opcode to use.
19421 const BasicBlock *LLVM_BB = BB->getBasicBlock();
19422 MachineFunction::iterator It = BB;
19428 // cmpTY ccX, r1, r2
19430 // fallthrough --> copy0MBB
19431 MachineBasicBlock *thisMBB = BB;
19432 MachineFunction *F = BB->getParent();
19433 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
19434 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
19435 F->insert(It, copy0MBB);
19436 F->insert(It, sinkMBB);
19438 // If the EFLAGS register isn't dead in the terminator, then claim that it's
19439 // live into the sink and copy blocks.
19440 const TargetRegisterInfo *TRI =
19441 BB->getParent()->getSubtarget().getRegisterInfo();
19442 if (!MI->killsRegister(X86::EFLAGS) &&
19443 !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
19444 copy0MBB->addLiveIn(X86::EFLAGS);
19445 sinkMBB->addLiveIn(X86::EFLAGS);
19448 // Transfer the remainder of BB and its successor edges to sinkMBB.
19449 sinkMBB->splice(sinkMBB->begin(), BB,
19450 std::next(MachineBasicBlock::iterator(MI)), BB->end());
19451 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
19453 // Add the true and fallthrough blocks as its successors.
19454 BB->addSuccessor(copy0MBB);
19455 BB->addSuccessor(sinkMBB);
19457 // Create the conditional branch instruction.
19459 X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
19460 BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
19463 // %FalseValue = ...
19464 // # fallthrough to sinkMBB
19465 copy0MBB->addSuccessor(sinkMBB);
19468 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
19470 BuildMI(*sinkMBB, sinkMBB->begin(), DL,
19471 TII->get(X86::PHI), MI->getOperand(0).getReg())
19472 .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
19473 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
19475 MI->eraseFromParent(); // The pseudo instruction is gone now.
19479 MachineBasicBlock *
19480 X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI,
19481 MachineBasicBlock *BB) const {
19482 MachineFunction *MF = BB->getParent();
19483 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
19484 DebugLoc DL = MI->getDebugLoc();
19485 const BasicBlock *LLVM_BB = BB->getBasicBlock();
19487 assert(MF->shouldSplitStack());
19489 const bool Is64Bit = Subtarget->is64Bit();
19490 const bool IsLP64 = Subtarget->isTarget64BitLP64();
19492 const unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
19493 const unsigned TlsOffset = IsLP64 ? 0x70 : Is64Bit ? 0x40 : 0x30;
19496 // ... [Till the alloca]
19497 // If stacklet is not large enough, jump to mallocMBB
19500 // Allocate by subtracting from RSP
19501 // Jump to continueMBB
19504 // Allocate by call to runtime
19508 // [rest of original BB]
19511 MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
19512 MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
19513 MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
19515 MachineRegisterInfo &MRI = MF->getRegInfo();
19516 const TargetRegisterClass *AddrRegClass =
19517 getRegClassFor(getPointerTy());
19519 unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
19520 bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
19521 tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
19522 SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
19523 sizeVReg = MI->getOperand(1).getReg(),
19524 physSPReg = IsLP64 || Subtarget->isTargetNaCl64() ? X86::RSP : X86::ESP;
19526 MachineFunction::iterator MBBIter = BB;
19529 MF->insert(MBBIter, bumpMBB);
19530 MF->insert(MBBIter, mallocMBB);
19531 MF->insert(MBBIter, continueMBB);
19533 continueMBB->splice(continueMBB->begin(), BB,
19534 std::next(MachineBasicBlock::iterator(MI)), BB->end());
19535 continueMBB->transferSuccessorsAndUpdatePHIs(BB);
19537 // Add code to the main basic block to check if the stack limit has been hit,
19538 // and if so, jump to mallocMBB otherwise to bumpMBB.
19539 BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
19540 BuildMI(BB, DL, TII->get(IsLP64 ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
19541 .addReg(tmpSPVReg).addReg(sizeVReg);
19542 BuildMI(BB, DL, TII->get(IsLP64 ? X86::CMP64mr:X86::CMP32mr))
19543 .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
19544 .addReg(SPLimitVReg);
19545 BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
19547 // bumpMBB simply decreases the stack pointer, since we know the current
19548 // stacklet has enough space.
19549 BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
19550 .addReg(SPLimitVReg);
19551 BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
19552 .addReg(SPLimitVReg);
19553 BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
19555 // Calls into a routine in libgcc to allocate more space from the heap.
19556 const uint32_t *RegMask = MF->getTarget()
19557 .getSubtargetImpl()
19558 ->getRegisterInfo()
19559 ->getCallPreservedMask(CallingConv::C);
19561 BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
19563 BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
19564 .addExternalSymbol("__morestack_allocate_stack_space")
19565 .addRegMask(RegMask)
19566 .addReg(X86::RDI, RegState::Implicit)
19567 .addReg(X86::RAX, RegState::ImplicitDefine);
19568 } else if (Is64Bit) {
19569 BuildMI(mallocMBB, DL, TII->get(X86::MOV32rr), X86::EDI)
19571 BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
19572 .addExternalSymbol("__morestack_allocate_stack_space")
19573 .addRegMask(RegMask)
19574 .addReg(X86::EDI, RegState::Implicit)
19575 .addReg(X86::EAX, RegState::ImplicitDefine);
19577 BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
19579 BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
19580 BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
19581 .addExternalSymbol("__morestack_allocate_stack_space")
19582 .addRegMask(RegMask)
19583 .addReg(X86::EAX, RegState::ImplicitDefine);
19587 BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
19590 BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
19591 .addReg(IsLP64 ? X86::RAX : X86::EAX);
19592 BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
19594 // Set up the CFG correctly.
19595 BB->addSuccessor(bumpMBB);
19596 BB->addSuccessor(mallocMBB);
19597 mallocMBB->addSuccessor(continueMBB);
19598 bumpMBB->addSuccessor(continueMBB);
19600 // Take care of the PHI nodes.
19601 BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
19602 MI->getOperand(0).getReg())
19603 .addReg(mallocPtrVReg).addMBB(mallocMBB)
19604 .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
19606 // Delete the original pseudo instruction.
19607 MI->eraseFromParent();
19610 return continueMBB;
19613 MachineBasicBlock *
19614 X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
19615 MachineBasicBlock *BB) const {
19616 const TargetInstrInfo *TII = BB->getParent()->getSubtarget().getInstrInfo();
19617 DebugLoc DL = MI->getDebugLoc();
19619 assert(!Subtarget->isTargetMacho());
19621 // The lowering is pretty easy: we're just emitting the call to _alloca. The
19622 // non-trivial part is impdef of ESP.
19624 if (Subtarget->isTargetWin64()) {
19625 if (Subtarget->isTargetCygMing()) {
19626 // ___chkstk(Mingw64):
19627 // Clobbers R10, R11, RAX and EFLAGS.
19629 BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
19630 .addExternalSymbol("___chkstk")
19631 .addReg(X86::RAX, RegState::Implicit)
19632 .addReg(X86::RSP, RegState::Implicit)
19633 .addReg(X86::RAX, RegState::Define | RegState::Implicit)
19634 .addReg(X86::RSP, RegState::Define | RegState::Implicit)
19635 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
19637 // __chkstk(MSVCRT): does not update stack pointer.
19638 // Clobbers R10, R11 and EFLAGS.
19639 BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
19640 .addExternalSymbol("__chkstk")
19641 .addReg(X86::RAX, RegState::Implicit)
19642 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
19643 // RAX has the offset to be subtracted from RSP.
19644 BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
19649 const char *StackProbeSymbol =
19650 Subtarget->isTargetKnownWindowsMSVC() ? "_chkstk" : "_alloca";
19652 BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
19653 .addExternalSymbol(StackProbeSymbol)
19654 .addReg(X86::EAX, RegState::Implicit)
19655 .addReg(X86::ESP, RegState::Implicit)
19656 .addReg(X86::EAX, RegState::Define | RegState::Implicit)
19657 .addReg(X86::ESP, RegState::Define | RegState::Implicit)
19658 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
19661 MI->eraseFromParent(); // The pseudo instruction is gone now.
19665 MachineBasicBlock *
19666 X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
19667 MachineBasicBlock *BB) const {
19668 // This is pretty easy. We're taking the value that we received from
19669 // our load from the relocation, sticking it in either RDI (x86-64)
19670 // or EAX and doing an indirect call. The return value will then
19671 // be in the normal return register.
19672 MachineFunction *F = BB->getParent();
19673 const X86InstrInfo *TII =
19674 static_cast<const X86InstrInfo *>(F->getSubtarget().getInstrInfo());
19675 DebugLoc DL = MI->getDebugLoc();
19677 assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
19678 assert(MI->getOperand(3).isGlobal() && "This should be a global");
19680 // Get a register mask for the lowered call.
19681 // FIXME: The 32-bit calls have non-standard calling conventions. Use a
19682 // proper register mask.
19683 const uint32_t *RegMask = F->getTarget()
19684 .getSubtargetImpl()
19685 ->getRegisterInfo()
19686 ->getCallPreservedMask(CallingConv::C);
19687 if (Subtarget->is64Bit()) {
19688 MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
19689 TII->get(X86::MOV64rm), X86::RDI)
19691 .addImm(0).addReg(0)
19692 .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
19693 MI->getOperand(3).getTargetFlags())
19695 MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
19696 addDirectMem(MIB, X86::RDI);
19697 MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
19698 } else if (F->getTarget().getRelocationModel() != Reloc::PIC_) {
19699 MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
19700 TII->get(X86::MOV32rm), X86::EAX)
19702 .addImm(0).addReg(0)
19703 .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
19704 MI->getOperand(3).getTargetFlags())
19706 MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
19707 addDirectMem(MIB, X86::EAX);
19708 MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
19710 MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
19711 TII->get(X86::MOV32rm), X86::EAX)
19712 .addReg(TII->getGlobalBaseReg(F))
19713 .addImm(0).addReg(0)
19714 .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
19715 MI->getOperand(3).getTargetFlags())
19717 MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
19718 addDirectMem(MIB, X86::EAX);
19719 MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
19722 MI->eraseFromParent(); // The pseudo instruction is gone now.
19726 MachineBasicBlock *
19727 X86TargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
19728 MachineBasicBlock *MBB) const {
19729 DebugLoc DL = MI->getDebugLoc();
19730 MachineFunction *MF = MBB->getParent();
19731 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
19732 MachineRegisterInfo &MRI = MF->getRegInfo();
19734 const BasicBlock *BB = MBB->getBasicBlock();
19735 MachineFunction::iterator I = MBB;
19738 // Memory Reference
19739 MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
19740 MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
19743 unsigned MemOpndSlot = 0;
19745 unsigned CurOp = 0;
19747 DstReg = MI->getOperand(CurOp++).getReg();
19748 const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
19749 assert(RC->hasType(MVT::i32) && "Invalid destination!");
19750 unsigned mainDstReg = MRI.createVirtualRegister(RC);
19751 unsigned restoreDstReg = MRI.createVirtualRegister(RC);
19753 MemOpndSlot = CurOp;
19755 MVT PVT = getPointerTy();
19756 assert((PVT == MVT::i64 || PVT == MVT::i32) &&
19757 "Invalid Pointer Size!");
19759 // For v = setjmp(buf), we generate
19762 // buf[LabelOffset] = restoreMBB
19763 // SjLjSetup restoreMBB
19769 // v = phi(main, restore)
19774 MachineBasicBlock *thisMBB = MBB;
19775 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
19776 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
19777 MachineBasicBlock *restoreMBB = MF->CreateMachineBasicBlock(BB);
19778 MF->insert(I, mainMBB);
19779 MF->insert(I, sinkMBB);
19780 MF->push_back(restoreMBB);
19782 MachineInstrBuilder MIB;
19784 // Transfer the remainder of BB and its successor edges to sinkMBB.
19785 sinkMBB->splice(sinkMBB->begin(), MBB,
19786 std::next(MachineBasicBlock::iterator(MI)), MBB->end());
19787 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
19790 unsigned PtrStoreOpc = 0;
19791 unsigned LabelReg = 0;
19792 const int64_t LabelOffset = 1 * PVT.getStoreSize();
19793 Reloc::Model RM = MF->getTarget().getRelocationModel();
19794 bool UseImmLabel = (MF->getTarget().getCodeModel() == CodeModel::Small) &&
19795 (RM == Reloc::Static || RM == Reloc::DynamicNoPIC);
19797 // Prepare IP either in reg or imm.
19798 if (!UseImmLabel) {
19799 PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr;
19800 const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
19801 LabelReg = MRI.createVirtualRegister(PtrRC);
19802 if (Subtarget->is64Bit()) {
19803 MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA64r), LabelReg)
19807 .addMBB(restoreMBB)
19810 const X86InstrInfo *XII = static_cast<const X86InstrInfo*>(TII);
19811 MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA32r), LabelReg)
19812 .addReg(XII->getGlobalBaseReg(MF))
19815 .addMBB(restoreMBB, Subtarget->ClassifyBlockAddressReference())
19819 PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi;
19821 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrStoreOpc));
19822 for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
19823 if (i == X86::AddrDisp)
19824 MIB.addDisp(MI->getOperand(MemOpndSlot + i), LabelOffset);
19826 MIB.addOperand(MI->getOperand(MemOpndSlot + i));
19829 MIB.addReg(LabelReg);
19831 MIB.addMBB(restoreMBB);
19832 MIB.setMemRefs(MMOBegin, MMOEnd);
19834 MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::EH_SjLj_Setup))
19835 .addMBB(restoreMBB);
19837 const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo *>(
19838 MF->getSubtarget().getRegisterInfo());
19839 MIB.addRegMask(RegInfo->getNoPreservedMask());
19840 thisMBB->addSuccessor(mainMBB);
19841 thisMBB->addSuccessor(restoreMBB);
19845 BuildMI(mainMBB, DL, TII->get(X86::MOV32r0), mainDstReg);
19846 mainMBB->addSuccessor(sinkMBB);
19849 BuildMI(*sinkMBB, sinkMBB->begin(), DL,
19850 TII->get(X86::PHI), DstReg)
19851 .addReg(mainDstReg).addMBB(mainMBB)
19852 .addReg(restoreDstReg).addMBB(restoreMBB);
19855 BuildMI(restoreMBB, DL, TII->get(X86::MOV32ri), restoreDstReg).addImm(1);
19856 BuildMI(restoreMBB, DL, TII->get(X86::JMP_4)).addMBB(sinkMBB);
19857 restoreMBB->addSuccessor(sinkMBB);
19859 MI->eraseFromParent();
19863 MachineBasicBlock *
19864 X86TargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
19865 MachineBasicBlock *MBB) const {
19866 DebugLoc DL = MI->getDebugLoc();
19867 MachineFunction *MF = MBB->getParent();
19868 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
19869 MachineRegisterInfo &MRI = MF->getRegInfo();
19871 // Memory Reference
19872 MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
19873 MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
19875 MVT PVT = getPointerTy();
19876 assert((PVT == MVT::i64 || PVT == MVT::i32) &&
19877 "Invalid Pointer Size!");
19879 const TargetRegisterClass *RC =
19880 (PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass;
19881 unsigned Tmp = MRI.createVirtualRegister(RC);
19882 // Since FP is only updated here but NOT referenced, it's treated as GPR.
19883 const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo *>(
19884 MF->getSubtarget().getRegisterInfo());
19885 unsigned FP = (PVT == MVT::i64) ? X86::RBP : X86::EBP;
19886 unsigned SP = RegInfo->getStackRegister();
19888 MachineInstrBuilder MIB;
19890 const int64_t LabelOffset = 1 * PVT.getStoreSize();
19891 const int64_t SPOffset = 2 * PVT.getStoreSize();
19893 unsigned PtrLoadOpc = (PVT == MVT::i64) ? X86::MOV64rm : X86::MOV32rm;
19894 unsigned IJmpOpc = (PVT == MVT::i64) ? X86::JMP64r : X86::JMP32r;
19897 MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), FP);
19898 for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
19899 MIB.addOperand(MI->getOperand(i));
19900 MIB.setMemRefs(MMOBegin, MMOEnd);
19902 MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), Tmp);
19903 for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
19904 if (i == X86::AddrDisp)
19905 MIB.addDisp(MI->getOperand(i), LabelOffset);
19907 MIB.addOperand(MI->getOperand(i));
19909 MIB.setMemRefs(MMOBegin, MMOEnd);
19911 MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), SP);
19912 for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
19913 if (i == X86::AddrDisp)
19914 MIB.addDisp(MI->getOperand(i), SPOffset);
19916 MIB.addOperand(MI->getOperand(i));
19918 MIB.setMemRefs(MMOBegin, MMOEnd);
19920 BuildMI(*MBB, MI, DL, TII->get(IJmpOpc)).addReg(Tmp);
19922 MI->eraseFromParent();
19926 // Replace 213-type (isel default) FMA3 instructions with 231-type for
19927 // accumulator loops. Writing back to the accumulator allows the coalescer
19928 // to remove extra copies in the loop.
19929 MachineBasicBlock *
19930 X86TargetLowering::emitFMA3Instr(MachineInstr *MI,
19931 MachineBasicBlock *MBB) const {
19932 MachineOperand &AddendOp = MI->getOperand(3);
19934 // Bail out early if the addend isn't a register - we can't switch these.
19935 if (!AddendOp.isReg())
19938 MachineFunction &MF = *MBB->getParent();
19939 MachineRegisterInfo &MRI = MF.getRegInfo();
19941 // Check whether the addend is defined by a PHI:
19942 assert(MRI.hasOneDef(AddendOp.getReg()) && "Multiple defs in SSA?");
19943 MachineInstr &AddendDef = *MRI.def_instr_begin(AddendOp.getReg());
19944 if (!AddendDef.isPHI())
19947 // Look for the following pattern:
19949 // %addend = phi [%entry, 0], [%loop, %result]
19951 // %result<tied1> = FMA213 %m2<tied0>, %m1, %addend
19955 // %addend = phi [%entry, 0], [%loop, %result]
19957 // %result<tied1> = FMA231 %addend<tied0>, %m1, %m2
19959 for (unsigned i = 1, e = AddendDef.getNumOperands(); i < e; i += 2) {
19960 assert(AddendDef.getOperand(i).isReg());
19961 MachineOperand PHISrcOp = AddendDef.getOperand(i);
19962 MachineInstr &PHISrcInst = *MRI.def_instr_begin(PHISrcOp.getReg());
19963 if (&PHISrcInst == MI) {
19964 // Found a matching instruction.
19965 unsigned NewFMAOpc = 0;
19966 switch (MI->getOpcode()) {
19967 case X86::VFMADDPDr213r: NewFMAOpc = X86::VFMADDPDr231r; break;
19968 case X86::VFMADDPSr213r: NewFMAOpc = X86::VFMADDPSr231r; break;
19969 case X86::VFMADDSDr213r: NewFMAOpc = X86::VFMADDSDr231r; break;
19970 case X86::VFMADDSSr213r: NewFMAOpc = X86::VFMADDSSr231r; break;
19971 case X86::VFMSUBPDr213r: NewFMAOpc = X86::VFMSUBPDr231r; break;
19972 case X86::VFMSUBPSr213r: NewFMAOpc = X86::VFMSUBPSr231r; break;
19973 case X86::VFMSUBSDr213r: NewFMAOpc = X86::VFMSUBSDr231r; break;
19974 case X86::VFMSUBSSr213r: NewFMAOpc = X86::VFMSUBSSr231r; break;
19975 case X86::VFNMADDPDr213r: NewFMAOpc = X86::VFNMADDPDr231r; break;
19976 case X86::VFNMADDPSr213r: NewFMAOpc = X86::VFNMADDPSr231r; break;
19977 case X86::VFNMADDSDr213r: NewFMAOpc = X86::VFNMADDSDr231r; break;
19978 case X86::VFNMADDSSr213r: NewFMAOpc = X86::VFNMADDSSr231r; break;
19979 case X86::VFNMSUBPDr213r: NewFMAOpc = X86::VFNMSUBPDr231r; break;
19980 case X86::VFNMSUBPSr213r: NewFMAOpc = X86::VFNMSUBPSr231r; break;
19981 case X86::VFNMSUBSDr213r: NewFMAOpc = X86::VFNMSUBSDr231r; break;
19982 case X86::VFNMSUBSSr213r: NewFMAOpc = X86::VFNMSUBSSr231r; break;
19983 case X86::VFMADDPDr213rY: NewFMAOpc = X86::VFMADDPDr231rY; break;
19984 case X86::VFMADDPSr213rY: NewFMAOpc = X86::VFMADDPSr231rY; break;
19985 case X86::VFMSUBPDr213rY: NewFMAOpc = X86::VFMSUBPDr231rY; break;
19986 case X86::VFMSUBPSr213rY: NewFMAOpc = X86::VFMSUBPSr231rY; break;
19987 case X86::VFNMADDPDr213rY: NewFMAOpc = X86::VFNMADDPDr231rY; break;
19988 case X86::VFNMADDPSr213rY: NewFMAOpc = X86::VFNMADDPSr231rY; break;
19989 case X86::VFNMSUBPDr213rY: NewFMAOpc = X86::VFNMSUBPDr231rY; break;
19990 case X86::VFNMSUBPSr213rY: NewFMAOpc = X86::VFNMSUBPSr231rY; break;
19991 default: llvm_unreachable("Unrecognized FMA variant.");
19994 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
19995 MachineInstrBuilder MIB =
19996 BuildMI(MF, MI->getDebugLoc(), TII.get(NewFMAOpc))
19997 .addOperand(MI->getOperand(0))
19998 .addOperand(MI->getOperand(3))
19999 .addOperand(MI->getOperand(2))
20000 .addOperand(MI->getOperand(1));
20001 MBB->insert(MachineBasicBlock::iterator(MI), MIB);
20002 MI->eraseFromParent();
20009 MachineBasicBlock *
20010 X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
20011 MachineBasicBlock *BB) const {
20012 switch (MI->getOpcode()) {
20013 default: llvm_unreachable("Unexpected instr type to insert");
20014 case X86::TAILJMPd64:
20015 case X86::TAILJMPr64:
20016 case X86::TAILJMPm64:
20017 llvm_unreachable("TAILJMP64 would not be touched here.");
20018 case X86::TCRETURNdi64:
20019 case X86::TCRETURNri64:
20020 case X86::TCRETURNmi64:
20022 case X86::WIN_ALLOCA:
20023 return EmitLoweredWinAlloca(MI, BB);
20024 case X86::SEG_ALLOCA_32:
20025 case X86::SEG_ALLOCA_64:
20026 return EmitLoweredSegAlloca(MI, BB);
20027 case X86::TLSCall_32:
20028 case X86::TLSCall_64:
20029 return EmitLoweredTLSCall(MI, BB);
20030 case X86::CMOV_GR8:
20031 case X86::CMOV_FR32:
20032 case X86::CMOV_FR64:
20033 case X86::CMOV_V4F32:
20034 case X86::CMOV_V2F64:
20035 case X86::CMOV_V2I64:
20036 case X86::CMOV_V8F32:
20037 case X86::CMOV_V4F64:
20038 case X86::CMOV_V4I64:
20039 case X86::CMOV_V16F32:
20040 case X86::CMOV_V8F64:
20041 case X86::CMOV_V8I64:
20042 case X86::CMOV_GR16:
20043 case X86::CMOV_GR32:
20044 case X86::CMOV_RFP32:
20045 case X86::CMOV_RFP64:
20046 case X86::CMOV_RFP80:
20047 return EmitLoweredSelect(MI, BB);
20049 case X86::FP32_TO_INT16_IN_MEM:
20050 case X86::FP32_TO_INT32_IN_MEM:
20051 case X86::FP32_TO_INT64_IN_MEM:
20052 case X86::FP64_TO_INT16_IN_MEM:
20053 case X86::FP64_TO_INT32_IN_MEM:
20054 case X86::FP64_TO_INT64_IN_MEM:
20055 case X86::FP80_TO_INT16_IN_MEM:
20056 case X86::FP80_TO_INT32_IN_MEM:
20057 case X86::FP80_TO_INT64_IN_MEM: {
20058 MachineFunction *F = BB->getParent();
20059 const TargetInstrInfo *TII = F->getSubtarget().getInstrInfo();
20060 DebugLoc DL = MI->getDebugLoc();
20062 // Change the floating point control register to use "round towards zero"
20063 // mode when truncating to an integer value.
20064 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
20065 addFrameReference(BuildMI(*BB, MI, DL,
20066 TII->get(X86::FNSTCW16m)), CWFrameIdx);
20068 // Load the old value of the high byte of the control word...
20070 F->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
20071 addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
20074 // Set the high part to be round to zero...
20075 addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
20078 // Reload the modified control word now...
20079 addFrameReference(BuildMI(*BB, MI, DL,
20080 TII->get(X86::FLDCW16m)), CWFrameIdx);
20082 // Restore the memory image of control word to original value
20083 addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
20086 // Get the X86 opcode to use.
20088 switch (MI->getOpcode()) {
20089 default: llvm_unreachable("illegal opcode!");
20090 case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
20091 case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
20092 case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
20093 case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
20094 case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
20095 case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
20096 case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
20097 case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
20098 case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
20102 MachineOperand &Op = MI->getOperand(0);
20104 AM.BaseType = X86AddressMode::RegBase;
20105 AM.Base.Reg = Op.getReg();
20107 AM.BaseType = X86AddressMode::FrameIndexBase;
20108 AM.Base.FrameIndex = Op.getIndex();
20110 Op = MI->getOperand(1);
20112 AM.Scale = Op.getImm();
20113 Op = MI->getOperand(2);
20115 AM.IndexReg = Op.getImm();
20116 Op = MI->getOperand(3);
20117 if (Op.isGlobal()) {
20118 AM.GV = Op.getGlobal();
20120 AM.Disp = Op.getImm();
20122 addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
20123 .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
20125 // Reload the original control word now.
20126 addFrameReference(BuildMI(*BB, MI, DL,
20127 TII->get(X86::FLDCW16m)), CWFrameIdx);
20129 MI->eraseFromParent(); // The pseudo instruction is gone now.
20132 // String/text processing lowering.
20133 case X86::PCMPISTRM128REG:
20134 case X86::VPCMPISTRM128REG:
20135 case X86::PCMPISTRM128MEM:
20136 case X86::VPCMPISTRM128MEM:
20137 case X86::PCMPESTRM128REG:
20138 case X86::VPCMPESTRM128REG:
20139 case X86::PCMPESTRM128MEM:
20140 case X86::VPCMPESTRM128MEM:
20141 assert(Subtarget->hasSSE42() &&
20142 "Target must have SSE4.2 or AVX features enabled");
20143 return EmitPCMPSTRM(MI, BB, BB->getParent()->getSubtarget().getInstrInfo());
20145 // String/text processing lowering.
20146 case X86::PCMPISTRIREG:
20147 case X86::VPCMPISTRIREG:
20148 case X86::PCMPISTRIMEM:
20149 case X86::VPCMPISTRIMEM:
20150 case X86::PCMPESTRIREG:
20151 case X86::VPCMPESTRIREG:
20152 case X86::PCMPESTRIMEM:
20153 case X86::VPCMPESTRIMEM:
20154 assert(Subtarget->hasSSE42() &&
20155 "Target must have SSE4.2 or AVX features enabled");
20156 return EmitPCMPSTRI(MI, BB, BB->getParent()->getSubtarget().getInstrInfo());
20158 // Thread synchronization.
20160 return EmitMonitor(MI, BB, BB->getParent()->getSubtarget().getInstrInfo(),
20165 return EmitXBegin(MI, BB, BB->getParent()->getSubtarget().getInstrInfo());
20167 case X86::VASTART_SAVE_XMM_REGS:
20168 return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
20170 case X86::VAARG_64:
20171 return EmitVAARG64WithCustomInserter(MI, BB);
20173 case X86::EH_SjLj_SetJmp32:
20174 case X86::EH_SjLj_SetJmp64:
20175 return emitEHSjLjSetJmp(MI, BB);
20177 case X86::EH_SjLj_LongJmp32:
20178 case X86::EH_SjLj_LongJmp64:
20179 return emitEHSjLjLongJmp(MI, BB);
20181 case TargetOpcode::STACKMAP:
20182 case TargetOpcode::PATCHPOINT:
20183 return emitPatchPoint(MI, BB);
20185 case X86::VFMADDPDr213r:
20186 case X86::VFMADDPSr213r:
20187 case X86::VFMADDSDr213r:
20188 case X86::VFMADDSSr213r:
20189 case X86::VFMSUBPDr213r:
20190 case X86::VFMSUBPSr213r:
20191 case X86::VFMSUBSDr213r:
20192 case X86::VFMSUBSSr213r:
20193 case X86::VFNMADDPDr213r:
20194 case X86::VFNMADDPSr213r:
20195 case X86::VFNMADDSDr213r:
20196 case X86::VFNMADDSSr213r:
20197 case X86::VFNMSUBPDr213r:
20198 case X86::VFNMSUBPSr213r:
20199 case X86::VFNMSUBSDr213r:
20200 case X86::VFNMSUBSSr213r:
20201 case X86::VFMADDPDr213rY:
20202 case X86::VFMADDPSr213rY:
20203 case X86::VFMSUBPDr213rY:
20204 case X86::VFMSUBPSr213rY:
20205 case X86::VFNMADDPDr213rY:
20206 case X86::VFNMADDPSr213rY:
20207 case X86::VFNMSUBPDr213rY:
20208 case X86::VFNMSUBPSr213rY:
20209 return emitFMA3Instr(MI, BB);
20213 //===----------------------------------------------------------------------===//
20214 // X86 Optimization Hooks
20215 //===----------------------------------------------------------------------===//
20217 void X86TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
20220 const SelectionDAG &DAG,
20221 unsigned Depth) const {
20222 unsigned BitWidth = KnownZero.getBitWidth();
20223 unsigned Opc = Op.getOpcode();
20224 assert((Opc >= ISD::BUILTIN_OP_END ||
20225 Opc == ISD::INTRINSIC_WO_CHAIN ||
20226 Opc == ISD::INTRINSIC_W_CHAIN ||
20227 Opc == ISD::INTRINSIC_VOID) &&
20228 "Should use MaskedValueIsZero if you don't know whether Op"
20229 " is a target node!");
20231 KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything.
20245 // These nodes' second result is a boolean.
20246 if (Op.getResNo() == 0)
20249 case X86ISD::SETCC:
20250 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
20252 case ISD::INTRINSIC_WO_CHAIN: {
20253 unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
20254 unsigned NumLoBits = 0;
20257 case Intrinsic::x86_sse_movmsk_ps:
20258 case Intrinsic::x86_avx_movmsk_ps_256:
20259 case Intrinsic::x86_sse2_movmsk_pd:
20260 case Intrinsic::x86_avx_movmsk_pd_256:
20261 case Intrinsic::x86_mmx_pmovmskb:
20262 case Intrinsic::x86_sse2_pmovmskb_128:
20263 case Intrinsic::x86_avx2_pmovmskb: {
20264 // High bits of movmskp{s|d}, pmovmskb are known zero.
20266 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
20267 case Intrinsic::x86_sse_movmsk_ps: NumLoBits = 4; break;
20268 case Intrinsic::x86_avx_movmsk_ps_256: NumLoBits = 8; break;
20269 case Intrinsic::x86_sse2_movmsk_pd: NumLoBits = 2; break;
20270 case Intrinsic::x86_avx_movmsk_pd_256: NumLoBits = 4; break;
20271 case Intrinsic::x86_mmx_pmovmskb: NumLoBits = 8; break;
20272 case Intrinsic::x86_sse2_pmovmskb_128: NumLoBits = 16; break;
20273 case Intrinsic::x86_avx2_pmovmskb: NumLoBits = 32; break;
20275 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
20284 unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(
20286 const SelectionDAG &,
20287 unsigned Depth) const {
20288 // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
20289 if (Op.getOpcode() == X86ISD::SETCC_CARRY)
20290 return Op.getValueType().getScalarType().getSizeInBits();
20296 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
20297 /// node is a GlobalAddress + offset.
20298 bool X86TargetLowering::isGAPlusOffset(SDNode *N,
20299 const GlobalValue* &GA,
20300 int64_t &Offset) const {
20301 if (N->getOpcode() == X86ISD::Wrapper) {
20302 if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
20303 GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
20304 Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
20308 return TargetLowering::isGAPlusOffset(N, GA, Offset);
20311 /// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
20312 /// same as extracting the high 128-bit part of 256-bit vector and then
20313 /// inserting the result into the low part of a new 256-bit vector
20314 static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
20315 EVT VT = SVOp->getValueType(0);
20316 unsigned NumElems = VT.getVectorNumElements();
20318 // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
20319 for (unsigned i = 0, j = NumElems/2; i != NumElems/2; ++i, ++j)
20320 if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
20321 SVOp->getMaskElt(j) >= 0)
20327 /// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
20328 /// same as extracting the low 128-bit part of 256-bit vector and then
20329 /// inserting the result into the high part of a new 256-bit vector
20330 static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
20331 EVT VT = SVOp->getValueType(0);
20332 unsigned NumElems = VT.getVectorNumElements();
20334 // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
20335 for (unsigned i = NumElems/2, j = 0; i != NumElems; ++i, ++j)
20336 if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
20337 SVOp->getMaskElt(j) >= 0)
20343 /// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
20344 static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
20345 TargetLowering::DAGCombinerInfo &DCI,
20346 const X86Subtarget* Subtarget) {
20348 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
20349 SDValue V1 = SVOp->getOperand(0);
20350 SDValue V2 = SVOp->getOperand(1);
20351 EVT VT = SVOp->getValueType(0);
20352 unsigned NumElems = VT.getVectorNumElements();
20354 if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
20355 V2.getOpcode() == ISD::CONCAT_VECTORS) {
20359 // V UNDEF BUILD_VECTOR UNDEF
20361 // CONCAT_VECTOR CONCAT_VECTOR
20364 // RESULT: V + zero extended
20366 if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
20367 V2.getOperand(1).getOpcode() != ISD::UNDEF ||
20368 V1.getOperand(1).getOpcode() != ISD::UNDEF)
20371 if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
20374 // To match the shuffle mask, the first half of the mask should
20375 // be exactly the first vector, and all the rest a splat with the
20376 // first element of the second one.
20377 for (unsigned i = 0; i != NumElems/2; ++i)
20378 if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
20379 !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
20382 // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
20383 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
20384 if (Ld->hasNUsesOfValue(1, 0)) {
20385 SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
20386 SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
20388 DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops,
20390 Ld->getPointerInfo(),
20391 Ld->getAlignment(),
20392 false/*isVolatile*/, true/*ReadMem*/,
20393 false/*WriteMem*/);
20395 // Make sure the newly-created LOAD is in the same position as Ld in
20396 // terms of dependency. We create a TokenFactor for Ld and ResNode,
20397 // and update uses of Ld's output chain to use the TokenFactor.
20398 if (Ld->hasAnyUseOfValue(1)) {
20399 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
20400 SDValue(Ld, 1), SDValue(ResNode.getNode(), 1));
20401 DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), NewChain);
20402 DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(Ld, 1),
20403 SDValue(ResNode.getNode(), 1));
20406 return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
20410 // Emit a zeroed vector and insert the desired subvector on its
20412 SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
20413 SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl);
20414 return DCI.CombineTo(N, InsV);
20417 //===--------------------------------------------------------------------===//
20418 // Combine some shuffles into subvector extracts and inserts:
20421 // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
20422 if (isShuffleHigh128VectorInsertLow(SVOp)) {
20423 SDValue V = Extract128BitVector(V1, NumElems/2, DAG, dl);
20424 SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, 0, DAG, dl);
20425 return DCI.CombineTo(N, InsV);
20428 // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
20429 if (isShuffleLow128VectorInsertHigh(SVOp)) {
20430 SDValue V = Extract128BitVector(V1, 0, DAG, dl);
20431 SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, NumElems/2, DAG, dl);
20432 return DCI.CombineTo(N, InsV);
20438 /// \brief Combine an arbitrary chain of shuffles into a single instruction if
20441 /// This is the leaf of the recursive combinine below. When we have found some
20442 /// chain of single-use x86 shuffle instructions and accumulated the combined
20443 /// shuffle mask represented by them, this will try to pattern match that mask
20444 /// into either a single instruction if there is a special purpose instruction
20445 /// for this operation, or into a PSHUFB instruction which is a fully general
20446 /// instruction but should only be used to replace chains over a certain depth.
20447 static bool combineX86ShuffleChain(SDValue Op, SDValue Root, ArrayRef<int> Mask,
20448 int Depth, bool HasPSHUFB, SelectionDAG &DAG,
20449 TargetLowering::DAGCombinerInfo &DCI,
20450 const X86Subtarget *Subtarget) {
20451 assert(!Mask.empty() && "Cannot combine an empty shuffle mask!");
20453 // Find the operand that enters the chain. Note that multiple uses are OK
20454 // here, we're not going to remove the operand we find.
20455 SDValue Input = Op.getOperand(0);
20456 while (Input.getOpcode() == ISD::BITCAST)
20457 Input = Input.getOperand(0);
20459 MVT VT = Input.getSimpleValueType();
20460 MVT RootVT = Root.getSimpleValueType();
20463 // Just remove no-op shuffle masks.
20464 if (Mask.size() == 1) {
20465 DCI.CombineTo(Root.getNode(), DAG.getNode(ISD::BITCAST, DL, RootVT, Input),
20470 // Use the float domain if the operand type is a floating point type.
20471 bool FloatDomain = VT.isFloatingPoint();
20473 // For floating point shuffles, we don't have free copies in the shuffle
20474 // instructions or the ability to load as part of the instruction, so
20475 // canonicalize their shuffles to UNPCK or MOV variants.
20477 // Note that even with AVX we prefer the PSHUFD form of shuffle for integer
20478 // vectors because it can have a load folded into it that UNPCK cannot. This
20479 // doesn't preclude something switching to the shorter encoding post-RA.
20481 if (Mask.equals(0, 0) || Mask.equals(1, 1)) {
20482 bool Lo = Mask.equals(0, 0);
20485 // Check if we have SSE3 which will let us use MOVDDUP. That instruction
20486 // is no slower than UNPCKLPD but has the option to fold the input operand
20487 // into even an unaligned memory load.
20488 if (Lo && Subtarget->hasSSE3()) {
20489 Shuffle = X86ISD::MOVDDUP;
20490 ShuffleVT = MVT::v2f64;
20492 // We have MOVLHPS and MOVHLPS throughout SSE and they encode smaller
20493 // than the UNPCK variants.
20494 Shuffle = Lo ? X86ISD::MOVLHPS : X86ISD::MOVHLPS;
20495 ShuffleVT = MVT::v4f32;
20497 if (Depth == 1 && Root->getOpcode() == Shuffle)
20498 return false; // Nothing to do!
20499 Op = DAG.getNode(ISD::BITCAST, DL, ShuffleVT, Input);
20500 DCI.AddToWorklist(Op.getNode());
20501 if (Shuffle == X86ISD::MOVDDUP)
20502 Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op);
20504 Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op, Op);
20505 DCI.AddToWorklist(Op.getNode());
20506 DCI.CombineTo(Root.getNode(), DAG.getNode(ISD::BITCAST, DL, RootVT, Op),
20510 if (Subtarget->hasSSE3() &&
20511 (Mask.equals(0, 0, 2, 2) || Mask.equals(1, 1, 3, 3))) {
20512 bool Lo = Mask.equals(0, 0, 2, 2);
20513 unsigned Shuffle = Lo ? X86ISD::MOVSLDUP : X86ISD::MOVSHDUP;
20514 MVT ShuffleVT = MVT::v4f32;
20515 if (Depth == 1 && Root->getOpcode() == Shuffle)
20516 return false; // Nothing to do!
20517 Op = DAG.getNode(ISD::BITCAST, DL, ShuffleVT, Input);
20518 DCI.AddToWorklist(Op.getNode());
20519 Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op);
20520 DCI.AddToWorklist(Op.getNode());
20521 DCI.CombineTo(Root.getNode(), DAG.getNode(ISD::BITCAST, DL, RootVT, Op),
20525 if (Mask.equals(0, 0, 1, 1) || Mask.equals(2, 2, 3, 3)) {
20526 bool Lo = Mask.equals(0, 0, 1, 1);
20527 unsigned Shuffle = Lo ? X86ISD::UNPCKL : X86ISD::UNPCKH;
20528 MVT ShuffleVT = MVT::v4f32;
20529 if (Depth == 1 && Root->getOpcode() == Shuffle)
20530 return false; // Nothing to do!
20531 Op = DAG.getNode(ISD::BITCAST, DL, ShuffleVT, Input);
20532 DCI.AddToWorklist(Op.getNode());
20533 Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op, Op);
20534 DCI.AddToWorklist(Op.getNode());
20535 DCI.CombineTo(Root.getNode(), DAG.getNode(ISD::BITCAST, DL, RootVT, Op),
20541 // We always canonicalize the 8 x i16 and 16 x i8 shuffles into their UNPCK
20542 // variants as none of these have single-instruction variants that are
20543 // superior to the UNPCK formulation.
20544 if (!FloatDomain &&
20545 (Mask.equals(0, 0, 1, 1, 2, 2, 3, 3) ||
20546 Mask.equals(4, 4, 5, 5, 6, 6, 7, 7) ||
20547 Mask.equals(0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7) ||
20548 Mask.equals(8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15,
20550 bool Lo = Mask[0] == 0;
20551 unsigned Shuffle = Lo ? X86ISD::UNPCKL : X86ISD::UNPCKH;
20552 if (Depth == 1 && Root->getOpcode() == Shuffle)
20553 return false; // Nothing to do!
20555 switch (Mask.size()) {
20557 ShuffleVT = MVT::v8i16;
20560 ShuffleVT = MVT::v16i8;
20563 llvm_unreachable("Impossible mask size!");
20565 Op = DAG.getNode(ISD::BITCAST, DL, ShuffleVT, Input);
20566 DCI.AddToWorklist(Op.getNode());
20567 Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op, Op);
20568 DCI.AddToWorklist(Op.getNode());
20569 DCI.CombineTo(Root.getNode(), DAG.getNode(ISD::BITCAST, DL, RootVT, Op),
20574 // Don't try to re-form single instruction chains under any circumstances now
20575 // that we've done encoding canonicalization for them.
20579 // If we have 3 or more shuffle instructions or a chain involving PSHUFB, we
20580 // can replace them with a single PSHUFB instruction profitably. Intel's
20581 // manuals suggest only using PSHUFB if doing so replacing 5 instructions, but
20582 // in practice PSHUFB tends to be *very* fast so we're more aggressive.
20583 if ((Depth >= 3 || HasPSHUFB) && Subtarget->hasSSSE3()) {
20584 SmallVector<SDValue, 16> PSHUFBMask;
20585 assert(Mask.size() <= 16 && "Can't shuffle elements smaller than bytes!");
20586 int Ratio = 16 / Mask.size();
20587 for (unsigned i = 0; i < 16; ++i) {
20588 if (Mask[i / Ratio] == SM_SentinelUndef) {
20589 PSHUFBMask.push_back(DAG.getUNDEF(MVT::i8));
20592 int M = Mask[i / Ratio] != SM_SentinelZero
20593 ? Ratio * Mask[i / Ratio] + i % Ratio
20595 PSHUFBMask.push_back(DAG.getConstant(M, MVT::i8));
20597 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Input);
20598 DCI.AddToWorklist(Op.getNode());
20599 SDValue PSHUFBMaskOp =
20600 DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v16i8, PSHUFBMask);
20601 DCI.AddToWorklist(PSHUFBMaskOp.getNode());
20602 Op = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8, Op, PSHUFBMaskOp);
20603 DCI.AddToWorklist(Op.getNode());
20604 DCI.CombineTo(Root.getNode(), DAG.getNode(ISD::BITCAST, DL, RootVT, Op),
20609 // Failed to find any combines.
20613 /// \brief Fully generic combining of x86 shuffle instructions.
20615 /// This should be the last combine run over the x86 shuffle instructions. Once
20616 /// they have been fully optimized, this will recursively consider all chains
20617 /// of single-use shuffle instructions, build a generic model of the cumulative
20618 /// shuffle operation, and check for simpler instructions which implement this
20619 /// operation. We use this primarily for two purposes:
20621 /// 1) Collapse generic shuffles to specialized single instructions when
20622 /// equivalent. In most cases, this is just an encoding size win, but
20623 /// sometimes we will collapse multiple generic shuffles into a single
20624 /// special-purpose shuffle.
20625 /// 2) Look for sequences of shuffle instructions with 3 or more total
20626 /// instructions, and replace them with the slightly more expensive SSSE3
20627 /// PSHUFB instruction if available. We do this as the last combining step
20628 /// to ensure we avoid using PSHUFB if we can implement the shuffle with
20629 /// a suitable short sequence of other instructions. The PHUFB will either
20630 /// use a register or have to read from memory and so is slightly (but only
20631 /// slightly) more expensive than the other shuffle instructions.
20633 /// Because this is inherently a quadratic operation (for each shuffle in
20634 /// a chain, we recurse up the chain), the depth is limited to 8 instructions.
20635 /// This should never be an issue in practice as the shuffle lowering doesn't
20636 /// produce sequences of more than 8 instructions.
20638 /// FIXME: We will currently miss some cases where the redundant shuffling
20639 /// would simplify under the threshold for PSHUFB formation because of
20640 /// combine-ordering. To fix this, we should do the redundant instruction
20641 /// combining in this recursive walk.
20642 static bool combineX86ShufflesRecursively(SDValue Op, SDValue Root,
20643 ArrayRef<int> RootMask,
20644 int Depth, bool HasPSHUFB,
20646 TargetLowering::DAGCombinerInfo &DCI,
20647 const X86Subtarget *Subtarget) {
20648 // Bound the depth of our recursive combine because this is ultimately
20649 // quadratic in nature.
20653 // Directly rip through bitcasts to find the underlying operand.
20654 while (Op.getOpcode() == ISD::BITCAST && Op.getOperand(0).hasOneUse())
20655 Op = Op.getOperand(0);
20657 MVT VT = Op.getSimpleValueType();
20658 if (!VT.isVector())
20659 return false; // Bail if we hit a non-vector.
20660 // FIXME: This routine should be taught about 256-bit shuffles, or a 256-bit
20661 // version should be added.
20662 if (VT.getSizeInBits() != 128)
20665 assert(Root.getSimpleValueType().isVector() &&
20666 "Shuffles operate on vector types!");
20667 assert(VT.getSizeInBits() == Root.getSimpleValueType().getSizeInBits() &&
20668 "Can only combine shuffles of the same vector register size.");
20670 if (!isTargetShuffle(Op.getOpcode()))
20672 SmallVector<int, 16> OpMask;
20674 bool HaveMask = getTargetShuffleMask(Op.getNode(), VT, OpMask, IsUnary);
20675 // We only can combine unary shuffles which we can decode the mask for.
20676 if (!HaveMask || !IsUnary)
20679 assert(VT.getVectorNumElements() == OpMask.size() &&
20680 "Different mask size from vector size!");
20681 assert(((RootMask.size() > OpMask.size() &&
20682 RootMask.size() % OpMask.size() == 0) ||
20683 (OpMask.size() > RootMask.size() &&
20684 OpMask.size() % RootMask.size() == 0) ||
20685 OpMask.size() == RootMask.size()) &&
20686 "The smaller number of elements must divide the larger.");
20687 int RootRatio = std::max<int>(1, OpMask.size() / RootMask.size());
20688 int OpRatio = std::max<int>(1, RootMask.size() / OpMask.size());
20689 assert(((RootRatio == 1 && OpRatio == 1) ||
20690 (RootRatio == 1) != (OpRatio == 1)) &&
20691 "Must not have a ratio for both incoming and op masks!");
20693 SmallVector<int, 16> Mask;
20694 Mask.reserve(std::max(OpMask.size(), RootMask.size()));
20696 // Merge this shuffle operation's mask into our accumulated mask. Note that
20697 // this shuffle's mask will be the first applied to the input, followed by the
20698 // root mask to get us all the way to the root value arrangement. The reason
20699 // for this order is that we are recursing up the operation chain.
20700 for (int i = 0, e = std::max(OpMask.size(), RootMask.size()); i < e; ++i) {
20701 int RootIdx = i / RootRatio;
20702 if (RootMask[RootIdx] < 0) {
20703 // This is a zero or undef lane, we're done.
20704 Mask.push_back(RootMask[RootIdx]);
20708 int RootMaskedIdx = RootMask[RootIdx] * RootRatio + i % RootRatio;
20709 int OpIdx = RootMaskedIdx / OpRatio;
20710 if (OpMask[OpIdx] < 0) {
20711 // The incoming lanes are zero or undef, it doesn't matter which ones we
20713 Mask.push_back(OpMask[OpIdx]);
20717 // Ok, we have non-zero lanes, map them through.
20718 Mask.push_back(OpMask[OpIdx] * OpRatio +
20719 RootMaskedIdx % OpRatio);
20722 // See if we can recurse into the operand to combine more things.
20723 switch (Op.getOpcode()) {
20724 case X86ISD::PSHUFB:
20726 case X86ISD::PSHUFD:
20727 case X86ISD::PSHUFHW:
20728 case X86ISD::PSHUFLW:
20729 if (Op.getOperand(0).hasOneUse() &&
20730 combineX86ShufflesRecursively(Op.getOperand(0), Root, Mask, Depth + 1,
20731 HasPSHUFB, DAG, DCI, Subtarget))
20735 case X86ISD::UNPCKL:
20736 case X86ISD::UNPCKH:
20737 assert(Op.getOperand(0) == Op.getOperand(1) && "We only combine unary shuffles!");
20738 // We can't check for single use, we have to check that this shuffle is the only user.
20739 if (Op->isOnlyUserOf(Op.getOperand(0).getNode()) &&
20740 combineX86ShufflesRecursively(Op.getOperand(0), Root, Mask, Depth + 1,
20741 HasPSHUFB, DAG, DCI, Subtarget))
20746 // Minor canonicalization of the accumulated shuffle mask to make it easier
20747 // to match below. All this does is detect masks with squential pairs of
20748 // elements, and shrink them to the half-width mask. It does this in a loop
20749 // so it will reduce the size of the mask to the minimal width mask which
20750 // performs an equivalent shuffle.
20751 SmallVector<int, 16> WidenedMask;
20752 while (Mask.size() > 1 && canWidenShuffleElements(Mask, WidenedMask)) {
20753 Mask = std::move(WidenedMask);
20754 WidenedMask.clear();
20757 return combineX86ShuffleChain(Op, Root, Mask, Depth, HasPSHUFB, DAG, DCI,
20761 /// \brief Get the PSHUF-style mask from PSHUF node.
20763 /// This is a very minor wrapper around getTargetShuffleMask to easy forming v4
20764 /// PSHUF-style masks that can be reused with such instructions.
20765 static SmallVector<int, 4> getPSHUFShuffleMask(SDValue N) {
20766 SmallVector<int, 4> Mask;
20768 bool HaveMask = getTargetShuffleMask(N.getNode(), N.getSimpleValueType(), Mask, IsUnary);
20772 switch (N.getOpcode()) {
20773 case X86ISD::PSHUFD:
20775 case X86ISD::PSHUFLW:
20778 case X86ISD::PSHUFHW:
20779 Mask.erase(Mask.begin(), Mask.begin() + 4);
20780 for (int &M : Mask)
20784 llvm_unreachable("No valid shuffle instruction found!");
20788 /// \brief Search for a combinable shuffle across a chain ending in pshufd.
20790 /// We walk up the chain and look for a combinable shuffle, skipping over
20791 /// shuffles that we could hoist this shuffle's transformation past without
20792 /// altering anything.
20794 combineRedundantDWordShuffle(SDValue N, MutableArrayRef<int> Mask,
20796 TargetLowering::DAGCombinerInfo &DCI) {
20797 assert(N.getOpcode() == X86ISD::PSHUFD &&
20798 "Called with something other than an x86 128-bit half shuffle!");
20801 // Walk up a single-use chain looking for a combinable shuffle. Keep a stack
20802 // of the shuffles in the chain so that we can form a fresh chain to replace
20804 SmallVector<SDValue, 8> Chain;
20805 SDValue V = N.getOperand(0);
20806 for (; V.hasOneUse(); V = V.getOperand(0)) {
20807 switch (V.getOpcode()) {
20809 return SDValue(); // Nothing combined!
20812 // Skip bitcasts as we always know the type for the target specific
20816 case X86ISD::PSHUFD:
20817 // Found another dword shuffle.
20820 case X86ISD::PSHUFLW:
20821 // Check that the low words (being shuffled) are the identity in the
20822 // dword shuffle, and the high words are self-contained.
20823 if (Mask[0] != 0 || Mask[1] != 1 ||
20824 !(Mask[2] >= 2 && Mask[2] < 4 && Mask[3] >= 2 && Mask[3] < 4))
20827 Chain.push_back(V);
20830 case X86ISD::PSHUFHW:
20831 // Check that the high words (being shuffled) are the identity in the
20832 // dword shuffle, and the low words are self-contained.
20833 if (Mask[2] != 2 || Mask[3] != 3 ||
20834 !(Mask[0] >= 0 && Mask[0] < 2 && Mask[1] >= 0 && Mask[1] < 2))
20837 Chain.push_back(V);
20840 case X86ISD::UNPCKL:
20841 case X86ISD::UNPCKH:
20842 // For either i8 -> i16 or i16 -> i32 unpacks, we can combine a dword
20843 // shuffle into a preceding word shuffle.
20844 if (V.getValueType() != MVT::v16i8 && V.getValueType() != MVT::v8i16)
20847 // Search for a half-shuffle which we can combine with.
20848 unsigned CombineOp =
20849 V.getOpcode() == X86ISD::UNPCKL ? X86ISD::PSHUFLW : X86ISD::PSHUFHW;
20850 if (V.getOperand(0) != V.getOperand(1) ||
20851 !V->isOnlyUserOf(V.getOperand(0).getNode()))
20853 Chain.push_back(V);
20854 V = V.getOperand(0);
20856 switch (V.getOpcode()) {
20858 return SDValue(); // Nothing to combine.
20860 case X86ISD::PSHUFLW:
20861 case X86ISD::PSHUFHW:
20862 if (V.getOpcode() == CombineOp)
20865 Chain.push_back(V);
20869 V = V.getOperand(0);
20873 } while (V.hasOneUse());
20876 // Break out of the loop if we break out of the switch.
20880 if (!V.hasOneUse())
20881 // We fell out of the loop without finding a viable combining instruction.
20884 // Merge this node's mask and our incoming mask.
20885 SmallVector<int, 4> VMask = getPSHUFShuffleMask(V);
20886 for (int &M : Mask)
20888 V = DAG.getNode(V.getOpcode(), DL, V.getValueType(), V.getOperand(0),
20889 getV4X86ShuffleImm8ForMask(Mask, DAG));
20891 // Rebuild the chain around this new shuffle.
20892 while (!Chain.empty()) {
20893 SDValue W = Chain.pop_back_val();
20895 if (V.getValueType() != W.getOperand(0).getValueType())
20896 V = DAG.getNode(ISD::BITCAST, DL, W.getOperand(0).getValueType(), V);
20898 switch (W.getOpcode()) {
20900 llvm_unreachable("Only PSHUF and UNPCK instructions get here!");
20902 case X86ISD::UNPCKL:
20903 case X86ISD::UNPCKH:
20904 V = DAG.getNode(W.getOpcode(), DL, W.getValueType(), V, V);
20907 case X86ISD::PSHUFD:
20908 case X86ISD::PSHUFLW:
20909 case X86ISD::PSHUFHW:
20910 V = DAG.getNode(W.getOpcode(), DL, W.getValueType(), V, W.getOperand(1));
20914 if (V.getValueType() != N.getValueType())
20915 V = DAG.getNode(ISD::BITCAST, DL, N.getValueType(), V);
20917 // Return the new chain to replace N.
20921 /// \brief Search for a combinable shuffle across a chain ending in pshuflw or pshufhw.
20923 /// We walk up the chain, skipping shuffles of the other half and looking
20924 /// through shuffles which switch halves trying to find a shuffle of the same
20925 /// pair of dwords.
20926 static bool combineRedundantHalfShuffle(SDValue N, MutableArrayRef<int> Mask,
20928 TargetLowering::DAGCombinerInfo &DCI) {
20930 (N.getOpcode() == X86ISD::PSHUFLW || N.getOpcode() == X86ISD::PSHUFHW) &&
20931 "Called with something other than an x86 128-bit half shuffle!");
20933 unsigned CombineOpcode = N.getOpcode();
20935 // Walk up a single-use chain looking for a combinable shuffle.
20936 SDValue V = N.getOperand(0);
20937 for (; V.hasOneUse(); V = V.getOperand(0)) {
20938 switch (V.getOpcode()) {
20940 return false; // Nothing combined!
20943 // Skip bitcasts as we always know the type for the target specific
20947 case X86ISD::PSHUFLW:
20948 case X86ISD::PSHUFHW:
20949 if (V.getOpcode() == CombineOpcode)
20952 // Other-half shuffles are no-ops.
20955 // Break out of the loop if we break out of the switch.
20959 if (!V.hasOneUse())
20960 // We fell out of the loop without finding a viable combining instruction.
20963 // Combine away the bottom node as its shuffle will be accumulated into
20964 // a preceding shuffle.
20965 DCI.CombineTo(N.getNode(), N.getOperand(0), /*AddTo*/ true);
20967 // Record the old value.
20970 // Merge this node's mask and our incoming mask (adjusted to account for all
20971 // the pshufd instructions encountered).
20972 SmallVector<int, 4> VMask = getPSHUFShuffleMask(V);
20973 for (int &M : Mask)
20975 V = DAG.getNode(V.getOpcode(), DL, MVT::v8i16, V.getOperand(0),
20976 getV4X86ShuffleImm8ForMask(Mask, DAG));
20978 // Check that the shuffles didn't cancel each other out. If not, we need to
20979 // combine to the new one.
20981 // Replace the combinable shuffle with the combined one, updating all users
20982 // so that we re-evaluate the chain here.
20983 DCI.CombineTo(Old.getNode(), V, /*AddTo*/ true);
20988 /// \brief Try to combine x86 target specific shuffles.
20989 static SDValue PerformTargetShuffleCombine(SDValue N, SelectionDAG &DAG,
20990 TargetLowering::DAGCombinerInfo &DCI,
20991 const X86Subtarget *Subtarget) {
20993 MVT VT = N.getSimpleValueType();
20994 SmallVector<int, 4> Mask;
20996 switch (N.getOpcode()) {
20997 case X86ISD::PSHUFD:
20998 case X86ISD::PSHUFLW:
20999 case X86ISD::PSHUFHW:
21000 Mask = getPSHUFShuffleMask(N);
21001 assert(Mask.size() == 4);
21007 // Nuke no-op shuffles that show up after combining.
21008 if (isNoopShuffleMask(Mask))
21009 return DCI.CombineTo(N.getNode(), N.getOperand(0), /*AddTo*/ true);
21011 // Look for simplifications involving one or two shuffle instructions.
21012 SDValue V = N.getOperand(0);
21013 switch (N.getOpcode()) {
21016 case X86ISD::PSHUFLW:
21017 case X86ISD::PSHUFHW:
21018 assert(VT == MVT::v8i16);
21021 if (combineRedundantHalfShuffle(N, Mask, DAG, DCI))
21022 return SDValue(); // We combined away this shuffle, so we're done.
21024 // See if this reduces to a PSHUFD which is no more expensive and can
21025 // combine with more operations. Note that it has to at least flip the
21026 // dwords as otherwise it would have been removed as a no-op.
21027 if (Mask[0] == 2 && Mask[1] == 3 && Mask[2] == 0 && Mask[3] == 1) {
21028 int DMask[] = {0, 1, 2, 3};
21029 int DOffset = N.getOpcode() == X86ISD::PSHUFLW ? 0 : 2;
21030 DMask[DOffset + 0] = DOffset + 1;
21031 DMask[DOffset + 1] = DOffset + 0;
21032 V = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, V);
21033 DCI.AddToWorklist(V.getNode());
21034 V = DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, V,
21035 getV4X86ShuffleImm8ForMask(DMask, DAG));
21036 DCI.AddToWorklist(V.getNode());
21037 return DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V);
21040 // Look for shuffle patterns which can be implemented as a single unpack.
21041 // FIXME: This doesn't handle the location of the PSHUFD generically, and
21042 // only works when we have a PSHUFD followed by two half-shuffles.
21043 if (Mask[0] == Mask[1] && Mask[2] == Mask[3] &&
21044 (V.getOpcode() == X86ISD::PSHUFLW ||
21045 V.getOpcode() == X86ISD::PSHUFHW) &&
21046 V.getOpcode() != N.getOpcode() &&
21048 SDValue D = V.getOperand(0);
21049 while (D.getOpcode() == ISD::BITCAST && D.hasOneUse())
21050 D = D.getOperand(0);
21051 if (D.getOpcode() == X86ISD::PSHUFD && D.hasOneUse()) {
21052 SmallVector<int, 4> VMask = getPSHUFShuffleMask(V);
21053 SmallVector<int, 4> DMask = getPSHUFShuffleMask(D);
21054 int NOffset = N.getOpcode() == X86ISD::PSHUFLW ? 0 : 4;
21055 int VOffset = V.getOpcode() == X86ISD::PSHUFLW ? 0 : 4;
21057 for (int i = 0; i < 4; ++i) {
21058 WordMask[i + NOffset] = Mask[i] + NOffset;
21059 WordMask[i + VOffset] = VMask[i] + VOffset;
21061 // Map the word mask through the DWord mask.
21063 for (int i = 0; i < 8; ++i)
21064 MappedMask[i] = 2 * DMask[WordMask[i] / 2] + WordMask[i] % 2;
21065 const int UnpackLoMask[] = {0, 0, 1, 1, 2, 2, 3, 3};
21066 const int UnpackHiMask[] = {4, 4, 5, 5, 6, 6, 7, 7};
21067 if (std::equal(std::begin(MappedMask), std::end(MappedMask),
21068 std::begin(UnpackLoMask)) ||
21069 std::equal(std::begin(MappedMask), std::end(MappedMask),
21070 std::begin(UnpackHiMask))) {
21071 // We can replace all three shuffles with an unpack.
21072 V = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, D.getOperand(0));
21073 DCI.AddToWorklist(V.getNode());
21074 return DAG.getNode(MappedMask[0] == 0 ? X86ISD::UNPCKL
21076 DL, MVT::v8i16, V, V);
21083 case X86ISD::PSHUFD:
21084 if (SDValue NewN = combineRedundantDWordShuffle(N, Mask, DAG, DCI))
21093 /// \brief Try to combine a shuffle into a target-specific add-sub node.
21095 /// We combine this directly on the abstract vector shuffle nodes so it is
21096 /// easier to generically match. We also insert dummy vector shuffle nodes for
21097 /// the operands which explicitly discard the lanes which are unused by this
21098 /// operation to try to flow through the rest of the combiner the fact that
21099 /// they're unused.
21100 static SDValue combineShuffleToAddSub(SDNode *N, SelectionDAG &DAG) {
21102 EVT VT = N->getValueType(0);
21104 // We only handle target-independent shuffles.
21105 // FIXME: It would be easy and harmless to use the target shuffle mask
21106 // extraction tool to support more.
21107 if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
21110 auto *SVN = cast<ShuffleVectorSDNode>(N);
21111 ArrayRef<int> Mask = SVN->getMask();
21112 SDValue V1 = N->getOperand(0);
21113 SDValue V2 = N->getOperand(1);
21115 // We require the first shuffle operand to be the SUB node, and the second to
21116 // be the ADD node.
21117 // FIXME: We should support the commuted patterns.
21118 if (V1->getOpcode() != ISD::FSUB || V2->getOpcode() != ISD::FADD)
21121 // If there are other uses of these operations we can't fold them.
21122 if (!V1->hasOneUse() || !V2->hasOneUse())
21125 // Ensure that both operations have the same operands. Note that we can
21126 // commute the FADD operands.
21127 SDValue LHS = V1->getOperand(0), RHS = V1->getOperand(1);
21128 if ((V2->getOperand(0) != LHS || V2->getOperand(1) != RHS) &&
21129 (V2->getOperand(0) != RHS || V2->getOperand(1) != LHS))
21132 // We're looking for blends between FADD and FSUB nodes. We insist on these
21133 // nodes being lined up in a specific expected pattern.
21134 if (!(isShuffleEquivalent(Mask, 0, 3) ||
21135 isShuffleEquivalent(Mask, 0, 5, 2, 7) ||
21136 isShuffleEquivalent(Mask, 0, 9, 2, 11, 4, 13, 6, 15)))
21139 // Only specific types are legal at this point, assert so we notice if and
21140 // when these change.
21141 assert((VT == MVT::v4f32 || VT == MVT::v2f64 || VT == MVT::v8f32 ||
21142 VT == MVT::v4f64) &&
21143 "Unknown vector type encountered!");
21145 return DAG.getNode(X86ISD::ADDSUB, DL, VT, LHS, RHS);
21148 /// PerformShuffleCombine - Performs several different shuffle combines.
21149 static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
21150 TargetLowering::DAGCombinerInfo &DCI,
21151 const X86Subtarget *Subtarget) {
21153 SDValue N0 = N->getOperand(0);
21154 SDValue N1 = N->getOperand(1);
21155 EVT VT = N->getValueType(0);
21157 // Don't create instructions with illegal types after legalize types has run.
21158 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
21159 if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
21162 // If we have legalized the vector types, look for blends of FADD and FSUB
21163 // nodes that we can fuse into an ADDSUB node.
21164 if (TLI.isTypeLegal(VT) && Subtarget->hasSSE3())
21165 if (SDValue AddSub = combineShuffleToAddSub(N, DAG))
21168 // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
21169 if (Subtarget->hasFp256() && VT.is256BitVector() &&
21170 N->getOpcode() == ISD::VECTOR_SHUFFLE)
21171 return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
21173 // During Type Legalization, when promoting illegal vector types,
21174 // the backend might introduce new shuffle dag nodes and bitcasts.
21176 // This code performs the following transformation:
21177 // fold: (shuffle (bitcast (BINOP A, B)), Undef, <Mask>) ->
21178 // (shuffle (BINOP (bitcast A), (bitcast B)), Undef, <Mask>)
21180 // We do this only if both the bitcast and the BINOP dag nodes have
21181 // one use. Also, perform this transformation only if the new binary
21182 // operation is legal. This is to avoid introducing dag nodes that
21183 // potentially need to be further expanded (or custom lowered) into a
21184 // less optimal sequence of dag nodes.
21185 if (!DCI.isBeforeLegalize() && DCI.isBeforeLegalizeOps() &&
21186 N1.getOpcode() == ISD::UNDEF && N0.hasOneUse() &&
21187 N0.getOpcode() == ISD::BITCAST) {
21188 SDValue BC0 = N0.getOperand(0);
21189 EVT SVT = BC0.getValueType();
21190 unsigned Opcode = BC0.getOpcode();
21191 unsigned NumElts = VT.getVectorNumElements();
21193 if (BC0.hasOneUse() && SVT.isVector() &&
21194 SVT.getVectorNumElements() * 2 == NumElts &&
21195 TLI.isOperationLegal(Opcode, VT)) {
21196 bool CanFold = false;
21208 unsigned SVTNumElts = SVT.getVectorNumElements();
21209 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
21210 for (unsigned i = 0, e = SVTNumElts; i != e && CanFold; ++i)
21211 CanFold = SVOp->getMaskElt(i) == (int)(i * 2);
21212 for (unsigned i = SVTNumElts, e = NumElts; i != e && CanFold; ++i)
21213 CanFold = SVOp->getMaskElt(i) < 0;
21216 SDValue BC00 = DAG.getNode(ISD::BITCAST, dl, VT, BC0.getOperand(0));
21217 SDValue BC01 = DAG.getNode(ISD::BITCAST, dl, VT, BC0.getOperand(1));
21218 SDValue NewBinOp = DAG.getNode(BC0.getOpcode(), dl, VT, BC00, BC01);
21219 return DAG.getVectorShuffle(VT, dl, NewBinOp, N1, &SVOp->getMask()[0]);
21224 // Only handle 128 wide vector from here on.
21225 if (!VT.is128BitVector())
21228 // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
21229 // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
21230 // consecutive, non-overlapping, and in the right order.
21231 SmallVector<SDValue, 16> Elts;
21232 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
21233 Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
21235 SDValue LD = EltsFromConsecutiveLoads(VT, Elts, dl, DAG, true);
21239 if (isTargetShuffle(N->getOpcode())) {
21241 PerformTargetShuffleCombine(SDValue(N, 0), DAG, DCI, Subtarget);
21242 if (Shuffle.getNode())
21245 // Try recursively combining arbitrary sequences of x86 shuffle
21246 // instructions into higher-order shuffles. We do this after combining
21247 // specific PSHUF instruction sequences into their minimal form so that we
21248 // can evaluate how many specialized shuffle instructions are involved in
21249 // a particular chain.
21250 SmallVector<int, 1> NonceMask; // Just a placeholder.
21251 NonceMask.push_back(0);
21252 if (combineX86ShufflesRecursively(SDValue(N, 0), SDValue(N, 0), NonceMask,
21253 /*Depth*/ 1, /*HasPSHUFB*/ false, DAG,
21255 return SDValue(); // This routine will use CombineTo to replace N.
21261 /// PerformTruncateCombine - Converts truncate operation to
21262 /// a sequence of vector shuffle operations.
21263 /// It is possible when we truncate 256-bit vector to 128-bit vector
21264 static SDValue PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
21265 TargetLowering::DAGCombinerInfo &DCI,
21266 const X86Subtarget *Subtarget) {
21270 /// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
21271 /// specific shuffle of a load can be folded into a single element load.
21272 /// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
21273 /// shuffles have been customed lowered so we need to handle those here.
21274 static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
21275 TargetLowering::DAGCombinerInfo &DCI) {
21276 if (DCI.isBeforeLegalizeOps())
21279 SDValue InVec = N->getOperand(0);
21280 SDValue EltNo = N->getOperand(1);
21282 if (!isa<ConstantSDNode>(EltNo))
21285 EVT VT = InVec.getValueType();
21287 if (InVec.getOpcode() == ISD::BITCAST) {
21288 // Don't duplicate a load with other uses.
21289 if (!InVec.hasOneUse())
21291 EVT BCVT = InVec.getOperand(0).getValueType();
21292 if (BCVT.getVectorNumElements() != VT.getVectorNumElements())
21294 InVec = InVec.getOperand(0);
21297 if (!isTargetShuffle(InVec.getOpcode()))
21300 // Don't duplicate a load with other uses.
21301 if (!InVec.hasOneUse())
21304 SmallVector<int, 16> ShuffleMask;
21306 if (!getTargetShuffleMask(InVec.getNode(), VT.getSimpleVT(), ShuffleMask,
21310 // Select the input vector, guarding against out of range extract vector.
21311 unsigned NumElems = VT.getVectorNumElements();
21312 int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
21313 int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
21314 SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
21315 : InVec.getOperand(1);
21317 // If inputs to shuffle are the same for both ops, then allow 2 uses
21318 unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
21320 if (LdNode.getOpcode() == ISD::BITCAST) {
21321 // Don't duplicate a load with other uses.
21322 if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
21325 AllowedUses = 1; // only allow 1 load use if we have a bitcast
21326 LdNode = LdNode.getOperand(0);
21329 if (!ISD::isNormalLoad(LdNode.getNode()))
21332 LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
21334 if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
21337 EVT EltVT = N->getValueType(0);
21338 // If there's a bitcast before the shuffle, check if the load type and
21339 // alignment is valid.
21340 unsigned Align = LN0->getAlignment();
21341 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
21342 unsigned NewAlign = TLI.getDataLayout()->getABITypeAlignment(
21343 EltVT.getTypeForEVT(*DAG.getContext()));
21345 if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, EltVT))
21348 // All checks match so transform back to vector_shuffle so that DAG combiner
21349 // can finish the job
21352 // Create shuffle node taking into account the case that its a unary shuffle
21353 SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1);
21354 Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl,
21355 InVec.getOperand(0), Shuffle,
21357 Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
21358 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
21362 /// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
21363 /// generation and convert it from being a bunch of shuffles and extracts
21364 /// to a simple store and scalar loads to extract the elements.
21365 static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
21366 TargetLowering::DAGCombinerInfo &DCI) {
21367 SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
21368 if (NewOp.getNode())
21371 SDValue InputVector = N->getOperand(0);
21373 // Detect whether we are trying to convert from mmx to i32 and the bitcast
21374 // from mmx to v2i32 has a single usage.
21375 if (InputVector.getNode()->getOpcode() == llvm::ISD::BITCAST &&
21376 InputVector.getNode()->getOperand(0).getValueType() == MVT::x86mmx &&
21377 InputVector.hasOneUse() && N->getValueType(0) == MVT::i32)
21378 return DAG.getNode(X86ISD::MMX_MOVD2W, SDLoc(InputVector),
21379 N->getValueType(0),
21380 InputVector.getNode()->getOperand(0));
21382 // Only operate on vectors of 4 elements, where the alternative shuffling
21383 // gets to be more expensive.
21384 if (InputVector.getValueType() != MVT::v4i32)
21387 // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
21388 // single use which is a sign-extend or zero-extend, and all elements are
21390 SmallVector<SDNode *, 4> Uses;
21391 unsigned ExtractedElements = 0;
21392 for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
21393 UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
21394 if (UI.getUse().getResNo() != InputVector.getResNo())
21397 SDNode *Extract = *UI;
21398 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
21401 if (Extract->getValueType(0) != MVT::i32)
21403 if (!Extract->hasOneUse())
21405 if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
21406 Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
21408 if (!isa<ConstantSDNode>(Extract->getOperand(1)))
21411 // Record which element was extracted.
21412 ExtractedElements |=
21413 1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
21415 Uses.push_back(Extract);
21418 // If not all the elements were used, this may not be worthwhile.
21419 if (ExtractedElements != 15)
21422 // Ok, we've now decided to do the transformation.
21423 SDLoc dl(InputVector);
21425 // Store the value to a temporary stack slot.
21426 SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
21427 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
21428 MachinePointerInfo(), false, false, 0);
21430 // Replace each use (extract) with a load of the appropriate element.
21431 for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
21432 UE = Uses.end(); UI != UE; ++UI) {
21433 SDNode *Extract = *UI;
21435 // cOMpute the element's address.
21436 SDValue Idx = Extract->getOperand(1);
21438 InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
21439 uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
21440 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
21441 SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
21443 SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
21444 StackPtr, OffsetVal);
21446 // Load the scalar.
21447 SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
21448 ScalarAddr, MachinePointerInfo(),
21449 false, false, false, 0);
21451 // Replace the exact with the load.
21452 DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
21455 // The replacement was made in place; don't return anything.
21459 /// \brief Matches a VSELECT onto min/max or return 0 if the node doesn't match.
21460 static std::pair<unsigned, bool>
21461 matchIntegerMINMAX(SDValue Cond, EVT VT, SDValue LHS, SDValue RHS,
21462 SelectionDAG &DAG, const X86Subtarget *Subtarget) {
21463 if (!VT.isVector())
21464 return std::make_pair(0, false);
21466 bool NeedSplit = false;
21467 switch (VT.getSimpleVT().SimpleTy) {
21468 default: return std::make_pair(0, false);
21472 if (!Subtarget->hasAVX2())
21474 if (!Subtarget->hasAVX())
21475 return std::make_pair(0, false);
21480 if (!Subtarget->hasSSE2())
21481 return std::make_pair(0, false);
21484 // SSE2 has only a small subset of the operations.
21485 bool hasUnsigned = Subtarget->hasSSE41() ||
21486 (Subtarget->hasSSE2() && VT == MVT::v16i8);
21487 bool hasSigned = Subtarget->hasSSE41() ||
21488 (Subtarget->hasSSE2() && VT == MVT::v8i16);
21490 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
21493 // Check for x CC y ? x : y.
21494 if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
21495 DAG.isEqualTo(RHS, Cond.getOperand(1))) {
21500 Opc = hasUnsigned ? X86ISD::UMIN : 0; break;
21503 Opc = hasUnsigned ? X86ISD::UMAX : 0; break;
21506 Opc = hasSigned ? X86ISD::SMIN : 0; break;
21509 Opc = hasSigned ? X86ISD::SMAX : 0; break;
21511 // Check for x CC y ? y : x -- a min/max with reversed arms.
21512 } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
21513 DAG.isEqualTo(RHS, Cond.getOperand(0))) {
21518 Opc = hasUnsigned ? X86ISD::UMAX : 0; break;
21521 Opc = hasUnsigned ? X86ISD::UMIN : 0; break;
21524 Opc = hasSigned ? X86ISD::SMAX : 0; break;
21527 Opc = hasSigned ? X86ISD::SMIN : 0; break;
21531 return std::make_pair(Opc, NeedSplit);
21535 TransformVSELECTtoBlendVECTOR_SHUFFLE(SDNode *N, SelectionDAG &DAG,
21536 const X86Subtarget *Subtarget) {
21538 SDValue Cond = N->getOperand(0);
21539 SDValue LHS = N->getOperand(1);
21540 SDValue RHS = N->getOperand(2);
21542 if (Cond.getOpcode() == ISD::SIGN_EXTEND) {
21543 SDValue CondSrc = Cond->getOperand(0);
21544 if (CondSrc->getOpcode() == ISD::SIGN_EXTEND_INREG)
21545 Cond = CondSrc->getOperand(0);
21548 MVT VT = N->getSimpleValueType(0);
21549 MVT EltVT = VT.getVectorElementType();
21550 unsigned NumElems = VT.getVectorNumElements();
21551 // There is no blend with immediate in AVX-512.
21552 if (VT.is512BitVector())
21555 if (!Subtarget->hasSSE41() || EltVT == MVT::i8)
21557 if (!Subtarget->hasInt256() && VT == MVT::v16i16)
21560 if (!ISD::isBuildVectorOfConstantSDNodes(Cond.getNode()))
21563 // A vselect where all conditions and data are constants can be optimized into
21564 // a single vector load by SelectionDAGLegalize::ExpandBUILD_VECTOR().
21565 if (ISD::isBuildVectorOfConstantSDNodes(LHS.getNode()) &&
21566 ISD::isBuildVectorOfConstantSDNodes(RHS.getNode()))
21569 unsigned MaskValue = 0;
21570 if (!BUILD_VECTORtoBlendMask(cast<BuildVectorSDNode>(Cond), MaskValue))
21573 SmallVector<int, 8> ShuffleMask(NumElems, -1);
21574 for (unsigned i = 0; i < NumElems; ++i) {
21575 // Be sure we emit undef where we can.
21576 if (Cond.getOperand(i)->getOpcode() == ISD::UNDEF)
21577 ShuffleMask[i] = -1;
21579 ShuffleMask[i] = i + NumElems * ((MaskValue >> i) & 1);
21582 return DAG.getVectorShuffle(VT, dl, LHS, RHS, &ShuffleMask[0]);
21585 /// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
21587 static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
21588 TargetLowering::DAGCombinerInfo &DCI,
21589 const X86Subtarget *Subtarget) {
21591 SDValue Cond = N->getOperand(0);
21592 // Get the LHS/RHS of the select.
21593 SDValue LHS = N->getOperand(1);
21594 SDValue RHS = N->getOperand(2);
21595 EVT VT = LHS.getValueType();
21596 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
21598 // If we have SSE[12] support, try to form min/max nodes. SSE min/max
21599 // instructions match the semantics of the common C idiom x<y?x:y but not
21600 // x<=y?x:y, because of how they handle negative zero (which can be
21601 // ignored in unsafe-math mode).
21602 if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
21603 VT != MVT::f80 && TLI.isTypeLegal(VT) &&
21604 (Subtarget->hasSSE2() ||
21605 (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
21606 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
21608 unsigned Opcode = 0;
21609 // Check for x CC y ? x : y.
21610 if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
21611 DAG.isEqualTo(RHS, Cond.getOperand(1))) {
21615 // Converting this to a min would handle NaNs incorrectly, and swapping
21616 // the operands would cause it to handle comparisons between positive
21617 // and negative zero incorrectly.
21618 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
21619 if (!DAG.getTarget().Options.UnsafeFPMath &&
21620 !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
21622 std::swap(LHS, RHS);
21624 Opcode = X86ISD::FMIN;
21627 // Converting this to a min would handle comparisons between positive
21628 // and negative zero incorrectly.
21629 if (!DAG.getTarget().Options.UnsafeFPMath &&
21630 !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
21632 Opcode = X86ISD::FMIN;
21635 // Converting this to a min would handle both negative zeros and NaNs
21636 // incorrectly, but we can swap the operands to fix both.
21637 std::swap(LHS, RHS);
21641 Opcode = X86ISD::FMIN;
21645 // Converting this to a max would handle comparisons between positive
21646 // and negative zero incorrectly.
21647 if (!DAG.getTarget().Options.UnsafeFPMath &&
21648 !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
21650 Opcode = X86ISD::FMAX;
21653 // Converting this to a max would handle NaNs incorrectly, and swapping
21654 // the operands would cause it to handle comparisons between positive
21655 // and negative zero incorrectly.
21656 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
21657 if (!DAG.getTarget().Options.UnsafeFPMath &&
21658 !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
21660 std::swap(LHS, RHS);
21662 Opcode = X86ISD::FMAX;
21665 // Converting this to a max would handle both negative zeros and NaNs
21666 // incorrectly, but we can swap the operands to fix both.
21667 std::swap(LHS, RHS);
21671 Opcode = X86ISD::FMAX;
21674 // Check for x CC y ? y : x -- a min/max with reversed arms.
21675 } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
21676 DAG.isEqualTo(RHS, Cond.getOperand(0))) {
21680 // Converting this to a min would handle comparisons between positive
21681 // and negative zero incorrectly, and swapping the operands would
21682 // cause it to handle NaNs incorrectly.
21683 if (!DAG.getTarget().Options.UnsafeFPMath &&
21684 !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
21685 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
21687 std::swap(LHS, RHS);
21689 Opcode = X86ISD::FMIN;
21692 // Converting this to a min would handle NaNs incorrectly.
21693 if (!DAG.getTarget().Options.UnsafeFPMath &&
21694 (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
21696 Opcode = X86ISD::FMIN;
21699 // Converting this to a min would handle both negative zeros and NaNs
21700 // incorrectly, but we can swap the operands to fix both.
21701 std::swap(LHS, RHS);
21705 Opcode = X86ISD::FMIN;
21709 // Converting this to a max would handle NaNs incorrectly.
21710 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
21712 Opcode = X86ISD::FMAX;
21715 // Converting this to a max would handle comparisons between positive
21716 // and negative zero incorrectly, and swapping the operands would
21717 // cause it to handle NaNs incorrectly.
21718 if (!DAG.getTarget().Options.UnsafeFPMath &&
21719 !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
21720 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
21722 std::swap(LHS, RHS);
21724 Opcode = X86ISD::FMAX;
21727 // Converting this to a max would handle both negative zeros and NaNs
21728 // incorrectly, but we can swap the operands to fix both.
21729 std::swap(LHS, RHS);
21733 Opcode = X86ISD::FMAX;
21739 return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
21742 EVT CondVT = Cond.getValueType();
21743 if (Subtarget->hasAVX512() && VT.isVector() && CondVT.isVector() &&
21744 CondVT.getVectorElementType() == MVT::i1) {
21745 // v16i8 (select v16i1, v16i8, v16i8) does not have a proper
21746 // lowering on KNL. In this case we convert it to
21747 // v16i8 (select v16i8, v16i8, v16i8) and use AVX instruction.
21748 // The same situation for all 128 and 256-bit vectors of i8 and i16.
21749 // Since SKX these selects have a proper lowering.
21750 EVT OpVT = LHS.getValueType();
21751 if ((OpVT.is128BitVector() || OpVT.is256BitVector()) &&
21752 (OpVT.getVectorElementType() == MVT::i8 ||
21753 OpVT.getVectorElementType() == MVT::i16) &&
21754 !(Subtarget->hasBWI() && Subtarget->hasVLX())) {
21755 Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, OpVT, Cond);
21756 DCI.AddToWorklist(Cond.getNode());
21757 return DAG.getNode(N->getOpcode(), DL, OpVT, Cond, LHS, RHS);
21760 // If this is a select between two integer constants, try to do some
21762 if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
21763 if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
21764 // Don't do this for crazy integer types.
21765 if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
21766 // If this is efficiently invertible, canonicalize the LHSC/RHSC values
21767 // so that TrueC (the true value) is larger than FalseC.
21768 bool NeedsCondInvert = false;
21770 if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
21771 // Efficiently invertible.
21772 (Cond.getOpcode() == ISD::SETCC || // setcc -> invertible.
21773 (Cond.getOpcode() == ISD::XOR && // xor(X, C) -> invertible.
21774 isa<ConstantSDNode>(Cond.getOperand(1))))) {
21775 NeedsCondInvert = true;
21776 std::swap(TrueC, FalseC);
21779 // Optimize C ? 8 : 0 -> zext(C) << 3. Likewise for any pow2/0.
21780 if (FalseC->getAPIntValue() == 0 &&
21781 TrueC->getAPIntValue().isPowerOf2()) {
21782 if (NeedsCondInvert) // Invert the condition if needed.
21783 Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
21784 DAG.getConstant(1, Cond.getValueType()));
21786 // Zero extend the condition if needed.
21787 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
21789 unsigned ShAmt = TrueC->getAPIntValue().logBase2();
21790 return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
21791 DAG.getConstant(ShAmt, MVT::i8));
21794 // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
21795 if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
21796 if (NeedsCondInvert) // Invert the condition if needed.
21797 Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
21798 DAG.getConstant(1, Cond.getValueType()));
21800 // Zero extend the condition if needed.
21801 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
21802 FalseC->getValueType(0), Cond);
21803 return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
21804 SDValue(FalseC, 0));
21807 // Optimize cases that will turn into an LEA instruction. This requires
21808 // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
21809 if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
21810 uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
21811 if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
21813 bool isFastMultiplier = false;
21815 switch ((unsigned char)Diff) {
21817 case 1: // result = add base, cond
21818 case 2: // result = lea base( , cond*2)
21819 case 3: // result = lea base(cond, cond*2)
21820 case 4: // result = lea base( , cond*4)
21821 case 5: // result = lea base(cond, cond*4)
21822 case 8: // result = lea base( , cond*8)
21823 case 9: // result = lea base(cond, cond*8)
21824 isFastMultiplier = true;
21829 if (isFastMultiplier) {
21830 APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
21831 if (NeedsCondInvert) // Invert the condition if needed.
21832 Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
21833 DAG.getConstant(1, Cond.getValueType()));
21835 // Zero extend the condition if needed.
21836 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
21838 // Scale the condition by the difference.
21840 Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
21841 DAG.getConstant(Diff, Cond.getValueType()));
21843 // Add the base if non-zero.
21844 if (FalseC->getAPIntValue() != 0)
21845 Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
21846 SDValue(FalseC, 0));
21853 // Canonicalize max and min:
21854 // (x > y) ? x : y -> (x >= y) ? x : y
21855 // (x < y) ? x : y -> (x <= y) ? x : y
21856 // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
21857 // the need for an extra compare
21858 // against zero. e.g.
21859 // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
21861 // testl %edi, %edi
21863 // cmovgl %edi, %eax
21867 // cmovsl %eax, %edi
21868 if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
21869 DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
21870 DAG.isEqualTo(RHS, Cond.getOperand(1))) {
21871 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
21876 ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
21877 Cond = DAG.getSetCC(SDLoc(Cond), Cond.getValueType(),
21878 Cond.getOperand(0), Cond.getOperand(1), NewCC);
21879 return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
21884 // Early exit check
21885 if (!TLI.isTypeLegal(VT))
21888 // Match VSELECTs into subs with unsigned saturation.
21889 if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC &&
21890 // psubus is available in SSE2 and AVX2 for i8 and i16 vectors.
21891 ((Subtarget->hasSSE2() && (VT == MVT::v16i8 || VT == MVT::v8i16)) ||
21892 (Subtarget->hasAVX2() && (VT == MVT::v32i8 || VT == MVT::v16i16)))) {
21893 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
21895 // Check if one of the arms of the VSELECT is a zero vector. If it's on the
21896 // left side invert the predicate to simplify logic below.
21898 if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
21900 CC = ISD::getSetCCInverse(CC, true);
21901 } else if (ISD::isBuildVectorAllZeros(RHS.getNode())) {
21905 if (Other.getNode() && Other->getNumOperands() == 2 &&
21906 DAG.isEqualTo(Other->getOperand(0), Cond.getOperand(0))) {
21907 SDValue OpLHS = Other->getOperand(0), OpRHS = Other->getOperand(1);
21908 SDValue CondRHS = Cond->getOperand(1);
21910 // Look for a general sub with unsigned saturation first.
21911 // x >= y ? x-y : 0 --> subus x, y
21912 // x > y ? x-y : 0 --> subus x, y
21913 if ((CC == ISD::SETUGE || CC == ISD::SETUGT) &&
21914 Other->getOpcode() == ISD::SUB && DAG.isEqualTo(OpRHS, CondRHS))
21915 return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS);
21917 if (auto *OpRHSBV = dyn_cast<BuildVectorSDNode>(OpRHS))
21918 if (auto *OpRHSConst = OpRHSBV->getConstantSplatNode()) {
21919 if (auto *CondRHSBV = dyn_cast<BuildVectorSDNode>(CondRHS))
21920 if (auto *CondRHSConst = CondRHSBV->getConstantSplatNode())
21921 // If the RHS is a constant we have to reverse the const
21922 // canonicalization.
21923 // x > C-1 ? x+-C : 0 --> subus x, C
21924 if (CC == ISD::SETUGT && Other->getOpcode() == ISD::ADD &&
21925 CondRHSConst->getAPIntValue() ==
21926 (-OpRHSConst->getAPIntValue() - 1))
21927 return DAG.getNode(
21928 X86ISD::SUBUS, DL, VT, OpLHS,
21929 DAG.getConstant(-OpRHSConst->getAPIntValue(), VT));
21931 // Another special case: If C was a sign bit, the sub has been
21932 // canonicalized into a xor.
21933 // FIXME: Would it be better to use computeKnownBits to determine
21934 // whether it's safe to decanonicalize the xor?
21935 // x s< 0 ? x^C : 0 --> subus x, C
21936 if (CC == ISD::SETLT && Other->getOpcode() == ISD::XOR &&
21937 ISD::isBuildVectorAllZeros(CondRHS.getNode()) &&
21938 OpRHSConst->getAPIntValue().isSignBit())
21939 // Note that we have to rebuild the RHS constant here to ensure we
21940 // don't rely on particular values of undef lanes.
21941 return DAG.getNode(
21942 X86ISD::SUBUS, DL, VT, OpLHS,
21943 DAG.getConstant(OpRHSConst->getAPIntValue(), VT));
21948 // Try to match a min/max vector operation.
21949 if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC) {
21950 std::pair<unsigned, bool> ret = matchIntegerMINMAX(Cond, VT, LHS, RHS, DAG, Subtarget);
21951 unsigned Opc = ret.first;
21952 bool NeedSplit = ret.second;
21954 if (Opc && NeedSplit) {
21955 unsigned NumElems = VT.getVectorNumElements();
21956 // Extract the LHS vectors
21957 SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, DL);
21958 SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, DL);
21960 // Extract the RHS vectors
21961 SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, DL);
21962 SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, DL);
21964 // Create min/max for each subvector
21965 LHS = DAG.getNode(Opc, DL, LHS1.getValueType(), LHS1, RHS1);
21966 RHS = DAG.getNode(Opc, DL, LHS2.getValueType(), LHS2, RHS2);
21968 // Merge the result
21969 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LHS, RHS);
21971 return DAG.getNode(Opc, DL, VT, LHS, RHS);
21974 // Simplify vector selection if the selector will be produced by CMPP*/PCMP*.
21975 if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC &&
21976 // Check if SETCC has already been promoted
21977 TLI.getSetCCResultType(*DAG.getContext(), VT) == CondVT &&
21978 // Check that condition value type matches vselect operand type
21981 assert(Cond.getValueType().isVector() &&
21982 "vector select expects a vector selector!");
21984 bool TValIsAllOnes = ISD::isBuildVectorAllOnes(LHS.getNode());
21985 bool FValIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
21987 if (!TValIsAllOnes && !FValIsAllZeros) {
21988 // Try invert the condition if true value is not all 1s and false value
21990 bool TValIsAllZeros = ISD::isBuildVectorAllZeros(LHS.getNode());
21991 bool FValIsAllOnes = ISD::isBuildVectorAllOnes(RHS.getNode());
21993 if (TValIsAllZeros || FValIsAllOnes) {
21994 SDValue CC = Cond.getOperand(2);
21995 ISD::CondCode NewCC =
21996 ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
21997 Cond.getOperand(0).getValueType().isInteger());
21998 Cond = DAG.getSetCC(DL, CondVT, Cond.getOperand(0), Cond.getOperand(1), NewCC);
21999 std::swap(LHS, RHS);
22000 TValIsAllOnes = FValIsAllOnes;
22001 FValIsAllZeros = TValIsAllZeros;
22005 if (TValIsAllOnes || FValIsAllZeros) {
22008 if (TValIsAllOnes && FValIsAllZeros)
22010 else if (TValIsAllOnes)
22011 Ret = DAG.getNode(ISD::OR, DL, CondVT, Cond,
22012 DAG.getNode(ISD::BITCAST, DL, CondVT, RHS));
22013 else if (FValIsAllZeros)
22014 Ret = DAG.getNode(ISD::AND, DL, CondVT, Cond,
22015 DAG.getNode(ISD::BITCAST, DL, CondVT, LHS));
22017 return DAG.getNode(ISD::BITCAST, DL, VT, Ret);
22021 // Try to fold this VSELECT into a MOVSS/MOVSD
22022 if (N->getOpcode() == ISD::VSELECT &&
22023 Cond.getOpcode() == ISD::BUILD_VECTOR && !DCI.isBeforeLegalize()) {
22024 if (VT == MVT::v4i32 || VT == MVT::v4f32 ||
22025 (Subtarget->hasSSE2() && (VT == MVT::v2i64 || VT == MVT::v2f64))) {
22026 bool CanFold = false;
22027 unsigned NumElems = Cond.getNumOperands();
22031 if (isZero(Cond.getOperand(0))) {
22034 // fold (vselect <0,-1,-1,-1>, A, B) -> (movss A, B)
22035 // fold (vselect <0,-1> -> (movsd A, B)
22036 for (unsigned i = 1, e = NumElems; i != e && CanFold; ++i)
22037 CanFold = isAllOnes(Cond.getOperand(i));
22038 } else if (isAllOnes(Cond.getOperand(0))) {
22042 // fold (vselect <-1,0,0,0>, A, B) -> (movss B, A)
22043 // fold (vselect <-1,0> -> (movsd B, A)
22044 for (unsigned i = 1, e = NumElems; i != e && CanFold; ++i)
22045 CanFold = isZero(Cond.getOperand(i));
22049 if (VT == MVT::v4i32 || VT == MVT::v4f32)
22050 return getTargetShuffleNode(X86ISD::MOVSS, DL, VT, A, B, DAG);
22051 return getTargetShuffleNode(X86ISD::MOVSD, DL, VT, A, B, DAG);
22054 if (Subtarget->hasSSE2() && (VT == MVT::v4i32 || VT == MVT::v4f32)) {
22055 // fold (v4i32: vselect <0,0,-1,-1>, A, B) ->
22056 // (v4i32 (bitcast (movsd (v2i64 (bitcast A)),
22057 // (v2i64 (bitcast B)))))
22059 // fold (v4f32: vselect <0,0,-1,-1>, A, B) ->
22060 // (v4f32 (bitcast (movsd (v2f64 (bitcast A)),
22061 // (v2f64 (bitcast B)))))
22063 // fold (v4i32: vselect <-1,-1,0,0>, A, B) ->
22064 // (v4i32 (bitcast (movsd (v2i64 (bitcast B)),
22065 // (v2i64 (bitcast A)))))
22067 // fold (v4f32: vselect <-1,-1,0,0>, A, B) ->
22068 // (v4f32 (bitcast (movsd (v2f64 (bitcast B)),
22069 // (v2f64 (bitcast A)))))
22071 CanFold = (isZero(Cond.getOperand(0)) &&
22072 isZero(Cond.getOperand(1)) &&
22073 isAllOnes(Cond.getOperand(2)) &&
22074 isAllOnes(Cond.getOperand(3)));
22076 if (!CanFold && isAllOnes(Cond.getOperand(0)) &&
22077 isAllOnes(Cond.getOperand(1)) &&
22078 isZero(Cond.getOperand(2)) &&
22079 isZero(Cond.getOperand(3))) {
22081 std::swap(LHS, RHS);
22085 EVT NVT = (VT == MVT::v4i32) ? MVT::v2i64 : MVT::v2f64;
22086 SDValue NewA = DAG.getNode(ISD::BITCAST, DL, NVT, LHS);
22087 SDValue NewB = DAG.getNode(ISD::BITCAST, DL, NVT, RHS);
22088 SDValue Select = getTargetShuffleNode(X86ISD::MOVSD, DL, NVT, NewA,
22090 return DAG.getNode(ISD::BITCAST, DL, VT, Select);
22096 // If we know that this node is legal then we know that it is going to be
22097 // matched by one of the SSE/AVX BLEND instructions. These instructions only
22098 // depend on the highest bit in each word. Try to use SimplifyDemandedBits
22099 // to simplify previous instructions.
22100 if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
22101 !DCI.isBeforeLegalize() &&
22102 // We explicitly check against v8i16 and v16i16 because, although
22103 // they're marked as Custom, they might only be legal when Cond is a
22104 // build_vector of constants. This will be taken care in a later
22106 (TLI.isOperationLegalOrCustom(ISD::VSELECT, VT) && VT != MVT::v16i16 &&
22107 VT != MVT::v8i16)) {
22108 unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
22110 // Don't optimize vector selects that map to mask-registers.
22114 // Check all uses of that condition operand to check whether it will be
22115 // consumed by non-BLEND instructions, which may depend on all bits are set
22117 for (SDNode::use_iterator I = Cond->use_begin(),
22118 E = Cond->use_end(); I != E; ++I)
22119 if (I->getOpcode() != ISD::VSELECT)
22120 // TODO: Add other opcodes eventually lowered into BLEND.
22123 assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
22124 APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
22126 APInt KnownZero, KnownOne;
22127 TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
22128 DCI.isBeforeLegalizeOps());
22129 if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
22130 TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
22131 DCI.CommitTargetLoweringOpt(TLO);
22134 // We should generate an X86ISD::BLENDI from a vselect if its argument
22135 // is a sign_extend_inreg of an any_extend of a BUILD_VECTOR of
22136 // constants. This specific pattern gets generated when we split a
22137 // selector for a 512 bit vector in a machine without AVX512 (but with
22138 // 256-bit vectors), during legalization:
22140 // (vselect (sign_extend (any_extend (BUILD_VECTOR)) i1) LHS RHS)
22142 // Iff we find this pattern and the build_vectors are built from
22143 // constants, we translate the vselect into a shuffle_vector that we
22144 // know will be matched by LowerVECTOR_SHUFFLEtoBlend.
22145 if (N->getOpcode() == ISD::VSELECT && !DCI.isBeforeLegalize()) {
22146 SDValue Shuffle = TransformVSELECTtoBlendVECTOR_SHUFFLE(N, DAG, Subtarget);
22147 if (Shuffle.getNode())
22154 // Check whether a boolean test is testing a boolean value generated by
22155 // X86ISD::SETCC. If so, return the operand of that SETCC and proper condition
22158 // Simplify the following patterns:
22159 // (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or
22160 // (Op (CMP (SETCC Cond EFLAGS) 0) NEQ)
22161 // to (Op EFLAGS Cond)
22163 // (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or
22164 // (Op (CMP (SETCC Cond EFLAGS) 1) NEQ)
22165 // to (Op EFLAGS !Cond)
22167 // where Op could be BRCOND or CMOV.
22169 static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) {
22170 // Quit if not CMP and SUB with its value result used.
22171 if (Cmp.getOpcode() != X86ISD::CMP &&
22172 (Cmp.getOpcode() != X86ISD::SUB || Cmp.getNode()->hasAnyUseOfValue(0)))
22175 // Quit if not used as a boolean value.
22176 if (CC != X86::COND_E && CC != X86::COND_NE)
22179 // Check CMP operands. One of them should be 0 or 1 and the other should be
22180 // an SetCC or extended from it.
22181 SDValue Op1 = Cmp.getOperand(0);
22182 SDValue Op2 = Cmp.getOperand(1);
22185 const ConstantSDNode* C = nullptr;
22186 bool needOppositeCond = (CC == X86::COND_E);
22187 bool checkAgainstTrue = false; // Is it a comparison against 1?
22189 if ((C = dyn_cast<ConstantSDNode>(Op1)))
22191 else if ((C = dyn_cast<ConstantSDNode>(Op2)))
22193 else // Quit if all operands are not constants.
22196 if (C->getZExtValue() == 1) {
22197 needOppositeCond = !needOppositeCond;
22198 checkAgainstTrue = true;
22199 } else if (C->getZExtValue() != 0)
22200 // Quit if the constant is neither 0 or 1.
22203 bool truncatedToBoolWithAnd = false;
22204 // Skip (zext $x), (trunc $x), or (and $x, 1) node.
22205 while (SetCC.getOpcode() == ISD::ZERO_EXTEND ||
22206 SetCC.getOpcode() == ISD::TRUNCATE ||
22207 SetCC.getOpcode() == ISD::AND) {
22208 if (SetCC.getOpcode() == ISD::AND) {
22210 ConstantSDNode *CS;
22211 if ((CS = dyn_cast<ConstantSDNode>(SetCC.getOperand(0))) &&
22212 CS->getZExtValue() == 1)
22214 if ((CS = dyn_cast<ConstantSDNode>(SetCC.getOperand(1))) &&
22215 CS->getZExtValue() == 1)
22219 SetCC = SetCC.getOperand(OpIdx);
22220 truncatedToBoolWithAnd = true;
22222 SetCC = SetCC.getOperand(0);
22225 switch (SetCC.getOpcode()) {
22226 case X86ISD::SETCC_CARRY:
22227 // Since SETCC_CARRY gives output based on R = CF ? ~0 : 0, it's unsafe to
22228 // simplify it if the result of SETCC_CARRY is not canonicalized to 0 or 1,
22229 // i.e. it's a comparison against true but the result of SETCC_CARRY is not
22230 // truncated to i1 using 'and'.
22231 if (checkAgainstTrue && !truncatedToBoolWithAnd)
22233 assert(X86::CondCode(SetCC.getConstantOperandVal(0)) == X86::COND_B &&
22234 "Invalid use of SETCC_CARRY!");
22236 case X86ISD::SETCC:
22237 // Set the condition code or opposite one if necessary.
22238 CC = X86::CondCode(SetCC.getConstantOperandVal(0));
22239 if (needOppositeCond)
22240 CC = X86::GetOppositeBranchCondition(CC);
22241 return SetCC.getOperand(1);
22242 case X86ISD::CMOV: {
22243 // Check whether false/true value has canonical one, i.e. 0 or 1.
22244 ConstantSDNode *FVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(0));
22245 ConstantSDNode *TVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(1));
22246 // Quit if true value is not a constant.
22249 // Quit if false value is not a constant.
22251 SDValue Op = SetCC.getOperand(0);
22252 // Skip 'zext' or 'trunc' node.
22253 if (Op.getOpcode() == ISD::ZERO_EXTEND ||
22254 Op.getOpcode() == ISD::TRUNCATE)
22255 Op = Op.getOperand(0);
22256 // A special case for rdrand/rdseed, where 0 is set if false cond is
22258 if ((Op.getOpcode() != X86ISD::RDRAND &&
22259 Op.getOpcode() != X86ISD::RDSEED) || Op.getResNo() != 0)
22262 // Quit if false value is not the constant 0 or 1.
22263 bool FValIsFalse = true;
22264 if (FVal && FVal->getZExtValue() != 0) {
22265 if (FVal->getZExtValue() != 1)
22267 // If FVal is 1, opposite cond is needed.
22268 needOppositeCond = !needOppositeCond;
22269 FValIsFalse = false;
22271 // Quit if TVal is not the constant opposite of FVal.
22272 if (FValIsFalse && TVal->getZExtValue() != 1)
22274 if (!FValIsFalse && TVal->getZExtValue() != 0)
22276 CC = X86::CondCode(SetCC.getConstantOperandVal(2));
22277 if (needOppositeCond)
22278 CC = X86::GetOppositeBranchCondition(CC);
22279 return SetCC.getOperand(3);
22286 /// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
22287 static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
22288 TargetLowering::DAGCombinerInfo &DCI,
22289 const X86Subtarget *Subtarget) {
22292 // If the flag operand isn't dead, don't touch this CMOV.
22293 if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
22296 SDValue FalseOp = N->getOperand(0);
22297 SDValue TrueOp = N->getOperand(1);
22298 X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
22299 SDValue Cond = N->getOperand(3);
22301 if (CC == X86::COND_E || CC == X86::COND_NE) {
22302 switch (Cond.getOpcode()) {
22306 // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
22307 if (DAG.isKnownNeverZero(Cond.getOperand(0)))
22308 return (CC == X86::COND_E) ? FalseOp : TrueOp;
22314 Flags = checkBoolTestSetCCCombine(Cond, CC);
22315 if (Flags.getNode() &&
22316 // Extra check as FCMOV only supports a subset of X86 cond.
22317 (FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC))) {
22318 SDValue Ops[] = { FalseOp, TrueOp,
22319 DAG.getConstant(CC, MVT::i8), Flags };
22320 return DAG.getNode(X86ISD::CMOV, DL, N->getVTList(), Ops);
22323 // If this is a select between two integer constants, try to do some
22324 // optimizations. Note that the operands are ordered the opposite of SELECT
22326 if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
22327 if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
22328 // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
22329 // larger than FalseC (the false value).
22330 if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
22331 CC = X86::GetOppositeBranchCondition(CC);
22332 std::swap(TrueC, FalseC);
22333 std::swap(TrueOp, FalseOp);
22336 // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3. Likewise for any pow2/0.
22337 // This is efficient for any integer data type (including i8/i16) and
22339 if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
22340 Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
22341 DAG.getConstant(CC, MVT::i8), Cond);
22343 // Zero extend the condition if needed.
22344 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
22346 unsigned ShAmt = TrueC->getAPIntValue().logBase2();
22347 Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
22348 DAG.getConstant(ShAmt, MVT::i8));
22349 if (N->getNumValues() == 2) // Dead flag value?
22350 return DCI.CombineTo(N, Cond, SDValue());
22354 // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. This is efficient
22355 // for any integer data type, including i8/i16.
22356 if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
22357 Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
22358 DAG.getConstant(CC, MVT::i8), Cond);
22360 // Zero extend the condition if needed.
22361 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
22362 FalseC->getValueType(0), Cond);
22363 Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
22364 SDValue(FalseC, 0));
22366 if (N->getNumValues() == 2) // Dead flag value?
22367 return DCI.CombineTo(N, Cond, SDValue());
22371 // Optimize cases that will turn into an LEA instruction. This requires
22372 // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
22373 if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
22374 uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
22375 if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
22377 bool isFastMultiplier = false;
22379 switch ((unsigned char)Diff) {
22381 case 1: // result = add base, cond
22382 case 2: // result = lea base( , cond*2)
22383 case 3: // result = lea base(cond, cond*2)
22384 case 4: // result = lea base( , cond*4)
22385 case 5: // result = lea base(cond, cond*4)
22386 case 8: // result = lea base( , cond*8)
22387 case 9: // result = lea base(cond, cond*8)
22388 isFastMultiplier = true;
22393 if (isFastMultiplier) {
22394 APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
22395 Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
22396 DAG.getConstant(CC, MVT::i8), Cond);
22397 // Zero extend the condition if needed.
22398 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
22400 // Scale the condition by the difference.
22402 Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
22403 DAG.getConstant(Diff, Cond.getValueType()));
22405 // Add the base if non-zero.
22406 if (FalseC->getAPIntValue() != 0)
22407 Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
22408 SDValue(FalseC, 0));
22409 if (N->getNumValues() == 2) // Dead flag value?
22410 return DCI.CombineTo(N, Cond, SDValue());
22417 // Handle these cases:
22418 // (select (x != c), e, c) -> select (x != c), e, x),
22419 // (select (x == c), c, e) -> select (x == c), x, e)
22420 // where the c is an integer constant, and the "select" is the combination
22421 // of CMOV and CMP.
22423 // The rationale for this change is that the conditional-move from a constant
22424 // needs two instructions, however, conditional-move from a register needs
22425 // only one instruction.
22427 // CAVEAT: By replacing a constant with a symbolic value, it may obscure
22428 // some instruction-combining opportunities. This opt needs to be
22429 // postponed as late as possible.
22431 if (!DCI.isBeforeLegalize() && !DCI.isBeforeLegalizeOps()) {
22432 // the DCI.xxxx conditions are provided to postpone the optimization as
22433 // late as possible.
22435 ConstantSDNode *CmpAgainst = nullptr;
22436 if ((Cond.getOpcode() == X86ISD::CMP || Cond.getOpcode() == X86ISD::SUB) &&
22437 (CmpAgainst = dyn_cast<ConstantSDNode>(Cond.getOperand(1))) &&
22438 !isa<ConstantSDNode>(Cond.getOperand(0))) {
22440 if (CC == X86::COND_NE &&
22441 CmpAgainst == dyn_cast<ConstantSDNode>(FalseOp)) {
22442 CC = X86::GetOppositeBranchCondition(CC);
22443 std::swap(TrueOp, FalseOp);
22446 if (CC == X86::COND_E &&
22447 CmpAgainst == dyn_cast<ConstantSDNode>(TrueOp)) {
22448 SDValue Ops[] = { FalseOp, Cond.getOperand(0),
22449 DAG.getConstant(CC, MVT::i8), Cond };
22450 return DAG.getNode(X86ISD::CMOV, DL, N->getVTList (), Ops);
22458 static SDValue PerformINTRINSIC_WO_CHAINCombine(SDNode *N, SelectionDAG &DAG,
22459 const X86Subtarget *Subtarget) {
22460 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
22462 default: return SDValue();
22463 // SSE/AVX/AVX2 blend intrinsics.
22464 case Intrinsic::x86_avx2_pblendvb:
22465 case Intrinsic::x86_avx2_pblendw:
22466 case Intrinsic::x86_avx2_pblendd_128:
22467 case Intrinsic::x86_avx2_pblendd_256:
22468 // Don't try to simplify this intrinsic if we don't have AVX2.
22469 if (!Subtarget->hasAVX2())
22472 case Intrinsic::x86_avx_blend_pd_256:
22473 case Intrinsic::x86_avx_blend_ps_256:
22474 case Intrinsic::x86_avx_blendv_pd_256:
22475 case Intrinsic::x86_avx_blendv_ps_256:
22476 // Don't try to simplify this intrinsic if we don't have AVX.
22477 if (!Subtarget->hasAVX())
22480 case Intrinsic::x86_sse41_pblendw:
22481 case Intrinsic::x86_sse41_blendpd:
22482 case Intrinsic::x86_sse41_blendps:
22483 case Intrinsic::x86_sse41_blendvps:
22484 case Intrinsic::x86_sse41_blendvpd:
22485 case Intrinsic::x86_sse41_pblendvb: {
22486 SDValue Op0 = N->getOperand(1);
22487 SDValue Op1 = N->getOperand(2);
22488 SDValue Mask = N->getOperand(3);
22490 // Don't try to simplify this intrinsic if we don't have SSE4.1.
22491 if (!Subtarget->hasSSE41())
22494 // fold (blend A, A, Mask) -> A
22497 // fold (blend A, B, allZeros) -> A
22498 if (ISD::isBuildVectorAllZeros(Mask.getNode()))
22500 // fold (blend A, B, allOnes) -> B
22501 if (ISD::isBuildVectorAllOnes(Mask.getNode()))
22504 // Simplify the case where the mask is a constant i32 value.
22505 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Mask)) {
22506 if (C->isNullValue())
22508 if (C->isAllOnesValue())
22515 // Packed SSE2/AVX2 arithmetic shift immediate intrinsics.
22516 case Intrinsic::x86_sse2_psrai_w:
22517 case Intrinsic::x86_sse2_psrai_d:
22518 case Intrinsic::x86_avx2_psrai_w:
22519 case Intrinsic::x86_avx2_psrai_d:
22520 case Intrinsic::x86_sse2_psra_w:
22521 case Intrinsic::x86_sse2_psra_d:
22522 case Intrinsic::x86_avx2_psra_w:
22523 case Intrinsic::x86_avx2_psra_d: {
22524 SDValue Op0 = N->getOperand(1);
22525 SDValue Op1 = N->getOperand(2);
22526 EVT VT = Op0.getValueType();
22527 assert(VT.isVector() && "Expected a vector type!");
22529 if (isa<BuildVectorSDNode>(Op1))
22530 Op1 = Op1.getOperand(0);
22532 if (!isa<ConstantSDNode>(Op1))
22535 EVT SVT = VT.getVectorElementType();
22536 unsigned SVTBits = SVT.getSizeInBits();
22538 ConstantSDNode *CND = cast<ConstantSDNode>(Op1);
22539 const APInt &C = APInt(SVTBits, CND->getAPIntValue().getZExtValue());
22540 uint64_t ShAmt = C.getZExtValue();
22542 // Don't try to convert this shift into a ISD::SRA if the shift
22543 // count is bigger than or equal to the element size.
22544 if (ShAmt >= SVTBits)
22547 // Trivial case: if the shift count is zero, then fold this
22548 // into the first operand.
22552 // Replace this packed shift intrinsic with a target independent
22554 SDValue Splat = DAG.getConstant(C, VT);
22555 return DAG.getNode(ISD::SRA, SDLoc(N), VT, Op0, Splat);
22560 /// PerformMulCombine - Optimize a single multiply with constant into two
22561 /// in order to implement it with two cheaper instructions, e.g.
22562 /// LEA + SHL, LEA + LEA.
22563 static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
22564 TargetLowering::DAGCombinerInfo &DCI) {
22565 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
22568 EVT VT = N->getValueType(0);
22569 if (VT != MVT::i64)
22572 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
22575 uint64_t MulAmt = C->getZExtValue();
22576 if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
22579 uint64_t MulAmt1 = 0;
22580 uint64_t MulAmt2 = 0;
22581 if ((MulAmt % 9) == 0) {
22583 MulAmt2 = MulAmt / 9;
22584 } else if ((MulAmt % 5) == 0) {
22586 MulAmt2 = MulAmt / 5;
22587 } else if ((MulAmt % 3) == 0) {
22589 MulAmt2 = MulAmt / 3;
22592 (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
22595 if (isPowerOf2_64(MulAmt2) &&
22596 !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
22597 // If second multiplifer is pow2, issue it first. We want the multiply by
22598 // 3, 5, or 9 to be folded into the addressing mode unless the lone use
22600 std::swap(MulAmt1, MulAmt2);
22603 if (isPowerOf2_64(MulAmt1))
22604 NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
22605 DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
22607 NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
22608 DAG.getConstant(MulAmt1, VT));
22610 if (isPowerOf2_64(MulAmt2))
22611 NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
22612 DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
22614 NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
22615 DAG.getConstant(MulAmt2, VT));
22617 // Do not add new nodes to DAG combiner worklist.
22618 DCI.CombineTo(N, NewMul, false);
22623 static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
22624 SDValue N0 = N->getOperand(0);
22625 SDValue N1 = N->getOperand(1);
22626 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
22627 EVT VT = N0.getValueType();
22629 // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
22630 // since the result of setcc_c is all zero's or all ones.
22631 if (VT.isInteger() && !VT.isVector() &&
22632 N1C && N0.getOpcode() == ISD::AND &&
22633 N0.getOperand(1).getOpcode() == ISD::Constant) {
22634 SDValue N00 = N0.getOperand(0);
22635 if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
22636 ((N00.getOpcode() == ISD::ANY_EXTEND ||
22637 N00.getOpcode() == ISD::ZERO_EXTEND) &&
22638 N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
22639 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
22640 APInt ShAmt = N1C->getAPIntValue();
22641 Mask = Mask.shl(ShAmt);
22643 return DAG.getNode(ISD::AND, SDLoc(N), VT,
22644 N00, DAG.getConstant(Mask, VT));
22648 // Hardware support for vector shifts is sparse which makes us scalarize the
22649 // vector operations in many cases. Also, on sandybridge ADD is faster than
22651 // (shl V, 1) -> add V,V
22652 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
22653 if (auto *N1SplatC = N1BV->getConstantSplatNode()) {
22654 assert(N0.getValueType().isVector() && "Invalid vector shift type");
22655 // We shift all of the values by one. In many cases we do not have
22656 // hardware support for this operation. This is better expressed as an ADD
22658 if (N1SplatC->getZExtValue() == 1)
22659 return DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N0);
22665 /// \brief Returns a vector of 0s if the node in input is a vector logical
22666 /// shift by a constant amount which is known to be bigger than or equal
22667 /// to the vector element size in bits.
22668 static SDValue performShiftToAllZeros(SDNode *N, SelectionDAG &DAG,
22669 const X86Subtarget *Subtarget) {
22670 EVT VT = N->getValueType(0);
22672 if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
22673 (!Subtarget->hasInt256() ||
22674 (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
22677 SDValue Amt = N->getOperand(1);
22679 if (auto *AmtBV = dyn_cast<BuildVectorSDNode>(Amt))
22680 if (auto *AmtSplat = AmtBV->getConstantSplatNode()) {
22681 APInt ShiftAmt = AmtSplat->getAPIntValue();
22682 unsigned MaxAmount = VT.getVectorElementType().getSizeInBits();
22684 // SSE2/AVX2 logical shifts always return a vector of 0s
22685 // if the shift amount is bigger than or equal to
22686 // the element size. The constant shift amount will be
22687 // encoded as a 8-bit immediate.
22688 if (ShiftAmt.trunc(8).uge(MaxAmount))
22689 return getZeroVector(VT, Subtarget, DAG, DL);
22695 /// PerformShiftCombine - Combine shifts.
22696 static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
22697 TargetLowering::DAGCombinerInfo &DCI,
22698 const X86Subtarget *Subtarget) {
22699 if (N->getOpcode() == ISD::SHL) {
22700 SDValue V = PerformSHLCombine(N, DAG);
22701 if (V.getNode()) return V;
22704 if (N->getOpcode() != ISD::SRA) {
22705 // Try to fold this logical shift into a zero vector.
22706 SDValue V = performShiftToAllZeros(N, DAG, Subtarget);
22707 if (V.getNode()) return V;
22713 // CMPEQCombine - Recognize the distinctive (AND (setcc ...) (setcc ..))
22714 // where both setccs reference the same FP CMP, and rewrite for CMPEQSS
22715 // and friends. Likewise for OR -> CMPNEQSS.
22716 static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
22717 TargetLowering::DAGCombinerInfo &DCI,
22718 const X86Subtarget *Subtarget) {
22721 // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
22722 // we're requiring SSE2 for both.
22723 if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
22724 SDValue N0 = N->getOperand(0);
22725 SDValue N1 = N->getOperand(1);
22726 SDValue CMP0 = N0->getOperand(1);
22727 SDValue CMP1 = N1->getOperand(1);
22730 // The SETCCs should both refer to the same CMP.
22731 if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
22734 SDValue CMP00 = CMP0->getOperand(0);
22735 SDValue CMP01 = CMP0->getOperand(1);
22736 EVT VT = CMP00.getValueType();
22738 if (VT == MVT::f32 || VT == MVT::f64) {
22739 bool ExpectingFlags = false;
22740 // Check for any users that want flags:
22741 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
22742 !ExpectingFlags && UI != UE; ++UI)
22743 switch (UI->getOpcode()) {
22748 ExpectingFlags = true;
22750 case ISD::CopyToReg:
22751 case ISD::SIGN_EXTEND:
22752 case ISD::ZERO_EXTEND:
22753 case ISD::ANY_EXTEND:
22757 if (!ExpectingFlags) {
22758 enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
22759 enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
22761 if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
22762 X86::CondCode tmp = cc0;
22767 if ((cc0 == X86::COND_E && cc1 == X86::COND_NP) ||
22768 (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
22769 // FIXME: need symbolic constants for these magic numbers.
22770 // See X86ATTInstPrinter.cpp:printSSECC().
22771 unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
22772 if (Subtarget->hasAVX512()) {
22773 SDValue FSetCC = DAG.getNode(X86ISD::FSETCC, DL, MVT::i1, CMP00,
22774 CMP01, DAG.getConstant(x86cc, MVT::i8));
22775 if (N->getValueType(0) != MVT::i1)
22776 return DAG.getNode(ISD::ZERO_EXTEND, DL, N->getValueType(0),
22780 SDValue OnesOrZeroesF = DAG.getNode(X86ISD::FSETCC, DL,
22781 CMP00.getValueType(), CMP00, CMP01,
22782 DAG.getConstant(x86cc, MVT::i8));
22784 bool is64BitFP = (CMP00.getValueType() == MVT::f64);
22785 MVT IntVT = is64BitFP ? MVT::i64 : MVT::i32;
22787 if (is64BitFP && !Subtarget->is64Bit()) {
22788 // On a 32-bit target, we cannot bitcast the 64-bit float to a
22789 // 64-bit integer, since that's not a legal type. Since
22790 // OnesOrZeroesF is all ones of all zeroes, we don't need all the
22791 // bits, but can do this little dance to extract the lowest 32 bits
22792 // and work with those going forward.
22793 SDValue Vector64 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64,
22795 SDValue Vector32 = DAG.getNode(ISD::BITCAST, DL, MVT::v4f32,
22797 OnesOrZeroesF = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32,
22798 Vector32, DAG.getIntPtrConstant(0));
22802 SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, IntVT, OnesOrZeroesF);
22803 SDValue ANDed = DAG.getNode(ISD::AND, DL, IntVT, OnesOrZeroesI,
22804 DAG.getConstant(1, IntVT));
22805 SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
22806 return OneBitOfTruth;
22814 /// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
22815 /// so it can be folded inside ANDNP.
22816 static bool CanFoldXORWithAllOnes(const SDNode *N) {
22817 EVT VT = N->getValueType(0);
22819 // Match direct AllOnes for 128 and 256-bit vectors
22820 if (ISD::isBuildVectorAllOnes(N))
22823 // Look through a bit convert.
22824 if (N->getOpcode() == ISD::BITCAST)
22825 N = N->getOperand(0).getNode();
22827 // Sometimes the operand may come from a insert_subvector building a 256-bit
22829 if (VT.is256BitVector() &&
22830 N->getOpcode() == ISD::INSERT_SUBVECTOR) {
22831 SDValue V1 = N->getOperand(0);
22832 SDValue V2 = N->getOperand(1);
22834 if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
22835 V1.getOperand(0).getOpcode() == ISD::UNDEF &&
22836 ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
22837 ISD::isBuildVectorAllOnes(V2.getNode()))
22844 // On AVX/AVX2 the type v8i1 is legalized to v8i16, which is an XMM sized
22845 // register. In most cases we actually compare or select YMM-sized registers
22846 // and mixing the two types creates horrible code. This method optimizes
22847 // some of the transition sequences.
22848 static SDValue WidenMaskArithmetic(SDNode *N, SelectionDAG &DAG,
22849 TargetLowering::DAGCombinerInfo &DCI,
22850 const X86Subtarget *Subtarget) {
22851 EVT VT = N->getValueType(0);
22852 if (!VT.is256BitVector())
22855 assert((N->getOpcode() == ISD::ANY_EXTEND ||
22856 N->getOpcode() == ISD::ZERO_EXTEND ||
22857 N->getOpcode() == ISD::SIGN_EXTEND) && "Invalid Node");
22859 SDValue Narrow = N->getOperand(0);
22860 EVT NarrowVT = Narrow->getValueType(0);
22861 if (!NarrowVT.is128BitVector())
22864 if (Narrow->getOpcode() != ISD::XOR &&
22865 Narrow->getOpcode() != ISD::AND &&
22866 Narrow->getOpcode() != ISD::OR)
22869 SDValue N0 = Narrow->getOperand(0);
22870 SDValue N1 = Narrow->getOperand(1);
22873 // The Left side has to be a trunc.
22874 if (N0.getOpcode() != ISD::TRUNCATE)
22877 // The type of the truncated inputs.
22878 EVT WideVT = N0->getOperand(0)->getValueType(0);
22882 // The right side has to be a 'trunc' or a constant vector.
22883 bool RHSTrunc = N1.getOpcode() == ISD::TRUNCATE;
22884 ConstantSDNode *RHSConstSplat = nullptr;
22885 if (auto *RHSBV = dyn_cast<BuildVectorSDNode>(N1))
22886 RHSConstSplat = RHSBV->getConstantSplatNode();
22887 if (!RHSTrunc && !RHSConstSplat)
22890 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
22892 if (!TLI.isOperationLegalOrPromote(Narrow->getOpcode(), WideVT))
22895 // Set N0 and N1 to hold the inputs to the new wide operation.
22896 N0 = N0->getOperand(0);
22897 if (RHSConstSplat) {
22898 N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT.getScalarType(),
22899 SDValue(RHSConstSplat, 0));
22900 SmallVector<SDValue, 8> C(WideVT.getVectorNumElements(), N1);
22901 N1 = DAG.getNode(ISD::BUILD_VECTOR, DL, WideVT, C);
22902 } else if (RHSTrunc) {
22903 N1 = N1->getOperand(0);
22906 // Generate the wide operation.
22907 SDValue Op = DAG.getNode(Narrow->getOpcode(), DL, WideVT, N0, N1);
22908 unsigned Opcode = N->getOpcode();
22910 case ISD::ANY_EXTEND:
22912 case ISD::ZERO_EXTEND: {
22913 unsigned InBits = NarrowVT.getScalarType().getSizeInBits();
22914 APInt Mask = APInt::getAllOnesValue(InBits);
22915 Mask = Mask.zext(VT.getScalarType().getSizeInBits());
22916 return DAG.getNode(ISD::AND, DL, VT,
22917 Op, DAG.getConstant(Mask, VT));
22919 case ISD::SIGN_EXTEND:
22920 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT,
22921 Op, DAG.getValueType(NarrowVT));
22923 llvm_unreachable("Unexpected opcode");
22927 static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
22928 TargetLowering::DAGCombinerInfo &DCI,
22929 const X86Subtarget *Subtarget) {
22930 EVT VT = N->getValueType(0);
22931 if (DCI.isBeforeLegalizeOps())
22934 SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
22938 // Create BEXTR instructions
22939 // BEXTR is ((X >> imm) & (2**size-1))
22940 if (VT == MVT::i32 || VT == MVT::i64) {
22941 SDValue N0 = N->getOperand(0);
22942 SDValue N1 = N->getOperand(1);
22945 // Check for BEXTR.
22946 if ((Subtarget->hasBMI() || Subtarget->hasTBM()) &&
22947 (N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::SRL)) {
22948 ConstantSDNode *MaskNode = dyn_cast<ConstantSDNode>(N1);
22949 ConstantSDNode *ShiftNode = dyn_cast<ConstantSDNode>(N0.getOperand(1));
22950 if (MaskNode && ShiftNode) {
22951 uint64_t Mask = MaskNode->getZExtValue();
22952 uint64_t Shift = ShiftNode->getZExtValue();
22953 if (isMask_64(Mask)) {
22954 uint64_t MaskSize = CountPopulation_64(Mask);
22955 if (Shift + MaskSize <= VT.getSizeInBits())
22956 return DAG.getNode(X86ISD::BEXTR, DL, VT, N0.getOperand(0),
22957 DAG.getConstant(Shift | (MaskSize << 8), VT));
22965 // Want to form ANDNP nodes:
22966 // 1) In the hopes of then easily combining them with OR and AND nodes
22967 // to form PBLEND/PSIGN.
22968 // 2) To match ANDN packed intrinsics
22969 if (VT != MVT::v2i64 && VT != MVT::v4i64)
22972 SDValue N0 = N->getOperand(0);
22973 SDValue N1 = N->getOperand(1);
22976 // Check LHS for vnot
22977 if (N0.getOpcode() == ISD::XOR &&
22978 //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
22979 CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
22980 return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
22982 // Check RHS for vnot
22983 if (N1.getOpcode() == ISD::XOR &&
22984 //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
22985 CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
22986 return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
22991 static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
22992 TargetLowering::DAGCombinerInfo &DCI,
22993 const X86Subtarget *Subtarget) {
22994 if (DCI.isBeforeLegalizeOps())
22997 SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
23001 SDValue N0 = N->getOperand(0);
23002 SDValue N1 = N->getOperand(1);
23003 EVT VT = N->getValueType(0);
23005 // look for psign/blend
23006 if (VT == MVT::v2i64 || VT == MVT::v4i64) {
23007 if (!Subtarget->hasSSSE3() ||
23008 (VT == MVT::v4i64 && !Subtarget->hasInt256()))
23011 // Canonicalize pandn to RHS
23012 if (N0.getOpcode() == X86ISD::ANDNP)
23014 // or (and (m, y), (pandn m, x))
23015 if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
23016 SDValue Mask = N1.getOperand(0);
23017 SDValue X = N1.getOperand(1);
23019 if (N0.getOperand(0) == Mask)
23020 Y = N0.getOperand(1);
23021 if (N0.getOperand(1) == Mask)
23022 Y = N0.getOperand(0);
23024 // Check to see if the mask appeared in both the AND and ANDNP and
23028 // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
23029 // Look through mask bitcast.
23030 if (Mask.getOpcode() == ISD::BITCAST)
23031 Mask = Mask.getOperand(0);
23032 if (X.getOpcode() == ISD::BITCAST)
23033 X = X.getOperand(0);
23034 if (Y.getOpcode() == ISD::BITCAST)
23035 Y = Y.getOperand(0);
23037 EVT MaskVT = Mask.getValueType();
23039 // Validate that the Mask operand is a vector sra node.
23040 // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
23041 // there is no psrai.b
23042 unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
23043 unsigned SraAmt = ~0;
23044 if (Mask.getOpcode() == ISD::SRA) {
23045 if (auto *AmtBV = dyn_cast<BuildVectorSDNode>(Mask.getOperand(1)))
23046 if (auto *AmtConst = AmtBV->getConstantSplatNode())
23047 SraAmt = AmtConst->getZExtValue();
23048 } else if (Mask.getOpcode() == X86ISD::VSRAI) {
23049 SDValue SraC = Mask.getOperand(1);
23050 SraAmt = cast<ConstantSDNode>(SraC)->getZExtValue();
23052 if ((SraAmt + 1) != EltBits)
23057 // Now we know we at least have a plendvb with the mask val. See if
23058 // we can form a psignb/w/d.
23059 // psign = x.type == y.type == mask.type && y = sub(0, x);
23060 if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
23061 ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
23062 X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
23063 assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
23064 "Unsupported VT for PSIGN");
23065 Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
23066 return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
23068 // PBLENDVB only available on SSE 4.1
23069 if (!Subtarget->hasSSE41())
23072 EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
23074 X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
23075 Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
23076 Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
23077 Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
23078 return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
23082 if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
23085 // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
23086 MachineFunction &MF = DAG.getMachineFunction();
23087 bool OptForSize = MF.getFunction()->getAttributes().
23088 hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
23090 // SHLD/SHRD instructions have lower register pressure, but on some
23091 // platforms they have higher latency than the equivalent
23092 // series of shifts/or that would otherwise be generated.
23093 // Don't fold (or (x << c) | (y >> (64 - c))) if SHLD/SHRD instructions
23094 // have higher latencies and we are not optimizing for size.
23095 if (!OptForSize && Subtarget->isSHLDSlow())
23098 if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
23100 if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
23102 if (!N0.hasOneUse() || !N1.hasOneUse())
23105 SDValue ShAmt0 = N0.getOperand(1);
23106 if (ShAmt0.getValueType() != MVT::i8)
23108 SDValue ShAmt1 = N1.getOperand(1);
23109 if (ShAmt1.getValueType() != MVT::i8)
23111 if (ShAmt0.getOpcode() == ISD::TRUNCATE)
23112 ShAmt0 = ShAmt0.getOperand(0);
23113 if (ShAmt1.getOpcode() == ISD::TRUNCATE)
23114 ShAmt1 = ShAmt1.getOperand(0);
23117 unsigned Opc = X86ISD::SHLD;
23118 SDValue Op0 = N0.getOperand(0);
23119 SDValue Op1 = N1.getOperand(0);
23120 if (ShAmt0.getOpcode() == ISD::SUB) {
23121 Opc = X86ISD::SHRD;
23122 std::swap(Op0, Op1);
23123 std::swap(ShAmt0, ShAmt1);
23126 unsigned Bits = VT.getSizeInBits();
23127 if (ShAmt1.getOpcode() == ISD::SUB) {
23128 SDValue Sum = ShAmt1.getOperand(0);
23129 if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
23130 SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
23131 if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
23132 ShAmt1Op1 = ShAmt1Op1.getOperand(0);
23133 if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
23134 return DAG.getNode(Opc, DL, VT,
23136 DAG.getNode(ISD::TRUNCATE, DL,
23139 } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
23140 ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
23142 ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
23143 return DAG.getNode(Opc, DL, VT,
23144 N0.getOperand(0), N1.getOperand(0),
23145 DAG.getNode(ISD::TRUNCATE, DL,
23152 // Generate NEG and CMOV for integer abs.
23153 static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
23154 EVT VT = N->getValueType(0);
23156 // Since X86 does not have CMOV for 8-bit integer, we don't convert
23157 // 8-bit integer abs to NEG and CMOV.
23158 if (VT.isInteger() && VT.getSizeInBits() == 8)
23161 SDValue N0 = N->getOperand(0);
23162 SDValue N1 = N->getOperand(1);
23165 // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
23166 // and change it to SUB and CMOV.
23167 if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
23168 N0.getOpcode() == ISD::ADD &&
23169 N0.getOperand(1) == N1 &&
23170 N1.getOpcode() == ISD::SRA &&
23171 N1.getOperand(0) == N0.getOperand(0))
23172 if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
23173 if (Y1C->getAPIntValue() == VT.getSizeInBits()-1) {
23174 // Generate SUB & CMOV.
23175 SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32),
23176 DAG.getConstant(0, VT), N0.getOperand(0));
23178 SDValue Ops[] = { N0.getOperand(0), Neg,
23179 DAG.getConstant(X86::COND_GE, MVT::i8),
23180 SDValue(Neg.getNode(), 1) };
23181 return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue), Ops);
23186 // PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
23187 static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
23188 TargetLowering::DAGCombinerInfo &DCI,
23189 const X86Subtarget *Subtarget) {
23190 if (DCI.isBeforeLegalizeOps())
23193 if (Subtarget->hasCMov()) {
23194 SDValue RV = performIntegerAbsCombine(N, DAG);
23202 /// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
23203 static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
23204 TargetLowering::DAGCombinerInfo &DCI,
23205 const X86Subtarget *Subtarget) {
23206 LoadSDNode *Ld = cast<LoadSDNode>(N);
23207 EVT RegVT = Ld->getValueType(0);
23208 EVT MemVT = Ld->getMemoryVT();
23210 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
23212 // On Sandybridge unaligned 256bit loads are inefficient.
23213 ISD::LoadExtType Ext = Ld->getExtensionType();
23214 unsigned Alignment = Ld->getAlignment();
23215 bool IsAligned = Alignment == 0 || Alignment >= MemVT.getSizeInBits()/8;
23216 if (RegVT.is256BitVector() && !Subtarget->hasInt256() &&
23217 !DCI.isBeforeLegalizeOps() && !IsAligned && Ext == ISD::NON_EXTLOAD) {
23218 unsigned NumElems = RegVT.getVectorNumElements();
23222 SDValue Ptr = Ld->getBasePtr();
23223 SDValue Increment = DAG.getConstant(16, TLI.getPointerTy());
23225 EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
23227 SDValue Load1 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
23228 Ld->getPointerInfo(), Ld->isVolatile(),
23229 Ld->isNonTemporal(), Ld->isInvariant(),
23231 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
23232 SDValue Load2 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
23233 Ld->getPointerInfo(), Ld->isVolatile(),
23234 Ld->isNonTemporal(), Ld->isInvariant(),
23235 std::min(16U, Alignment));
23236 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
23238 Load2.getValue(1));
23240 SDValue NewVec = DAG.getUNDEF(RegVT);
23241 NewVec = Insert128BitVector(NewVec, Load1, 0, DAG, dl);
23242 NewVec = Insert128BitVector(NewVec, Load2, NumElems/2, DAG, dl);
23243 return DCI.CombineTo(N, NewVec, TF, true);
23249 /// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
23250 static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
23251 const X86Subtarget *Subtarget) {
23252 StoreSDNode *St = cast<StoreSDNode>(N);
23253 EVT VT = St->getValue().getValueType();
23254 EVT StVT = St->getMemoryVT();
23256 SDValue StoredVal = St->getOperand(1);
23257 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
23259 // If we are saving a concatenation of two XMM registers, perform two stores.
23260 // On Sandy Bridge, 256-bit memory operations are executed by two
23261 // 128-bit ports. However, on Haswell it is better to issue a single 256-bit
23262 // memory operation.
23263 unsigned Alignment = St->getAlignment();
23264 bool IsAligned = Alignment == 0 || Alignment >= VT.getSizeInBits()/8;
23265 if (VT.is256BitVector() && !Subtarget->hasInt256() &&
23266 StVT == VT && !IsAligned) {
23267 unsigned NumElems = VT.getVectorNumElements();
23271 SDValue Value0 = Extract128BitVector(StoredVal, 0, DAG, dl);
23272 SDValue Value1 = Extract128BitVector(StoredVal, NumElems/2, DAG, dl);
23274 SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
23275 SDValue Ptr0 = St->getBasePtr();
23276 SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
23278 SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
23279 St->getPointerInfo(), St->isVolatile(),
23280 St->isNonTemporal(), Alignment);
23281 SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
23282 St->getPointerInfo(), St->isVolatile(),
23283 St->isNonTemporal(),
23284 std::min(16U, Alignment));
23285 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
23288 // Optimize trunc store (of multiple scalars) to shuffle and store.
23289 // First, pack all of the elements in one place. Next, store to memory
23290 // in fewer chunks.
23291 if (St->isTruncatingStore() && VT.isVector()) {
23292 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
23293 unsigned NumElems = VT.getVectorNumElements();
23294 assert(StVT != VT && "Cannot truncate to the same type");
23295 unsigned FromSz = VT.getVectorElementType().getSizeInBits();
23296 unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
23298 // From, To sizes and ElemCount must be pow of two
23299 if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
23300 // We are going to use the original vector elt for storing.
23301 // Accumulated smaller vector elements must be a multiple of the store size.
23302 if (0 != (NumElems * FromSz) % ToSz) return SDValue();
23304 unsigned SizeRatio = FromSz / ToSz;
23306 assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
23308 // Create a type on which we perform the shuffle
23309 EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
23310 StVT.getScalarType(), NumElems*SizeRatio);
23312 assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
23314 SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
23315 SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
23316 for (unsigned i = 0; i != NumElems; ++i)
23317 ShuffleVec[i] = i * SizeRatio;
23319 // Can't shuffle using an illegal type.
23320 if (!TLI.isTypeLegal(WideVecVT))
23323 SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
23324 DAG.getUNDEF(WideVecVT),
23326 // At this point all of the data is stored at the bottom of the
23327 // register. We now need to save it to mem.
23329 // Find the largest store unit
23330 MVT StoreType = MVT::i8;
23331 for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
23332 tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
23333 MVT Tp = (MVT::SimpleValueType)tp;
23334 if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz)
23338 // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
23339 if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 &&
23340 (64 <= NumElems * ToSz))
23341 StoreType = MVT::f64;
23343 // Bitcast the original vector into a vector of store-size units
23344 EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
23345 StoreType, VT.getSizeInBits()/StoreType.getSizeInBits());
23346 assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
23347 SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
23348 SmallVector<SDValue, 8> Chains;
23349 SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
23350 TLI.getPointerTy());
23351 SDValue Ptr = St->getBasePtr();
23353 // Perform one or more big stores into memory.
23354 for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) {
23355 SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
23356 StoreType, ShuffWide,
23357 DAG.getIntPtrConstant(i));
23358 SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
23359 St->getPointerInfo(), St->isVolatile(),
23360 St->isNonTemporal(), St->getAlignment());
23361 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
23362 Chains.push_back(Ch);
23365 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
23368 // Turn load->store of MMX types into GPR load/stores. This avoids clobbering
23369 // the FP state in cases where an emms may be missing.
23370 // A preferable solution to the general problem is to figure out the right
23371 // places to insert EMMS. This qualifies as a quick hack.
23373 // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
23374 if (VT.getSizeInBits() != 64)
23377 const Function *F = DAG.getMachineFunction().getFunction();
23378 bool NoImplicitFloatOps = F->getAttributes().
23379 hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
23380 bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
23381 && Subtarget->hasSSE2();
23382 if ((VT.isVector() ||
23383 (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
23384 isa<LoadSDNode>(St->getValue()) &&
23385 !cast<LoadSDNode>(St->getValue())->isVolatile() &&
23386 St->getChain().hasOneUse() && !St->isVolatile()) {
23387 SDNode* LdVal = St->getValue().getNode();
23388 LoadSDNode *Ld = nullptr;
23389 int TokenFactorIndex = -1;
23390 SmallVector<SDValue, 8> Ops;
23391 SDNode* ChainVal = St->getChain().getNode();
23392 // Must be a store of a load. We currently handle two cases: the load
23393 // is a direct child, and it's under an intervening TokenFactor. It is
23394 // possible to dig deeper under nested TokenFactors.
23395 if (ChainVal == LdVal)
23396 Ld = cast<LoadSDNode>(St->getChain());
23397 else if (St->getValue().hasOneUse() &&
23398 ChainVal->getOpcode() == ISD::TokenFactor) {
23399 for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
23400 if (ChainVal->getOperand(i).getNode() == LdVal) {
23401 TokenFactorIndex = i;
23402 Ld = cast<LoadSDNode>(St->getValue());
23404 Ops.push_back(ChainVal->getOperand(i));
23408 if (!Ld || !ISD::isNormalLoad(Ld))
23411 // If this is not the MMX case, i.e. we are just turning i64 load/store
23412 // into f64 load/store, avoid the transformation if there are multiple
23413 // uses of the loaded value.
23414 if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
23419 // If we are a 64-bit capable x86, lower to a single movq load/store pair.
23420 // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
23422 if (Subtarget->is64Bit() || F64IsLegal) {
23423 EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
23424 SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
23425 Ld->getPointerInfo(), Ld->isVolatile(),
23426 Ld->isNonTemporal(), Ld->isInvariant(),
23427 Ld->getAlignment());
23428 SDValue NewChain = NewLd.getValue(1);
23429 if (TokenFactorIndex != -1) {
23430 Ops.push_back(NewChain);
23431 NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, Ops);
23433 return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
23434 St->getPointerInfo(),
23435 St->isVolatile(), St->isNonTemporal(),
23436 St->getAlignment());
23439 // Otherwise, lower to two pairs of 32-bit loads / stores.
23440 SDValue LoAddr = Ld->getBasePtr();
23441 SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
23442 DAG.getConstant(4, MVT::i32));
23444 SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
23445 Ld->getPointerInfo(),
23446 Ld->isVolatile(), Ld->isNonTemporal(),
23447 Ld->isInvariant(), Ld->getAlignment());
23448 SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
23449 Ld->getPointerInfo().getWithOffset(4),
23450 Ld->isVolatile(), Ld->isNonTemporal(),
23452 MinAlign(Ld->getAlignment(), 4));
23454 SDValue NewChain = LoLd.getValue(1);
23455 if (TokenFactorIndex != -1) {
23456 Ops.push_back(LoLd);
23457 Ops.push_back(HiLd);
23458 NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, Ops);
23461 LoAddr = St->getBasePtr();
23462 HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
23463 DAG.getConstant(4, MVT::i32));
23465 SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
23466 St->getPointerInfo(),
23467 St->isVolatile(), St->isNonTemporal(),
23468 St->getAlignment());
23469 SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
23470 St->getPointerInfo().getWithOffset(4),
23472 St->isNonTemporal(),
23473 MinAlign(St->getAlignment(), 4));
23474 return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
23479 /// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
23480 /// and return the operands for the horizontal operation in LHS and RHS. A
23481 /// horizontal operation performs the binary operation on successive elements
23482 /// of its first operand, then on successive elements of its second operand,
23483 /// returning the resulting values in a vector. For example, if
23484 /// A = < float a0, float a1, float a2, float a3 >
23486 /// B = < float b0, float b1, float b2, float b3 >
23487 /// then the result of doing a horizontal operation on A and B is
23488 /// A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
23489 /// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
23490 /// A horizontal-op B, for some already available A and B, and if so then LHS is
23491 /// set to A, RHS to B, and the routine returns 'true'.
23492 /// Note that the binary operation should have the property that if one of the
23493 /// operands is UNDEF then the result is UNDEF.
23494 static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
23495 // Look for the following pattern: if
23496 // A = < float a0, float a1, float a2, float a3 >
23497 // B = < float b0, float b1, float b2, float b3 >
23499 // LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
23500 // RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
23501 // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
23502 // which is A horizontal-op B.
23504 // At least one of the operands should be a vector shuffle.
23505 if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
23506 RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
23509 MVT VT = LHS.getSimpleValueType();
23511 assert((VT.is128BitVector() || VT.is256BitVector()) &&
23512 "Unsupported vector type for horizontal add/sub");
23514 // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
23515 // operate independently on 128-bit lanes.
23516 unsigned NumElts = VT.getVectorNumElements();
23517 unsigned NumLanes = VT.getSizeInBits()/128;
23518 unsigned NumLaneElts = NumElts / NumLanes;
23519 assert((NumLaneElts % 2 == 0) &&
23520 "Vector type should have an even number of elements in each lane");
23521 unsigned HalfLaneElts = NumLaneElts/2;
23523 // View LHS in the form
23524 // LHS = VECTOR_SHUFFLE A, B, LMask
23525 // If LHS is not a shuffle then pretend it is the shuffle
23526 // LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
23527 // NOTE: in what follows a default initialized SDValue represents an UNDEF of
23530 SmallVector<int, 16> LMask(NumElts);
23531 if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
23532 if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
23533 A = LHS.getOperand(0);
23534 if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
23535 B = LHS.getOperand(1);
23536 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
23537 std::copy(Mask.begin(), Mask.end(), LMask.begin());
23539 if (LHS.getOpcode() != ISD::UNDEF)
23541 for (unsigned i = 0; i != NumElts; ++i)
23545 // Likewise, view RHS in the form
23546 // RHS = VECTOR_SHUFFLE C, D, RMask
23548 SmallVector<int, 16> RMask(NumElts);
23549 if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
23550 if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
23551 C = RHS.getOperand(0);
23552 if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
23553 D = RHS.getOperand(1);
23554 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
23555 std::copy(Mask.begin(), Mask.end(), RMask.begin());
23557 if (RHS.getOpcode() != ISD::UNDEF)
23559 for (unsigned i = 0; i != NumElts; ++i)
23563 // Check that the shuffles are both shuffling the same vectors.
23564 if (!(A == C && B == D) && !(A == D && B == C))
23567 // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
23568 if (!A.getNode() && !B.getNode())
23571 // If A and B occur in reverse order in RHS, then "swap" them (which means
23572 // rewriting the mask).
23574 CommuteVectorShuffleMask(RMask, NumElts);
23576 // At this point LHS and RHS are equivalent to
23577 // LHS = VECTOR_SHUFFLE A, B, LMask
23578 // RHS = VECTOR_SHUFFLE A, B, RMask
23579 // Check that the masks correspond to performing a horizontal operation.
23580 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
23581 for (unsigned i = 0; i != NumLaneElts; ++i) {
23582 int LIdx = LMask[i+l], RIdx = RMask[i+l];
23584 // Ignore any UNDEF components.
23585 if (LIdx < 0 || RIdx < 0 ||
23586 (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
23587 (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
23590 // Check that successive elements are being operated on. If not, this is
23591 // not a horizontal operation.
23592 unsigned Src = (i/HalfLaneElts); // each lane is split between srcs
23593 int Index = 2*(i%HalfLaneElts) + NumElts*Src + l;
23594 if (!(LIdx == Index && RIdx == Index + 1) &&
23595 !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
23600 LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
23601 RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
23605 /// PerformFADDCombine - Do target-specific dag combines on floating point adds.
23606 static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
23607 const X86Subtarget *Subtarget) {
23608 EVT VT = N->getValueType(0);
23609 SDValue LHS = N->getOperand(0);
23610 SDValue RHS = N->getOperand(1);
23612 // Try to synthesize horizontal adds from adds of shuffles.
23613 if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
23614 (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
23615 isHorizontalBinOp(LHS, RHS, true))
23616 return DAG.getNode(X86ISD::FHADD, SDLoc(N), VT, LHS, RHS);
23620 /// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
23621 static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
23622 const X86Subtarget *Subtarget) {
23623 EVT VT = N->getValueType(0);
23624 SDValue LHS = N->getOperand(0);
23625 SDValue RHS = N->getOperand(1);
23627 // Try to synthesize horizontal subs from subs of shuffles.
23628 if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
23629 (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
23630 isHorizontalBinOp(LHS, RHS, false))
23631 return DAG.getNode(X86ISD::FHSUB, SDLoc(N), VT, LHS, RHS);
23635 /// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
23636 /// X86ISD::FXOR nodes.
23637 static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
23638 assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
23639 // F[X]OR(0.0, x) -> x
23640 // F[X]OR(x, 0.0) -> x
23641 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
23642 if (C->getValueAPF().isPosZero())
23643 return N->getOperand(1);
23644 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
23645 if (C->getValueAPF().isPosZero())
23646 return N->getOperand(0);
23650 /// PerformFMinFMaxCombine - Do target-specific dag combines on X86ISD::FMIN and
23651 /// X86ISD::FMAX nodes.
23652 static SDValue PerformFMinFMaxCombine(SDNode *N, SelectionDAG &DAG) {
23653 assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX);
23655 // Only perform optimizations if UnsafeMath is used.
23656 if (!DAG.getTarget().Options.UnsafeFPMath)
23659 // If we run in unsafe-math mode, then convert the FMAX and FMIN nodes
23660 // into FMINC and FMAXC, which are Commutative operations.
23661 unsigned NewOp = 0;
23662 switch (N->getOpcode()) {
23663 default: llvm_unreachable("unknown opcode");
23664 case X86ISD::FMIN: NewOp = X86ISD::FMINC; break;
23665 case X86ISD::FMAX: NewOp = X86ISD::FMAXC; break;
23668 return DAG.getNode(NewOp, SDLoc(N), N->getValueType(0),
23669 N->getOperand(0), N->getOperand(1));
23672 /// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
23673 static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
23674 // FAND(0.0, x) -> 0.0
23675 // FAND(x, 0.0) -> 0.0
23676 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
23677 if (C->getValueAPF().isPosZero())
23678 return N->getOperand(0);
23679 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
23680 if (C->getValueAPF().isPosZero())
23681 return N->getOperand(1);
23685 /// PerformFANDNCombine - Do target-specific dag combines on X86ISD::FANDN nodes
23686 static SDValue PerformFANDNCombine(SDNode *N, SelectionDAG &DAG) {
23687 // FANDN(x, 0.0) -> 0.0
23688 // FANDN(0.0, x) -> x
23689 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
23690 if (C->getValueAPF().isPosZero())
23691 return N->getOperand(1);
23692 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
23693 if (C->getValueAPF().isPosZero())
23694 return N->getOperand(1);
23698 static SDValue PerformBTCombine(SDNode *N,
23700 TargetLowering::DAGCombinerInfo &DCI) {
23701 // BT ignores high bits in the bit index operand.
23702 SDValue Op1 = N->getOperand(1);
23703 if (Op1.hasOneUse()) {
23704 unsigned BitWidth = Op1.getValueSizeInBits();
23705 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
23706 APInt KnownZero, KnownOne;
23707 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
23708 !DCI.isBeforeLegalizeOps());
23709 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
23710 if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
23711 TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
23712 DCI.CommitTargetLoweringOpt(TLO);
23717 static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
23718 SDValue Op = N->getOperand(0);
23719 if (Op.getOpcode() == ISD::BITCAST)
23720 Op = Op.getOperand(0);
23721 EVT VT = N->getValueType(0), OpVT = Op.getValueType();
23722 if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
23723 VT.getVectorElementType().getSizeInBits() ==
23724 OpVT.getVectorElementType().getSizeInBits()) {
23725 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
23730 static SDValue PerformSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
23731 const X86Subtarget *Subtarget) {
23732 EVT VT = N->getValueType(0);
23733 if (!VT.isVector())
23736 SDValue N0 = N->getOperand(0);
23737 SDValue N1 = N->getOperand(1);
23738 EVT ExtraVT = cast<VTSDNode>(N1)->getVT();
23741 // The SIGN_EXTEND_INREG to v4i64 is expensive operation on the
23742 // both SSE and AVX2 since there is no sign-extended shift right
23743 // operation on a vector with 64-bit elements.
23744 //(sext_in_reg (v4i64 anyext (v4i32 x )), ExtraVT) ->
23745 // (v4i64 sext (v4i32 sext_in_reg (v4i32 x , ExtraVT)))
23746 if (VT == MVT::v4i64 && (N0.getOpcode() == ISD::ANY_EXTEND ||
23747 N0.getOpcode() == ISD::SIGN_EXTEND)) {
23748 SDValue N00 = N0.getOperand(0);
23750 // EXTLOAD has a better solution on AVX2,
23751 // it may be replaced with X86ISD::VSEXT node.
23752 if (N00.getOpcode() == ISD::LOAD && Subtarget->hasInt256())
23753 if (!ISD::isNormalLoad(N00.getNode()))
23756 if (N00.getValueType() == MVT::v4i32 && ExtraVT.getSizeInBits() < 128) {
23757 SDValue Tmp = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32,
23759 return DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i64, Tmp);
23765 static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
23766 TargetLowering::DAGCombinerInfo &DCI,
23767 const X86Subtarget *Subtarget) {
23768 if (!DCI.isBeforeLegalizeOps())
23771 if (!Subtarget->hasFp256())
23774 EVT VT = N->getValueType(0);
23775 if (VT.isVector() && VT.getSizeInBits() == 256) {
23776 SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget);
23784 static SDValue PerformFMACombine(SDNode *N, SelectionDAG &DAG,
23785 const X86Subtarget* Subtarget) {
23787 EVT VT = N->getValueType(0);
23789 // Let legalize expand this if it isn't a legal type yet.
23790 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
23793 EVT ScalarVT = VT.getScalarType();
23794 if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) ||
23795 (!Subtarget->hasFMA() && !Subtarget->hasFMA4()))
23798 SDValue A = N->getOperand(0);
23799 SDValue B = N->getOperand(1);
23800 SDValue C = N->getOperand(2);
23802 bool NegA = (A.getOpcode() == ISD::FNEG);
23803 bool NegB = (B.getOpcode() == ISD::FNEG);
23804 bool NegC = (C.getOpcode() == ISD::FNEG);
23806 // Negative multiplication when NegA xor NegB
23807 bool NegMul = (NegA != NegB);
23809 A = A.getOperand(0);
23811 B = B.getOperand(0);
23813 C = C.getOperand(0);
23817 Opcode = (!NegC) ? X86ISD::FMADD : X86ISD::FMSUB;
23819 Opcode = (!NegC) ? X86ISD::FNMADD : X86ISD::FNMSUB;
23821 return DAG.getNode(Opcode, dl, VT, A, B, C);
23824 static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
23825 TargetLowering::DAGCombinerInfo &DCI,
23826 const X86Subtarget *Subtarget) {
23827 // (i32 zext (and (i8 x86isd::setcc_carry), 1)) ->
23828 // (and (i32 x86isd::setcc_carry), 1)
23829 // This eliminates the zext. This transformation is necessary because
23830 // ISD::SETCC is always legalized to i8.
23832 SDValue N0 = N->getOperand(0);
23833 EVT VT = N->getValueType(0);
23835 if (N0.getOpcode() == ISD::AND &&
23837 N0.getOperand(0).hasOneUse()) {
23838 SDValue N00 = N0.getOperand(0);
23839 if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
23840 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
23841 if (!C || C->getZExtValue() != 1)
23843 return DAG.getNode(ISD::AND, dl, VT,
23844 DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
23845 N00.getOperand(0), N00.getOperand(1)),
23846 DAG.getConstant(1, VT));
23850 if (N0.getOpcode() == ISD::TRUNCATE &&
23852 N0.getOperand(0).hasOneUse()) {
23853 SDValue N00 = N0.getOperand(0);
23854 if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
23855 return DAG.getNode(ISD::AND, dl, VT,
23856 DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
23857 N00.getOperand(0), N00.getOperand(1)),
23858 DAG.getConstant(1, VT));
23861 if (VT.is256BitVector()) {
23862 SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget);
23870 // Optimize x == -y --> x+y == 0
23871 // x != -y --> x+y != 0
23872 static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG,
23873 const X86Subtarget* Subtarget) {
23874 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
23875 SDValue LHS = N->getOperand(0);
23876 SDValue RHS = N->getOperand(1);
23877 EVT VT = N->getValueType(0);
23880 if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB)
23881 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(LHS.getOperand(0)))
23882 if (C->getAPIntValue() == 0 && LHS.hasOneUse()) {
23883 SDValue addV = DAG.getNode(ISD::ADD, SDLoc(N),
23884 LHS.getValueType(), RHS, LHS.getOperand(1));
23885 return DAG.getSetCC(SDLoc(N), N->getValueType(0),
23886 addV, DAG.getConstant(0, addV.getValueType()), CC);
23888 if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB)
23889 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS.getOperand(0)))
23890 if (C->getAPIntValue() == 0 && RHS.hasOneUse()) {
23891 SDValue addV = DAG.getNode(ISD::ADD, SDLoc(N),
23892 RHS.getValueType(), LHS, RHS.getOperand(1));
23893 return DAG.getSetCC(SDLoc(N), N->getValueType(0),
23894 addV, DAG.getConstant(0, addV.getValueType()), CC);
23897 if (VT.getScalarType() == MVT::i1) {
23898 bool IsSEXT0 = (LHS.getOpcode() == ISD::SIGN_EXTEND) &&
23899 (LHS.getOperand(0).getValueType().getScalarType() == MVT::i1);
23900 bool IsVZero0 = ISD::isBuildVectorAllZeros(LHS.getNode());
23901 if (!IsSEXT0 && !IsVZero0)
23903 bool IsSEXT1 = (RHS.getOpcode() == ISD::SIGN_EXTEND) &&
23904 (RHS.getOperand(0).getValueType().getScalarType() == MVT::i1);
23905 bool IsVZero1 = ISD::isBuildVectorAllZeros(RHS.getNode());
23907 if (!IsSEXT1 && !IsVZero1)
23910 if (IsSEXT0 && IsVZero1) {
23911 assert(VT == LHS.getOperand(0).getValueType() && "Uexpected operand type");
23912 if (CC == ISD::SETEQ)
23913 return DAG.getNOT(DL, LHS.getOperand(0), VT);
23914 return LHS.getOperand(0);
23916 if (IsSEXT1 && IsVZero0) {
23917 assert(VT == RHS.getOperand(0).getValueType() && "Uexpected operand type");
23918 if (CC == ISD::SETEQ)
23919 return DAG.getNOT(DL, RHS.getOperand(0), VT);
23920 return RHS.getOperand(0);
23927 static SDValue PerformINSERTPSCombine(SDNode *N, SelectionDAG &DAG,
23928 const X86Subtarget *Subtarget) {
23930 MVT VT = N->getOperand(1)->getSimpleValueType(0);
23931 assert((VT == MVT::v4f32 || VT == MVT::v4i32) &&
23932 "X86insertps is only defined for v4x32");
23934 SDValue Ld = N->getOperand(1);
23935 if (MayFoldLoad(Ld)) {
23936 // Extract the countS bits from the immediate so we can get the proper
23937 // address when narrowing the vector load to a specific element.
23938 // When the second source op is a memory address, interps doesn't use
23939 // countS and just gets an f32 from that address.
23940 unsigned DestIndex =
23941 cast<ConstantSDNode>(N->getOperand(2))->getZExtValue() >> 6;
23942 Ld = NarrowVectorLoadToElement(cast<LoadSDNode>(Ld), DestIndex, DAG);
23946 // Create this as a scalar to vector to match the instruction pattern.
23947 SDValue LoadScalarToVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Ld);
23948 // countS bits are ignored when loading from memory on insertps, which
23949 // means we don't need to explicitly set them to 0.
23950 return DAG.getNode(X86ISD::INSERTPS, dl, VT, N->getOperand(0),
23951 LoadScalarToVector, N->getOperand(2));
23954 // Helper function of PerformSETCCCombine. It is to materialize "setb reg"
23955 // as "sbb reg,reg", since it can be extended without zext and produces
23956 // an all-ones bit which is more useful than 0/1 in some cases.
23957 static SDValue MaterializeSETB(SDLoc DL, SDValue EFLAGS, SelectionDAG &DAG,
23960 return DAG.getNode(ISD::AND, DL, VT,
23961 DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
23962 DAG.getConstant(X86::COND_B, MVT::i8), EFLAGS),
23963 DAG.getConstant(1, VT));
23964 assert (VT == MVT::i1 && "Unexpected type for SECCC node");
23965 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1,
23966 DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
23967 DAG.getConstant(X86::COND_B, MVT::i8), EFLAGS));
23970 // Optimize RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
23971 static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG,
23972 TargetLowering::DAGCombinerInfo &DCI,
23973 const X86Subtarget *Subtarget) {
23975 X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0));
23976 SDValue EFLAGS = N->getOperand(1);
23978 if (CC == X86::COND_A) {
23979 // Try to convert COND_A into COND_B in an attempt to facilitate
23980 // materializing "setb reg".
23982 // Do not flip "e > c", where "c" is a constant, because Cmp instruction
23983 // cannot take an immediate as its first operand.
23985 if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.hasOneUse() &&
23986 EFLAGS.getValueType().isInteger() &&
23987 !isa<ConstantSDNode>(EFLAGS.getOperand(1))) {
23988 SDValue NewSub = DAG.getNode(X86ISD::SUB, SDLoc(EFLAGS),
23989 EFLAGS.getNode()->getVTList(),
23990 EFLAGS.getOperand(1), EFLAGS.getOperand(0));
23991 SDValue NewEFLAGS = SDValue(NewSub.getNode(), EFLAGS.getResNo());
23992 return MaterializeSETB(DL, NewEFLAGS, DAG, N->getSimpleValueType(0));
23996 // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
23997 // a zext and produces an all-ones bit which is more useful than 0/1 in some
23999 if (CC == X86::COND_B)
24000 return MaterializeSETB(DL, EFLAGS, DAG, N->getSimpleValueType(0));
24004 Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
24005 if (Flags.getNode()) {
24006 SDValue Cond = DAG.getConstant(CC, MVT::i8);
24007 return DAG.getNode(X86ISD::SETCC, DL, N->getVTList(), Cond, Flags);
24013 // Optimize branch condition evaluation.
24015 static SDValue PerformBrCondCombine(SDNode *N, SelectionDAG &DAG,
24016 TargetLowering::DAGCombinerInfo &DCI,
24017 const X86Subtarget *Subtarget) {
24019 SDValue Chain = N->getOperand(0);
24020 SDValue Dest = N->getOperand(1);
24021 SDValue EFLAGS = N->getOperand(3);
24022 X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2));
24026 Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
24027 if (Flags.getNode()) {
24028 SDValue Cond = DAG.getConstant(CC, MVT::i8);
24029 return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), Chain, Dest, Cond,
24036 static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
24037 SelectionDAG &DAG) {
24038 // Take advantage of vector comparisons producing 0 or -1 in each lane to
24039 // optimize away operation when it's from a constant.
24041 // The general transformation is:
24042 // UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
24043 // AND(VECTOR_CMP(x,y), constant2)
24044 // constant2 = UNARYOP(constant)
24046 // Early exit if this isn't a vector operation, the operand of the
24047 // unary operation isn't a bitwise AND, or if the sizes of the operations
24048 // aren't the same.
24049 EVT VT = N->getValueType(0);
24050 if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND ||
24051 N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC ||
24052 VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits())
24055 // Now check that the other operand of the AND is a constant. We could
24056 // make the transformation for non-constant splats as well, but it's unclear
24057 // that would be a benefit as it would not eliminate any operations, just
24058 // perform one more step in scalar code before moving to the vector unit.
24059 if (BuildVectorSDNode *BV =
24060 dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
24061 // Bail out if the vector isn't a constant.
24062 if (!BV->isConstant())
24065 // Everything checks out. Build up the new and improved node.
24067 EVT IntVT = BV->getValueType(0);
24068 // Create a new constant of the appropriate type for the transformed
24070 SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
24071 // The AND node needs bitcasts to/from an integer vector type around it.
24072 SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst);
24073 SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
24074 N->getOperand(0)->getOperand(0), MaskConst);
24075 SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd);
24082 static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
24083 const X86TargetLowering *XTLI) {
24084 // First try to optimize away the conversion entirely when it's
24085 // conditionally from a constant. Vectors only.
24086 SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG);
24087 if (Res != SDValue())
24090 // Now move on to more general possibilities.
24091 SDValue Op0 = N->getOperand(0);
24092 EVT InVT = Op0->getValueType(0);
24094 // SINT_TO_FP(v4i8) -> SINT_TO_FP(SEXT(v4i8 to v4i32))
24095 if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
24097 MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
24098 SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
24099 return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
24102 // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
24103 // a 32-bit target where SSE doesn't support i64->FP operations.
24104 if (Op0.getOpcode() == ISD::LOAD) {
24105 LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
24106 EVT VT = Ld->getValueType(0);
24107 if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
24108 ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
24109 !XTLI->getSubtarget()->is64Bit() &&
24111 SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
24112 Ld->getChain(), Op0, DAG);
24113 DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
24120 // Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
24121 static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
24122 X86TargetLowering::DAGCombinerInfo &DCI) {
24123 // If the LHS and RHS of the ADC node are zero, then it can't overflow and
24124 // the result is either zero or one (depending on the input carry bit).
24125 // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
24126 if (X86::isZeroNode(N->getOperand(0)) &&
24127 X86::isZeroNode(N->getOperand(1)) &&
24128 // We don't have a good way to replace an EFLAGS use, so only do this when
24130 SDValue(N, 1).use_empty()) {
24132 EVT VT = N->getValueType(0);
24133 SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
24134 SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
24135 DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
24136 DAG.getConstant(X86::COND_B,MVT::i8),
24138 DAG.getConstant(1, VT));
24139 return DCI.CombineTo(N, Res1, CarryOut);
24145 // fold (add Y, (sete X, 0)) -> adc 0, Y
24146 // (add Y, (setne X, 0)) -> sbb -1, Y
24147 // (sub (sete X, 0), Y) -> sbb 0, Y
24148 // (sub (setne X, 0), Y) -> adc -1, Y
24149 static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
24152 // Look through ZExts.
24153 SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
24154 if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
24157 SDValue SetCC = Ext.getOperand(0);
24158 if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
24161 X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
24162 if (CC != X86::COND_E && CC != X86::COND_NE)
24165 SDValue Cmp = SetCC.getOperand(1);
24166 if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
24167 !X86::isZeroNode(Cmp.getOperand(1)) ||
24168 !Cmp.getOperand(0).getValueType().isInteger())
24171 SDValue CmpOp0 = Cmp.getOperand(0);
24172 SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
24173 DAG.getConstant(1, CmpOp0.getValueType()));
24175 SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
24176 if (CC == X86::COND_NE)
24177 return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
24178 DL, OtherVal.getValueType(), OtherVal,
24179 DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
24180 return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
24181 DL, OtherVal.getValueType(), OtherVal,
24182 DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
24185 /// PerformADDCombine - Do target-specific dag combines on integer adds.
24186 static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
24187 const X86Subtarget *Subtarget) {
24188 EVT VT = N->getValueType(0);
24189 SDValue Op0 = N->getOperand(0);
24190 SDValue Op1 = N->getOperand(1);
24192 // Try to synthesize horizontal adds from adds of shuffles.
24193 if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
24194 (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
24195 isHorizontalBinOp(Op0, Op1, true))
24196 return DAG.getNode(X86ISD::HADD, SDLoc(N), VT, Op0, Op1);
24198 return OptimizeConditionalInDecrement(N, DAG);
24201 static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
24202 const X86Subtarget *Subtarget) {
24203 SDValue Op0 = N->getOperand(0);
24204 SDValue Op1 = N->getOperand(1);
24206 // X86 can't encode an immediate LHS of a sub. See if we can push the
24207 // negation into a preceding instruction.
24208 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
24209 // If the RHS of the sub is a XOR with one use and a constant, invert the
24210 // immediate. Then add one to the LHS of the sub so we can turn
24211 // X-Y -> X+~Y+1, saving one register.
24212 if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
24213 isa<ConstantSDNode>(Op1.getOperand(1))) {
24214 APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
24215 EVT VT = Op0.getValueType();
24216 SDValue NewXor = DAG.getNode(ISD::XOR, SDLoc(Op1), VT,
24218 DAG.getConstant(~XorC, VT));
24219 return DAG.getNode(ISD::ADD, SDLoc(N), VT, NewXor,
24220 DAG.getConstant(C->getAPIntValue()+1, VT));
24224 // Try to synthesize horizontal adds from adds of shuffles.
24225 EVT VT = N->getValueType(0);
24226 if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
24227 (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
24228 isHorizontalBinOp(Op0, Op1, true))
24229 return DAG.getNode(X86ISD::HSUB, SDLoc(N), VT, Op0, Op1);
24231 return OptimizeConditionalInDecrement(N, DAG);
24234 /// performVZEXTCombine - Performs build vector combines
24235 static SDValue performVZEXTCombine(SDNode *N, SelectionDAG &DAG,
24236 TargetLowering::DAGCombinerInfo &DCI,
24237 const X86Subtarget *Subtarget) {
24238 // (vzext (bitcast (vzext (x)) -> (vzext x)
24239 SDValue In = N->getOperand(0);
24240 while (In.getOpcode() == ISD::BITCAST)
24241 In = In.getOperand(0);
24243 if (In.getOpcode() != X86ISD::VZEXT)
24246 return DAG.getNode(X86ISD::VZEXT, SDLoc(N), N->getValueType(0),
24250 SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
24251 DAGCombinerInfo &DCI) const {
24252 SelectionDAG &DAG = DCI.DAG;
24253 switch (N->getOpcode()) {
24255 case ISD::EXTRACT_VECTOR_ELT:
24256 return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
24258 case ISD::SELECT: return PerformSELECTCombine(N, DAG, DCI, Subtarget);
24259 case X86ISD::CMOV: return PerformCMOVCombine(N, DAG, DCI, Subtarget);
24260 case ISD::ADD: return PerformAddCombine(N, DAG, Subtarget);
24261 case ISD::SUB: return PerformSubCombine(N, DAG, Subtarget);
24262 case X86ISD::ADC: return PerformADCCombine(N, DAG, DCI);
24263 case ISD::MUL: return PerformMulCombine(N, DAG, DCI);
24266 case ISD::SRL: return PerformShiftCombine(N, DAG, DCI, Subtarget);
24267 case ISD::AND: return PerformAndCombine(N, DAG, DCI, Subtarget);
24268 case ISD::OR: return PerformOrCombine(N, DAG, DCI, Subtarget);
24269 case ISD::XOR: return PerformXorCombine(N, DAG, DCI, Subtarget);
24270 case ISD::LOAD: return PerformLOADCombine(N, DAG, DCI, Subtarget);
24271 case ISD::STORE: return PerformSTORECombine(N, DAG, Subtarget);
24272 case ISD::SINT_TO_FP: return PerformSINT_TO_FPCombine(N, DAG, this);
24273 case ISD::FADD: return PerformFADDCombine(N, DAG, Subtarget);
24274 case ISD::FSUB: return PerformFSUBCombine(N, DAG, Subtarget);
24276 case X86ISD::FOR: return PerformFORCombine(N, DAG);
24278 case X86ISD::FMAX: return PerformFMinFMaxCombine(N, DAG);
24279 case X86ISD::FAND: return PerformFANDCombine(N, DAG);
24280 case X86ISD::FANDN: return PerformFANDNCombine(N, DAG);
24281 case X86ISD::BT: return PerformBTCombine(N, DAG, DCI);
24282 case X86ISD::VZEXT_MOVL: return PerformVZEXT_MOVLCombine(N, DAG);
24283 case ISD::ANY_EXTEND:
24284 case ISD::ZERO_EXTEND: return PerformZExtCombine(N, DAG, DCI, Subtarget);
24285 case ISD::SIGN_EXTEND: return PerformSExtCombine(N, DAG, DCI, Subtarget);
24286 case ISD::SIGN_EXTEND_INREG:
24287 return PerformSIGN_EXTEND_INREGCombine(N, DAG, Subtarget);
24288 case ISD::TRUNCATE: return PerformTruncateCombine(N, DAG,DCI,Subtarget);
24289 case ISD::SETCC: return PerformISDSETCCCombine(N, DAG, Subtarget);
24290 case X86ISD::SETCC: return PerformSETCCCombine(N, DAG, DCI, Subtarget);
24291 case X86ISD::BRCOND: return PerformBrCondCombine(N, DAG, DCI, Subtarget);
24292 case X86ISD::VZEXT: return performVZEXTCombine(N, DAG, DCI, Subtarget);
24293 case X86ISD::SHUFP: // Handle all target specific shuffles
24294 case X86ISD::PALIGNR:
24295 case X86ISD::UNPCKH:
24296 case X86ISD::UNPCKL:
24297 case X86ISD::MOVHLPS:
24298 case X86ISD::MOVLHPS:
24299 case X86ISD::PSHUFB:
24300 case X86ISD::PSHUFD:
24301 case X86ISD::PSHUFHW:
24302 case X86ISD::PSHUFLW:
24303 case X86ISD::MOVSS:
24304 case X86ISD::MOVSD:
24305 case X86ISD::VPERMILPI:
24306 case X86ISD::VPERM2X128:
24307 case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
24308 case ISD::FMA: return PerformFMACombine(N, DAG, Subtarget);
24309 case ISD::INTRINSIC_WO_CHAIN:
24310 return PerformINTRINSIC_WO_CHAINCombine(N, DAG, Subtarget);
24311 case X86ISD::INSERTPS:
24312 return PerformINSERTPSCombine(N, DAG, Subtarget);
24313 case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DAG, Subtarget);
24319 /// isTypeDesirableForOp - Return true if the target has native support for
24320 /// the specified value type and it is 'desirable' to use the type for the
24321 /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
24322 /// instruction encodings are longer and some i16 instructions are slow.
24323 bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
24324 if (!isTypeLegal(VT))
24326 if (VT != MVT::i16)
24333 case ISD::SIGN_EXTEND:
24334 case ISD::ZERO_EXTEND:
24335 case ISD::ANY_EXTEND:
24348 /// IsDesirableToPromoteOp - This method query the target whether it is
24349 /// beneficial for dag combiner to promote the specified node. If true, it
24350 /// should return the desired promotion type by reference.
24351 bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
24352 EVT VT = Op.getValueType();
24353 if (VT != MVT::i16)
24356 bool Promote = false;
24357 bool Commute = false;
24358 switch (Op.getOpcode()) {
24361 LoadSDNode *LD = cast<LoadSDNode>(Op);
24362 // If the non-extending load has a single use and it's not live out, then it
24363 // might be folded.
24364 if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
24365 Op.hasOneUse()*/) {
24366 for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
24367 UE = Op.getNode()->use_end(); UI != UE; ++UI) {
24368 // The only case where we'd want to promote LOAD (rather then it being
24369 // promoted as an operand is when it's only use is liveout.
24370 if (UI->getOpcode() != ISD::CopyToReg)
24377 case ISD::SIGN_EXTEND:
24378 case ISD::ZERO_EXTEND:
24379 case ISD::ANY_EXTEND:
24384 SDValue N0 = Op.getOperand(0);
24385 // Look out for (store (shl (load), x)).
24386 if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
24399 SDValue N0 = Op.getOperand(0);
24400 SDValue N1 = Op.getOperand(1);
24401 if (!Commute && MayFoldLoad(N1))
24403 // Avoid disabling potential load folding opportunities.
24404 if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
24406 if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
24416 //===----------------------------------------------------------------------===//
24417 // X86 Inline Assembly Support
24418 //===----------------------------------------------------------------------===//
24421 // Helper to match a string separated by whitespace.
24422 bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
24423 s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
24425 for (unsigned i = 0, e = args.size(); i != e; ++i) {
24426 StringRef piece(*args[i]);
24427 if (!s.startswith(piece)) // Check if the piece matches.
24430 s = s.substr(piece.size());
24431 StringRef::size_type pos = s.find_first_not_of(" \t");
24432 if (pos == 0) // We matched a prefix.
24440 const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
24443 static bool clobbersFlagRegisters(const SmallVector<StringRef, 4> &AsmPieces) {
24445 if (AsmPieces.size() == 3 || AsmPieces.size() == 4) {
24446 if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{cc}") &&
24447 std::count(AsmPieces.begin(), AsmPieces.end(), "~{flags}") &&
24448 std::count(AsmPieces.begin(), AsmPieces.end(), "~{fpsr}")) {
24450 if (AsmPieces.size() == 3)
24452 else if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{dirflag}"))
24459 bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
24460 InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
24462 std::string AsmStr = IA->getAsmString();
24464 IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
24465 if (!Ty || Ty->getBitWidth() % 16 != 0)
24468 // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
24469 SmallVector<StringRef, 4> AsmPieces;
24470 SplitString(AsmStr, AsmPieces, ";\n");
24472 switch (AsmPieces.size()) {
24473 default: return false;
24475 // FIXME: this should verify that we are targeting a 486 or better. If not,
24476 // we will turn this bswap into something that will be lowered to logical
24477 // ops instead of emitting the bswap asm. For now, we don't support 486 or
24478 // lower so don't worry about this.
24480 if (matchAsm(AsmPieces[0], "bswap", "$0") ||
24481 matchAsm(AsmPieces[0], "bswapl", "$0") ||
24482 matchAsm(AsmPieces[0], "bswapq", "$0") ||
24483 matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
24484 matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
24485 matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
24486 // No need to check constraints, nothing other than the equivalent of
24487 // "=r,0" would be valid here.
24488 return IntrinsicLowering::LowerToByteSwap(CI);
24491 // rorw $$8, ${0:w} --> llvm.bswap.i16
24492 if (CI->getType()->isIntegerTy(16) &&
24493 IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
24494 (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
24495 matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
24497 const std::string &ConstraintsStr = IA->getConstraintString();
24498 SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
24499 array_pod_sort(AsmPieces.begin(), AsmPieces.end());
24500 if (clobbersFlagRegisters(AsmPieces))
24501 return IntrinsicLowering::LowerToByteSwap(CI);
24505 if (CI->getType()->isIntegerTy(32) &&
24506 IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
24507 matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
24508 matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
24509 matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
24511 const std::string &ConstraintsStr = IA->getConstraintString();
24512 SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
24513 array_pod_sort(AsmPieces.begin(), AsmPieces.end());
24514 if (clobbersFlagRegisters(AsmPieces))
24515 return IntrinsicLowering::LowerToByteSwap(CI);
24518 if (CI->getType()->isIntegerTy(64)) {
24519 InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
24520 if (Constraints.size() >= 2 &&
24521 Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
24522 Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
24523 // bswap %eax / bswap %edx / xchgl %eax, %edx -> llvm.bswap.i64
24524 if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
24525 matchAsm(AsmPieces[1], "bswap", "%edx") &&
24526 matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
24527 return IntrinsicLowering::LowerToByteSwap(CI);
24535 /// getConstraintType - Given a constraint letter, return the type of
24536 /// constraint it is for this target.
24537 X86TargetLowering::ConstraintType
24538 X86TargetLowering::getConstraintType(const std::string &Constraint) const {
24539 if (Constraint.size() == 1) {
24540 switch (Constraint[0]) {
24551 return C_RegisterClass;
24575 return TargetLowering::getConstraintType(Constraint);
24578 /// Examine constraint type and operand type and determine a weight value.
24579 /// This object must already have been set up with the operand type
24580 /// and the current alternative constraint selected.
24581 TargetLowering::ConstraintWeight
24582 X86TargetLowering::getSingleConstraintMatchWeight(
24583 AsmOperandInfo &info, const char *constraint) const {
24584 ConstraintWeight weight = CW_Invalid;
24585 Value *CallOperandVal = info.CallOperandVal;
24586 // If we don't have a value, we can't do a match,
24587 // but allow it at the lowest weight.
24588 if (!CallOperandVal)
24590 Type *type = CallOperandVal->getType();
24591 // Look at the constraint type.
24592 switch (*constraint) {
24594 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
24605 if (CallOperandVal->getType()->isIntegerTy())
24606 weight = CW_SpecificReg;
24611 if (type->isFloatingPointTy())
24612 weight = CW_SpecificReg;
24615 if (type->isX86_MMXTy() && Subtarget->hasMMX())
24616 weight = CW_SpecificReg;
24620 if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
24621 ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasFp256()))
24622 weight = CW_Register;
24625 if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
24626 if (C->getZExtValue() <= 31)
24627 weight = CW_Constant;
24631 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
24632 if (C->getZExtValue() <= 63)
24633 weight = CW_Constant;
24637 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
24638 if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
24639 weight = CW_Constant;
24643 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
24644 if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
24645 weight = CW_Constant;
24649 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
24650 if (C->getZExtValue() <= 3)
24651 weight = CW_Constant;
24655 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
24656 if (C->getZExtValue() <= 0xff)
24657 weight = CW_Constant;
24662 if (dyn_cast<ConstantFP>(CallOperandVal)) {
24663 weight = CW_Constant;
24667 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
24668 if ((C->getSExtValue() >= -0x80000000LL) &&
24669 (C->getSExtValue() <= 0x7fffffffLL))
24670 weight = CW_Constant;
24674 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
24675 if (C->getZExtValue() <= 0xffffffff)
24676 weight = CW_Constant;
24683 /// LowerXConstraint - try to replace an X constraint, which matches anything,
24684 /// with another that has more specific requirements based on the type of the
24685 /// corresponding operand.
24686 const char *X86TargetLowering::
24687 LowerXConstraint(EVT ConstraintVT) const {
24688 // FP X constraints get lowered to SSE1/2 registers if available, otherwise
24689 // 'f' like normal targets.
24690 if (ConstraintVT.isFloatingPoint()) {
24691 if (Subtarget->hasSSE2())
24693 if (Subtarget->hasSSE1())
24697 return TargetLowering::LowerXConstraint(ConstraintVT);
24700 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
24701 /// vector. If it is invalid, don't add anything to Ops.
24702 void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
24703 std::string &Constraint,
24704 std::vector<SDValue>&Ops,
24705 SelectionDAG &DAG) const {
24708 // Only support length 1 constraints for now.
24709 if (Constraint.length() > 1) return;
24711 char ConstraintLetter = Constraint[0];
24712 switch (ConstraintLetter) {
24715 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
24716 if (C->getZExtValue() <= 31) {
24717 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
24723 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
24724 if (C->getZExtValue() <= 63) {
24725 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
24731 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
24732 if (isInt<8>(C->getSExtValue())) {
24733 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
24739 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
24740 if (C->getZExtValue() <= 255) {
24741 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
24747 // 32-bit signed value
24748 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
24749 if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
24750 C->getSExtValue())) {
24751 // Widen to 64 bits here to get it sign extended.
24752 Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
24755 // FIXME gcc accepts some relocatable values here too, but only in certain
24756 // memory models; it's complicated.
24761 // 32-bit unsigned value
24762 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
24763 if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
24764 C->getZExtValue())) {
24765 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
24769 // FIXME gcc accepts some relocatable values here too, but only in certain
24770 // memory models; it's complicated.
24774 // Literal immediates are always ok.
24775 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
24776 // Widen to 64 bits here to get it sign extended.
24777 Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
24781 // In any sort of PIC mode addresses need to be computed at runtime by
24782 // adding in a register or some sort of table lookup. These can't
24783 // be used as immediates.
24784 if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
24787 // If we are in non-pic codegen mode, we allow the address of a global (with
24788 // an optional displacement) to be used with 'i'.
24789 GlobalAddressSDNode *GA = nullptr;
24790 int64_t Offset = 0;
24792 // Match either (GA), (GA+C), (GA+C1+C2), etc.
24794 if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
24795 Offset += GA->getOffset();
24797 } else if (Op.getOpcode() == ISD::ADD) {
24798 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
24799 Offset += C->getZExtValue();
24800 Op = Op.getOperand(0);
24803 } else if (Op.getOpcode() == ISD::SUB) {
24804 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
24805 Offset += -C->getZExtValue();
24806 Op = Op.getOperand(0);
24811 // Otherwise, this isn't something we can handle, reject it.
24815 const GlobalValue *GV = GA->getGlobal();
24816 // If we require an extra load to get this address, as in PIC mode, we
24817 // can't accept it.
24818 if (isGlobalStubReference(
24819 Subtarget->ClassifyGlobalReference(GV, DAG.getTarget())))
24822 Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op),
24823 GA->getValueType(0), Offset);
24828 if (Result.getNode()) {
24829 Ops.push_back(Result);
24832 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
24835 std::pair<unsigned, const TargetRegisterClass*>
24836 X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
24838 // First, see if this is a constraint that directly corresponds to an LLVM
24840 if (Constraint.size() == 1) {
24841 // GCC Constraint Letters
24842 switch (Constraint[0]) {
24844 // TODO: Slight differences here in allocation order and leaving
24845 // RIP in the class. Do they matter any more here than they do
24846 // in the normal allocation?
24847 case 'q': // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
24848 if (Subtarget->is64Bit()) {
24849 if (VT == MVT::i32 || VT == MVT::f32)
24850 return std::make_pair(0U, &X86::GR32RegClass);
24851 if (VT == MVT::i16)
24852 return std::make_pair(0U, &X86::GR16RegClass);
24853 if (VT == MVT::i8 || VT == MVT::i1)
24854 return std::make_pair(0U, &X86::GR8RegClass);
24855 if (VT == MVT::i64 || VT == MVT::f64)
24856 return std::make_pair(0U, &X86::GR64RegClass);
24859 // 32-bit fallthrough
24860 case 'Q': // Q_REGS
24861 if (VT == MVT::i32 || VT == MVT::f32)
24862 return std::make_pair(0U, &X86::GR32_ABCDRegClass);
24863 if (VT == MVT::i16)
24864 return std::make_pair(0U, &X86::GR16_ABCDRegClass);
24865 if (VT == MVT::i8 || VT == MVT::i1)
24866 return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
24867 if (VT == MVT::i64)
24868 return std::make_pair(0U, &X86::GR64_ABCDRegClass);
24870 case 'r': // GENERAL_REGS
24871 case 'l': // INDEX_REGS
24872 if (VT == MVT::i8 || VT == MVT::i1)
24873 return std::make_pair(0U, &X86::GR8RegClass);
24874 if (VT == MVT::i16)
24875 return std::make_pair(0U, &X86::GR16RegClass);
24876 if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
24877 return std::make_pair(0U, &X86::GR32RegClass);
24878 return std::make_pair(0U, &X86::GR64RegClass);
24879 case 'R': // LEGACY_REGS
24880 if (VT == MVT::i8 || VT == MVT::i1)
24881 return std::make_pair(0U, &X86::GR8_NOREXRegClass);
24882 if (VT == MVT::i16)
24883 return std::make_pair(0U, &X86::GR16_NOREXRegClass);
24884 if (VT == MVT::i32 || !Subtarget->is64Bit())
24885 return std::make_pair(0U, &X86::GR32_NOREXRegClass);
24886 return std::make_pair(0U, &X86::GR64_NOREXRegClass);
24887 case 'f': // FP Stack registers.
24888 // If SSE is enabled for this VT, use f80 to ensure the isel moves the
24889 // value to the correct fpstack register class.
24890 if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
24891 return std::make_pair(0U, &X86::RFP32RegClass);
24892 if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
24893 return std::make_pair(0U, &X86::RFP64RegClass);
24894 return std::make_pair(0U, &X86::RFP80RegClass);
24895 case 'y': // MMX_REGS if MMX allowed.
24896 if (!Subtarget->hasMMX()) break;
24897 return std::make_pair(0U, &X86::VR64RegClass);
24898 case 'Y': // SSE_REGS if SSE2 allowed
24899 if (!Subtarget->hasSSE2()) break;
24901 case 'x': // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
24902 if (!Subtarget->hasSSE1()) break;
24904 switch (VT.SimpleTy) {
24906 // Scalar SSE types.
24909 return std::make_pair(0U, &X86::FR32RegClass);
24912 return std::make_pair(0U, &X86::FR64RegClass);
24920 return std::make_pair(0U, &X86::VR128RegClass);
24928 return std::make_pair(0U, &X86::VR256RegClass);
24933 return std::make_pair(0U, &X86::VR512RegClass);
24939 // Use the default implementation in TargetLowering to convert the register
24940 // constraint into a member of a register class.
24941 std::pair<unsigned, const TargetRegisterClass*> Res;
24942 Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
24944 // Not found as a standard register?
24946 // Map st(0) -> st(7) -> ST0
24947 if (Constraint.size() == 7 && Constraint[0] == '{' &&
24948 tolower(Constraint[1]) == 's' &&
24949 tolower(Constraint[2]) == 't' &&
24950 Constraint[3] == '(' &&
24951 (Constraint[4] >= '0' && Constraint[4] <= '7') &&
24952 Constraint[5] == ')' &&
24953 Constraint[6] == '}') {
24955 Res.first = X86::FP0+Constraint[4]-'0';
24956 Res.second = &X86::RFP80RegClass;
24960 // GCC allows "st(0)" to be called just plain "st".
24961 if (StringRef("{st}").equals_lower(Constraint)) {
24962 Res.first = X86::FP0;
24963 Res.second = &X86::RFP80RegClass;
24968 if (StringRef("{flags}").equals_lower(Constraint)) {
24969 Res.first = X86::EFLAGS;
24970 Res.second = &X86::CCRRegClass;
24974 // 'A' means EAX + EDX.
24975 if (Constraint == "A") {
24976 Res.first = X86::EAX;
24977 Res.second = &X86::GR32_ADRegClass;
24983 // Otherwise, check to see if this is a register class of the wrong value
24984 // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to
24985 // turn into {ax},{dx}.
24986 if (Res.second->hasType(VT))
24987 return Res; // Correct type already, nothing to do.
24989 // All of the single-register GCC register classes map their values onto
24990 // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we
24991 // really want an 8-bit or 32-bit register, map to the appropriate register
24992 // class and return the appropriate register.
24993 if (Res.second == &X86::GR16RegClass) {
24994 if (VT == MVT::i8 || VT == MVT::i1) {
24995 unsigned DestReg = 0;
24996 switch (Res.first) {
24998 case X86::AX: DestReg = X86::AL; break;
24999 case X86::DX: DestReg = X86::DL; break;
25000 case X86::CX: DestReg = X86::CL; break;
25001 case X86::BX: DestReg = X86::BL; break;
25004 Res.first = DestReg;
25005 Res.second = &X86::GR8RegClass;
25007 } else if (VT == MVT::i32 || VT == MVT::f32) {
25008 unsigned DestReg = 0;
25009 switch (Res.first) {
25011 case X86::AX: DestReg = X86::EAX; break;
25012 case X86::DX: DestReg = X86::EDX; break;
25013 case X86::CX: DestReg = X86::ECX; break;
25014 case X86::BX: DestReg = X86::EBX; break;
25015 case X86::SI: DestReg = X86::ESI; break;
25016 case X86::DI: DestReg = X86::EDI; break;
25017 case X86::BP: DestReg = X86::EBP; break;
25018 case X86::SP: DestReg = X86::ESP; break;
25021 Res.first = DestReg;
25022 Res.second = &X86::GR32RegClass;
25024 } else if (VT == MVT::i64 || VT == MVT::f64) {
25025 unsigned DestReg = 0;
25026 switch (Res.first) {
25028 case X86::AX: DestReg = X86::RAX; break;
25029 case X86::DX: DestReg = X86::RDX; break;
25030 case X86::CX: DestReg = X86::RCX; break;
25031 case X86::BX: DestReg = X86::RBX; break;
25032 case X86::SI: DestReg = X86::RSI; break;
25033 case X86::DI: DestReg = X86::RDI; break;
25034 case X86::BP: DestReg = X86::RBP; break;
25035 case X86::SP: DestReg = X86::RSP; break;
25038 Res.first = DestReg;
25039 Res.second = &X86::GR64RegClass;
25042 } else if (Res.second == &X86::FR32RegClass ||
25043 Res.second == &X86::FR64RegClass ||
25044 Res.second == &X86::VR128RegClass ||
25045 Res.second == &X86::VR256RegClass ||
25046 Res.second == &X86::FR32XRegClass ||
25047 Res.second == &X86::FR64XRegClass ||
25048 Res.second == &X86::VR128XRegClass ||
25049 Res.second == &X86::VR256XRegClass ||
25050 Res.second == &X86::VR512RegClass) {
25051 // Handle references to XMM physical registers that got mapped into the
25052 // wrong class. This can happen with constraints like {xmm0} where the
25053 // target independent register mapper will just pick the first match it can
25054 // find, ignoring the required type.
25056 if (VT == MVT::f32 || VT == MVT::i32)
25057 Res.second = &X86::FR32RegClass;
25058 else if (VT == MVT::f64 || VT == MVT::i64)
25059 Res.second = &X86::FR64RegClass;
25060 else if (X86::VR128RegClass.hasType(VT))
25061 Res.second = &X86::VR128RegClass;
25062 else if (X86::VR256RegClass.hasType(VT))
25063 Res.second = &X86::VR256RegClass;
25064 else if (X86::VR512RegClass.hasType(VT))
25065 Res.second = &X86::VR512RegClass;
25071 int X86TargetLowering::getScalingFactorCost(const AddrMode &AM,
25073 // Scaling factors are not free at all.
25074 // An indexed folded instruction, i.e., inst (reg1, reg2, scale),
25075 // will take 2 allocations in the out of order engine instead of 1
25076 // for plain addressing mode, i.e. inst (reg1).
25078 // vaddps (%rsi,%drx), %ymm0, %ymm1
25079 // Requires two allocations (one for the load, one for the computation)
25081 // vaddps (%rsi), %ymm0, %ymm1
25082 // Requires just 1 allocation, i.e., freeing allocations for other operations
25083 // and having less micro operations to execute.
25085 // For some X86 architectures, this is even worse because for instance for
25086 // stores, the complex addressing mode forces the instruction to use the
25087 // "load" ports instead of the dedicated "store" port.
25088 // E.g., on Haswell:
25089 // vmovaps %ymm1, (%r8, %rdi) can use port 2 or 3.
25090 // vmovaps %ymm1, (%r8) can use port 2, 3, or 7.
25091 if (isLegalAddressingMode(AM, Ty))
25092 // Scale represents reg2 * scale, thus account for 1
25093 // as soon as we use a second register.
25094 return AM.Scale != 0;
25098 bool X86TargetLowering::isTargetFTOL() const {
25099 return Subtarget->isTargetKnownWindowsMSVC() && !Subtarget->is64Bit();