1 //===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the interfaces that X86 uses to lower LLVM code into a
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "x86-isel"
17 #include "X86InstrBuilder.h"
18 #include "X86ISelLowering.h"
19 #include "X86TargetMachine.h"
20 #include "X86TargetObjectFile.h"
21 #include "Utils/X86ShuffleDecode.h"
22 #include "llvm/CallingConv.h"
23 #include "llvm/Constants.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/GlobalAlias.h"
26 #include "llvm/GlobalVariable.h"
27 #include "llvm/Function.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/Intrinsics.h"
30 #include "llvm/LLVMContext.h"
31 #include "llvm/CodeGen/IntrinsicLowering.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineJumpTableInfo.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/MC/MCAsmInfo.h"
39 #include "llvm/MC/MCContext.h"
40 #include "llvm/MC/MCExpr.h"
41 #include "llvm/MC/MCSymbol.h"
42 #include "llvm/ADT/BitVector.h"
43 #include "llvm/ADT/SmallSet.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/ADT/StringExtras.h"
46 #include "llvm/ADT/VariadicFunction.h"
47 #include "llvm/Support/CallSite.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/Dwarf.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/MathExtras.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Target/TargetOptions.h"
56 using namespace dwarf;
58 STATISTIC(NumTailCalls, "Number of tail calls");
60 static cl::opt<bool> UseRegMask("x86-use-regmask",
61 cl::desc("Use register masks for x86 calls"));
63 // Forward declarations.
64 static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
67 static SDValue Insert128BitVector(SDValue Result,
73 static SDValue Extract128BitVector(SDValue Vec,
78 /// Generate a DAG to grab 128-bits from a vector > 128 bits. This
79 /// sets things up to match to an AVX VEXTRACTF128 instruction or a
80 /// simple subregister reference. Idx is an index in the 128 bits we
81 /// want. It need not be aligned to a 128-bit bounday. That makes
82 /// lowering EXTRACT_VECTOR_ELT operations easier.
83 static SDValue Extract128BitVector(SDValue Vec,
87 EVT VT = Vec.getValueType();
88 assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
89 EVT ElVT = VT.getVectorElementType();
90 int Factor = VT.getSizeInBits()/128;
91 EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
92 VT.getVectorNumElements()/Factor);
94 // Extract from UNDEF is UNDEF.
95 if (Vec.getOpcode() == ISD::UNDEF)
96 return DAG.getNode(ISD::UNDEF, dl, ResultVT);
98 if (isa<ConstantSDNode>(Idx)) {
99 unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
101 // Extract the relevant 128 bits. Generate an EXTRACT_SUBVECTOR
102 // we can match to VEXTRACTF128.
103 unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
105 // This is the index of the first element of the 128-bit chunk
107 unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
110 SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
111 SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
120 /// Generate a DAG to put 128-bits into a vector > 128 bits. This
121 /// sets things up to match to an AVX VINSERTF128 instruction or a
122 /// simple superregister reference. Idx is an index in the 128 bits
123 /// we want. It need not be aligned to a 128-bit bounday. That makes
124 /// lowering INSERT_VECTOR_ELT operations easier.
125 static SDValue Insert128BitVector(SDValue Result,
130 if (isa<ConstantSDNode>(Idx)) {
131 EVT VT = Vec.getValueType();
132 assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
134 EVT ElVT = VT.getVectorElementType();
135 unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
136 EVT ResultVT = Result.getValueType();
138 // Insert the relevant 128 bits.
139 unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
141 // This is the index of the first element of the 128-bit chunk
143 unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
146 SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
147 Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
155 static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
156 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
157 bool is64Bit = Subtarget->is64Bit();
159 if (Subtarget->isTargetEnvMacho()) {
161 return new X8664_MachoTargetObjectFile();
162 return new TargetLoweringObjectFileMachO();
165 if (Subtarget->isTargetELF())
166 return new TargetLoweringObjectFileELF();
167 if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
168 return new TargetLoweringObjectFileCOFF();
169 llvm_unreachable("unknown subtarget type");
172 X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
173 : TargetLowering(TM, createTLOF(TM)) {
174 Subtarget = &TM.getSubtarget<X86Subtarget>();
175 X86ScalarSSEf64 = Subtarget->hasSSE2();
176 X86ScalarSSEf32 = Subtarget->hasSSE1();
177 X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
179 RegInfo = TM.getRegisterInfo();
180 TD = getTargetData();
182 // Set up the TargetLowering object.
183 static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
185 // X86 is weird, it always uses i8 for shift amounts and setcc results.
186 setBooleanContents(ZeroOrOneBooleanContent);
187 // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
188 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
190 // For 64-bit since we have so many registers use the ILP scheduler, for
191 // 32-bit code use the register pressure specific scheduling.
192 if (Subtarget->is64Bit())
193 setSchedulingPreference(Sched::ILP);
195 setSchedulingPreference(Sched::RegPressure);
196 setStackPointerRegisterToSaveRestore(X86StackPtr);
198 if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
199 // Setup Windows compiler runtime calls.
200 setLibcallName(RTLIB::SDIV_I64, "_alldiv");
201 setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
202 setLibcallName(RTLIB::SREM_I64, "_allrem");
203 setLibcallName(RTLIB::UREM_I64, "_aullrem");
204 setLibcallName(RTLIB::MUL_I64, "_allmul");
205 setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
206 setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
207 setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
208 setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
209 setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
210 setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
211 setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
212 setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
213 setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
216 if (Subtarget->isTargetDarwin()) {
217 // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
218 setUseUnderscoreSetJmp(false);
219 setUseUnderscoreLongJmp(false);
220 } else if (Subtarget->isTargetMingw()) {
221 // MS runtime is weird: it exports _setjmp, but longjmp!
222 setUseUnderscoreSetJmp(true);
223 setUseUnderscoreLongJmp(false);
225 setUseUnderscoreSetJmp(true);
226 setUseUnderscoreLongJmp(true);
229 // Set up the register classes.
230 addRegisterClass(MVT::i8, X86::GR8RegisterClass);
231 addRegisterClass(MVT::i16, X86::GR16RegisterClass);
232 addRegisterClass(MVT::i32, X86::GR32RegisterClass);
233 if (Subtarget->is64Bit())
234 addRegisterClass(MVT::i64, X86::GR64RegisterClass);
236 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
238 // We don't accept any truncstore of integer registers.
239 setTruncStoreAction(MVT::i64, MVT::i32, Expand);
240 setTruncStoreAction(MVT::i64, MVT::i16, Expand);
241 setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
242 setTruncStoreAction(MVT::i32, MVT::i16, Expand);
243 setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
244 setTruncStoreAction(MVT::i16, MVT::i8, Expand);
246 // SETOEQ and SETUNE require checking two conditions.
247 setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
248 setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
249 setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
250 setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
251 setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
252 setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
254 // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
256 setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote);
257 setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote);
258 setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote);
260 if (Subtarget->is64Bit()) {
261 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
262 setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom);
263 } else if (!TM.Options.UseSoftFloat) {
264 // We have an algorithm for SSE2->double, and we turn this into a
265 // 64-bit FILD followed by conditional FADD for other targets.
266 setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom);
267 // We have an algorithm for SSE2, and we turn this into a 64-bit
268 // FILD for other targets.
269 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Custom);
272 // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
274 setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote);
275 setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote);
277 if (!TM.Options.UseSoftFloat) {
278 // SSE has no i16 to fp conversion, only i32
279 if (X86ScalarSSEf32) {
280 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
281 // f32 and f64 cases are Legal, f80 case is not
282 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
284 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom);
285 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
288 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
289 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Promote);
292 // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64
293 // are Legal, f80 is custom lowered.
294 setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom);
295 setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom);
297 // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
299 setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote);
300 setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote);
302 if (X86ScalarSSEf32) {
303 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote);
304 // f32 and f64 cases are Legal, f80 case is not
305 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
307 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom);
308 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
311 // Handle FP_TO_UINT by promoting the destination to a larger signed
313 setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote);
314 setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote);
315 setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote);
317 if (Subtarget->is64Bit()) {
318 setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand);
319 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
320 } else if (!TM.Options.UseSoftFloat) {
321 // Since AVX is a superset of SSE3, only check for SSE here.
322 if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
323 // Expand FP_TO_UINT into a select.
324 // FIXME: We would like to use a Custom expander here eventually to do
325 // the optimal thing for SSE vs. the default expansion in the legalizer.
326 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand);
328 // With SSE3 we can use fisttpll to convert to a signed i64; without
329 // SSE, we're stuck with a fistpll.
330 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Custom);
333 // TODO: when we have SSE, these could be more efficient, by using movd/movq.
334 if (!X86ScalarSSEf64) {
335 setOperationAction(ISD::BITCAST , MVT::f32 , Expand);
336 setOperationAction(ISD::BITCAST , MVT::i32 , Expand);
337 if (Subtarget->is64Bit()) {
338 setOperationAction(ISD::BITCAST , MVT::f64 , Expand);
339 // Without SSE, i64->f64 goes through memory.
340 setOperationAction(ISD::BITCAST , MVT::i64 , Expand);
344 // Scalar integer divide and remainder are lowered to use operations that
345 // produce two results, to match the available instructions. This exposes
346 // the two-result form to trivial CSE, which is able to combine x/y and x%y
347 // into a single instruction.
349 // Scalar integer multiply-high is also lowered to use two-result
350 // operations, to match the available instructions. However, plain multiply
351 // (low) operations are left as Legal, as there are single-result
352 // instructions for this in x86. Using the two-result multiply instructions
353 // when both high and low results are needed must be arranged by dagcombine.
354 for (unsigned i = 0, e = 4; i != e; ++i) {
356 setOperationAction(ISD::MULHS, VT, Expand);
357 setOperationAction(ISD::MULHU, VT, Expand);
358 setOperationAction(ISD::SDIV, VT, Expand);
359 setOperationAction(ISD::UDIV, VT, Expand);
360 setOperationAction(ISD::SREM, VT, Expand);
361 setOperationAction(ISD::UREM, VT, Expand);
363 // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
364 setOperationAction(ISD::ADDC, VT, Custom);
365 setOperationAction(ISD::ADDE, VT, Custom);
366 setOperationAction(ISD::SUBC, VT, Custom);
367 setOperationAction(ISD::SUBE, VT, Custom);
370 setOperationAction(ISD::BR_JT , MVT::Other, Expand);
371 setOperationAction(ISD::BRCOND , MVT::Other, Custom);
372 setOperationAction(ISD::BR_CC , MVT::Other, Expand);
373 setOperationAction(ISD::SELECT_CC , MVT::Other, Expand);
374 if (Subtarget->is64Bit())
375 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
376 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal);
377 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
378 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
379 setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand);
380 setOperationAction(ISD::FREM , MVT::f32 , Expand);
381 setOperationAction(ISD::FREM , MVT::f64 , Expand);
382 setOperationAction(ISD::FREM , MVT::f80 , Expand);
383 setOperationAction(ISD::FLT_ROUNDS_ , MVT::i32 , Custom);
385 // Promote the i8 variants and force them on up to i32 which has a shorter
387 setOperationAction(ISD::CTTZ , MVT::i8 , Promote);
388 AddPromotedToType (ISD::CTTZ , MVT::i8 , MVT::i32);
389 setOperationAction(ISD::CTTZ_ZERO_UNDEF , MVT::i8 , Promote);
390 AddPromotedToType (ISD::CTTZ_ZERO_UNDEF , MVT::i8 , MVT::i32);
391 if (Subtarget->hasBMI()) {
392 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16 , Expand);
393 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32 , Expand);
394 if (Subtarget->is64Bit())
395 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
397 setOperationAction(ISD::CTTZ , MVT::i16 , Custom);
398 setOperationAction(ISD::CTTZ , MVT::i32 , Custom);
399 if (Subtarget->is64Bit())
400 setOperationAction(ISD::CTTZ , MVT::i64 , Custom);
403 if (Subtarget->hasLZCNT()) {
404 // When promoting the i8 variants, force them to i32 for a shorter
406 setOperationAction(ISD::CTLZ , MVT::i8 , Promote);
407 AddPromotedToType (ISD::CTLZ , MVT::i8 , MVT::i32);
408 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8 , Promote);
409 AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8 , MVT::i32);
410 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16 , Expand);
411 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32 , Expand);
412 if (Subtarget->is64Bit())
413 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
415 setOperationAction(ISD::CTLZ , MVT::i8 , Custom);
416 setOperationAction(ISD::CTLZ , MVT::i16 , Custom);
417 setOperationAction(ISD::CTLZ , MVT::i32 , Custom);
418 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8 , Custom);
419 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16 , Custom);
420 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32 , Custom);
421 if (Subtarget->is64Bit()) {
422 setOperationAction(ISD::CTLZ , MVT::i64 , Custom);
423 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
427 if (Subtarget->hasPOPCNT()) {
428 setOperationAction(ISD::CTPOP , MVT::i8 , Promote);
430 setOperationAction(ISD::CTPOP , MVT::i8 , Expand);
431 setOperationAction(ISD::CTPOP , MVT::i16 , Expand);
432 setOperationAction(ISD::CTPOP , MVT::i32 , Expand);
433 if (Subtarget->is64Bit())
434 setOperationAction(ISD::CTPOP , MVT::i64 , Expand);
437 setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom);
438 setOperationAction(ISD::BSWAP , MVT::i16 , Expand);
440 // These should be promoted to a larger select which is supported.
441 setOperationAction(ISD::SELECT , MVT::i1 , Promote);
442 // X86 wants to expand cmov itself.
443 setOperationAction(ISD::SELECT , MVT::i8 , Custom);
444 setOperationAction(ISD::SELECT , MVT::i16 , Custom);
445 setOperationAction(ISD::SELECT , MVT::i32 , Custom);
446 setOperationAction(ISD::SELECT , MVT::f32 , Custom);
447 setOperationAction(ISD::SELECT , MVT::f64 , Custom);
448 setOperationAction(ISD::SELECT , MVT::f80 , Custom);
449 setOperationAction(ISD::SETCC , MVT::i8 , Custom);
450 setOperationAction(ISD::SETCC , MVT::i16 , Custom);
451 setOperationAction(ISD::SETCC , MVT::i32 , Custom);
452 setOperationAction(ISD::SETCC , MVT::f32 , Custom);
453 setOperationAction(ISD::SETCC , MVT::f64 , Custom);
454 setOperationAction(ISD::SETCC , MVT::f80 , Custom);
455 if (Subtarget->is64Bit()) {
456 setOperationAction(ISD::SELECT , MVT::i64 , Custom);
457 setOperationAction(ISD::SETCC , MVT::i64 , Custom);
459 setOperationAction(ISD::EH_RETURN , MVT::Other, Custom);
462 setOperationAction(ISD::ConstantPool , MVT::i32 , Custom);
463 setOperationAction(ISD::JumpTable , MVT::i32 , Custom);
464 setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom);
465 setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom);
466 if (Subtarget->is64Bit())
467 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
468 setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom);
469 setOperationAction(ISD::BlockAddress , MVT::i32 , Custom);
470 if (Subtarget->is64Bit()) {
471 setOperationAction(ISD::ConstantPool , MVT::i64 , Custom);
472 setOperationAction(ISD::JumpTable , MVT::i64 , Custom);
473 setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom);
474 setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom);
475 setOperationAction(ISD::BlockAddress , MVT::i64 , Custom);
477 // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
478 setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom);
479 setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom);
480 setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom);
481 if (Subtarget->is64Bit()) {
482 setOperationAction(ISD::SHL_PARTS , MVT::i64 , Custom);
483 setOperationAction(ISD::SRA_PARTS , MVT::i64 , Custom);
484 setOperationAction(ISD::SRL_PARTS , MVT::i64 , Custom);
487 if (Subtarget->hasSSE1())
488 setOperationAction(ISD::PREFETCH , MVT::Other, Legal);
490 setOperationAction(ISD::MEMBARRIER , MVT::Other, Custom);
491 setOperationAction(ISD::ATOMIC_FENCE , MVT::Other, Custom);
493 // On X86 and X86-64, atomic operations are lowered to locked instructions.
494 // Locked instructions, in turn, have implicit fence semantics (all memory
495 // operations are flushed before issuing the locked instruction, and they
496 // are not buffered), so we can fold away the common pattern of
497 // fence-atomic-fence.
498 setShouldFoldAtomicFences(true);
500 // Expand certain atomics
501 for (unsigned i = 0, e = 4; i != e; ++i) {
503 setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
504 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
505 setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
508 if (!Subtarget->is64Bit()) {
509 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
510 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
511 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
512 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
513 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
514 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
515 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
516 setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
519 if (Subtarget->hasCmpxchg16b()) {
520 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
523 // FIXME - use subtarget debug flags
524 if (!Subtarget->isTargetDarwin() &&
525 !Subtarget->isTargetELF() &&
526 !Subtarget->isTargetCygMing()) {
527 setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
530 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
531 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
532 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
533 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
534 if (Subtarget->is64Bit()) {
535 setExceptionPointerRegister(X86::RAX);
536 setExceptionSelectorRegister(X86::RDX);
538 setExceptionPointerRegister(X86::EAX);
539 setExceptionSelectorRegister(X86::EDX);
541 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
542 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
544 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
545 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
547 setOperationAction(ISD::TRAP, MVT::Other, Legal);
549 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
550 setOperationAction(ISD::VASTART , MVT::Other, Custom);
551 setOperationAction(ISD::VAEND , MVT::Other, Expand);
552 if (Subtarget->is64Bit()) {
553 setOperationAction(ISD::VAARG , MVT::Other, Custom);
554 setOperationAction(ISD::VACOPY , MVT::Other, Custom);
556 setOperationAction(ISD::VAARG , MVT::Other, Expand);
557 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
560 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
561 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
563 if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
564 setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
565 MVT::i64 : MVT::i32, Custom);
566 else if (TM.Options.EnableSegmentedStacks)
567 setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
568 MVT::i64 : MVT::i32, Custom);
570 setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
571 MVT::i64 : MVT::i32, Expand);
573 if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
574 // f32 and f64 use SSE.
575 // Set up the FP register classes.
576 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
577 addRegisterClass(MVT::f64, X86::FR64RegisterClass);
579 // Use ANDPD to simulate FABS.
580 setOperationAction(ISD::FABS , MVT::f64, Custom);
581 setOperationAction(ISD::FABS , MVT::f32, Custom);
583 // Use XORP to simulate FNEG.
584 setOperationAction(ISD::FNEG , MVT::f64, Custom);
585 setOperationAction(ISD::FNEG , MVT::f32, Custom);
587 // Use ANDPD and ORPD to simulate FCOPYSIGN.
588 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
589 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
591 // Lower this to FGETSIGNx86 plus an AND.
592 setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
593 setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
595 // We don't support sin/cos/fmod
596 setOperationAction(ISD::FSIN , MVT::f64, Expand);
597 setOperationAction(ISD::FCOS , MVT::f64, Expand);
598 setOperationAction(ISD::FSIN , MVT::f32, Expand);
599 setOperationAction(ISD::FCOS , MVT::f32, Expand);
601 // Expand FP immediates into loads from the stack, except for the special
603 addLegalFPImmediate(APFloat(+0.0)); // xorpd
604 addLegalFPImmediate(APFloat(+0.0f)); // xorps
605 } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
606 // Use SSE for f32, x87 for f64.
607 // Set up the FP register classes.
608 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
609 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
611 // Use ANDPS to simulate FABS.
612 setOperationAction(ISD::FABS , MVT::f32, Custom);
614 // Use XORP to simulate FNEG.
615 setOperationAction(ISD::FNEG , MVT::f32, Custom);
617 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
619 // Use ANDPS and ORPS to simulate FCOPYSIGN.
620 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
621 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
623 // We don't support sin/cos/fmod
624 setOperationAction(ISD::FSIN , MVT::f32, Expand);
625 setOperationAction(ISD::FCOS , MVT::f32, Expand);
627 // Special cases we handle for FP constants.
628 addLegalFPImmediate(APFloat(+0.0f)); // xorps
629 addLegalFPImmediate(APFloat(+0.0)); // FLD0
630 addLegalFPImmediate(APFloat(+1.0)); // FLD1
631 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
632 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
634 if (!TM.Options.UnsafeFPMath) {
635 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
636 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
638 } else if (!TM.Options.UseSoftFloat) {
639 // f32 and f64 in x87.
640 // Set up the FP register classes.
641 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
642 addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
644 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
645 setOperationAction(ISD::UNDEF, MVT::f32, Expand);
646 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
647 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
649 if (!TM.Options.UnsafeFPMath) {
650 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
651 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
653 addLegalFPImmediate(APFloat(+0.0)); // FLD0
654 addLegalFPImmediate(APFloat(+1.0)); // FLD1
655 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
656 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
657 addLegalFPImmediate(APFloat(+0.0f)); // FLD0
658 addLegalFPImmediate(APFloat(+1.0f)); // FLD1
659 addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
660 addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
663 // We don't support FMA.
664 setOperationAction(ISD::FMA, MVT::f64, Expand);
665 setOperationAction(ISD::FMA, MVT::f32, Expand);
667 // Long double always uses X87.
668 if (!TM.Options.UseSoftFloat) {
669 addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
670 setOperationAction(ISD::UNDEF, MVT::f80, Expand);
671 setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
673 APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
674 addLegalFPImmediate(TmpFlt); // FLD0
676 addLegalFPImmediate(TmpFlt); // FLD0/FCHS
679 APFloat TmpFlt2(+1.0);
680 TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
682 addLegalFPImmediate(TmpFlt2); // FLD1
683 TmpFlt2.changeSign();
684 addLegalFPImmediate(TmpFlt2); // FLD1/FCHS
687 if (!TM.Options.UnsafeFPMath) {
688 setOperationAction(ISD::FSIN , MVT::f80 , Expand);
689 setOperationAction(ISD::FCOS , MVT::f80 , Expand);
692 setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
693 setOperationAction(ISD::FCEIL, MVT::f80, Expand);
694 setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
695 setOperationAction(ISD::FRINT, MVT::f80, Expand);
696 setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
697 setOperationAction(ISD::FMA, MVT::f80, Expand);
700 // Always use a library call for pow.
701 setOperationAction(ISD::FPOW , MVT::f32 , Expand);
702 setOperationAction(ISD::FPOW , MVT::f64 , Expand);
703 setOperationAction(ISD::FPOW , MVT::f80 , Expand);
705 setOperationAction(ISD::FLOG, MVT::f80, Expand);
706 setOperationAction(ISD::FLOG2, MVT::f80, Expand);
707 setOperationAction(ISD::FLOG10, MVT::f80, Expand);
708 setOperationAction(ISD::FEXP, MVT::f80, Expand);
709 setOperationAction(ISD::FEXP2, MVT::f80, Expand);
711 // First set operation action for all vector types to either promote
712 // (for widening) or expand (for scalarization). Then we will selectively
713 // turn on ones that can be effectively codegen'd.
714 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
715 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
716 setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
717 setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
718 setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
719 setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
720 setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
721 setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
722 setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
723 setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
724 setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
725 setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
726 setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
727 setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
728 setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
729 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
730 setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
731 setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
732 setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
733 setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
734 setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
735 setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
736 setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
737 setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
738 setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
739 setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
740 setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
741 setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
742 setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
743 setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
744 setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
745 setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
746 setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
747 setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
748 setOperationAction(ISD::CTTZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
749 setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
750 setOperationAction(ISD::CTLZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
751 setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
752 setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
753 setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
754 setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
755 setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
756 setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
757 setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
758 setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
759 setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
760 setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
761 setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
762 setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
763 setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
764 setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
765 setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
766 setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
767 setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
768 setOperationAction(ISD::TRUNCATE, (MVT::SimpleValueType)VT, Expand);
769 setOperationAction(ISD::SIGN_EXTEND, (MVT::SimpleValueType)VT, Expand);
770 setOperationAction(ISD::ZERO_EXTEND, (MVT::SimpleValueType)VT, Expand);
771 setOperationAction(ISD::ANY_EXTEND, (MVT::SimpleValueType)VT, Expand);
772 setOperationAction(ISD::VSELECT, (MVT::SimpleValueType)VT, Expand);
773 for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
774 InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
775 setTruncStoreAction((MVT::SimpleValueType)VT,
776 (MVT::SimpleValueType)InnerVT, Expand);
777 setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
778 setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
779 setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
782 // FIXME: In order to prevent SSE instructions being expanded to MMX ones
783 // with -msoft-float, disable use of MMX as well.
784 if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
785 addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
786 // No operations on x86mmx supported, everything uses intrinsics.
789 // MMX-sized vectors (other than x86mmx) are expected to be expanded
790 // into smaller operations.
791 setOperationAction(ISD::MULHS, MVT::v8i8, Expand);
792 setOperationAction(ISD::MULHS, MVT::v4i16, Expand);
793 setOperationAction(ISD::MULHS, MVT::v2i32, Expand);
794 setOperationAction(ISD::MULHS, MVT::v1i64, Expand);
795 setOperationAction(ISD::AND, MVT::v8i8, Expand);
796 setOperationAction(ISD::AND, MVT::v4i16, Expand);
797 setOperationAction(ISD::AND, MVT::v2i32, Expand);
798 setOperationAction(ISD::AND, MVT::v1i64, Expand);
799 setOperationAction(ISD::OR, MVT::v8i8, Expand);
800 setOperationAction(ISD::OR, MVT::v4i16, Expand);
801 setOperationAction(ISD::OR, MVT::v2i32, Expand);
802 setOperationAction(ISD::OR, MVT::v1i64, Expand);
803 setOperationAction(ISD::XOR, MVT::v8i8, Expand);
804 setOperationAction(ISD::XOR, MVT::v4i16, Expand);
805 setOperationAction(ISD::XOR, MVT::v2i32, Expand);
806 setOperationAction(ISD::XOR, MVT::v1i64, Expand);
807 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Expand);
808 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Expand);
809 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i32, Expand);
810 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Expand);
811 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v1i64, Expand);
812 setOperationAction(ISD::SELECT, MVT::v8i8, Expand);
813 setOperationAction(ISD::SELECT, MVT::v4i16, Expand);
814 setOperationAction(ISD::SELECT, MVT::v2i32, Expand);
815 setOperationAction(ISD::SELECT, MVT::v1i64, Expand);
816 setOperationAction(ISD::BITCAST, MVT::v8i8, Expand);
817 setOperationAction(ISD::BITCAST, MVT::v4i16, Expand);
818 setOperationAction(ISD::BITCAST, MVT::v2i32, Expand);
819 setOperationAction(ISD::BITCAST, MVT::v1i64, Expand);
821 if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
822 addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
824 setOperationAction(ISD::FADD, MVT::v4f32, Legal);
825 setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
826 setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
827 setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
828 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
829 setOperationAction(ISD::FNEG, MVT::v4f32, Custom);
830 setOperationAction(ISD::LOAD, MVT::v4f32, Legal);
831 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
832 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
833 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
834 setOperationAction(ISD::SELECT, MVT::v4f32, Custom);
835 setOperationAction(ISD::SETCC, MVT::v4f32, Custom);
838 if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
839 addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
841 // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
842 // registers cannot be used even for integer operations.
843 addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
844 addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
845 addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
846 addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
848 setOperationAction(ISD::ADD, MVT::v16i8, Legal);
849 setOperationAction(ISD::ADD, MVT::v8i16, Legal);
850 setOperationAction(ISD::ADD, MVT::v4i32, Legal);
851 setOperationAction(ISD::ADD, MVT::v2i64, Legal);
852 setOperationAction(ISD::MUL, MVT::v2i64, Custom);
853 setOperationAction(ISD::SUB, MVT::v16i8, Legal);
854 setOperationAction(ISD::SUB, MVT::v8i16, Legal);
855 setOperationAction(ISD::SUB, MVT::v4i32, Legal);
856 setOperationAction(ISD::SUB, MVT::v2i64, Legal);
857 setOperationAction(ISD::MUL, MVT::v8i16, Legal);
858 setOperationAction(ISD::FADD, MVT::v2f64, Legal);
859 setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
860 setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
861 setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
862 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
863 setOperationAction(ISD::FNEG, MVT::v2f64, Custom);
865 setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
866 setOperationAction(ISD::SETCC, MVT::v16i8, Custom);
867 setOperationAction(ISD::SETCC, MVT::v8i16, Custom);
868 setOperationAction(ISD::SETCC, MVT::v4i32, Custom);
870 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom);
871 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom);
872 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
873 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
874 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
876 setOperationAction(ISD::CONCAT_VECTORS, MVT::v2f64, Custom);
877 setOperationAction(ISD::CONCAT_VECTORS, MVT::v2i64, Custom);
878 setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i8, Custom);
879 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i16, Custom);
880 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
882 // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
883 for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
884 EVT VT = (MVT::SimpleValueType)i;
885 // Do not attempt to custom lower non-power-of-2 vectors
886 if (!isPowerOf2_32(VT.getVectorNumElements()))
888 // Do not attempt to custom lower non-128-bit vectors
889 if (!VT.is128BitVector())
891 setOperationAction(ISD::BUILD_VECTOR,
892 VT.getSimpleVT().SimpleTy, Custom);
893 setOperationAction(ISD::VECTOR_SHUFFLE,
894 VT.getSimpleVT().SimpleTy, Custom);
895 setOperationAction(ISD::EXTRACT_VECTOR_ELT,
896 VT.getSimpleVT().SimpleTy, Custom);
899 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
900 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
901 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
902 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
903 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
904 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
906 if (Subtarget->is64Bit()) {
907 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom);
908 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
911 // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
912 for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
913 MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
916 // Do not attempt to promote non-128-bit vectors
917 if (!VT.is128BitVector())
920 setOperationAction(ISD::AND, SVT, Promote);
921 AddPromotedToType (ISD::AND, SVT, MVT::v2i64);
922 setOperationAction(ISD::OR, SVT, Promote);
923 AddPromotedToType (ISD::OR, SVT, MVT::v2i64);
924 setOperationAction(ISD::XOR, SVT, Promote);
925 AddPromotedToType (ISD::XOR, SVT, MVT::v2i64);
926 setOperationAction(ISD::LOAD, SVT, Promote);
927 AddPromotedToType (ISD::LOAD, SVT, MVT::v2i64);
928 setOperationAction(ISD::SELECT, SVT, Promote);
929 AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
932 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
934 // Custom lower v2i64 and v2f64 selects.
935 setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
936 setOperationAction(ISD::LOAD, MVT::v2i64, Legal);
937 setOperationAction(ISD::SELECT, MVT::v2f64, Custom);
938 setOperationAction(ISD::SELECT, MVT::v2i64, Custom);
940 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
941 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
944 if (Subtarget->hasSSE41()) {
945 setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
946 setOperationAction(ISD::FCEIL, MVT::f32, Legal);
947 setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
948 setOperationAction(ISD::FRINT, MVT::f32, Legal);
949 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
950 setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
951 setOperationAction(ISD::FCEIL, MVT::f64, Legal);
952 setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
953 setOperationAction(ISD::FRINT, MVT::f64, Legal);
954 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
956 // FIXME: Do we need to handle scalar-to-vector here?
957 setOperationAction(ISD::MUL, MVT::v4i32, Legal);
959 setOperationAction(ISD::VSELECT, MVT::v2f64, Legal);
960 setOperationAction(ISD::VSELECT, MVT::v2i64, Legal);
961 setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
962 setOperationAction(ISD::VSELECT, MVT::v4i32, Legal);
963 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
965 // i8 and i16 vectors are custom , because the source register and source
966 // source memory operand types are not the same width. f32 vectors are
967 // custom since the immediate controlling the insert encodes additional
969 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
970 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
971 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
972 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
974 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
975 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
976 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
977 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
979 // FIXME: these should be Legal but thats only for the case where
980 // the index is constant. For now custom expand to deal with that.
981 if (Subtarget->is64Bit()) {
982 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom);
983 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
987 if (Subtarget->hasSSE2()) {
988 setOperationAction(ISD::SRL, MVT::v8i16, Custom);
989 setOperationAction(ISD::SRL, MVT::v16i8, Custom);
991 setOperationAction(ISD::SHL, MVT::v8i16, Custom);
992 setOperationAction(ISD::SHL, MVT::v16i8, Custom);
994 setOperationAction(ISD::SRA, MVT::v8i16, Custom);
995 setOperationAction(ISD::SRA, MVT::v16i8, Custom);
997 if (Subtarget->hasAVX2()) {
998 setOperationAction(ISD::SRL, MVT::v2i64, Legal);
999 setOperationAction(ISD::SRL, MVT::v4i32, Legal);
1001 setOperationAction(ISD::SHL, MVT::v2i64, Legal);
1002 setOperationAction(ISD::SHL, MVT::v4i32, Legal);
1004 setOperationAction(ISD::SRA, MVT::v4i32, Legal);
1006 setOperationAction(ISD::SRL, MVT::v2i64, Custom);
1007 setOperationAction(ISD::SRL, MVT::v4i32, Custom);
1009 setOperationAction(ISD::SHL, MVT::v2i64, Custom);
1010 setOperationAction(ISD::SHL, MVT::v4i32, Custom);
1012 setOperationAction(ISD::SRA, MVT::v4i32, Custom);
1016 if (Subtarget->hasSSE42())
1017 setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
1019 if (!TM.Options.UseSoftFloat && Subtarget->hasAVX()) {
1020 addRegisterClass(MVT::v32i8, X86::VR256RegisterClass);
1021 addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
1022 addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
1023 addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
1024 addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
1025 addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
1027 setOperationAction(ISD::LOAD, MVT::v8f32, Legal);
1028 setOperationAction(ISD::LOAD, MVT::v4f64, Legal);
1029 setOperationAction(ISD::LOAD, MVT::v4i64, Legal);
1031 setOperationAction(ISD::FADD, MVT::v8f32, Legal);
1032 setOperationAction(ISD::FSUB, MVT::v8f32, Legal);
1033 setOperationAction(ISD::FMUL, MVT::v8f32, Legal);
1034 setOperationAction(ISD::FDIV, MVT::v8f32, Legal);
1035 setOperationAction(ISD::FSQRT, MVT::v8f32, Legal);
1036 setOperationAction(ISD::FNEG, MVT::v8f32, Custom);
1038 setOperationAction(ISD::FADD, MVT::v4f64, Legal);
1039 setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
1040 setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
1041 setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
1042 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
1043 setOperationAction(ISD::FNEG, MVT::v4f64, Custom);
1045 setOperationAction(ISD::FP_TO_SINT, MVT::v8i32, Legal);
1046 setOperationAction(ISD::SINT_TO_FP, MVT::v8i32, Legal);
1047 setOperationAction(ISD::FP_ROUND, MVT::v4f32, Legal);
1049 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f64, Custom);
1050 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i64, Custom);
1051 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
1052 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
1053 setOperationAction(ISD::CONCAT_VECTORS, MVT::v32i8, Custom);
1054 setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i16, Custom);
1056 setOperationAction(ISD::SRL, MVT::v16i16, Custom);
1057 setOperationAction(ISD::SRL, MVT::v32i8, Custom);
1059 setOperationAction(ISD::SHL, MVT::v16i16, Custom);
1060 setOperationAction(ISD::SHL, MVT::v32i8, Custom);
1062 setOperationAction(ISD::SRA, MVT::v16i16, Custom);
1063 setOperationAction(ISD::SRA, MVT::v32i8, Custom);
1065 setOperationAction(ISD::SETCC, MVT::v32i8, Custom);
1066 setOperationAction(ISD::SETCC, MVT::v16i16, Custom);
1067 setOperationAction(ISD::SETCC, MVT::v8i32, Custom);
1068 setOperationAction(ISD::SETCC, MVT::v4i64, Custom);
1070 setOperationAction(ISD::SELECT, MVT::v4f64, Custom);
1071 setOperationAction(ISD::SELECT, MVT::v4i64, Custom);
1072 setOperationAction(ISD::SELECT, MVT::v8f32, Custom);
1074 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
1075 setOperationAction(ISD::VSELECT, MVT::v4i64, Legal);
1076 setOperationAction(ISD::VSELECT, MVT::v8i32, Legal);
1077 setOperationAction(ISD::VSELECT, MVT::v8f32, Legal);
1079 if (Subtarget->hasAVX2()) {
1080 setOperationAction(ISD::ADD, MVT::v4i64, Legal);
1081 setOperationAction(ISD::ADD, MVT::v8i32, Legal);
1082 setOperationAction(ISD::ADD, MVT::v16i16, Legal);
1083 setOperationAction(ISD::ADD, MVT::v32i8, Legal);
1085 setOperationAction(ISD::SUB, MVT::v4i64, Legal);
1086 setOperationAction(ISD::SUB, MVT::v8i32, Legal);
1087 setOperationAction(ISD::SUB, MVT::v16i16, Legal);
1088 setOperationAction(ISD::SUB, MVT::v32i8, Legal);
1090 setOperationAction(ISD::MUL, MVT::v4i64, Custom);
1091 setOperationAction(ISD::MUL, MVT::v8i32, Legal);
1092 setOperationAction(ISD::MUL, MVT::v16i16, Legal);
1093 // Don't lower v32i8 because there is no 128-bit byte mul
1095 setOperationAction(ISD::VSELECT, MVT::v32i8, Legal);
1097 setOperationAction(ISD::SRL, MVT::v4i64, Legal);
1098 setOperationAction(ISD::SRL, MVT::v8i32, Legal);
1100 setOperationAction(ISD::SHL, MVT::v4i64, Legal);
1101 setOperationAction(ISD::SHL, MVT::v8i32, Legal);
1103 setOperationAction(ISD::SRA, MVT::v8i32, Legal);
1105 setOperationAction(ISD::ADD, MVT::v4i64, Custom);
1106 setOperationAction(ISD::ADD, MVT::v8i32, Custom);
1107 setOperationAction(ISD::ADD, MVT::v16i16, Custom);
1108 setOperationAction(ISD::ADD, MVT::v32i8, Custom);
1110 setOperationAction(ISD::SUB, MVT::v4i64, Custom);
1111 setOperationAction(ISD::SUB, MVT::v8i32, Custom);
1112 setOperationAction(ISD::SUB, MVT::v16i16, Custom);
1113 setOperationAction(ISD::SUB, MVT::v32i8, Custom);
1115 setOperationAction(ISD::MUL, MVT::v4i64, Custom);
1116 setOperationAction(ISD::MUL, MVT::v8i32, Custom);
1117 setOperationAction(ISD::MUL, MVT::v16i16, Custom);
1118 // Don't lower v32i8 because there is no 128-bit byte mul
1120 setOperationAction(ISD::SRL, MVT::v4i64, Custom);
1121 setOperationAction(ISD::SRL, MVT::v8i32, Custom);
1123 setOperationAction(ISD::SHL, MVT::v4i64, Custom);
1124 setOperationAction(ISD::SHL, MVT::v8i32, Custom);
1126 setOperationAction(ISD::SRA, MVT::v8i32, Custom);
1129 // Custom lower several nodes for 256-bit types.
1130 for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1131 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1132 MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1135 // Extract subvector is special because the value type
1136 // (result) is 128-bit but the source is 256-bit wide.
1137 if (VT.is128BitVector())
1138 setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1140 // Do not attempt to custom lower other non-256-bit vectors
1141 if (!VT.is256BitVector())
1144 setOperationAction(ISD::BUILD_VECTOR, SVT, Custom);
1145 setOperationAction(ISD::VECTOR_SHUFFLE, SVT, Custom);
1146 setOperationAction(ISD::INSERT_VECTOR_ELT, SVT, Custom);
1147 setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1148 setOperationAction(ISD::SCALAR_TO_VECTOR, SVT, Custom);
1149 setOperationAction(ISD::INSERT_SUBVECTOR, SVT, Custom);
1152 // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1153 for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
1154 MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1157 // Do not attempt to promote non-256-bit vectors
1158 if (!VT.is256BitVector())
1161 setOperationAction(ISD::AND, SVT, Promote);
1162 AddPromotedToType (ISD::AND, SVT, MVT::v4i64);
1163 setOperationAction(ISD::OR, SVT, Promote);
1164 AddPromotedToType (ISD::OR, SVT, MVT::v4i64);
1165 setOperationAction(ISD::XOR, SVT, Promote);
1166 AddPromotedToType (ISD::XOR, SVT, MVT::v4i64);
1167 setOperationAction(ISD::LOAD, SVT, Promote);
1168 AddPromotedToType (ISD::LOAD, SVT, MVT::v4i64);
1169 setOperationAction(ISD::SELECT, SVT, Promote);
1170 AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1174 // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1175 // of this type with custom code.
1176 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1177 VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
1178 setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1182 // We want to custom lower some of our intrinsics.
1183 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1186 // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1187 // handle type legalization for these operations here.
1189 // FIXME: We really should do custom legalization for addition and
1190 // subtraction on x86-32 once PR3203 is fixed. We really can't do much better
1191 // than generic legalization for 64-bit multiplication-with-overflow, though.
1192 for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1193 // Add/Sub/Mul with overflow operations are custom lowered.
1195 setOperationAction(ISD::SADDO, VT, Custom);
1196 setOperationAction(ISD::UADDO, VT, Custom);
1197 setOperationAction(ISD::SSUBO, VT, Custom);
1198 setOperationAction(ISD::USUBO, VT, Custom);
1199 setOperationAction(ISD::SMULO, VT, Custom);
1200 setOperationAction(ISD::UMULO, VT, Custom);
1203 // There are no 8-bit 3-address imul/mul instructions
1204 setOperationAction(ISD::SMULO, MVT::i8, Expand);
1205 setOperationAction(ISD::UMULO, MVT::i8, Expand);
1207 if (!Subtarget->is64Bit()) {
1208 // These libcalls are not available in 32-bit.
1209 setLibcallName(RTLIB::SHL_I128, 0);
1210 setLibcallName(RTLIB::SRL_I128, 0);
1211 setLibcallName(RTLIB::SRA_I128, 0);
1214 // We have target-specific dag combine patterns for the following nodes:
1215 setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1216 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1217 setTargetDAGCombine(ISD::VSELECT);
1218 setTargetDAGCombine(ISD::SELECT);
1219 setTargetDAGCombine(ISD::SHL);
1220 setTargetDAGCombine(ISD::SRA);
1221 setTargetDAGCombine(ISD::SRL);
1222 setTargetDAGCombine(ISD::OR);
1223 setTargetDAGCombine(ISD::AND);
1224 setTargetDAGCombine(ISD::ADD);
1225 setTargetDAGCombine(ISD::FADD);
1226 setTargetDAGCombine(ISD::FSUB);
1227 setTargetDAGCombine(ISD::SUB);
1228 setTargetDAGCombine(ISD::LOAD);
1229 setTargetDAGCombine(ISD::STORE);
1230 setTargetDAGCombine(ISD::ZERO_EXTEND);
1231 setTargetDAGCombine(ISD::SINT_TO_FP);
1232 if (Subtarget->is64Bit())
1233 setTargetDAGCombine(ISD::MUL);
1234 if (Subtarget->hasBMI())
1235 setTargetDAGCombine(ISD::XOR);
1237 computeRegisterProperties();
1239 // On Darwin, -Os means optimize for size without hurting performance,
1240 // do not reduce the limit.
1241 maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1242 maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1243 maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1244 maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1245 maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1246 maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1247 setPrefLoopAlignment(4); // 2^4 bytes.
1248 benefitFromCodePlacementOpt = true;
1250 setPrefFunctionAlignment(4); // 2^4 bytes.
1254 EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1255 if (!VT.isVector()) return MVT::i8;
1256 return VT.changeVectorElementTypeToInteger();
1260 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1261 /// the desired ByVal argument alignment.
1262 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1265 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1266 if (VTy->getBitWidth() == 128)
1268 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1269 unsigned EltAlign = 0;
1270 getMaxByValAlign(ATy->getElementType(), EltAlign);
1271 if (EltAlign > MaxAlign)
1272 MaxAlign = EltAlign;
1273 } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1274 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1275 unsigned EltAlign = 0;
1276 getMaxByValAlign(STy->getElementType(i), EltAlign);
1277 if (EltAlign > MaxAlign)
1278 MaxAlign = EltAlign;
1286 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1287 /// function arguments in the caller parameter area. For X86, aggregates
1288 /// that contain SSE vectors are placed at 16-byte boundaries while the rest
1289 /// are at 4-byte boundaries.
1290 unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1291 if (Subtarget->is64Bit()) {
1292 // Max of 8 and alignment of type.
1293 unsigned TyAlign = TD->getABITypeAlignment(Ty);
1300 if (Subtarget->hasSSE1())
1301 getMaxByValAlign(Ty, Align);
1305 /// getOptimalMemOpType - Returns the target specific optimal type for load
1306 /// and store operations as a result of memset, memcpy, and memmove
1307 /// lowering. If DstAlign is zero that means it's safe to destination
1308 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1309 /// means there isn't a need to check it against alignment requirement,
1310 /// probably because the source does not need to be loaded. If
1311 /// 'IsZeroVal' is true, that means it's safe to return a
1312 /// non-scalar-integer type, e.g. empty string source, constant, or loaded
1313 /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1314 /// constant so it does not need to be loaded.
1315 /// It returns EVT::Other if the type should be determined using generic
1316 /// target-independent logic.
1318 X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1319 unsigned DstAlign, unsigned SrcAlign,
1322 MachineFunction &MF) const {
1323 // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1324 // linux. This is because the stack realignment code can't handle certain
1325 // cases like PR2962. This should be removed when PR2962 is fixed.
1326 const Function *F = MF.getFunction();
1328 !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1330 (Subtarget->isUnalignedMemAccessFast() ||
1331 ((DstAlign == 0 || DstAlign >= 16) &&
1332 (SrcAlign == 0 || SrcAlign >= 16))) &&
1333 Subtarget->getStackAlignment() >= 16) {
1334 if (Subtarget->getStackAlignment() >= 32) {
1335 if (Subtarget->hasAVX2())
1337 if (Subtarget->hasAVX())
1340 if (Subtarget->hasSSE2())
1342 if (Subtarget->hasSSE1())
1344 } else if (!MemcpyStrSrc && Size >= 8 &&
1345 !Subtarget->is64Bit() &&
1346 Subtarget->getStackAlignment() >= 8 &&
1347 Subtarget->hasSSE2()) {
1348 // Do not use f64 to lower memcpy if source is string constant. It's
1349 // better to use i32 to avoid the loads.
1353 if (Subtarget->is64Bit() && Size >= 8)
1358 /// getJumpTableEncoding - Return the entry encoding for a jump table in the
1359 /// current function. The returned value is a member of the
1360 /// MachineJumpTableInfo::JTEntryKind enum.
1361 unsigned X86TargetLowering::getJumpTableEncoding() const {
1362 // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1364 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1365 Subtarget->isPICStyleGOT())
1366 return MachineJumpTableInfo::EK_Custom32;
1368 // Otherwise, use the normal jump table encoding heuristics.
1369 return TargetLowering::getJumpTableEncoding();
1373 X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1374 const MachineBasicBlock *MBB,
1375 unsigned uid,MCContext &Ctx) const{
1376 assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1377 Subtarget->isPICStyleGOT());
1378 // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1380 return MCSymbolRefExpr::Create(MBB->getSymbol(),
1381 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1384 /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1386 SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1387 SelectionDAG &DAG) const {
1388 if (!Subtarget->is64Bit())
1389 // This doesn't have DebugLoc associated with it, but is not really the
1390 // same as a Register.
1391 return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1395 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1396 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1398 const MCExpr *X86TargetLowering::
1399 getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1400 MCContext &Ctx) const {
1401 // X86-64 uses RIP relative addressing based on the jump table label.
1402 if (Subtarget->isPICStyleRIPRel())
1403 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1405 // Otherwise, the reference is relative to the PIC base.
1406 return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1409 // FIXME: Why this routine is here? Move to RegInfo!
1410 std::pair<const TargetRegisterClass*, uint8_t>
1411 X86TargetLowering::findRepresentativeClass(EVT VT) const{
1412 const TargetRegisterClass *RRC = 0;
1414 switch (VT.getSimpleVT().SimpleTy) {
1416 return TargetLowering::findRepresentativeClass(VT);
1417 case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1418 RRC = (Subtarget->is64Bit()
1419 ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1422 RRC = X86::VR64RegisterClass;
1424 case MVT::f32: case MVT::f64:
1425 case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1426 case MVT::v4f32: case MVT::v2f64:
1427 case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1429 RRC = X86::VR128RegisterClass;
1432 return std::make_pair(RRC, Cost);
1435 bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1436 unsigned &Offset) const {
1437 if (!Subtarget->isTargetLinux())
1440 if (Subtarget->is64Bit()) {
1441 // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1443 if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1456 //===----------------------------------------------------------------------===//
1457 // Return Value Calling Convention Implementation
1458 //===----------------------------------------------------------------------===//
1460 #include "X86GenCallingConv.inc"
1463 X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1464 MachineFunction &MF, bool isVarArg,
1465 const SmallVectorImpl<ISD::OutputArg> &Outs,
1466 LLVMContext &Context) const {
1467 SmallVector<CCValAssign, 16> RVLocs;
1468 CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1470 return CCInfo.CheckReturn(Outs, RetCC_X86);
1474 X86TargetLowering::LowerReturn(SDValue Chain,
1475 CallingConv::ID CallConv, bool isVarArg,
1476 const SmallVectorImpl<ISD::OutputArg> &Outs,
1477 const SmallVectorImpl<SDValue> &OutVals,
1478 DebugLoc dl, SelectionDAG &DAG) const {
1479 MachineFunction &MF = DAG.getMachineFunction();
1480 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1482 SmallVector<CCValAssign, 16> RVLocs;
1483 CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1484 RVLocs, *DAG.getContext());
1485 CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1487 // Add the regs to the liveout set for the function.
1488 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1489 for (unsigned i = 0; i != RVLocs.size(); ++i)
1490 if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1491 MRI.addLiveOut(RVLocs[i].getLocReg());
1495 SmallVector<SDValue, 6> RetOps;
1496 RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1497 // Operand #1 = Bytes To Pop
1498 RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1501 // Copy the result values into the output registers.
1502 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1503 CCValAssign &VA = RVLocs[i];
1504 assert(VA.isRegLoc() && "Can only return in registers!");
1505 SDValue ValToCopy = OutVals[i];
1506 EVT ValVT = ValToCopy.getValueType();
1508 // If this is x86-64, and we disabled SSE, we can't return FP values,
1509 // or SSE or MMX vectors.
1510 if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1511 VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1512 (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1513 report_fatal_error("SSE register return with SSE disabled");
1515 // Likewise we can't return F64 values with SSE1 only. gcc does so, but
1516 // llvm-gcc has never done it right and no one has noticed, so this
1517 // should be OK for now.
1518 if (ValVT == MVT::f64 &&
1519 (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1520 report_fatal_error("SSE2 register return with SSE2 disabled");
1522 // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1523 // the RET instruction and handled by the FP Stackifier.
1524 if (VA.getLocReg() == X86::ST0 ||
1525 VA.getLocReg() == X86::ST1) {
1526 // If this is a copy from an xmm register to ST(0), use an FPExtend to
1527 // change the value to the FP stack register class.
1528 if (isScalarFPTypeInSSEReg(VA.getValVT()))
1529 ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1530 RetOps.push_back(ValToCopy);
1531 // Don't emit a copytoreg.
1535 // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1536 // which is returned in RAX / RDX.
1537 if (Subtarget->is64Bit()) {
1538 if (ValVT == MVT::x86mmx) {
1539 if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1540 ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1541 ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1543 // If we don't have SSE2 available, convert to v4f32 so the generated
1544 // register is legal.
1545 if (!Subtarget->hasSSE2())
1546 ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1551 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1552 Flag = Chain.getValue(1);
1555 // The x86-64 ABI for returning structs by value requires that we copy
1556 // the sret argument into %rax for the return. We saved the argument into
1557 // a virtual register in the entry block, so now we copy the value out
1559 if (Subtarget->is64Bit() &&
1560 DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1561 MachineFunction &MF = DAG.getMachineFunction();
1562 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1563 unsigned Reg = FuncInfo->getSRetReturnReg();
1565 "SRetReturnReg should have been set in LowerFormalArguments().");
1566 SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1568 Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1569 Flag = Chain.getValue(1);
1571 // RAX now acts like a return value.
1572 MRI.addLiveOut(X86::RAX);
1575 RetOps[0] = Chain; // Update chain.
1577 // Add the flag if we have it.
1579 RetOps.push_back(Flag);
1581 return DAG.getNode(X86ISD::RET_FLAG, dl,
1582 MVT::Other, &RetOps[0], RetOps.size());
1585 bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1586 if (N->getNumValues() != 1)
1588 if (!N->hasNUsesOfValue(1, 0))
1591 SDNode *Copy = *N->use_begin();
1592 if (Copy->getOpcode() != ISD::CopyToReg &&
1593 Copy->getOpcode() != ISD::FP_EXTEND)
1596 bool HasRet = false;
1597 for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1599 if (UI->getOpcode() != X86ISD::RET_FLAG)
1608 X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1609 ISD::NodeType ExtendKind) const {
1611 // TODO: Is this also valid on 32-bit?
1612 if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1613 ReturnMVT = MVT::i8;
1615 ReturnMVT = MVT::i32;
1617 EVT MinVT = getRegisterType(Context, ReturnMVT);
1618 return VT.bitsLT(MinVT) ? MinVT : VT;
1621 /// LowerCallResult - Lower the result values of a call into the
1622 /// appropriate copies out of appropriate physical registers.
1625 X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1626 CallingConv::ID CallConv, bool isVarArg,
1627 const SmallVectorImpl<ISD::InputArg> &Ins,
1628 DebugLoc dl, SelectionDAG &DAG,
1629 SmallVectorImpl<SDValue> &InVals) const {
1631 // Assign locations to each value returned by this call.
1632 SmallVector<CCValAssign, 16> RVLocs;
1633 bool Is64Bit = Subtarget->is64Bit();
1634 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1635 getTargetMachine(), RVLocs, *DAG.getContext());
1636 CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1638 // Copy all of the result registers out of their specified physreg.
1639 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1640 CCValAssign &VA = RVLocs[i];
1641 EVT CopyVT = VA.getValVT();
1643 // If this is x86-64, and we disabled SSE, we can't return FP values
1644 if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1645 ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1646 report_fatal_error("SSE register return with SSE disabled");
1651 // If this is a call to a function that returns an fp value on the floating
1652 // point stack, we must guarantee the the value is popped from the stack, so
1653 // a CopyFromReg is not good enough - the copy instruction may be eliminated
1654 // if the return value is not used. We use the FpPOP_RETVAL instruction
1656 if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1657 // If we prefer to use the value in xmm registers, copy it out as f80 and
1658 // use a truncate to move it from fp stack reg to xmm reg.
1659 if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1660 SDValue Ops[] = { Chain, InFlag };
1661 Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1662 MVT::Other, MVT::Glue, Ops, 2), 1);
1663 Val = Chain.getValue(0);
1665 // Round the f80 to the right size, which also moves it to the appropriate
1667 if (CopyVT != VA.getValVT())
1668 Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1669 // This truncation won't change the value.
1670 DAG.getIntPtrConstant(1));
1672 Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1673 CopyVT, InFlag).getValue(1);
1674 Val = Chain.getValue(0);
1676 InFlag = Chain.getValue(2);
1677 InVals.push_back(Val);
1684 //===----------------------------------------------------------------------===//
1685 // C & StdCall & Fast Calling Convention implementation
1686 //===----------------------------------------------------------------------===//
1687 // StdCall calling convention seems to be standard for many Windows' API
1688 // routines and around. It differs from C calling convention just a little:
1689 // callee should clean up the stack, not caller. Symbols should be also
1690 // decorated in some fancy way :) It doesn't support any vector arguments.
1691 // For info on fast calling convention see Fast Calling Convention (tail call)
1692 // implementation LowerX86_32FastCCCallTo.
1694 /// CallIsStructReturn - Determines whether a call uses struct return
1696 static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1700 return Outs[0].Flags.isSRet();
1703 /// ArgsAreStructReturn - Determines whether a function uses struct
1704 /// return semantics.
1706 ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1710 return Ins[0].Flags.isSRet();
1713 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1714 /// by "Src" to address "Dst" with size and alignment information specified by
1715 /// the specific parameter attribute. The copy will be passed as a byval
1716 /// function parameter.
1718 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1719 ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1721 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1723 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1724 /*isVolatile*/false, /*AlwaysInline=*/true,
1725 MachinePointerInfo(), MachinePointerInfo());
1728 /// IsTailCallConvention - Return true if the calling convention is one that
1729 /// supports tail call optimization.
1730 static bool IsTailCallConvention(CallingConv::ID CC) {
1731 return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1734 bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1735 if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
1739 CallingConv::ID CalleeCC = CS.getCallingConv();
1740 if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1746 /// FuncIsMadeTailCallSafe - Return true if the function is being made into
1747 /// a tailcall target by changing its ABI.
1748 static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1749 bool GuaranteedTailCallOpt) {
1750 return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1754 X86TargetLowering::LowerMemArgument(SDValue Chain,
1755 CallingConv::ID CallConv,
1756 const SmallVectorImpl<ISD::InputArg> &Ins,
1757 DebugLoc dl, SelectionDAG &DAG,
1758 const CCValAssign &VA,
1759 MachineFrameInfo *MFI,
1761 // Create the nodes corresponding to a load from this parameter slot.
1762 ISD::ArgFlagsTy Flags = Ins[i].Flags;
1763 bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1764 getTargetMachine().Options.GuaranteedTailCallOpt);
1765 bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1768 // If value is passed by pointer we have address passed instead of the value
1770 if (VA.getLocInfo() == CCValAssign::Indirect)
1771 ValVT = VA.getLocVT();
1773 ValVT = VA.getValVT();
1775 // FIXME: For now, all byval parameter objects are marked mutable. This can be
1776 // changed with more analysis.
1777 // In case of tail call optimization mark all arguments mutable. Since they
1778 // could be overwritten by lowering of arguments in case of a tail call.
1779 if (Flags.isByVal()) {
1780 unsigned Bytes = Flags.getByValSize();
1781 if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1782 int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1783 return DAG.getFrameIndex(FI, getPointerTy());
1785 int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1786 VA.getLocMemOffset(), isImmutable);
1787 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1788 return DAG.getLoad(ValVT, dl, Chain, FIN,
1789 MachinePointerInfo::getFixedStack(FI),
1790 false, false, false, 0);
1795 X86TargetLowering::LowerFormalArguments(SDValue Chain,
1796 CallingConv::ID CallConv,
1798 const SmallVectorImpl<ISD::InputArg> &Ins,
1801 SmallVectorImpl<SDValue> &InVals)
1803 MachineFunction &MF = DAG.getMachineFunction();
1804 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1806 const Function* Fn = MF.getFunction();
1807 if (Fn->hasExternalLinkage() &&
1808 Subtarget->isTargetCygMing() &&
1809 Fn->getName() == "main")
1810 FuncInfo->setForceFramePointer(true);
1812 MachineFrameInfo *MFI = MF.getFrameInfo();
1813 bool Is64Bit = Subtarget->is64Bit();
1814 bool IsWindows = Subtarget->isTargetWindows();
1815 bool IsWin64 = Subtarget->isTargetWin64();
1817 assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1818 "Var args not supported with calling convention fastcc or ghc");
1820 // Assign locations to all of the incoming arguments.
1821 SmallVector<CCValAssign, 16> ArgLocs;
1822 CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1823 ArgLocs, *DAG.getContext());
1825 // Allocate shadow area for Win64
1827 CCInfo.AllocateStack(32, 8);
1830 CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1832 unsigned LastVal = ~0U;
1834 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1835 CCValAssign &VA = ArgLocs[i];
1836 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1838 assert(VA.getValNo() != LastVal &&
1839 "Don't support value assigned to multiple locs yet");
1841 LastVal = VA.getValNo();
1843 if (VA.isRegLoc()) {
1844 EVT RegVT = VA.getLocVT();
1845 TargetRegisterClass *RC = NULL;
1846 if (RegVT == MVT::i32)
1847 RC = X86::GR32RegisterClass;
1848 else if (Is64Bit && RegVT == MVT::i64)
1849 RC = X86::GR64RegisterClass;
1850 else if (RegVT == MVT::f32)
1851 RC = X86::FR32RegisterClass;
1852 else if (RegVT == MVT::f64)
1853 RC = X86::FR64RegisterClass;
1854 else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1855 RC = X86::VR256RegisterClass;
1856 else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1857 RC = X86::VR128RegisterClass;
1858 else if (RegVT == MVT::x86mmx)
1859 RC = X86::VR64RegisterClass;
1861 llvm_unreachable("Unknown argument type!");
1863 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1864 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1866 // If this is an 8 or 16-bit value, it is really passed promoted to 32
1867 // bits. Insert an assert[sz]ext to capture this, then truncate to the
1869 if (VA.getLocInfo() == CCValAssign::SExt)
1870 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1871 DAG.getValueType(VA.getValVT()));
1872 else if (VA.getLocInfo() == CCValAssign::ZExt)
1873 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1874 DAG.getValueType(VA.getValVT()));
1875 else if (VA.getLocInfo() == CCValAssign::BCvt)
1876 ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1878 if (VA.isExtInLoc()) {
1879 // Handle MMX values passed in XMM regs.
1880 if (RegVT.isVector()) {
1881 ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1884 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1887 assert(VA.isMemLoc());
1888 ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1891 // If value is passed via pointer - do a load.
1892 if (VA.getLocInfo() == CCValAssign::Indirect)
1893 ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1894 MachinePointerInfo(), false, false, false, 0);
1896 InVals.push_back(ArgValue);
1899 // The x86-64 ABI for returning structs by value requires that we copy
1900 // the sret argument into %rax for the return. Save the argument into
1901 // a virtual register so that we can access it from the return points.
1902 if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1903 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1904 unsigned Reg = FuncInfo->getSRetReturnReg();
1906 Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1907 FuncInfo->setSRetReturnReg(Reg);
1909 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1910 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1913 unsigned StackSize = CCInfo.getNextStackOffset();
1914 // Align stack specially for tail calls.
1915 if (FuncIsMadeTailCallSafe(CallConv,
1916 MF.getTarget().Options.GuaranteedTailCallOpt))
1917 StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1919 // If the function takes variable number of arguments, make a frame index for
1920 // the start of the first vararg value... for expansion of llvm.va_start.
1922 if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1923 CallConv != CallingConv::X86_ThisCall)) {
1924 FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1927 unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1929 // FIXME: We should really autogenerate these arrays
1930 static const unsigned GPR64ArgRegsWin64[] = {
1931 X86::RCX, X86::RDX, X86::R8, X86::R9
1933 static const unsigned GPR64ArgRegs64Bit[] = {
1934 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1936 static const unsigned XMMArgRegs64Bit[] = {
1937 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1938 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1940 const unsigned *GPR64ArgRegs;
1941 unsigned NumXMMRegs = 0;
1944 // The XMM registers which might contain var arg parameters are shadowed
1945 // in their paired GPR. So we only need to save the GPR to their home
1947 TotalNumIntRegs = 4;
1948 GPR64ArgRegs = GPR64ArgRegsWin64;
1950 TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1951 GPR64ArgRegs = GPR64ArgRegs64Bit;
1953 NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
1956 unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1959 bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1960 assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1961 "SSE register cannot be used when SSE is disabled!");
1962 assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
1963 NoImplicitFloatOps) &&
1964 "SSE register cannot be used when SSE is disabled!");
1965 if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
1966 !Subtarget->hasSSE1())
1967 // Kernel mode asks for SSE to be disabled, so don't push them
1969 TotalNumXMMRegs = 0;
1972 const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1973 // Get to the caller-allocated home save location. Add 8 to account
1974 // for the return address.
1975 int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1976 FuncInfo->setRegSaveFrameIndex(
1977 MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1978 // Fixup to set vararg frame on shadow area (4 x i64).
1980 FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1982 // For X86-64, if there are vararg parameters that are passed via
1983 // registers, then we must store them to their spots on the stack so
1984 // they may be loaded by deferencing the result of va_next.
1985 FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1986 FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1987 FuncInfo->setRegSaveFrameIndex(
1988 MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1992 // Store the integer parameter registers.
1993 SmallVector<SDValue, 8> MemOps;
1994 SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1996 unsigned Offset = FuncInfo->getVarArgsGPOffset();
1997 for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1998 SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1999 DAG.getIntPtrConstant(Offset));
2000 unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
2001 X86::GR64RegisterClass);
2002 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2004 DAG.getStore(Val.getValue(1), dl, Val, FIN,
2005 MachinePointerInfo::getFixedStack(
2006 FuncInfo->getRegSaveFrameIndex(), Offset),
2008 MemOps.push_back(Store);
2012 if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2013 // Now store the XMM (fp + vector) parameter registers.
2014 SmallVector<SDValue, 11> SaveXMMOps;
2015 SaveXMMOps.push_back(Chain);
2017 unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
2018 SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2019 SaveXMMOps.push_back(ALVal);
2021 SaveXMMOps.push_back(DAG.getIntPtrConstant(
2022 FuncInfo->getRegSaveFrameIndex()));
2023 SaveXMMOps.push_back(DAG.getIntPtrConstant(
2024 FuncInfo->getVarArgsFPOffset()));
2026 for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2027 unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2028 X86::VR128RegisterClass);
2029 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2030 SaveXMMOps.push_back(Val);
2032 MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2034 &SaveXMMOps[0], SaveXMMOps.size()));
2037 if (!MemOps.empty())
2038 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2039 &MemOps[0], MemOps.size());
2043 // Some CCs need callee pop.
2044 if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2045 MF.getTarget().Options.GuaranteedTailCallOpt)) {
2046 FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2048 FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2049 // If this is an sret function, the return should pop the hidden pointer.
2050 if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2051 ArgsAreStructReturn(Ins))
2052 FuncInfo->setBytesToPopOnReturn(4);
2056 // RegSaveFrameIndex is X86-64 only.
2057 FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2058 if (CallConv == CallingConv::X86_FastCall ||
2059 CallConv == CallingConv::X86_ThisCall)
2060 // fastcc functions can't have varargs.
2061 FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2064 FuncInfo->setArgumentStackSize(StackSize);
2070 X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2071 SDValue StackPtr, SDValue Arg,
2072 DebugLoc dl, SelectionDAG &DAG,
2073 const CCValAssign &VA,
2074 ISD::ArgFlagsTy Flags) const {
2075 unsigned LocMemOffset = VA.getLocMemOffset();
2076 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2077 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2078 if (Flags.isByVal())
2079 return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2081 return DAG.getStore(Chain, dl, Arg, PtrOff,
2082 MachinePointerInfo::getStack(LocMemOffset),
2086 /// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2087 /// optimization is performed and it is required.
2089 X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2090 SDValue &OutRetAddr, SDValue Chain,
2091 bool IsTailCall, bool Is64Bit,
2092 int FPDiff, DebugLoc dl) const {
2093 // Adjust the Return address stack slot.
2094 EVT VT = getPointerTy();
2095 OutRetAddr = getReturnAddressFrameIndex(DAG);
2097 // Load the "old" Return address.
2098 OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2099 false, false, false, 0);
2100 return SDValue(OutRetAddr.getNode(), 1);
2103 /// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2104 /// optimization is performed and it is required (FPDiff!=0).
2106 EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2107 SDValue Chain, SDValue RetAddrFrIdx,
2108 bool Is64Bit, int FPDiff, DebugLoc dl) {
2109 // Store the return address to the appropriate stack slot.
2110 if (!FPDiff) return Chain;
2111 // Calculate the new stack slot for the return address.
2112 int SlotSize = Is64Bit ? 8 : 4;
2113 int NewReturnAddrFI =
2114 MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2115 EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2116 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2117 Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2118 MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2124 X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2125 CallingConv::ID CallConv, bool isVarArg,
2127 const SmallVectorImpl<ISD::OutputArg> &Outs,
2128 const SmallVectorImpl<SDValue> &OutVals,
2129 const SmallVectorImpl<ISD::InputArg> &Ins,
2130 DebugLoc dl, SelectionDAG &DAG,
2131 SmallVectorImpl<SDValue> &InVals) const {
2132 MachineFunction &MF = DAG.getMachineFunction();
2133 bool Is64Bit = Subtarget->is64Bit();
2134 bool IsWin64 = Subtarget->isTargetWin64();
2135 bool IsWindows = Subtarget->isTargetWindows();
2136 bool IsStructRet = CallIsStructReturn(Outs);
2137 bool IsSibcall = false;
2139 if (MF.getTarget().Options.DisableTailCalls)
2143 // Check if it's really possible to do a tail call.
2144 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2145 isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
2146 Outs, OutVals, Ins, DAG);
2148 // Sibcalls are automatically detected tailcalls which do not require
2150 if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2157 assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2158 "Var args not supported with calling convention fastcc or ghc");
2160 // Analyze operands of the call, assigning locations to each operand.
2161 SmallVector<CCValAssign, 16> ArgLocs;
2162 CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2163 ArgLocs, *DAG.getContext());
2165 // Allocate shadow area for Win64
2167 CCInfo.AllocateStack(32, 8);
2170 CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2172 // Get a count of how many bytes are to be pushed on the stack.
2173 unsigned NumBytes = CCInfo.getNextStackOffset();
2175 // This is a sibcall. The memory operands are available in caller's
2176 // own caller's stack.
2178 else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2179 IsTailCallConvention(CallConv))
2180 NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2183 if (isTailCall && !IsSibcall) {
2184 // Lower arguments at fp - stackoffset + fpdiff.
2185 unsigned NumBytesCallerPushed =
2186 MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2187 FPDiff = NumBytesCallerPushed - NumBytes;
2189 // Set the delta of movement of the returnaddr stackslot.
2190 // But only set if delta is greater than previous delta.
2191 if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2192 MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2196 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2198 SDValue RetAddrFrIdx;
2199 // Load return address for tail calls.
2200 if (isTailCall && FPDiff)
2201 Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2202 Is64Bit, FPDiff, dl);
2204 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2205 SmallVector<SDValue, 8> MemOpChains;
2208 // Walk the register/memloc assignments, inserting copies/loads. In the case
2209 // of tail call optimization arguments are handle later.
2210 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2211 CCValAssign &VA = ArgLocs[i];
2212 EVT RegVT = VA.getLocVT();
2213 SDValue Arg = OutVals[i];
2214 ISD::ArgFlagsTy Flags = Outs[i].Flags;
2215 bool isByVal = Flags.isByVal();
2217 // Promote the value if needed.
2218 switch (VA.getLocInfo()) {
2219 default: llvm_unreachable("Unknown loc info!");
2220 case CCValAssign::Full: break;
2221 case CCValAssign::SExt:
2222 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2224 case CCValAssign::ZExt:
2225 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2227 case CCValAssign::AExt:
2228 if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2229 // Special case: passing MMX values in XMM registers.
2230 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2231 Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2232 Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2234 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2236 case CCValAssign::BCvt:
2237 Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2239 case CCValAssign::Indirect: {
2240 // Store the argument.
2241 SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2242 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2243 Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2244 MachinePointerInfo::getFixedStack(FI),
2251 if (VA.isRegLoc()) {
2252 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2253 if (isVarArg && IsWin64) {
2254 // Win64 ABI requires argument XMM reg to be copied to the corresponding
2255 // shadow reg if callee is a varargs function.
2256 unsigned ShadowReg = 0;
2257 switch (VA.getLocReg()) {
2258 case X86::XMM0: ShadowReg = X86::RCX; break;
2259 case X86::XMM1: ShadowReg = X86::RDX; break;
2260 case X86::XMM2: ShadowReg = X86::R8; break;
2261 case X86::XMM3: ShadowReg = X86::R9; break;
2264 RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2266 } else if (!IsSibcall && (!isTailCall || isByVal)) {
2267 assert(VA.isMemLoc());
2268 if (StackPtr.getNode() == 0)
2269 StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2270 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2271 dl, DAG, VA, Flags));
2275 if (!MemOpChains.empty())
2276 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2277 &MemOpChains[0], MemOpChains.size());
2279 // Build a sequence of copy-to-reg nodes chained together with token chain
2280 // and flag operands which copy the outgoing args into registers.
2282 // Tail call byval lowering might overwrite argument registers so in case of
2283 // tail call optimization the copies to registers are lowered later.
2285 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2286 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2287 RegsToPass[i].second, InFlag);
2288 InFlag = Chain.getValue(1);
2291 if (Subtarget->isPICStyleGOT()) {
2292 // ELF / PIC requires GOT in the EBX register before function calls via PLT
2295 Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2296 DAG.getNode(X86ISD::GlobalBaseReg,
2297 DebugLoc(), getPointerTy()),
2299 InFlag = Chain.getValue(1);
2301 // If we are tail calling and generating PIC/GOT style code load the
2302 // address of the callee into ECX. The value in ecx is used as target of
2303 // the tail jump. This is done to circumvent the ebx/callee-saved problem
2304 // for tail calls on PIC/GOT architectures. Normally we would just put the
2305 // address of GOT into ebx and then call target@PLT. But for tail calls
2306 // ebx would be restored (since ebx is callee saved) before jumping to the
2309 // Note: The actual moving to ECX is done further down.
2310 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2311 if (G && !G->getGlobal()->hasHiddenVisibility() &&
2312 !G->getGlobal()->hasProtectedVisibility())
2313 Callee = LowerGlobalAddress(Callee, DAG);
2314 else if (isa<ExternalSymbolSDNode>(Callee))
2315 Callee = LowerExternalSymbol(Callee, DAG);
2319 if (Is64Bit && isVarArg && !IsWin64) {
2320 // From AMD64 ABI document:
2321 // For calls that may call functions that use varargs or stdargs
2322 // (prototype-less calls or calls to functions containing ellipsis (...) in
2323 // the declaration) %al is used as hidden argument to specify the number
2324 // of SSE registers used. The contents of %al do not need to match exactly
2325 // the number of registers, but must be an ubound on the number of SSE
2326 // registers used and is in the range 0 - 8 inclusive.
2328 // Count the number of XMM registers allocated.
2329 static const unsigned XMMArgRegs[] = {
2330 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2331 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2333 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2334 assert((Subtarget->hasSSE1() || !NumXMMRegs)
2335 && "SSE registers cannot be used when SSE is disabled");
2337 Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2338 DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2339 InFlag = Chain.getValue(1);
2343 // For tail calls lower the arguments to the 'real' stack slot.
2345 // Force all the incoming stack arguments to be loaded from the stack
2346 // before any new outgoing arguments are stored to the stack, because the
2347 // outgoing stack slots may alias the incoming argument stack slots, and
2348 // the alias isn't otherwise explicit. This is slightly more conservative
2349 // than necessary, because it means that each store effectively depends
2350 // on every argument instead of just those arguments it would clobber.
2351 SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2353 SmallVector<SDValue, 8> MemOpChains2;
2356 // Do not flag preceding copytoreg stuff together with the following stuff.
2358 if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2359 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2360 CCValAssign &VA = ArgLocs[i];
2363 assert(VA.isMemLoc());
2364 SDValue Arg = OutVals[i];
2365 ISD::ArgFlagsTy Flags = Outs[i].Flags;
2366 // Create frame index.
2367 int32_t Offset = VA.getLocMemOffset()+FPDiff;
2368 uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2369 FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2370 FIN = DAG.getFrameIndex(FI, getPointerTy());
2372 if (Flags.isByVal()) {
2373 // Copy relative to framepointer.
2374 SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2375 if (StackPtr.getNode() == 0)
2376 StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2378 Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2380 MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2384 // Store relative to framepointer.
2385 MemOpChains2.push_back(
2386 DAG.getStore(ArgChain, dl, Arg, FIN,
2387 MachinePointerInfo::getFixedStack(FI),
2393 if (!MemOpChains2.empty())
2394 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2395 &MemOpChains2[0], MemOpChains2.size());
2397 // Copy arguments to their registers.
2398 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2399 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2400 RegsToPass[i].second, InFlag);
2401 InFlag = Chain.getValue(1);
2405 // Store the return address to the appropriate stack slot.
2406 Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2410 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2411 assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2412 // In the 64-bit large code model, we have to make all calls
2413 // through a register, since the call instruction's 32-bit
2414 // pc-relative offset may not be large enough to hold the whole
2416 } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2417 // If the callee is a GlobalAddress node (quite common, every direct call
2418 // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2421 // We should use extra load for direct calls to dllimported functions in
2423 const GlobalValue *GV = G->getGlobal();
2424 if (!GV->hasDLLImportLinkage()) {
2425 unsigned char OpFlags = 0;
2426 bool ExtraLoad = false;
2427 unsigned WrapperKind = ISD::DELETED_NODE;
2429 // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2430 // external symbols most go through the PLT in PIC mode. If the symbol
2431 // has hidden or protected visibility, or if it is static or local, then
2432 // we don't need to use the PLT - we can directly call it.
2433 if (Subtarget->isTargetELF() &&
2434 getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2435 GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2436 OpFlags = X86II::MO_PLT;
2437 } else if (Subtarget->isPICStyleStubAny() &&
2438 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2439 (!Subtarget->getTargetTriple().isMacOSX() ||
2440 Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2441 // PC-relative references to external symbols should go through $stub,
2442 // unless we're building with the leopard linker or later, which
2443 // automatically synthesizes these stubs.
2444 OpFlags = X86II::MO_DARWIN_STUB;
2445 } else if (Subtarget->isPICStyleRIPRel() &&
2446 isa<Function>(GV) &&
2447 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2448 // If the function is marked as non-lazy, generate an indirect call
2449 // which loads from the GOT directly. This avoids runtime overhead
2450 // at the cost of eager binding (and one extra byte of encoding).
2451 OpFlags = X86II::MO_GOTPCREL;
2452 WrapperKind = X86ISD::WrapperRIP;
2456 Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2457 G->getOffset(), OpFlags);
2459 // Add a wrapper if needed.
2460 if (WrapperKind != ISD::DELETED_NODE)
2461 Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2462 // Add extra indirection if needed.
2464 Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2465 MachinePointerInfo::getGOT(),
2466 false, false, false, 0);
2468 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2469 unsigned char OpFlags = 0;
2471 // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2472 // external symbols should go through the PLT.
2473 if (Subtarget->isTargetELF() &&
2474 getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2475 OpFlags = X86II::MO_PLT;
2476 } else if (Subtarget->isPICStyleStubAny() &&
2477 (!Subtarget->getTargetTriple().isMacOSX() ||
2478 Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2479 // PC-relative references to external symbols should go through $stub,
2480 // unless we're building with the leopard linker or later, which
2481 // automatically synthesizes these stubs.
2482 OpFlags = X86II::MO_DARWIN_STUB;
2485 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2489 // Returns a chain & a flag for retval copy to use.
2490 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2491 SmallVector<SDValue, 8> Ops;
2493 if (!IsSibcall && isTailCall) {
2494 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2495 DAG.getIntPtrConstant(0, true), InFlag);
2496 InFlag = Chain.getValue(1);
2499 Ops.push_back(Chain);
2500 Ops.push_back(Callee);
2503 Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2505 // Add argument registers to the end of the list so that they are known live
2507 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2508 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2509 RegsToPass[i].second.getValueType()));
2511 // Add an implicit use GOT pointer in EBX.
2512 if (!isTailCall && Subtarget->isPICStyleGOT())
2513 Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2515 // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2516 if (Is64Bit && isVarArg && !IsWin64)
2517 Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2519 // Experimental: Add a register mask operand representing the call-preserved
2522 const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2523 const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2524 Ops.push_back(DAG.getRegisterMask(Mask));
2527 if (InFlag.getNode())
2528 Ops.push_back(InFlag);
2532 //// If this is the first return lowered for this function, add the regs
2533 //// to the liveout set for the function.
2534 // This isn't right, although it's probably harmless on x86; liveouts
2535 // should be computed from returns not tail calls. Consider a void
2536 // function making a tail call to a function returning int.
2537 return DAG.getNode(X86ISD::TC_RETURN, dl,
2538 NodeTys, &Ops[0], Ops.size());
2541 Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2542 InFlag = Chain.getValue(1);
2544 // Create the CALLSEQ_END node.
2545 unsigned NumBytesForCalleeToPush;
2546 if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2547 getTargetMachine().Options.GuaranteedTailCallOpt))
2548 NumBytesForCalleeToPush = NumBytes; // Callee pops everything
2549 else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2551 // If this is a call to a struct-return function, the callee
2552 // pops the hidden struct pointer, so we have to push it back.
2553 // This is common for Darwin/X86, Linux & Mingw32 targets.
2554 // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2555 NumBytesForCalleeToPush = 4;
2557 NumBytesForCalleeToPush = 0; // Callee pops nothing.
2559 // Returns a flag for retval copy to use.
2561 Chain = DAG.getCALLSEQ_END(Chain,
2562 DAG.getIntPtrConstant(NumBytes, true),
2563 DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2566 InFlag = Chain.getValue(1);
2569 // Handle result values, copying them out of physregs into vregs that we
2571 return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2572 Ins, dl, DAG, InVals);
2576 //===----------------------------------------------------------------------===//
2577 // Fast Calling Convention (tail call) implementation
2578 //===----------------------------------------------------------------------===//
2580 // Like std call, callee cleans arguments, convention except that ECX is
2581 // reserved for storing the tail called function address. Only 2 registers are
2582 // free for argument passing (inreg). Tail call optimization is performed
2584 // * tailcallopt is enabled
2585 // * caller/callee are fastcc
2586 // On X86_64 architecture with GOT-style position independent code only local
2587 // (within module) calls are supported at the moment.
2588 // To keep the stack aligned according to platform abi the function
2589 // GetAlignedArgumentStackSize ensures that argument delta is always multiples
2590 // of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2591 // If a tail called function callee has more arguments than the caller the
2592 // caller needs to make sure that there is room to move the RETADDR to. This is
2593 // achieved by reserving an area the size of the argument delta right after the
2594 // original REtADDR, but before the saved framepointer or the spilled registers
2595 // e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2607 /// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2608 /// for a 16 byte align requirement.
2610 X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2611 SelectionDAG& DAG) const {
2612 MachineFunction &MF = DAG.getMachineFunction();
2613 const TargetMachine &TM = MF.getTarget();
2614 const TargetFrameLowering &TFI = *TM.getFrameLowering();
2615 unsigned StackAlignment = TFI.getStackAlignment();
2616 uint64_t AlignMask = StackAlignment - 1;
2617 int64_t Offset = StackSize;
2618 uint64_t SlotSize = TD->getPointerSize();
2619 if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2620 // Number smaller than 12 so just add the difference.
2621 Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2623 // Mask out lower bits, add stackalignment once plus the 12 bytes.
2624 Offset = ((~AlignMask) & Offset) + StackAlignment +
2625 (StackAlignment-SlotSize);
2630 /// MatchingStackOffset - Return true if the given stack call argument is
2631 /// already available in the same position (relatively) of the caller's
2632 /// incoming argument stack.
2634 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2635 MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2636 const X86InstrInfo *TII) {
2637 unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2639 if (Arg.getOpcode() == ISD::CopyFromReg) {
2640 unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2641 if (!TargetRegisterInfo::isVirtualRegister(VR))
2643 MachineInstr *Def = MRI->getVRegDef(VR);
2646 if (!Flags.isByVal()) {
2647 if (!TII->isLoadFromStackSlot(Def, FI))
2650 unsigned Opcode = Def->getOpcode();
2651 if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2652 Def->getOperand(1).isFI()) {
2653 FI = Def->getOperand(1).getIndex();
2654 Bytes = Flags.getByValSize();
2658 } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2659 if (Flags.isByVal())
2660 // ByVal argument is passed in as a pointer but it's now being
2661 // dereferenced. e.g.
2662 // define @foo(%struct.X* %A) {
2663 // tail call @bar(%struct.X* byval %A)
2666 SDValue Ptr = Ld->getBasePtr();
2667 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2670 FI = FINode->getIndex();
2671 } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2672 FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2673 FI = FINode->getIndex();
2674 Bytes = Flags.getByValSize();
2678 assert(FI != INT_MAX);
2679 if (!MFI->isFixedObjectIndex(FI))
2681 return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2684 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2685 /// for tail call optimization. Targets which want to do tail call
2686 /// optimization should implement this function.
2688 X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2689 CallingConv::ID CalleeCC,
2691 bool isCalleeStructRet,
2692 bool isCallerStructRet,
2693 const SmallVectorImpl<ISD::OutputArg> &Outs,
2694 const SmallVectorImpl<SDValue> &OutVals,
2695 const SmallVectorImpl<ISD::InputArg> &Ins,
2696 SelectionDAG& DAG) const {
2697 if (!IsTailCallConvention(CalleeCC) &&
2698 CalleeCC != CallingConv::C)
2701 // If -tailcallopt is specified, make fastcc functions tail-callable.
2702 const MachineFunction &MF = DAG.getMachineFunction();
2703 const Function *CallerF = DAG.getMachineFunction().getFunction();
2704 CallingConv::ID CallerCC = CallerF->getCallingConv();
2705 bool CCMatch = CallerCC == CalleeCC;
2707 if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2708 if (IsTailCallConvention(CalleeCC) && CCMatch)
2713 // Look for obvious safe cases to perform tail call optimization that do not
2714 // require ABI changes. This is what gcc calls sibcall.
2716 // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2717 // emit a special epilogue.
2718 if (RegInfo->needsStackRealignment(MF))
2721 // Also avoid sibcall optimization if either caller or callee uses struct
2722 // return semantics.
2723 if (isCalleeStructRet || isCallerStructRet)
2726 // An stdcall caller is expected to clean up its arguments; the callee
2727 // isn't going to do that.
2728 if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2731 // Do not sibcall optimize vararg calls unless all arguments are passed via
2733 if (isVarArg && !Outs.empty()) {
2735 // Optimizing for varargs on Win64 is unlikely to be safe without
2736 // additional testing.
2737 if (Subtarget->isTargetWin64())
2740 SmallVector<CCValAssign, 16> ArgLocs;
2741 CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2742 getTargetMachine(), ArgLocs, *DAG.getContext());
2744 CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2745 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2746 if (!ArgLocs[i].isRegLoc())
2750 // If the call result is in ST0 / ST1, it needs to be popped off the x87
2751 // stack. Therefore, if it's not used by the call it is not safe to optimize
2752 // this into a sibcall.
2753 bool Unused = false;
2754 for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2761 SmallVector<CCValAssign, 16> RVLocs;
2762 CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2763 getTargetMachine(), RVLocs, *DAG.getContext());
2764 CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2765 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2766 CCValAssign &VA = RVLocs[i];
2767 if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2772 // If the calling conventions do not match, then we'd better make sure the
2773 // results are returned in the same way as what the caller expects.
2775 SmallVector<CCValAssign, 16> RVLocs1;
2776 CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2777 getTargetMachine(), RVLocs1, *DAG.getContext());
2778 CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2780 SmallVector<CCValAssign, 16> RVLocs2;
2781 CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2782 getTargetMachine(), RVLocs2, *DAG.getContext());
2783 CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2785 if (RVLocs1.size() != RVLocs2.size())
2787 for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2788 if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2790 if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2792 if (RVLocs1[i].isRegLoc()) {
2793 if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2796 if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2802 // If the callee takes no arguments then go on to check the results of the
2804 if (!Outs.empty()) {
2805 // Check if stack adjustment is needed. For now, do not do this if any
2806 // argument is passed on the stack.
2807 SmallVector<CCValAssign, 16> ArgLocs;
2808 CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2809 getTargetMachine(), ArgLocs, *DAG.getContext());
2811 // Allocate shadow area for Win64
2812 if (Subtarget->isTargetWin64()) {
2813 CCInfo.AllocateStack(32, 8);
2816 CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2817 if (CCInfo.getNextStackOffset()) {
2818 MachineFunction &MF = DAG.getMachineFunction();
2819 if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2822 // Check if the arguments are already laid out in the right way as
2823 // the caller's fixed stack objects.
2824 MachineFrameInfo *MFI = MF.getFrameInfo();
2825 const MachineRegisterInfo *MRI = &MF.getRegInfo();
2826 const X86InstrInfo *TII =
2827 ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2828 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2829 CCValAssign &VA = ArgLocs[i];
2830 SDValue Arg = OutVals[i];
2831 ISD::ArgFlagsTy Flags = Outs[i].Flags;
2832 if (VA.getLocInfo() == CCValAssign::Indirect)
2834 if (!VA.isRegLoc()) {
2835 if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2842 // If the tailcall address may be in a register, then make sure it's
2843 // possible to register allocate for it. In 32-bit, the call address can
2844 // only target EAX, EDX, or ECX since the tail call must be scheduled after
2845 // callee-saved registers are restored. These happen to be the same
2846 // registers used to pass 'inreg' arguments so watch out for those.
2847 if (!Subtarget->is64Bit() &&
2848 !isa<GlobalAddressSDNode>(Callee) &&
2849 !isa<ExternalSymbolSDNode>(Callee)) {
2850 unsigned NumInRegs = 0;
2851 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2852 CCValAssign &VA = ArgLocs[i];
2855 unsigned Reg = VA.getLocReg();
2858 case X86::EAX: case X86::EDX: case X86::ECX:
2859 if (++NumInRegs == 3)
2871 X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2872 return X86::createFastISel(funcInfo);
2876 //===----------------------------------------------------------------------===//
2877 // Other Lowering Hooks
2878 //===----------------------------------------------------------------------===//
2880 static bool MayFoldLoad(SDValue Op) {
2881 return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2884 static bool MayFoldIntoStore(SDValue Op) {
2885 return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2888 static bool isTargetShuffle(unsigned Opcode) {
2890 default: return false;
2891 case X86ISD::PSHUFD:
2892 case X86ISD::PSHUFHW:
2893 case X86ISD::PSHUFLW:
2895 case X86ISD::PALIGN:
2896 case X86ISD::MOVLHPS:
2897 case X86ISD::MOVLHPD:
2898 case X86ISD::MOVHLPS:
2899 case X86ISD::MOVLPS:
2900 case X86ISD::MOVLPD:
2901 case X86ISD::MOVSHDUP:
2902 case X86ISD::MOVSLDUP:
2903 case X86ISD::MOVDDUP:
2906 case X86ISD::UNPCKL:
2907 case X86ISD::UNPCKH:
2908 case X86ISD::VPERMILP:
2909 case X86ISD::VPERM2X128:
2914 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2915 SDValue V1, SelectionDAG &DAG) {
2917 default: llvm_unreachable("Unknown x86 shuffle node");
2918 case X86ISD::MOVSHDUP:
2919 case X86ISD::MOVSLDUP:
2920 case X86ISD::MOVDDUP:
2921 return DAG.getNode(Opc, dl, VT, V1);
2925 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2926 SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2928 default: llvm_unreachable("Unknown x86 shuffle node");
2929 case X86ISD::PSHUFD:
2930 case X86ISD::PSHUFHW:
2931 case X86ISD::PSHUFLW:
2932 case X86ISD::VPERMILP:
2933 return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2937 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2938 SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2940 default: llvm_unreachable("Unknown x86 shuffle node");
2941 case X86ISD::PALIGN:
2943 case X86ISD::VPERM2X128:
2944 return DAG.getNode(Opc, dl, VT, V1, V2,
2945 DAG.getConstant(TargetMask, MVT::i8));
2949 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2950 SDValue V1, SDValue V2, SelectionDAG &DAG) {
2952 default: llvm_unreachable("Unknown x86 shuffle node");
2953 case X86ISD::MOVLHPS:
2954 case X86ISD::MOVLHPD:
2955 case X86ISD::MOVHLPS:
2956 case X86ISD::MOVLPS:
2957 case X86ISD::MOVLPD:
2960 case X86ISD::UNPCKL:
2961 case X86ISD::UNPCKH:
2962 return DAG.getNode(Opc, dl, VT, V1, V2);
2966 SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2967 MachineFunction &MF = DAG.getMachineFunction();
2968 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2969 int ReturnAddrIndex = FuncInfo->getRAIndex();
2971 if (ReturnAddrIndex == 0) {
2972 // Set up a frame object for the return address.
2973 uint64_t SlotSize = TD->getPointerSize();
2974 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2976 FuncInfo->setRAIndex(ReturnAddrIndex);
2979 return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2983 bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2984 bool hasSymbolicDisplacement) {
2985 // Offset should fit into 32 bit immediate field.
2986 if (!isInt<32>(Offset))
2989 // If we don't have a symbolic displacement - we don't have any extra
2991 if (!hasSymbolicDisplacement)
2994 // FIXME: Some tweaks might be needed for medium code model.
2995 if (M != CodeModel::Small && M != CodeModel::Kernel)
2998 // For small code model we assume that latest object is 16MB before end of 31
2999 // bits boundary. We may also accept pretty large negative constants knowing
3000 // that all objects are in the positive half of address space.
3001 if (M == CodeModel::Small && Offset < 16*1024*1024)
3004 // For kernel code model we know that all object resist in the negative half
3005 // of 32bits address space. We may not accept negative offsets, since they may
3006 // be just off and we may accept pretty large positive ones.
3007 if (M == CodeModel::Kernel && Offset > 0)
3013 /// isCalleePop - Determines whether the callee is required to pop its
3014 /// own arguments. Callee pop is necessary to support tail calls.
3015 bool X86::isCalleePop(CallingConv::ID CallingConv,
3016 bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3020 switch (CallingConv) {
3023 case CallingConv::X86_StdCall:
3025 case CallingConv::X86_FastCall:
3027 case CallingConv::X86_ThisCall:
3029 case CallingConv::Fast:
3031 case CallingConv::GHC:
3036 /// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3037 /// specific condition code, returning the condition code and the LHS/RHS of the
3038 /// comparison to make.
3039 static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3040 SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3042 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3043 if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3044 // X > -1 -> X == 0, jump !sign.
3045 RHS = DAG.getConstant(0, RHS.getValueType());
3046 return X86::COND_NS;
3047 } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3048 // X < 0 -> X == 0, jump on sign.
3050 } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3052 RHS = DAG.getConstant(0, RHS.getValueType());
3053 return X86::COND_LE;
3057 switch (SetCCOpcode) {
3058 default: llvm_unreachable("Invalid integer condition!");
3059 case ISD::SETEQ: return X86::COND_E;
3060 case ISD::SETGT: return X86::COND_G;
3061 case ISD::SETGE: return X86::COND_GE;
3062 case ISD::SETLT: return X86::COND_L;
3063 case ISD::SETLE: return X86::COND_LE;
3064 case ISD::SETNE: return X86::COND_NE;
3065 case ISD::SETULT: return X86::COND_B;
3066 case ISD::SETUGT: return X86::COND_A;
3067 case ISD::SETULE: return X86::COND_BE;
3068 case ISD::SETUGE: return X86::COND_AE;
3072 // First determine if it is required or is profitable to flip the operands.
3074 // If LHS is a foldable load, but RHS is not, flip the condition.
3075 if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3076 !ISD::isNON_EXTLoad(RHS.getNode())) {
3077 SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3078 std::swap(LHS, RHS);
3081 switch (SetCCOpcode) {
3087 std::swap(LHS, RHS);
3091 // On a floating point condition, the flags are set as follows:
3093 // 0 | 0 | 0 | X > Y
3094 // 0 | 0 | 1 | X < Y
3095 // 1 | 0 | 0 | X == Y
3096 // 1 | 1 | 1 | unordered
3097 switch (SetCCOpcode) {
3098 default: llvm_unreachable("Condcode should be pre-legalized away");
3100 case ISD::SETEQ: return X86::COND_E;
3101 case ISD::SETOLT: // flipped
3103 case ISD::SETGT: return X86::COND_A;
3104 case ISD::SETOLE: // flipped
3106 case ISD::SETGE: return X86::COND_AE;
3107 case ISD::SETUGT: // flipped
3109 case ISD::SETLT: return X86::COND_B;
3110 case ISD::SETUGE: // flipped
3112 case ISD::SETLE: return X86::COND_BE;
3114 case ISD::SETNE: return X86::COND_NE;
3115 case ISD::SETUO: return X86::COND_P;
3116 case ISD::SETO: return X86::COND_NP;
3118 case ISD::SETUNE: return X86::COND_INVALID;
3122 /// hasFPCMov - is there a floating point cmov for the specific X86 condition
3123 /// code. Current x86 isa includes the following FP cmov instructions:
3124 /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3125 static bool hasFPCMov(unsigned X86CC) {
3141 /// isFPImmLegal - Returns true if the target can instruction select the
3142 /// specified FP immediate natively. If false, the legalizer will
3143 /// materialize the FP immediate as a load from a constant pool.
3144 bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3145 for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3146 if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3152 /// isUndefOrInRange - Return true if Val is undef or if its value falls within
3153 /// the specified range (L, H].
3154 static bool isUndefOrInRange(int Val, int Low, int Hi) {
3155 return (Val < 0) || (Val >= Low && Val < Hi);
3158 /// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3159 /// specified value.
3160 static bool isUndefOrEqual(int Val, int CmpVal) {
3161 if (Val < 0 || Val == CmpVal)
3166 /// isSequentialOrUndefInRange - Return true if every element in Mask, begining
3167 /// from position Pos and ending in Pos+Size, falls within the specified
3168 /// sequential range (L, L+Pos]. or is undef.
3169 static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3170 int Pos, int Size, int Low) {
3171 for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3172 if (!isUndefOrEqual(Mask[i], Low))
3177 /// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3178 /// is suitable for input to PSHUFD or PSHUFW. That is, it doesn't reference
3179 /// the second operand.
3180 static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
3181 if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3182 return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3183 if (VT == MVT::v2f64 || VT == MVT::v2i64)
3184 return (Mask[0] < 2 && Mask[1] < 2);
3188 bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
3189 return ::isPSHUFDMask(N->getMask(), N->getValueType(0));
3192 /// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3193 /// is suitable for input to PSHUFHW.
3194 static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT) {
3195 if (VT != MVT::v8i16)
3198 // Lower quadword copied in order or undef.
3199 if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3202 // Upper quadword shuffled.
3203 for (unsigned i = 4; i != 8; ++i)
3204 if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3210 bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
3211 return ::isPSHUFHWMask(N->getMask(), N->getValueType(0));
3214 /// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3215 /// is suitable for input to PSHUFLW.
3216 static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT) {
3217 if (VT != MVT::v8i16)
3220 // Upper quadword copied in order.
3221 if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3224 // Lower quadword shuffled.
3225 for (unsigned i = 0; i != 4; ++i)
3232 bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
3233 return ::isPSHUFLWMask(N->getMask(), N->getValueType(0));
3236 /// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3237 /// is suitable for input to PALIGNR.
3238 static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT,
3239 const X86Subtarget *Subtarget) {
3240 if ((VT.getSizeInBits() == 128 && !Subtarget->hasSSSE3()) ||
3241 (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2()))
3244 unsigned NumElts = VT.getVectorNumElements();
3245 unsigned NumLanes = VT.getSizeInBits()/128;
3246 unsigned NumLaneElts = NumElts/NumLanes;
3248 // Do not handle 64-bit element shuffles with palignr.
3249 if (NumLaneElts == 2)
3252 for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3254 for (i = 0; i != NumLaneElts; ++i) {
3259 // Lane is all undef, go to next lane
3260 if (i == NumLaneElts)
3263 int Start = Mask[i+l];
3265 // Make sure its in this lane in one of the sources
3266 if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3267 !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3270 // If not lane 0, then we must match lane 0
3271 if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3274 // Correct second source to be contiguous with first source
3275 if (Start >= (int)NumElts)
3276 Start -= NumElts - NumLaneElts;
3278 // Make sure we're shifting in the right direction.
3279 if (Start <= (int)(i+l))
3284 // Check the rest of the elements to see if they are consecutive.
3285 for (++i; i != NumLaneElts; ++i) {
3286 int Idx = Mask[i+l];
3288 // Make sure its in this lane
3289 if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3290 !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3293 // If not lane 0, then we must match lane 0
3294 if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3297 if (Idx >= (int)NumElts)
3298 Idx -= NumElts - NumLaneElts;
3300 if (!isUndefOrEqual(Idx, Start+i))
3309 /// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3310 /// the two vector operands have swapped position.
3311 static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3312 unsigned NumElems) {
3313 for (unsigned i = 0; i != NumElems; ++i) {
3317 else if (idx < (int)NumElems)
3318 Mask[i] = idx + NumElems;
3320 Mask[i] = idx - NumElems;
3324 /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3325 /// specifies a shuffle of elements that is suitable for input to 128/256-bit
3326 /// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3327 /// reverse of what x86 shuffles want.
3328 static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX,
3329 bool Commuted = false) {
3330 if (!HasAVX && VT.getSizeInBits() == 256)
3333 unsigned NumElems = VT.getVectorNumElements();
3334 unsigned NumLanes = VT.getSizeInBits()/128;
3335 unsigned NumLaneElems = NumElems/NumLanes;
3337 if (NumLaneElems != 2 && NumLaneElems != 4)
3340 // VSHUFPSY divides the resulting vector into 4 chunks.
3341 // The sources are also splitted into 4 chunks, and each destination
3342 // chunk must come from a different source chunk.
3344 // SRC1 => X7 X6 X5 X4 X3 X2 X1 X0
3345 // SRC2 => Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y9
3347 // DST => Y7..Y4, Y7..Y4, X7..X4, X7..X4,
3348 // Y3..Y0, Y3..Y0, X3..X0, X3..X0
3350 // VSHUFPDY divides the resulting vector into 4 chunks.
3351 // The sources are also splitted into 4 chunks, and each destination
3352 // chunk must come from a different source chunk.
3354 // SRC1 => X3 X2 X1 X0
3355 // SRC2 => Y3 Y2 Y1 Y0
3357 // DST => Y3..Y2, X3..X2, Y1..Y0, X1..X0
3359 unsigned HalfLaneElems = NumLaneElems/2;
3360 for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3361 for (unsigned i = 0; i != NumLaneElems; ++i) {
3362 int Idx = Mask[i+l];
3363 unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3364 if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3366 // For VSHUFPSY, the mask of the second half must be the same as the
3367 // first but with the appropriate offsets. This works in the same way as
3368 // VPERMILPS works with masks.
3369 if (NumElems != 8 || l == 0 || Mask[i] < 0)
3371 if (!isUndefOrEqual(Idx, Mask[i]+l))
3379 bool X86::isSHUFPMask(ShuffleVectorSDNode *N, bool HasAVX) {
3380 return ::isSHUFPMask(N->getMask(), N->getValueType(0), HasAVX);
3383 /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3384 /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3385 bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3386 EVT VT = N->getValueType(0);
3387 unsigned NumElems = VT.getVectorNumElements();
3389 if (VT.getSizeInBits() != 128)
3395 // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3396 return isUndefOrEqual(N->getMaskElt(0), 6) &&
3397 isUndefOrEqual(N->getMaskElt(1), 7) &&
3398 isUndefOrEqual(N->getMaskElt(2), 2) &&
3399 isUndefOrEqual(N->getMaskElt(3), 3);
3402 /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3403 /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3405 bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3406 EVT VT = N->getValueType(0);
3407 unsigned NumElems = VT.getVectorNumElements();
3409 if (VT.getSizeInBits() != 128)
3415 return isUndefOrEqual(N->getMaskElt(0), 2) &&
3416 isUndefOrEqual(N->getMaskElt(1), 3) &&
3417 isUndefOrEqual(N->getMaskElt(2), 2) &&
3418 isUndefOrEqual(N->getMaskElt(3), 3);
3421 /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3422 /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3423 bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3424 EVT VT = N->getValueType(0);
3426 if (VT.getSizeInBits() != 128)
3429 unsigned NumElems = N->getValueType(0).getVectorNumElements();
3431 if (NumElems != 2 && NumElems != 4)
3434 for (unsigned i = 0; i < NumElems/2; ++i)
3435 if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3438 for (unsigned i = NumElems/2; i < NumElems; ++i)
3439 if (!isUndefOrEqual(N->getMaskElt(i), i))
3445 /// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3446 /// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3447 bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3448 unsigned NumElems = N->getValueType(0).getVectorNumElements();
3450 if ((NumElems != 2 && NumElems != 4)
3451 || N->getValueType(0).getSizeInBits() > 128)
3454 for (unsigned i = 0; i < NumElems/2; ++i)
3455 if (!isUndefOrEqual(N->getMaskElt(i), i))
3458 for (unsigned i = 0; i < NumElems/2; ++i)
3459 if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3465 /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3466 /// specifies a shuffle of elements that is suitable for input to UNPCKL.
3467 static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
3468 bool HasAVX2, bool V2IsSplat = false) {
3469 unsigned NumElts = VT.getVectorNumElements();
3471 assert((VT.is128BitVector() || VT.is256BitVector()) &&
3472 "Unsupported vector type for unpckh");
3474 if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3475 (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3478 // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3479 // independently on 128-bit lanes.
3480 unsigned NumLanes = VT.getSizeInBits()/128;
3481 unsigned NumLaneElts = NumElts/NumLanes;
3483 for (unsigned l = 0; l != NumLanes; ++l) {
3484 for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3485 i != (l+1)*NumLaneElts;
3488 int BitI1 = Mask[i+1];
3489 if (!isUndefOrEqual(BitI, j))
3492 if (!isUndefOrEqual(BitI1, NumElts))
3495 if (!isUndefOrEqual(BitI1, j + NumElts))
3504 bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool HasAVX2, bool V2IsSplat) {
3505 return ::isUNPCKLMask(N->getMask(), N->getValueType(0), HasAVX2, V2IsSplat);
3508 /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3509 /// specifies a shuffle of elements that is suitable for input to UNPCKH.
3510 static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
3511 bool HasAVX2, bool V2IsSplat = false) {
3512 unsigned NumElts = VT.getVectorNumElements();
3514 assert((VT.is128BitVector() || VT.is256BitVector()) &&
3515 "Unsupported vector type for unpckh");
3517 if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3518 (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3521 // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3522 // independently on 128-bit lanes.
3523 unsigned NumLanes = VT.getSizeInBits()/128;
3524 unsigned NumLaneElts = NumElts/NumLanes;
3526 for (unsigned l = 0; l != NumLanes; ++l) {
3527 for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3528 i != (l+1)*NumLaneElts; i += 2, ++j) {
3530 int BitI1 = Mask[i+1];
3531 if (!isUndefOrEqual(BitI, j))
3534 if (isUndefOrEqual(BitI1, NumElts))
3537 if (!isUndefOrEqual(BitI1, j+NumElts))
3545 bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool HasAVX2, bool V2IsSplat) {
3546 return ::isUNPCKHMask(N->getMask(), N->getValueType(0), HasAVX2, V2IsSplat);
3549 /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3550 /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3552 static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT,
3554 unsigned NumElts = VT.getVectorNumElements();
3556 assert((VT.is128BitVector() || VT.is256BitVector()) &&
3557 "Unsupported vector type for unpckh");
3559 if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3560 (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3563 // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3564 // FIXME: Need a better way to get rid of this, there's no latency difference
3565 // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3566 // the former later. We should also remove the "_undef" special mask.
3567 if (NumElts == 4 && VT.getSizeInBits() == 256)
3570 // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3571 // independently on 128-bit lanes.
3572 unsigned NumLanes = VT.getSizeInBits()/128;
3573 unsigned NumLaneElts = NumElts/NumLanes;
3575 for (unsigned l = 0; l != NumLanes; ++l) {
3576 for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3577 i != (l+1)*NumLaneElts;
3580 int BitI1 = Mask[i+1];
3582 if (!isUndefOrEqual(BitI, j))
3584 if (!isUndefOrEqual(BitI1, j))
3592 bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N, bool HasAVX2) {
3593 return ::isUNPCKL_v_undef_Mask(N->getMask(), N->getValueType(0), HasAVX2);
3596 /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3597 /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3599 static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3600 unsigned NumElts = VT.getVectorNumElements();
3602 assert((VT.is128BitVector() || VT.is256BitVector()) &&
3603 "Unsupported vector type for unpckh");
3605 if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3606 (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3609 // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3610 // independently on 128-bit lanes.
3611 unsigned NumLanes = VT.getSizeInBits()/128;
3612 unsigned NumLaneElts = NumElts/NumLanes;
3614 for (unsigned l = 0; l != NumLanes; ++l) {
3615 for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3616 i != (l+1)*NumLaneElts; i += 2, ++j) {
3618 int BitI1 = Mask[i+1];
3619 if (!isUndefOrEqual(BitI, j))
3621 if (!isUndefOrEqual(BitI1, j))
3628 bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N, bool HasAVX2) {
3629 return ::isUNPCKH_v_undef_Mask(N->getMask(), N->getValueType(0), HasAVX2);
3632 /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3633 /// specifies a shuffle of elements that is suitable for input to MOVSS,
3634 /// MOVSD, and MOVD, i.e. setting the lowest element.
3635 static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
3636 if (VT.getVectorElementType().getSizeInBits() < 32)
3638 if (VT.getSizeInBits() == 256)
3641 unsigned NumElts = VT.getVectorNumElements();
3643 if (!isUndefOrEqual(Mask[0], NumElts))
3646 for (unsigned i = 1; i != NumElts; ++i)
3647 if (!isUndefOrEqual(Mask[i], i))
3653 bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3654 return ::isMOVLMask(N->getMask(), N->getValueType(0));
3657 /// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3658 /// as permutations between 128-bit chunks or halves. As an example: this
3660 /// vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3661 /// The first half comes from the second half of V1 and the second half from the
3662 /// the second half of V2.
3663 static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3664 if (!HasAVX || VT.getSizeInBits() != 256)
3667 // The shuffle result is divided into half A and half B. In total the two
3668 // sources have 4 halves, namely: C, D, E, F. The final values of A and
3669 // B must come from C, D, E or F.
3670 unsigned HalfSize = VT.getVectorNumElements()/2;
3671 bool MatchA = false, MatchB = false;
3673 // Check if A comes from one of C, D, E, F.
3674 for (unsigned Half = 0; Half != 4; ++Half) {
3675 if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3681 // Check if B comes from one of C, D, E, F.
3682 for (unsigned Half = 0; Half != 4; ++Half) {
3683 if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3689 return MatchA && MatchB;
3692 /// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3693 /// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3694 static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3695 EVT VT = SVOp->getValueType(0);
3697 unsigned HalfSize = VT.getVectorNumElements()/2;
3699 unsigned FstHalf = 0, SndHalf = 0;
3700 for (unsigned i = 0; i < HalfSize; ++i) {
3701 if (SVOp->getMaskElt(i) > 0) {
3702 FstHalf = SVOp->getMaskElt(i)/HalfSize;
3706 for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
3707 if (SVOp->getMaskElt(i) > 0) {
3708 SndHalf = SVOp->getMaskElt(i)/HalfSize;
3713 return (FstHalf | (SndHalf << 4));
3716 /// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3717 /// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3718 /// Note that VPERMIL mask matching is different depending whether theunderlying
3719 /// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3720 /// to the same elements of the low, but to the higher half of the source.
3721 /// In VPERMILPD the two lanes could be shuffled independently of each other
3722 /// with the same restriction that lanes can't be crossed.
3723 static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3727 unsigned NumElts = VT.getVectorNumElements();
3728 // Only match 256-bit with 32/64-bit types
3729 if (VT.getSizeInBits() != 256 || (NumElts != 4 && NumElts != 8))
3732 unsigned NumLanes = VT.getSizeInBits()/128;
3733 unsigned LaneSize = NumElts/NumLanes;
3734 for (unsigned l = 0; l != NumElts; l += LaneSize) {
3735 for (unsigned i = 0; i != LaneSize; ++i) {
3736 if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
3738 if (NumElts != 8 || l == 0)
3740 // VPERMILPS handling
3743 if (!isUndefOrEqual(Mask[i+l], Mask[i]+l))
3751 /// getShuffleVPERMILPImmediate - Return the appropriate immediate to shuffle
3752 /// the specified VECTOR_MASK mask with VPERMILPS/D* instructions.
3753 static unsigned getShuffleVPERMILPImmediate(ShuffleVectorSDNode *SVOp) {
3754 EVT VT = SVOp->getValueType(0);
3756 unsigned NumElts = VT.getVectorNumElements();
3757 unsigned NumLanes = VT.getSizeInBits()/128;
3758 unsigned LaneSize = NumElts/NumLanes;
3760 // Although the mask is equal for both lanes do it twice to get the cases
3761 // where a mask will match because the same mask element is undef on the
3762 // first half but valid on the second. This would get pathological cases
3763 // such as: shuffle <u, 0, 1, 2, 4, 4, 5, 6>, which is completely valid.
3764 unsigned Shift = (LaneSize == 4) ? 2 : 1;
3766 for (unsigned i = 0; i != NumElts; ++i) {
3767 int MaskElt = SVOp->getMaskElt(i);
3770 MaskElt %= LaneSize;
3772 // VPERMILPSY, the mask of the first half must be equal to the second one
3773 if (NumElts == 8) Shamt %= LaneSize;
3774 Mask |= MaskElt << (Shamt*Shift);
3780 /// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3781 /// of what x86 movss want. X86 movs requires the lowest element to be lowest
3782 /// element of vector 2 and the other elements to come from vector 1 in order.
3783 static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
3784 bool V2IsSplat = false, bool V2IsUndef = false) {
3785 unsigned NumOps = VT.getVectorNumElements();
3786 if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3789 if (!isUndefOrEqual(Mask[0], 0))
3792 for (unsigned i = 1; i != NumOps; ++i)
3793 if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3794 (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3795 (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3801 static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3802 bool V2IsUndef = false) {
3803 return isCommutedMOVLMask(N->getMask(), N->getValueType(0),
3804 V2IsSplat, V2IsUndef);
3807 /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3808 /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3809 /// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3810 bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N,
3811 const X86Subtarget *Subtarget) {
3812 if (!Subtarget->hasSSE3())
3815 // The second vector must be undef
3816 if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3819 EVT VT = N->getValueType(0);
3820 unsigned NumElems = VT.getVectorNumElements();
3822 if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3823 (VT.getSizeInBits() == 256 && NumElems != 8))
3826 // "i+1" is the value the indexed mask element must have
3827 for (unsigned i = 0; i < NumElems; i += 2)
3828 if (!isUndefOrEqual(N->getMaskElt(i), i+1) ||
3829 !isUndefOrEqual(N->getMaskElt(i+1), i+1))
3835 /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3836 /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3837 /// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3838 bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N,
3839 const X86Subtarget *Subtarget) {
3840 if (!Subtarget->hasSSE3())
3843 // The second vector must be undef
3844 if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3847 EVT VT = N->getValueType(0);
3848 unsigned NumElems = VT.getVectorNumElements();
3850 if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3851 (VT.getSizeInBits() == 256 && NumElems != 8))
3854 // "i" is the value the indexed mask element must have
3855 for (unsigned i = 0; i != NumElems; i += 2)
3856 if (!isUndefOrEqual(N->getMaskElt(i), i) ||
3857 !isUndefOrEqual(N->getMaskElt(i+1), i))
3863 /// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3864 /// specifies a shuffle of elements that is suitable for input to 256-bit
3865 /// version of MOVDDUP.
3866 static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3867 unsigned NumElts = VT.getVectorNumElements();
3869 if (!HasAVX || VT.getSizeInBits() != 256 || NumElts != 4)
3872 for (unsigned i = 0; i != NumElts/2; ++i)
3873 if (!isUndefOrEqual(Mask[i], 0))
3875 for (unsigned i = NumElts/2; i != NumElts; ++i)
3876 if (!isUndefOrEqual(Mask[i], NumElts/2))
3881 /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3882 /// specifies a shuffle of elements that is suitable for input to 128-bit
3883 /// version of MOVDDUP.
3884 bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3885 EVT VT = N->getValueType(0);
3887 if (VT.getSizeInBits() != 128)
3890 unsigned e = VT.getVectorNumElements() / 2;
3891 for (unsigned i = 0; i != e; ++i)
3892 if (!isUndefOrEqual(N->getMaskElt(i), i))
3894 for (unsigned i = 0; i != e; ++i)
3895 if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3900 /// isVEXTRACTF128Index - Return true if the specified
3901 /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3902 /// suitable for input to VEXTRACTF128.
3903 bool X86::isVEXTRACTF128Index(SDNode *N) {
3904 if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3907 // The index should be aligned on a 128-bit boundary.
3909 cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3911 unsigned VL = N->getValueType(0).getVectorNumElements();
3912 unsigned VBits = N->getValueType(0).getSizeInBits();
3913 unsigned ElSize = VBits / VL;
3914 bool Result = (Index * ElSize) % 128 == 0;
3919 /// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3920 /// operand specifies a subvector insert that is suitable for input to
3922 bool X86::isVINSERTF128Index(SDNode *N) {
3923 if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3926 // The index should be aligned on a 128-bit boundary.
3928 cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3930 unsigned VL = N->getValueType(0).getVectorNumElements();
3931 unsigned VBits = N->getValueType(0).getSizeInBits();
3932 unsigned ElSize = VBits / VL;
3933 bool Result = (Index * ElSize) % 128 == 0;
3938 /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3939 /// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3940 /// Handles 128-bit and 256-bit.
3941 unsigned X86::getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
3942 EVT VT = N->getValueType(0);
3944 assert((VT.is128BitVector() || VT.is256BitVector()) &&
3945 "Unsupported vector type for PSHUF/SHUFP");
3947 // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
3948 // independently on 128-bit lanes.
3949 unsigned NumElts = VT.getVectorNumElements();
3950 unsigned NumLanes = VT.getSizeInBits()/128;
3951 unsigned NumLaneElts = NumElts/NumLanes;
3953 assert((NumLaneElts == 2 || NumLaneElts == 4) &&
3954 "Only supports 2 or 4 elements per lane");
3956 unsigned Shift = (NumLaneElts == 4) ? 1 : 0;
3958 for (unsigned i = 0; i != NumElts; ++i) {
3959 int Elt = N->getMaskElt(i);
3960 if (Elt < 0) continue;
3962 unsigned ShAmt = i << Shift;
3963 if (ShAmt >= 8) ShAmt -= 8;
3964 Mask |= Elt << ShAmt;
3970 /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3971 /// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3972 unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3973 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3975 // 8 nodes, but we only care about the last 4.
3976 for (unsigned i = 7; i >= 4; --i) {
3977 int Val = SVOp->getMaskElt(i);
3986 /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3987 /// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3988 unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3989 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3991 // 8 nodes, but we only care about the first 4.
3992 for (int i = 3; i >= 0; --i) {
3993 int Val = SVOp->getMaskElt(i);
4002 /// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4003 /// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4004 static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
4005 EVT VT = SVOp->getValueType(0);
4006 unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
4008 unsigned NumElts = VT.getVectorNumElements();
4009 unsigned NumLanes = VT.getSizeInBits()/128;
4010 unsigned NumLaneElts = NumElts/NumLanes;
4014 for (i = 0; i != NumElts; ++i) {
4015 Val = SVOp->getMaskElt(i);
4019 if (Val >= (int)NumElts)
4020 Val -= NumElts - NumLaneElts;
4022 assert(Val - i > 0 && "PALIGNR imm should be positive");
4023 return (Val - i) * EltSize;
4026 /// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4027 /// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4029 unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4030 if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4031 llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4034 cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4036 EVT VecVT = N->getOperand(0).getValueType();
4037 EVT ElVT = VecVT.getVectorElementType();
4039 unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4040 return Index / NumElemsPerChunk;
4043 /// getInsertVINSERTF128Immediate - Return the appropriate immediate
4044 /// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4046 unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4047 if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4048 llvm_unreachable("Illegal insert subvector for VINSERTF128");
4051 cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4053 EVT VecVT = N->getValueType(0);
4054 EVT ElVT = VecVT.getVectorElementType();
4056 unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4057 return Index / NumElemsPerChunk;
4060 /// isZeroNode - Returns true if Elt is a constant zero or a floating point
4062 bool X86::isZeroNode(SDValue Elt) {
4063 return ((isa<ConstantSDNode>(Elt) &&
4064 cast<ConstantSDNode>(Elt)->isNullValue()) ||
4065 (isa<ConstantFPSDNode>(Elt) &&
4066 cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4069 /// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4070 /// their permute mask.
4071 static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4072 SelectionDAG &DAG) {
4073 EVT VT = SVOp->getValueType(0);
4074 unsigned NumElems = VT.getVectorNumElements();
4075 SmallVector<int, 8> MaskVec;
4077 for (unsigned i = 0; i != NumElems; ++i) {
4078 int idx = SVOp->getMaskElt(i);
4080 MaskVec.push_back(idx);
4081 else if (idx < (int)NumElems)
4082 MaskVec.push_back(idx + NumElems);
4084 MaskVec.push_back(idx - NumElems);
4086 return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4087 SVOp->getOperand(0), &MaskVec[0]);
4090 /// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4091 /// match movhlps. The lower half elements should come from upper half of
4092 /// V1 (and in order), and the upper half elements should come from the upper
4093 /// half of V2 (and in order).
4094 static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
4095 EVT VT = Op->getValueType(0);
4096 if (VT.getSizeInBits() != 128)
4098 if (VT.getVectorNumElements() != 4)
4100 for (unsigned i = 0, e = 2; i != e; ++i)
4101 if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
4103 for (unsigned i = 2; i != 4; ++i)
4104 if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
4109 /// isScalarLoadToVector - Returns true if the node is a scalar load that
4110 /// is promoted to a vector. It also returns the LoadSDNode by reference if
4112 static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4113 if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4115 N = N->getOperand(0).getNode();
4116 if (!ISD::isNON_EXTLoad(N))
4119 *LD = cast<LoadSDNode>(N);
4123 // Test whether the given value is a vector value which will be legalized
4125 static bool WillBeConstantPoolLoad(SDNode *N) {
4126 if (N->getOpcode() != ISD::BUILD_VECTOR)
4129 // Check for any non-constant elements.
4130 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4131 switch (N->getOperand(i).getNode()->getOpcode()) {
4133 case ISD::ConstantFP:
4140 // Vectors of all-zeros and all-ones are materialized with special
4141 // instructions rather than being loaded.
4142 return !ISD::isBuildVectorAllZeros(N) &&
4143 !ISD::isBuildVectorAllOnes(N);
4146 /// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4147 /// match movlp{s|d}. The lower half elements should come from lower half of
4148 /// V1 (and in order), and the upper half elements should come from the upper
4149 /// half of V2 (and in order). And since V1 will become the source of the
4150 /// MOVLP, it must be either a vector load or a scalar load to vector.
4151 static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4152 ShuffleVectorSDNode *Op) {
4153 EVT VT = Op->getValueType(0);
4154 if (VT.getSizeInBits() != 128)
4157 if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4159 // Is V2 is a vector load, don't do this transformation. We will try to use
4160 // load folding shufps op.
4161 if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4164 unsigned NumElems = VT.getVectorNumElements();
4166 if (NumElems != 2 && NumElems != 4)
4168 for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4169 if (!isUndefOrEqual(Op->getMaskElt(i), i))
4171 for (unsigned i = NumElems/2; i != NumElems; ++i)
4172 if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
4177 /// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4179 static bool isSplatVector(SDNode *N) {
4180 if (N->getOpcode() != ISD::BUILD_VECTOR)
4183 SDValue SplatValue = N->getOperand(0);
4184 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4185 if (N->getOperand(i) != SplatValue)
4190 /// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4191 /// to an zero vector.
4192 /// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4193 static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4194 SDValue V1 = N->getOperand(0);
4195 SDValue V2 = N->getOperand(1);
4196 unsigned NumElems = N->getValueType(0).getVectorNumElements();
4197 for (unsigned i = 0; i != NumElems; ++i) {
4198 int Idx = N->getMaskElt(i);
4199 if (Idx >= (int)NumElems) {
4200 unsigned Opc = V2.getOpcode();
4201 if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4203 if (Opc != ISD::BUILD_VECTOR ||
4204 !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4206 } else if (Idx >= 0) {
4207 unsigned Opc = V1.getOpcode();
4208 if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4210 if (Opc != ISD::BUILD_VECTOR ||
4211 !X86::isZeroNode(V1.getOperand(Idx)))
4218 /// getZeroVector - Returns a vector of specified type with all zero elements.
4220 static SDValue getZeroVector(EVT VT, bool HasSSE2, bool HasAVX2,
4221 SelectionDAG &DAG, DebugLoc dl) {
4222 assert(VT.isVector() && "Expected a vector type");
4224 // Always build SSE zero vectors as <4 x i32> bitcasted
4225 // to their dest type. This ensures they get CSE'd.
4227 if (VT.getSizeInBits() == 128) { // SSE
4228 if (HasSSE2) { // SSE2
4229 SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4230 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4232 SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4233 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4235 } else if (VT.getSizeInBits() == 256) { // AVX
4236 if (HasAVX2) { // AVX2
4237 SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4238 SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4239 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4241 // 256-bit logic and arithmetic instructions in AVX are all
4242 // floating-point, no support for integer ops. Emit fp zeroed vectors.
4243 SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4244 SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4245 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4248 return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4251 /// getOnesVector - Returns a vector of specified type with all bits set.
4252 /// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4253 /// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4254 /// Then bitcast to their original type, ensuring they get CSE'd.
4255 static SDValue getOnesVector(EVT VT, bool HasAVX2, SelectionDAG &DAG,
4257 assert(VT.isVector() && "Expected a vector type");
4258 assert((VT.is128BitVector() || VT.is256BitVector())
4259 && "Expected a 128-bit or 256-bit vector type");
4261 SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4263 if (VT.getSizeInBits() == 256) {
4264 if (HasAVX2) { // AVX2
4265 SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4266 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4268 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4269 SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
4270 Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
4271 Vec = Insert128BitVector(InsV, Vec,
4272 DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
4275 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4278 return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4281 /// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4282 /// that point to V2 points to its first element.
4283 static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4284 EVT VT = SVOp->getValueType(0);
4285 unsigned NumElems = VT.getVectorNumElements();
4287 bool Changed = false;
4288 SmallVector<int, 8> MaskVec(SVOp->getMask().begin(), SVOp->getMask().end());
4290 for (unsigned i = 0; i != NumElems; ++i) {
4291 if (MaskVec[i] > (int)NumElems) {
4292 MaskVec[i] = NumElems;
4297 return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
4298 SVOp->getOperand(1), &MaskVec[0]);
4299 return SDValue(SVOp, 0);
4302 /// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4303 /// operation of specified width.
4304 static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4306 unsigned NumElems = VT.getVectorNumElements();
4307 SmallVector<int, 8> Mask;
4308 Mask.push_back(NumElems);
4309 for (unsigned i = 1; i != NumElems; ++i)
4311 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4314 /// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4315 static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4317 unsigned NumElems = VT.getVectorNumElements();
4318 SmallVector<int, 8> Mask;
4319 for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4321 Mask.push_back(i + NumElems);
4323 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4326 /// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4327 static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4329 unsigned NumElems = VT.getVectorNumElements();
4330 unsigned Half = NumElems/2;
4331 SmallVector<int, 8> Mask;
4332 for (unsigned i = 0; i != Half; ++i) {
4333 Mask.push_back(i + Half);
4334 Mask.push_back(i + NumElems + Half);
4336 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4339 // PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4340 // a generic shuffle instruction because the target has no such instructions.
4341 // Generate shuffles which repeat i16 and i8 several times until they can be
4342 // represented by v4f32 and then be manipulated by target suported shuffles.
4343 static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4344 EVT VT = V.getValueType();
4345 int NumElems = VT.getVectorNumElements();
4346 DebugLoc dl = V.getDebugLoc();
4348 while (NumElems > 4) {
4349 if (EltNo < NumElems/2) {
4350 V = getUnpackl(DAG, dl, VT, V, V);
4352 V = getUnpackh(DAG, dl, VT, V, V);
4353 EltNo -= NumElems/2;
4360 /// getLegalSplat - Generate a legal splat with supported x86 shuffles
4361 static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4362 EVT VT = V.getValueType();
4363 DebugLoc dl = V.getDebugLoc();
4364 assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
4365 && "Vector size not supported");
4367 if (VT.getSizeInBits() == 128) {
4368 V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4369 int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4370 V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4373 // To use VPERMILPS to splat scalars, the second half of indicies must
4374 // refer to the higher part, which is a duplication of the lower one,
4375 // because VPERMILPS can only handle in-lane permutations.
4376 int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4377 EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4379 V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4380 V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4384 return DAG.getNode(ISD::BITCAST, dl, VT, V);
4387 /// PromoteSplat - Splat is promoted to target supported vector shuffles.
4388 static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4389 EVT SrcVT = SV->getValueType(0);
4390 SDValue V1 = SV->getOperand(0);
4391 DebugLoc dl = SV->getDebugLoc();
4393 int EltNo = SV->getSplatIndex();
4394 int NumElems = SrcVT.getVectorNumElements();
4395 unsigned Size = SrcVT.getSizeInBits();
4397 assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4398 "Unknown how to promote splat for type");
4400 // Extract the 128-bit part containing the splat element and update
4401 // the splat element index when it refers to the higher register.
4403 unsigned Idx = (EltNo >= NumElems/2) ? NumElems/2 : 0;
4404 V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
4406 EltNo -= NumElems/2;
4409 // All i16 and i8 vector types can't be used directly by a generic shuffle
4410 // instruction because the target has no such instruction. Generate shuffles
4411 // which repeat i16 and i8 several times until they fit in i32, and then can
4412 // be manipulated by target suported shuffles.
4413 EVT EltVT = SrcVT.getVectorElementType();
4414 if (EltVT == MVT::i8 || EltVT == MVT::i16)
4415 V1 = PromoteSplati8i16(V1, DAG, EltNo);
4417 // Recreate the 256-bit vector and place the same 128-bit vector
4418 // into the low and high part. This is necessary because we want
4419 // to use VPERM* to shuffle the vectors
4421 SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
4422 DAG.getConstant(0, MVT::i32), DAG, dl);
4423 V1 = Insert128BitVector(InsV, V1,
4424 DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4427 return getLegalSplat(DAG, V1, EltNo);
4430 /// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4431 /// vector of zero or undef vector. This produces a shuffle where the low
4432 /// element of V2 is swizzled into the zero/undef vector, landing at element
4433 /// Idx. This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3).
4434 static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4436 const X86Subtarget *Subtarget,
4437 SelectionDAG &DAG) {
4438 EVT VT = V2.getValueType();
4440 ? getZeroVector(VT, Subtarget->hasSSE2(), Subtarget->hasAVX2(), DAG,
4441 V2.getDebugLoc()) : DAG.getUNDEF(VT);
4442 unsigned NumElems = VT.getVectorNumElements();
4443 SmallVector<int, 16> MaskVec;
4444 for (unsigned i = 0; i != NumElems; ++i)
4445 // If this is the insertion idx, put the low elt of V2 here.
4446 MaskVec.push_back(i == Idx ? NumElems : i);
4447 return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4450 /// getShuffleScalarElt - Returns the scalar element that will make up the ith
4451 /// element of the result of the vector shuffle.
4452 static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
4455 return SDValue(); // Limit search depth.
4457 SDValue V = SDValue(N, 0);
4458 EVT VT = V.getValueType();
4459 unsigned Opcode = V.getOpcode();
4461 // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4462 if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4463 Index = SV->getMaskElt(Index);
4466 return DAG.getUNDEF(VT.getVectorElementType());
4468 int NumElems = VT.getVectorNumElements();
4469 SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
4470 return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
4473 // Recurse into target specific vector shuffles to find scalars.
4474 if (isTargetShuffle(Opcode)) {
4475 int NumElems = VT.getVectorNumElements();
4476 SmallVector<unsigned, 16> ShuffleMask;
4481 ImmN = N->getOperand(N->getNumOperands()-1);
4482 DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4485 case X86ISD::UNPCKH:
4486 DecodeUNPCKHMask(VT, ShuffleMask);
4488 case X86ISD::UNPCKL:
4489 DecodeUNPCKLMask(VT, ShuffleMask);
4491 case X86ISD::MOVHLPS:
4492 DecodeMOVHLPSMask(NumElems, ShuffleMask);
4494 case X86ISD::MOVLHPS:
4495 DecodeMOVLHPSMask(NumElems, ShuffleMask);
4497 case X86ISD::PSHUFD:
4498 ImmN = N->getOperand(N->getNumOperands()-1);
4499 DecodePSHUFMask(NumElems,
4500 cast<ConstantSDNode>(ImmN)->getZExtValue(),
4503 case X86ISD::PSHUFHW:
4504 ImmN = N->getOperand(N->getNumOperands()-1);
4505 DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4508 case X86ISD::PSHUFLW:
4509 ImmN = N->getOperand(N->getNumOperands()-1);
4510 DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4514 case X86ISD::MOVSD: {
4515 // The index 0 always comes from the first element of the second source,
4516 // this is why MOVSS and MOVSD are used in the first place. The other
4517 // elements come from the other positions of the first source vector.
4518 unsigned OpNum = (Index == 0) ? 1 : 0;
4519 return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
4522 case X86ISD::VPERMILP:
4523 ImmN = N->getOperand(N->getNumOperands()-1);
4524 DecodeVPERMILPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4527 case X86ISD::VPERM2X128:
4528 ImmN = N->getOperand(N->getNumOperands()-1);
4529 DecodeVPERM2F128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4532 case X86ISD::MOVDDUP:
4533 case X86ISD::MOVLHPD:
4534 case X86ISD::MOVLPD:
4535 case X86ISD::MOVLPS:
4536 case X86ISD::MOVSHDUP:
4537 case X86ISD::MOVSLDUP:
4538 case X86ISD::PALIGN:
4539 return SDValue(); // Not yet implemented.
4541 assert(0 && "unknown target shuffle node");
4545 Index = ShuffleMask[Index];
4547 return DAG.getUNDEF(VT.getVectorElementType());
4549 SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
4550 return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
4554 // Actual nodes that may contain scalar elements
4555 if (Opcode == ISD::BITCAST) {
4556 V = V.getOperand(0);
4557 EVT SrcVT = V.getValueType();
4558 unsigned NumElems = VT.getVectorNumElements();
4560 if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4564 if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4565 return (Index == 0) ? V.getOperand(0)
4566 : DAG.getUNDEF(VT.getVectorElementType());
4568 if (V.getOpcode() == ISD::BUILD_VECTOR)
4569 return V.getOperand(Index);
4574 /// getNumOfConsecutiveZeros - Return the number of elements of a vector
4575 /// shuffle operation which come from a consecutively from a zero. The
4576 /// search can start in two different directions, from left or right.
4578 unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
4579 bool ZerosFromLeft, SelectionDAG &DAG) {
4582 while (i < NumElems) {
4583 unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4584 SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
4585 if (!(Elt.getNode() &&
4586 (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4594 /// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
4595 /// MaskE correspond consecutively to elements from one of the vector operands,
4596 /// starting from its index OpIdx. Also tell OpNum which source vector operand.
4598 bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
4599 int OpIdx, int NumElems, unsigned &OpNum) {
4600 bool SeenV1 = false;
4601 bool SeenV2 = false;
4603 for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
4604 int Idx = SVOp->getMaskElt(i);
4605 // Ignore undef indicies
4614 // Only accept consecutive elements from the same vector
4615 if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4619 OpNum = SeenV1 ? 0 : 1;
4623 /// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4624 /// logical left shift of a vector.
4625 static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4626 bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4627 unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4628 unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4629 false /* check zeros from right */, DAG);
4635 // Considering the elements in the mask that are not consecutive zeros,
4636 // check if they consecutively come from only one of the source vectors.
4638 // V1 = {X, A, B, C} 0
4640 // vector_shuffle V1, V2 <1, 2, 3, X>
4642 if (!isShuffleMaskConsecutive(SVOp,
4643 0, // Mask Start Index
4644 NumElems-NumZeros-1, // Mask End Index
4645 NumZeros, // Where to start looking in the src vector
4646 NumElems, // Number of elements in vector
4647 OpSrc)) // Which source operand ?
4652 ShVal = SVOp->getOperand(OpSrc);
4656 /// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4657 /// logical left shift of a vector.
4658 static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4659 bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4660 unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4661 unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4662 true /* check zeros from left */, DAG);
4668 // Considering the elements in the mask that are not consecutive zeros,
4669 // check if they consecutively come from only one of the source vectors.
4671 // 0 { A, B, X, X } = V2
4673 // vector_shuffle V1, V2 <X, X, 4, 5>
4675 if (!isShuffleMaskConsecutive(SVOp,
4676 NumZeros, // Mask Start Index
4677 NumElems-1, // Mask End Index
4678 0, // Where to start looking in the src vector
4679 NumElems, // Number of elements in vector
4680 OpSrc)) // Which source operand ?
4685 ShVal = SVOp->getOperand(OpSrc);
4689 /// isVectorShift - Returns true if the shuffle can be implemented as a
4690 /// logical left or right shift of a vector.
4691 static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4692 bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4693 // Although the logic below support any bitwidth size, there are no
4694 // shift instructions which handle more than 128-bit vectors.
4695 if (SVOp->getValueType(0).getSizeInBits() > 128)
4698 if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4699 isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4705 /// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4707 static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4708 unsigned NumNonZero, unsigned NumZero,
4710 const TargetLowering &TLI) {
4714 DebugLoc dl = Op.getDebugLoc();
4717 for (unsigned i = 0; i < 16; ++i) {
4718 bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4719 if (ThisIsNonZero && First) {
4721 V = getZeroVector(MVT::v8i16, /*HasSSE2*/ true, /*HasAVX2*/ false,
4724 V = DAG.getUNDEF(MVT::v8i16);
4729 SDValue ThisElt(0, 0), LastElt(0, 0);
4730 bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4731 if (LastIsNonZero) {
4732 LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4733 MVT::i16, Op.getOperand(i-1));
4735 if (ThisIsNonZero) {
4736 ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4737 ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4738 ThisElt, DAG.getConstant(8, MVT::i8));
4740 ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4744 if (ThisElt.getNode())
4745 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4746 DAG.getIntPtrConstant(i/2));
4750 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4753 /// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4755 static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4756 unsigned NumNonZero, unsigned NumZero,
4758 const TargetLowering &TLI) {
4762 DebugLoc dl = Op.getDebugLoc();
4765 for (unsigned i = 0; i < 8; ++i) {
4766 bool isNonZero = (NonZeros & (1 << i)) != 0;
4770 V = getZeroVector(MVT::v8i16, /*HasSSE2*/ true, /*HasAVX2*/ false,
4773 V = DAG.getUNDEF(MVT::v8i16);
4776 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4777 MVT::v8i16, V, Op.getOperand(i),
4778 DAG.getIntPtrConstant(i));
4785 /// getVShift - Return a vector logical shift node.
4787 static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4788 unsigned NumBits, SelectionDAG &DAG,
4789 const TargetLowering &TLI, DebugLoc dl) {
4790 assert(VT.getSizeInBits() == 128 && "Unknown type for VShift");
4791 EVT ShVT = MVT::v2i64;
4792 unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
4793 SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4794 return DAG.getNode(ISD::BITCAST, dl, VT,
4795 DAG.getNode(Opc, dl, ShVT, SrcOp,
4796 DAG.getConstant(NumBits,
4797 TLI.getShiftAmountTy(SrcOp.getValueType()))));
4801 X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4802 SelectionDAG &DAG) const {
4804 // Check if the scalar load can be widened into a vector load. And if
4805 // the address is "base + cst" see if the cst can be "absorbed" into
4806 // the shuffle mask.
4807 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4808 SDValue Ptr = LD->getBasePtr();
4809 if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4811 EVT PVT = LD->getValueType(0);
4812 if (PVT != MVT::i32 && PVT != MVT::f32)
4817 if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4818 FI = FINode->getIndex();
4820 } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4821 isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4822 FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4823 Offset = Ptr.getConstantOperandVal(1);
4824 Ptr = Ptr.getOperand(0);
4829 // FIXME: 256-bit vector instructions don't require a strict alignment,
4830 // improve this code to support it better.
4831 unsigned RequiredAlign = VT.getSizeInBits()/8;
4832 SDValue Chain = LD->getChain();
4833 // Make sure the stack object alignment is at least 16 or 32.
4834 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4835 if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4836 if (MFI->isFixedObjectIndex(FI)) {
4837 // Can't change the alignment. FIXME: It's possible to compute
4838 // the exact stack offset and reference FI + adjust offset instead.
4839 // If someone *really* cares about this. That's the way to implement it.
4842 MFI->setObjectAlignment(FI, RequiredAlign);
4846 // (Offset % 16 or 32) must be multiple of 4. Then address is then
4847 // Ptr + (Offset & ~15).
4850 if ((Offset % RequiredAlign) & 3)
4852 int64_t StartOffset = Offset & ~(RequiredAlign-1);
4854 Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4855 Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4857 int EltNo = (Offset - StartOffset) >> 2;
4858 int NumElems = VT.getVectorNumElements();
4860 EVT CanonVT = VT.getSizeInBits() == 128 ? MVT::v4i32 : MVT::v8i32;
4861 EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4862 SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4863 LD->getPointerInfo().getWithOffset(StartOffset),
4864 false, false, false, 0);
4866 // Canonicalize it to a v4i32 or v8i32 shuffle.
4867 SmallVector<int, 8> Mask;
4868 for (int i = 0; i < NumElems; ++i)
4869 Mask.push_back(EltNo);
4871 V1 = DAG.getNode(ISD::BITCAST, dl, CanonVT, V1);
4872 return DAG.getNode(ISD::BITCAST, dl, NVT,
4873 DAG.getVectorShuffle(CanonVT, dl, V1,
4874 DAG.getUNDEF(CanonVT),&Mask[0]));
4880 /// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4881 /// vector of type 'VT', see if the elements can be replaced by a single large
4882 /// load which has the same value as a build_vector whose operands are 'elts'.
4884 /// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4886 /// FIXME: we'd also like to handle the case where the last elements are zero
4887 /// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4888 /// There's even a handy isZeroNode for that purpose.
4889 static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4890 DebugLoc &DL, SelectionDAG &DAG) {
4891 EVT EltVT = VT.getVectorElementType();
4892 unsigned NumElems = Elts.size();
4894 LoadSDNode *LDBase = NULL;
4895 unsigned LastLoadedElt = -1U;
4897 // For each element in the initializer, see if we've found a load or an undef.
4898 // If we don't find an initial load element, or later load elements are
4899 // non-consecutive, bail out.
4900 for (unsigned i = 0; i < NumElems; ++i) {
4901 SDValue Elt = Elts[i];
4903 if (!Elt.getNode() ||
4904 (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4907 if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4909 LDBase = cast<LoadSDNode>(Elt.getNode());
4913 if (Elt.getOpcode() == ISD::UNDEF)
4916 LoadSDNode *LD = cast<LoadSDNode>(Elt);
4917 if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4922 // If we have found an entire vector of loads and undefs, then return a large
4923 // load of the entire vector width starting at the base pointer. If we found
4924 // consecutive loads for the low half, generate a vzext_load node.
4925 if (LastLoadedElt == NumElems - 1) {
4926 if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4927 return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4928 LDBase->getPointerInfo(),
4929 LDBase->isVolatile(), LDBase->isNonTemporal(),
4930 LDBase->isInvariant(), 0);
4931 return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4932 LDBase->getPointerInfo(),
4933 LDBase->isVolatile(), LDBase->isNonTemporal(),
4934 LDBase->isInvariant(), LDBase->getAlignment());
4935 } else if (NumElems == 4 && LastLoadedElt == 1 &&
4936 DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
4937 SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4938 SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4940 DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
4941 LDBase->getPointerInfo(),
4942 LDBase->getAlignment(),
4943 false/*isVolatile*/, true/*ReadMem*/,
4945 return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4950 /// isVectorBroadcast - Check if the node chain is suitable to be xformed to
4951 /// a vbroadcast node. We support two patterns:
4952 /// 1. A splat BUILD_VECTOR which uses a single scalar load.
4953 /// 2. A splat shuffle which uses a scalar_to_vector node which comes from
4955 /// The scalar load node is returned when a pattern is found,
4956 /// or SDValue() otherwise.
4957 static SDValue isVectorBroadcast(SDValue &Op, const X86Subtarget *Subtarget) {
4958 if (!Subtarget->hasAVX())
4961 EVT VT = Op.getValueType();
4964 if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
4965 V = V.getOperand(0);
4967 //A suspected load to be broadcasted.
4970 switch (V.getOpcode()) {
4972 // Unknown pattern found.
4975 case ISD::BUILD_VECTOR: {
4976 // The BUILD_VECTOR node must be a splat.
4977 if (!isSplatVector(V.getNode()))
4980 Ld = V.getOperand(0);
4982 // The suspected load node has several users. Make sure that all
4983 // of its users are from the BUILD_VECTOR node.
4984 if (!Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
4989 case ISD::VECTOR_SHUFFLE: {
4990 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4992 // Shuffles must have a splat mask where the first element is
4994 if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
4997 SDValue Sc = Op.getOperand(0);
4998 if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR)
5001 Ld = Sc.getOperand(0);
5003 // The scalar_to_vector node and the suspected
5004 // load node must have exactly one user.
5005 if (!Sc.hasOneUse() || !Ld.hasOneUse())
5011 // The scalar source must be a normal load.
5012 if (!ISD::isNormalLoad(Ld.getNode()))
5015 bool Is256 = VT.getSizeInBits() == 256;
5016 bool Is128 = VT.getSizeInBits() == 128;
5017 unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5019 // VBroadcast to YMM
5020 if (Is256 && (ScalarSize == 32 || ScalarSize == 64))
5023 // VBroadcast to XMM
5024 if (Is128 && (ScalarSize == 32))
5027 // The integer check is needed for the 64-bit into 128-bit so it doesn't match
5028 // double since there is vbroadcastsd xmm
5029 if (Subtarget->hasAVX2() && Ld.getValueType().isInteger()) {
5030 // VBroadcast to YMM
5031 if (Is256 && (ScalarSize == 8 || ScalarSize == 16))
5034 // VBroadcast to XMM
5035 if (Is128 && (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64))
5039 // Unsupported broadcast.
5044 X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5045 DebugLoc dl = Op.getDebugLoc();
5047 EVT VT = Op.getValueType();
5048 EVT ExtVT = VT.getVectorElementType();
5049 unsigned NumElems = Op.getNumOperands();
5051 // Vectors containing all zeros can be matched by pxor and xorps later
5052 if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5053 // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5054 // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5055 if (VT == MVT::v4i32 || VT == MVT::v8i32)
5058 return getZeroVector(VT, Subtarget->hasSSE2(),
5059 Subtarget->hasAVX2(), DAG, dl);
5062 // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5063 // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5064 // vpcmpeqd on 256-bit vectors.
5065 if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5066 if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasAVX2()))
5069 return getOnesVector(VT, Subtarget->hasAVX2(), DAG, dl);
5072 SDValue LD = isVectorBroadcast(Op, Subtarget);
5074 return DAG.getNode(X86ISD::VBROADCAST, dl, VT, LD);
5076 unsigned EVTBits = ExtVT.getSizeInBits();
5078 unsigned NumZero = 0;
5079 unsigned NumNonZero = 0;
5080 unsigned NonZeros = 0;
5081 bool IsAllConstants = true;
5082 SmallSet<SDValue, 8> Values;
5083 for (unsigned i = 0; i < NumElems; ++i) {
5084 SDValue Elt = Op.getOperand(i);
5085 if (Elt.getOpcode() == ISD::UNDEF)
5088 if (Elt.getOpcode() != ISD::Constant &&
5089 Elt.getOpcode() != ISD::ConstantFP)
5090 IsAllConstants = false;
5091 if (X86::isZeroNode(Elt))
5094 NonZeros |= (1 << i);
5099 // All undef vector. Return an UNDEF. All zero vectors were handled above.
5100 if (NumNonZero == 0)
5101 return DAG.getUNDEF(VT);
5103 // Special case for single non-zero, non-undef, element.
5104 if (NumNonZero == 1) {
5105 unsigned Idx = CountTrailingZeros_32(NonZeros);
5106 SDValue Item = Op.getOperand(Idx);
5108 // If this is an insertion of an i64 value on x86-32, and if the top bits of
5109 // the value are obviously zero, truncate the value to i32 and do the
5110 // insertion that way. Only do this if the value is non-constant or if the
5111 // value is a constant being inserted into element 0. It is cheaper to do
5112 // a constant pool load than it is to do a movd + shuffle.
5113 if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5114 (!IsAllConstants || Idx == 0)) {
5115 if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5117 assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5118 EVT VecVT = MVT::v4i32;
5119 unsigned VecElts = 4;
5121 // Truncate the value (which may itself be a constant) to i32, and
5122 // convert it to a vector with movd (S2V+shuffle to zero extend).
5123 Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5124 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5125 Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5127 // Now we have our 32-bit value zero extended in the low element of
5128 // a vector. If Idx != 0, swizzle it into place.
5130 SmallVector<int, 4> Mask;
5131 Mask.push_back(Idx);
5132 for (unsigned i = 1; i != VecElts; ++i)
5134 Item = DAG.getVectorShuffle(VecVT, dl, Item,
5135 DAG.getUNDEF(Item.getValueType()),
5138 return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5142 // If we have a constant or non-constant insertion into the low element of
5143 // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5144 // the rest of the elements. This will be matched as movd/movq/movss/movsd
5145 // depending on what the source datatype is.
5148 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5150 if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5151 (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5152 if (VT.getSizeInBits() == 256) {
5153 SDValue ZeroVec = getZeroVector(VT, Subtarget->hasSSE2(),
5154 Subtarget->hasAVX2(), DAG, dl);
5155 return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5156 Item, DAG.getIntPtrConstant(0));
5158 assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5159 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5160 // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5161 return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5164 if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5165 Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5166 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5167 if (VT.getSizeInBits() == 256) {
5168 SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget->hasSSE2(),
5169 Subtarget->hasAVX2(), DAG, dl);
5170 Item = Insert128BitVector(ZeroVec, Item, DAG.getConstant(0, MVT::i32),
5173 assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5174 Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5176 return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5180 // Is it a vector logical left shift?
5181 if (NumElems == 2 && Idx == 1 &&
5182 X86::isZeroNode(Op.getOperand(0)) &&
5183 !X86::isZeroNode(Op.getOperand(1))) {
5184 unsigned NumBits = VT.getSizeInBits();
5185 return getVShift(true, VT,
5186 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5187 VT, Op.getOperand(1)),
5188 NumBits/2, DAG, *this, dl);
5191 if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5194 // Otherwise, if this is a vector with i32 or f32 elements, and the element
5195 // is a non-constant being inserted into an element other than the low one,
5196 // we can't use a constant pool load. Instead, use SCALAR_TO_VECTOR (aka
5197 // movd/movss) to move this into the low element, then shuffle it into
5199 if (EVTBits == 32) {
5200 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5202 // Turn it into a shuffle of zero and zero-extended scalar to vector.
5203 Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5204 SmallVector<int, 8> MaskVec;
5205 for (unsigned i = 0; i < NumElems; i++)
5206 MaskVec.push_back(i == Idx ? 0 : 1);
5207 return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5211 // Splat is obviously ok. Let legalizer expand it to a shuffle.
5212 if (Values.size() == 1) {
5213 if (EVTBits == 32) {
5214 // Instead of a shuffle like this:
5215 // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5216 // Check if it's possible to issue this instead.
5217 // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5218 unsigned Idx = CountTrailingZeros_32(NonZeros);
5219 SDValue Item = Op.getOperand(Idx);
5220 if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5221 return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5226 // A vector full of immediates; various special cases are already
5227 // handled, so this is best done with a single constant-pool load.
5231 // For AVX-length vectors, build the individual 128-bit pieces and use
5232 // shuffles to put them in place.
5233 if (VT.getSizeInBits() == 256 && !ISD::isBuildVectorAllZeros(Op.getNode())) {
5234 SmallVector<SDValue, 32> V;
5235 for (unsigned i = 0; i < NumElems; ++i)
5236 V.push_back(Op.getOperand(i));
5238 EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5240 // Build both the lower and upper subvector.
5241 SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5242 SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5245 // Recreate the wider vector with the lower and upper part.
5246 SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Lower,
5247 DAG.getConstant(0, MVT::i32), DAG, dl);
5248 return Insert128BitVector(Vec, Upper, DAG.getConstant(NumElems/2, MVT::i32),
5252 // Let legalizer expand 2-wide build_vectors.
5253 if (EVTBits == 64) {
5254 if (NumNonZero == 1) {
5255 // One half is zero or undef.
5256 unsigned Idx = CountTrailingZeros_32(NonZeros);
5257 SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5258 Op.getOperand(Idx));
5259 return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5264 // If element VT is < 32 bits, convert it to inserts into a zero vector.
5265 if (EVTBits == 8 && NumElems == 16) {
5266 SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5268 if (V.getNode()) return V;
5271 if (EVTBits == 16 && NumElems == 8) {
5272 SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5274 if (V.getNode()) return V;
5277 // If element VT is == 32 bits, turn it into a number of shuffles.
5278 SmallVector<SDValue, 8> V;
5280 if (NumElems == 4 && NumZero > 0) {
5281 for (unsigned i = 0; i < 4; ++i) {
5282 bool isZero = !(NonZeros & (1 << i));
5284 V[i] = getZeroVector(VT, Subtarget->hasSSE2(), Subtarget->hasAVX2(),
5287 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5290 for (unsigned i = 0; i < 2; ++i) {
5291 switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5294 V[i] = V[i*2]; // Must be a zero vector.
5297 V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5300 V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5303 V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5308 SmallVector<int, 8> MaskVec;
5309 bool Reverse = (NonZeros & 0x3) == 2;
5310 for (unsigned i = 0; i < 2; ++i)
5311 MaskVec.push_back(Reverse ? 1-i : i);
5312 Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5313 for (unsigned i = 0; i < 2; ++i)
5314 MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
5315 return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5318 if (Values.size() > 1 && VT.getSizeInBits() == 128) {
5319 // Check for a build vector of consecutive loads.
5320 for (unsigned i = 0; i < NumElems; ++i)
5321 V[i] = Op.getOperand(i);
5323 // Check for elements which are consecutive loads.
5324 SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5328 // For SSE 4.1, use insertps to put the high elements into the low element.
5329 if (getSubtarget()->hasSSE41()) {
5331 if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5332 Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5334 Result = DAG.getUNDEF(VT);
5336 for (unsigned i = 1; i < NumElems; ++i) {
5337 if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5338 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5339 Op.getOperand(i), DAG.getIntPtrConstant(i));
5344 // Otherwise, expand into a number of unpckl*, start by extending each of
5345 // our (non-undef) elements to the full vector width with the element in the
5346 // bottom slot of the vector (which generates no code for SSE).
5347 for (unsigned i = 0; i < NumElems; ++i) {
5348 if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5349 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5351 V[i] = DAG.getUNDEF(VT);
5354 // Next, we iteratively mix elements, e.g. for v4f32:
5355 // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5356 // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5357 // Step 2: unpcklps X, Y ==> <3, 2, 1, 0>
5358 unsigned EltStride = NumElems >> 1;
5359 while (EltStride != 0) {
5360 for (unsigned i = 0; i < EltStride; ++i) {
5361 // If V[i+EltStride] is undef and this is the first round of mixing,
5362 // then it is safe to just drop this shuffle: V[i] is already in the
5363 // right place, the one element (since it's the first round) being
5364 // inserted as undef can be dropped. This isn't safe for successive
5365 // rounds because they will permute elements within both vectors.
5366 if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5367 EltStride == NumElems/2)
5370 V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5379 // LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5380 // them in a MMX register. This is better than doing a stack convert.
5381 static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5382 DebugLoc dl = Op.getDebugLoc();
5383 EVT ResVT = Op.getValueType();
5385 assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5386 ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5388 SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5389 SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5390 InVec = Op.getOperand(1);
5391 if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5392 unsigned NumElts = ResVT.getVectorNumElements();
5393 VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5394 VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5395 InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5397 InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5398 SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5399 Mask[0] = 0; Mask[1] = 2;
5400 VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5402 return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5405 // LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5406 // to create 256-bit vectors from two other 128-bit ones.
5407 static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5408 DebugLoc dl = Op.getDebugLoc();
5409 EVT ResVT = Op.getValueType();
5411 assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5413 SDValue V1 = Op.getOperand(0);
5414 SDValue V2 = Op.getOperand(1);
5415 unsigned NumElems = ResVT.getVectorNumElements();
5417 SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, ResVT), V1,
5418 DAG.getConstant(0, MVT::i32), DAG, dl);
5419 return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5424 X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5425 EVT ResVT = Op.getValueType();
5427 assert(Op.getNumOperands() == 2);
5428 assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5429 "Unsupported CONCAT_VECTORS for value type");
5431 // We support concatenate two MMX registers and place them in a MMX register.
5432 // This is better than doing a stack convert.
5433 if (ResVT.is128BitVector())
5434 return LowerMMXCONCAT_VECTORS(Op, DAG);
5436 // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5437 // from two other 128-bit ones.
5438 return LowerAVXCONCAT_VECTORS(Op, DAG);
5441 // v8i16 shuffles - Prefer shuffles in the following order:
5442 // 1. [all] pshuflw, pshufhw, optional move
5443 // 2. [ssse3] 1 x pshufb
5444 // 3. [ssse3] 2 x pshufb + 1 x por
5445 // 4. [all] mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5447 X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5448 SelectionDAG &DAG) const {
5449 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5450 SDValue V1 = SVOp->getOperand(0);
5451 SDValue V2 = SVOp->getOperand(1);
5452 DebugLoc dl = SVOp->getDebugLoc();
5453 SmallVector<int, 8> MaskVals;
5455 // Determine if more than 1 of the words in each of the low and high quadwords
5456 // of the result come from the same quadword of one of the two inputs. Undef
5457 // mask values count as coming from any quadword, for better codegen.
5458 unsigned LoQuad[] = { 0, 0, 0, 0 };
5459 unsigned HiQuad[] = { 0, 0, 0, 0 };
5460 BitVector InputQuads(4);
5461 for (unsigned i = 0; i < 8; ++i) {
5462 unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5463 int EltIdx = SVOp->getMaskElt(i);
5464 MaskVals.push_back(EltIdx);
5473 InputQuads.set(EltIdx / 4);
5476 int BestLoQuad = -1;
5477 unsigned MaxQuad = 1;
5478 for (unsigned i = 0; i < 4; ++i) {
5479 if (LoQuad[i] > MaxQuad) {
5481 MaxQuad = LoQuad[i];
5485 int BestHiQuad = -1;
5487 for (unsigned i = 0; i < 4; ++i) {
5488 if (HiQuad[i] > MaxQuad) {
5490 MaxQuad = HiQuad[i];
5494 // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5495 // of the two input vectors, shuffle them into one input vector so only a
5496 // single pshufb instruction is necessary. If There are more than 2 input
5497 // quads, disable the next transformation since it does not help SSSE3.
5498 bool V1Used = InputQuads[0] || InputQuads[1];
5499 bool V2Used = InputQuads[2] || InputQuads[3];
5500 if (Subtarget->hasSSSE3()) {
5501 if (InputQuads.count() == 2 && V1Used && V2Used) {
5502 BestLoQuad = InputQuads.find_first();
5503 BestHiQuad = InputQuads.find_next(BestLoQuad);
5505 if (InputQuads.count() > 2) {
5511 // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5512 // the shuffle mask. If a quad is scored as -1, that means that it contains
5513 // words from all 4 input quadwords.
5515 if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5516 SmallVector<int, 8> MaskV;
5517 MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
5518 MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
5519 NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5520 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5521 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5522 NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5524 // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5525 // source words for the shuffle, to aid later transformations.
5526 bool AllWordsInNewV = true;
5527 bool InOrder[2] = { true, true };
5528 for (unsigned i = 0; i != 8; ++i) {
5529 int idx = MaskVals[i];
5531 InOrder[i/4] = false;
5532 if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5534 AllWordsInNewV = false;
5538 bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5539 if (AllWordsInNewV) {
5540 for (int i = 0; i != 8; ++i) {
5541 int idx = MaskVals[i];
5544 idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5545 if ((idx != i) && idx < 4)
5547 if ((idx != i) && idx > 3)
5556 // If we've eliminated the use of V2, and the new mask is a pshuflw or
5557 // pshufhw, that's as cheap as it gets. Return the new shuffle.
5558 if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5559 unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5560 unsigned TargetMask = 0;
5561 NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5562 DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5563 TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
5564 X86::getShufflePSHUFLWImmediate(NewV.getNode());
5565 V1 = NewV.getOperand(0);
5566 return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5570 // If we have SSSE3, and all words of the result are from 1 input vector,
5571 // case 2 is generated, otherwise case 3 is generated. If no SSSE3
5572 // is present, fall back to case 4.
5573 if (Subtarget->hasSSSE3()) {
5574 SmallVector<SDValue,16> pshufbMask;
5576 // If we have elements from both input vectors, set the high bit of the
5577 // shuffle mask element to zero out elements that come from V2 in the V1
5578 // mask, and elements that come from V1 in the V2 mask, so that the two
5579 // results can be OR'd together.
5580 bool TwoInputs = V1Used && V2Used;
5581 for (unsigned i = 0; i != 8; ++i) {
5582 int EltIdx = MaskVals[i] * 2;
5583 if (TwoInputs && (EltIdx >= 16)) {
5584 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5585 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5588 pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5589 pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5591 V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5592 V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5593 DAG.getNode(ISD::BUILD_VECTOR, dl,
5594 MVT::v16i8, &pshufbMask[0], 16));
5596 return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5598 // Calculate the shuffle mask for the second input, shuffle it, and
5599 // OR it with the first shuffled input.
5601 for (unsigned i = 0; i != 8; ++i) {
5602 int EltIdx = MaskVals[i] * 2;
5604 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5605 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5608 pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5609 pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5611 V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5612 V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5613 DAG.getNode(ISD::BUILD_VECTOR, dl,
5614 MVT::v16i8, &pshufbMask[0], 16));
5615 V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5616 return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5619 // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5620 // and update MaskVals with new element order.
5621 BitVector InOrder(8);
5622 if (BestLoQuad >= 0) {
5623 SmallVector<int, 8> MaskV;
5624 for (int i = 0; i != 4; ++i) {
5625 int idx = MaskVals[i];
5627 MaskV.push_back(-1);
5629 } else if ((idx / 4) == BestLoQuad) {
5630 MaskV.push_back(idx & 3);
5633 MaskV.push_back(-1);
5636 for (unsigned i = 4; i != 8; ++i)
5638 NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5641 if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
5642 NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5644 X86::getShufflePSHUFLWImmediate(NewV.getNode()),
5648 // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5649 // and update MaskVals with the new element order.
5650 if (BestHiQuad >= 0) {
5651 SmallVector<int, 8> MaskV;
5652 for (unsigned i = 0; i != 4; ++i)
5654 for (unsigned i = 4; i != 8; ++i) {
5655 int idx = MaskVals[i];
5657 MaskV.push_back(-1);
5659 } else if ((idx / 4) == BestHiQuad) {
5660 MaskV.push_back((idx & 3) + 4);
5663 MaskV.push_back(-1);
5666 NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5669 if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
5670 NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5672 X86::getShufflePSHUFHWImmediate(NewV.getNode()),
5676 // In case BestHi & BestLo were both -1, which means each quadword has a word
5677 // from each of the four input quadwords, calculate the InOrder bitvector now
5678 // before falling through to the insert/extract cleanup.
5679 if (BestLoQuad == -1 && BestHiQuad == -1) {
5681 for (int i = 0; i != 8; ++i)
5682 if (MaskVals[i] < 0 || MaskVals[i] == i)
5686 // The other elements are put in the right place using pextrw and pinsrw.
5687 for (unsigned i = 0; i != 8; ++i) {
5690 int EltIdx = MaskVals[i];
5693 SDValue ExtOp = (EltIdx < 8)
5694 ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5695 DAG.getIntPtrConstant(EltIdx))
5696 : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5697 DAG.getIntPtrConstant(EltIdx - 8));
5698 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5699 DAG.getIntPtrConstant(i));
5704 // v16i8 shuffles - Prefer shuffles in the following order:
5705 // 1. [ssse3] 1 x pshufb
5706 // 2. [ssse3] 2 x pshufb + 1 x por
5707 // 3. [all] v8i16 shuffle + N x pextrw + rotate + pinsrw
5709 SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5711 const X86TargetLowering &TLI) {
5712 SDValue V1 = SVOp->getOperand(0);
5713 SDValue V2 = SVOp->getOperand(1);
5714 DebugLoc dl = SVOp->getDebugLoc();
5715 ArrayRef<int> MaskVals = SVOp->getMask();
5717 // If we have SSSE3, case 1 is generated when all result bytes come from
5718 // one of the inputs. Otherwise, case 2 is generated. If no SSSE3 is
5719 // present, fall back to case 3.
5720 // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5723 for (unsigned i = 0; i < 16; ++i) {
5724 int EltIdx = MaskVals[i];
5733 // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5734 if (TLI.getSubtarget()->hasSSSE3()) {
5735 SmallVector<SDValue,16> pshufbMask;
5737 // If all result elements are from one input vector, then only translate
5738 // undef mask values to 0x80 (zero out result) in the pshufb mask.
5740 // Otherwise, we have elements from both input vectors, and must zero out
5741 // elements that come from V2 in the first mask, and V1 in the second mask
5742 // so that we can OR them together.
5743 bool TwoInputs = !(V1Only || V2Only);
5744 for (unsigned i = 0; i != 16; ++i) {
5745 int EltIdx = MaskVals[i];
5746 if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5747 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5750 pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5752 // If all the elements are from V2, assign it to V1 and return after
5753 // building the first pshufb.
5756 V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5757 DAG.getNode(ISD::BUILD_VECTOR, dl,
5758 MVT::v16i8, &pshufbMask[0], 16));
5762 // Calculate the shuffle mask for the second input, shuffle it, and
5763 // OR it with the first shuffled input.
5765 for (unsigned i = 0; i != 16; ++i) {
5766 int EltIdx = MaskVals[i];
5768 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5771 pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5773 V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5774 DAG.getNode(ISD::BUILD_VECTOR, dl,
5775 MVT::v16i8, &pshufbMask[0], 16));
5776 return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5779 // No SSSE3 - Calculate in place words and then fix all out of place words
5780 // With 0-16 extracts & inserts. Worst case is 16 bytes out of order from
5781 // the 16 different words that comprise the two doublequadword input vectors.
5782 V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5783 V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5784 SDValue NewV = V2Only ? V2 : V1;
5785 for (int i = 0; i != 8; ++i) {
5786 int Elt0 = MaskVals[i*2];
5787 int Elt1 = MaskVals[i*2+1];
5789 // This word of the result is all undef, skip it.
5790 if (Elt0 < 0 && Elt1 < 0)
5793 // This word of the result is already in the correct place, skip it.
5794 if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5796 if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5799 SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5800 SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5803 // If Elt0 and Elt1 are defined, are consecutive, and can be load
5804 // using a single extract together, load it and store it.
5805 if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5806 InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5807 DAG.getIntPtrConstant(Elt1 / 2));
5808 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5809 DAG.getIntPtrConstant(i));
5813 // If Elt1 is defined, extract it from the appropriate source. If the
5814 // source byte is not also odd, shift the extracted word left 8 bits
5815 // otherwise clear the bottom 8 bits if we need to do an or.
5817 InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5818 DAG.getIntPtrConstant(Elt1 / 2));
5819 if ((Elt1 & 1) == 0)
5820 InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5822 TLI.getShiftAmountTy(InsElt.getValueType())));
5824 InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5825 DAG.getConstant(0xFF00, MVT::i16));
5827 // If Elt0 is defined, extract it from the appropriate source. If the
5828 // source byte is not also even, shift the extracted word right 8 bits. If
5829 // Elt1 was also defined, OR the extracted values together before
5830 // inserting them in the result.
5832 SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5833 Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5834 if ((Elt0 & 1) != 0)
5835 InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5837 TLI.getShiftAmountTy(InsElt0.getValueType())));
5839 InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5840 DAG.getConstant(0x00FF, MVT::i16));
5841 InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5844 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5845 DAG.getIntPtrConstant(i));
5847 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5850 /// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5851 /// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5852 /// done when every pair / quad of shuffle mask elements point to elements in
5853 /// the right sequence. e.g.
5854 /// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5856 SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5857 SelectionDAG &DAG, DebugLoc dl) {
5858 EVT VT = SVOp->getValueType(0);
5859 SDValue V1 = SVOp->getOperand(0);
5860 SDValue V2 = SVOp->getOperand(1);
5861 unsigned NumElems = VT.getVectorNumElements();
5862 unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5864 switch (VT.getSimpleVT().SimpleTy) {
5865 default: assert(false && "Unexpected!");
5866 case MVT::v4f32: NewVT = MVT::v2f64; break;
5867 case MVT::v4i32: NewVT = MVT::v2i64; break;
5868 case MVT::v8i16: NewVT = MVT::v4i32; break;
5869 case MVT::v16i8: NewVT = MVT::v4i32; break;
5872 int Scale = NumElems / NewWidth;
5873 SmallVector<int, 8> MaskVec;
5874 for (unsigned i = 0; i < NumElems; i += Scale) {
5876 for (int j = 0; j < Scale; ++j) {
5877 int EltIdx = SVOp->getMaskElt(i+j);
5881 StartIdx = EltIdx - (EltIdx % Scale);
5882 if (EltIdx != StartIdx + j)
5886 MaskVec.push_back(-1);
5888 MaskVec.push_back(StartIdx / Scale);
5891 V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5892 V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5893 return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5896 /// getVZextMovL - Return a zero-extending vector move low node.
5898 static SDValue getVZextMovL(EVT VT, EVT OpVT,
5899 SDValue SrcOp, SelectionDAG &DAG,
5900 const X86Subtarget *Subtarget, DebugLoc dl) {
5901 if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5902 LoadSDNode *LD = NULL;
5903 if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5904 LD = dyn_cast<LoadSDNode>(SrcOp);
5906 // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5908 MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5909 if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5910 SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5911 SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5912 SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5914 OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5915 return DAG.getNode(ISD::BITCAST, dl, VT,
5916 DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5917 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5925 return DAG.getNode(ISD::BITCAST, dl, VT,
5926 DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5927 DAG.getNode(ISD::BITCAST, dl,
5931 /// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
5932 /// which could not be matched by any known target speficic shuffle
5934 LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5935 EVT VT = SVOp->getValueType(0);
5937 unsigned NumElems = VT.getVectorNumElements();
5938 unsigned NumLaneElems = NumElems / 2;
5940 int MinRange[2][2] = { { static_cast<int>(NumElems),
5941 static_cast<int>(NumElems) },
5942 { static_cast<int>(NumElems),
5943 static_cast<int>(NumElems) } };
5944 int MaxRange[2][2] = { { -1, -1 }, { -1, -1 } };
5946 // Collect used ranges for each source in each lane
5947 for (unsigned l = 0; l < 2; ++l) {
5948 unsigned LaneStart = l*NumLaneElems;
5949 for (unsigned i = 0; i != NumLaneElems; ++i) {
5950 int Idx = SVOp->getMaskElt(i+LaneStart);
5955 if (Idx >= (int)NumElems) {
5960 if (Idx > MaxRange[l][Input])
5961 MaxRange[l][Input] = Idx;
5962 if (Idx < MinRange[l][Input])
5963 MinRange[l][Input] = Idx;
5967 // Make sure each range is 128-bits
5968 int ExtractIdx[2][2] = { { -1, -1 }, { -1, -1 } };
5969 for (unsigned l = 0; l < 2; ++l) {
5970 for (unsigned Input = 0; Input < 2; ++Input) {
5971 if (MinRange[l][Input] == (int)NumElems && MaxRange[l][Input] < 0)
5974 if (MinRange[l][Input] >= 0 && MaxRange[l][Input] < (int)NumLaneElems)
5975 ExtractIdx[l][Input] = 0;
5976 else if (MinRange[l][Input] >= (int)NumLaneElems &&
5977 MaxRange[l][Input] < (int)NumElems)
5978 ExtractIdx[l][Input] = NumLaneElems;
5984 DebugLoc dl = SVOp->getDebugLoc();
5985 MVT EltVT = VT.getVectorElementType().getSimpleVT();
5986 EVT NVT = MVT::getVectorVT(EltVT, NumElems/2);
5989 for (unsigned l = 0; l < 2; ++l) {
5990 for (unsigned Input = 0; Input < 2; ++Input) {
5991 if (ExtractIdx[l][Input] >= 0)
5992 Ops[l][Input] = Extract128BitVector(SVOp->getOperand(Input),
5993 DAG.getConstant(ExtractIdx[l][Input], MVT::i32),
5996 Ops[l][Input] = DAG.getUNDEF(NVT);
6000 // Generate 128-bit shuffles
6001 SmallVector<int, 16> Mask1, Mask2;
6002 for (unsigned i = 0; i != NumLaneElems; ++i) {
6003 int Elt = SVOp->getMaskElt(i);
6004 if (Elt >= (int)NumElems) {
6005 Elt %= NumLaneElems;
6006 Elt += NumLaneElems;
6007 } else if (Elt >= 0) {
6008 Elt %= NumLaneElems;
6010 Mask1.push_back(Elt);
6012 for (unsigned i = NumLaneElems; i != NumElems; ++i) {
6013 int Elt = SVOp->getMaskElt(i);
6014 if (Elt >= (int)NumElems) {
6015 Elt %= NumLaneElems;
6016 Elt += NumLaneElems;
6017 } else if (Elt >= 0) {
6018 Elt %= NumLaneElems;
6020 Mask2.push_back(Elt);
6023 SDValue Shuf1 = DAG.getVectorShuffle(NVT, dl, Ops[0][0], Ops[0][1], &Mask1[0]);
6024 SDValue Shuf2 = DAG.getVectorShuffle(NVT, dl, Ops[1][0], Ops[1][1], &Mask2[0]);
6026 // Concatenate the result back
6027 SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Shuf1,
6028 DAG.getConstant(0, MVT::i32), DAG, dl);
6029 return Insert128BitVector(V, Shuf2, DAG.getConstant(NumElems/2, MVT::i32),
6033 /// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6034 /// 4 elements, and match them with several different shuffle types.
6036 LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6037 SDValue V1 = SVOp->getOperand(0);
6038 SDValue V2 = SVOp->getOperand(1);
6039 DebugLoc dl = SVOp->getDebugLoc();
6040 EVT VT = SVOp->getValueType(0);
6042 assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
6044 SmallVector<std::pair<int, int>, 8> Locs;
6046 SmallVector<int, 8> Mask1(4U, -1);
6047 SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
6051 for (unsigned i = 0; i != 4; ++i) {
6052 int Idx = PermMask[i];
6054 Locs[i] = std::make_pair(-1, -1);
6056 assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6058 Locs[i] = std::make_pair(0, NumLo);
6062 Locs[i] = std::make_pair(1, NumHi);
6064 Mask1[2+NumHi] = Idx;
6070 if (NumLo <= 2 && NumHi <= 2) {
6071 // If no more than two elements come from either vector. This can be
6072 // implemented with two shuffles. First shuffle gather the elements.
6073 // The second shuffle, which takes the first shuffle as both of its
6074 // vector operands, put the elements into the right order.
6075 V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6077 SmallVector<int, 8> Mask2(4U, -1);
6079 for (unsigned i = 0; i != 4; ++i) {
6080 if (Locs[i].first == -1)
6083 unsigned Idx = (i < 2) ? 0 : 4;
6084 Idx += Locs[i].first * 2 + Locs[i].second;
6089 return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6090 } else if (NumLo == 3 || NumHi == 3) {
6091 // Otherwise, we must have three elements from one vector, call it X, and
6092 // one element from the other, call it Y. First, use a shufps to build an
6093 // intermediate vector with the one element from Y and the element from X
6094 // that will be in the same half in the final destination (the indexes don't
6095 // matter). Then, use a shufps to build the final vector, taking the half
6096 // containing the element from Y from the intermediate, and the other half
6099 // Normalize it so the 3 elements come from V1.
6100 CommuteVectorShuffleMask(PermMask, 4);
6104 // Find the element from V2.
6106 for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6107 int Val = PermMask[HiIndex];
6114 Mask1[0] = PermMask[HiIndex];
6116 Mask1[2] = PermMask[HiIndex^1];
6118 V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6121 Mask1[0] = PermMask[0];
6122 Mask1[1] = PermMask[1];
6123 Mask1[2] = HiIndex & 1 ? 6 : 4;
6124 Mask1[3] = HiIndex & 1 ? 4 : 6;
6125 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6127 Mask1[0] = HiIndex & 1 ? 2 : 0;
6128 Mask1[1] = HiIndex & 1 ? 0 : 2;
6129 Mask1[2] = PermMask[2];
6130 Mask1[3] = PermMask[3];
6135 return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6139 // Break it into (shuffle shuffle_hi, shuffle_lo).
6142 SmallVector<int,8> LoMask(4U, -1);
6143 SmallVector<int,8> HiMask(4U, -1);
6145 SmallVector<int,8> *MaskPtr = &LoMask;
6146 unsigned MaskIdx = 0;
6149 for (unsigned i = 0; i != 4; ++i) {
6156 int Idx = PermMask[i];
6158 Locs[i] = std::make_pair(-1, -1);
6159 } else if (Idx < 4) {
6160 Locs[i] = std::make_pair(MaskIdx, LoIdx);
6161 (*MaskPtr)[LoIdx] = Idx;
6164 Locs[i] = std::make_pair(MaskIdx, HiIdx);
6165 (*MaskPtr)[HiIdx] = Idx;
6170 SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6171 SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6172 SmallVector<int, 8> MaskOps;
6173 for (unsigned i = 0; i != 4; ++i) {
6174 if (Locs[i].first == -1) {
6175 MaskOps.push_back(-1);
6177 unsigned Idx = Locs[i].first * 4 + Locs[i].second;
6178 MaskOps.push_back(Idx);
6181 return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6184 static bool MayFoldVectorLoad(SDValue V) {
6185 if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6186 V = V.getOperand(0);
6187 if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6188 V = V.getOperand(0);
6189 if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6190 V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6191 // BUILD_VECTOR (load), undef
6192 V = V.getOperand(0);
6198 // FIXME: the version above should always be used. Since there's
6199 // a bug where several vector shuffles can't be folded because the
6200 // DAG is not updated during lowering and a node claims to have two
6201 // uses while it only has one, use this version, and let isel match
6202 // another instruction if the load really happens to have more than
6203 // one use. Remove this version after this bug get fixed.
6204 // rdar://8434668, PR8156
6205 static bool RelaxedMayFoldVectorLoad(SDValue V) {
6206 if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6207 V = V.getOperand(0);
6208 if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6209 V = V.getOperand(0);
6210 if (ISD::isNormalLoad(V.getNode()))
6215 /// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
6216 /// a vector extract, and if both can be later optimized into a single load.
6217 /// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
6218 /// here because otherwise a target specific shuffle node is going to be
6219 /// emitted for this shuffle, and the optimization not done.
6220 /// FIXME: This is probably not the best approach, but fix the problem
6221 /// until the right path is decided.
6223 bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
6224 const TargetLowering &TLI) {
6225 EVT VT = V.getValueType();
6226 ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
6228 // Be sure that the vector shuffle is present in a pattern like this:
6229 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
6233 SDNode *N = *V.getNode()->use_begin();
6234 if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6237 SDValue EltNo = N->getOperand(1);
6238 if (!isa<ConstantSDNode>(EltNo))
6241 // If the bit convert changed the number of elements, it is unsafe
6242 // to examine the mask.
6243 bool HasShuffleIntoBitcast = false;
6244 if (V.getOpcode() == ISD::BITCAST) {
6245 EVT SrcVT = V.getOperand(0).getValueType();
6246 if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
6248 V = V.getOperand(0);
6249 HasShuffleIntoBitcast = true;
6252 // Select the input vector, guarding against out of range extract vector.
6253 unsigned NumElems = VT.getVectorNumElements();
6254 unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
6255 int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
6256 V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
6258 // If we are accessing the upper part of a YMM register
6259 // then the EXTRACT_VECTOR_ELT is likely to be legalized to a sequence of
6260 // EXTRACT_SUBVECTOR + EXTRACT_VECTOR_ELT, which are not detected at this point
6261 // because the legalization of N did not happen yet.
6262 if (Idx >= (int)NumElems/2 && VT.getSizeInBits() == 256)
6265 // Skip one more bit_convert if necessary
6266 if (V.getOpcode() == ISD::BITCAST)
6267 V = V.getOperand(0);
6269 if (!ISD::isNormalLoad(V.getNode()))
6272 // Is the original load suitable?
6273 LoadSDNode *LN0 = cast<LoadSDNode>(V);
6275 if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile())
6278 if (!HasShuffleIntoBitcast)
6281 // If there's a bitcast before the shuffle, check if the load type and
6282 // alignment is valid.
6283 unsigned Align = LN0->getAlignment();
6285 TLI.getTargetData()->getABITypeAlignment(
6286 VT.getTypeForEVT(*DAG.getContext()));
6288 if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
6295 SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6296 EVT VT = Op.getValueType();
6298 // Canonizalize to v2f64.
6299 V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6300 return DAG.getNode(ISD::BITCAST, dl, VT,
6301 getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6306 SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6308 SDValue V1 = Op.getOperand(0);
6309 SDValue V2 = Op.getOperand(1);
6310 EVT VT = Op.getValueType();
6312 assert(VT != MVT::v2i64 && "unsupported shuffle type");
6314 if (HasSSE2 && VT == MVT::v2f64)
6315 return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6317 // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6318 return DAG.getNode(ISD::BITCAST, dl, VT,
6319 getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6320 DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6321 DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6325 SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6326 SDValue V1 = Op.getOperand(0);
6327 SDValue V2 = Op.getOperand(1);
6328 EVT VT = Op.getValueType();
6330 assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6331 "unsupported shuffle type");
6333 if (V2.getOpcode() == ISD::UNDEF)
6337 return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6341 SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6342 SDValue V1 = Op.getOperand(0);
6343 SDValue V2 = Op.getOperand(1);
6344 EVT VT = Op.getValueType();
6345 unsigned NumElems = VT.getVectorNumElements();
6347 // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6348 // operand of these instructions is only memory, so check if there's a
6349 // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6351 bool CanFoldLoad = false;
6353 // Trivial case, when V2 comes from a load.
6354 if (MayFoldVectorLoad(V2))
6357 // When V1 is a load, it can be folded later into a store in isel, example:
6358 // (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6360 // (MOVLPSmr addr:$src1, VR128:$src2)
6361 // So, recognize this potential and also use MOVLPS or MOVLPD
6362 else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6365 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6367 if (HasSSE2 && NumElems == 2)
6368 return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6371 // If we don't care about the second element, procede to use movss.
6372 if (SVOp->getMaskElt(1) != -1)
6373 return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6376 // movl and movlp will both match v2i64, but v2i64 is never matched by
6377 // movl earlier because we make it strict to avoid messing with the movlp load
6378 // folding logic (see the code above getMOVLP call). Match it here then,
6379 // this is horrible, but will stay like this until we move all shuffle
6380 // matching to x86 specific nodes. Note that for the 1st condition all
6381 // types are matched with movsd.
6383 // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6384 // as to remove this logic from here, as much as possible
6385 if (NumElems == 2 || !X86::isMOVLMask(SVOp))
6386 return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6387 return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6390 assert(VT != MVT::v4i32 && "unsupported shuffle type");
6392 // Invert the operand order and use SHUFPS to match it.
6393 return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
6394 X86::getShuffleSHUFImmediate(SVOp), DAG);
6398 SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
6399 const TargetLowering &TLI,
6400 const X86Subtarget *Subtarget) {
6401 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6402 EVT VT = Op.getValueType();
6403 DebugLoc dl = Op.getDebugLoc();
6404 SDValue V1 = Op.getOperand(0);
6405 SDValue V2 = Op.getOperand(1);
6407 if (isZeroShuffle(SVOp))
6408 return getZeroVector(VT, Subtarget->hasSSE2(), Subtarget->hasAVX2(),
6411 // Handle splat operations
6412 if (SVOp->isSplat()) {
6413 unsigned NumElem = VT.getVectorNumElements();
6414 int Size = VT.getSizeInBits();
6415 // Special case, this is the only place now where it's allowed to return
6416 // a vector_shuffle operation without using a target specific node, because
6417 // *hopefully* it will be optimized away by the dag combiner. FIXME: should
6418 // this be moved to DAGCombine instead?
6419 if (NumElem <= 4 && CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
6422 // Use vbroadcast whenever the splat comes from a foldable load
6423 SDValue LD = isVectorBroadcast(Op, Subtarget);
6425 return DAG.getNode(X86ISD::VBROADCAST, dl, VT, LD);
6427 // Handle splats by matching through known shuffle masks
6428 if ((Size == 128 && NumElem <= 4) ||
6429 (Size == 256 && NumElem < 8))
6432 // All remaning splats are promoted to target supported vector shuffles.
6433 return PromoteSplat(SVOp, DAG);
6436 // If the shuffle can be profitably rewritten as a narrower shuffle, then
6438 if (VT == MVT::v8i16 || VT == MVT::v16i8) {
6439 SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6440 if (NewOp.getNode())
6441 return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6442 } else if ((VT == MVT::v4i32 ||
6443 (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6444 // FIXME: Figure out a cleaner way to do this.
6445 // Try to make use of movq to zero out the top part.
6446 if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6447 SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6448 if (NewOp.getNode()) {
6449 if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
6450 return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
6451 DAG, Subtarget, dl);
6453 } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6454 SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6455 if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
6456 return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
6457 DAG, Subtarget, dl);
6464 X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6465 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6466 SDValue V1 = Op.getOperand(0);
6467 SDValue V2 = Op.getOperand(1);
6468 EVT VT = Op.getValueType();
6469 DebugLoc dl = Op.getDebugLoc();
6470 unsigned NumElems = VT.getVectorNumElements();
6471 bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6472 bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6473 bool V1IsSplat = false;
6474 bool V2IsSplat = false;
6475 bool HasSSE2 = Subtarget->hasSSE2();
6476 bool HasAVX = Subtarget->hasAVX();
6477 bool HasAVX2 = Subtarget->hasAVX2();
6478 MachineFunction &MF = DAG.getMachineFunction();
6479 bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6481 assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6483 if (V1IsUndef && V2IsUndef)
6484 return DAG.getUNDEF(VT);
6486 assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
6488 // Vector shuffle lowering takes 3 steps:
6490 // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6491 // narrowing and commutation of operands should be handled.
6492 // 2) Matching of shuffles with known shuffle masks to x86 target specific
6494 // 3) Rewriting of unmatched masks into new generic shuffle operations,
6495 // so the shuffle can be broken into other shuffles and the legalizer can
6496 // try the lowering again.
6498 // The general idea is that no vector_shuffle operation should be left to
6499 // be matched during isel, all of them must be converted to a target specific
6502 // Normalize the input vectors. Here splats, zeroed vectors, profitable
6503 // narrowing and commutation of operands should be handled. The actual code
6504 // doesn't include all of those, work in progress...
6505 SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
6506 if (NewOp.getNode())
6509 // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6510 // unpckh_undef). Only use pshufd if speed is more important than size.
6511 if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp, HasAVX2))
6512 return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6513 if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp, HasAVX2))
6514 return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6516 if (X86::isMOVDDUPMask(SVOp) && Subtarget->hasSSE3() &&
6517 V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6518 return getMOVDDup(Op, dl, V1, DAG);
6520 if (X86::isMOVHLPS_v_undef_Mask(SVOp))
6521 return getMOVHighToLow(Op, dl, DAG);
6523 // Use to match splats
6524 if (HasSSE2 && X86::isUNPCKHMask(SVOp, HasAVX2) && V2IsUndef &&
6525 (VT == MVT::v2f64 || VT == MVT::v2i64))
6526 return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6528 if (X86::isPSHUFDMask(SVOp)) {
6529 // The actual implementation will match the mask in the if above and then
6530 // during isel it can match several different instructions, not only pshufd
6531 // as its name says, sad but true, emulate the behavior for now...
6532 if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6533 return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6535 unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
6537 if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6538 return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6540 return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
6544 // Check if this can be converted into a logical shift.
6545 bool isLeft = false;
6548 bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6549 if (isShift && ShVal.hasOneUse()) {
6550 // If the shifted value has multiple uses, it may be cheaper to use
6551 // v_set0 + movlhps or movhlps, etc.
6552 EVT EltVT = VT.getVectorElementType();
6553 ShAmt *= EltVT.getSizeInBits();
6554 return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6557 if (X86::isMOVLMask(SVOp)) {
6558 if (ISD::isBuildVectorAllZeros(V1.getNode()))
6559 return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6560 if (!X86::isMOVLPMask(SVOp)) {
6561 if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6562 return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6564 if (VT == MVT::v4i32 || VT == MVT::v4f32)
6565 return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6569 // FIXME: fold these into legal mask.
6570 if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp, HasAVX2))
6571 return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6573 if (X86::isMOVHLPSMask(SVOp))
6574 return getMOVHighToLow(Op, dl, DAG);
6576 if (X86::isMOVSHDUPMask(SVOp, Subtarget))
6577 return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6579 if (X86::isMOVSLDUPMask(SVOp, Subtarget))
6580 return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6582 if (X86::isMOVLPMask(SVOp))
6583 return getMOVLP(Op, dl, DAG, HasSSE2);
6585 if (ShouldXformToMOVHLPS(SVOp) ||
6586 ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
6587 return CommuteVectorShuffle(SVOp, DAG);
6590 // No better options. Use a vshl / vsrl.
6591 EVT EltVT = VT.getVectorElementType();
6592 ShAmt *= EltVT.getSizeInBits();
6593 return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6596 bool Commuted = false;
6597 // FIXME: This should also accept a bitcast of a splat? Be careful, not
6598 // 1,1,1,1 -> v8i16 though.
6599 V1IsSplat = isSplatVector(V1.getNode());
6600 V2IsSplat = isSplatVector(V2.getNode());
6602 // Canonicalize the splat or undef, if present, to be on the RHS.
6603 if (V1IsSplat && !V2IsSplat) {
6604 Op = CommuteVectorShuffle(SVOp, DAG);
6605 SVOp = cast<ShuffleVectorSDNode>(Op);
6606 V1 = SVOp->getOperand(0);
6607 V2 = SVOp->getOperand(1);
6608 std::swap(V1IsSplat, V2IsSplat);
6612 ArrayRef<int> M = SVOp->getMask();
6614 if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6615 // Shuffling low element of v1 into undef, just return v1.
6618 // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6619 // the instruction selector will not match, so get a canonical MOVL with
6620 // swapped operands to undo the commute.
6621 return getMOVL(DAG, dl, VT, V2, V1);
6624 if (isUNPCKLMask(M, VT, HasAVX2))
6625 return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6627 if (isUNPCKHMask(M, VT, HasAVX2))
6628 return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6631 // Normalize mask so all entries that point to V2 points to its first
6632 // element then try to match unpck{h|l} again. If match, return a
6633 // new vector_shuffle with the corrected mask.
6634 SDValue NewMask = NormalizeMask(SVOp, DAG);
6635 ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
6636 if (NSVOp != SVOp) {
6637 if (X86::isUNPCKLMask(NSVOp, HasAVX2, true)) {
6639 } else if (X86::isUNPCKHMask(NSVOp, HasAVX2, true)) {
6646 // Commute is back and try unpck* again.
6647 // FIXME: this seems wrong.
6648 SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
6649 ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
6651 if (X86::isUNPCKLMask(NewSVOp, HasAVX2))
6652 return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V2, V1, DAG);
6654 if (X86::isUNPCKHMask(NewSVOp, HasAVX2))
6655 return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V2, V1, DAG);
6658 // Normalize the node to match x86 shuffle ops if needed
6659 if (!V2IsUndef && (isSHUFPMask(M, VT, HasAVX, /* Commuted */ true)))
6660 return CommuteVectorShuffle(SVOp, DAG);
6662 // The checks below are all present in isShuffleMaskLegal, but they are
6663 // inlined here right now to enable us to directly emit target specific
6664 // nodes, and remove one by one until they don't return Op anymore.
6666 if (isPALIGNRMask(M, VT, Subtarget))
6667 return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6668 getShufflePALIGNRImmediate(SVOp),
6671 if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6672 SVOp->getSplatIndex() == 0 && V2IsUndef) {
6673 if (VT == MVT::v2f64 || VT == MVT::v2i64)
6674 return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6677 if (isPSHUFHWMask(M, VT))
6678 return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6679 X86::getShufflePSHUFHWImmediate(SVOp),
6682 if (isPSHUFLWMask(M, VT))
6683 return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6684 X86::getShufflePSHUFLWImmediate(SVOp),
6687 if (isSHUFPMask(M, VT, HasAVX))
6688 return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
6689 X86::getShuffleSHUFImmediate(SVOp), DAG);
6691 if (isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6692 return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6693 if (isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6694 return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6696 //===--------------------------------------------------------------------===//
6697 // Generate target specific nodes for 128 or 256-bit shuffles only
6698 // supported in the AVX instruction set.
6701 // Handle VMOVDDUPY permutations
6702 if (V2IsUndef && isMOVDDUPYMask(M, VT, HasAVX))
6703 return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6705 // Handle VPERMILPS/D* permutations
6706 if (isVPERMILPMask(M, VT, HasAVX))
6707 return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
6708 getShuffleVPERMILPImmediate(SVOp), DAG);
6710 // Handle VPERM2F128/VPERM2I128 permutations
6711 if (isVPERM2X128Mask(M, VT, HasAVX))
6712 return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
6713 V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
6715 //===--------------------------------------------------------------------===//
6716 // Since no target specific shuffle was selected for this generic one,
6717 // lower it into other known shuffles. FIXME: this isn't true yet, but
6718 // this is the plan.
6721 // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6722 if (VT == MVT::v8i16) {
6723 SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6724 if (NewOp.getNode())
6728 if (VT == MVT::v16i8) {
6729 SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6730 if (NewOp.getNode())
6734 // Handle all 128-bit wide vectors with 4 elements, and match them with
6735 // several different shuffle types.
6736 if (NumElems == 4 && VT.getSizeInBits() == 128)
6737 return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6739 // Handle general 256-bit shuffles
6740 if (VT.is256BitVector())
6741 return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6747 X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6748 SelectionDAG &DAG) const {
6749 EVT VT = Op.getValueType();
6750 DebugLoc dl = Op.getDebugLoc();
6752 if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6755 if (VT.getSizeInBits() == 8) {
6756 SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6757 Op.getOperand(0), Op.getOperand(1));
6758 SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6759 DAG.getValueType(VT));
6760 return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6761 } else if (VT.getSizeInBits() == 16) {
6762 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6763 // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6765 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6766 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6767 DAG.getNode(ISD::BITCAST, dl,
6771 SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6772 Op.getOperand(0), Op.getOperand(1));
6773 SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6774 DAG.getValueType(VT));
6775 return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6776 } else if (VT == MVT::f32) {
6777 // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6778 // the result back to FR32 register. It's only worth matching if the
6779 // result has a single use which is a store or a bitcast to i32. And in
6780 // the case of a store, it's not worth it if the index is a constant 0,
6781 // because a MOVSSmr can be used instead, which is smaller and faster.
6782 if (!Op.hasOneUse())
6784 SDNode *User = *Op.getNode()->use_begin();
6785 if ((User->getOpcode() != ISD::STORE ||
6786 (isa<ConstantSDNode>(Op.getOperand(1)) &&
6787 cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6788 (User->getOpcode() != ISD::BITCAST ||
6789 User->getValueType(0) != MVT::i32))
6791 SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6792 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6795 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6796 } else if (VT == MVT::i32 || VT == MVT::i64) {
6797 // ExtractPS/pextrq works with constant index.
6798 if (isa<ConstantSDNode>(Op.getOperand(1)))
6806 X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6807 SelectionDAG &DAG) const {
6808 if (!isa<ConstantSDNode>(Op.getOperand(1)))
6811 SDValue Vec = Op.getOperand(0);
6812 EVT VecVT = Vec.getValueType();
6814 // If this is a 256-bit vector result, first extract the 128-bit vector and
6815 // then extract the element from the 128-bit vector.
6816 if (VecVT.getSizeInBits() == 256) {
6817 DebugLoc dl = Op.getNode()->getDebugLoc();
6818 unsigned NumElems = VecVT.getVectorNumElements();
6819 SDValue Idx = Op.getOperand(1);
6820 unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6822 // Get the 128-bit vector.
6823 bool Upper = IdxVal >= NumElems/2;
6824 Vec = Extract128BitVector(Vec,
6825 DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32), DAG, dl);
6827 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6828 Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : Idx);
6831 assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6833 if (Subtarget->hasSSE41()) {
6834 SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6839 EVT VT = Op.getValueType();
6840 DebugLoc dl = Op.getDebugLoc();
6841 // TODO: handle v16i8.
6842 if (VT.getSizeInBits() == 16) {
6843 SDValue Vec = Op.getOperand(0);
6844 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6846 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6847 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6848 DAG.getNode(ISD::BITCAST, dl,
6851 // Transform it so it match pextrw which produces a 32-bit result.
6852 EVT EltVT = MVT::i32;
6853 SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6854 Op.getOperand(0), Op.getOperand(1));
6855 SDValue Assert = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6856 DAG.getValueType(VT));
6857 return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6858 } else if (VT.getSizeInBits() == 32) {
6859 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6863 // SHUFPS the element to the lowest double word, then movss.
6864 int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6865 EVT VVT = Op.getOperand(0).getValueType();
6866 SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6867 DAG.getUNDEF(VVT), Mask);
6868 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6869 DAG.getIntPtrConstant(0));
6870 } else if (VT.getSizeInBits() == 64) {
6871 // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6872 // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6873 // to match extract_elt for f64.
6874 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6878 // UNPCKHPD the element to the lowest double word, then movsd.
6879 // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6880 // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6881 int Mask[2] = { 1, -1 };
6882 EVT VVT = Op.getOperand(0).getValueType();
6883 SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6884 DAG.getUNDEF(VVT), Mask);
6885 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6886 DAG.getIntPtrConstant(0));
6893 X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6894 SelectionDAG &DAG) const {
6895 EVT VT = Op.getValueType();
6896 EVT EltVT = VT.getVectorElementType();
6897 DebugLoc dl = Op.getDebugLoc();
6899 SDValue N0 = Op.getOperand(0);
6900 SDValue N1 = Op.getOperand(1);
6901 SDValue N2 = Op.getOperand(2);
6903 if (VT.getSizeInBits() == 256)
6906 if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6907 isa<ConstantSDNode>(N2)) {
6909 if (VT == MVT::v8i16)
6910 Opc = X86ISD::PINSRW;
6911 else if (VT == MVT::v16i8)
6912 Opc = X86ISD::PINSRB;
6914 Opc = X86ISD::PINSRB;
6916 // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6918 if (N1.getValueType() != MVT::i32)
6919 N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6920 if (N2.getValueType() != MVT::i32)
6921 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6922 return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6923 } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6924 // Bits [7:6] of the constant are the source select. This will always be
6925 // zero here. The DAG Combiner may combine an extract_elt index into these
6926 // bits. For example (insert (extract, 3), 2) could be matched by putting
6927 // the '3' into bits [7:6] of X86ISD::INSERTPS.
6928 // Bits [5:4] of the constant are the destination select. This is the
6929 // value of the incoming immediate.
6930 // Bits [3:0] of the constant are the zero mask. The DAG Combiner may
6931 // combine either bitwise AND or insert of float 0.0 to set these bits.
6932 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6933 // Create this as a scalar to vector..
6934 N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6935 return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
6936 } else if ((EltVT == MVT::i32 || EltVT == MVT::i64) &&
6937 isa<ConstantSDNode>(N2)) {
6938 // PINSR* works with constant index.
6945 X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
6946 EVT VT = Op.getValueType();
6947 EVT EltVT = VT.getVectorElementType();
6949 DebugLoc dl = Op.getDebugLoc();
6950 SDValue N0 = Op.getOperand(0);
6951 SDValue N1 = Op.getOperand(1);
6952 SDValue N2 = Op.getOperand(2);
6954 // If this is a 256-bit vector result, first extract the 128-bit vector,
6955 // insert the element into the extracted half and then place it back.
6956 if (VT.getSizeInBits() == 256) {
6957 if (!isa<ConstantSDNode>(N2))
6960 // Get the desired 128-bit vector half.
6961 unsigned NumElems = VT.getVectorNumElements();
6962 unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
6963 bool Upper = IdxVal >= NumElems/2;
6964 SDValue Ins128Idx = DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32);
6965 SDValue V = Extract128BitVector(N0, Ins128Idx, DAG, dl);
6967 // Insert the element into the desired half.
6968 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V,
6969 N1, Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : N2);
6971 // Insert the changed part back to the 256-bit vector
6972 return Insert128BitVector(N0, V, Ins128Idx, DAG, dl);
6975 if (Subtarget->hasSSE41())
6976 return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
6978 if (EltVT == MVT::i8)
6981 if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
6982 // Transform it so it match pinsrw which expects a 16-bit value in a GR32
6983 // as its second argument.
6984 if (N1.getValueType() != MVT::i32)
6985 N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6986 if (N2.getValueType() != MVT::i32)
6987 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6988 return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
6994 X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
6995 LLVMContext *Context = DAG.getContext();
6996 DebugLoc dl = Op.getDebugLoc();
6997 EVT OpVT = Op.getValueType();
6999 // If this is a 256-bit vector result, first insert into a 128-bit
7000 // vector and then insert into the 256-bit vector.
7001 if (OpVT.getSizeInBits() > 128) {
7002 // Insert into a 128-bit vector.
7003 EVT VT128 = EVT::getVectorVT(*Context,
7004 OpVT.getVectorElementType(),
7005 OpVT.getVectorNumElements() / 2);
7007 Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7009 // Insert the 128-bit vector.
7010 return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
7011 DAG.getConstant(0, MVT::i32),
7015 if (Op.getValueType() == MVT::v1i64 &&
7016 Op.getOperand(0).getValueType() == MVT::i64)
7017 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7019 SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7020 assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
7021 "Expected an SSE type!");
7022 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
7023 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7026 // Lower a node with an EXTRACT_SUBVECTOR opcode. This may result in
7027 // a simple subregister reference or explicit instructions to grab
7028 // upper bits of a vector.
7030 X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7031 if (Subtarget->hasAVX()) {
7032 DebugLoc dl = Op.getNode()->getDebugLoc();
7033 SDValue Vec = Op.getNode()->getOperand(0);
7034 SDValue Idx = Op.getNode()->getOperand(1);
7036 if (Op.getNode()->getValueType(0).getSizeInBits() == 128
7037 && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
7038 return Extract128BitVector(Vec, Idx, DAG, dl);
7044 // Lower a node with an INSERT_SUBVECTOR opcode. This may result in a
7045 // simple superregister reference or explicit instructions to insert
7046 // the upper bits of a vector.
7048 X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7049 if (Subtarget->hasAVX()) {
7050 DebugLoc dl = Op.getNode()->getDebugLoc();
7051 SDValue Vec = Op.getNode()->getOperand(0);
7052 SDValue SubVec = Op.getNode()->getOperand(1);
7053 SDValue Idx = Op.getNode()->getOperand(2);
7055 if (Op.getNode()->getValueType(0).getSizeInBits() == 256
7056 && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
7057 return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
7063 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7064 // their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7065 // one of the above mentioned nodes. It has to be wrapped because otherwise
7066 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7067 // be used to form addressing mode. These wrapped nodes will be selected
7070 X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7071 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7073 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7075 unsigned char OpFlag = 0;
7076 unsigned WrapperKind = X86ISD::Wrapper;
7077 CodeModel::Model M = getTargetMachine().getCodeModel();
7079 if (Subtarget->isPICStyleRIPRel() &&
7080 (M == CodeModel::Small || M == CodeModel::Kernel))
7081 WrapperKind = X86ISD::WrapperRIP;
7082 else if (Subtarget->isPICStyleGOT())
7083 OpFlag = X86II::MO_GOTOFF;
7084 else if (Subtarget->isPICStyleStubPIC())
7085 OpFlag = X86II::MO_PIC_BASE_OFFSET;
7087 SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7089 CP->getOffset(), OpFlag);
7090 DebugLoc DL = CP->getDebugLoc();
7091 Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7092 // With PIC, the address is actually $g + Offset.
7094 Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7095 DAG.getNode(X86ISD::GlobalBaseReg,
7096 DebugLoc(), getPointerTy()),
7103 SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7104 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7106 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7108 unsigned char OpFlag = 0;
7109 unsigned WrapperKind = X86ISD::Wrapper;
7110 CodeModel::Model M = getTargetMachine().getCodeModel();
7112 if (Subtarget->isPICStyleRIPRel() &&
7113 (M == CodeModel::Small || M == CodeModel::Kernel))
7114 WrapperKind = X86ISD::WrapperRIP;
7115 else if (Subtarget->isPICStyleGOT())
7116 OpFlag = X86II::MO_GOTOFF;
7117 else if (Subtarget->isPICStyleStubPIC())
7118 OpFlag = X86II::MO_PIC_BASE_OFFSET;
7120 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7122 DebugLoc DL = JT->getDebugLoc();
7123 Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7125 // With PIC, the address is actually $g + Offset.
7127 Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7128 DAG.getNode(X86ISD::GlobalBaseReg,
7129 DebugLoc(), getPointerTy()),
7136 X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7137 const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7139 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7141 unsigned char OpFlag = 0;
7142 unsigned WrapperKind = X86ISD::Wrapper;
7143 CodeModel::Model M = getTargetMachine().getCodeModel();
7145 if (Subtarget->isPICStyleRIPRel() &&
7146 (M == CodeModel::Small || M == CodeModel::Kernel)) {
7147 if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7148 OpFlag = X86II::MO_GOTPCREL;
7149 WrapperKind = X86ISD::WrapperRIP;
7150 } else if (Subtarget->isPICStyleGOT()) {
7151 OpFlag = X86II::MO_GOT;
7152 } else if (Subtarget->isPICStyleStubPIC()) {
7153 OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7154 } else if (Subtarget->isPICStyleStubNoDynamic()) {
7155 OpFlag = X86II::MO_DARWIN_NONLAZY;
7158 SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7160 DebugLoc DL = Op.getDebugLoc();
7161 Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7164 // With PIC, the address is actually $g + Offset.
7165 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7166 !Subtarget->is64Bit()) {
7167 Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7168 DAG.getNode(X86ISD::GlobalBaseReg,
7169 DebugLoc(), getPointerTy()),
7173 // For symbols that require a load from a stub to get the address, emit the
7175 if (isGlobalStubReference(OpFlag))
7176 Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7177 MachinePointerInfo::getGOT(), false, false, false, 0);
7183 X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7184 // Create the TargetBlockAddressAddress node.
7185 unsigned char OpFlags =
7186 Subtarget->ClassifyBlockAddressReference();
7187 CodeModel::Model M = getTargetMachine().getCodeModel();
7188 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7189 DebugLoc dl = Op.getDebugLoc();
7190 SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
7191 /*isTarget=*/true, OpFlags);
7193 if (Subtarget->isPICStyleRIPRel() &&
7194 (M == CodeModel::Small || M == CodeModel::Kernel))
7195 Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7197 Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7199 // With PIC, the address is actually $g + Offset.
7200 if (isGlobalRelativeToPICBase(OpFlags)) {
7201 Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7202 DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7210 X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7212 SelectionDAG &DAG) const {
7213 // Create the TargetGlobalAddress node, folding in the constant
7214 // offset if it is legal.
7215 unsigned char OpFlags =
7216 Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7217 CodeModel::Model M = getTargetMachine().getCodeModel();
7219 if (OpFlags == X86II::MO_NO_FLAG &&
7220 X86::isOffsetSuitableForCodeModel(Offset, M)) {
7221 // A direct static reference to a global.
7222 Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7225 Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7228 if (Subtarget->isPICStyleRIPRel() &&
7229 (M == CodeModel::Small || M == CodeModel::Kernel))
7230 Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7232 Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7234 // With PIC, the address is actually $g + Offset.
7235 if (isGlobalRelativeToPICBase(OpFlags)) {
7236 Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7237 DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7241 // For globals that require a load from a stub to get the address, emit the
7243 if (isGlobalStubReference(OpFlags))
7244 Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7245 MachinePointerInfo::getGOT(), false, false, false, 0);
7247 // If there was a non-zero offset that we didn't fold, create an explicit
7250 Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7251 DAG.getConstant(Offset, getPointerTy()));
7257 X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7258 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7259 int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7260 return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7264 GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7265 SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7266 unsigned char OperandFlags) {
7267 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7268 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7269 DebugLoc dl = GA->getDebugLoc();
7270 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7271 GA->getValueType(0),
7275 SDValue Ops[] = { Chain, TGA, *InFlag };
7276 Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
7278 SDValue Ops[] = { Chain, TGA };
7279 Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
7282 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7283 MFI->setAdjustsStack(true);
7285 SDValue Flag = Chain.getValue(1);
7286 return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7289 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7291 LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7294 DebugLoc dl = GA->getDebugLoc(); // ? function entry point might be better
7295 SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7296 DAG.getNode(X86ISD::GlobalBaseReg,
7297 DebugLoc(), PtrVT), InFlag);
7298 InFlag = Chain.getValue(1);
7300 return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7303 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7305 LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7307 return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7308 X86::RAX, X86II::MO_TLSGD);
7311 // Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
7312 // "local exec" model.
7313 static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7314 const EVT PtrVT, TLSModel::Model model,
7316 DebugLoc dl = GA->getDebugLoc();
7318 // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7319 Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7320 is64Bit ? 257 : 256));
7322 SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7323 DAG.getIntPtrConstant(0),
7324 MachinePointerInfo(Ptr),
7325 false, false, false, 0);
7327 unsigned char OperandFlags = 0;
7328 // Most TLS accesses are not RIP relative, even on x86-64. One exception is
7330 unsigned WrapperKind = X86ISD::Wrapper;
7331 if (model == TLSModel::LocalExec) {
7332 OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7333 } else if (is64Bit) {
7334 assert(model == TLSModel::InitialExec);
7335 OperandFlags = X86II::MO_GOTTPOFF;
7336 WrapperKind = X86ISD::WrapperRIP;
7338 assert(model == TLSModel::InitialExec);
7339 OperandFlags = X86II::MO_INDNTPOFF;
7342 // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
7344 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7345 GA->getValueType(0),
7346 GA->getOffset(), OperandFlags);
7347 SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7349 if (model == TLSModel::InitialExec)
7350 Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7351 MachinePointerInfo::getGOT(), false, false, false, 0);
7353 // The address of the thread local variable is the add of the thread
7354 // pointer with the offset of the variable.
7355 return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7359 X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7361 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7362 const GlobalValue *GV = GA->getGlobal();
7364 if (Subtarget->isTargetELF()) {
7365 // TODO: implement the "local dynamic" model
7366 // TODO: implement the "initial exec"model for pic executables
7368 // If GV is an alias then use the aliasee for determining
7369 // thread-localness.
7370 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7371 GV = GA->resolveAliasedGlobal(false);
7373 TLSModel::Model model
7374 = getTLSModel(GV, getTargetMachine().getRelocationModel());
7377 case TLSModel::GeneralDynamic:
7378 case TLSModel::LocalDynamic: // not implemented
7379 if (Subtarget->is64Bit())
7380 return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7381 return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7383 case TLSModel::InitialExec:
7384 case TLSModel::LocalExec:
7385 return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7386 Subtarget->is64Bit());
7388 } else if (Subtarget->isTargetDarwin()) {
7389 // Darwin only has one model of TLS. Lower to that.
7390 unsigned char OpFlag = 0;
7391 unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7392 X86ISD::WrapperRIP : X86ISD::Wrapper;
7394 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7396 bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7397 !Subtarget->is64Bit();
7399 OpFlag = X86II::MO_TLVP_PIC_BASE;
7401 OpFlag = X86II::MO_TLVP;
7402 DebugLoc DL = Op.getDebugLoc();
7403 SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7404 GA->getValueType(0),
7405 GA->getOffset(), OpFlag);
7406 SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7408 // With PIC32, the address is actually $g + Offset.
7410 Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7411 DAG.getNode(X86ISD::GlobalBaseReg,
7412 DebugLoc(), getPointerTy()),
7415 // Lowering the machine isd will make sure everything is in the right
7417 SDValue Chain = DAG.getEntryNode();
7418 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7419 SDValue Args[] = { Chain, Offset };
7420 Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7422 // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7423 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7424 MFI->setAdjustsStack(true);
7426 // And our return value (tls address) is in the standard call return value
7428 unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7429 return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7433 llvm_unreachable("TLS not implemented for this target.");
7437 /// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
7438 /// and take a 2 x i32 value to shift plus a shift amount.
7439 SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
7440 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7441 EVT VT = Op.getValueType();
7442 unsigned VTBits = VT.getSizeInBits();
7443 DebugLoc dl = Op.getDebugLoc();
7444 bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7445 SDValue ShOpLo = Op.getOperand(0);
7446 SDValue ShOpHi = Op.getOperand(1);
7447 SDValue ShAmt = Op.getOperand(2);
7448 SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7449 DAG.getConstant(VTBits - 1, MVT::i8))
7450 : DAG.getConstant(0, VT);
7453 if (Op.getOpcode() == ISD::SHL_PARTS) {
7454 Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7455 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7457 Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7458 Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7461 SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7462 DAG.getConstant(VTBits, MVT::i8));
7463 SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7464 AndNode, DAG.getConstant(0, MVT::i8));
7467 SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7468 SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7469 SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7471 if (Op.getOpcode() == ISD::SHL_PARTS) {
7472 Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7473 Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7475 Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7476 Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7479 SDValue Ops[2] = { Lo, Hi };
7480 return DAG.getMergeValues(Ops, 2, dl);
7483 SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7484 SelectionDAG &DAG) const {
7485 EVT SrcVT = Op.getOperand(0).getValueType();
7487 if (SrcVT.isVector())
7490 assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7491 "Unknown SINT_TO_FP to lower!");
7493 // These are really Legal; return the operand so the caller accepts it as
7495 if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7497 if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7498 Subtarget->is64Bit()) {
7502 DebugLoc dl = Op.getDebugLoc();
7503 unsigned Size = SrcVT.getSizeInBits()/8;
7504 MachineFunction &MF = DAG.getMachineFunction();
7505 int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7506 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7507 SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7509 MachinePointerInfo::getFixedStack(SSFI),
7511 return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7514 SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7516 SelectionDAG &DAG) const {
7518 DebugLoc DL = Op.getDebugLoc();
7520 bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7522 Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7524 Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7526 unsigned ByteSize = SrcVT.getSizeInBits()/8;
7528 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7529 MachineMemOperand *MMO;
7531 int SSFI = FI->getIndex();
7533 DAG.getMachineFunction()
7534 .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7535 MachineMemOperand::MOLoad, ByteSize, ByteSize);
7537 MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7538 StackSlot = StackSlot.getOperand(1);
7540 SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7541 SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7543 Tys, Ops, array_lengthof(Ops),
7547 Chain = Result.getValue(1);
7548 SDValue InFlag = Result.getValue(2);
7550 // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7551 // shouldn't be necessary except that RFP cannot be live across
7552 // multiple blocks. When stackifier is fixed, they can be uncoupled.
7553 MachineFunction &MF = DAG.getMachineFunction();
7554 unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7555 int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7556 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7557 Tys = DAG.getVTList(MVT::Other);
7559 Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7561 MachineMemOperand *MMO =
7562 DAG.getMachineFunction()
7563 .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7564 MachineMemOperand::MOStore, SSFISize, SSFISize);
7566 Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7567 Ops, array_lengthof(Ops),
7568 Op.getValueType(), MMO);
7569 Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7570 MachinePointerInfo::getFixedStack(SSFI),
7571 false, false, false, 0);
7577 // LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7578 SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7579 SelectionDAG &DAG) const {
7580 // This algorithm is not obvious. Here it is what we're trying to output:
7583 punpckldq (c0), %xmm0 // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
7584 subpd (c1), %xmm0 // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
7588 pshufd $0x4e, %xmm0, %xmm1
7593 DebugLoc dl = Op.getDebugLoc();
7594 LLVMContext *Context = DAG.getContext();
7596 // Build some magic constants.
7597 SmallVector<Constant*,4> CV0;
7598 CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
7599 CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
7600 CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7601 CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7602 Constant *C0 = ConstantVector::get(CV0);
7603 SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7605 SmallVector<Constant*,2> CV1;
7607 ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7609 ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7610 Constant *C1 = ConstantVector::get(CV1);
7611 SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7613 // Load the 64-bit value into an XMM register.
7614 SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
7616 SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7617 MachinePointerInfo::getConstantPool(),
7618 false, false, false, 16);
7619 SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
7620 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
7623 SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7624 MachinePointerInfo::getConstantPool(),
7625 false, false, false, 16);
7626 SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
7627 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7630 if (Subtarget->hasSSE3()) {
7631 // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
7632 Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
7634 SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
7635 SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
7637 Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
7638 DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
7642 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
7643 DAG.getIntPtrConstant(0));
7646 // LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7647 SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7648 SelectionDAG &DAG) const {
7649 DebugLoc dl = Op.getDebugLoc();
7650 // FP constant to bias correct the final result.
7651 SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7654 // Load the 32-bit value into an XMM register.
7655 SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7658 // Zero out the upper parts of the register.
7659 Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
7661 Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7662 DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7663 DAG.getIntPtrConstant(0));
7665 // Or the load with the bias.
7666 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7667 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7668 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7670 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7671 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7672 MVT::v2f64, Bias)));
7673 Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7674 DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7675 DAG.getIntPtrConstant(0));
7677 // Subtract the bias.
7678 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7680 // Handle final rounding.
7681 EVT DestVT = Op.getValueType();
7683 if (DestVT.bitsLT(MVT::f64)) {
7684 return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7685 DAG.getIntPtrConstant(0));
7686 } else if (DestVT.bitsGT(MVT::f64)) {
7687 return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7690 // Handle final rounding.
7694 SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7695 SelectionDAG &DAG) const {
7696 SDValue N0 = Op.getOperand(0);
7697 DebugLoc dl = Op.getDebugLoc();
7699 // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7700 // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7701 // the optimization here.
7702 if (DAG.SignBitIsZero(N0))
7703 return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7705 EVT SrcVT = N0.getValueType();
7706 EVT DstVT = Op.getValueType();
7707 if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7708 return LowerUINT_TO_FP_i64(Op, DAG);
7709 else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7710 return LowerUINT_TO_FP_i32(Op, DAG);
7711 else if (Subtarget->is64Bit() &&
7712 SrcVT == MVT::i64 && DstVT == MVT::f32)
7715 // Make a 64-bit buffer, and use it to build an FILD.
7716 SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7717 if (SrcVT == MVT::i32) {
7718 SDValue WordOff = DAG.getConstant(4, getPointerTy());
7719 SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7720 getPointerTy(), StackSlot, WordOff);
7721 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7722 StackSlot, MachinePointerInfo(),
7724 SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7725 OffsetSlot, MachinePointerInfo(),
7727 SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7731 assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7732 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7733 StackSlot, MachinePointerInfo(),
7735 // For i64 source, we need to add the appropriate power of 2 if the input
7736 // was negative. This is the same as the optimization in
7737 // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7738 // we must be careful to do the computation in x87 extended precision, not
7739 // in SSE. (The generic code can't know it's OK to do this, or how to.)
7740 int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7741 MachineMemOperand *MMO =
7742 DAG.getMachineFunction()
7743 .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7744 MachineMemOperand::MOLoad, 8, 8);
7746 SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7747 SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7748 SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7751 APInt FF(32, 0x5F800000ULL);
7753 // Check whether the sign bit is set.
7754 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7755 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7758 // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7759 SDValue FudgePtr = DAG.getConstantPool(
7760 ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7763 // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7764 SDValue Zero = DAG.getIntPtrConstant(0);
7765 SDValue Four = DAG.getIntPtrConstant(4);
7766 SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7768 FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7770 // Load the value out, extending it from f32 to f80.
7771 // FIXME: Avoid the extend by constructing the right constant pool?
7772 SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7773 FudgePtr, MachinePointerInfo::getConstantPool(),
7774 MVT::f32, false, false, 4);
7775 // Extend everything to 80 bits to force it to be done on x87.
7776 SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7777 return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7780 std::pair<SDValue,SDValue> X86TargetLowering::
7781 FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
7782 DebugLoc DL = Op.getDebugLoc();
7784 EVT DstTy = Op.getValueType();
7787 assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7791 assert(DstTy.getSimpleVT() <= MVT::i64 &&
7792 DstTy.getSimpleVT() >= MVT::i16 &&
7793 "Unknown FP_TO_SINT to lower!");
7795 // These are really Legal.
7796 if (DstTy == MVT::i32 &&
7797 isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7798 return std::make_pair(SDValue(), SDValue());
7799 if (Subtarget->is64Bit() &&
7800 DstTy == MVT::i64 &&
7801 isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7802 return std::make_pair(SDValue(), SDValue());
7804 // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
7806 MachineFunction &MF = DAG.getMachineFunction();
7807 unsigned MemSize = DstTy.getSizeInBits()/8;
7808 int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7809 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7814 switch (DstTy.getSimpleVT().SimpleTy) {
7815 default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7816 case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7817 case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7818 case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7821 SDValue Chain = DAG.getEntryNode();
7822 SDValue Value = Op.getOperand(0);
7823 EVT TheVT = Op.getOperand(0).getValueType();
7824 if (isScalarFPTypeInSSEReg(TheVT)) {
7825 assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7826 Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7827 MachinePointerInfo::getFixedStack(SSFI),
7829 SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7831 Chain, StackSlot, DAG.getValueType(TheVT)
7834 MachineMemOperand *MMO =
7835 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7836 MachineMemOperand::MOLoad, MemSize, MemSize);
7837 Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7839 Chain = Value.getValue(1);
7840 SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7841 StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7844 MachineMemOperand *MMO =
7845 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7846 MachineMemOperand::MOStore, MemSize, MemSize);
7848 // Build the FP_TO_INT*_IN_MEM
7849 SDValue Ops[] = { Chain, Value, StackSlot };
7850 SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7851 Ops, 3, DstTy, MMO);
7853 return std::make_pair(FIST, StackSlot);
7856 SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7857 SelectionDAG &DAG) const {
7858 if (Op.getValueType().isVector())
7861 std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
7862 SDValue FIST = Vals.first, StackSlot = Vals.second;
7863 // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7864 if (FIST.getNode() == 0) return Op;
7867 return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7868 FIST, StackSlot, MachinePointerInfo(),
7869 false, false, false, 0);
7872 SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7873 SelectionDAG &DAG) const {
7874 std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
7875 SDValue FIST = Vals.first, StackSlot = Vals.second;
7876 assert(FIST.getNode() && "Unexpected failure");
7879 return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7880 FIST, StackSlot, MachinePointerInfo(),
7881 false, false, false, 0);
7884 SDValue X86TargetLowering::LowerFABS(SDValue Op,
7885 SelectionDAG &DAG) const {
7886 LLVMContext *Context = DAG.getContext();
7887 DebugLoc dl = Op.getDebugLoc();
7888 EVT VT = Op.getValueType();
7891 EltVT = VT.getVectorElementType();
7892 SmallVector<Constant*,4> CV;
7893 if (EltVT == MVT::f64) {
7894 Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
7897 Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
7900 Constant *C = ConstantVector::get(CV);
7901 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7902 SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7903 MachinePointerInfo::getConstantPool(),
7904 false, false, false, 16);
7905 return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
7908 SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
7909 LLVMContext *Context = DAG.getContext();
7910 DebugLoc dl = Op.getDebugLoc();
7911 EVT VT = Op.getValueType();
7913 unsigned NumElts = VT == MVT::f64 ? 2 : 4;
7914 if (VT.isVector()) {
7915 EltVT = VT.getVectorElementType();
7916 NumElts = VT.getVectorNumElements();
7918 SmallVector<Constant*,8> CV;
7919 if (EltVT == MVT::f64) {
7920 Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
7921 CV.assign(NumElts, C);
7923 Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
7924 CV.assign(NumElts, C);
7926 Constant *C = ConstantVector::get(CV);
7927 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7928 SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7929 MachinePointerInfo::getConstantPool(),
7930 false, false, false, 16);
7931 if (VT.isVector()) {
7932 MVT XORVT = VT.getSizeInBits() == 128 ? MVT::v2i64 : MVT::v4i64;
7933 return DAG.getNode(ISD::BITCAST, dl, VT,
7934 DAG.getNode(ISD::XOR, dl, XORVT,
7935 DAG.getNode(ISD::BITCAST, dl, XORVT,
7937 DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
7939 return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
7943 SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
7944 LLVMContext *Context = DAG.getContext();
7945 SDValue Op0 = Op.getOperand(0);
7946 SDValue Op1 = Op.getOperand(1);
7947 DebugLoc dl = Op.getDebugLoc();
7948 EVT VT = Op.getValueType();
7949 EVT SrcVT = Op1.getValueType();
7951 // If second operand is smaller, extend it first.
7952 if (SrcVT.bitsLT(VT)) {
7953 Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
7956 // And if it is bigger, shrink it first.
7957 if (SrcVT.bitsGT(VT)) {
7958 Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
7962 // At this point the operands and the result should have the same
7963 // type, and that won't be f80 since that is not custom lowered.
7965 // First get the sign bit of second operand.
7966 SmallVector<Constant*,4> CV;
7967 if (SrcVT == MVT::f64) {
7968 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
7969 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7971 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
7972 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7973 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7974 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7976 Constant *C = ConstantVector::get(CV);
7977 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7978 SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
7979 MachinePointerInfo::getConstantPool(),
7980 false, false, false, 16);
7981 SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
7983 // Shift sign bit right or left if the two operands have different types.
7984 if (SrcVT.bitsGT(VT)) {
7985 // Op0 is MVT::f32, Op1 is MVT::f64.
7986 SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
7987 SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
7988 DAG.getConstant(32, MVT::i32));
7989 SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
7990 SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
7991 DAG.getIntPtrConstant(0));
7994 // Clear first operand sign bit.
7996 if (VT == MVT::f64) {
7997 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
7998 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8000 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8001 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8002 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8003 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8005 C = ConstantVector::get(CV);
8006 CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8007 SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8008 MachinePointerInfo::getConstantPool(),
8009 false, false, false, 16);
8010 SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8012 // Or the value with the sign bit.
8013 return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8016 SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
8017 SDValue N0 = Op.getOperand(0);
8018 DebugLoc dl = Op.getDebugLoc();
8019 EVT VT = Op.getValueType();
8021 // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8022 SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8023 DAG.getConstant(1, VT));
8024 return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8027 /// Emit nodes that will be selected as "test Op0,Op0", or something
8029 SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8030 SelectionDAG &DAG) const {
8031 DebugLoc dl = Op.getDebugLoc();
8033 // CF and OF aren't always set the way we want. Determine which
8034 // of these we need.
8035 bool NeedCF = false;
8036 bool NeedOF = false;
8039 case X86::COND_A: case X86::COND_AE:
8040 case X86::COND_B: case X86::COND_BE:
8043 case X86::COND_G: case X86::COND_GE:
8044 case X86::COND_L: case X86::COND_LE:
8045 case X86::COND_O: case X86::COND_NO:
8050 // See if we can use the EFLAGS value from the operand instead of
8051 // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8052 // we prove that the arithmetic won't overflow, we can't use OF or CF.
8053 if (Op.getResNo() != 0 || NeedOF || NeedCF)
8054 // Emit a CMP with 0, which is the TEST pattern.
8055 return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8056 DAG.getConstant(0, Op.getValueType()));
8058 unsigned Opcode = 0;
8059 unsigned NumOperands = 0;
8060 switch (Op.getNode()->getOpcode()) {
8062 // Due to an isel shortcoming, be conservative if this add is likely to be
8063 // selected as part of a load-modify-store instruction. When the root node
8064 // in a match is a store, isel doesn't know how to remap non-chain non-flag
8065 // uses of other nodes in the match, such as the ADD in this case. This
8066 // leads to the ADD being left around and reselected, with the result being
8067 // two adds in the output. Alas, even if none our users are stores, that
8068 // doesn't prove we're O.K. Ergo, if we have any parents that aren't
8069 // CopyToReg or SETCC, eschew INC/DEC. A better fix seems to require
8070 // climbing the DAG back to the root, and it doesn't seem to be worth the
8072 for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8073 UE = Op.getNode()->use_end(); UI != UE; ++UI)
8074 if (UI->getOpcode() != ISD::CopyToReg &&
8075 UI->getOpcode() != ISD::SETCC &&
8076 UI->getOpcode() != ISD::STORE)
8079 if (ConstantSDNode *C =
8080 dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
8081 // An add of one will be selected as an INC.
8082 if (C->getAPIntValue() == 1) {
8083 Opcode = X86ISD::INC;
8088 // An add of negative one (subtract of one) will be selected as a DEC.
8089 if (C->getAPIntValue().isAllOnesValue()) {
8090 Opcode = X86ISD::DEC;
8096 // Otherwise use a regular EFLAGS-setting add.
8097 Opcode = X86ISD::ADD;
8101 // If the primary and result isn't used, don't bother using X86ISD::AND,
8102 // because a TEST instruction will be better.
8103 bool NonFlagUse = false;
8104 for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8105 UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8107 unsigned UOpNo = UI.getOperandNo();
8108 if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8109 // Look pass truncate.
8110 UOpNo = User->use_begin().getOperandNo();
8111 User = *User->use_begin();
8114 if (User->getOpcode() != ISD::BRCOND &&
8115 User->getOpcode() != ISD::SETCC &&
8116 (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
8129 // Due to the ISEL shortcoming noted above, be conservative if this op is
8130 // likely to be selected as part of a load-modify-store instruction.
8131 for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8132 UE = Op.getNode()->use_end(); UI != UE; ++UI)
8133 if (UI->getOpcode() == ISD::STORE)
8136 // Otherwise use a regular EFLAGS-setting instruction.
8137 switch (Op.getNode()->getOpcode()) {
8138 default: llvm_unreachable("unexpected operator!");
8139 case ISD::SUB: Opcode = X86ISD::SUB; break;
8140 case ISD::OR: Opcode = X86ISD::OR; break;
8141 case ISD::XOR: Opcode = X86ISD::XOR; break;
8142 case ISD::AND: Opcode = X86ISD::AND; break;
8154 return SDValue(Op.getNode(), 1);
8161 // Emit a CMP with 0, which is the TEST pattern.
8162 return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8163 DAG.getConstant(0, Op.getValueType()));
8165 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8166 SmallVector<SDValue, 4> Ops;
8167 for (unsigned i = 0; i != NumOperands; ++i)
8168 Ops.push_back(Op.getOperand(i));
8170 SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8171 DAG.ReplaceAllUsesWith(Op, New);
8172 return SDValue(New.getNode(), 1);
8175 /// Emit nodes that will be selected as "cmp Op0,Op1", or something
8177 SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8178 SelectionDAG &DAG) const {
8179 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8180 if (C->getAPIntValue() == 0)
8181 return EmitTest(Op0, X86CC, DAG);
8183 DebugLoc dl = Op0.getDebugLoc();
8184 return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8187 /// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8188 /// if it's possible.
8189 SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8190 DebugLoc dl, SelectionDAG &DAG) const {
8191 SDValue Op0 = And.getOperand(0);
8192 SDValue Op1 = And.getOperand(1);
8193 if (Op0.getOpcode() == ISD::TRUNCATE)
8194 Op0 = Op0.getOperand(0);
8195 if (Op1.getOpcode() == ISD::TRUNCATE)
8196 Op1 = Op1.getOperand(0);
8199 if (Op1.getOpcode() == ISD::SHL)
8200 std::swap(Op0, Op1);
8201 if (Op0.getOpcode() == ISD::SHL) {
8202 if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8203 if (And00C->getZExtValue() == 1) {
8204 // If we looked past a truncate, check that it's only truncating away
8206 unsigned BitWidth = Op0.getValueSizeInBits();
8207 unsigned AndBitWidth = And.getValueSizeInBits();
8208 if (BitWidth > AndBitWidth) {
8209 APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
8210 DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
8211 if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8215 RHS = Op0.getOperand(1);
8217 } else if (Op1.getOpcode() == ISD::Constant) {
8218 ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8219 uint64_t AndRHSVal = AndRHS->getZExtValue();
8220 SDValue AndLHS = Op0;
8222 if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
8223 LHS = AndLHS.getOperand(0);
8224 RHS = AndLHS.getOperand(1);
8227 // Use BT if the immediate can't be encoded in a TEST instruction.
8228 if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
8230 RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
8234 if (LHS.getNode()) {
8235 // If LHS is i8, promote it to i32 with any_extend. There is no i8 BT
8236 // instruction. Since the shift amount is in-range-or-undefined, we know
8237 // that doing a bittest on the i32 value is ok. We extend to i32 because
8238 // the encoding for the i16 version is larger than the i32 version.
8239 // Also promote i16 to i32 for performance / code size reason.
8240 if (LHS.getValueType() == MVT::i8 ||
8241 LHS.getValueType() == MVT::i16)
8242 LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8244 // If the operand types disagree, extend the shift amount to match. Since
8245 // BT ignores high bits (like shifts) we can use anyextend.
8246 if (LHS.getValueType() != RHS.getValueType())
8247 RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8249 SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8250 unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8251 return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8252 DAG.getConstant(Cond, MVT::i8), BT);
8258 SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8260 if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8262 assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8263 SDValue Op0 = Op.getOperand(0);
8264 SDValue Op1 = Op.getOperand(1);
8265 DebugLoc dl = Op.getDebugLoc();
8266 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8268 // Optimize to BT if possible.
8269 // Lower (X & (1 << N)) == 0 to BT(X, N).
8270 // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8271 // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8272 if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8273 Op1.getOpcode() == ISD::Constant &&
8274 cast<ConstantSDNode>(Op1)->isNullValue() &&
8275 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8276 SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8277 if (NewSetCC.getNode())
8281 // Look for X == 0, X == 1, X != 0, or X != 1. We can simplify some forms of
8283 if (Op1.getOpcode() == ISD::Constant &&
8284 (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8285 cast<ConstantSDNode>(Op1)->isNullValue()) &&
8286 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8288 // If the input is a setcc, then reuse the input setcc or use a new one with
8289 // the inverted condition.
8290 if (Op0.getOpcode() == X86ISD::SETCC) {
8291 X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8292 bool Invert = (CC == ISD::SETNE) ^
8293 cast<ConstantSDNode>(Op1)->isNullValue();
8294 if (!Invert) return Op0;
8296 CCode = X86::GetOppositeBranchCondition(CCode);
8297 return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8298 DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8302 bool isFP = Op1.getValueType().isFloatingPoint();
8303 unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8304 if (X86CC == X86::COND_INVALID)
8307 SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8308 return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8309 DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8312 // Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8313 // ones, and then concatenate the result back.
8314 static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8315 EVT VT = Op.getValueType();
8317 assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC &&
8318 "Unsupported value type for operation");
8320 int NumElems = VT.getVectorNumElements();
8321 DebugLoc dl = Op.getDebugLoc();
8322 SDValue CC = Op.getOperand(2);
8323 SDValue Idx0 = DAG.getConstant(0, MVT::i32);
8324 SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
8326 // Extract the LHS vectors
8327 SDValue LHS = Op.getOperand(0);
8328 SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
8329 SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
8331 // Extract the RHS vectors
8332 SDValue RHS = Op.getOperand(1);
8333 SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
8334 SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
8336 // Issue the operation on the smaller types and concatenate the result back
8337 MVT EltVT = VT.getVectorElementType().getSimpleVT();
8338 EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8339 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8340 DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8341 DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8345 SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8347 SDValue Op0 = Op.getOperand(0);
8348 SDValue Op1 = Op.getOperand(1);
8349 SDValue CC = Op.getOperand(2);
8350 EVT VT = Op.getValueType();
8351 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8352 bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8353 DebugLoc dl = Op.getDebugLoc();
8357 EVT EltVT = Op0.getValueType().getVectorElementType();
8358 assert(EltVT == MVT::f32 || EltVT == MVT::f64);
8360 unsigned Opc = EltVT == MVT::f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
8363 // SSE Condition code mapping:
8372 switch (SetCCOpcode) {
8375 case ISD::SETEQ: SSECC = 0; break;
8377 case ISD::SETGT: Swap = true; // Fallthrough
8379 case ISD::SETOLT: SSECC = 1; break;
8381 case ISD::SETGE: Swap = true; // Fallthrough
8383 case ISD::SETOLE: SSECC = 2; break;
8384 case ISD::SETUO: SSECC = 3; break;
8386 case ISD::SETNE: SSECC = 4; break;
8387 case ISD::SETULE: Swap = true;
8388 case ISD::SETUGE: SSECC = 5; break;
8389 case ISD::SETULT: Swap = true;
8390 case ISD::SETUGT: SSECC = 6; break;
8391 case ISD::SETO: SSECC = 7; break;
8394 std::swap(Op0, Op1);
8396 // In the two special cases we can't handle, emit two comparisons.
8398 if (SetCCOpcode == ISD::SETUEQ) {
8400 UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
8401 EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
8402 return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
8403 } else if (SetCCOpcode == ISD::SETONE) {
8405 ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
8406 NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
8407 return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
8409 llvm_unreachable("Illegal FP comparison");
8411 // Handle all other FP comparisons here.
8412 return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
8415 // Break 256-bit integer vector compare into smaller ones.
8416 if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
8417 return Lower256IntVSETCC(Op, DAG);
8419 // We are handling one of the integer comparisons here. Since SSE only has
8420 // GT and EQ comparisons for integer, swapping operands and multiple
8421 // operations may be required for some comparisons.
8422 unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
8423 bool Swap = false, Invert = false, FlipSigns = false;
8425 switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
8427 case MVT::i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
8428 case MVT::i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
8429 case MVT::i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
8430 case MVT::i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
8433 switch (SetCCOpcode) {
8435 case ISD::SETNE: Invert = true;
8436 case ISD::SETEQ: Opc = EQOpc; break;
8437 case ISD::SETLT: Swap = true;
8438 case ISD::SETGT: Opc = GTOpc; break;
8439 case ISD::SETGE: Swap = true;
8440 case ISD::SETLE: Opc = GTOpc; Invert = true; break;
8441 case ISD::SETULT: Swap = true;
8442 case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
8443 case ISD::SETUGE: Swap = true;
8444 case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
8447 std::swap(Op0, Op1);
8449 // Check that the operation in question is available (most are plain SSE2,
8450 // but PCMPGTQ and PCMPEQQ have different requirements).
8451 if (Opc == X86ISD::PCMPGTQ && !Subtarget->hasSSE42())
8453 if (Opc == X86ISD::PCMPEQQ && !Subtarget->hasSSE41())
8456 // Since SSE has no unsigned integer comparisons, we need to flip the sign
8457 // bits of the inputs before performing those operations.
8459 EVT EltVT = VT.getVectorElementType();
8460 SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8462 std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8463 SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8465 Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8466 Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8469 SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8471 // If the logical-not of the result is required, perform that now.
8473 Result = DAG.getNOT(dl, Result, VT);
8478 // isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8479 static bool isX86LogicalCmp(SDValue Op) {
8480 unsigned Opc = Op.getNode()->getOpcode();
8481 if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
8483 if (Op.getResNo() == 1 &&
8484 (Opc == X86ISD::ADD ||
8485 Opc == X86ISD::SUB ||
8486 Opc == X86ISD::ADC ||
8487 Opc == X86ISD::SBB ||
8488 Opc == X86ISD::SMUL ||
8489 Opc == X86ISD::UMUL ||
8490 Opc == X86ISD::INC ||
8491 Opc == X86ISD::DEC ||
8492 Opc == X86ISD::OR ||
8493 Opc == X86ISD::XOR ||
8494 Opc == X86ISD::AND))
8497 if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8503 static bool isZero(SDValue V) {
8504 ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8505 return C && C->isNullValue();
8508 static bool isAllOnes(SDValue V) {
8509 ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8510 return C && C->isAllOnesValue();
8513 SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8514 bool addTest = true;
8515 SDValue Cond = Op.getOperand(0);
8516 SDValue Op1 = Op.getOperand(1);
8517 SDValue Op2 = Op.getOperand(2);
8518 DebugLoc DL = Op.getDebugLoc();
8521 if (Cond.getOpcode() == ISD::SETCC) {
8522 SDValue NewCond = LowerSETCC(Cond, DAG);
8523 if (NewCond.getNode())
8527 // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8528 // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8529 // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8530 // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8531 if (Cond.getOpcode() == X86ISD::SETCC &&
8532 Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8533 isZero(Cond.getOperand(1).getOperand(1))) {
8534 SDValue Cmp = Cond.getOperand(1);
8536 unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8538 if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8539 (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8540 SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8542 SDValue CmpOp0 = Cmp.getOperand(0);
8543 Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8544 CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8546 SDValue Res = // Res = 0 or -1.
8547 DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8548 DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8550 if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8551 Res = DAG.getNOT(DL, Res, Res.getValueType());
8553 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8554 if (N2C == 0 || !N2C->isNullValue())
8555 Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8560 // Look past (and (setcc_carry (cmp ...)), 1).
8561 if (Cond.getOpcode() == ISD::AND &&
8562 Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8563 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8564 if (C && C->getAPIntValue() == 1)
8565 Cond = Cond.getOperand(0);
8568 // If condition flag is set by a X86ISD::CMP, then use it as the condition
8569 // setting operand in place of the X86ISD::SETCC.
8570 unsigned CondOpcode = Cond.getOpcode();
8571 if (CondOpcode == X86ISD::SETCC ||
8572 CondOpcode == X86ISD::SETCC_CARRY) {
8573 CC = Cond.getOperand(0);
8575 SDValue Cmp = Cond.getOperand(1);
8576 unsigned Opc = Cmp.getOpcode();
8577 EVT VT = Op.getValueType();
8579 bool IllegalFPCMov = false;
8580 if (VT.isFloatingPoint() && !VT.isVector() &&
8581 !isScalarFPTypeInSSEReg(VT)) // FPStack?
8582 IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8584 if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8585 Opc == X86ISD::BT) { // FIXME
8589 } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8590 CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8591 ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8592 Cond.getOperand(0).getValueType() != MVT::i8)) {
8593 SDValue LHS = Cond.getOperand(0);
8594 SDValue RHS = Cond.getOperand(1);
8598 switch (CondOpcode) {
8599 case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8600 case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8601 case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8602 case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8603 case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8604 case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8605 default: llvm_unreachable("unexpected overflowing operator");
8607 if (CondOpcode == ISD::UMULO)
8608 VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8611 VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8613 SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
8615 if (CondOpcode == ISD::UMULO)
8616 Cond = X86Op.getValue(2);
8618 Cond = X86Op.getValue(1);
8620 CC = DAG.getConstant(X86Cond, MVT::i8);
8625 // Look pass the truncate.
8626 if (Cond.getOpcode() == ISD::TRUNCATE)
8627 Cond = Cond.getOperand(0);
8629 // We know the result of AND is compared against zero. Try to match
8631 if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8632 SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8633 if (NewSetCC.getNode()) {
8634 CC = NewSetCC.getOperand(0);
8635 Cond = NewSetCC.getOperand(1);
8642 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8643 Cond = EmitTest(Cond, X86::COND_NE, DAG);
8646 // a < b ? -1 : 0 -> RES = ~setcc_carry
8647 // a < b ? 0 : -1 -> RES = setcc_carry
8648 // a >= b ? -1 : 0 -> RES = setcc_carry
8649 // a >= b ? 0 : -1 -> RES = ~setcc_carry
8650 if (Cond.getOpcode() == X86ISD::CMP) {
8651 unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8653 if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8654 (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8655 SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8656 DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8657 if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8658 return DAG.getNOT(DL, Res, Res.getValueType());
8663 // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8664 // condition is true.
8665 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8666 SDValue Ops[] = { Op2, Op1, CC, Cond };
8667 return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8670 // isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8671 // ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8672 // from the AND / OR.
8673 static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8674 Opc = Op.getOpcode();
8675 if (Opc != ISD::OR && Opc != ISD::AND)
8677 return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8678 Op.getOperand(0).hasOneUse() &&
8679 Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8680 Op.getOperand(1).hasOneUse());
8683 // isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8684 // 1 and that the SETCC node has a single use.
8685 static bool isXor1OfSetCC(SDValue Op) {
8686 if (Op.getOpcode() != ISD::XOR)
8688 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8689 if (N1C && N1C->getAPIntValue() == 1) {
8690 return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8691 Op.getOperand(0).hasOneUse();
8696 SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8697 bool addTest = true;
8698 SDValue Chain = Op.getOperand(0);
8699 SDValue Cond = Op.getOperand(1);
8700 SDValue Dest = Op.getOperand(2);
8701 DebugLoc dl = Op.getDebugLoc();
8703 bool Inverted = false;
8705 if (Cond.getOpcode() == ISD::SETCC) {
8706 // Check for setcc([su]{add,sub,mul}o == 0).
8707 if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
8708 isa<ConstantSDNode>(Cond.getOperand(1)) &&
8709 cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
8710 Cond.getOperand(0).getResNo() == 1 &&
8711 (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
8712 Cond.getOperand(0).getOpcode() == ISD::UADDO ||
8713 Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
8714 Cond.getOperand(0).getOpcode() == ISD::USUBO ||
8715 Cond.getOperand(0).getOpcode() == ISD::SMULO ||
8716 Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
8718 Cond = Cond.getOperand(0);
8720 SDValue NewCond = LowerSETCC(Cond, DAG);
8721 if (NewCond.getNode())
8726 // FIXME: LowerXALUO doesn't handle these!!
8727 else if (Cond.getOpcode() == X86ISD::ADD ||
8728 Cond.getOpcode() == X86ISD::SUB ||
8729 Cond.getOpcode() == X86ISD::SMUL ||
8730 Cond.getOpcode() == X86ISD::UMUL)
8731 Cond = LowerXALUO(Cond, DAG);
8734 // Look pass (and (setcc_carry (cmp ...)), 1).
8735 if (Cond.getOpcode() == ISD::AND &&
8736 Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8737 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8738 if (C && C->getAPIntValue() == 1)
8739 Cond = Cond.getOperand(0);
8742 // If condition flag is set by a X86ISD::CMP, then use it as the condition
8743 // setting operand in place of the X86ISD::SETCC.
8744 unsigned CondOpcode = Cond.getOpcode();
8745 if (CondOpcode == X86ISD::SETCC ||
8746 CondOpcode == X86ISD::SETCC_CARRY) {
8747 CC = Cond.getOperand(0);
8749 SDValue Cmp = Cond.getOperand(1);
8750 unsigned Opc = Cmp.getOpcode();
8751 // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8752 if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8756 switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8760 // These can only come from an arithmetic instruction with overflow,
8761 // e.g. SADDO, UADDO.
8762 Cond = Cond.getNode()->getOperand(1);
8768 CondOpcode = Cond.getOpcode();
8769 if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8770 CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8771 ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8772 Cond.getOperand(0).getValueType() != MVT::i8)) {
8773 SDValue LHS = Cond.getOperand(0);
8774 SDValue RHS = Cond.getOperand(1);
8778 switch (CondOpcode) {
8779 case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8780 case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8781 case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8782 case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8783 case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8784 case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8785 default: llvm_unreachable("unexpected overflowing operator");
8788 X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
8789 if (CondOpcode == ISD::UMULO)
8790 VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8793 VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8795 SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
8797 if (CondOpcode == ISD::UMULO)
8798 Cond = X86Op.getValue(2);
8800 Cond = X86Op.getValue(1);
8802 CC = DAG.getConstant(X86Cond, MVT::i8);
8806 if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
8807 SDValue Cmp = Cond.getOperand(0).getOperand(1);
8808 if (CondOpc == ISD::OR) {
8809 // Also, recognize the pattern generated by an FCMP_UNE. We can emit
8810 // two branches instead of an explicit OR instruction with a
8812 if (Cmp == Cond.getOperand(1).getOperand(1) &&
8813 isX86LogicalCmp(Cmp)) {
8814 CC = Cond.getOperand(0).getOperand(0);
8815 Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8816 Chain, Dest, CC, Cmp);
8817 CC = Cond.getOperand(1).getOperand(0);
8821 } else { // ISD::AND
8822 // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
8823 // two branches instead of an explicit AND instruction with a
8824 // separate test. However, we only do this if this block doesn't
8825 // have a fall-through edge, because this requires an explicit
8826 // jmp when the condition is false.
8827 if (Cmp == Cond.getOperand(1).getOperand(1) &&
8828 isX86LogicalCmp(Cmp) &&
8829 Op.getNode()->hasOneUse()) {
8830 X86::CondCode CCode =
8831 (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8832 CCode = X86::GetOppositeBranchCondition(CCode);
8833 CC = DAG.getConstant(CCode, MVT::i8);
8834 SDNode *User = *Op.getNode()->use_begin();
8835 // Look for an unconditional branch following this conditional branch.
8836 // We need this because we need to reverse the successors in order
8837 // to implement FCMP_OEQ.
8838 if (User->getOpcode() == ISD::BR) {
8839 SDValue FalseBB = User->getOperand(1);
8841 DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8842 assert(NewBR == User);
8846 Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8847 Chain, Dest, CC, Cmp);
8848 X86::CondCode CCode =
8849 (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
8850 CCode = X86::GetOppositeBranchCondition(CCode);
8851 CC = DAG.getConstant(CCode, MVT::i8);
8857 } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
8858 // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
8859 // It should be transformed during dag combiner except when the condition
8860 // is set by a arithmetics with overflow node.
8861 X86::CondCode CCode =
8862 (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8863 CCode = X86::GetOppositeBranchCondition(CCode);
8864 CC = DAG.getConstant(CCode, MVT::i8);
8865 Cond = Cond.getOperand(0).getOperand(1);
8867 } else if (Cond.getOpcode() == ISD::SETCC &&
8868 cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
8869 // For FCMP_OEQ, we can emit
8870 // two branches instead of an explicit AND instruction with a
8871 // separate test. However, we only do this if this block doesn't
8872 // have a fall-through edge, because this requires an explicit
8873 // jmp when the condition is false.
8874 if (Op.getNode()->hasOneUse()) {
8875 SDNode *User = *Op.getNode()->use_begin();
8876 // Look for an unconditional branch following this conditional branch.
8877 // We need this because we need to reverse the successors in order
8878 // to implement FCMP_OEQ.
8879 if (User->getOpcode() == ISD::BR) {
8880 SDValue FalseBB = User->getOperand(1);
8882 DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8883 assert(NewBR == User);
8887 SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8888 Cond.getOperand(0), Cond.getOperand(1));
8889 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8890 Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8891 Chain, Dest, CC, Cmp);
8892 CC = DAG.getConstant(X86::COND_P, MVT::i8);
8897 } else if (Cond.getOpcode() == ISD::SETCC &&
8898 cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
8899 // For FCMP_UNE, we can emit
8900 // two branches instead of an explicit AND instruction with a
8901 // separate test. However, we only do this if this block doesn't
8902 // have a fall-through edge, because this requires an explicit
8903 // jmp when the condition is false.
8904 if (Op.getNode()->hasOneUse()) {
8905 SDNode *User = *Op.getNode()->use_begin();
8906 // Look for an unconditional branch following this conditional branch.
8907 // We need this because we need to reverse the successors in order
8908 // to implement FCMP_UNE.
8909 if (User->getOpcode() == ISD::BR) {
8910 SDValue FalseBB = User->getOperand(1);
8912 DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8913 assert(NewBR == User);
8916 SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8917 Cond.getOperand(0), Cond.getOperand(1));
8918 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8919 Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8920 Chain, Dest, CC, Cmp);
8921 CC = DAG.getConstant(X86::COND_NP, MVT::i8);
8931 // Look pass the truncate.
8932 if (Cond.getOpcode() == ISD::TRUNCATE)
8933 Cond = Cond.getOperand(0);
8935 // We know the result of AND is compared against zero. Try to match
8937 if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8938 SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
8939 if (NewSetCC.getNode()) {
8940 CC = NewSetCC.getOperand(0);
8941 Cond = NewSetCC.getOperand(1);
8948 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8949 Cond = EmitTest(Cond, X86::COND_NE, DAG);
8951 return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8952 Chain, Dest, CC, Cond);
8956 // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
8957 // Calls to _alloca is needed to probe the stack when allocating more than 4k
8958 // bytes in one go. Touching the stack at 4K increments is necessary to ensure
8959 // that the guard pages used by the OS virtual memory manager are allocated in
8960 // correct sequence.
8962 X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
8963 SelectionDAG &DAG) const {
8964 assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
8965 getTargetMachine().Options.EnableSegmentedStacks) &&
8966 "This should be used only on Windows targets or when segmented stacks "
8968 assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
8969 DebugLoc dl = Op.getDebugLoc();
8972 SDValue Chain = Op.getOperand(0);
8973 SDValue Size = Op.getOperand(1);
8974 // FIXME: Ensure alignment here
8976 bool Is64Bit = Subtarget->is64Bit();
8977 EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
8979 if (getTargetMachine().Options.EnableSegmentedStacks) {
8980 MachineFunction &MF = DAG.getMachineFunction();
8981 MachineRegisterInfo &MRI = MF.getRegInfo();
8984 // The 64 bit implementation of segmented stacks needs to clobber both r10
8985 // r11. This makes it impossible to use it along with nested parameters.
8986 const Function *F = MF.getFunction();
8988 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
8990 if (I->hasNestAttr())
8991 report_fatal_error("Cannot use segmented stacks with functions that "
8992 "have nested arguments.");
8995 const TargetRegisterClass *AddrRegClass =
8996 getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
8997 unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
8998 Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
8999 SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
9000 DAG.getRegister(Vreg, SPTy));
9001 SDValue Ops1[2] = { Value, Chain };
9002 return DAG.getMergeValues(Ops1, 2, dl);
9005 unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
9007 Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
9008 Flag = Chain.getValue(1);
9009 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9011 Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
9012 Flag = Chain.getValue(1);
9014 Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
9016 SDValue Ops1[2] = { Chain.getValue(0), Chain };
9017 return DAG.getMergeValues(Ops1, 2, dl);
9021 SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
9022 MachineFunction &MF = DAG.getMachineFunction();
9023 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
9025 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9026 DebugLoc DL = Op.getDebugLoc();
9028 if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
9029 // vastart just stores the address of the VarArgsFrameIndex slot into the
9030 // memory location argument.
9031 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9033 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
9034 MachinePointerInfo(SV), false, false, 0);
9038 // gp_offset (0 - 6 * 8)
9039 // fp_offset (48 - 48 + 8 * 16)
9040 // overflow_arg_area (point to parameters coming in memory).
9042 SmallVector<SDValue, 8> MemOps;
9043 SDValue FIN = Op.getOperand(1);
9045 SDValue Store = DAG.getStore(Op.getOperand(0), DL,
9046 DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
9048 FIN, MachinePointerInfo(SV), false, false, 0);
9049 MemOps.push_back(Store);
9052 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9053 FIN, DAG.getIntPtrConstant(4));
9054 Store = DAG.getStore(Op.getOperand(0), DL,
9055 DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
9057 FIN, MachinePointerInfo(SV, 4), false, false, 0);
9058 MemOps.push_back(Store);
9060 // Store ptr to overflow_arg_area
9061 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9062 FIN, DAG.getIntPtrConstant(4));
9063 SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9065 Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9066 MachinePointerInfo(SV, 8),
9068 MemOps.push_back(Store);
9070 // Store ptr to reg_save_area.
9071 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9072 FIN, DAG.getIntPtrConstant(8));
9073 SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9075 Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9076 MachinePointerInfo(SV, 16), false, false, 0);
9077 MemOps.push_back(Store);
9078 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9079 &MemOps[0], MemOps.size());
9082 SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9083 assert(Subtarget->is64Bit() &&
9084 "LowerVAARG only handles 64-bit va_arg!");
9085 assert((Subtarget->isTargetLinux() ||
9086 Subtarget->isTargetDarwin()) &&
9087 "Unhandled target in LowerVAARG");
9088 assert(Op.getNode()->getNumOperands() == 4);
9089 SDValue Chain = Op.getOperand(0);
9090 SDValue SrcPtr = Op.getOperand(1);
9091 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9092 unsigned Align = Op.getConstantOperandVal(3);
9093 DebugLoc dl = Op.getDebugLoc();
9095 EVT ArgVT = Op.getNode()->getValueType(0);
9096 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9097 uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
9100 // Decide which area this value should be read from.
9101 // TODO: Implement the AMD64 ABI in its entirety. This simple
9102 // selection mechanism works only for the basic types.
9103 if (ArgVT == MVT::f80) {
9104 llvm_unreachable("va_arg for f80 not yet implemented");
9105 } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9106 ArgMode = 2; // Argument passed in XMM register. Use fp_offset.
9107 } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9108 ArgMode = 1; // Argument passed in GPR64 register(s). Use gp_offset.
9110 llvm_unreachable("Unhandled argument type in LowerVAARG");
9114 // Sanity Check: Make sure using fp_offset makes sense.
9115 assert(!getTargetMachine().Options.UseSoftFloat &&
9116 !(DAG.getMachineFunction()
9117 .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
9118 Subtarget->hasSSE1());
9121 // Insert VAARG_64 node into the DAG
9122 // VAARG_64 returns two values: Variable Argument Address, Chain
9123 SmallVector<SDValue, 11> InstOps;
9124 InstOps.push_back(Chain);
9125 InstOps.push_back(SrcPtr);
9126 InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9127 InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9128 InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9129 SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9130 SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9131 VTs, &InstOps[0], InstOps.size(),
9133 MachinePointerInfo(SV),
9138 Chain = VAARG.getValue(1);
9140 // Load the next argument and return it
9141 return DAG.getLoad(ArgVT, dl,
9144 MachinePointerInfo(),
9145 false, false, false, 0);
9148 SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
9149 // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9150 assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9151 SDValue Chain = Op.getOperand(0);
9152 SDValue DstPtr = Op.getOperand(1);
9153 SDValue SrcPtr = Op.getOperand(2);
9154 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9155 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9156 DebugLoc DL = Op.getDebugLoc();
9158 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9159 DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9161 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9165 X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9166 DebugLoc dl = Op.getDebugLoc();
9167 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9169 default: return SDValue(); // Don't custom lower most intrinsics.
9170 // Comparison intrinsics.
9171 case Intrinsic::x86_sse_comieq_ss:
9172 case Intrinsic::x86_sse_comilt_ss:
9173 case Intrinsic::x86_sse_comile_ss:
9174 case Intrinsic::x86_sse_comigt_ss:
9175 case Intrinsic::x86_sse_comige_ss:
9176 case Intrinsic::x86_sse_comineq_ss:
9177 case Intrinsic::x86_sse_ucomieq_ss:
9178 case Intrinsic::x86_sse_ucomilt_ss:
9179 case Intrinsic::x86_sse_ucomile_ss:
9180 case Intrinsic::x86_sse_ucomigt_ss:
9181 case Intrinsic::x86_sse_ucomige_ss:
9182 case Intrinsic::x86_sse_ucomineq_ss:
9183 case Intrinsic::x86_sse2_comieq_sd:
9184 case Intrinsic::x86_sse2_comilt_sd:
9185 case Intrinsic::x86_sse2_comile_sd:
9186 case Intrinsic::x86_sse2_comigt_sd:
9187 case Intrinsic::x86_sse2_comige_sd:
9188 case Intrinsic::x86_sse2_comineq_sd:
9189 case Intrinsic::x86_sse2_ucomieq_sd:
9190 case Intrinsic::x86_sse2_ucomilt_sd:
9191 case Intrinsic::x86_sse2_ucomile_sd:
9192 case Intrinsic::x86_sse2_ucomigt_sd:
9193 case Intrinsic::x86_sse2_ucomige_sd:
9194 case Intrinsic::x86_sse2_ucomineq_sd: {
9196 ISD::CondCode CC = ISD::SETCC_INVALID;
9199 case Intrinsic::x86_sse_comieq_ss:
9200 case Intrinsic::x86_sse2_comieq_sd:
9204 case Intrinsic::x86_sse_comilt_ss:
9205 case Intrinsic::x86_sse2_comilt_sd:
9209 case Intrinsic::x86_sse_comile_ss:
9210 case Intrinsic::x86_sse2_comile_sd:
9214 case Intrinsic::x86_sse_comigt_ss:
9215 case Intrinsic::x86_sse2_comigt_sd:
9219 case Intrinsic::x86_sse_comige_ss:
9220 case Intrinsic::x86_sse2_comige_sd:
9224 case Intrinsic::x86_sse_comineq_ss:
9225 case Intrinsic::x86_sse2_comineq_sd:
9229 case Intrinsic::x86_sse_ucomieq_ss:
9230 case Intrinsic::x86_sse2_ucomieq_sd:
9231 Opc = X86ISD::UCOMI;
9234 case Intrinsic::x86_sse_ucomilt_ss:
9235 case Intrinsic::x86_sse2_ucomilt_sd:
9236 Opc = X86ISD::UCOMI;
9239 case Intrinsic::x86_sse_ucomile_ss:
9240 case Intrinsic::x86_sse2_ucomile_sd:
9241 Opc = X86ISD::UCOMI;
9244 case Intrinsic::x86_sse_ucomigt_ss:
9245 case Intrinsic::x86_sse2_ucomigt_sd:
9246 Opc = X86ISD::UCOMI;
9249 case Intrinsic::x86_sse_ucomige_ss:
9250 case Intrinsic::x86_sse2_ucomige_sd:
9251 Opc = X86ISD::UCOMI;
9254 case Intrinsic::x86_sse_ucomineq_ss:
9255 case Intrinsic::x86_sse2_ucomineq_sd:
9256 Opc = X86ISD::UCOMI;
9261 SDValue LHS = Op.getOperand(1);
9262 SDValue RHS = Op.getOperand(2);
9263 unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9264 assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9265 SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9266 SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9267 DAG.getConstant(X86CC, MVT::i8), Cond);
9268 return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9270 // Arithmetic intrinsics.
9271 case Intrinsic::x86_sse3_hadd_ps:
9272 case Intrinsic::x86_sse3_hadd_pd:
9273 case Intrinsic::x86_avx_hadd_ps_256:
9274 case Intrinsic::x86_avx_hadd_pd_256:
9275 return DAG.getNode(X86ISD::FHADD, dl, Op.getValueType(),
9276 Op.getOperand(1), Op.getOperand(2));
9277 case Intrinsic::x86_sse3_hsub_ps:
9278 case Intrinsic::x86_sse3_hsub_pd:
9279 case Intrinsic::x86_avx_hsub_ps_256:
9280 case Intrinsic::x86_avx_hsub_pd_256:
9281 return DAG.getNode(X86ISD::FHSUB, dl, Op.getValueType(),
9282 Op.getOperand(1), Op.getOperand(2));
9283 case Intrinsic::x86_avx2_psllv_d:
9284 case Intrinsic::x86_avx2_psllv_q:
9285 case Intrinsic::x86_avx2_psllv_d_256:
9286 case Intrinsic::x86_avx2_psllv_q_256:
9287 return DAG.getNode(ISD::SHL, dl, Op.getValueType(),
9288 Op.getOperand(1), Op.getOperand(2));
9289 case Intrinsic::x86_avx2_psrlv_d:
9290 case Intrinsic::x86_avx2_psrlv_q:
9291 case Intrinsic::x86_avx2_psrlv_d_256:
9292 case Intrinsic::x86_avx2_psrlv_q_256:
9293 return DAG.getNode(ISD::SRL, dl, Op.getValueType(),
9294 Op.getOperand(1), Op.getOperand(2));
9295 case Intrinsic::x86_avx2_psrav_d:
9296 case Intrinsic::x86_avx2_psrav_d_256:
9297 return DAG.getNode(ISD::SRA, dl, Op.getValueType(),
9298 Op.getOperand(1), Op.getOperand(2));
9300 // ptest and testp intrinsics. The intrinsic these come from are designed to
9301 // return an integer value, not just an instruction so lower it to the ptest
9302 // or testp pattern and a setcc for the result.
9303 case Intrinsic::x86_sse41_ptestz:
9304 case Intrinsic::x86_sse41_ptestc:
9305 case Intrinsic::x86_sse41_ptestnzc:
9306 case Intrinsic::x86_avx_ptestz_256:
9307 case Intrinsic::x86_avx_ptestc_256:
9308 case Intrinsic::x86_avx_ptestnzc_256:
9309 case Intrinsic::x86_avx_vtestz_ps:
9310 case Intrinsic::x86_avx_vtestc_ps:
9311 case Intrinsic::x86_avx_vtestnzc_ps:
9312 case Intrinsic::x86_avx_vtestz_pd:
9313 case Intrinsic::x86_avx_vtestc_pd:
9314 case Intrinsic::x86_avx_vtestnzc_pd:
9315 case Intrinsic::x86_avx_vtestz_ps_256:
9316 case Intrinsic::x86_avx_vtestc_ps_256:
9317 case Intrinsic::x86_avx_vtestnzc_ps_256:
9318 case Intrinsic::x86_avx_vtestz_pd_256:
9319 case Intrinsic::x86_avx_vtestc_pd_256:
9320 case Intrinsic::x86_avx_vtestnzc_pd_256: {
9321 bool IsTestPacked = false;
9324 default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9325 case Intrinsic::x86_avx_vtestz_ps:
9326 case Intrinsic::x86_avx_vtestz_pd:
9327 case Intrinsic::x86_avx_vtestz_ps_256:
9328 case Intrinsic::x86_avx_vtestz_pd_256:
9329 IsTestPacked = true; // Fallthrough
9330 case Intrinsic::x86_sse41_ptestz:
9331 case Intrinsic::x86_avx_ptestz_256:
9333 X86CC = X86::COND_E;
9335 case Intrinsic::x86_avx_vtestc_ps:
9336 case Intrinsic::x86_avx_vtestc_pd:
9337 case Intrinsic::x86_avx_vtestc_ps_256:
9338 case Intrinsic::x86_avx_vtestc_pd_256:
9339 IsTestPacked = true; // Fallthrough
9340 case Intrinsic::x86_sse41_ptestc:
9341 case Intrinsic::x86_avx_ptestc_256:
9343 X86CC = X86::COND_B;
9345 case Intrinsic::x86_avx_vtestnzc_ps:
9346 case Intrinsic::x86_avx_vtestnzc_pd:
9347 case Intrinsic::x86_avx_vtestnzc_ps_256:
9348 case Intrinsic::x86_avx_vtestnzc_pd_256:
9349 IsTestPacked = true; // Fallthrough
9350 case Intrinsic::x86_sse41_ptestnzc:
9351 case Intrinsic::x86_avx_ptestnzc_256:
9353 X86CC = X86::COND_A;
9357 SDValue LHS = Op.getOperand(1);
9358 SDValue RHS = Op.getOperand(2);
9359 unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9360 SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9361 SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9362 SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9363 return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9366 // Fix vector shift instructions where the last operand is a non-immediate
9368 case Intrinsic::x86_avx2_pslli_w:
9369 case Intrinsic::x86_avx2_pslli_d:
9370 case Intrinsic::x86_avx2_pslli_q:
9371 case Intrinsic::x86_avx2_psrli_w:
9372 case Intrinsic::x86_avx2_psrli_d:
9373 case Intrinsic::x86_avx2_psrli_q:
9374 case Intrinsic::x86_avx2_psrai_w:
9375 case Intrinsic::x86_avx2_psrai_d:
9376 case Intrinsic::x86_sse2_pslli_w:
9377 case Intrinsic::x86_sse2_pslli_d:
9378 case Intrinsic::x86_sse2_pslli_q:
9379 case Intrinsic::x86_sse2_psrli_w:
9380 case Intrinsic::x86_sse2_psrli_d:
9381 case Intrinsic::x86_sse2_psrli_q:
9382 case Intrinsic::x86_sse2_psrai_w:
9383 case Intrinsic::x86_sse2_psrai_d:
9384 case Intrinsic::x86_mmx_pslli_w:
9385 case Intrinsic::x86_mmx_pslli_d:
9386 case Intrinsic::x86_mmx_pslli_q:
9387 case Intrinsic::x86_mmx_psrli_w:
9388 case Intrinsic::x86_mmx_psrli_d:
9389 case Intrinsic::x86_mmx_psrli_q:
9390 case Intrinsic::x86_mmx_psrai_w:
9391 case Intrinsic::x86_mmx_psrai_d: {
9392 SDValue ShAmt = Op.getOperand(2);
9393 if (isa<ConstantSDNode>(ShAmt))
9396 unsigned NewIntNo = 0;
9397 EVT ShAmtVT = MVT::v4i32;
9399 case Intrinsic::x86_sse2_pslli_w:
9400 NewIntNo = Intrinsic::x86_sse2_psll_w;
9402 case Intrinsic::x86_sse2_pslli_d:
9403 NewIntNo = Intrinsic::x86_sse2_psll_d;
9405 case Intrinsic::x86_sse2_pslli_q:
9406 NewIntNo = Intrinsic::x86_sse2_psll_q;
9408 case Intrinsic::x86_sse2_psrli_w:
9409 NewIntNo = Intrinsic::x86_sse2_psrl_w;
9411 case Intrinsic::x86_sse2_psrli_d:
9412 NewIntNo = Intrinsic::x86_sse2_psrl_d;
9414 case Intrinsic::x86_sse2_psrli_q:
9415 NewIntNo = Intrinsic::x86_sse2_psrl_q;
9417 case Intrinsic::x86_sse2_psrai_w:
9418 NewIntNo = Intrinsic::x86_sse2_psra_w;
9420 case Intrinsic::x86_sse2_psrai_d:
9421 NewIntNo = Intrinsic::x86_sse2_psra_d;
9423 case Intrinsic::x86_avx2_pslli_w:
9424 NewIntNo = Intrinsic::x86_avx2_psll_w;
9426 case Intrinsic::x86_avx2_pslli_d:
9427 NewIntNo = Intrinsic::x86_avx2_psll_d;
9429 case Intrinsic::x86_avx2_pslli_q:
9430 NewIntNo = Intrinsic::x86_avx2_psll_q;
9432 case Intrinsic::x86_avx2_psrli_w:
9433 NewIntNo = Intrinsic::x86_avx2_psrl_w;
9435 case Intrinsic::x86_avx2_psrli_d:
9436 NewIntNo = Intrinsic::x86_avx2_psrl_d;
9438 case Intrinsic::x86_avx2_psrli_q:
9439 NewIntNo = Intrinsic::x86_avx2_psrl_q;
9441 case Intrinsic::x86_avx2_psrai_w:
9442 NewIntNo = Intrinsic::x86_avx2_psra_w;
9444 case Intrinsic::x86_avx2_psrai_d:
9445 NewIntNo = Intrinsic::x86_avx2_psra_d;
9448 ShAmtVT = MVT::v2i32;
9450 case Intrinsic::x86_mmx_pslli_w:
9451 NewIntNo = Intrinsic::x86_mmx_psll_w;
9453 case Intrinsic::x86_mmx_pslli_d:
9454 NewIntNo = Intrinsic::x86_mmx_psll_d;
9456 case Intrinsic::x86_mmx_pslli_q:
9457 NewIntNo = Intrinsic::x86_mmx_psll_q;
9459 case Intrinsic::x86_mmx_psrli_w:
9460 NewIntNo = Intrinsic::x86_mmx_psrl_w;
9462 case Intrinsic::x86_mmx_psrli_d:
9463 NewIntNo = Intrinsic::x86_mmx_psrl_d;
9465 case Intrinsic::x86_mmx_psrli_q:
9466 NewIntNo = Intrinsic::x86_mmx_psrl_q;
9468 case Intrinsic::x86_mmx_psrai_w:
9469 NewIntNo = Intrinsic::x86_mmx_psra_w;
9471 case Intrinsic::x86_mmx_psrai_d:
9472 NewIntNo = Intrinsic::x86_mmx_psra_d;
9474 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
9480 // The vector shift intrinsics with scalars uses 32b shift amounts but
9481 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
9485 ShOps[1] = DAG.getConstant(0, MVT::i32);
9486 if (ShAmtVT == MVT::v4i32) {
9487 ShOps[2] = DAG.getUNDEF(MVT::i32);
9488 ShOps[3] = DAG.getUNDEF(MVT::i32);
9489 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
9491 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
9492 // FIXME this must be lowered to get rid of the invalid type.
9495 EVT VT = Op.getValueType();
9496 ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9497 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9498 DAG.getConstant(NewIntNo, MVT::i32),
9499 Op.getOperand(1), ShAmt);
9504 SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
9505 SelectionDAG &DAG) const {
9506 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9507 MFI->setReturnAddressIsTaken(true);
9509 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9510 DebugLoc dl = Op.getDebugLoc();
9513 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
9515 DAG.getConstant(TD->getPointerSize(),
9516 Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9517 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9518 DAG.getNode(ISD::ADD, dl, getPointerTy(),
9520 MachinePointerInfo(), false, false, false, 0);
9523 // Just load the return address.
9524 SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
9525 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9526 RetAddrFI, MachinePointerInfo(), false, false, false, 0);
9529 SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
9530 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9531 MFI->setFrameAddressIsTaken(true);
9533 EVT VT = Op.getValueType();
9534 DebugLoc dl = Op.getDebugLoc(); // FIXME probably not meaningful
9535 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9536 unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
9537 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
9539 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
9540 MachinePointerInfo(),
9541 false, false, false, 0);
9545 SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
9546 SelectionDAG &DAG) const {
9547 return DAG.getIntPtrConstant(2*TD->getPointerSize());
9550 SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
9551 MachineFunction &MF = DAG.getMachineFunction();
9552 SDValue Chain = Op.getOperand(0);
9553 SDValue Offset = Op.getOperand(1);
9554 SDValue Handler = Op.getOperand(2);
9555 DebugLoc dl = Op.getDebugLoc();
9557 SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
9558 Subtarget->is64Bit() ? X86::RBP : X86::EBP,
9560 unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
9562 SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
9563 DAG.getIntPtrConstant(TD->getPointerSize()));
9564 StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
9565 Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
9567 Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
9568 MF.getRegInfo().addLiveOut(StoreAddrReg);
9570 return DAG.getNode(X86ISD::EH_RETURN, dl,
9572 Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
9575 SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
9576 SelectionDAG &DAG) const {
9577 return Op.getOperand(0);
9580 SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
9581 SelectionDAG &DAG) const {
9582 SDValue Root = Op.getOperand(0);
9583 SDValue Trmp = Op.getOperand(1); // trampoline
9584 SDValue FPtr = Op.getOperand(2); // nested function
9585 SDValue Nest = Op.getOperand(3); // 'nest' parameter value
9586 DebugLoc dl = Op.getDebugLoc();
9588 const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9590 if (Subtarget->is64Bit()) {
9591 SDValue OutChains[6];
9593 // Large code-model.
9594 const unsigned char JMP64r = 0xFF; // 64-bit jmp through register opcode.
9595 const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
9597 const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
9598 const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
9600 const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
9602 // Load the pointer to the nested function into R11.
9603 unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
9604 SDValue Addr = Trmp;
9605 OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9606 Addr, MachinePointerInfo(TrmpAddr),
9609 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9610 DAG.getConstant(2, MVT::i64));
9611 OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
9612 MachinePointerInfo(TrmpAddr, 2),
9615 // Load the 'nest' parameter value into R10.
9616 // R10 is specified in X86CallingConv.td
9617 OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
9618 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9619 DAG.getConstant(10, MVT::i64));
9620 OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9621 Addr, MachinePointerInfo(TrmpAddr, 10),
9624 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9625 DAG.getConstant(12, MVT::i64));
9626 OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
9627 MachinePointerInfo(TrmpAddr, 12),
9630 // Jump to the nested function.
9631 OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
9632 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9633 DAG.getConstant(20, MVT::i64));
9634 OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9635 Addr, MachinePointerInfo(TrmpAddr, 20),
9638 unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
9639 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9640 DAG.getConstant(22, MVT::i64));
9641 OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
9642 MachinePointerInfo(TrmpAddr, 22),
9645 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
9647 const Function *Func =
9648 cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
9649 CallingConv::ID CC = Func->getCallingConv();
9654 llvm_unreachable("Unsupported calling convention");
9655 case CallingConv::C:
9656 case CallingConv::X86_StdCall: {
9657 // Pass 'nest' parameter in ECX.
9658 // Must be kept in sync with X86CallingConv.td
9661 // Check that ECX wasn't needed by an 'inreg' parameter.
9662 FunctionType *FTy = Func->getFunctionType();
9663 const AttrListPtr &Attrs = Func->getAttributes();
9665 if (!Attrs.isEmpty() && !Func->isVarArg()) {
9666 unsigned InRegCount = 0;
9669 for (FunctionType::param_iterator I = FTy->param_begin(),
9670 E = FTy->param_end(); I != E; ++I, ++Idx)
9671 if (Attrs.paramHasAttr(Idx, Attribute::InReg))
9672 // FIXME: should only count parameters that are lowered to integers.
9673 InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
9675 if (InRegCount > 2) {
9676 report_fatal_error("Nest register in use - reduce number of inreg"
9682 case CallingConv::X86_FastCall:
9683 case CallingConv::X86_ThisCall:
9684 case CallingConv::Fast:
9685 // Pass 'nest' parameter in EAX.
9686 // Must be kept in sync with X86CallingConv.td
9691 SDValue OutChains[4];
9694 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9695 DAG.getConstant(10, MVT::i32));
9696 Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
9698 // This is storing the opcode for MOV32ri.
9699 const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
9700 const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
9701 OutChains[0] = DAG.getStore(Root, dl,
9702 DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
9703 Trmp, MachinePointerInfo(TrmpAddr),
9706 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9707 DAG.getConstant(1, MVT::i32));
9708 OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
9709 MachinePointerInfo(TrmpAddr, 1),
9712 const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
9713 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9714 DAG.getConstant(5, MVT::i32));
9715 OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
9716 MachinePointerInfo(TrmpAddr, 5),
9719 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9720 DAG.getConstant(6, MVT::i32));
9721 OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
9722 MachinePointerInfo(TrmpAddr, 6),
9725 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
9729 SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
9730 SelectionDAG &DAG) const {
9732 The rounding mode is in bits 11:10 of FPSR, and has the following
9739 FLT_ROUNDS, on the other hand, expects the following:
9746 To perform the conversion, we do:
9747 (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
9750 MachineFunction &MF = DAG.getMachineFunction();
9751 const TargetMachine &TM = MF.getTarget();
9752 const TargetFrameLowering &TFI = *TM.getFrameLowering();
9753 unsigned StackAlignment = TFI.getStackAlignment();
9754 EVT VT = Op.getValueType();
9755 DebugLoc DL = Op.getDebugLoc();
9757 // Save FP Control Word to stack slot
9758 int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
9759 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
9762 MachineMemOperand *MMO =
9763 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
9764 MachineMemOperand::MOStore, 2, 2);
9766 SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
9767 SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
9768 DAG.getVTList(MVT::Other),
9769 Ops, 2, MVT::i16, MMO);
9771 // Load FP Control Word from stack slot
9772 SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
9773 MachinePointerInfo(), false, false, false, 0);
9775 // Transform as necessary
9777 DAG.getNode(ISD::SRL, DL, MVT::i16,
9778 DAG.getNode(ISD::AND, DL, MVT::i16,
9779 CWD, DAG.getConstant(0x800, MVT::i16)),
9780 DAG.getConstant(11, MVT::i8));
9782 DAG.getNode(ISD::SRL, DL, MVT::i16,
9783 DAG.getNode(ISD::AND, DL, MVT::i16,
9784 CWD, DAG.getConstant(0x400, MVT::i16)),
9785 DAG.getConstant(9, MVT::i8));
9788 DAG.getNode(ISD::AND, DL, MVT::i16,
9789 DAG.getNode(ISD::ADD, DL, MVT::i16,
9790 DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
9791 DAG.getConstant(1, MVT::i16)),
9792 DAG.getConstant(3, MVT::i16));
9795 return DAG.getNode((VT.getSizeInBits() < 16 ?
9796 ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
9799 SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
9800 EVT VT = Op.getValueType();
9802 unsigned NumBits = VT.getSizeInBits();
9803 DebugLoc dl = Op.getDebugLoc();
9805 Op = Op.getOperand(0);
9806 if (VT == MVT::i8) {
9807 // Zero extend to i32 since there is not an i8 bsr.
9809 Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9812 // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
9813 SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9814 Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
9816 // If src is zero (i.e. bsr sets ZF), returns NumBits.
9819 DAG.getConstant(NumBits+NumBits-1, OpVT),
9820 DAG.getConstant(X86::COND_E, MVT::i8),
9823 Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9825 // Finally xor with NumBits-1.
9826 Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
9829 Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9833 SDValue X86TargetLowering::LowerCTLZ_ZERO_UNDEF(SDValue Op,
9834 SelectionDAG &DAG) const {
9835 EVT VT = Op.getValueType();
9837 unsigned NumBits = VT.getSizeInBits();
9838 DebugLoc dl = Op.getDebugLoc();
9840 Op = Op.getOperand(0);
9841 if (VT == MVT::i8) {
9842 // Zero extend to i32 since there is not an i8 bsr.
9844 Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9847 // Issue a bsr (scan bits in reverse).
9848 SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9849 Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
9851 // And xor with NumBits-1.
9852 Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
9855 Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9859 SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
9860 EVT VT = Op.getValueType();
9861 unsigned NumBits = VT.getSizeInBits();
9862 DebugLoc dl = Op.getDebugLoc();
9863 Op = Op.getOperand(0);
9865 // Issue a bsf (scan bits forward) which also sets EFLAGS.
9866 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
9867 Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
9869 // If src is zero (i.e. bsf sets ZF), returns NumBits.
9872 DAG.getConstant(NumBits, VT),
9873 DAG.getConstant(X86::COND_E, MVT::i8),
9876 return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
9879 // Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
9880 // ones, and then concatenate the result back.
9881 static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
9882 EVT VT = Op.getValueType();
9884 assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
9885 "Unsupported value type for operation");
9887 int NumElems = VT.getVectorNumElements();
9888 DebugLoc dl = Op.getDebugLoc();
9889 SDValue Idx0 = DAG.getConstant(0, MVT::i32);
9890 SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
9892 // Extract the LHS vectors
9893 SDValue LHS = Op.getOperand(0);
9894 SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
9895 SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
9897 // Extract the RHS vectors
9898 SDValue RHS = Op.getOperand(1);
9899 SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
9900 SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
9902 MVT EltVT = VT.getVectorElementType().getSimpleVT();
9903 EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9905 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9906 DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
9907 DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
9910 SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
9911 assert(Op.getValueType().getSizeInBits() == 256 &&
9912 Op.getValueType().isInteger() &&
9913 "Only handle AVX 256-bit vector integer operation");
9914 return Lower256IntArith(Op, DAG);
9917 SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
9918 assert(Op.getValueType().getSizeInBits() == 256 &&
9919 Op.getValueType().isInteger() &&
9920 "Only handle AVX 256-bit vector integer operation");
9921 return Lower256IntArith(Op, DAG);
9924 SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
9925 EVT VT = Op.getValueType();
9927 // Decompose 256-bit ops into smaller 128-bit ops.
9928 if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
9929 return Lower256IntArith(Op, DAG);
9931 DebugLoc dl = Op.getDebugLoc();
9933 SDValue A = Op.getOperand(0);
9934 SDValue B = Op.getOperand(1);
9936 if (VT == MVT::v4i64) {
9937 assert(Subtarget->hasAVX2() && "Lowering v4i64 multiply requires AVX2");
9939 // ulong2 Ahi = __builtin_ia32_psrlqi256( a, 32);
9940 // ulong2 Bhi = __builtin_ia32_psrlqi256( b, 32);
9941 // ulong2 AloBlo = __builtin_ia32_pmuludq256( a, b );
9942 // ulong2 AloBhi = __builtin_ia32_pmuludq256( a, Bhi );
9943 // ulong2 AhiBlo = __builtin_ia32_pmuludq256( Ahi, b );
9945 // AloBhi = __builtin_ia32_psllqi256( AloBhi, 32 );
9946 // AhiBlo = __builtin_ia32_psllqi256( AhiBlo, 32 );
9947 // return AloBlo + AloBhi + AhiBlo;
9949 SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9950 DAG.getConstant(Intrinsic::x86_avx2_psrli_q, MVT::i32),
9951 A, DAG.getConstant(32, MVT::i32));
9952 SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9953 DAG.getConstant(Intrinsic::x86_avx2_psrli_q, MVT::i32),
9954 B, DAG.getConstant(32, MVT::i32));
9955 SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9956 DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
9958 SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9959 DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
9961 SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9962 DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
9964 AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9965 DAG.getConstant(Intrinsic::x86_avx2_pslli_q, MVT::i32),
9966 AloBhi, DAG.getConstant(32, MVT::i32));
9967 AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9968 DAG.getConstant(Intrinsic::x86_avx2_pslli_q, MVT::i32),
9969 AhiBlo, DAG.getConstant(32, MVT::i32));
9970 SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
9971 Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
9975 assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
9977 // ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
9978 // ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
9979 // ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
9980 // ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
9981 // ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
9983 // AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
9984 // AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
9985 // return AloBlo + AloBhi + AhiBlo;
9987 SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9988 DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9989 A, DAG.getConstant(32, MVT::i32));
9990 SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9991 DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9992 B, DAG.getConstant(32, MVT::i32));
9993 SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9994 DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9996 SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9997 DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9999 SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10000 DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
10002 AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10003 DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
10004 AloBhi, DAG.getConstant(32, MVT::i32));
10005 AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10006 DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
10007 AhiBlo, DAG.getConstant(32, MVT::i32));
10008 SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10009 Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10013 SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
10015 EVT VT = Op.getValueType();
10016 DebugLoc dl = Op.getDebugLoc();
10017 SDValue R = Op.getOperand(0);
10018 SDValue Amt = Op.getOperand(1);
10019 LLVMContext *Context = DAG.getContext();
10021 if (!Subtarget->hasSSE2())
10024 // Optimize shl/srl/sra with constant shift amount.
10025 if (isSplatVector(Amt.getNode())) {
10026 SDValue SclrAmt = Amt->getOperand(0);
10027 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
10028 uint64_t ShiftAmt = C->getZExtValue();
10030 if (VT == MVT::v16i8 && Op.getOpcode() == ISD::SHL) {
10031 // Make a large shift.
10033 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10034 DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10035 R, DAG.getConstant(ShiftAmt, MVT::i32));
10036 // Zero out the rightmost bits.
10037 SmallVector<SDValue, 16> V(16, DAG.getConstant(uint8_t(-1U << ShiftAmt),
10039 return DAG.getNode(ISD::AND, dl, VT, SHL,
10040 DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10043 if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SHL)
10044 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10045 DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
10046 R, DAG.getConstant(ShiftAmt, MVT::i32));
10048 if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SHL)
10049 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10050 DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
10051 R, DAG.getConstant(ShiftAmt, MVT::i32));
10053 if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SHL)
10054 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10055 DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10056 R, DAG.getConstant(ShiftAmt, MVT::i32));
10058 if (VT == MVT::v16i8 && Op.getOpcode() == ISD::SRL) {
10059 // Make a large shift.
10061 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10062 DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
10063 R, DAG.getConstant(ShiftAmt, MVT::i32));
10064 // Zero out the leftmost bits.
10065 SmallVector<SDValue, 16> V(16, DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10067 return DAG.getNode(ISD::AND, dl, VT, SRL,
10068 DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10071 if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SRL)
10072 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10073 DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
10074 R, DAG.getConstant(ShiftAmt, MVT::i32));
10076 if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRL)
10077 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10078 DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
10079 R, DAG.getConstant(ShiftAmt, MVT::i32));
10081 if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRL)
10082 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10083 DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
10084 R, DAG.getConstant(ShiftAmt, MVT::i32));
10086 if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRA)
10087 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10088 DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
10089 R, DAG.getConstant(ShiftAmt, MVT::i32));
10091 if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRA)
10092 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10093 DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
10094 R, DAG.getConstant(ShiftAmt, MVT::i32));
10096 if (VT == MVT::v16i8 && Op.getOpcode() == ISD::SRA) {
10097 if (ShiftAmt == 7) {
10098 // R s>> 7 === R s< 0
10099 SDValue Zeros = getZeroVector(VT, /* HasSSE2 */true,
10100 /* HasAVX2 */false, DAG, dl);
10101 return DAG.getNode(X86ISD::PCMPGTB, dl, VT, Zeros, R);
10104 // R s>> a === ((R u>> a) ^ m) - m
10105 SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10106 SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
10108 SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
10109 Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10110 Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10114 if (Subtarget->hasAVX2() && VT == MVT::v32i8) {
10115 if (Op.getOpcode() == ISD::SHL) {
10116 // Make a large shift.
10118 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10119 DAG.getConstant(Intrinsic::x86_avx2_pslli_w, MVT::i32),
10120 R, DAG.getConstant(ShiftAmt, MVT::i32));
10121 // Zero out the rightmost bits.
10122 SmallVector<SDValue, 32> V(32, DAG.getConstant(uint8_t(-1U << ShiftAmt),
10124 return DAG.getNode(ISD::AND, dl, VT, SHL,
10125 DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10127 if (Op.getOpcode() == ISD::SRL) {
10128 // Make a large shift.
10130 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10131 DAG.getConstant(Intrinsic::x86_avx2_psrli_w, MVT::i32),
10132 R, DAG.getConstant(ShiftAmt, MVT::i32));
10133 // Zero out the leftmost bits.
10134 SmallVector<SDValue, 32> V(32, DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10136 return DAG.getNode(ISD::AND, dl, VT, SRL,
10137 DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10139 if (Op.getOpcode() == ISD::SRA) {
10140 if (ShiftAmt == 7) {
10141 // R s>> 7 === R s< 0
10142 SDValue Zeros = getZeroVector(VT, true /* HasSSE2 */,
10143 true /* HasAVX2 */, DAG, dl);
10144 return DAG.getNode(X86ISD::PCMPGTB, dl, VT, Zeros, R);
10147 // R s>> a === ((R u>> a) ^ m) - m
10148 SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10149 SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
10151 SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
10152 Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10153 Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10160 // Lower SHL with variable shift amount.
10161 if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
10162 Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10163 DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
10164 Op.getOperand(1), DAG.getConstant(23, MVT::i32));
10166 ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
10168 std::vector<Constant*> CV(4, CI);
10169 Constant *C = ConstantVector::get(CV);
10170 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10171 SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10172 MachinePointerInfo::getConstantPool(),
10173 false, false, false, 16);
10175 Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
10176 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
10177 Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
10178 return DAG.getNode(ISD::MUL, dl, VT, Op, R);
10180 if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
10181 assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
10184 Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10185 DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10186 Op.getOperand(1), DAG.getConstant(5, MVT::i32));
10188 // Turn 'a' into a mask suitable for VSELECT
10189 SDValue VSelM = DAG.getConstant(0x80, VT);
10190 SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10191 OpVSel = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10192 DAG.getConstant(Intrinsic::x86_sse2_pcmpeq_b, MVT::i32),
10195 SDValue CM1 = DAG.getConstant(0x0f, VT);
10196 SDValue CM2 = DAG.getConstant(0x3f, VT);
10198 // r = VSELECT(r, psllw(r & (char16)15, 4), a);
10199 SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
10200 M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10201 DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
10202 DAG.getConstant(4, MVT::i32));
10203 R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10206 Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10207 OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10208 OpVSel = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10209 DAG.getConstant(Intrinsic::x86_sse2_pcmpeq_b, MVT::i32),
10212 // r = VSELECT(r, psllw(r & (char16)63, 2), a);
10213 M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
10214 M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10215 DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
10216 DAG.getConstant(2, MVT::i32));
10217 R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10220 Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10221 OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10222 OpVSel = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10223 DAG.getConstant(Intrinsic::x86_sse2_pcmpeq_b, MVT::i32),
10226 // return VSELECT(r, r+r, a);
10227 R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
10228 DAG.getNode(ISD::ADD, dl, VT, R, R), R);
10232 // Decompose 256-bit shifts into smaller 128-bit shifts.
10233 if (VT.getSizeInBits() == 256) {
10234 int NumElems = VT.getVectorNumElements();
10235 MVT EltVT = VT.getVectorElementType().getSimpleVT();
10236 EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10238 // Extract the two vectors
10239 SDValue V1 = Extract128BitVector(R, DAG.getConstant(0, MVT::i32), DAG, dl);
10240 SDValue V2 = Extract128BitVector(R, DAG.getConstant(NumElems/2, MVT::i32),
10243 // Recreate the shift amount vectors
10244 SDValue Amt1, Amt2;
10245 if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
10246 // Constant shift amount
10247 SmallVector<SDValue, 4> Amt1Csts;
10248 SmallVector<SDValue, 4> Amt2Csts;
10249 for (int i = 0; i < NumElems/2; ++i)
10250 Amt1Csts.push_back(Amt->getOperand(i));
10251 for (int i = NumElems/2; i < NumElems; ++i)
10252 Amt2Csts.push_back(Amt->getOperand(i));
10254 Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10255 &Amt1Csts[0], NumElems/2);
10256 Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10257 &Amt2Csts[0], NumElems/2);
10259 // Variable shift amount
10260 Amt1 = Extract128BitVector(Amt, DAG.getConstant(0, MVT::i32), DAG, dl);
10261 Amt2 = Extract128BitVector(Amt, DAG.getConstant(NumElems/2, MVT::i32),
10265 // Issue new vector shifts for the smaller types
10266 V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
10267 V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
10269 // Concatenate the result back
10270 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
10276 SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
10277 // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
10278 // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
10279 // looks for this combo and may remove the "setcc" instruction if the "setcc"
10280 // has only one use.
10281 SDNode *N = Op.getNode();
10282 SDValue LHS = N->getOperand(0);
10283 SDValue RHS = N->getOperand(1);
10284 unsigned BaseOp = 0;
10286 DebugLoc DL = Op.getDebugLoc();
10287 switch (Op.getOpcode()) {
10288 default: llvm_unreachable("Unknown ovf instruction!");
10290 // A subtract of one will be selected as a INC. Note that INC doesn't
10291 // set CF, so we can't do this for UADDO.
10292 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10294 BaseOp = X86ISD::INC;
10295 Cond = X86::COND_O;
10298 BaseOp = X86ISD::ADD;
10299 Cond = X86::COND_O;
10302 BaseOp = X86ISD::ADD;
10303 Cond = X86::COND_B;
10306 // A subtract of one will be selected as a DEC. Note that DEC doesn't
10307 // set CF, so we can't do this for USUBO.
10308 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10310 BaseOp = X86ISD::DEC;
10311 Cond = X86::COND_O;
10314 BaseOp = X86ISD::SUB;
10315 Cond = X86::COND_O;
10318 BaseOp = X86ISD::SUB;
10319 Cond = X86::COND_B;
10322 BaseOp = X86ISD::SMUL;
10323 Cond = X86::COND_O;
10325 case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
10326 SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
10328 SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
10331 DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10332 DAG.getConstant(X86::COND_O, MVT::i32),
10333 SDValue(Sum.getNode(), 2));
10335 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10339 // Also sets EFLAGS.
10340 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
10341 SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
10344 DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
10345 DAG.getConstant(Cond, MVT::i32),
10346 SDValue(Sum.getNode(), 1));
10348 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10351 SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
10352 SelectionDAG &DAG) const {
10353 DebugLoc dl = Op.getDebugLoc();
10354 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
10355 EVT VT = Op.getValueType();
10357 if (Subtarget->hasSSE2() && VT.isVector()) {
10358 unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
10359 ExtraVT.getScalarType().getSizeInBits();
10360 SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
10362 unsigned SHLIntrinsicsID = 0;
10363 unsigned SRAIntrinsicsID = 0;
10364 switch (VT.getSimpleVT().SimpleTy) {
10368 SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_d;
10369 SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_d;
10372 SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_w;
10373 SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_w;
10377 if (!Subtarget->hasAVX())
10379 if (!Subtarget->hasAVX2()) {
10380 // needs to be split
10381 int NumElems = VT.getVectorNumElements();
10382 SDValue Idx0 = DAG.getConstant(0, MVT::i32);
10383 SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
10385 // Extract the LHS vectors
10386 SDValue LHS = Op.getOperand(0);
10387 SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
10388 SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
10390 MVT EltVT = VT.getVectorElementType().getSimpleVT();
10391 EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10393 EVT ExtraEltVT = ExtraVT.getVectorElementType();
10394 int ExtraNumElems = ExtraVT.getVectorNumElements();
10395 ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
10397 SDValue Extra = DAG.getValueType(ExtraVT);
10399 LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
10400 LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
10402 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);;
10404 if (VT == MVT::v8i32) {
10405 SHLIntrinsicsID = Intrinsic::x86_avx2_pslli_d;
10406 SRAIntrinsicsID = Intrinsic::x86_avx2_psrai_d;
10408 SHLIntrinsicsID = Intrinsic::x86_avx2_pslli_w;
10409 SRAIntrinsicsID = Intrinsic::x86_avx2_psrai_w;
10413 SDValue Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10414 DAG.getConstant(SHLIntrinsicsID, MVT::i32),
10415 Op.getOperand(0), ShAmt);
10417 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10418 DAG.getConstant(SRAIntrinsicsID, MVT::i32),
10426 SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
10427 DebugLoc dl = Op.getDebugLoc();
10429 // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10430 // There isn't any reason to disable it if the target processor supports it.
10431 if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
10432 SDValue Chain = Op.getOperand(0);
10433 SDValue Zero = DAG.getConstant(0, MVT::i32);
10435 DAG.getRegister(X86::ESP, MVT::i32), // Base
10436 DAG.getTargetConstant(1, MVT::i8), // Scale
10437 DAG.getRegister(0, MVT::i32), // Index
10438 DAG.getTargetConstant(0, MVT::i32), // Disp
10439 DAG.getRegister(0, MVT::i32), // Segment.
10444 DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10445 array_lengthof(Ops));
10446 return SDValue(Res, 0);
10449 unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10451 return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10453 unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10454 unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10455 unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10456 unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10458 // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10459 if (!Op1 && !Op2 && !Op3 && Op4)
10460 return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10462 // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10463 if (Op1 && !Op2 && !Op3 && !Op4)
10464 return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10466 // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10468 return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10471 SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10472 SelectionDAG &DAG) const {
10473 DebugLoc dl = Op.getDebugLoc();
10474 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10475 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10476 SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10477 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10479 // The only fence that needs an instruction is a sequentially-consistent
10480 // cross-thread fence.
10481 if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
10482 // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
10483 // no-sse2). There isn't any reason to disable it if the target processor
10485 if (Subtarget->hasSSE2() || Subtarget->is64Bit())
10486 return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10488 SDValue Chain = Op.getOperand(0);
10489 SDValue Zero = DAG.getConstant(0, MVT::i32);
10491 DAG.getRegister(X86::ESP, MVT::i32), // Base
10492 DAG.getTargetConstant(1, MVT::i8), // Scale
10493 DAG.getRegister(0, MVT::i32), // Index
10494 DAG.getTargetConstant(0, MVT::i32), // Disp
10495 DAG.getRegister(0, MVT::i32), // Segment.
10500 DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10501 array_lengthof(Ops));
10502 return SDValue(Res, 0);
10505 // MEMBARRIER is a compiler barrier; it codegens to a no-op.
10506 return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10510 SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10511 EVT T = Op.getValueType();
10512 DebugLoc DL = Op.getDebugLoc();
10515 switch(T.getSimpleVT().SimpleTy) {
10517 assert(false && "Invalid value type!");
10518 case MVT::i8: Reg = X86::AL; size = 1; break;
10519 case MVT::i16: Reg = X86::AX; size = 2; break;
10520 case MVT::i32: Reg = X86::EAX; size = 4; break;
10522 assert(Subtarget->is64Bit() && "Node not type legal!");
10523 Reg = X86::RAX; size = 8;
10526 SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
10527 Op.getOperand(2), SDValue());
10528 SDValue Ops[] = { cpIn.getValue(0),
10531 DAG.getTargetConstant(size, MVT::i8),
10532 cpIn.getValue(1) };
10533 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10534 MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
10535 SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
10538 DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
10542 SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
10543 SelectionDAG &DAG) const {
10544 assert(Subtarget->is64Bit() && "Result not type legalized?");
10545 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10546 SDValue TheChain = Op.getOperand(0);
10547 DebugLoc dl = Op.getDebugLoc();
10548 SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10549 SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
10550 SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
10552 SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
10553 DAG.getConstant(32, MVT::i8));
10555 DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
10558 return DAG.getMergeValues(Ops, 2, dl);
10561 SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
10562 SelectionDAG &DAG) const {
10563 EVT SrcVT = Op.getOperand(0).getValueType();
10564 EVT DstVT = Op.getValueType();
10565 assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
10566 Subtarget->hasMMX() && "Unexpected custom BITCAST");
10567 assert((DstVT == MVT::i64 ||
10568 (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
10569 "Unexpected custom BITCAST");
10570 // i64 <=> MMX conversions are Legal.
10571 if (SrcVT==MVT::i64 && DstVT.isVector())
10573 if (DstVT==MVT::i64 && SrcVT.isVector())
10575 // MMX <=> MMX conversions are Legal.
10576 if (SrcVT.isVector() && DstVT.isVector())
10578 // All other conversions need to be expanded.
10582 SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
10583 SDNode *Node = Op.getNode();
10584 DebugLoc dl = Node->getDebugLoc();
10585 EVT T = Node->getValueType(0);
10586 SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
10587 DAG.getConstant(0, T), Node->getOperand(2));
10588 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
10589 cast<AtomicSDNode>(Node)->getMemoryVT(),
10590 Node->getOperand(0),
10591 Node->getOperand(1), negOp,
10592 cast<AtomicSDNode>(Node)->getSrcValue(),
10593 cast<AtomicSDNode>(Node)->getAlignment(),
10594 cast<AtomicSDNode>(Node)->getOrdering(),
10595 cast<AtomicSDNode>(Node)->getSynchScope());
10598 static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
10599 SDNode *Node = Op.getNode();
10600 DebugLoc dl = Node->getDebugLoc();
10601 EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10603 // Convert seq_cst store -> xchg
10604 // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
10605 // FIXME: On 32-bit, store -> fist or movq would be more efficient
10606 // (The only way to get a 16-byte store is cmpxchg16b)
10607 // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
10608 if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
10609 !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10610 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
10611 cast<AtomicSDNode>(Node)->getMemoryVT(),
10612 Node->getOperand(0),
10613 Node->getOperand(1), Node->getOperand(2),
10614 cast<AtomicSDNode>(Node)->getMemOperand(),
10615 cast<AtomicSDNode>(Node)->getOrdering(),
10616 cast<AtomicSDNode>(Node)->getSynchScope());
10617 return Swap.getValue(1);
10619 // Other atomic stores have a simple pattern.
10623 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
10624 EVT VT = Op.getNode()->getValueType(0);
10626 // Let legalize expand this if it isn't a legal type yet.
10627 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10630 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10633 bool ExtraOp = false;
10634 switch (Op.getOpcode()) {
10635 default: assert(0 && "Invalid code");
10636 case ISD::ADDC: Opc = X86ISD::ADD; break;
10637 case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
10638 case ISD::SUBC: Opc = X86ISD::SUB; break;
10639 case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
10643 return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10645 return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10646 Op.getOperand(1), Op.getOperand(2));
10649 /// LowerOperation - Provide custom lowering hooks for some operations.
10651 SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10652 switch (Op.getOpcode()) {
10653 default: llvm_unreachable("Should not custom lower this!");
10654 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op,DAG);
10655 case ISD::MEMBARRIER: return LowerMEMBARRIER(Op,DAG);
10656 case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op,DAG);
10657 case ISD::ATOMIC_CMP_SWAP: return LowerCMP_SWAP(Op,DAG);
10658 case ISD::ATOMIC_LOAD_SUB: return LowerLOAD_SUB(Op,DAG);
10659 case ISD::ATOMIC_STORE: return LowerATOMIC_STORE(Op,DAG);
10660 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
10661 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
10662 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
10663 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10664 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
10665 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
10666 case ISD::INSERT_SUBVECTOR: return LowerINSERT_SUBVECTOR(Op, DAG);
10667 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
10668 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
10669 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
10670 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
10671 case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
10672 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
10673 case ISD::SHL_PARTS:
10674 case ISD::SRA_PARTS:
10675 case ISD::SRL_PARTS: return LowerShiftParts(Op, DAG);
10676 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
10677 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
10678 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
10679 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
10680 case ISD::FABS: return LowerFABS(Op, DAG);
10681 case ISD::FNEG: return LowerFNEG(Op, DAG);
10682 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
10683 case ISD::FGETSIGN: return LowerFGETSIGN(Op, DAG);
10684 case ISD::SETCC: return LowerSETCC(Op, DAG);
10685 case ISD::SELECT: return LowerSELECT(Op, DAG);
10686 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
10687 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
10688 case ISD::VASTART: return LowerVASTART(Op, DAG);
10689 case ISD::VAARG: return LowerVAARG(Op, DAG);
10690 case ISD::VACOPY: return LowerVACOPY(Op, DAG);
10691 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10692 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
10693 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
10694 case ISD::FRAME_TO_ARGS_OFFSET:
10695 return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
10696 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10697 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
10698 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG);
10699 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG);
10700 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
10701 case ISD::CTLZ: return LowerCTLZ(Op, DAG);
10702 case ISD::CTLZ_ZERO_UNDEF: return LowerCTLZ_ZERO_UNDEF(Op, DAG);
10703 case ISD::CTTZ: return LowerCTTZ(Op, DAG);
10704 case ISD::MUL: return LowerMUL(Op, DAG);
10707 case ISD::SHL: return LowerShift(Op, DAG);
10713 case ISD::UMULO: return LowerXALUO(Op, DAG);
10714 case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, DAG);
10715 case ISD::BITCAST: return LowerBITCAST(Op, DAG);
10719 case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
10720 case ISD::ADD: return LowerADD(Op, DAG);
10721 case ISD::SUB: return LowerSUB(Op, DAG);
10725 static void ReplaceATOMIC_LOAD(SDNode *Node,
10726 SmallVectorImpl<SDValue> &Results,
10727 SelectionDAG &DAG) {
10728 DebugLoc dl = Node->getDebugLoc();
10729 EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10731 // Convert wide load -> cmpxchg8b/cmpxchg16b
10732 // FIXME: On 32-bit, load -> fild or movq would be more efficient
10733 // (The only way to get a 16-byte load is cmpxchg16b)
10734 // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
10735 SDValue Zero = DAG.getConstant(0, VT);
10736 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
10737 Node->getOperand(0),
10738 Node->getOperand(1), Zero, Zero,
10739 cast<AtomicSDNode>(Node)->getMemOperand(),
10740 cast<AtomicSDNode>(Node)->getOrdering(),
10741 cast<AtomicSDNode>(Node)->getSynchScope());
10742 Results.push_back(Swap.getValue(0));
10743 Results.push_back(Swap.getValue(1));
10746 void X86TargetLowering::
10747 ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
10748 SelectionDAG &DAG, unsigned NewOp) const {
10749 DebugLoc dl = Node->getDebugLoc();
10750 assert (Node->getValueType(0) == MVT::i64 &&
10751 "Only know how to expand i64 atomics");
10753 SDValue Chain = Node->getOperand(0);
10754 SDValue In1 = Node->getOperand(1);
10755 SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10756 Node->getOperand(2), DAG.getIntPtrConstant(0));
10757 SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10758 Node->getOperand(2), DAG.getIntPtrConstant(1));
10759 SDValue Ops[] = { Chain, In1, In2L, In2H };
10760 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10762 DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
10763 cast<MemSDNode>(Node)->getMemOperand());
10764 SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
10765 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
10766 Results.push_back(Result.getValue(2));
10769 /// ReplaceNodeResults - Replace a node with an illegal result type
10770 /// with a new node built out of custom code.
10771 void X86TargetLowering::ReplaceNodeResults(SDNode *N,
10772 SmallVectorImpl<SDValue>&Results,
10773 SelectionDAG &DAG) const {
10774 DebugLoc dl = N->getDebugLoc();
10775 switch (N->getOpcode()) {
10777 assert(false && "Do not know how to custom type legalize this operation!");
10779 case ISD::SIGN_EXTEND_INREG:
10784 // We don't want to expand or promote these.
10786 case ISD::FP_TO_SINT: {
10787 std::pair<SDValue,SDValue> Vals =
10788 FP_TO_INTHelper(SDValue(N, 0), DAG, true);
10789 SDValue FIST = Vals.first, StackSlot = Vals.second;
10790 if (FIST.getNode() != 0) {
10791 EVT VT = N->getValueType(0);
10792 // Return a load from the stack slot.
10793 Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
10794 MachinePointerInfo(),
10795 false, false, false, 0));
10799 case ISD::READCYCLECOUNTER: {
10800 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10801 SDValue TheChain = N->getOperand(0);
10802 SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10803 SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
10805 SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
10807 // Use a buildpair to merge the two 32-bit values into a 64-bit one.
10808 SDValue Ops[] = { eax, edx };
10809 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
10810 Results.push_back(edx.getValue(1));
10813 case ISD::ATOMIC_CMP_SWAP: {
10814 EVT T = N->getValueType(0);
10815 assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
10816 bool Regs64bit = T == MVT::i128;
10817 EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
10818 SDValue cpInL, cpInH;
10819 cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10820 DAG.getConstant(0, HalfT));
10821 cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10822 DAG.getConstant(1, HalfT));
10823 cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
10824 Regs64bit ? X86::RAX : X86::EAX,
10826 cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
10827 Regs64bit ? X86::RDX : X86::EDX,
10828 cpInH, cpInL.getValue(1));
10829 SDValue swapInL, swapInH;
10830 swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10831 DAG.getConstant(0, HalfT));
10832 swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10833 DAG.getConstant(1, HalfT));
10834 swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
10835 Regs64bit ? X86::RBX : X86::EBX,
10836 swapInL, cpInH.getValue(1));
10837 swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
10838 Regs64bit ? X86::RCX : X86::ECX,
10839 swapInH, swapInL.getValue(1));
10840 SDValue Ops[] = { swapInH.getValue(0),
10842 swapInH.getValue(1) };
10843 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10844 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
10845 unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
10846 X86ISD::LCMPXCHG8_DAG;
10847 SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
10849 SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
10850 Regs64bit ? X86::RAX : X86::EAX,
10851 HalfT, Result.getValue(1));
10852 SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
10853 Regs64bit ? X86::RDX : X86::EDX,
10854 HalfT, cpOutL.getValue(2));
10855 SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
10856 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
10857 Results.push_back(cpOutH.getValue(1));
10860 case ISD::ATOMIC_LOAD_ADD:
10861 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
10863 case ISD::ATOMIC_LOAD_AND:
10864 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
10866 case ISD::ATOMIC_LOAD_NAND:
10867 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
10869 case ISD::ATOMIC_LOAD_OR:
10870 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
10872 case ISD::ATOMIC_LOAD_SUB:
10873 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
10875 case ISD::ATOMIC_LOAD_XOR:
10876 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
10878 case ISD::ATOMIC_SWAP:
10879 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
10881 case ISD::ATOMIC_LOAD:
10882 ReplaceATOMIC_LOAD(N, Results, DAG);
10886 const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
10888 default: return NULL;
10889 case X86ISD::BSF: return "X86ISD::BSF";
10890 case X86ISD::BSR: return "X86ISD::BSR";
10891 case X86ISD::SHLD: return "X86ISD::SHLD";
10892 case X86ISD::SHRD: return "X86ISD::SHRD";
10893 case X86ISD::FAND: return "X86ISD::FAND";
10894 case X86ISD::FOR: return "X86ISD::FOR";
10895 case X86ISD::FXOR: return "X86ISD::FXOR";
10896 case X86ISD::FSRL: return "X86ISD::FSRL";
10897 case X86ISD::FILD: return "X86ISD::FILD";
10898 case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG";
10899 case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
10900 case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
10901 case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
10902 case X86ISD::FLD: return "X86ISD::FLD";
10903 case X86ISD::FST: return "X86ISD::FST";
10904 case X86ISD::CALL: return "X86ISD::CALL";
10905 case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG";
10906 case X86ISD::BT: return "X86ISD::BT";
10907 case X86ISD::CMP: return "X86ISD::CMP";
10908 case X86ISD::COMI: return "X86ISD::COMI";
10909 case X86ISD::UCOMI: return "X86ISD::UCOMI";
10910 case X86ISD::SETCC: return "X86ISD::SETCC";
10911 case X86ISD::SETCC_CARRY: return "X86ISD::SETCC_CARRY";
10912 case X86ISD::FSETCCsd: return "X86ISD::FSETCCsd";
10913 case X86ISD::FSETCCss: return "X86ISD::FSETCCss";
10914 case X86ISD::CMOV: return "X86ISD::CMOV";
10915 case X86ISD::BRCOND: return "X86ISD::BRCOND";
10916 case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG";
10917 case X86ISD::REP_STOS: return "X86ISD::REP_STOS";
10918 case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS";
10919 case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg";
10920 case X86ISD::Wrapper: return "X86ISD::Wrapper";
10921 case X86ISD::WrapperRIP: return "X86ISD::WrapperRIP";
10922 case X86ISD::PEXTRB: return "X86ISD::PEXTRB";
10923 case X86ISD::PEXTRW: return "X86ISD::PEXTRW";
10924 case X86ISD::INSERTPS: return "X86ISD::INSERTPS";
10925 case X86ISD::PINSRB: return "X86ISD::PINSRB";
10926 case X86ISD::PINSRW: return "X86ISD::PINSRW";
10927 case X86ISD::PSHUFB: return "X86ISD::PSHUFB";
10928 case X86ISD::ANDNP: return "X86ISD::ANDNP";
10929 case X86ISD::PSIGN: return "X86ISD::PSIGN";
10930 case X86ISD::BLENDV: return "X86ISD::BLENDV";
10931 case X86ISD::HADD: return "X86ISD::HADD";
10932 case X86ISD::HSUB: return "X86ISD::HSUB";
10933 case X86ISD::FHADD: return "X86ISD::FHADD";
10934 case X86ISD::FHSUB: return "X86ISD::FHSUB";
10935 case X86ISD::FMAX: return "X86ISD::FMAX";
10936 case X86ISD::FMIN: return "X86ISD::FMIN";
10937 case X86ISD::FRSQRT: return "X86ISD::FRSQRT";
10938 case X86ISD::FRCP: return "X86ISD::FRCP";
10939 case X86ISD::TLSADDR: return "X86ISD::TLSADDR";
10940 case X86ISD::TLSCALL: return "X86ISD::TLSCALL";
10941 case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN";
10942 case X86ISD::TC_RETURN: return "X86ISD::TC_RETURN";
10943 case X86ISD::FNSTCW16m: return "X86ISD::FNSTCW16m";
10944 case X86ISD::LCMPXCHG_DAG: return "X86ISD::LCMPXCHG_DAG";
10945 case X86ISD::LCMPXCHG8_DAG: return "X86ISD::LCMPXCHG8_DAG";
10946 case X86ISD::ATOMADD64_DAG: return "X86ISD::ATOMADD64_DAG";
10947 case X86ISD::ATOMSUB64_DAG: return "X86ISD::ATOMSUB64_DAG";
10948 case X86ISD::ATOMOR64_DAG: return "X86ISD::ATOMOR64_DAG";
10949 case X86ISD::ATOMXOR64_DAG: return "X86ISD::ATOMXOR64_DAG";
10950 case X86ISD::ATOMAND64_DAG: return "X86ISD::ATOMAND64_DAG";
10951 case X86ISD::ATOMNAND64_DAG: return "X86ISD::ATOMNAND64_DAG";
10952 case X86ISD::VZEXT_MOVL: return "X86ISD::VZEXT_MOVL";
10953 case X86ISD::VZEXT_LOAD: return "X86ISD::VZEXT_LOAD";
10954 case X86ISD::VSHL: return "X86ISD::VSHL";
10955 case X86ISD::VSRL: return "X86ISD::VSRL";
10956 case X86ISD::CMPPD: return "X86ISD::CMPPD";
10957 case X86ISD::CMPPS: return "X86ISD::CMPPS";
10958 case X86ISD::PCMPEQB: return "X86ISD::PCMPEQB";
10959 case X86ISD::PCMPEQW: return "X86ISD::PCMPEQW";
10960 case X86ISD::PCMPEQD: return "X86ISD::PCMPEQD";
10961 case X86ISD::PCMPEQQ: return "X86ISD::PCMPEQQ";
10962 case X86ISD::PCMPGTB: return "X86ISD::PCMPGTB";
10963 case X86ISD::PCMPGTW: return "X86ISD::PCMPGTW";
10964 case X86ISD::PCMPGTD: return "X86ISD::PCMPGTD";
10965 case X86ISD::PCMPGTQ: return "X86ISD::PCMPGTQ";
10966 case X86ISD::ADD: return "X86ISD::ADD";
10967 case X86ISD::SUB: return "X86ISD::SUB";
10968 case X86ISD::ADC: return "X86ISD::ADC";
10969 case X86ISD::SBB: return "X86ISD::SBB";
10970 case X86ISD::SMUL: return "X86ISD::SMUL";
10971 case X86ISD::UMUL: return "X86ISD::UMUL";
10972 case X86ISD::INC: return "X86ISD::INC";
10973 case X86ISD::DEC: return "X86ISD::DEC";
10974 case X86ISD::OR: return "X86ISD::OR";
10975 case X86ISD::XOR: return "X86ISD::XOR";
10976 case X86ISD::AND: return "X86ISD::AND";
10977 case X86ISD::ANDN: return "X86ISD::ANDN";
10978 case X86ISD::BLSI: return "X86ISD::BLSI";
10979 case X86ISD::BLSMSK: return "X86ISD::BLSMSK";
10980 case X86ISD::BLSR: return "X86ISD::BLSR";
10981 case X86ISD::MUL_IMM: return "X86ISD::MUL_IMM";
10982 case X86ISD::PTEST: return "X86ISD::PTEST";
10983 case X86ISD::TESTP: return "X86ISD::TESTP";
10984 case X86ISD::PALIGN: return "X86ISD::PALIGN";
10985 case X86ISD::PSHUFD: return "X86ISD::PSHUFD";
10986 case X86ISD::PSHUFHW: return "X86ISD::PSHUFHW";
10987 case X86ISD::PSHUFLW: return "X86ISD::PSHUFLW";
10988 case X86ISD::SHUFP: return "X86ISD::SHUFP";
10989 case X86ISD::MOVLHPS: return "X86ISD::MOVLHPS";
10990 case X86ISD::MOVLHPD: return "X86ISD::MOVLHPD";
10991 case X86ISD::MOVHLPS: return "X86ISD::MOVHLPS";
10992 case X86ISD::MOVLPS: return "X86ISD::MOVLPS";
10993 case X86ISD::MOVLPD: return "X86ISD::MOVLPD";
10994 case X86ISD::MOVDDUP: return "X86ISD::MOVDDUP";
10995 case X86ISD::MOVSHDUP: return "X86ISD::MOVSHDUP";
10996 case X86ISD::MOVSLDUP: return "X86ISD::MOVSLDUP";
10997 case X86ISD::MOVSD: return "X86ISD::MOVSD";
10998 case X86ISD::MOVSS: return "X86ISD::MOVSS";
10999 case X86ISD::UNPCKL: return "X86ISD::UNPCKL";
11000 case X86ISD::UNPCKH: return "X86ISD::UNPCKH";
11001 case X86ISD::VBROADCAST: return "X86ISD::VBROADCAST";
11002 case X86ISD::VPERMILP: return "X86ISD::VPERMILP";
11003 case X86ISD::VPERM2X128: return "X86ISD::VPERM2X128";
11004 case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
11005 case X86ISD::VAARG_64: return "X86ISD::VAARG_64";
11006 case X86ISD::WIN_ALLOCA: return "X86ISD::WIN_ALLOCA";
11007 case X86ISD::MEMBARRIER: return "X86ISD::MEMBARRIER";
11008 case X86ISD::SEG_ALLOCA: return "X86ISD::SEG_ALLOCA";
11012 // isLegalAddressingMode - Return true if the addressing mode represented
11013 // by AM is legal for this target, for a load/store of the specified type.
11014 bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
11016 // X86 supports extremely general addressing modes.
11017 CodeModel::Model M = getTargetMachine().getCodeModel();
11018 Reloc::Model R = getTargetMachine().getRelocationModel();
11020 // X86 allows a sign-extended 32-bit immediate field as a displacement.
11021 if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
11026 Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
11028 // If a reference to this global requires an extra load, we can't fold it.
11029 if (isGlobalStubReference(GVFlags))
11032 // If BaseGV requires a register for the PIC base, we cannot also have a
11033 // BaseReg specified.
11034 if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
11037 // If lower 4G is not available, then we must use rip-relative addressing.
11038 if ((M != CodeModel::Small || R != Reloc::Static) &&
11039 Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
11043 switch (AM.Scale) {
11049 // These scales always work.
11054 // These scales are formed with basereg+scalereg. Only accept if there is
11059 default: // Other stuff never works.
11067 bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11068 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11070 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11071 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11072 if (NumBits1 <= NumBits2)
11077 bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11078 if (!VT1.isInteger() || !VT2.isInteger())
11080 unsigned NumBits1 = VT1.getSizeInBits();
11081 unsigned NumBits2 = VT2.getSizeInBits();
11082 if (NumBits1 <= NumBits2)
11087 bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
11088 // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11089 return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
11092 bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
11093 // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11094 return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
11097 bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
11098 // i16 instructions are longer (0x66 prefix) and potentially slower.
11099 return !(VT1 == MVT::i32 && VT2 == MVT::i16);
11102 /// isShuffleMaskLegal - Targets can use this to indicate that they only
11103 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
11104 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
11105 /// are assumed to be legal.
11107 X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
11109 // Very little shuffling can be done for 64-bit vectors right now.
11110 if (VT.getSizeInBits() == 64)
11113 // FIXME: pshufb, blends, shifts.
11114 return (VT.getVectorNumElements() == 2 ||
11115 ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
11116 isMOVLMask(M, VT) ||
11117 isSHUFPMask(M, VT, Subtarget->hasAVX()) ||
11118 isPSHUFDMask(M, VT) ||
11119 isPSHUFHWMask(M, VT) ||
11120 isPSHUFLWMask(M, VT) ||
11121 isPALIGNRMask(M, VT, Subtarget) ||
11122 isUNPCKLMask(M, VT, Subtarget->hasAVX2()) ||
11123 isUNPCKHMask(M, VT, Subtarget->hasAVX2()) ||
11124 isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasAVX2()) ||
11125 isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasAVX2()));
11129 X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
11131 unsigned NumElts = VT.getVectorNumElements();
11132 // FIXME: This collection of masks seems suspect.
11135 if (NumElts == 4 && VT.getSizeInBits() == 128) {
11136 return (isMOVLMask(Mask, VT) ||
11137 isCommutedMOVLMask(Mask, VT, true) ||
11138 isSHUFPMask(Mask, VT, Subtarget->hasAVX()) ||
11139 isSHUFPMask(Mask, VT, Subtarget->hasAVX(), /* Commuted */ true));
11144 //===----------------------------------------------------------------------===//
11145 // X86 Scheduler Hooks
11146 //===----------------------------------------------------------------------===//
11148 // private utility function
11149 MachineBasicBlock *
11150 X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
11151 MachineBasicBlock *MBB,
11158 TargetRegisterClass *RC,
11159 bool invSrc) const {
11160 // For the atomic bitwise operator, we generate
11163 // ld t1 = [bitinstr.addr]
11164 // op t2 = t1, [bitinstr.val]
11166 // lcs dest = [bitinstr.addr], t2 [EAX is implicit]
11168 // fallthrough -->nextMBB
11169 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11170 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11171 MachineFunction::iterator MBBIter = MBB;
11174 /// First build the CFG
11175 MachineFunction *F = MBB->getParent();
11176 MachineBasicBlock *thisMBB = MBB;
11177 MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11178 MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11179 F->insert(MBBIter, newMBB);
11180 F->insert(MBBIter, nextMBB);
11182 // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11183 nextMBB->splice(nextMBB->begin(), thisMBB,
11184 llvm::next(MachineBasicBlock::iterator(bInstr)),
11186 nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11188 // Update thisMBB to fall through to newMBB
11189 thisMBB->addSuccessor(newMBB);
11191 // newMBB jumps to itself and fall through to nextMBB
11192 newMBB->addSuccessor(nextMBB);
11193 newMBB->addSuccessor(newMBB);
11195 // Insert instructions into newMBB based on incoming instruction
11196 assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11197 "unexpected number of operands");
11198 DebugLoc dl = bInstr->getDebugLoc();
11199 MachineOperand& destOper = bInstr->getOperand(0);
11200 MachineOperand* argOpers[2 + X86::AddrNumOperands];
11201 int numArgs = bInstr->getNumOperands() - 1;
11202 for (int i=0; i < numArgs; ++i)
11203 argOpers[i] = &bInstr->getOperand(i+1);
11205 // x86 address has 4 operands: base, index, scale, and displacement
11206 int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11207 int valArgIndx = lastAddrIndx + 1;
11209 unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11210 MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
11211 for (int i=0; i <= lastAddrIndx; ++i)
11212 (*MIB).addOperand(*argOpers[i]);
11214 unsigned tt = F->getRegInfo().createVirtualRegister(RC);
11216 MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
11221 unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11222 assert((argOpers[valArgIndx]->isReg() ||
11223 argOpers[valArgIndx]->isImm()) &&
11224 "invalid operand");
11225 if (argOpers[valArgIndx]->isReg())
11226 MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
11228 MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
11230 (*MIB).addOperand(*argOpers[valArgIndx]);
11232 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
11235 MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
11236 for (int i=0; i <= lastAddrIndx; ++i)
11237 (*MIB).addOperand(*argOpers[i]);
11239 assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11240 (*MIB).setMemRefs(bInstr->memoperands_begin(),
11241 bInstr->memoperands_end());
11243 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11244 MIB.addReg(EAXreg);
11247 BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11249 bInstr->eraseFromParent(); // The pseudo instruction is gone now.
11253 // private utility function: 64 bit atomics on 32 bit host.
11254 MachineBasicBlock *
11255 X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
11256 MachineBasicBlock *MBB,
11261 bool invSrc) const {
11262 // For the atomic bitwise operator, we generate
11263 // thisMBB (instructions are in pairs, except cmpxchg8b)
11264 // ld t1,t2 = [bitinstr.addr]
11266 // out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
11267 // op t5, t6 <- out1, out2, [bitinstr.val]
11268 // (for SWAP, substitute: mov t5, t6 <- [bitinstr.val])
11269 // mov ECX, EBX <- t5, t6
11270 // mov EAX, EDX <- t1, t2
11271 // cmpxchg8b [bitinstr.addr] [EAX, EDX, EBX, ECX implicit]
11272 // mov t3, t4 <- EAX, EDX
11274 // result in out1, out2
11275 // fallthrough -->nextMBB
11277 const TargetRegisterClass *RC = X86::GR32RegisterClass;
11278 const unsigned LoadOpc = X86::MOV32rm;
11279 const unsigned NotOpc = X86::NOT32r;
11280 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11281 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11282 MachineFunction::iterator MBBIter = MBB;
11285 /// First build the CFG
11286 MachineFunction *F = MBB->getParent();
11287 MachineBasicBlock *thisMBB = MBB;
11288 MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11289 MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11290 F->insert(MBBIter, newMBB);
11291 F->insert(MBBIter, nextMBB);
11293 // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11294 nextMBB->splice(nextMBB->begin(), thisMBB,
11295 llvm::next(MachineBasicBlock::iterator(bInstr)),
11297 nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11299 // Update thisMBB to fall through to newMBB
11300 thisMBB->addSuccessor(newMBB);
11302 // newMBB jumps to itself and fall through to nextMBB
11303 newMBB->addSuccessor(nextMBB);
11304 newMBB->addSuccessor(newMBB);
11306 DebugLoc dl = bInstr->getDebugLoc();
11307 // Insert instructions into newMBB based on incoming instruction
11308 // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
11309 assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
11310 "unexpected number of operands");
11311 MachineOperand& dest1Oper = bInstr->getOperand(0);
11312 MachineOperand& dest2Oper = bInstr->getOperand(1);
11313 MachineOperand* argOpers[2 + X86::AddrNumOperands];
11314 for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
11315 argOpers[i] = &bInstr->getOperand(i+2);
11317 // We use some of the operands multiple times, so conservatively just
11318 // clear any kill flags that might be present.
11319 if (argOpers[i]->isReg() && argOpers[i]->isUse())
11320 argOpers[i]->setIsKill(false);
11323 // x86 address has 5 operands: base, index, scale, displacement, and segment.
11324 int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11326 unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11327 MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
11328 for (int i=0; i <= lastAddrIndx; ++i)
11329 (*MIB).addOperand(*argOpers[i]);
11330 unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11331 MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
11332 // add 4 to displacement.
11333 for (int i=0; i <= lastAddrIndx-2; ++i)
11334 (*MIB).addOperand(*argOpers[i]);
11335 MachineOperand newOp3 = *(argOpers[3]);
11336 if (newOp3.isImm())
11337 newOp3.setImm(newOp3.getImm()+4);
11339 newOp3.setOffset(newOp3.getOffset()+4);
11340 (*MIB).addOperand(newOp3);
11341 (*MIB).addOperand(*argOpers[lastAddrIndx]);
11343 // t3/4 are defined later, at the bottom of the loop
11344 unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11345 unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
11346 BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
11347 .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
11348 BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
11349 .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
11351 // The subsequent operations should be using the destination registers of
11352 //the PHI instructions.
11354 t1 = F->getRegInfo().createVirtualRegister(RC);
11355 t2 = F->getRegInfo().createVirtualRegister(RC);
11356 MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
11357 MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
11359 t1 = dest1Oper.getReg();
11360 t2 = dest2Oper.getReg();
11363 int valArgIndx = lastAddrIndx + 1;
11364 assert((argOpers[valArgIndx]->isReg() ||
11365 argOpers[valArgIndx]->isImm()) &&
11366 "invalid operand");
11367 unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
11368 unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
11369 if (argOpers[valArgIndx]->isReg())
11370 MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
11372 MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
11373 if (regOpcL != X86::MOV32rr)
11375 (*MIB).addOperand(*argOpers[valArgIndx]);
11376 assert(argOpers[valArgIndx + 1]->isReg() ==
11377 argOpers[valArgIndx]->isReg());
11378 assert(argOpers[valArgIndx + 1]->isImm() ==
11379 argOpers[valArgIndx]->isImm());
11380 if (argOpers[valArgIndx + 1]->isReg())
11381 MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
11383 MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
11384 if (regOpcH != X86::MOV32rr)
11386 (*MIB).addOperand(*argOpers[valArgIndx + 1]);
11388 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11390 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
11393 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
11395 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
11398 MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
11399 for (int i=0; i <= lastAddrIndx; ++i)
11400 (*MIB).addOperand(*argOpers[i]);
11402 assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11403 (*MIB).setMemRefs(bInstr->memoperands_begin(),
11404 bInstr->memoperands_end());
11406 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
11407 MIB.addReg(X86::EAX);
11408 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
11409 MIB.addReg(X86::EDX);
11412 BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11414 bInstr->eraseFromParent(); // The pseudo instruction is gone now.
11418 // private utility function
11419 MachineBasicBlock *
11420 X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
11421 MachineBasicBlock *MBB,
11422 unsigned cmovOpc) const {
11423 // For the atomic min/max operator, we generate
11426 // ld t1 = [min/max.addr]
11427 // mov t2 = [min/max.val]
11429 // cmov[cond] t2 = t1
11431 // lcs dest = [bitinstr.addr], t2 [EAX is implicit]
11433 // fallthrough -->nextMBB
11435 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11436 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11437 MachineFunction::iterator MBBIter = MBB;
11440 /// First build the CFG
11441 MachineFunction *F = MBB->getParent();
11442 MachineBasicBlock *thisMBB = MBB;
11443 MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11444 MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11445 F->insert(MBBIter, newMBB);
11446 F->insert(MBBIter, nextMBB);
11448 // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11449 nextMBB->splice(nextMBB->begin(), thisMBB,
11450 llvm::next(MachineBasicBlock::iterator(mInstr)),
11452 nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11454 // Update thisMBB to fall through to newMBB
11455 thisMBB->addSuccessor(newMBB);
11457 // newMBB jumps to newMBB and fall through to nextMBB
11458 newMBB->addSuccessor(nextMBB);
11459 newMBB->addSuccessor(newMBB);
11461 DebugLoc dl = mInstr->getDebugLoc();
11462 // Insert instructions into newMBB based on incoming instruction
11463 assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11464 "unexpected number of operands");
11465 MachineOperand& destOper = mInstr->getOperand(0);
11466 MachineOperand* argOpers[2 + X86::AddrNumOperands];
11467 int numArgs = mInstr->getNumOperands() - 1;
11468 for (int i=0; i < numArgs; ++i)
11469 argOpers[i] = &mInstr->getOperand(i+1);
11471 // x86 address has 4 operands: base, index, scale, and displacement
11472 int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11473 int valArgIndx = lastAddrIndx + 1;
11475 unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11476 MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
11477 for (int i=0; i <= lastAddrIndx; ++i)
11478 (*MIB).addOperand(*argOpers[i]);
11480 // We only support register and immediate values
11481 assert((argOpers[valArgIndx]->isReg() ||
11482 argOpers[valArgIndx]->isImm()) &&
11483 "invalid operand");
11485 unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11486 if (argOpers[valArgIndx]->isReg())
11487 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
11489 MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
11490 (*MIB).addOperand(*argOpers[valArgIndx]);
11492 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11495 MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
11500 unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11501 MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
11505 // Cmp and exchange if none has modified the memory location
11506 MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
11507 for (int i=0; i <= lastAddrIndx; ++i)
11508 (*MIB).addOperand(*argOpers[i]);
11510 assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11511 (*MIB).setMemRefs(mInstr->memoperands_begin(),
11512 mInstr->memoperands_end());
11514 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11515 MIB.addReg(X86::EAX);
11518 BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11520 mInstr->eraseFromParent(); // The pseudo instruction is gone now.
11524 // FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
11525 // or XMM0_V32I8 in AVX all of this code can be replaced with that
11526 // in the .td file.
11527 MachineBasicBlock *
11528 X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
11529 unsigned numArgs, bool memArg) const {
11530 assert(Subtarget->hasSSE42() &&
11531 "Target must have SSE4.2 or AVX features enabled");
11533 DebugLoc dl = MI->getDebugLoc();
11534 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11536 if (!Subtarget->hasAVX()) {
11538 Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
11540 Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
11543 Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
11545 Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
11548 MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
11549 for (unsigned i = 0; i < numArgs; ++i) {
11550 MachineOperand &Op = MI->getOperand(i+1);
11551 if (!(Op.isReg() && Op.isImplicit()))
11552 MIB.addOperand(Op);
11554 BuildMI(*BB, MI, dl,
11555 TII->get(Subtarget->hasAVX() ? X86::VMOVAPSrr : X86::MOVAPSrr),
11556 MI->getOperand(0).getReg())
11557 .addReg(X86::XMM0);
11559 MI->eraseFromParent();
11563 MachineBasicBlock *
11564 X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
11565 DebugLoc dl = MI->getDebugLoc();
11566 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11568 // Address into RAX/EAX, other two args into ECX, EDX.
11569 unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
11570 unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11571 MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
11572 for (int i = 0; i < X86::AddrNumOperands; ++i)
11573 MIB.addOperand(MI->getOperand(i));
11575 unsigned ValOps = X86::AddrNumOperands;
11576 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11577 .addReg(MI->getOperand(ValOps).getReg());
11578 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
11579 .addReg(MI->getOperand(ValOps+1).getReg());
11581 // The instruction doesn't actually take any operands though.
11582 BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
11584 MI->eraseFromParent(); // The pseudo is gone now.
11588 MachineBasicBlock *
11589 X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
11590 DebugLoc dl = MI->getDebugLoc();
11591 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11593 // First arg in ECX, the second in EAX.
11594 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11595 .addReg(MI->getOperand(0).getReg());
11596 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
11597 .addReg(MI->getOperand(1).getReg());
11599 // The instruction doesn't actually take any operands though.
11600 BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
11602 MI->eraseFromParent(); // The pseudo is gone now.
11606 MachineBasicBlock *
11607 X86TargetLowering::EmitVAARG64WithCustomInserter(
11609 MachineBasicBlock *MBB) const {
11610 // Emit va_arg instruction on X86-64.
11612 // Operands to this pseudo-instruction:
11613 // 0 ) Output : destination address (reg)
11614 // 1-5) Input : va_list address (addr, i64mem)
11615 // 6 ) ArgSize : Size (in bytes) of vararg type
11616 // 7 ) ArgMode : 0=overflow only, 1=use gp_offset, 2=use fp_offset
11617 // 8 ) Align : Alignment of type
11618 // 9 ) EFLAGS (implicit-def)
11620 assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
11621 assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
11623 unsigned DestReg = MI->getOperand(0).getReg();
11624 MachineOperand &Base = MI->getOperand(1);
11625 MachineOperand &Scale = MI->getOperand(2);
11626 MachineOperand &Index = MI->getOperand(3);
11627 MachineOperand &Disp = MI->getOperand(4);
11628 MachineOperand &Segment = MI->getOperand(5);
11629 unsigned ArgSize = MI->getOperand(6).getImm();
11630 unsigned ArgMode = MI->getOperand(7).getImm();
11631 unsigned Align = MI->getOperand(8).getImm();
11633 // Memory Reference
11634 assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
11635 MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
11636 MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
11638 // Machine Information
11639 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11640 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11641 const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
11642 const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
11643 DebugLoc DL = MI->getDebugLoc();
11645 // struct va_list {
11648 // i64 overflow_area (address)
11649 // i64 reg_save_area (address)
11651 // sizeof(va_list) = 24
11652 // alignment(va_list) = 8
11654 unsigned TotalNumIntRegs = 6;
11655 unsigned TotalNumXMMRegs = 8;
11656 bool UseGPOffset = (ArgMode == 1);
11657 bool UseFPOffset = (ArgMode == 2);
11658 unsigned MaxOffset = TotalNumIntRegs * 8 +
11659 (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
11661 /* Align ArgSize to a multiple of 8 */
11662 unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
11663 bool NeedsAlign = (Align > 8);
11665 MachineBasicBlock *thisMBB = MBB;
11666 MachineBasicBlock *overflowMBB;
11667 MachineBasicBlock *offsetMBB;
11668 MachineBasicBlock *endMBB;
11670 unsigned OffsetDestReg = 0; // Argument address computed by offsetMBB
11671 unsigned OverflowDestReg = 0; // Argument address computed by overflowMBB
11672 unsigned OffsetReg = 0;
11674 if (!UseGPOffset && !UseFPOffset) {
11675 // If we only pull from the overflow region, we don't create a branch.
11676 // We don't need to alter control flow.
11677 OffsetDestReg = 0; // unused
11678 OverflowDestReg = DestReg;
11681 overflowMBB = thisMBB;
11684 // First emit code to check if gp_offset (or fp_offset) is below the bound.
11685 // If so, pull the argument from reg_save_area. (branch to offsetMBB)
11686 // If not, pull from overflow_area. (branch to overflowMBB)
11691 // offsetMBB overflowMBB
11696 // Registers for the PHI in endMBB
11697 OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
11698 OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
11700 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11701 MachineFunction *MF = MBB->getParent();
11702 overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11703 offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11704 endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11706 MachineFunction::iterator MBBIter = MBB;
11709 // Insert the new basic blocks
11710 MF->insert(MBBIter, offsetMBB);
11711 MF->insert(MBBIter, overflowMBB);
11712 MF->insert(MBBIter, endMBB);
11714 // Transfer the remainder of MBB and its successor edges to endMBB.
11715 endMBB->splice(endMBB->begin(), thisMBB,
11716 llvm::next(MachineBasicBlock::iterator(MI)),
11718 endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11720 // Make offsetMBB and overflowMBB successors of thisMBB
11721 thisMBB->addSuccessor(offsetMBB);
11722 thisMBB->addSuccessor(overflowMBB);
11724 // endMBB is a successor of both offsetMBB and overflowMBB
11725 offsetMBB->addSuccessor(endMBB);
11726 overflowMBB->addSuccessor(endMBB);
11728 // Load the offset value into a register
11729 OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11730 BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
11734 .addDisp(Disp, UseFPOffset ? 4 : 0)
11735 .addOperand(Segment)
11736 .setMemRefs(MMOBegin, MMOEnd);
11738 // Check if there is enough room left to pull this argument.
11739 BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
11741 .addImm(MaxOffset + 8 - ArgSizeA8);
11743 // Branch to "overflowMBB" if offset >= max
11744 // Fall through to "offsetMBB" otherwise
11745 BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
11746 .addMBB(overflowMBB);
11749 // In offsetMBB, emit code to use the reg_save_area.
11751 assert(OffsetReg != 0);
11753 // Read the reg_save_area address.
11754 unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
11755 BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
11760 .addOperand(Segment)
11761 .setMemRefs(MMOBegin, MMOEnd);
11763 // Zero-extend the offset
11764 unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
11765 BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
11768 .addImm(X86::sub_32bit);
11770 // Add the offset to the reg_save_area to get the final address.
11771 BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
11772 .addReg(OffsetReg64)
11773 .addReg(RegSaveReg);
11775 // Compute the offset for the next argument
11776 unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11777 BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
11779 .addImm(UseFPOffset ? 16 : 8);
11781 // Store it back into the va_list.
11782 BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
11786 .addDisp(Disp, UseFPOffset ? 4 : 0)
11787 .addOperand(Segment)
11788 .addReg(NextOffsetReg)
11789 .setMemRefs(MMOBegin, MMOEnd);
11792 BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
11797 // Emit code to use overflow area
11800 // Load the overflow_area address into a register.
11801 unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
11802 BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
11807 .addOperand(Segment)
11808 .setMemRefs(MMOBegin, MMOEnd);
11810 // If we need to align it, do so. Otherwise, just copy the address
11811 // to OverflowDestReg.
11813 // Align the overflow address
11814 assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
11815 unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
11817 // aligned_addr = (addr + (align-1)) & ~(align-1)
11818 BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
11819 .addReg(OverflowAddrReg)
11822 BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
11824 .addImm(~(uint64_t)(Align-1));
11826 BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
11827 .addReg(OverflowAddrReg);
11830 // Compute the next overflow address after this argument.
11831 // (the overflow address should be kept 8-byte aligned)
11832 unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
11833 BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
11834 .addReg(OverflowDestReg)
11835 .addImm(ArgSizeA8);
11837 // Store the new overflow address.
11838 BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
11843 .addOperand(Segment)
11844 .addReg(NextAddrReg)
11845 .setMemRefs(MMOBegin, MMOEnd);
11847 // If we branched, emit the PHI to the front of endMBB.
11849 BuildMI(*endMBB, endMBB->begin(), DL,
11850 TII->get(X86::PHI), DestReg)
11851 .addReg(OffsetDestReg).addMBB(offsetMBB)
11852 .addReg(OverflowDestReg).addMBB(overflowMBB);
11855 // Erase the pseudo instruction
11856 MI->eraseFromParent();
11861 MachineBasicBlock *
11862 X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
11864 MachineBasicBlock *MBB) const {
11865 // Emit code to save XMM registers to the stack. The ABI says that the
11866 // number of registers to save is given in %al, so it's theoretically
11867 // possible to do an indirect jump trick to avoid saving all of them,
11868 // however this code takes a simpler approach and just executes all
11869 // of the stores if %al is non-zero. It's less code, and it's probably
11870 // easier on the hardware branch predictor, and stores aren't all that
11871 // expensive anyway.
11873 // Create the new basic blocks. One block contains all the XMM stores,
11874 // and one block is the final destination regardless of whether any
11875 // stores were performed.
11876 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11877 MachineFunction *F = MBB->getParent();
11878 MachineFunction::iterator MBBIter = MBB;
11880 MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
11881 MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
11882 F->insert(MBBIter, XMMSaveMBB);
11883 F->insert(MBBIter, EndMBB);
11885 // Transfer the remainder of MBB and its successor edges to EndMBB.
11886 EndMBB->splice(EndMBB->begin(), MBB,
11887 llvm::next(MachineBasicBlock::iterator(MI)),
11889 EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
11891 // The original block will now fall through to the XMM save block.
11892 MBB->addSuccessor(XMMSaveMBB);
11893 // The XMMSaveMBB will fall through to the end block.
11894 XMMSaveMBB->addSuccessor(EndMBB);
11896 // Now add the instructions.
11897 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11898 DebugLoc DL = MI->getDebugLoc();
11900 unsigned CountReg = MI->getOperand(0).getReg();
11901 int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
11902 int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
11904 if (!Subtarget->isTargetWin64()) {
11905 // If %al is 0, branch around the XMM save block.
11906 BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
11907 BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
11908 MBB->addSuccessor(EndMBB);
11911 unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
11912 // In the XMM save block, save all the XMM argument registers.
11913 for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
11914 int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
11915 MachineMemOperand *MMO =
11916 F->getMachineMemOperand(
11917 MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
11918 MachineMemOperand::MOStore,
11919 /*Size=*/16, /*Align=*/16);
11920 BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
11921 .addFrameIndex(RegSaveFrameIndex)
11922 .addImm(/*Scale=*/1)
11923 .addReg(/*IndexReg=*/0)
11924 .addImm(/*Disp=*/Offset)
11925 .addReg(/*Segment=*/0)
11926 .addReg(MI->getOperand(i).getReg())
11927 .addMemOperand(MMO);
11930 MI->eraseFromParent(); // The pseudo instruction is gone now.
11935 MachineBasicBlock *
11936 X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
11937 MachineBasicBlock *BB) const {
11938 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11939 DebugLoc DL = MI->getDebugLoc();
11941 // To "insert" a SELECT_CC instruction, we actually have to insert the
11942 // diamond control-flow pattern. The incoming instruction knows the
11943 // destination vreg to set, the condition code register to branch on, the
11944 // true/false values to select between, and a branch opcode to use.
11945 const BasicBlock *LLVM_BB = BB->getBasicBlock();
11946 MachineFunction::iterator It = BB;
11952 // cmpTY ccX, r1, r2
11954 // fallthrough --> copy0MBB
11955 MachineBasicBlock *thisMBB = BB;
11956 MachineFunction *F = BB->getParent();
11957 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11958 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11959 F->insert(It, copy0MBB);
11960 F->insert(It, sinkMBB);
11962 // If the EFLAGS register isn't dead in the terminator, then claim that it's
11963 // live into the sink and copy blocks.
11964 if (!MI->killsRegister(X86::EFLAGS)) {
11965 copy0MBB->addLiveIn(X86::EFLAGS);
11966 sinkMBB->addLiveIn(X86::EFLAGS);
11969 // Transfer the remainder of BB and its successor edges to sinkMBB.
11970 sinkMBB->splice(sinkMBB->begin(), BB,
11971 llvm::next(MachineBasicBlock::iterator(MI)),
11973 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11975 // Add the true and fallthrough blocks as its successors.
11976 BB->addSuccessor(copy0MBB);
11977 BB->addSuccessor(sinkMBB);
11979 // Create the conditional branch instruction.
11981 X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
11982 BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
11985 // %FalseValue = ...
11986 // # fallthrough to sinkMBB
11987 copy0MBB->addSuccessor(sinkMBB);
11990 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11992 BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11993 TII->get(X86::PHI), MI->getOperand(0).getReg())
11994 .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
11995 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
11997 MI->eraseFromParent(); // The pseudo instruction is gone now.
12001 MachineBasicBlock *
12002 X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
12003 bool Is64Bit) const {
12004 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12005 DebugLoc DL = MI->getDebugLoc();
12006 MachineFunction *MF = BB->getParent();
12007 const BasicBlock *LLVM_BB = BB->getBasicBlock();
12009 assert(getTargetMachine().Options.EnableSegmentedStacks);
12011 unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
12012 unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
12015 // ... [Till the alloca]
12016 // If stacklet is not large enough, jump to mallocMBB
12019 // Allocate by subtracting from RSP
12020 // Jump to continueMBB
12023 // Allocate by call to runtime
12027 // [rest of original BB]
12030 MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12031 MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12032 MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12034 MachineRegisterInfo &MRI = MF->getRegInfo();
12035 const TargetRegisterClass *AddrRegClass =
12036 getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
12038 unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12039 bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12040 tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
12041 SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
12042 sizeVReg = MI->getOperand(1).getReg(),
12043 physSPReg = Is64Bit ? X86::RSP : X86::ESP;
12045 MachineFunction::iterator MBBIter = BB;
12048 MF->insert(MBBIter, bumpMBB);
12049 MF->insert(MBBIter, mallocMBB);
12050 MF->insert(MBBIter, continueMBB);
12052 continueMBB->splice(continueMBB->begin(), BB, llvm::next
12053 (MachineBasicBlock::iterator(MI)), BB->end());
12054 continueMBB->transferSuccessorsAndUpdatePHIs(BB);
12056 // Add code to the main basic block to check if the stack limit has been hit,
12057 // and if so, jump to mallocMBB otherwise to bumpMBB.
12058 BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
12059 BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
12060 .addReg(tmpSPVReg).addReg(sizeVReg);
12061 BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
12062 .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
12063 .addReg(SPLimitVReg);
12064 BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
12066 // bumpMBB simply decreases the stack pointer, since we know the current
12067 // stacklet has enough space.
12068 BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
12069 .addReg(SPLimitVReg);
12070 BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
12071 .addReg(SPLimitVReg);
12072 BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12074 // Calls into a routine in libgcc to allocate more space from the heap.
12076 BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
12078 BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
12079 .addExternalSymbol("__morestack_allocate_stack_space").addReg(X86::RDI);
12081 BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
12083 BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
12084 BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
12085 .addExternalSymbol("__morestack_allocate_stack_space");
12089 BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
12092 BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
12093 .addReg(Is64Bit ? X86::RAX : X86::EAX);
12094 BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12096 // Set up the CFG correctly.
12097 BB->addSuccessor(bumpMBB);
12098 BB->addSuccessor(mallocMBB);
12099 mallocMBB->addSuccessor(continueMBB);
12100 bumpMBB->addSuccessor(continueMBB);
12102 // Take care of the PHI nodes.
12103 BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
12104 MI->getOperand(0).getReg())
12105 .addReg(mallocPtrVReg).addMBB(mallocMBB)
12106 .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
12108 // Delete the original pseudo instruction.
12109 MI->eraseFromParent();
12112 return continueMBB;
12115 MachineBasicBlock *
12116 X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
12117 MachineBasicBlock *BB) const {
12118 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12119 DebugLoc DL = MI->getDebugLoc();
12121 assert(!Subtarget->isTargetEnvMacho());
12123 // The lowering is pretty easy: we're just emitting the call to _alloca. The
12124 // non-trivial part is impdef of ESP.
12126 if (Subtarget->isTargetWin64()) {
12127 if (Subtarget->isTargetCygMing()) {
12128 // ___chkstk(Mingw64):
12129 // Clobbers R10, R11, RAX and EFLAGS.
12131 BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12132 .addExternalSymbol("___chkstk")
12133 .addReg(X86::RAX, RegState::Implicit)
12134 .addReg(X86::RSP, RegState::Implicit)
12135 .addReg(X86::RAX, RegState::Define | RegState::Implicit)
12136 .addReg(X86::RSP, RegState::Define | RegState::Implicit)
12137 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12139 // __chkstk(MSVCRT): does not update stack pointer.
12140 // Clobbers R10, R11 and EFLAGS.
12141 // FIXME: RAX(allocated size) might be reused and not killed.
12142 BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12143 .addExternalSymbol("__chkstk")
12144 .addReg(X86::RAX, RegState::Implicit)
12145 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12146 // RAX has the offset to subtracted from RSP.
12147 BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
12152 const char *StackProbeSymbol =
12153 Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
12155 BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
12156 .addExternalSymbol(StackProbeSymbol)
12157 .addReg(X86::EAX, RegState::Implicit)
12158 .addReg(X86::ESP, RegState::Implicit)
12159 .addReg(X86::EAX, RegState::Define | RegState::Implicit)
12160 .addReg(X86::ESP, RegState::Define | RegState::Implicit)
12161 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12164 MI->eraseFromParent(); // The pseudo instruction is gone now.
12168 MachineBasicBlock *
12169 X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
12170 MachineBasicBlock *BB) const {
12171 // This is pretty easy. We're taking the value that we received from
12172 // our load from the relocation, sticking it in either RDI (x86-64)
12173 // or EAX and doing an indirect call. The return value will then
12174 // be in the normal return register.
12175 const X86InstrInfo *TII
12176 = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
12177 DebugLoc DL = MI->getDebugLoc();
12178 MachineFunction *F = BB->getParent();
12180 assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
12181 assert(MI->getOperand(3).isGlobal() && "This should be a global");
12183 if (Subtarget->is64Bit()) {
12184 MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12185 TII->get(X86::MOV64rm), X86::RDI)
12187 .addImm(0).addReg(0)
12188 .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12189 MI->getOperand(3).getTargetFlags())
12191 MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
12192 addDirectMem(MIB, X86::RDI);
12193 } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
12194 MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12195 TII->get(X86::MOV32rm), X86::EAX)
12197 .addImm(0).addReg(0)
12198 .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12199 MI->getOperand(3).getTargetFlags())
12201 MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12202 addDirectMem(MIB, X86::EAX);
12204 MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12205 TII->get(X86::MOV32rm), X86::EAX)
12206 .addReg(TII->getGlobalBaseReg(F))
12207 .addImm(0).addReg(0)
12208 .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12209 MI->getOperand(3).getTargetFlags())
12211 MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12212 addDirectMem(MIB, X86::EAX);
12215 MI->eraseFromParent(); // The pseudo instruction is gone now.
12219 MachineBasicBlock *
12220 X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
12221 MachineBasicBlock *BB) const {
12222 switch (MI->getOpcode()) {
12223 default: assert(0 && "Unexpected instr type to insert");
12224 case X86::TAILJMPd64:
12225 case X86::TAILJMPr64:
12226 case X86::TAILJMPm64:
12227 assert(0 && "TAILJMP64 would not be touched here.");
12228 case X86::TCRETURNdi64:
12229 case X86::TCRETURNri64:
12230 case X86::TCRETURNmi64:
12231 // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
12232 // On AMD64, additional defs should be added before register allocation.
12233 if (!Subtarget->isTargetWin64()) {
12234 MI->addRegisterDefined(X86::RSI);
12235 MI->addRegisterDefined(X86::RDI);
12236 MI->addRegisterDefined(X86::XMM6);
12237 MI->addRegisterDefined(X86::XMM7);
12238 MI->addRegisterDefined(X86::XMM8);
12239 MI->addRegisterDefined(X86::XMM9);
12240 MI->addRegisterDefined(X86::XMM10);
12241 MI->addRegisterDefined(X86::XMM11);
12242 MI->addRegisterDefined(X86::XMM12);
12243 MI->addRegisterDefined(X86::XMM13);
12244 MI->addRegisterDefined(X86::XMM14);
12245 MI->addRegisterDefined(X86::XMM15);
12248 case X86::WIN_ALLOCA:
12249 return EmitLoweredWinAlloca(MI, BB);
12250 case X86::SEG_ALLOCA_32:
12251 return EmitLoweredSegAlloca(MI, BB, false);
12252 case X86::SEG_ALLOCA_64:
12253 return EmitLoweredSegAlloca(MI, BB, true);
12254 case X86::TLSCall_32:
12255 case X86::TLSCall_64:
12256 return EmitLoweredTLSCall(MI, BB);
12257 case X86::CMOV_GR8:
12258 case X86::CMOV_FR32:
12259 case X86::CMOV_FR64:
12260 case X86::CMOV_V4F32:
12261 case X86::CMOV_V2F64:
12262 case X86::CMOV_V2I64:
12263 case X86::CMOV_V8F32:
12264 case X86::CMOV_V4F64:
12265 case X86::CMOV_V4I64:
12266 case X86::CMOV_GR16:
12267 case X86::CMOV_GR32:
12268 case X86::CMOV_RFP32:
12269 case X86::CMOV_RFP64:
12270 case X86::CMOV_RFP80:
12271 return EmitLoweredSelect(MI, BB);
12273 case X86::FP32_TO_INT16_IN_MEM:
12274 case X86::FP32_TO_INT32_IN_MEM:
12275 case X86::FP32_TO_INT64_IN_MEM:
12276 case X86::FP64_TO_INT16_IN_MEM:
12277 case X86::FP64_TO_INT32_IN_MEM:
12278 case X86::FP64_TO_INT64_IN_MEM:
12279 case X86::FP80_TO_INT16_IN_MEM:
12280 case X86::FP80_TO_INT32_IN_MEM:
12281 case X86::FP80_TO_INT64_IN_MEM: {
12282 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12283 DebugLoc DL = MI->getDebugLoc();
12285 // Change the floating point control register to use "round towards zero"
12286 // mode when truncating to an integer value.
12287 MachineFunction *F = BB->getParent();
12288 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
12289 addFrameReference(BuildMI(*BB, MI, DL,
12290 TII->get(X86::FNSTCW16m)), CWFrameIdx);
12292 // Load the old value of the high byte of the control word...
12294 F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
12295 addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
12298 // Set the high part to be round to zero...
12299 addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
12302 // Reload the modified control word now...
12303 addFrameReference(BuildMI(*BB, MI, DL,
12304 TII->get(X86::FLDCW16m)), CWFrameIdx);
12306 // Restore the memory image of control word to original value
12307 addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
12310 // Get the X86 opcode to use.
12312 switch (MI->getOpcode()) {
12313 default: llvm_unreachable("illegal opcode!");
12314 case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
12315 case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
12316 case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
12317 case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
12318 case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
12319 case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
12320 case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
12321 case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
12322 case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
12326 MachineOperand &Op = MI->getOperand(0);
12328 AM.BaseType = X86AddressMode::RegBase;
12329 AM.Base.Reg = Op.getReg();
12331 AM.BaseType = X86AddressMode::FrameIndexBase;
12332 AM.Base.FrameIndex = Op.getIndex();
12334 Op = MI->getOperand(1);
12336 AM.Scale = Op.getImm();
12337 Op = MI->getOperand(2);
12339 AM.IndexReg = Op.getImm();
12340 Op = MI->getOperand(3);
12341 if (Op.isGlobal()) {
12342 AM.GV = Op.getGlobal();
12344 AM.Disp = Op.getImm();
12346 addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
12347 .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
12349 // Reload the original control word now.
12350 addFrameReference(BuildMI(*BB, MI, DL,
12351 TII->get(X86::FLDCW16m)), CWFrameIdx);
12353 MI->eraseFromParent(); // The pseudo instruction is gone now.
12356 // String/text processing lowering.
12357 case X86::PCMPISTRM128REG:
12358 case X86::VPCMPISTRM128REG:
12359 return EmitPCMP(MI, BB, 3, false /* in-mem */);
12360 case X86::PCMPISTRM128MEM:
12361 case X86::VPCMPISTRM128MEM:
12362 return EmitPCMP(MI, BB, 3, true /* in-mem */);
12363 case X86::PCMPESTRM128REG:
12364 case X86::VPCMPESTRM128REG:
12365 return EmitPCMP(MI, BB, 5, false /* in mem */);
12366 case X86::PCMPESTRM128MEM:
12367 case X86::VPCMPESTRM128MEM:
12368 return EmitPCMP(MI, BB, 5, true /* in mem */);
12370 // Thread synchronization.
12372 return EmitMonitor(MI, BB);
12374 return EmitMwait(MI, BB);
12376 // Atomic Lowering.
12377 case X86::ATOMAND32:
12378 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12379 X86::AND32ri, X86::MOV32rm,
12381 X86::NOT32r, X86::EAX,
12382 X86::GR32RegisterClass);
12383 case X86::ATOMOR32:
12384 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
12385 X86::OR32ri, X86::MOV32rm,
12387 X86::NOT32r, X86::EAX,
12388 X86::GR32RegisterClass);
12389 case X86::ATOMXOR32:
12390 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
12391 X86::XOR32ri, X86::MOV32rm,
12393 X86::NOT32r, X86::EAX,
12394 X86::GR32RegisterClass);
12395 case X86::ATOMNAND32:
12396 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12397 X86::AND32ri, X86::MOV32rm,
12399 X86::NOT32r, X86::EAX,
12400 X86::GR32RegisterClass, true);
12401 case X86::ATOMMIN32:
12402 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
12403 case X86::ATOMMAX32:
12404 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
12405 case X86::ATOMUMIN32:
12406 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
12407 case X86::ATOMUMAX32:
12408 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
12410 case X86::ATOMAND16:
12411 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12412 X86::AND16ri, X86::MOV16rm,
12414 X86::NOT16r, X86::AX,
12415 X86::GR16RegisterClass);
12416 case X86::ATOMOR16:
12417 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
12418 X86::OR16ri, X86::MOV16rm,
12420 X86::NOT16r, X86::AX,
12421 X86::GR16RegisterClass);
12422 case X86::ATOMXOR16:
12423 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
12424 X86::XOR16ri, X86::MOV16rm,
12426 X86::NOT16r, X86::AX,
12427 X86::GR16RegisterClass);
12428 case X86::ATOMNAND16:
12429 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12430 X86::AND16ri, X86::MOV16rm,
12432 X86::NOT16r, X86::AX,
12433 X86::GR16RegisterClass, true);
12434 case X86::ATOMMIN16:
12435 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
12436 case X86::ATOMMAX16:
12437 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
12438 case X86::ATOMUMIN16:
12439 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
12440 case X86::ATOMUMAX16:
12441 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
12443 case X86::ATOMAND8:
12444 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12445 X86::AND8ri, X86::MOV8rm,
12447 X86::NOT8r, X86::AL,
12448 X86::GR8RegisterClass);
12450 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
12451 X86::OR8ri, X86::MOV8rm,
12453 X86::NOT8r, X86::AL,
12454 X86::GR8RegisterClass);
12455 case X86::ATOMXOR8:
12456 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
12457 X86::XOR8ri, X86::MOV8rm,
12459 X86::NOT8r, X86::AL,
12460 X86::GR8RegisterClass);
12461 case X86::ATOMNAND8:
12462 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12463 X86::AND8ri, X86::MOV8rm,
12465 X86::NOT8r, X86::AL,
12466 X86::GR8RegisterClass, true);
12467 // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
12468 // This group is for 64-bit host.
12469 case X86::ATOMAND64:
12470 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12471 X86::AND64ri32, X86::MOV64rm,
12473 X86::NOT64r, X86::RAX,
12474 X86::GR64RegisterClass);
12475 case X86::ATOMOR64:
12476 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
12477 X86::OR64ri32, X86::MOV64rm,
12479 X86::NOT64r, X86::RAX,
12480 X86::GR64RegisterClass);
12481 case X86::ATOMXOR64:
12482 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
12483 X86::XOR64ri32, X86::MOV64rm,
12485 X86::NOT64r, X86::RAX,
12486 X86::GR64RegisterClass);
12487 case X86::ATOMNAND64:
12488 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12489 X86::AND64ri32, X86::MOV64rm,
12491 X86::NOT64r, X86::RAX,
12492 X86::GR64RegisterClass, true);
12493 case X86::ATOMMIN64:
12494 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
12495 case X86::ATOMMAX64:
12496 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
12497 case X86::ATOMUMIN64:
12498 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
12499 case X86::ATOMUMAX64:
12500 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
12502 // This group does 64-bit operations on a 32-bit host.
12503 case X86::ATOMAND6432:
12504 return EmitAtomicBit6432WithCustomInserter(MI, BB,
12505 X86::AND32rr, X86::AND32rr,
12506 X86::AND32ri, X86::AND32ri,
12508 case X86::ATOMOR6432:
12509 return EmitAtomicBit6432WithCustomInserter(MI, BB,
12510 X86::OR32rr, X86::OR32rr,
12511 X86::OR32ri, X86::OR32ri,
12513 case X86::ATOMXOR6432:
12514 return EmitAtomicBit6432WithCustomInserter(MI, BB,
12515 X86::XOR32rr, X86::XOR32rr,
12516 X86::XOR32ri, X86::XOR32ri,
12518 case X86::ATOMNAND6432:
12519 return EmitAtomicBit6432WithCustomInserter(MI, BB,
12520 X86::AND32rr, X86::AND32rr,
12521 X86::AND32ri, X86::AND32ri,
12523 case X86::ATOMADD6432:
12524 return EmitAtomicBit6432WithCustomInserter(MI, BB,
12525 X86::ADD32rr, X86::ADC32rr,
12526 X86::ADD32ri, X86::ADC32ri,
12528 case X86::ATOMSUB6432:
12529 return EmitAtomicBit6432WithCustomInserter(MI, BB,
12530 X86::SUB32rr, X86::SBB32rr,
12531 X86::SUB32ri, X86::SBB32ri,
12533 case X86::ATOMSWAP6432:
12534 return EmitAtomicBit6432WithCustomInserter(MI, BB,
12535 X86::MOV32rr, X86::MOV32rr,
12536 X86::MOV32ri, X86::MOV32ri,
12538 case X86::VASTART_SAVE_XMM_REGS:
12539 return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
12541 case X86::VAARG_64:
12542 return EmitVAARG64WithCustomInserter(MI, BB);
12546 //===----------------------------------------------------------------------===//
12547 // X86 Optimization Hooks
12548 //===----------------------------------------------------------------------===//
12550 void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
12554 const SelectionDAG &DAG,
12555 unsigned Depth) const {
12556 unsigned Opc = Op.getOpcode();
12557 assert((Opc >= ISD::BUILTIN_OP_END ||
12558 Opc == ISD::INTRINSIC_WO_CHAIN ||
12559 Opc == ISD::INTRINSIC_W_CHAIN ||
12560 Opc == ISD::INTRINSIC_VOID) &&
12561 "Should use MaskedValueIsZero if you don't know whether Op"
12562 " is a target node!");
12564 KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0); // Don't know anything.
12578 // These nodes' second result is a boolean.
12579 if (Op.getResNo() == 0)
12582 case X86ISD::SETCC:
12583 KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
12584 Mask.getBitWidth() - 1);
12586 case ISD::INTRINSIC_WO_CHAIN: {
12587 unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12588 unsigned NumLoBits = 0;
12591 case Intrinsic::x86_sse_movmsk_ps:
12592 case Intrinsic::x86_avx_movmsk_ps_256:
12593 case Intrinsic::x86_sse2_movmsk_pd:
12594 case Intrinsic::x86_avx_movmsk_pd_256:
12595 case Intrinsic::x86_mmx_pmovmskb:
12596 case Intrinsic::x86_sse2_pmovmskb_128:
12597 case Intrinsic::x86_avx2_pmovmskb: {
12598 // High bits of movmskp{s|d}, pmovmskb are known zero.
12600 case Intrinsic::x86_sse_movmsk_ps: NumLoBits = 4; break;
12601 case Intrinsic::x86_avx_movmsk_ps_256: NumLoBits = 8; break;
12602 case Intrinsic::x86_sse2_movmsk_pd: NumLoBits = 2; break;
12603 case Intrinsic::x86_avx_movmsk_pd_256: NumLoBits = 4; break;
12604 case Intrinsic::x86_mmx_pmovmskb: NumLoBits = 8; break;
12605 case Intrinsic::x86_sse2_pmovmskb_128: NumLoBits = 16; break;
12606 case Intrinsic::x86_avx2_pmovmskb: NumLoBits = 32; break;
12608 KnownZero = APInt::getHighBitsSet(Mask.getBitWidth(),
12609 Mask.getBitWidth() - NumLoBits);
12618 unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
12619 unsigned Depth) const {
12620 // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
12621 if (Op.getOpcode() == X86ISD::SETCC_CARRY)
12622 return Op.getValueType().getScalarType().getSizeInBits();
12628 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
12629 /// node is a GlobalAddress + offset.
12630 bool X86TargetLowering::isGAPlusOffset(SDNode *N,
12631 const GlobalValue* &GA,
12632 int64_t &Offset) const {
12633 if (N->getOpcode() == X86ISD::Wrapper) {
12634 if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
12635 GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
12636 Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
12640 return TargetLowering::isGAPlusOffset(N, GA, Offset);
12643 /// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
12644 /// same as extracting the high 128-bit part of 256-bit vector and then
12645 /// inserting the result into the low part of a new 256-bit vector
12646 static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
12647 EVT VT = SVOp->getValueType(0);
12648 int NumElems = VT.getVectorNumElements();
12650 // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12651 for (int i = 0, j = NumElems/2; i < NumElems/2; ++i, ++j)
12652 if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12653 SVOp->getMaskElt(j) >= 0)
12659 /// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
12660 /// same as extracting the low 128-bit part of 256-bit vector and then
12661 /// inserting the result into the high part of a new 256-bit vector
12662 static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
12663 EVT VT = SVOp->getValueType(0);
12664 int NumElems = VT.getVectorNumElements();
12666 // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12667 for (int i = NumElems/2, j = 0; i < NumElems; ++i, ++j)
12668 if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12669 SVOp->getMaskElt(j) >= 0)
12675 /// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
12676 static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
12677 TargetLowering::DAGCombinerInfo &DCI,
12679 DebugLoc dl = N->getDebugLoc();
12680 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
12681 SDValue V1 = SVOp->getOperand(0);
12682 SDValue V2 = SVOp->getOperand(1);
12683 EVT VT = SVOp->getValueType(0);
12684 int NumElems = VT.getVectorNumElements();
12686 if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
12687 V2.getOpcode() == ISD::CONCAT_VECTORS) {
12691 // V UNDEF BUILD_VECTOR UNDEF
12693 // CONCAT_VECTOR CONCAT_VECTOR
12696 // RESULT: V + zero extended
12698 if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
12699 V2.getOperand(1).getOpcode() != ISD::UNDEF ||
12700 V1.getOperand(1).getOpcode() != ISD::UNDEF)
12703 if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
12706 // To match the shuffle mask, the first half of the mask should
12707 // be exactly the first vector, and all the rest a splat with the
12708 // first element of the second one.
12709 for (int i = 0; i < NumElems/2; ++i)
12710 if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
12711 !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
12714 // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
12715 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
12716 SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
12717 SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
12719 DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2,
12721 Ld->getPointerInfo(),
12722 Ld->getAlignment(),
12723 false/*isVolatile*/, true/*ReadMem*/,
12724 false/*WriteMem*/);
12725 return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
12728 // Emit a zeroed vector and insert the desired subvector on its
12730 SDValue Zeros = getZeroVector(VT, true /* HasSSE2 */, HasAVX2, DAG, dl);
12731 SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
12732 DAG.getConstant(0, MVT::i32), DAG, dl);
12733 return DCI.CombineTo(N, InsV);
12736 //===--------------------------------------------------------------------===//
12737 // Combine some shuffles into subvector extracts and inserts:
12740 // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12741 if (isShuffleHigh128VectorInsertLow(SVOp)) {
12742 SDValue V = Extract128BitVector(V1, DAG.getConstant(NumElems/2, MVT::i32),
12744 SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12745 V, DAG.getConstant(0, MVT::i32), DAG, dl);
12746 return DCI.CombineTo(N, InsV);
12749 // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12750 if (isShuffleLow128VectorInsertHigh(SVOp)) {
12751 SDValue V = Extract128BitVector(V1, DAG.getConstant(0, MVT::i32), DAG, dl);
12752 SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12753 V, DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
12754 return DCI.CombineTo(N, InsV);
12760 /// PerformShuffleCombine - Performs several different shuffle combines.
12761 static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
12762 TargetLowering::DAGCombinerInfo &DCI,
12763 const X86Subtarget *Subtarget) {
12764 DebugLoc dl = N->getDebugLoc();
12765 EVT VT = N->getValueType(0);
12767 // Don't create instructions with illegal types after legalize types has run.
12768 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12769 if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
12772 // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
12773 if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
12774 N->getOpcode() == ISD::VECTOR_SHUFFLE)
12775 return PerformShuffleCombine256(N, DAG, DCI, Subtarget->hasAVX2());
12777 // Only handle 128 wide vector from here on.
12778 if (VT.getSizeInBits() != 128)
12781 // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
12782 // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
12783 // consecutive, non-overlapping, and in the right order.
12784 SmallVector<SDValue, 16> Elts;
12785 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
12786 Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
12788 return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
12791 /// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
12792 /// generation and convert it from being a bunch of shuffles and extracts
12793 /// to a simple store and scalar loads to extract the elements.
12794 static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
12795 const TargetLowering &TLI) {
12796 SDValue InputVector = N->getOperand(0);
12798 // Only operate on vectors of 4 elements, where the alternative shuffling
12799 // gets to be more expensive.
12800 if (InputVector.getValueType() != MVT::v4i32)
12803 // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
12804 // single use which is a sign-extend or zero-extend, and all elements are
12806 SmallVector<SDNode *, 4> Uses;
12807 unsigned ExtractedElements = 0;
12808 for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
12809 UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
12810 if (UI.getUse().getResNo() != InputVector.getResNo())
12813 SDNode *Extract = *UI;
12814 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12817 if (Extract->getValueType(0) != MVT::i32)
12819 if (!Extract->hasOneUse())
12821 if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
12822 Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
12824 if (!isa<ConstantSDNode>(Extract->getOperand(1)))
12827 // Record which element was extracted.
12828 ExtractedElements |=
12829 1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
12831 Uses.push_back(Extract);
12834 // If not all the elements were used, this may not be worthwhile.
12835 if (ExtractedElements != 15)
12838 // Ok, we've now decided to do the transformation.
12839 DebugLoc dl = InputVector.getDebugLoc();
12841 // Store the value to a temporary stack slot.
12842 SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
12843 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
12844 MachinePointerInfo(), false, false, 0);
12846 // Replace each use (extract) with a load of the appropriate element.
12847 for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
12848 UE = Uses.end(); UI != UE; ++UI) {
12849 SDNode *Extract = *UI;
12851 // cOMpute the element's address.
12852 SDValue Idx = Extract->getOperand(1);
12854 InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
12855 uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
12856 SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
12858 SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
12859 StackPtr, OffsetVal);
12861 // Load the scalar.
12862 SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
12863 ScalarAddr, MachinePointerInfo(),
12864 false, false, false, 0);
12866 // Replace the exact with the load.
12867 DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
12870 // The replacement was made in place; don't return anything.
12874 /// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
12876 static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
12877 TargetLowering::DAGCombinerInfo &DCI,
12878 const X86Subtarget *Subtarget) {
12879 DebugLoc DL = N->getDebugLoc();
12880 SDValue Cond = N->getOperand(0);
12881 // Get the LHS/RHS of the select.
12882 SDValue LHS = N->getOperand(1);
12883 SDValue RHS = N->getOperand(2);
12884 EVT VT = LHS.getValueType();
12886 // If we have SSE[12] support, try to form min/max nodes. SSE min/max
12887 // instructions match the semantics of the common C idiom x<y?x:y but not
12888 // x<=y?x:y, because of how they handle negative zero (which can be
12889 // ignored in unsafe-math mode).
12890 if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
12891 VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
12892 (Subtarget->hasSSE2() ||
12893 (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
12894 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
12896 unsigned Opcode = 0;
12897 // Check for x CC y ? x : y.
12898 if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
12899 DAG.isEqualTo(RHS, Cond.getOperand(1))) {
12903 // Converting this to a min would handle NaNs incorrectly, and swapping
12904 // the operands would cause it to handle comparisons between positive
12905 // and negative zero incorrectly.
12906 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
12907 if (!DAG.getTarget().Options.UnsafeFPMath &&
12908 !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
12910 std::swap(LHS, RHS);
12912 Opcode = X86ISD::FMIN;
12915 // Converting this to a min would handle comparisons between positive
12916 // and negative zero incorrectly.
12917 if (!DAG.getTarget().Options.UnsafeFPMath &&
12918 !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
12920 Opcode = X86ISD::FMIN;
12923 // Converting this to a min would handle both negative zeros and NaNs
12924 // incorrectly, but we can swap the operands to fix both.
12925 std::swap(LHS, RHS);
12929 Opcode = X86ISD::FMIN;
12933 // Converting this to a max would handle comparisons between positive
12934 // and negative zero incorrectly.
12935 if (!DAG.getTarget().Options.UnsafeFPMath &&
12936 !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
12938 Opcode = X86ISD::FMAX;
12941 // Converting this to a max would handle NaNs incorrectly, and swapping
12942 // the operands would cause it to handle comparisons between positive
12943 // and negative zero incorrectly.
12944 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
12945 if (!DAG.getTarget().Options.UnsafeFPMath &&
12946 !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
12948 std::swap(LHS, RHS);
12950 Opcode = X86ISD::FMAX;
12953 // Converting this to a max would handle both negative zeros and NaNs
12954 // incorrectly, but we can swap the operands to fix both.
12955 std::swap(LHS, RHS);
12959 Opcode = X86ISD::FMAX;
12962 // Check for x CC y ? y : x -- a min/max with reversed arms.
12963 } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
12964 DAG.isEqualTo(RHS, Cond.getOperand(0))) {
12968 // Converting this to a min would handle comparisons between positive
12969 // and negative zero incorrectly, and swapping the operands would
12970 // cause it to handle NaNs incorrectly.
12971 if (!DAG.getTarget().Options.UnsafeFPMath &&
12972 !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
12973 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12975 std::swap(LHS, RHS);
12977 Opcode = X86ISD::FMIN;
12980 // Converting this to a min would handle NaNs incorrectly.
12981 if (!DAG.getTarget().Options.UnsafeFPMath &&
12982 (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
12984 Opcode = X86ISD::FMIN;
12987 // Converting this to a min would handle both negative zeros and NaNs
12988 // incorrectly, but we can swap the operands to fix both.
12989 std::swap(LHS, RHS);
12993 Opcode = X86ISD::FMIN;
12997 // Converting this to a max would handle NaNs incorrectly.
12998 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13000 Opcode = X86ISD::FMAX;
13003 // Converting this to a max would handle comparisons between positive
13004 // and negative zero incorrectly, and swapping the operands would
13005 // cause it to handle NaNs incorrectly.
13006 if (!DAG.getTarget().Options.UnsafeFPMath &&
13007 !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
13008 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13010 std::swap(LHS, RHS);
13012 Opcode = X86ISD::FMAX;
13015 // Converting this to a max would handle both negative zeros and NaNs
13016 // incorrectly, but we can swap the operands to fix both.
13017 std::swap(LHS, RHS);
13021 Opcode = X86ISD::FMAX;
13027 return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
13030 // If this is a select between two integer constants, try to do some
13032 if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
13033 if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
13034 // Don't do this for crazy integer types.
13035 if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
13036 // If this is efficiently invertible, canonicalize the LHSC/RHSC values
13037 // so that TrueC (the true value) is larger than FalseC.
13038 bool NeedsCondInvert = false;
13040 if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
13041 // Efficiently invertible.
13042 (Cond.getOpcode() == ISD::SETCC || // setcc -> invertible.
13043 (Cond.getOpcode() == ISD::XOR && // xor(X, C) -> invertible.
13044 isa<ConstantSDNode>(Cond.getOperand(1))))) {
13045 NeedsCondInvert = true;
13046 std::swap(TrueC, FalseC);
13049 // Optimize C ? 8 : 0 -> zext(C) << 3. Likewise for any pow2/0.
13050 if (FalseC->getAPIntValue() == 0 &&
13051 TrueC->getAPIntValue().isPowerOf2()) {
13052 if (NeedsCondInvert) // Invert the condition if needed.
13053 Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13054 DAG.getConstant(1, Cond.getValueType()));
13056 // Zero extend the condition if needed.
13057 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
13059 unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13060 return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
13061 DAG.getConstant(ShAmt, MVT::i8));
13064 // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
13065 if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13066 if (NeedsCondInvert) // Invert the condition if needed.
13067 Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13068 DAG.getConstant(1, Cond.getValueType()));
13070 // Zero extend the condition if needed.
13071 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13072 FalseC->getValueType(0), Cond);
13073 return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13074 SDValue(FalseC, 0));
13077 // Optimize cases that will turn into an LEA instruction. This requires
13078 // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13079 if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13080 uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13081 if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13083 bool isFastMultiplier = false;
13085 switch ((unsigned char)Diff) {
13087 case 1: // result = add base, cond
13088 case 2: // result = lea base( , cond*2)
13089 case 3: // result = lea base(cond, cond*2)
13090 case 4: // result = lea base( , cond*4)
13091 case 5: // result = lea base(cond, cond*4)
13092 case 8: // result = lea base( , cond*8)
13093 case 9: // result = lea base(cond, cond*8)
13094 isFastMultiplier = true;
13099 if (isFastMultiplier) {
13100 APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13101 if (NeedsCondInvert) // Invert the condition if needed.
13102 Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13103 DAG.getConstant(1, Cond.getValueType()));
13105 // Zero extend the condition if needed.
13106 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13108 // Scale the condition by the difference.
13110 Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13111 DAG.getConstant(Diff, Cond.getValueType()));
13113 // Add the base if non-zero.
13114 if (FalseC->getAPIntValue() != 0)
13115 Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13116 SDValue(FalseC, 0));
13123 // Canonicalize max and min:
13124 // (x > y) ? x : y -> (x >= y) ? x : y
13125 // (x < y) ? x : y -> (x <= y) ? x : y
13126 // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
13127 // the need for an extra compare
13128 // against zero. e.g.
13129 // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
13131 // testl %edi, %edi
13133 // cmovgl %edi, %eax
13137 // cmovsl %eax, %edi
13138 if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
13139 DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13140 DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13141 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13146 ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
13147 Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
13148 Cond.getOperand(0), Cond.getOperand(1), NewCC);
13149 return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
13154 // If we know that this node is legal then we know that it is going to be
13155 // matched by one of the SSE/AVX BLEND instructions. These instructions only
13156 // depend on the highest bit in each word. Try to use SimplifyDemandedBits
13157 // to simplify previous instructions.
13158 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13159 if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
13160 !DCI.isBeforeLegalize() &&
13161 TLI.isOperationLegal(ISD::VSELECT, VT)) {
13162 unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
13163 assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
13164 APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
13166 APInt KnownZero, KnownOne;
13167 TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
13168 DCI.isBeforeLegalizeOps());
13169 if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
13170 TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
13171 DCI.CommitTargetLoweringOpt(TLO);
13177 /// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
13178 static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
13179 TargetLowering::DAGCombinerInfo &DCI) {
13180 DebugLoc DL = N->getDebugLoc();
13182 // If the flag operand isn't dead, don't touch this CMOV.
13183 if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
13186 SDValue FalseOp = N->getOperand(0);
13187 SDValue TrueOp = N->getOperand(1);
13188 X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
13189 SDValue Cond = N->getOperand(3);
13190 if (CC == X86::COND_E || CC == X86::COND_NE) {
13191 switch (Cond.getOpcode()) {
13195 // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
13196 if (DAG.isKnownNeverZero(Cond.getOperand(0)))
13197 return (CC == X86::COND_E) ? FalseOp : TrueOp;
13201 // If this is a select between two integer constants, try to do some
13202 // optimizations. Note that the operands are ordered the opposite of SELECT
13204 if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
13205 if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
13206 // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
13207 // larger than FalseC (the false value).
13208 if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
13209 CC = X86::GetOppositeBranchCondition(CC);
13210 std::swap(TrueC, FalseC);
13213 // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3. Likewise for any pow2/0.
13214 // This is efficient for any integer data type (including i8/i16) and
13216 if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
13217 Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13218 DAG.getConstant(CC, MVT::i8), Cond);
13220 // Zero extend the condition if needed.
13221 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
13223 unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13224 Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
13225 DAG.getConstant(ShAmt, MVT::i8));
13226 if (N->getNumValues() == 2) // Dead flag value?
13227 return DCI.CombineTo(N, Cond, SDValue());
13231 // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. This is efficient
13232 // for any integer data type, including i8/i16.
13233 if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13234 Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13235 DAG.getConstant(CC, MVT::i8), Cond);
13237 // Zero extend the condition if needed.
13238 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13239 FalseC->getValueType(0), Cond);
13240 Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13241 SDValue(FalseC, 0));
13243 if (N->getNumValues() == 2) // Dead flag value?
13244 return DCI.CombineTo(N, Cond, SDValue());
13248 // Optimize cases that will turn into an LEA instruction. This requires
13249 // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13250 if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13251 uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13252 if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13254 bool isFastMultiplier = false;
13256 switch ((unsigned char)Diff) {
13258 case 1: // result = add base, cond
13259 case 2: // result = lea base( , cond*2)
13260 case 3: // result = lea base(cond, cond*2)
13261 case 4: // result = lea base( , cond*4)
13262 case 5: // result = lea base(cond, cond*4)
13263 case 8: // result = lea base( , cond*8)
13264 case 9: // result = lea base(cond, cond*8)
13265 isFastMultiplier = true;
13270 if (isFastMultiplier) {
13271 APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13272 Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13273 DAG.getConstant(CC, MVT::i8), Cond);
13274 // Zero extend the condition if needed.
13275 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13277 // Scale the condition by the difference.
13279 Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13280 DAG.getConstant(Diff, Cond.getValueType()));
13282 // Add the base if non-zero.
13283 if (FalseC->getAPIntValue() != 0)
13284 Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13285 SDValue(FalseC, 0));
13286 if (N->getNumValues() == 2) // Dead flag value?
13287 return DCI.CombineTo(N, Cond, SDValue());
13297 /// PerformMulCombine - Optimize a single multiply with constant into two
13298 /// in order to implement it with two cheaper instructions, e.g.
13299 /// LEA + SHL, LEA + LEA.
13300 static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
13301 TargetLowering::DAGCombinerInfo &DCI) {
13302 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
13305 EVT VT = N->getValueType(0);
13306 if (VT != MVT::i64)
13309 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
13312 uint64_t MulAmt = C->getZExtValue();
13313 if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
13316 uint64_t MulAmt1 = 0;
13317 uint64_t MulAmt2 = 0;
13318 if ((MulAmt % 9) == 0) {
13320 MulAmt2 = MulAmt / 9;
13321 } else if ((MulAmt % 5) == 0) {
13323 MulAmt2 = MulAmt / 5;
13324 } else if ((MulAmt % 3) == 0) {
13326 MulAmt2 = MulAmt / 3;
13329 (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
13330 DebugLoc DL = N->getDebugLoc();
13332 if (isPowerOf2_64(MulAmt2) &&
13333 !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
13334 // If second multiplifer is pow2, issue it first. We want the multiply by
13335 // 3, 5, or 9 to be folded into the addressing mode unless the lone use
13337 std::swap(MulAmt1, MulAmt2);
13340 if (isPowerOf2_64(MulAmt1))
13341 NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
13342 DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
13344 NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
13345 DAG.getConstant(MulAmt1, VT));
13347 if (isPowerOf2_64(MulAmt2))
13348 NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
13349 DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
13351 NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
13352 DAG.getConstant(MulAmt2, VT));
13354 // Do not add new nodes to DAG combiner worklist.
13355 DCI.CombineTo(N, NewMul, false);
13360 static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
13361 SDValue N0 = N->getOperand(0);
13362 SDValue N1 = N->getOperand(1);
13363 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
13364 EVT VT = N0.getValueType();
13366 // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
13367 // since the result of setcc_c is all zero's or all ones.
13368 if (VT.isInteger() && !VT.isVector() &&
13369 N1C && N0.getOpcode() == ISD::AND &&
13370 N0.getOperand(1).getOpcode() == ISD::Constant) {
13371 SDValue N00 = N0.getOperand(0);
13372 if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
13373 ((N00.getOpcode() == ISD::ANY_EXTEND ||
13374 N00.getOpcode() == ISD::ZERO_EXTEND) &&
13375 N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
13376 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
13377 APInt ShAmt = N1C->getAPIntValue();
13378 Mask = Mask.shl(ShAmt);
13380 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
13381 N00, DAG.getConstant(Mask, VT));
13386 // Hardware support for vector shifts is sparse which makes us scalarize the
13387 // vector operations in many cases. Also, on sandybridge ADD is faster than
13389 // (shl V, 1) -> add V,V
13390 if (isSplatVector(N1.getNode())) {
13391 assert(N0.getValueType().isVector() && "Invalid vector shift type");
13392 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
13393 // We shift all of the values by one. In many cases we do not have
13394 // hardware support for this operation. This is better expressed as an ADD
13396 if (N1C && (1 == N1C->getZExtValue())) {
13397 return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
13404 /// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
13406 static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
13407 const X86Subtarget *Subtarget) {
13408 EVT VT = N->getValueType(0);
13409 if (N->getOpcode() == ISD::SHL) {
13410 SDValue V = PerformSHLCombine(N, DAG);
13411 if (V.getNode()) return V;
13414 // On X86 with SSE2 support, we can transform this to a vector shift if
13415 // all elements are shifted by the same amount. We can't do this in legalize
13416 // because the a constant vector is typically transformed to a constant pool
13417 // so we have no knowledge of the shift amount.
13418 if (!Subtarget->hasSSE2())
13421 if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
13422 (!Subtarget->hasAVX2() ||
13423 (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
13426 SDValue ShAmtOp = N->getOperand(1);
13427 EVT EltVT = VT.getVectorElementType();
13428 DebugLoc DL = N->getDebugLoc();
13429 SDValue BaseShAmt = SDValue();
13430 if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
13431 unsigned NumElts = VT.getVectorNumElements();
13433 for (; i != NumElts; ++i) {
13434 SDValue Arg = ShAmtOp.getOperand(i);
13435 if (Arg.getOpcode() == ISD::UNDEF) continue;
13439 // Handle the case where the build_vector is all undef
13440 // FIXME: Should DAG allow this?
13444 for (; i != NumElts; ++i) {
13445 SDValue Arg = ShAmtOp.getOperand(i);
13446 if (Arg.getOpcode() == ISD::UNDEF) continue;
13447 if (Arg != BaseShAmt) {
13451 } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
13452 cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
13453 SDValue InVec = ShAmtOp.getOperand(0);
13454 if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
13455 unsigned NumElts = InVec.getValueType().getVectorNumElements();
13457 for (; i != NumElts; ++i) {
13458 SDValue Arg = InVec.getOperand(i);
13459 if (Arg.getOpcode() == ISD::UNDEF) continue;
13463 } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
13464 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
13465 unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
13466 if (C->getZExtValue() == SplatIdx)
13467 BaseShAmt = InVec.getOperand(1);
13470 if (BaseShAmt.getNode() == 0)
13471 BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
13472 DAG.getIntPtrConstant(0));
13476 // The shift amount is an i32.
13477 if (EltVT.bitsGT(MVT::i32))
13478 BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
13479 else if (EltVT.bitsLT(MVT::i32))
13480 BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
13482 // The shift amount is identical so we can do a vector shift.
13483 SDValue ValOp = N->getOperand(0);
13484 switch (N->getOpcode()) {
13486 llvm_unreachable("Unknown shift opcode!");
13488 if (VT == MVT::v2i64)
13489 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13490 DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
13492 if (VT == MVT::v4i32)
13493 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13494 DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
13496 if (VT == MVT::v8i16)
13497 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13498 DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
13500 if (VT == MVT::v4i64)
13501 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13502 DAG.getConstant(Intrinsic::x86_avx2_pslli_q, MVT::i32),
13504 if (VT == MVT::v8i32)
13505 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13506 DAG.getConstant(Intrinsic::x86_avx2_pslli_d, MVT::i32),
13508 if (VT == MVT::v16i16)
13509 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13510 DAG.getConstant(Intrinsic::x86_avx2_pslli_w, MVT::i32),
13514 if (VT == MVT::v4i32)
13515 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13516 DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
13518 if (VT == MVT::v8i16)
13519 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13520 DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
13522 if (VT == MVT::v8i32)
13523 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13524 DAG.getConstant(Intrinsic::x86_avx2_psrai_d, MVT::i32),
13526 if (VT == MVT::v16i16)
13527 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13528 DAG.getConstant(Intrinsic::x86_avx2_psrai_w, MVT::i32),
13532 if (VT == MVT::v2i64)
13533 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13534 DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
13536 if (VT == MVT::v4i32)
13537 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13538 DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
13540 if (VT == MVT::v8i16)
13541 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13542 DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
13544 if (VT == MVT::v4i64)
13545 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13546 DAG.getConstant(Intrinsic::x86_avx2_psrli_q, MVT::i32),
13548 if (VT == MVT::v8i32)
13549 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13550 DAG.getConstant(Intrinsic::x86_avx2_psrli_d, MVT::i32),
13552 if (VT == MVT::v16i16)
13553 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13554 DAG.getConstant(Intrinsic::x86_avx2_psrli_w, MVT::i32),
13562 // CMPEQCombine - Recognize the distinctive (AND (setcc ...) (setcc ..))
13563 // where both setccs reference the same FP CMP, and rewrite for CMPEQSS
13564 // and friends. Likewise for OR -> CMPNEQSS.
13565 static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
13566 TargetLowering::DAGCombinerInfo &DCI,
13567 const X86Subtarget *Subtarget) {
13570 // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
13571 // we're requiring SSE2 for both.
13572 if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
13573 SDValue N0 = N->getOperand(0);
13574 SDValue N1 = N->getOperand(1);
13575 SDValue CMP0 = N0->getOperand(1);
13576 SDValue CMP1 = N1->getOperand(1);
13577 DebugLoc DL = N->getDebugLoc();
13579 // The SETCCs should both refer to the same CMP.
13580 if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
13583 SDValue CMP00 = CMP0->getOperand(0);
13584 SDValue CMP01 = CMP0->getOperand(1);
13585 EVT VT = CMP00.getValueType();
13587 if (VT == MVT::f32 || VT == MVT::f64) {
13588 bool ExpectingFlags = false;
13589 // Check for any users that want flags:
13590 for (SDNode::use_iterator UI = N->use_begin(),
13592 !ExpectingFlags && UI != UE; ++UI)
13593 switch (UI->getOpcode()) {
13598 ExpectingFlags = true;
13600 case ISD::CopyToReg:
13601 case ISD::SIGN_EXTEND:
13602 case ISD::ZERO_EXTEND:
13603 case ISD::ANY_EXTEND:
13607 if (!ExpectingFlags) {
13608 enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
13609 enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
13611 if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
13612 X86::CondCode tmp = cc0;
13617 if ((cc0 == X86::COND_E && cc1 == X86::COND_NP) ||
13618 (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
13619 bool is64BitFP = (CMP00.getValueType() == MVT::f64);
13620 X86ISD::NodeType NTOperator = is64BitFP ?
13621 X86ISD::FSETCCsd : X86ISD::FSETCCss;
13622 // FIXME: need symbolic constants for these magic numbers.
13623 // See X86ATTInstPrinter.cpp:printSSECC().
13624 unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
13625 SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
13626 DAG.getConstant(x86cc, MVT::i8));
13627 SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
13629 SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
13630 DAG.getConstant(1, MVT::i32));
13631 SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
13632 return OneBitOfTruth;
13640 /// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
13641 /// so it can be folded inside ANDNP.
13642 static bool CanFoldXORWithAllOnes(const SDNode *N) {
13643 EVT VT = N->getValueType(0);
13645 // Match direct AllOnes for 128 and 256-bit vectors
13646 if (ISD::isBuildVectorAllOnes(N))
13649 // Look through a bit convert.
13650 if (N->getOpcode() == ISD::BITCAST)
13651 N = N->getOperand(0).getNode();
13653 // Sometimes the operand may come from a insert_subvector building a 256-bit
13655 if (VT.getSizeInBits() == 256 &&
13656 N->getOpcode() == ISD::INSERT_SUBVECTOR) {
13657 SDValue V1 = N->getOperand(0);
13658 SDValue V2 = N->getOperand(1);
13660 if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
13661 V1.getOperand(0).getOpcode() == ISD::UNDEF &&
13662 ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
13663 ISD::isBuildVectorAllOnes(V2.getNode()))
13670 static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
13671 TargetLowering::DAGCombinerInfo &DCI,
13672 const X86Subtarget *Subtarget) {
13673 if (DCI.isBeforeLegalizeOps())
13676 SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13680 EVT VT = N->getValueType(0);
13682 // Create ANDN, BLSI, and BLSR instructions
13683 // BLSI is X & (-X)
13684 // BLSR is X & (X-1)
13685 if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
13686 SDValue N0 = N->getOperand(0);
13687 SDValue N1 = N->getOperand(1);
13688 DebugLoc DL = N->getDebugLoc();
13690 // Check LHS for not
13691 if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
13692 return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
13693 // Check RHS for not
13694 if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
13695 return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
13697 // Check LHS for neg
13698 if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
13699 isZero(N0.getOperand(0)))
13700 return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
13702 // Check RHS for neg
13703 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
13704 isZero(N1.getOperand(0)))
13705 return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
13707 // Check LHS for X-1
13708 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
13709 isAllOnes(N0.getOperand(1)))
13710 return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
13712 // Check RHS for X-1
13713 if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
13714 isAllOnes(N1.getOperand(1)))
13715 return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
13720 // Want to form ANDNP nodes:
13721 // 1) In the hopes of then easily combining them with OR and AND nodes
13722 // to form PBLEND/PSIGN.
13723 // 2) To match ANDN packed intrinsics
13724 if (VT != MVT::v2i64 && VT != MVT::v4i64)
13727 SDValue N0 = N->getOperand(0);
13728 SDValue N1 = N->getOperand(1);
13729 DebugLoc DL = N->getDebugLoc();
13731 // Check LHS for vnot
13732 if (N0.getOpcode() == ISD::XOR &&
13733 //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
13734 CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
13735 return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
13737 // Check RHS for vnot
13738 if (N1.getOpcode() == ISD::XOR &&
13739 //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
13740 CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
13741 return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
13746 static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
13747 TargetLowering::DAGCombinerInfo &DCI,
13748 const X86Subtarget *Subtarget) {
13749 if (DCI.isBeforeLegalizeOps())
13752 SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13756 EVT VT = N->getValueType(0);
13758 SDValue N0 = N->getOperand(0);
13759 SDValue N1 = N->getOperand(1);
13761 // look for psign/blend
13762 if (VT == MVT::v2i64 || VT == MVT::v4i64) {
13763 if (!Subtarget->hasSSSE3() ||
13764 (VT == MVT::v4i64 && !Subtarget->hasAVX2()))
13767 // Canonicalize pandn to RHS
13768 if (N0.getOpcode() == X86ISD::ANDNP)
13770 // or (and (m, y), (pandn m, x))
13771 if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
13772 SDValue Mask = N1.getOperand(0);
13773 SDValue X = N1.getOperand(1);
13775 if (N0.getOperand(0) == Mask)
13776 Y = N0.getOperand(1);
13777 if (N0.getOperand(1) == Mask)
13778 Y = N0.getOperand(0);
13780 // Check to see if the mask appeared in both the AND and ANDNP and
13784 // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
13785 if (Mask.getOpcode() != ISD::BITCAST ||
13786 X.getOpcode() != ISD::BITCAST ||
13787 Y.getOpcode() != ISD::BITCAST)
13790 // Look through mask bitcast.
13791 Mask = Mask.getOperand(0);
13792 EVT MaskVT = Mask.getValueType();
13794 // Validate that the Mask operand is a vector sra node. The sra node
13795 // will be an intrinsic.
13796 if (Mask.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
13799 // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
13800 // there is no psrai.b
13801 switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) {
13802 case Intrinsic::x86_sse2_psrai_w:
13803 case Intrinsic::x86_sse2_psrai_d:
13804 case Intrinsic::x86_avx2_psrai_w:
13805 case Intrinsic::x86_avx2_psrai_d:
13807 default: return SDValue();
13810 // Check that the SRA is all signbits.
13811 SDValue SraC = Mask.getOperand(2);
13812 unsigned SraAmt = cast<ConstantSDNode>(SraC)->getZExtValue();
13813 unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
13814 if ((SraAmt + 1) != EltBits)
13817 DebugLoc DL = N->getDebugLoc();
13819 // Now we know we at least have a plendvb with the mask val. See if
13820 // we can form a psignb/w/d.
13821 // psign = x.type == y.type == mask.type && y = sub(0, x);
13822 X = X.getOperand(0);
13823 Y = Y.getOperand(0);
13824 if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
13825 ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
13826 X.getValueType() == MaskVT && X.getValueType() == Y.getValueType() &&
13827 (EltBits == 8 || EltBits == 16 || EltBits == 32)) {
13828 SDValue Sign = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X,
13829 Mask.getOperand(1));
13830 return DAG.getNode(ISD::BITCAST, DL, VT, Sign);
13832 // PBLENDVB only available on SSE 4.1
13833 if (!Subtarget->hasSSE41())
13836 EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
13838 X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
13839 Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
13840 Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
13841 Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
13842 return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
13846 if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
13849 // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
13850 if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
13852 if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
13854 if (!N0.hasOneUse() || !N1.hasOneUse())
13857 SDValue ShAmt0 = N0.getOperand(1);
13858 if (ShAmt0.getValueType() != MVT::i8)
13860 SDValue ShAmt1 = N1.getOperand(1);
13861 if (ShAmt1.getValueType() != MVT::i8)
13863 if (ShAmt0.getOpcode() == ISD::TRUNCATE)
13864 ShAmt0 = ShAmt0.getOperand(0);
13865 if (ShAmt1.getOpcode() == ISD::TRUNCATE)
13866 ShAmt1 = ShAmt1.getOperand(0);
13868 DebugLoc DL = N->getDebugLoc();
13869 unsigned Opc = X86ISD::SHLD;
13870 SDValue Op0 = N0.getOperand(0);
13871 SDValue Op1 = N1.getOperand(0);
13872 if (ShAmt0.getOpcode() == ISD::SUB) {
13873 Opc = X86ISD::SHRD;
13874 std::swap(Op0, Op1);
13875 std::swap(ShAmt0, ShAmt1);
13878 unsigned Bits = VT.getSizeInBits();
13879 if (ShAmt1.getOpcode() == ISD::SUB) {
13880 SDValue Sum = ShAmt1.getOperand(0);
13881 if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
13882 SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
13883 if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
13884 ShAmt1Op1 = ShAmt1Op1.getOperand(0);
13885 if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
13886 return DAG.getNode(Opc, DL, VT,
13888 DAG.getNode(ISD::TRUNCATE, DL,
13891 } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
13892 ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
13894 ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
13895 return DAG.getNode(Opc, DL, VT,
13896 N0.getOperand(0), N1.getOperand(0),
13897 DAG.getNode(ISD::TRUNCATE, DL,
13904 // PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
13905 static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
13906 TargetLowering::DAGCombinerInfo &DCI,
13907 const X86Subtarget *Subtarget) {
13908 if (DCI.isBeforeLegalizeOps())
13911 EVT VT = N->getValueType(0);
13913 if (VT != MVT::i32 && VT != MVT::i64)
13916 assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
13918 // Create BLSMSK instructions by finding X ^ (X-1)
13919 SDValue N0 = N->getOperand(0);
13920 SDValue N1 = N->getOperand(1);
13921 DebugLoc DL = N->getDebugLoc();
13923 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
13924 isAllOnes(N0.getOperand(1)))
13925 return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
13927 if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
13928 isAllOnes(N1.getOperand(1)))
13929 return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
13934 /// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
13935 static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
13936 const X86Subtarget *Subtarget) {
13937 LoadSDNode *Ld = cast<LoadSDNode>(N);
13938 EVT RegVT = Ld->getValueType(0);
13939 EVT MemVT = Ld->getMemoryVT();
13940 DebugLoc dl = Ld->getDebugLoc();
13941 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13943 ISD::LoadExtType Ext = Ld->getExtensionType();
13945 // If this is a vector EXT Load then attempt to optimize it using a
13946 // shuffle. We need SSE4 for the shuffles.
13947 // TODO: It is possible to support ZExt by zeroing the undef values
13948 // during the shuffle phase or after the shuffle.
13949 if (RegVT.isVector() && RegVT.isInteger() &&
13950 Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
13951 assert(MemVT != RegVT && "Cannot extend to the same type");
13952 assert(MemVT.isVector() && "Must load a vector from memory");
13954 unsigned NumElems = RegVT.getVectorNumElements();
13955 unsigned RegSz = RegVT.getSizeInBits();
13956 unsigned MemSz = MemVT.getSizeInBits();
13957 assert(RegSz > MemSz && "Register size must be greater than the mem size");
13958 // All sizes must be a power of two
13959 if (!isPowerOf2_32(RegSz * MemSz * NumElems)) return SDValue();
13961 // Attempt to load the original value using a single load op.
13962 // Find a scalar type which is equal to the loaded word size.
13963 MVT SclrLoadTy = MVT::i8;
13964 for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
13965 tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
13966 MVT Tp = (MVT::SimpleValueType)tp;
13967 if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() == MemSz) {
13973 // Proceed if a load word is found.
13974 if (SclrLoadTy.getSizeInBits() != MemSz) return SDValue();
13976 EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
13977 RegSz/SclrLoadTy.getSizeInBits());
13979 EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
13980 RegSz/MemVT.getScalarType().getSizeInBits());
13981 // Can't shuffle using an illegal type.
13982 if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
13984 // Perform a single load.
13985 SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
13987 Ld->getPointerInfo(), Ld->isVolatile(),
13988 Ld->isNonTemporal(), Ld->isInvariant(),
13989 Ld->getAlignment());
13991 // Insert the word loaded into a vector.
13992 SDValue ScalarInVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
13993 LoadUnitVecVT, ScalarLoad);
13995 // Bitcast the loaded value to a vector of the original element type, in
13996 // the size of the target vector type.
13997 SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT,
13999 unsigned SizeRatio = RegSz/MemSz;
14001 // Redistribute the loaded elements into the different locations.
14002 SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14003 for (unsigned i = 0; i < NumElems; i++) ShuffleVec[i*SizeRatio] = i;
14005 SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
14006 DAG.getUNDEF(SlicedVec.getValueType()),
14007 ShuffleVec.data());
14009 // Bitcast to the requested type.
14010 Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
14011 // Replace the original load with the new sequence
14012 // and return the new chain.
14013 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Shuff);
14014 return SDValue(ScalarLoad.getNode(), 1);
14020 /// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
14021 static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
14022 const X86Subtarget *Subtarget) {
14023 StoreSDNode *St = cast<StoreSDNode>(N);
14024 EVT VT = St->getValue().getValueType();
14025 EVT StVT = St->getMemoryVT();
14026 DebugLoc dl = St->getDebugLoc();
14027 SDValue StoredVal = St->getOperand(1);
14028 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14030 // If we are saving a concatenation of two XMM registers, perform two stores.
14031 // This is better in Sandy Bridge cause one 256-bit mem op is done via two
14032 // 128-bit ones. If in the future the cost becomes only one memory access the
14033 // first version would be better.
14034 if (VT.getSizeInBits() == 256 &&
14035 StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
14036 StoredVal.getNumOperands() == 2) {
14038 SDValue Value0 = StoredVal.getOperand(0);
14039 SDValue Value1 = StoredVal.getOperand(1);
14041 SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
14042 SDValue Ptr0 = St->getBasePtr();
14043 SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
14045 SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
14046 St->getPointerInfo(), St->isVolatile(),
14047 St->isNonTemporal(), St->getAlignment());
14048 SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
14049 St->getPointerInfo(), St->isVolatile(),
14050 St->isNonTemporal(), St->getAlignment());
14051 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
14054 // Optimize trunc store (of multiple scalars) to shuffle and store.
14055 // First, pack all of the elements in one place. Next, store to memory
14056 // in fewer chunks.
14057 if (St->isTruncatingStore() && VT.isVector()) {
14058 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14059 unsigned NumElems = VT.getVectorNumElements();
14060 assert(StVT != VT && "Cannot truncate to the same type");
14061 unsigned FromSz = VT.getVectorElementType().getSizeInBits();
14062 unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
14064 // From, To sizes and ElemCount must be pow of two
14065 if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
14066 // We are going to use the original vector elt for storing.
14067 // Accumulated smaller vector elements must be a multiple of the store size.
14068 if (0 != (NumElems * FromSz) % ToSz) return SDValue();
14070 unsigned SizeRatio = FromSz / ToSz;
14072 assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
14074 // Create a type on which we perform the shuffle
14075 EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
14076 StVT.getScalarType(), NumElems*SizeRatio);
14078 assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
14080 SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
14081 SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14082 for (unsigned i = 0; i < NumElems; i++ ) ShuffleVec[i] = i * SizeRatio;
14084 // Can't shuffle using an illegal type
14085 if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14087 SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
14088 DAG.getUNDEF(WideVec.getValueType()),
14089 ShuffleVec.data());
14090 // At this point all of the data is stored at the bottom of the
14091 // register. We now need to save it to mem.
14093 // Find the largest store unit
14094 MVT StoreType = MVT::i8;
14095 for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14096 tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14097 MVT Tp = (MVT::SimpleValueType)tp;
14098 if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
14102 // Bitcast the original vector into a vector of store-size units
14103 EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
14104 StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
14105 assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
14106 SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
14107 SmallVector<SDValue, 8> Chains;
14108 SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
14109 TLI.getPointerTy());
14110 SDValue Ptr = St->getBasePtr();
14112 // Perform one or more big stores into memory.
14113 for (unsigned i = 0; i < (ToSz*NumElems)/StoreType.getSizeInBits() ; i++) {
14114 SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
14115 StoreType, ShuffWide,
14116 DAG.getIntPtrConstant(i));
14117 SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
14118 St->getPointerInfo(), St->isVolatile(),
14119 St->isNonTemporal(), St->getAlignment());
14120 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14121 Chains.push_back(Ch);
14124 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
14129 // Turn load->store of MMX types into GPR load/stores. This avoids clobbering
14130 // the FP state in cases where an emms may be missing.
14131 // A preferable solution to the general problem is to figure out the right
14132 // places to insert EMMS. This qualifies as a quick hack.
14134 // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
14135 if (VT.getSizeInBits() != 64)
14138 const Function *F = DAG.getMachineFunction().getFunction();
14139 bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
14140 bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
14141 && Subtarget->hasSSE2();
14142 if ((VT.isVector() ||
14143 (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
14144 isa<LoadSDNode>(St->getValue()) &&
14145 !cast<LoadSDNode>(St->getValue())->isVolatile() &&
14146 St->getChain().hasOneUse() && !St->isVolatile()) {
14147 SDNode* LdVal = St->getValue().getNode();
14148 LoadSDNode *Ld = 0;
14149 int TokenFactorIndex = -1;
14150 SmallVector<SDValue, 8> Ops;
14151 SDNode* ChainVal = St->getChain().getNode();
14152 // Must be a store of a load. We currently handle two cases: the load
14153 // is a direct child, and it's under an intervening TokenFactor. It is
14154 // possible to dig deeper under nested TokenFactors.
14155 if (ChainVal == LdVal)
14156 Ld = cast<LoadSDNode>(St->getChain());
14157 else if (St->getValue().hasOneUse() &&
14158 ChainVal->getOpcode() == ISD::TokenFactor) {
14159 for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
14160 if (ChainVal->getOperand(i).getNode() == LdVal) {
14161 TokenFactorIndex = i;
14162 Ld = cast<LoadSDNode>(St->getValue());
14164 Ops.push_back(ChainVal->getOperand(i));
14168 if (!Ld || !ISD::isNormalLoad(Ld))
14171 // If this is not the MMX case, i.e. we are just turning i64 load/store
14172 // into f64 load/store, avoid the transformation if there are multiple
14173 // uses of the loaded value.
14174 if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
14177 DebugLoc LdDL = Ld->getDebugLoc();
14178 DebugLoc StDL = N->getDebugLoc();
14179 // If we are a 64-bit capable x86, lower to a single movq load/store pair.
14180 // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
14182 if (Subtarget->is64Bit() || F64IsLegal) {
14183 EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
14184 SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
14185 Ld->getPointerInfo(), Ld->isVolatile(),
14186 Ld->isNonTemporal(), Ld->isInvariant(),
14187 Ld->getAlignment());
14188 SDValue NewChain = NewLd.getValue(1);
14189 if (TokenFactorIndex != -1) {
14190 Ops.push_back(NewChain);
14191 NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14194 return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
14195 St->getPointerInfo(),
14196 St->isVolatile(), St->isNonTemporal(),
14197 St->getAlignment());
14200 // Otherwise, lower to two pairs of 32-bit loads / stores.
14201 SDValue LoAddr = Ld->getBasePtr();
14202 SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
14203 DAG.getConstant(4, MVT::i32));
14205 SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
14206 Ld->getPointerInfo(),
14207 Ld->isVolatile(), Ld->isNonTemporal(),
14208 Ld->isInvariant(), Ld->getAlignment());
14209 SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
14210 Ld->getPointerInfo().getWithOffset(4),
14211 Ld->isVolatile(), Ld->isNonTemporal(),
14213 MinAlign(Ld->getAlignment(), 4));
14215 SDValue NewChain = LoLd.getValue(1);
14216 if (TokenFactorIndex != -1) {
14217 Ops.push_back(LoLd);
14218 Ops.push_back(HiLd);
14219 NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14223 LoAddr = St->getBasePtr();
14224 HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
14225 DAG.getConstant(4, MVT::i32));
14227 SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
14228 St->getPointerInfo(),
14229 St->isVolatile(), St->isNonTemporal(),
14230 St->getAlignment());
14231 SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
14232 St->getPointerInfo().getWithOffset(4),
14234 St->isNonTemporal(),
14235 MinAlign(St->getAlignment(), 4));
14236 return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
14241 /// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
14242 /// and return the operands for the horizontal operation in LHS and RHS. A
14243 /// horizontal operation performs the binary operation on successive elements
14244 /// of its first operand, then on successive elements of its second operand,
14245 /// returning the resulting values in a vector. For example, if
14246 /// A = < float a0, float a1, float a2, float a3 >
14248 /// B = < float b0, float b1, float b2, float b3 >
14249 /// then the result of doing a horizontal operation on A and B is
14250 /// A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
14251 /// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
14252 /// A horizontal-op B, for some already available A and B, and if so then LHS is
14253 /// set to A, RHS to B, and the routine returns 'true'.
14254 /// Note that the binary operation should have the property that if one of the
14255 /// operands is UNDEF then the result is UNDEF.
14256 static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
14257 // Look for the following pattern: if
14258 // A = < float a0, float a1, float a2, float a3 >
14259 // B = < float b0, float b1, float b2, float b3 >
14261 // LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
14262 // RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
14263 // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
14264 // which is A horizontal-op B.
14266 // At least one of the operands should be a vector shuffle.
14267 if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14268 RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
14271 EVT VT = LHS.getValueType();
14273 assert((VT.is128BitVector() || VT.is256BitVector()) &&
14274 "Unsupported vector type for horizontal add/sub");
14276 // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
14277 // operate independently on 128-bit lanes.
14278 unsigned NumElts = VT.getVectorNumElements();
14279 unsigned NumLanes = VT.getSizeInBits()/128;
14280 unsigned NumLaneElts = NumElts / NumLanes;
14281 assert((NumLaneElts % 2 == 0) &&
14282 "Vector type should have an even number of elements in each lane");
14283 unsigned HalfLaneElts = NumLaneElts/2;
14285 // View LHS in the form
14286 // LHS = VECTOR_SHUFFLE A, B, LMask
14287 // If LHS is not a shuffle then pretend it is the shuffle
14288 // LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
14289 // NOTE: in what follows a default initialized SDValue represents an UNDEF of
14292 SmallVector<int, 16> LMask(NumElts);
14293 if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14294 if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
14295 A = LHS.getOperand(0);
14296 if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
14297 B = LHS.getOperand(1);
14298 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
14299 std::copy(Mask.begin(), Mask.end(), LMask.begin());
14301 if (LHS.getOpcode() != ISD::UNDEF)
14303 for (unsigned i = 0; i != NumElts; ++i)
14307 // Likewise, view RHS in the form
14308 // RHS = VECTOR_SHUFFLE C, D, RMask
14310 SmallVector<int, 16> RMask(NumElts);
14311 if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14312 if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
14313 C = RHS.getOperand(0);
14314 if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
14315 D = RHS.getOperand(1);
14316 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
14317 std::copy(Mask.begin(), Mask.end(), RMask.begin());
14319 if (RHS.getOpcode() != ISD::UNDEF)
14321 for (unsigned i = 0; i != NumElts; ++i)
14325 // Check that the shuffles are both shuffling the same vectors.
14326 if (!(A == C && B == D) && !(A == D && B == C))
14329 // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
14330 if (!A.getNode() && !B.getNode())
14333 // If A and B occur in reverse order in RHS, then "swap" them (which means
14334 // rewriting the mask).
14336 CommuteVectorShuffleMask(RMask, NumElts);
14338 // At this point LHS and RHS are equivalent to
14339 // LHS = VECTOR_SHUFFLE A, B, LMask
14340 // RHS = VECTOR_SHUFFLE A, B, RMask
14341 // Check that the masks correspond to performing a horizontal operation.
14342 for (unsigned i = 0; i != NumElts; ++i) {
14343 int LIdx = LMask[i], RIdx = RMask[i];
14345 // Ignore any UNDEF components.
14346 if (LIdx < 0 || RIdx < 0 ||
14347 (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
14348 (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
14351 // Check that successive elements are being operated on. If not, this is
14352 // not a horizontal operation.
14353 unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
14354 unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
14355 int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
14356 if (!(LIdx == Index && RIdx == Index + 1) &&
14357 !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
14361 LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
14362 RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
14366 /// PerformFADDCombine - Do target-specific dag combines on floating point adds.
14367 static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
14368 const X86Subtarget *Subtarget) {
14369 EVT VT = N->getValueType(0);
14370 SDValue LHS = N->getOperand(0);
14371 SDValue RHS = N->getOperand(1);
14373 // Try to synthesize horizontal adds from adds of shuffles.
14374 if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14375 (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14376 isHorizontalBinOp(LHS, RHS, true))
14377 return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
14381 /// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
14382 static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
14383 const X86Subtarget *Subtarget) {
14384 EVT VT = N->getValueType(0);
14385 SDValue LHS = N->getOperand(0);
14386 SDValue RHS = N->getOperand(1);
14388 // Try to synthesize horizontal subs from subs of shuffles.
14389 if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14390 (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14391 isHorizontalBinOp(LHS, RHS, false))
14392 return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
14396 /// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
14397 /// X86ISD::FXOR nodes.
14398 static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
14399 assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
14400 // F[X]OR(0.0, x) -> x
14401 // F[X]OR(x, 0.0) -> x
14402 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14403 if (C->getValueAPF().isPosZero())
14404 return N->getOperand(1);
14405 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14406 if (C->getValueAPF().isPosZero())
14407 return N->getOperand(0);
14411 /// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
14412 static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
14413 // FAND(0.0, x) -> 0.0
14414 // FAND(x, 0.0) -> 0.0
14415 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14416 if (C->getValueAPF().isPosZero())
14417 return N->getOperand(0);
14418 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14419 if (C->getValueAPF().isPosZero())
14420 return N->getOperand(1);
14424 static SDValue PerformBTCombine(SDNode *N,
14426 TargetLowering::DAGCombinerInfo &DCI) {
14427 // BT ignores high bits in the bit index operand.
14428 SDValue Op1 = N->getOperand(1);
14429 if (Op1.hasOneUse()) {
14430 unsigned BitWidth = Op1.getValueSizeInBits();
14431 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
14432 APInt KnownZero, KnownOne;
14433 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
14434 !DCI.isBeforeLegalizeOps());
14435 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14436 if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
14437 TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
14438 DCI.CommitTargetLoweringOpt(TLO);
14443 static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
14444 SDValue Op = N->getOperand(0);
14445 if (Op.getOpcode() == ISD::BITCAST)
14446 Op = Op.getOperand(0);
14447 EVT VT = N->getValueType(0), OpVT = Op.getValueType();
14448 if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
14449 VT.getVectorElementType().getSizeInBits() ==
14450 OpVT.getVectorElementType().getSizeInBits()) {
14451 return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
14456 static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
14457 // (i32 zext (and (i8 x86isd::setcc_carry), 1)) ->
14458 // (and (i32 x86isd::setcc_carry), 1)
14459 // This eliminates the zext. This transformation is necessary because
14460 // ISD::SETCC is always legalized to i8.
14461 DebugLoc dl = N->getDebugLoc();
14462 SDValue N0 = N->getOperand(0);
14463 EVT VT = N->getValueType(0);
14464 if (N0.getOpcode() == ISD::AND &&
14466 N0.getOperand(0).hasOneUse()) {
14467 SDValue N00 = N0.getOperand(0);
14468 if (N00.getOpcode() != X86ISD::SETCC_CARRY)
14470 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
14471 if (!C || C->getZExtValue() != 1)
14473 return DAG.getNode(ISD::AND, dl, VT,
14474 DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
14475 N00.getOperand(0), N00.getOperand(1)),
14476 DAG.getConstant(1, VT));
14482 // Optimize RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
14483 static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
14484 unsigned X86CC = N->getConstantOperandVal(0);
14485 SDValue EFLAG = N->getOperand(1);
14486 DebugLoc DL = N->getDebugLoc();
14488 // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
14489 // a zext and produces an all-ones bit which is more useful than 0/1 in some
14491 if (X86CC == X86::COND_B)
14492 return DAG.getNode(ISD::AND, DL, MVT::i8,
14493 DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
14494 DAG.getConstant(X86CC, MVT::i8), EFLAG),
14495 DAG.getConstant(1, MVT::i8));
14500 static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
14501 const X86TargetLowering *XTLI) {
14502 SDValue Op0 = N->getOperand(0);
14503 // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
14504 // a 32-bit target where SSE doesn't support i64->FP operations.
14505 if (Op0.getOpcode() == ISD::LOAD) {
14506 LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
14507 EVT VT = Ld->getValueType(0);
14508 if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
14509 ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
14510 !XTLI->getSubtarget()->is64Bit() &&
14511 !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
14512 SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
14513 Ld->getChain(), Op0, DAG);
14514 DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
14521 // Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
14522 static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
14523 X86TargetLowering::DAGCombinerInfo &DCI) {
14524 // If the LHS and RHS of the ADC node are zero, then it can't overflow and
14525 // the result is either zero or one (depending on the input carry bit).
14526 // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
14527 if (X86::isZeroNode(N->getOperand(0)) &&
14528 X86::isZeroNode(N->getOperand(1)) &&
14529 // We don't have a good way to replace an EFLAGS use, so only do this when
14531 SDValue(N, 1).use_empty()) {
14532 DebugLoc DL = N->getDebugLoc();
14533 EVT VT = N->getValueType(0);
14534 SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
14535 SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
14536 DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
14537 DAG.getConstant(X86::COND_B,MVT::i8),
14539 DAG.getConstant(1, VT));
14540 return DCI.CombineTo(N, Res1, CarryOut);
14546 // fold (add Y, (sete X, 0)) -> adc 0, Y
14547 // (add Y, (setne X, 0)) -> sbb -1, Y
14548 // (sub (sete X, 0), Y) -> sbb 0, Y
14549 // (sub (setne X, 0), Y) -> adc -1, Y
14550 static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
14551 DebugLoc DL = N->getDebugLoc();
14553 // Look through ZExts.
14554 SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
14555 if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
14558 SDValue SetCC = Ext.getOperand(0);
14559 if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
14562 X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
14563 if (CC != X86::COND_E && CC != X86::COND_NE)
14566 SDValue Cmp = SetCC.getOperand(1);
14567 if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
14568 !X86::isZeroNode(Cmp.getOperand(1)) ||
14569 !Cmp.getOperand(0).getValueType().isInteger())
14572 SDValue CmpOp0 = Cmp.getOperand(0);
14573 SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
14574 DAG.getConstant(1, CmpOp0.getValueType()));
14576 SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
14577 if (CC == X86::COND_NE)
14578 return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
14579 DL, OtherVal.getValueType(), OtherVal,
14580 DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
14581 return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
14582 DL, OtherVal.getValueType(), OtherVal,
14583 DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
14586 /// PerformADDCombine - Do target-specific dag combines on integer adds.
14587 static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
14588 const X86Subtarget *Subtarget) {
14589 EVT VT = N->getValueType(0);
14590 SDValue Op0 = N->getOperand(0);
14591 SDValue Op1 = N->getOperand(1);
14593 // Try to synthesize horizontal adds from adds of shuffles.
14594 if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
14595 (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
14596 isHorizontalBinOp(Op0, Op1, true))
14597 return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
14599 return OptimizeConditionalInDecrement(N, DAG);
14602 static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
14603 const X86Subtarget *Subtarget) {
14604 SDValue Op0 = N->getOperand(0);
14605 SDValue Op1 = N->getOperand(1);
14607 // X86 can't encode an immediate LHS of a sub. See if we can push the
14608 // negation into a preceding instruction.
14609 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
14610 // If the RHS of the sub is a XOR with one use and a constant, invert the
14611 // immediate. Then add one to the LHS of the sub so we can turn
14612 // X-Y -> X+~Y+1, saving one register.
14613 if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
14614 isa<ConstantSDNode>(Op1.getOperand(1))) {
14615 APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
14616 EVT VT = Op0.getValueType();
14617 SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
14619 DAG.getConstant(~XorC, VT));
14620 return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
14621 DAG.getConstant(C->getAPIntValue()+1, VT));
14625 // Try to synthesize horizontal adds from adds of shuffles.
14626 EVT VT = N->getValueType(0);
14627 if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
14628 (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
14629 isHorizontalBinOp(Op0, Op1, true))
14630 return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
14632 return OptimizeConditionalInDecrement(N, DAG);
14635 SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
14636 DAGCombinerInfo &DCI) const {
14637 SelectionDAG &DAG = DCI.DAG;
14638 switch (N->getOpcode()) {
14640 case ISD::EXTRACT_VECTOR_ELT:
14641 return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
14643 case ISD::SELECT: return PerformSELECTCombine(N, DAG, DCI, Subtarget);
14644 case X86ISD::CMOV: return PerformCMOVCombine(N, DAG, DCI);
14645 case ISD::ADD: return PerformAddCombine(N, DAG, Subtarget);
14646 case ISD::SUB: return PerformSubCombine(N, DAG, Subtarget);
14647 case X86ISD::ADC: return PerformADCCombine(N, DAG, DCI);
14648 case ISD::MUL: return PerformMulCombine(N, DAG, DCI);
14651 case ISD::SRL: return PerformShiftCombine(N, DAG, Subtarget);
14652 case ISD::AND: return PerformAndCombine(N, DAG, DCI, Subtarget);
14653 case ISD::OR: return PerformOrCombine(N, DAG, DCI, Subtarget);
14654 case ISD::XOR: return PerformXorCombine(N, DAG, DCI, Subtarget);
14655 case ISD::LOAD: return PerformLOADCombine(N, DAG, Subtarget);
14656 case ISD::STORE: return PerformSTORECombine(N, DAG, Subtarget);
14657 case ISD::SINT_TO_FP: return PerformSINT_TO_FPCombine(N, DAG, this);
14658 case ISD::FADD: return PerformFADDCombine(N, DAG, Subtarget);
14659 case ISD::FSUB: return PerformFSUBCombine(N, DAG, Subtarget);
14661 case X86ISD::FOR: return PerformFORCombine(N, DAG);
14662 case X86ISD::FAND: return PerformFANDCombine(N, DAG);
14663 case X86ISD::BT: return PerformBTCombine(N, DAG, DCI);
14664 case X86ISD::VZEXT_MOVL: return PerformVZEXT_MOVLCombine(N, DAG);
14665 case ISD::ZERO_EXTEND: return PerformZExtCombine(N, DAG);
14666 case X86ISD::SETCC: return PerformSETCCCombine(N, DAG);
14667 case X86ISD::SHUFP: // Handle all target specific shuffles
14668 case X86ISD::PALIGN:
14669 case X86ISD::UNPCKH:
14670 case X86ISD::UNPCKL:
14671 case X86ISD::MOVHLPS:
14672 case X86ISD::MOVLHPS:
14673 case X86ISD::PSHUFD:
14674 case X86ISD::PSHUFHW:
14675 case X86ISD::PSHUFLW:
14676 case X86ISD::MOVSS:
14677 case X86ISD::MOVSD:
14678 case X86ISD::VPERMILP:
14679 case X86ISD::VPERM2X128:
14680 case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
14686 /// isTypeDesirableForOp - Return true if the target has native support for
14687 /// the specified value type and it is 'desirable' to use the type for the
14688 /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
14689 /// instruction encodings are longer and some i16 instructions are slow.
14690 bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
14691 if (!isTypeLegal(VT))
14693 if (VT != MVT::i16)
14700 case ISD::SIGN_EXTEND:
14701 case ISD::ZERO_EXTEND:
14702 case ISD::ANY_EXTEND:
14715 /// IsDesirableToPromoteOp - This method query the target whether it is
14716 /// beneficial for dag combiner to promote the specified node. If true, it
14717 /// should return the desired promotion type by reference.
14718 bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
14719 EVT VT = Op.getValueType();
14720 if (VT != MVT::i16)
14723 bool Promote = false;
14724 bool Commute = false;
14725 switch (Op.getOpcode()) {
14728 LoadSDNode *LD = cast<LoadSDNode>(Op);
14729 // If the non-extending load has a single use and it's not live out, then it
14730 // might be folded.
14731 if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
14732 Op.hasOneUse()*/) {
14733 for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
14734 UE = Op.getNode()->use_end(); UI != UE; ++UI) {
14735 // The only case where we'd want to promote LOAD (rather then it being
14736 // promoted as an operand is when it's only use is liveout.
14737 if (UI->getOpcode() != ISD::CopyToReg)
14744 case ISD::SIGN_EXTEND:
14745 case ISD::ZERO_EXTEND:
14746 case ISD::ANY_EXTEND:
14751 SDValue N0 = Op.getOperand(0);
14752 // Look out for (store (shl (load), x)).
14753 if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
14766 SDValue N0 = Op.getOperand(0);
14767 SDValue N1 = Op.getOperand(1);
14768 if (!Commute && MayFoldLoad(N1))
14770 // Avoid disabling potential load folding opportunities.
14771 if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
14773 if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
14783 //===----------------------------------------------------------------------===//
14784 // X86 Inline Assembly Support
14785 //===----------------------------------------------------------------------===//
14788 // Helper to match a string separated by whitespace.
14789 bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
14790 s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
14792 for (unsigned i = 0, e = args.size(); i != e; ++i) {
14793 StringRef piece(*args[i]);
14794 if (!s.startswith(piece)) // Check if the piece matches.
14797 s = s.substr(piece.size());
14798 StringRef::size_type pos = s.find_first_not_of(" \t");
14799 if (pos == 0) // We matched a prefix.
14807 const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
14810 bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
14811 InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
14813 std::string AsmStr = IA->getAsmString();
14815 IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14816 if (!Ty || Ty->getBitWidth() % 16 != 0)
14819 // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
14820 SmallVector<StringRef, 4> AsmPieces;
14821 SplitString(AsmStr, AsmPieces, ";\n");
14823 switch (AsmPieces.size()) {
14824 default: return false;
14826 // FIXME: this should verify that we are targeting a 486 or better. If not,
14827 // we will turn this bswap into something that will be lowered to logical
14828 // ops instead of emitting the bswap asm. For now, we don't support 486 or
14829 // lower so don't worry about this.
14831 if (matchAsm(AsmPieces[0], "bswap", "$0") ||
14832 matchAsm(AsmPieces[0], "bswapl", "$0") ||
14833 matchAsm(AsmPieces[0], "bswapq", "$0") ||
14834 matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
14835 matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
14836 matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
14837 // No need to check constraints, nothing other than the equivalent of
14838 // "=r,0" would be valid here.
14839 return IntrinsicLowering::LowerToByteSwap(CI);
14842 // rorw $$8, ${0:w} --> llvm.bswap.i16
14843 if (CI->getType()->isIntegerTy(16) &&
14844 IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
14845 (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
14846 matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
14848 const std::string &ConstraintsStr = IA->getConstraintString();
14849 SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14850 std::sort(AsmPieces.begin(), AsmPieces.end());
14851 if (AsmPieces.size() == 4 &&
14852 AsmPieces[0] == "~{cc}" &&
14853 AsmPieces[1] == "~{dirflag}" &&
14854 AsmPieces[2] == "~{flags}" &&
14855 AsmPieces[3] == "~{fpsr}")
14856 return IntrinsicLowering::LowerToByteSwap(CI);
14860 if (CI->getType()->isIntegerTy(32) &&
14861 IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
14862 matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
14863 matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
14864 matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
14866 const std::string &ConstraintsStr = IA->getConstraintString();
14867 SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14868 std::sort(AsmPieces.begin(), AsmPieces.end());
14869 if (AsmPieces.size() == 4 &&
14870 AsmPieces[0] == "~{cc}" &&
14871 AsmPieces[1] == "~{dirflag}" &&
14872 AsmPieces[2] == "~{flags}" &&
14873 AsmPieces[3] == "~{fpsr}")
14874 return IntrinsicLowering::LowerToByteSwap(CI);
14877 if (CI->getType()->isIntegerTy(64)) {
14878 InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
14879 if (Constraints.size() >= 2 &&
14880 Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
14881 Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
14882 // bswap %eax / bswap %edx / xchgl %eax, %edx -> llvm.bswap.i64
14883 if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
14884 matchAsm(AsmPieces[1], "bswap", "%edx") &&
14885 matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
14886 return IntrinsicLowering::LowerToByteSwap(CI);
14896 /// getConstraintType - Given a constraint letter, return the type of
14897 /// constraint it is for this target.
14898 X86TargetLowering::ConstraintType
14899 X86TargetLowering::getConstraintType(const std::string &Constraint) const {
14900 if (Constraint.size() == 1) {
14901 switch (Constraint[0]) {
14912 return C_RegisterClass;
14936 return TargetLowering::getConstraintType(Constraint);
14939 /// Examine constraint type and operand type and determine a weight value.
14940 /// This object must already have been set up with the operand type
14941 /// and the current alternative constraint selected.
14942 TargetLowering::ConstraintWeight
14943 X86TargetLowering::getSingleConstraintMatchWeight(
14944 AsmOperandInfo &info, const char *constraint) const {
14945 ConstraintWeight weight = CW_Invalid;
14946 Value *CallOperandVal = info.CallOperandVal;
14947 // If we don't have a value, we can't do a match,
14948 // but allow it at the lowest weight.
14949 if (CallOperandVal == NULL)
14951 Type *type = CallOperandVal->getType();
14952 // Look at the constraint type.
14953 switch (*constraint) {
14955 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
14966 if (CallOperandVal->getType()->isIntegerTy())
14967 weight = CW_SpecificReg;
14972 if (type->isFloatingPointTy())
14973 weight = CW_SpecificReg;
14976 if (type->isX86_MMXTy() && Subtarget->hasMMX())
14977 weight = CW_SpecificReg;
14981 if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
14982 ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasAVX()))
14983 weight = CW_Register;
14986 if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
14987 if (C->getZExtValue() <= 31)
14988 weight = CW_Constant;
14992 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14993 if (C->getZExtValue() <= 63)
14994 weight = CW_Constant;
14998 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14999 if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
15000 weight = CW_Constant;
15004 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15005 if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
15006 weight = CW_Constant;
15010 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15011 if (C->getZExtValue() <= 3)
15012 weight = CW_Constant;
15016 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15017 if (C->getZExtValue() <= 0xff)
15018 weight = CW_Constant;
15023 if (dyn_cast<ConstantFP>(CallOperandVal)) {
15024 weight = CW_Constant;
15028 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15029 if ((C->getSExtValue() >= -0x80000000LL) &&
15030 (C->getSExtValue() <= 0x7fffffffLL))
15031 weight = CW_Constant;
15035 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15036 if (C->getZExtValue() <= 0xffffffff)
15037 weight = CW_Constant;
15044 /// LowerXConstraint - try to replace an X constraint, which matches anything,
15045 /// with another that has more specific requirements based on the type of the
15046 /// corresponding operand.
15047 const char *X86TargetLowering::
15048 LowerXConstraint(EVT ConstraintVT) const {
15049 // FP X constraints get lowered to SSE1/2 registers if available, otherwise
15050 // 'f' like normal targets.
15051 if (ConstraintVT.isFloatingPoint()) {
15052 if (Subtarget->hasSSE2())
15054 if (Subtarget->hasSSE1())
15058 return TargetLowering::LowerXConstraint(ConstraintVT);
15061 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15062 /// vector. If it is invalid, don't add anything to Ops.
15063 void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15064 std::string &Constraint,
15065 std::vector<SDValue>&Ops,
15066 SelectionDAG &DAG) const {
15067 SDValue Result(0, 0);
15069 // Only support length 1 constraints for now.
15070 if (Constraint.length() > 1) return;
15072 char ConstraintLetter = Constraint[0];
15073 switch (ConstraintLetter) {
15076 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15077 if (C->getZExtValue() <= 31) {
15078 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15084 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15085 if (C->getZExtValue() <= 63) {
15086 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15092 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15093 if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
15094 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15100 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15101 if (C->getZExtValue() <= 255) {
15102 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15108 // 32-bit signed value
15109 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15110 if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15111 C->getSExtValue())) {
15112 // Widen to 64 bits here to get it sign extended.
15113 Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
15116 // FIXME gcc accepts some relocatable values here too, but only in certain
15117 // memory models; it's complicated.
15122 // 32-bit unsigned value
15123 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15124 if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15125 C->getZExtValue())) {
15126 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15130 // FIXME gcc accepts some relocatable values here too, but only in certain
15131 // memory models; it's complicated.
15135 // Literal immediates are always ok.
15136 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
15137 // Widen to 64 bits here to get it sign extended.
15138 Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
15142 // In any sort of PIC mode addresses need to be computed at runtime by
15143 // adding in a register or some sort of table lookup. These can't
15144 // be used as immediates.
15145 if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
15148 // If we are in non-pic codegen mode, we allow the address of a global (with
15149 // an optional displacement) to be used with 'i'.
15150 GlobalAddressSDNode *GA = 0;
15151 int64_t Offset = 0;
15153 // Match either (GA), (GA+C), (GA+C1+C2), etc.
15155 if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
15156 Offset += GA->getOffset();
15158 } else if (Op.getOpcode() == ISD::ADD) {
15159 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15160 Offset += C->getZExtValue();
15161 Op = Op.getOperand(0);
15164 } else if (Op.getOpcode() == ISD::SUB) {
15165 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15166 Offset += -C->getZExtValue();
15167 Op = Op.getOperand(0);
15172 // Otherwise, this isn't something we can handle, reject it.
15176 const GlobalValue *GV = GA->getGlobal();
15177 // If we require an extra load to get this address, as in PIC mode, we
15178 // can't accept it.
15179 if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
15180 getTargetMachine())))
15183 Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
15184 GA->getValueType(0), Offset);
15189 if (Result.getNode()) {
15190 Ops.push_back(Result);
15193 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15196 std::pair<unsigned, const TargetRegisterClass*>
15197 X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
15199 // First, see if this is a constraint that directly corresponds to an LLVM
15201 if (Constraint.size() == 1) {
15202 // GCC Constraint Letters
15203 switch (Constraint[0]) {
15205 // TODO: Slight differences here in allocation order and leaving
15206 // RIP in the class. Do they matter any more here than they do
15207 // in the normal allocation?
15208 case 'q': // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
15209 if (Subtarget->is64Bit()) {
15210 if (VT == MVT::i32 || VT == MVT::f32)
15211 return std::make_pair(0U, X86::GR32RegisterClass);
15212 else if (VT == MVT::i16)
15213 return std::make_pair(0U, X86::GR16RegisterClass);
15214 else if (VT == MVT::i8 || VT == MVT::i1)
15215 return std::make_pair(0U, X86::GR8RegisterClass);
15216 else if (VT == MVT::i64 || VT == MVT::f64)
15217 return std::make_pair(0U, X86::GR64RegisterClass);
15220 // 32-bit fallthrough
15221 case 'Q': // Q_REGS
15222 if (VT == MVT::i32 || VT == MVT::f32)
15223 return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
15224 else if (VT == MVT::i16)
15225 return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
15226 else if (VT == MVT::i8 || VT == MVT::i1)
15227 return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
15228 else if (VT == MVT::i64)
15229 return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
15231 case 'r': // GENERAL_REGS
15232 case 'l': // INDEX_REGS
15233 if (VT == MVT::i8 || VT == MVT::i1)
15234 return std::make_pair(0U, X86::GR8RegisterClass);
15235 if (VT == MVT::i16)
15236 return std::make_pair(0U, X86::GR16RegisterClass);
15237 if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
15238 return std::make_pair(0U, X86::GR32RegisterClass);
15239 return std::make_pair(0U, X86::GR64RegisterClass);
15240 case 'R': // LEGACY_REGS
15241 if (VT == MVT::i8 || VT == MVT::i1)
15242 return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
15243 if (VT == MVT::i16)
15244 return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
15245 if (VT == MVT::i32 || !Subtarget->is64Bit())
15246 return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
15247 return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
15248 case 'f': // FP Stack registers.
15249 // If SSE is enabled for this VT, use f80 to ensure the isel moves the
15250 // value to the correct fpstack register class.
15251 if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
15252 return std::make_pair(0U, X86::RFP32RegisterClass);
15253 if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
15254 return std::make_pair(0U, X86::RFP64RegisterClass);
15255 return std::make_pair(0U, X86::RFP80RegisterClass);
15256 case 'y': // MMX_REGS if MMX allowed.
15257 if (!Subtarget->hasMMX()) break;
15258 return std::make_pair(0U, X86::VR64RegisterClass);
15259 case 'Y': // SSE_REGS if SSE2 allowed
15260 if (!Subtarget->hasSSE2()) break;
15262 case 'x': // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
15263 if (!Subtarget->hasSSE1()) break;
15265 switch (VT.getSimpleVT().SimpleTy) {
15267 // Scalar SSE types.
15270 return std::make_pair(0U, X86::FR32RegisterClass);
15273 return std::make_pair(0U, X86::FR64RegisterClass);
15281 return std::make_pair(0U, X86::VR128RegisterClass);
15289 return std::make_pair(0U, X86::VR256RegisterClass);
15296 // Use the default implementation in TargetLowering to convert the register
15297 // constraint into a member of a register class.
15298 std::pair<unsigned, const TargetRegisterClass*> Res;
15299 Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
15301 // Not found as a standard register?
15302 if (Res.second == 0) {
15303 // Map st(0) -> st(7) -> ST0
15304 if (Constraint.size() == 7 && Constraint[0] == '{' &&
15305 tolower(Constraint[1]) == 's' &&
15306 tolower(Constraint[2]) == 't' &&
15307 Constraint[3] == '(' &&
15308 (Constraint[4] >= '0' && Constraint[4] <= '7') &&
15309 Constraint[5] == ')' &&
15310 Constraint[6] == '}') {
15312 Res.first = X86::ST0+Constraint[4]-'0';
15313 Res.second = X86::RFP80RegisterClass;
15317 // GCC allows "st(0)" to be called just plain "st".
15318 if (StringRef("{st}").equals_lower(Constraint)) {
15319 Res.first = X86::ST0;
15320 Res.second = X86::RFP80RegisterClass;
15325 if (StringRef("{flags}").equals_lower(Constraint)) {
15326 Res.first = X86::EFLAGS;
15327 Res.second = X86::CCRRegisterClass;
15331 // 'A' means EAX + EDX.
15332 if (Constraint == "A") {
15333 Res.first = X86::EAX;
15334 Res.second = X86::GR32_ADRegisterClass;
15340 // Otherwise, check to see if this is a register class of the wrong value
15341 // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to
15342 // turn into {ax},{dx}.
15343 if (Res.second->hasType(VT))
15344 return Res; // Correct type already, nothing to do.
15346 // All of the single-register GCC register classes map their values onto
15347 // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we
15348 // really want an 8-bit or 32-bit register, map to the appropriate register
15349 // class and return the appropriate register.
15350 if (Res.second == X86::GR16RegisterClass) {
15351 if (VT == MVT::i8) {
15352 unsigned DestReg = 0;
15353 switch (Res.first) {
15355 case X86::AX: DestReg = X86::AL; break;
15356 case X86::DX: DestReg = X86::DL; break;
15357 case X86::CX: DestReg = X86::CL; break;
15358 case X86::BX: DestReg = X86::BL; break;
15361 Res.first = DestReg;
15362 Res.second = X86::GR8RegisterClass;
15364 } else if (VT == MVT::i32) {
15365 unsigned DestReg = 0;
15366 switch (Res.first) {
15368 case X86::AX: DestReg = X86::EAX; break;
15369 case X86::DX: DestReg = X86::EDX; break;
15370 case X86::CX: DestReg = X86::ECX; break;
15371 case X86::BX: DestReg = X86::EBX; break;
15372 case X86::SI: DestReg = X86::ESI; break;
15373 case X86::DI: DestReg = X86::EDI; break;
15374 case X86::BP: DestReg = X86::EBP; break;
15375 case X86::SP: DestReg = X86::ESP; break;
15378 Res.first = DestReg;
15379 Res.second = X86::GR32RegisterClass;
15381 } else if (VT == MVT::i64) {
15382 unsigned DestReg = 0;
15383 switch (Res.first) {
15385 case X86::AX: DestReg = X86::RAX; break;
15386 case X86::DX: DestReg = X86::RDX; break;
15387 case X86::CX: DestReg = X86::RCX; break;
15388 case X86::BX: DestReg = X86::RBX; break;
15389 case X86::SI: DestReg = X86::RSI; break;
15390 case X86::DI: DestReg = X86::RDI; break;
15391 case X86::BP: DestReg = X86::RBP; break;
15392 case X86::SP: DestReg = X86::RSP; break;
15395 Res.first = DestReg;
15396 Res.second = X86::GR64RegisterClass;
15399 } else if (Res.second == X86::FR32RegisterClass ||
15400 Res.second == X86::FR64RegisterClass ||
15401 Res.second == X86::VR128RegisterClass) {
15402 // Handle references to XMM physical registers that got mapped into the
15403 // wrong class. This can happen with constraints like {xmm0} where the
15404 // target independent register mapper will just pick the first match it can
15405 // find, ignoring the required type.
15406 if (VT == MVT::f32)
15407 Res.second = X86::FR32RegisterClass;
15408 else if (VT == MVT::f64)
15409 Res.second = X86::FR64RegisterClass;
15410 else if (X86::VR128RegisterClass->hasType(VT))
15411 Res.second = X86::VR128RegisterClass;