1 //===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the interfaces that X86 uses to lower LLVM code into a
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "x86-isel"
17 #include "X86InstrBuilder.h"
18 #include "X86ISelLowering.h"
19 #include "X86TargetMachine.h"
20 #include "X86TargetObjectFile.h"
21 #include "Utils/X86ShuffleDecode.h"
22 #include "llvm/CallingConv.h"
23 #include "llvm/Constants.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/GlobalAlias.h"
26 #include "llvm/GlobalVariable.h"
27 #include "llvm/Function.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/Intrinsics.h"
30 #include "llvm/LLVMContext.h"
31 #include "llvm/CodeGen/IntrinsicLowering.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineJumpTableInfo.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/MC/MCAsmInfo.h"
39 #include "llvm/MC/MCContext.h"
40 #include "llvm/MC/MCExpr.h"
41 #include "llvm/MC/MCSymbol.h"
42 #include "llvm/ADT/BitVector.h"
43 #include "llvm/ADT/SmallSet.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/ADT/StringExtras.h"
46 #include "llvm/ADT/VariadicFunction.h"
47 #include "llvm/Support/CallSite.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/Dwarf.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/MathExtras.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Target/TargetOptions.h"
56 using namespace dwarf;
58 STATISTIC(NumTailCalls, "Number of tail calls");
60 static cl::opt<bool> UseRegMask("x86-use-regmask",
61 cl::desc("Use register masks for x86 calls"));
63 // Forward declarations.
64 static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
67 static SDValue Insert128BitVector(SDValue Result,
73 static SDValue Extract128BitVector(SDValue Vec,
78 /// Generate a DAG to grab 128-bits from a vector > 128 bits. This
79 /// sets things up to match to an AVX VEXTRACTF128 instruction or a
80 /// simple subregister reference. Idx is an index in the 128 bits we
81 /// want. It need not be aligned to a 128-bit bounday. That makes
82 /// lowering EXTRACT_VECTOR_ELT operations easier.
83 static SDValue Extract128BitVector(SDValue Vec,
87 EVT VT = Vec.getValueType();
88 assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
89 EVT ElVT = VT.getVectorElementType();
90 int Factor = VT.getSizeInBits()/128;
91 EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
92 VT.getVectorNumElements()/Factor);
94 // Extract from UNDEF is UNDEF.
95 if (Vec.getOpcode() == ISD::UNDEF)
96 return DAG.getNode(ISD::UNDEF, dl, ResultVT);
98 if (isa<ConstantSDNode>(Idx)) {
99 unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
101 // Extract the relevant 128 bits. Generate an EXTRACT_SUBVECTOR
102 // we can match to VEXTRACTF128.
103 unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
105 // This is the index of the first element of the 128-bit chunk
107 unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
110 SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
111 SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
120 /// Generate a DAG to put 128-bits into a vector > 128 bits. This
121 /// sets things up to match to an AVX VINSERTF128 instruction or a
122 /// simple superregister reference. Idx is an index in the 128 bits
123 /// we want. It need not be aligned to a 128-bit bounday. That makes
124 /// lowering INSERT_VECTOR_ELT operations easier.
125 static SDValue Insert128BitVector(SDValue Result,
130 if (isa<ConstantSDNode>(Idx)) {
131 EVT VT = Vec.getValueType();
132 assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
134 EVT ElVT = VT.getVectorElementType();
135 unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
136 EVT ResultVT = Result.getValueType();
138 // Insert the relevant 128 bits.
139 unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
141 // This is the index of the first element of the 128-bit chunk
143 unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
146 SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
147 Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
155 static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
156 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
157 bool is64Bit = Subtarget->is64Bit();
159 if (Subtarget->isTargetEnvMacho()) {
161 return new X8664_MachoTargetObjectFile();
162 return new TargetLoweringObjectFileMachO();
165 if (Subtarget->isTargetELF())
166 return new TargetLoweringObjectFileELF();
167 if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
168 return new TargetLoweringObjectFileCOFF();
169 llvm_unreachable("unknown subtarget type");
172 X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
173 : TargetLowering(TM, createTLOF(TM)) {
174 Subtarget = &TM.getSubtarget<X86Subtarget>();
175 X86ScalarSSEf64 = Subtarget->hasSSE2();
176 X86ScalarSSEf32 = Subtarget->hasSSE1();
177 X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
179 RegInfo = TM.getRegisterInfo();
180 TD = getTargetData();
182 // Set up the TargetLowering object.
183 static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
185 // X86 is weird, it always uses i8 for shift amounts and setcc results.
186 setBooleanContents(ZeroOrOneBooleanContent);
187 // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
188 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
190 // For 64-bit since we have so many registers use the ILP scheduler, for
191 // 32-bit code use the register pressure specific scheduling.
192 if (Subtarget->is64Bit())
193 setSchedulingPreference(Sched::ILP);
195 setSchedulingPreference(Sched::RegPressure);
196 setStackPointerRegisterToSaveRestore(X86StackPtr);
198 if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
199 // Setup Windows compiler runtime calls.
200 setLibcallName(RTLIB::SDIV_I64, "_alldiv");
201 setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
202 setLibcallName(RTLIB::SREM_I64, "_allrem");
203 setLibcallName(RTLIB::UREM_I64, "_aullrem");
204 setLibcallName(RTLIB::MUL_I64, "_allmul");
205 setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
206 setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
207 setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
208 setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
209 setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
210 setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
211 setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
212 setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
213 setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
216 if (Subtarget->isTargetDarwin()) {
217 // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
218 setUseUnderscoreSetJmp(false);
219 setUseUnderscoreLongJmp(false);
220 } else if (Subtarget->isTargetMingw()) {
221 // MS runtime is weird: it exports _setjmp, but longjmp!
222 setUseUnderscoreSetJmp(true);
223 setUseUnderscoreLongJmp(false);
225 setUseUnderscoreSetJmp(true);
226 setUseUnderscoreLongJmp(true);
229 // Set up the register classes.
230 addRegisterClass(MVT::i8, X86::GR8RegisterClass);
231 addRegisterClass(MVT::i16, X86::GR16RegisterClass);
232 addRegisterClass(MVT::i32, X86::GR32RegisterClass);
233 if (Subtarget->is64Bit())
234 addRegisterClass(MVT::i64, X86::GR64RegisterClass);
236 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
238 // We don't accept any truncstore of integer registers.
239 setTruncStoreAction(MVT::i64, MVT::i32, Expand);
240 setTruncStoreAction(MVT::i64, MVT::i16, Expand);
241 setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
242 setTruncStoreAction(MVT::i32, MVT::i16, Expand);
243 setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
244 setTruncStoreAction(MVT::i16, MVT::i8, Expand);
246 // SETOEQ and SETUNE require checking two conditions.
247 setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
248 setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
249 setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
250 setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
251 setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
252 setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
254 // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
256 setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote);
257 setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote);
258 setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote);
260 if (Subtarget->is64Bit()) {
261 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
262 setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom);
263 } else if (!TM.Options.UseSoftFloat) {
264 // We have an algorithm for SSE2->double, and we turn this into a
265 // 64-bit FILD followed by conditional FADD for other targets.
266 setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom);
267 // We have an algorithm for SSE2, and we turn this into a 64-bit
268 // FILD for other targets.
269 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Custom);
272 // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
274 setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote);
275 setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote);
277 if (!TM.Options.UseSoftFloat) {
278 // SSE has no i16 to fp conversion, only i32
279 if (X86ScalarSSEf32) {
280 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
281 // f32 and f64 cases are Legal, f80 case is not
282 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
284 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom);
285 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
288 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
289 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Promote);
292 // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64
293 // are Legal, f80 is custom lowered.
294 setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom);
295 setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom);
297 // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
299 setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote);
300 setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote);
302 if (X86ScalarSSEf32) {
303 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote);
304 // f32 and f64 cases are Legal, f80 case is not
305 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
307 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom);
308 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
311 // Handle FP_TO_UINT by promoting the destination to a larger signed
313 setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote);
314 setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote);
315 setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote);
317 if (Subtarget->is64Bit()) {
318 setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand);
319 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
320 } else if (!TM.Options.UseSoftFloat) {
321 // Since AVX is a superset of SSE3, only check for SSE here.
322 if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
323 // Expand FP_TO_UINT into a select.
324 // FIXME: We would like to use a Custom expander here eventually to do
325 // the optimal thing for SSE vs. the default expansion in the legalizer.
326 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand);
328 // With SSE3 we can use fisttpll to convert to a signed i64; without
329 // SSE, we're stuck with a fistpll.
330 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Custom);
333 // TODO: when we have SSE, these could be more efficient, by using movd/movq.
334 if (!X86ScalarSSEf64) {
335 setOperationAction(ISD::BITCAST , MVT::f32 , Expand);
336 setOperationAction(ISD::BITCAST , MVT::i32 , Expand);
337 if (Subtarget->is64Bit()) {
338 setOperationAction(ISD::BITCAST , MVT::f64 , Expand);
339 // Without SSE, i64->f64 goes through memory.
340 setOperationAction(ISD::BITCAST , MVT::i64 , Expand);
344 // Scalar integer divide and remainder are lowered to use operations that
345 // produce two results, to match the available instructions. This exposes
346 // the two-result form to trivial CSE, which is able to combine x/y and x%y
347 // into a single instruction.
349 // Scalar integer multiply-high is also lowered to use two-result
350 // operations, to match the available instructions. However, plain multiply
351 // (low) operations are left as Legal, as there are single-result
352 // instructions for this in x86. Using the two-result multiply instructions
353 // when both high and low results are needed must be arranged by dagcombine.
354 for (unsigned i = 0, e = 4; i != e; ++i) {
356 setOperationAction(ISD::MULHS, VT, Expand);
357 setOperationAction(ISD::MULHU, VT, Expand);
358 setOperationAction(ISD::SDIV, VT, Expand);
359 setOperationAction(ISD::UDIV, VT, Expand);
360 setOperationAction(ISD::SREM, VT, Expand);
361 setOperationAction(ISD::UREM, VT, Expand);
363 // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
364 setOperationAction(ISD::ADDC, VT, Custom);
365 setOperationAction(ISD::ADDE, VT, Custom);
366 setOperationAction(ISD::SUBC, VT, Custom);
367 setOperationAction(ISD::SUBE, VT, Custom);
370 setOperationAction(ISD::BR_JT , MVT::Other, Expand);
371 setOperationAction(ISD::BRCOND , MVT::Other, Custom);
372 setOperationAction(ISD::BR_CC , MVT::Other, Expand);
373 setOperationAction(ISD::SELECT_CC , MVT::Other, Expand);
374 if (Subtarget->is64Bit())
375 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
376 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal);
377 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
378 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
379 setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand);
380 setOperationAction(ISD::FREM , MVT::f32 , Expand);
381 setOperationAction(ISD::FREM , MVT::f64 , Expand);
382 setOperationAction(ISD::FREM , MVT::f80 , Expand);
383 setOperationAction(ISD::FLT_ROUNDS_ , MVT::i32 , Custom);
385 // Promote the i8 variants and force them on up to i32 which has a shorter
387 setOperationAction(ISD::CTTZ , MVT::i8 , Promote);
388 AddPromotedToType (ISD::CTTZ , MVT::i8 , MVT::i32);
389 setOperationAction(ISD::CTTZ_ZERO_UNDEF , MVT::i8 , Promote);
390 AddPromotedToType (ISD::CTTZ_ZERO_UNDEF , MVT::i8 , MVT::i32);
391 if (Subtarget->hasBMI()) {
392 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16 , Expand);
393 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32 , Expand);
394 if (Subtarget->is64Bit())
395 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
397 setOperationAction(ISD::CTTZ , MVT::i16 , Custom);
398 setOperationAction(ISD::CTTZ , MVT::i32 , Custom);
399 if (Subtarget->is64Bit())
400 setOperationAction(ISD::CTTZ , MVT::i64 , Custom);
403 if (Subtarget->hasLZCNT()) {
404 // When promoting the i8 variants, force them to i32 for a shorter
406 setOperationAction(ISD::CTLZ , MVT::i8 , Promote);
407 AddPromotedToType (ISD::CTLZ , MVT::i8 , MVT::i32);
408 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8 , Promote);
409 AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8 , MVT::i32);
410 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16 , Expand);
411 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32 , Expand);
412 if (Subtarget->is64Bit())
413 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
415 setOperationAction(ISD::CTLZ , MVT::i8 , Custom);
416 setOperationAction(ISD::CTLZ , MVT::i16 , Custom);
417 setOperationAction(ISD::CTLZ , MVT::i32 , Custom);
418 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8 , Custom);
419 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16 , Custom);
420 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32 , Custom);
421 if (Subtarget->is64Bit()) {
422 setOperationAction(ISD::CTLZ , MVT::i64 , Custom);
423 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
427 if (Subtarget->hasPOPCNT()) {
428 setOperationAction(ISD::CTPOP , MVT::i8 , Promote);
430 setOperationAction(ISD::CTPOP , MVT::i8 , Expand);
431 setOperationAction(ISD::CTPOP , MVT::i16 , Expand);
432 setOperationAction(ISD::CTPOP , MVT::i32 , Expand);
433 if (Subtarget->is64Bit())
434 setOperationAction(ISD::CTPOP , MVT::i64 , Expand);
437 setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom);
438 setOperationAction(ISD::BSWAP , MVT::i16 , Expand);
440 // These should be promoted to a larger select which is supported.
441 setOperationAction(ISD::SELECT , MVT::i1 , Promote);
442 // X86 wants to expand cmov itself.
443 setOperationAction(ISD::SELECT , MVT::i8 , Custom);
444 setOperationAction(ISD::SELECT , MVT::i16 , Custom);
445 setOperationAction(ISD::SELECT , MVT::i32 , Custom);
446 setOperationAction(ISD::SELECT , MVT::f32 , Custom);
447 setOperationAction(ISD::SELECT , MVT::f64 , Custom);
448 setOperationAction(ISD::SELECT , MVT::f80 , Custom);
449 setOperationAction(ISD::SETCC , MVT::i8 , Custom);
450 setOperationAction(ISD::SETCC , MVT::i16 , Custom);
451 setOperationAction(ISD::SETCC , MVT::i32 , Custom);
452 setOperationAction(ISD::SETCC , MVT::f32 , Custom);
453 setOperationAction(ISD::SETCC , MVT::f64 , Custom);
454 setOperationAction(ISD::SETCC , MVT::f80 , Custom);
455 if (Subtarget->is64Bit()) {
456 setOperationAction(ISD::SELECT , MVT::i64 , Custom);
457 setOperationAction(ISD::SETCC , MVT::i64 , Custom);
459 setOperationAction(ISD::EH_RETURN , MVT::Other, Custom);
462 setOperationAction(ISD::ConstantPool , MVT::i32 , Custom);
463 setOperationAction(ISD::JumpTable , MVT::i32 , Custom);
464 setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom);
465 setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom);
466 if (Subtarget->is64Bit())
467 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
468 setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom);
469 setOperationAction(ISD::BlockAddress , MVT::i32 , Custom);
470 if (Subtarget->is64Bit()) {
471 setOperationAction(ISD::ConstantPool , MVT::i64 , Custom);
472 setOperationAction(ISD::JumpTable , MVT::i64 , Custom);
473 setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom);
474 setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom);
475 setOperationAction(ISD::BlockAddress , MVT::i64 , Custom);
477 // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
478 setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom);
479 setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom);
480 setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom);
481 if (Subtarget->is64Bit()) {
482 setOperationAction(ISD::SHL_PARTS , MVT::i64 , Custom);
483 setOperationAction(ISD::SRA_PARTS , MVT::i64 , Custom);
484 setOperationAction(ISD::SRL_PARTS , MVT::i64 , Custom);
487 if (Subtarget->hasSSE1())
488 setOperationAction(ISD::PREFETCH , MVT::Other, Legal);
490 setOperationAction(ISD::MEMBARRIER , MVT::Other, Custom);
491 setOperationAction(ISD::ATOMIC_FENCE , MVT::Other, Custom);
493 // On X86 and X86-64, atomic operations are lowered to locked instructions.
494 // Locked instructions, in turn, have implicit fence semantics (all memory
495 // operations are flushed before issuing the locked instruction, and they
496 // are not buffered), so we can fold away the common pattern of
497 // fence-atomic-fence.
498 setShouldFoldAtomicFences(true);
500 // Expand certain atomics
501 for (unsigned i = 0, e = 4; i != e; ++i) {
503 setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
504 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
505 setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
508 if (!Subtarget->is64Bit()) {
509 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
510 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
511 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
512 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
513 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
514 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
515 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
516 setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
519 if (Subtarget->hasCmpxchg16b()) {
520 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
523 // FIXME - use subtarget debug flags
524 if (!Subtarget->isTargetDarwin() &&
525 !Subtarget->isTargetELF() &&
526 !Subtarget->isTargetCygMing()) {
527 setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
530 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
531 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
532 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
533 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
534 if (Subtarget->is64Bit()) {
535 setExceptionPointerRegister(X86::RAX);
536 setExceptionSelectorRegister(X86::RDX);
538 setExceptionPointerRegister(X86::EAX);
539 setExceptionSelectorRegister(X86::EDX);
541 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
542 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
544 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
545 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
547 setOperationAction(ISD::TRAP, MVT::Other, Legal);
549 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
550 setOperationAction(ISD::VASTART , MVT::Other, Custom);
551 setOperationAction(ISD::VAEND , MVT::Other, Expand);
552 if (Subtarget->is64Bit()) {
553 setOperationAction(ISD::VAARG , MVT::Other, Custom);
554 setOperationAction(ISD::VACOPY , MVT::Other, Custom);
556 setOperationAction(ISD::VAARG , MVT::Other, Expand);
557 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
560 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
561 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
563 if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
564 setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
565 MVT::i64 : MVT::i32, Custom);
566 else if (TM.Options.EnableSegmentedStacks)
567 setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
568 MVT::i64 : MVT::i32, Custom);
570 setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
571 MVT::i64 : MVT::i32, Expand);
573 if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
574 // f32 and f64 use SSE.
575 // Set up the FP register classes.
576 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
577 addRegisterClass(MVT::f64, X86::FR64RegisterClass);
579 // Use ANDPD to simulate FABS.
580 setOperationAction(ISD::FABS , MVT::f64, Custom);
581 setOperationAction(ISD::FABS , MVT::f32, Custom);
583 // Use XORP to simulate FNEG.
584 setOperationAction(ISD::FNEG , MVT::f64, Custom);
585 setOperationAction(ISD::FNEG , MVT::f32, Custom);
587 // Use ANDPD and ORPD to simulate FCOPYSIGN.
588 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
589 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
591 // Lower this to FGETSIGNx86 plus an AND.
592 setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
593 setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
595 // We don't support sin/cos/fmod
596 setOperationAction(ISD::FSIN , MVT::f64, Expand);
597 setOperationAction(ISD::FCOS , MVT::f64, Expand);
598 setOperationAction(ISD::FSIN , MVT::f32, Expand);
599 setOperationAction(ISD::FCOS , MVT::f32, Expand);
601 // Expand FP immediates into loads from the stack, except for the special
603 addLegalFPImmediate(APFloat(+0.0)); // xorpd
604 addLegalFPImmediate(APFloat(+0.0f)); // xorps
605 } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
606 // Use SSE for f32, x87 for f64.
607 // Set up the FP register classes.
608 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
609 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
611 // Use ANDPS to simulate FABS.
612 setOperationAction(ISD::FABS , MVT::f32, Custom);
614 // Use XORP to simulate FNEG.
615 setOperationAction(ISD::FNEG , MVT::f32, Custom);
617 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
619 // Use ANDPS and ORPS to simulate FCOPYSIGN.
620 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
621 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
623 // We don't support sin/cos/fmod
624 setOperationAction(ISD::FSIN , MVT::f32, Expand);
625 setOperationAction(ISD::FCOS , MVT::f32, Expand);
627 // Special cases we handle for FP constants.
628 addLegalFPImmediate(APFloat(+0.0f)); // xorps
629 addLegalFPImmediate(APFloat(+0.0)); // FLD0
630 addLegalFPImmediate(APFloat(+1.0)); // FLD1
631 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
632 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
634 if (!TM.Options.UnsafeFPMath) {
635 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
636 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
638 } else if (!TM.Options.UseSoftFloat) {
639 // f32 and f64 in x87.
640 // Set up the FP register classes.
641 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
642 addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
644 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
645 setOperationAction(ISD::UNDEF, MVT::f32, Expand);
646 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
647 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
649 if (!TM.Options.UnsafeFPMath) {
650 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
651 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
653 addLegalFPImmediate(APFloat(+0.0)); // FLD0
654 addLegalFPImmediate(APFloat(+1.0)); // FLD1
655 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
656 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
657 addLegalFPImmediate(APFloat(+0.0f)); // FLD0
658 addLegalFPImmediate(APFloat(+1.0f)); // FLD1
659 addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
660 addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
663 // We don't support FMA.
664 setOperationAction(ISD::FMA, MVT::f64, Expand);
665 setOperationAction(ISD::FMA, MVT::f32, Expand);
667 // Long double always uses X87.
668 if (!TM.Options.UseSoftFloat) {
669 addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
670 setOperationAction(ISD::UNDEF, MVT::f80, Expand);
671 setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
673 APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
674 addLegalFPImmediate(TmpFlt); // FLD0
676 addLegalFPImmediate(TmpFlt); // FLD0/FCHS
679 APFloat TmpFlt2(+1.0);
680 TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
682 addLegalFPImmediate(TmpFlt2); // FLD1
683 TmpFlt2.changeSign();
684 addLegalFPImmediate(TmpFlt2); // FLD1/FCHS
687 if (!TM.Options.UnsafeFPMath) {
688 setOperationAction(ISD::FSIN , MVT::f80 , Expand);
689 setOperationAction(ISD::FCOS , MVT::f80 , Expand);
692 setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
693 setOperationAction(ISD::FCEIL, MVT::f80, Expand);
694 setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
695 setOperationAction(ISD::FRINT, MVT::f80, Expand);
696 setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
697 setOperationAction(ISD::FMA, MVT::f80, Expand);
700 // Always use a library call for pow.
701 setOperationAction(ISD::FPOW , MVT::f32 , Expand);
702 setOperationAction(ISD::FPOW , MVT::f64 , Expand);
703 setOperationAction(ISD::FPOW , MVT::f80 , Expand);
705 setOperationAction(ISD::FLOG, MVT::f80, Expand);
706 setOperationAction(ISD::FLOG2, MVT::f80, Expand);
707 setOperationAction(ISD::FLOG10, MVT::f80, Expand);
708 setOperationAction(ISD::FEXP, MVT::f80, Expand);
709 setOperationAction(ISD::FEXP2, MVT::f80, Expand);
711 // First set operation action for all vector types to either promote
712 // (for widening) or expand (for scalarization). Then we will selectively
713 // turn on ones that can be effectively codegen'd.
714 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
715 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
716 setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
717 setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
718 setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
719 setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
720 setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
721 setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
722 setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
723 setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
724 setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
725 setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
726 setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
727 setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
728 setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
729 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
730 setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
731 setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
732 setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
733 setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
734 setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
735 setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
736 setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
737 setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
738 setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
739 setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
740 setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
741 setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
742 setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
743 setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
744 setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
745 setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
746 setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
747 setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
748 setOperationAction(ISD::CTTZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
749 setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
750 setOperationAction(ISD::CTLZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
751 setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
752 setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
753 setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
754 setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
755 setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
756 setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
757 setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
758 setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
759 setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
760 setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
761 setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
762 setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
763 setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
764 setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
765 setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
766 setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
767 setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
768 setOperationAction(ISD::TRUNCATE, (MVT::SimpleValueType)VT, Expand);
769 setOperationAction(ISD::SIGN_EXTEND, (MVT::SimpleValueType)VT, Expand);
770 setOperationAction(ISD::ZERO_EXTEND, (MVT::SimpleValueType)VT, Expand);
771 setOperationAction(ISD::ANY_EXTEND, (MVT::SimpleValueType)VT, Expand);
772 setOperationAction(ISD::VSELECT, (MVT::SimpleValueType)VT, Expand);
773 for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
774 InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
775 setTruncStoreAction((MVT::SimpleValueType)VT,
776 (MVT::SimpleValueType)InnerVT, Expand);
777 setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
778 setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
779 setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
782 // FIXME: In order to prevent SSE instructions being expanded to MMX ones
783 // with -msoft-float, disable use of MMX as well.
784 if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
785 addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
786 // No operations on x86mmx supported, everything uses intrinsics.
789 // MMX-sized vectors (other than x86mmx) are expected to be expanded
790 // into smaller operations.
791 setOperationAction(ISD::MULHS, MVT::v8i8, Expand);
792 setOperationAction(ISD::MULHS, MVT::v4i16, Expand);
793 setOperationAction(ISD::MULHS, MVT::v2i32, Expand);
794 setOperationAction(ISD::MULHS, MVT::v1i64, Expand);
795 setOperationAction(ISD::AND, MVT::v8i8, Expand);
796 setOperationAction(ISD::AND, MVT::v4i16, Expand);
797 setOperationAction(ISD::AND, MVT::v2i32, Expand);
798 setOperationAction(ISD::AND, MVT::v1i64, Expand);
799 setOperationAction(ISD::OR, MVT::v8i8, Expand);
800 setOperationAction(ISD::OR, MVT::v4i16, Expand);
801 setOperationAction(ISD::OR, MVT::v2i32, Expand);
802 setOperationAction(ISD::OR, MVT::v1i64, Expand);
803 setOperationAction(ISD::XOR, MVT::v8i8, Expand);
804 setOperationAction(ISD::XOR, MVT::v4i16, Expand);
805 setOperationAction(ISD::XOR, MVT::v2i32, Expand);
806 setOperationAction(ISD::XOR, MVT::v1i64, Expand);
807 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Expand);
808 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Expand);
809 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i32, Expand);
810 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Expand);
811 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v1i64, Expand);
812 setOperationAction(ISD::SELECT, MVT::v8i8, Expand);
813 setOperationAction(ISD::SELECT, MVT::v4i16, Expand);
814 setOperationAction(ISD::SELECT, MVT::v2i32, Expand);
815 setOperationAction(ISD::SELECT, MVT::v1i64, Expand);
816 setOperationAction(ISD::BITCAST, MVT::v8i8, Expand);
817 setOperationAction(ISD::BITCAST, MVT::v4i16, Expand);
818 setOperationAction(ISD::BITCAST, MVT::v2i32, Expand);
819 setOperationAction(ISD::BITCAST, MVT::v1i64, Expand);
821 if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
822 addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
824 setOperationAction(ISD::FADD, MVT::v4f32, Legal);
825 setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
826 setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
827 setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
828 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
829 setOperationAction(ISD::FNEG, MVT::v4f32, Custom);
830 setOperationAction(ISD::LOAD, MVT::v4f32, Legal);
831 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
832 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
833 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
834 setOperationAction(ISD::SELECT, MVT::v4f32, Custom);
835 setOperationAction(ISD::SETCC, MVT::v4f32, Custom);
838 if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
839 addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
841 // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
842 // registers cannot be used even for integer operations.
843 addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
844 addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
845 addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
846 addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
848 setOperationAction(ISD::ADD, MVT::v16i8, Legal);
849 setOperationAction(ISD::ADD, MVT::v8i16, Legal);
850 setOperationAction(ISD::ADD, MVT::v4i32, Legal);
851 setOperationAction(ISD::ADD, MVT::v2i64, Legal);
852 setOperationAction(ISD::MUL, MVT::v2i64, Custom);
853 setOperationAction(ISD::SUB, MVT::v16i8, Legal);
854 setOperationAction(ISD::SUB, MVT::v8i16, Legal);
855 setOperationAction(ISD::SUB, MVT::v4i32, Legal);
856 setOperationAction(ISD::SUB, MVT::v2i64, Legal);
857 setOperationAction(ISD::MUL, MVT::v8i16, Legal);
858 setOperationAction(ISD::FADD, MVT::v2f64, Legal);
859 setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
860 setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
861 setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
862 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
863 setOperationAction(ISD::FNEG, MVT::v2f64, Custom);
865 setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
866 setOperationAction(ISD::SETCC, MVT::v16i8, Custom);
867 setOperationAction(ISD::SETCC, MVT::v8i16, Custom);
868 setOperationAction(ISD::SETCC, MVT::v4i32, Custom);
870 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom);
871 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom);
872 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
873 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
874 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
876 setOperationAction(ISD::CONCAT_VECTORS, MVT::v2f64, Custom);
877 setOperationAction(ISD::CONCAT_VECTORS, MVT::v2i64, Custom);
878 setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i8, Custom);
879 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i16, Custom);
880 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
882 // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
883 for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
884 EVT VT = (MVT::SimpleValueType)i;
885 // Do not attempt to custom lower non-power-of-2 vectors
886 if (!isPowerOf2_32(VT.getVectorNumElements()))
888 // Do not attempt to custom lower non-128-bit vectors
889 if (!VT.is128BitVector())
891 setOperationAction(ISD::BUILD_VECTOR,
892 VT.getSimpleVT().SimpleTy, Custom);
893 setOperationAction(ISD::VECTOR_SHUFFLE,
894 VT.getSimpleVT().SimpleTy, Custom);
895 setOperationAction(ISD::EXTRACT_VECTOR_ELT,
896 VT.getSimpleVT().SimpleTy, Custom);
899 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
900 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
901 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
902 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
903 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
904 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
906 if (Subtarget->is64Bit()) {
907 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom);
908 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
911 // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
912 for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
913 MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
916 // Do not attempt to promote non-128-bit vectors
917 if (!VT.is128BitVector())
920 setOperationAction(ISD::AND, SVT, Promote);
921 AddPromotedToType (ISD::AND, SVT, MVT::v2i64);
922 setOperationAction(ISD::OR, SVT, Promote);
923 AddPromotedToType (ISD::OR, SVT, MVT::v2i64);
924 setOperationAction(ISD::XOR, SVT, Promote);
925 AddPromotedToType (ISD::XOR, SVT, MVT::v2i64);
926 setOperationAction(ISD::LOAD, SVT, Promote);
927 AddPromotedToType (ISD::LOAD, SVT, MVT::v2i64);
928 setOperationAction(ISD::SELECT, SVT, Promote);
929 AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
932 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
934 // Custom lower v2i64 and v2f64 selects.
935 setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
936 setOperationAction(ISD::LOAD, MVT::v2i64, Legal);
937 setOperationAction(ISD::SELECT, MVT::v2f64, Custom);
938 setOperationAction(ISD::SELECT, MVT::v2i64, Custom);
940 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
941 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
944 if (Subtarget->hasSSE41()) {
945 setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
946 setOperationAction(ISD::FCEIL, MVT::f32, Legal);
947 setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
948 setOperationAction(ISD::FRINT, MVT::f32, Legal);
949 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
950 setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
951 setOperationAction(ISD::FCEIL, MVT::f64, Legal);
952 setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
953 setOperationAction(ISD::FRINT, MVT::f64, Legal);
954 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
956 // FIXME: Do we need to handle scalar-to-vector here?
957 setOperationAction(ISD::MUL, MVT::v4i32, Legal);
959 setOperationAction(ISD::VSELECT, MVT::v2f64, Legal);
960 setOperationAction(ISD::VSELECT, MVT::v2i64, Legal);
961 setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
962 setOperationAction(ISD::VSELECT, MVT::v4i32, Legal);
963 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
965 // i8 and i16 vectors are custom , because the source register and source
966 // source memory operand types are not the same width. f32 vectors are
967 // custom since the immediate controlling the insert encodes additional
969 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
970 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
971 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
972 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
974 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
975 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
976 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
977 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
979 // FIXME: these should be Legal but thats only for the case where
980 // the index is constant. For now custom expand to deal with that.
981 if (Subtarget->is64Bit()) {
982 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom);
983 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
987 if (Subtarget->hasSSE2()) {
988 setOperationAction(ISD::SRL, MVT::v8i16, Custom);
989 setOperationAction(ISD::SRL, MVT::v16i8, Custom);
991 setOperationAction(ISD::SHL, MVT::v8i16, Custom);
992 setOperationAction(ISD::SHL, MVT::v16i8, Custom);
994 setOperationAction(ISD::SRA, MVT::v8i16, Custom);
995 setOperationAction(ISD::SRA, MVT::v16i8, Custom);
997 if (Subtarget->hasAVX2()) {
998 setOperationAction(ISD::SRL, MVT::v2i64, Legal);
999 setOperationAction(ISD::SRL, MVT::v4i32, Legal);
1001 setOperationAction(ISD::SHL, MVT::v2i64, Legal);
1002 setOperationAction(ISD::SHL, MVT::v4i32, Legal);
1004 setOperationAction(ISD::SRA, MVT::v4i32, Legal);
1006 setOperationAction(ISD::SRL, MVT::v2i64, Custom);
1007 setOperationAction(ISD::SRL, MVT::v4i32, Custom);
1009 setOperationAction(ISD::SHL, MVT::v2i64, Custom);
1010 setOperationAction(ISD::SHL, MVT::v4i32, Custom);
1012 setOperationAction(ISD::SRA, MVT::v4i32, Custom);
1016 if (Subtarget->hasSSE42())
1017 setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
1019 if (!TM.Options.UseSoftFloat && Subtarget->hasAVX()) {
1020 addRegisterClass(MVT::v32i8, X86::VR256RegisterClass);
1021 addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
1022 addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
1023 addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
1024 addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
1025 addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
1027 setOperationAction(ISD::LOAD, MVT::v8f32, Legal);
1028 setOperationAction(ISD::LOAD, MVT::v4f64, Legal);
1029 setOperationAction(ISD::LOAD, MVT::v4i64, Legal);
1031 setOperationAction(ISD::FADD, MVT::v8f32, Legal);
1032 setOperationAction(ISD::FSUB, MVT::v8f32, Legal);
1033 setOperationAction(ISD::FMUL, MVT::v8f32, Legal);
1034 setOperationAction(ISD::FDIV, MVT::v8f32, Legal);
1035 setOperationAction(ISD::FSQRT, MVT::v8f32, Legal);
1036 setOperationAction(ISD::FNEG, MVT::v8f32, Custom);
1038 setOperationAction(ISD::FADD, MVT::v4f64, Legal);
1039 setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
1040 setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
1041 setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
1042 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
1043 setOperationAction(ISD::FNEG, MVT::v4f64, Custom);
1045 setOperationAction(ISD::FP_TO_SINT, MVT::v8i32, Legal);
1046 setOperationAction(ISD::SINT_TO_FP, MVT::v8i32, Legal);
1047 setOperationAction(ISD::FP_ROUND, MVT::v4f32, Legal);
1049 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f64, Custom);
1050 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i64, Custom);
1051 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
1052 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
1053 setOperationAction(ISD::CONCAT_VECTORS, MVT::v32i8, Custom);
1054 setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i16, Custom);
1056 setOperationAction(ISD::SRL, MVT::v16i16, Custom);
1057 setOperationAction(ISD::SRL, MVT::v32i8, Custom);
1059 setOperationAction(ISD::SHL, MVT::v16i16, Custom);
1060 setOperationAction(ISD::SHL, MVT::v32i8, Custom);
1062 setOperationAction(ISD::SRA, MVT::v16i16, Custom);
1063 setOperationAction(ISD::SRA, MVT::v32i8, Custom);
1065 setOperationAction(ISD::SETCC, MVT::v32i8, Custom);
1066 setOperationAction(ISD::SETCC, MVT::v16i16, Custom);
1067 setOperationAction(ISD::SETCC, MVT::v8i32, Custom);
1068 setOperationAction(ISD::SETCC, MVT::v4i64, Custom);
1070 setOperationAction(ISD::SELECT, MVT::v4f64, Custom);
1071 setOperationAction(ISD::SELECT, MVT::v4i64, Custom);
1072 setOperationAction(ISD::SELECT, MVT::v8f32, Custom);
1074 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
1075 setOperationAction(ISD::VSELECT, MVT::v4i64, Legal);
1076 setOperationAction(ISD::VSELECT, MVT::v8i32, Legal);
1077 setOperationAction(ISD::VSELECT, MVT::v8f32, Legal);
1079 if (Subtarget->hasAVX2()) {
1080 setOperationAction(ISD::ADD, MVT::v4i64, Legal);
1081 setOperationAction(ISD::ADD, MVT::v8i32, Legal);
1082 setOperationAction(ISD::ADD, MVT::v16i16, Legal);
1083 setOperationAction(ISD::ADD, MVT::v32i8, Legal);
1085 setOperationAction(ISD::SUB, MVT::v4i64, Legal);
1086 setOperationAction(ISD::SUB, MVT::v8i32, Legal);
1087 setOperationAction(ISD::SUB, MVT::v16i16, Legal);
1088 setOperationAction(ISD::SUB, MVT::v32i8, Legal);
1090 setOperationAction(ISD::MUL, MVT::v4i64, Custom);
1091 setOperationAction(ISD::MUL, MVT::v8i32, Legal);
1092 setOperationAction(ISD::MUL, MVT::v16i16, Legal);
1093 // Don't lower v32i8 because there is no 128-bit byte mul
1095 setOperationAction(ISD::VSELECT, MVT::v32i8, Legal);
1097 setOperationAction(ISD::SRL, MVT::v4i64, Legal);
1098 setOperationAction(ISD::SRL, MVT::v8i32, Legal);
1100 setOperationAction(ISD::SHL, MVT::v4i64, Legal);
1101 setOperationAction(ISD::SHL, MVT::v8i32, Legal);
1103 setOperationAction(ISD::SRA, MVT::v8i32, Legal);
1105 setOperationAction(ISD::ADD, MVT::v4i64, Custom);
1106 setOperationAction(ISD::ADD, MVT::v8i32, Custom);
1107 setOperationAction(ISD::ADD, MVT::v16i16, Custom);
1108 setOperationAction(ISD::ADD, MVT::v32i8, Custom);
1110 setOperationAction(ISD::SUB, MVT::v4i64, Custom);
1111 setOperationAction(ISD::SUB, MVT::v8i32, Custom);
1112 setOperationAction(ISD::SUB, MVT::v16i16, Custom);
1113 setOperationAction(ISD::SUB, MVT::v32i8, Custom);
1115 setOperationAction(ISD::MUL, MVT::v4i64, Custom);
1116 setOperationAction(ISD::MUL, MVT::v8i32, Custom);
1117 setOperationAction(ISD::MUL, MVT::v16i16, Custom);
1118 // Don't lower v32i8 because there is no 128-bit byte mul
1120 setOperationAction(ISD::SRL, MVT::v4i64, Custom);
1121 setOperationAction(ISD::SRL, MVT::v8i32, Custom);
1123 setOperationAction(ISD::SHL, MVT::v4i64, Custom);
1124 setOperationAction(ISD::SHL, MVT::v8i32, Custom);
1126 setOperationAction(ISD::SRA, MVT::v8i32, Custom);
1129 // Custom lower several nodes for 256-bit types.
1130 for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1131 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1132 MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1135 // Extract subvector is special because the value type
1136 // (result) is 128-bit but the source is 256-bit wide.
1137 if (VT.is128BitVector())
1138 setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1140 // Do not attempt to custom lower other non-256-bit vectors
1141 if (!VT.is256BitVector())
1144 setOperationAction(ISD::BUILD_VECTOR, SVT, Custom);
1145 setOperationAction(ISD::VECTOR_SHUFFLE, SVT, Custom);
1146 setOperationAction(ISD::INSERT_VECTOR_ELT, SVT, Custom);
1147 setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1148 setOperationAction(ISD::SCALAR_TO_VECTOR, SVT, Custom);
1149 setOperationAction(ISD::INSERT_SUBVECTOR, SVT, Custom);
1152 // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1153 for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
1154 MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1157 // Do not attempt to promote non-256-bit vectors
1158 if (!VT.is256BitVector())
1161 setOperationAction(ISD::AND, SVT, Promote);
1162 AddPromotedToType (ISD::AND, SVT, MVT::v4i64);
1163 setOperationAction(ISD::OR, SVT, Promote);
1164 AddPromotedToType (ISD::OR, SVT, MVT::v4i64);
1165 setOperationAction(ISD::XOR, SVT, Promote);
1166 AddPromotedToType (ISD::XOR, SVT, MVT::v4i64);
1167 setOperationAction(ISD::LOAD, SVT, Promote);
1168 AddPromotedToType (ISD::LOAD, SVT, MVT::v4i64);
1169 setOperationAction(ISD::SELECT, SVT, Promote);
1170 AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1174 // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1175 // of this type with custom code.
1176 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1177 VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
1178 setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1182 // We want to custom lower some of our intrinsics.
1183 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1186 // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1187 // handle type legalization for these operations here.
1189 // FIXME: We really should do custom legalization for addition and
1190 // subtraction on x86-32 once PR3203 is fixed. We really can't do much better
1191 // than generic legalization for 64-bit multiplication-with-overflow, though.
1192 for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1193 // Add/Sub/Mul with overflow operations are custom lowered.
1195 setOperationAction(ISD::SADDO, VT, Custom);
1196 setOperationAction(ISD::UADDO, VT, Custom);
1197 setOperationAction(ISD::SSUBO, VT, Custom);
1198 setOperationAction(ISD::USUBO, VT, Custom);
1199 setOperationAction(ISD::SMULO, VT, Custom);
1200 setOperationAction(ISD::UMULO, VT, Custom);
1203 // There are no 8-bit 3-address imul/mul instructions
1204 setOperationAction(ISD::SMULO, MVT::i8, Expand);
1205 setOperationAction(ISD::UMULO, MVT::i8, Expand);
1207 if (!Subtarget->is64Bit()) {
1208 // These libcalls are not available in 32-bit.
1209 setLibcallName(RTLIB::SHL_I128, 0);
1210 setLibcallName(RTLIB::SRL_I128, 0);
1211 setLibcallName(RTLIB::SRA_I128, 0);
1214 // We have target-specific dag combine patterns for the following nodes:
1215 setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1216 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1217 setTargetDAGCombine(ISD::VSELECT);
1218 setTargetDAGCombine(ISD::SELECT);
1219 setTargetDAGCombine(ISD::SHL);
1220 setTargetDAGCombine(ISD::SRA);
1221 setTargetDAGCombine(ISD::SRL);
1222 setTargetDAGCombine(ISD::OR);
1223 setTargetDAGCombine(ISD::AND);
1224 setTargetDAGCombine(ISD::ADD);
1225 setTargetDAGCombine(ISD::FADD);
1226 setTargetDAGCombine(ISD::FSUB);
1227 setTargetDAGCombine(ISD::SUB);
1228 setTargetDAGCombine(ISD::LOAD);
1229 setTargetDAGCombine(ISD::STORE);
1230 setTargetDAGCombine(ISD::ZERO_EXTEND);
1231 setTargetDAGCombine(ISD::SINT_TO_FP);
1232 if (Subtarget->is64Bit())
1233 setTargetDAGCombine(ISD::MUL);
1234 if (Subtarget->hasBMI())
1235 setTargetDAGCombine(ISD::XOR);
1237 computeRegisterProperties();
1239 // On Darwin, -Os means optimize for size without hurting performance,
1240 // do not reduce the limit.
1241 maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1242 maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1243 maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1244 maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1245 maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1246 maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1247 setPrefLoopAlignment(4); // 2^4 bytes.
1248 benefitFromCodePlacementOpt = true;
1250 setPrefFunctionAlignment(4); // 2^4 bytes.
1254 EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1255 if (!VT.isVector()) return MVT::i8;
1256 return VT.changeVectorElementTypeToInteger();
1260 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1261 /// the desired ByVal argument alignment.
1262 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1265 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1266 if (VTy->getBitWidth() == 128)
1268 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1269 unsigned EltAlign = 0;
1270 getMaxByValAlign(ATy->getElementType(), EltAlign);
1271 if (EltAlign > MaxAlign)
1272 MaxAlign = EltAlign;
1273 } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1274 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1275 unsigned EltAlign = 0;
1276 getMaxByValAlign(STy->getElementType(i), EltAlign);
1277 if (EltAlign > MaxAlign)
1278 MaxAlign = EltAlign;
1286 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1287 /// function arguments in the caller parameter area. For X86, aggregates
1288 /// that contain SSE vectors are placed at 16-byte boundaries while the rest
1289 /// are at 4-byte boundaries.
1290 unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1291 if (Subtarget->is64Bit()) {
1292 // Max of 8 and alignment of type.
1293 unsigned TyAlign = TD->getABITypeAlignment(Ty);
1300 if (Subtarget->hasSSE1())
1301 getMaxByValAlign(Ty, Align);
1305 /// getOptimalMemOpType - Returns the target specific optimal type for load
1306 /// and store operations as a result of memset, memcpy, and memmove
1307 /// lowering. If DstAlign is zero that means it's safe to destination
1308 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1309 /// means there isn't a need to check it against alignment requirement,
1310 /// probably because the source does not need to be loaded. If
1311 /// 'IsZeroVal' is true, that means it's safe to return a
1312 /// non-scalar-integer type, e.g. empty string source, constant, or loaded
1313 /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1314 /// constant so it does not need to be loaded.
1315 /// It returns EVT::Other if the type should be determined using generic
1316 /// target-independent logic.
1318 X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1319 unsigned DstAlign, unsigned SrcAlign,
1322 MachineFunction &MF) const {
1323 // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1324 // linux. This is because the stack realignment code can't handle certain
1325 // cases like PR2962. This should be removed when PR2962 is fixed.
1326 const Function *F = MF.getFunction();
1328 !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1330 (Subtarget->isUnalignedMemAccessFast() ||
1331 ((DstAlign == 0 || DstAlign >= 16) &&
1332 (SrcAlign == 0 || SrcAlign >= 16))) &&
1333 Subtarget->getStackAlignment() >= 16) {
1334 if (Subtarget->getStackAlignment() >= 32) {
1335 if (Subtarget->hasAVX2())
1337 if (Subtarget->hasAVX())
1340 if (Subtarget->hasSSE2())
1342 if (Subtarget->hasSSE1())
1344 } else if (!MemcpyStrSrc && Size >= 8 &&
1345 !Subtarget->is64Bit() &&
1346 Subtarget->getStackAlignment() >= 8 &&
1347 Subtarget->hasSSE2()) {
1348 // Do not use f64 to lower memcpy if source is string constant. It's
1349 // better to use i32 to avoid the loads.
1353 if (Subtarget->is64Bit() && Size >= 8)
1358 /// getJumpTableEncoding - Return the entry encoding for a jump table in the
1359 /// current function. The returned value is a member of the
1360 /// MachineJumpTableInfo::JTEntryKind enum.
1361 unsigned X86TargetLowering::getJumpTableEncoding() const {
1362 // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1364 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1365 Subtarget->isPICStyleGOT())
1366 return MachineJumpTableInfo::EK_Custom32;
1368 // Otherwise, use the normal jump table encoding heuristics.
1369 return TargetLowering::getJumpTableEncoding();
1373 X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1374 const MachineBasicBlock *MBB,
1375 unsigned uid,MCContext &Ctx) const{
1376 assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1377 Subtarget->isPICStyleGOT());
1378 // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1380 return MCSymbolRefExpr::Create(MBB->getSymbol(),
1381 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1384 /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1386 SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1387 SelectionDAG &DAG) const {
1388 if (!Subtarget->is64Bit())
1389 // This doesn't have DebugLoc associated with it, but is not really the
1390 // same as a Register.
1391 return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1395 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1396 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1398 const MCExpr *X86TargetLowering::
1399 getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1400 MCContext &Ctx) const {
1401 // X86-64 uses RIP relative addressing based on the jump table label.
1402 if (Subtarget->isPICStyleRIPRel())
1403 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1405 // Otherwise, the reference is relative to the PIC base.
1406 return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1409 // FIXME: Why this routine is here? Move to RegInfo!
1410 std::pair<const TargetRegisterClass*, uint8_t>
1411 X86TargetLowering::findRepresentativeClass(EVT VT) const{
1412 const TargetRegisterClass *RRC = 0;
1414 switch (VT.getSimpleVT().SimpleTy) {
1416 return TargetLowering::findRepresentativeClass(VT);
1417 case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1418 RRC = (Subtarget->is64Bit()
1419 ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1422 RRC = X86::VR64RegisterClass;
1424 case MVT::f32: case MVT::f64:
1425 case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1426 case MVT::v4f32: case MVT::v2f64:
1427 case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1429 RRC = X86::VR128RegisterClass;
1432 return std::make_pair(RRC, Cost);
1435 bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1436 unsigned &Offset) const {
1437 if (!Subtarget->isTargetLinux())
1440 if (Subtarget->is64Bit()) {
1441 // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1443 if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1456 //===----------------------------------------------------------------------===//
1457 // Return Value Calling Convention Implementation
1458 //===----------------------------------------------------------------------===//
1460 #include "X86GenCallingConv.inc"
1463 X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1464 MachineFunction &MF, bool isVarArg,
1465 const SmallVectorImpl<ISD::OutputArg> &Outs,
1466 LLVMContext &Context) const {
1467 SmallVector<CCValAssign, 16> RVLocs;
1468 CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1470 return CCInfo.CheckReturn(Outs, RetCC_X86);
1474 X86TargetLowering::LowerReturn(SDValue Chain,
1475 CallingConv::ID CallConv, bool isVarArg,
1476 const SmallVectorImpl<ISD::OutputArg> &Outs,
1477 const SmallVectorImpl<SDValue> &OutVals,
1478 DebugLoc dl, SelectionDAG &DAG) const {
1479 MachineFunction &MF = DAG.getMachineFunction();
1480 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1482 SmallVector<CCValAssign, 16> RVLocs;
1483 CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1484 RVLocs, *DAG.getContext());
1485 CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1487 // Add the regs to the liveout set for the function.
1488 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1489 for (unsigned i = 0; i != RVLocs.size(); ++i)
1490 if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1491 MRI.addLiveOut(RVLocs[i].getLocReg());
1495 SmallVector<SDValue, 6> RetOps;
1496 RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1497 // Operand #1 = Bytes To Pop
1498 RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1501 // Copy the result values into the output registers.
1502 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1503 CCValAssign &VA = RVLocs[i];
1504 assert(VA.isRegLoc() && "Can only return in registers!");
1505 SDValue ValToCopy = OutVals[i];
1506 EVT ValVT = ValToCopy.getValueType();
1508 // If this is x86-64, and we disabled SSE, we can't return FP values,
1509 // or SSE or MMX vectors.
1510 if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1511 VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1512 (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1513 report_fatal_error("SSE register return with SSE disabled");
1515 // Likewise we can't return F64 values with SSE1 only. gcc does so, but
1516 // llvm-gcc has never done it right and no one has noticed, so this
1517 // should be OK for now.
1518 if (ValVT == MVT::f64 &&
1519 (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1520 report_fatal_error("SSE2 register return with SSE2 disabled");
1522 // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1523 // the RET instruction and handled by the FP Stackifier.
1524 if (VA.getLocReg() == X86::ST0 ||
1525 VA.getLocReg() == X86::ST1) {
1526 // If this is a copy from an xmm register to ST(0), use an FPExtend to
1527 // change the value to the FP stack register class.
1528 if (isScalarFPTypeInSSEReg(VA.getValVT()))
1529 ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1530 RetOps.push_back(ValToCopy);
1531 // Don't emit a copytoreg.
1535 // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1536 // which is returned in RAX / RDX.
1537 if (Subtarget->is64Bit()) {
1538 if (ValVT == MVT::x86mmx) {
1539 if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1540 ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1541 ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1543 // If we don't have SSE2 available, convert to v4f32 so the generated
1544 // register is legal.
1545 if (!Subtarget->hasSSE2())
1546 ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1551 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1552 Flag = Chain.getValue(1);
1555 // The x86-64 ABI for returning structs by value requires that we copy
1556 // the sret argument into %rax for the return. We saved the argument into
1557 // a virtual register in the entry block, so now we copy the value out
1559 if (Subtarget->is64Bit() &&
1560 DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1561 MachineFunction &MF = DAG.getMachineFunction();
1562 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1563 unsigned Reg = FuncInfo->getSRetReturnReg();
1565 "SRetReturnReg should have been set in LowerFormalArguments().");
1566 SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1568 Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1569 Flag = Chain.getValue(1);
1571 // RAX now acts like a return value.
1572 MRI.addLiveOut(X86::RAX);
1575 RetOps[0] = Chain; // Update chain.
1577 // Add the flag if we have it.
1579 RetOps.push_back(Flag);
1581 return DAG.getNode(X86ISD::RET_FLAG, dl,
1582 MVT::Other, &RetOps[0], RetOps.size());
1585 bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1586 if (N->getNumValues() != 1)
1588 if (!N->hasNUsesOfValue(1, 0))
1591 SDNode *Copy = *N->use_begin();
1592 if (Copy->getOpcode() != ISD::CopyToReg &&
1593 Copy->getOpcode() != ISD::FP_EXTEND)
1596 bool HasRet = false;
1597 for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1599 if (UI->getOpcode() != X86ISD::RET_FLAG)
1608 X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1609 ISD::NodeType ExtendKind) const {
1611 // TODO: Is this also valid on 32-bit?
1612 if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1613 ReturnMVT = MVT::i8;
1615 ReturnMVT = MVT::i32;
1617 EVT MinVT = getRegisterType(Context, ReturnMVT);
1618 return VT.bitsLT(MinVT) ? MinVT : VT;
1621 /// LowerCallResult - Lower the result values of a call into the
1622 /// appropriate copies out of appropriate physical registers.
1625 X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1626 CallingConv::ID CallConv, bool isVarArg,
1627 const SmallVectorImpl<ISD::InputArg> &Ins,
1628 DebugLoc dl, SelectionDAG &DAG,
1629 SmallVectorImpl<SDValue> &InVals) const {
1631 // Assign locations to each value returned by this call.
1632 SmallVector<CCValAssign, 16> RVLocs;
1633 bool Is64Bit = Subtarget->is64Bit();
1634 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1635 getTargetMachine(), RVLocs, *DAG.getContext());
1636 CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1638 // Copy all of the result registers out of their specified physreg.
1639 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1640 CCValAssign &VA = RVLocs[i];
1641 EVT CopyVT = VA.getValVT();
1643 // If this is x86-64, and we disabled SSE, we can't return FP values
1644 if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1645 ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1646 report_fatal_error("SSE register return with SSE disabled");
1651 // If this is a call to a function that returns an fp value on the floating
1652 // point stack, we must guarantee the the value is popped from the stack, so
1653 // a CopyFromReg is not good enough - the copy instruction may be eliminated
1654 // if the return value is not used. We use the FpPOP_RETVAL instruction
1656 if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1657 // If we prefer to use the value in xmm registers, copy it out as f80 and
1658 // use a truncate to move it from fp stack reg to xmm reg.
1659 if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1660 SDValue Ops[] = { Chain, InFlag };
1661 Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1662 MVT::Other, MVT::Glue, Ops, 2), 1);
1663 Val = Chain.getValue(0);
1665 // Round the f80 to the right size, which also moves it to the appropriate
1667 if (CopyVT != VA.getValVT())
1668 Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1669 // This truncation won't change the value.
1670 DAG.getIntPtrConstant(1));
1672 Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1673 CopyVT, InFlag).getValue(1);
1674 Val = Chain.getValue(0);
1676 InFlag = Chain.getValue(2);
1677 InVals.push_back(Val);
1684 //===----------------------------------------------------------------------===//
1685 // C & StdCall & Fast Calling Convention implementation
1686 //===----------------------------------------------------------------------===//
1687 // StdCall calling convention seems to be standard for many Windows' API
1688 // routines and around. It differs from C calling convention just a little:
1689 // callee should clean up the stack, not caller. Symbols should be also
1690 // decorated in some fancy way :) It doesn't support any vector arguments.
1691 // For info on fast calling convention see Fast Calling Convention (tail call)
1692 // implementation LowerX86_32FastCCCallTo.
1694 /// CallIsStructReturn - Determines whether a call uses struct return
1696 static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1700 return Outs[0].Flags.isSRet();
1703 /// ArgsAreStructReturn - Determines whether a function uses struct
1704 /// return semantics.
1706 ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1710 return Ins[0].Flags.isSRet();
1713 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1714 /// by "Src" to address "Dst" with size and alignment information specified by
1715 /// the specific parameter attribute. The copy will be passed as a byval
1716 /// function parameter.
1718 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1719 ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1721 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1723 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1724 /*isVolatile*/false, /*AlwaysInline=*/true,
1725 MachinePointerInfo(), MachinePointerInfo());
1728 /// IsTailCallConvention - Return true if the calling convention is one that
1729 /// supports tail call optimization.
1730 static bool IsTailCallConvention(CallingConv::ID CC) {
1731 return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1734 bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1735 if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
1739 CallingConv::ID CalleeCC = CS.getCallingConv();
1740 if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1746 /// FuncIsMadeTailCallSafe - Return true if the function is being made into
1747 /// a tailcall target by changing its ABI.
1748 static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1749 bool GuaranteedTailCallOpt) {
1750 return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1754 X86TargetLowering::LowerMemArgument(SDValue Chain,
1755 CallingConv::ID CallConv,
1756 const SmallVectorImpl<ISD::InputArg> &Ins,
1757 DebugLoc dl, SelectionDAG &DAG,
1758 const CCValAssign &VA,
1759 MachineFrameInfo *MFI,
1761 // Create the nodes corresponding to a load from this parameter slot.
1762 ISD::ArgFlagsTy Flags = Ins[i].Flags;
1763 bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1764 getTargetMachine().Options.GuaranteedTailCallOpt);
1765 bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1768 // If value is passed by pointer we have address passed instead of the value
1770 if (VA.getLocInfo() == CCValAssign::Indirect)
1771 ValVT = VA.getLocVT();
1773 ValVT = VA.getValVT();
1775 // FIXME: For now, all byval parameter objects are marked mutable. This can be
1776 // changed with more analysis.
1777 // In case of tail call optimization mark all arguments mutable. Since they
1778 // could be overwritten by lowering of arguments in case of a tail call.
1779 if (Flags.isByVal()) {
1780 unsigned Bytes = Flags.getByValSize();
1781 if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1782 int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1783 return DAG.getFrameIndex(FI, getPointerTy());
1785 int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1786 VA.getLocMemOffset(), isImmutable);
1787 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1788 return DAG.getLoad(ValVT, dl, Chain, FIN,
1789 MachinePointerInfo::getFixedStack(FI),
1790 false, false, false, 0);
1795 X86TargetLowering::LowerFormalArguments(SDValue Chain,
1796 CallingConv::ID CallConv,
1798 const SmallVectorImpl<ISD::InputArg> &Ins,
1801 SmallVectorImpl<SDValue> &InVals)
1803 MachineFunction &MF = DAG.getMachineFunction();
1804 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1806 const Function* Fn = MF.getFunction();
1807 if (Fn->hasExternalLinkage() &&
1808 Subtarget->isTargetCygMing() &&
1809 Fn->getName() == "main")
1810 FuncInfo->setForceFramePointer(true);
1812 MachineFrameInfo *MFI = MF.getFrameInfo();
1813 bool Is64Bit = Subtarget->is64Bit();
1814 bool IsWindows = Subtarget->isTargetWindows();
1815 bool IsWin64 = Subtarget->isTargetWin64();
1817 assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1818 "Var args not supported with calling convention fastcc or ghc");
1820 // Assign locations to all of the incoming arguments.
1821 SmallVector<CCValAssign, 16> ArgLocs;
1822 CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1823 ArgLocs, *DAG.getContext());
1825 // Allocate shadow area for Win64
1827 CCInfo.AllocateStack(32, 8);
1830 CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1832 unsigned LastVal = ~0U;
1834 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1835 CCValAssign &VA = ArgLocs[i];
1836 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1838 assert(VA.getValNo() != LastVal &&
1839 "Don't support value assigned to multiple locs yet");
1841 LastVal = VA.getValNo();
1843 if (VA.isRegLoc()) {
1844 EVT RegVT = VA.getLocVT();
1845 TargetRegisterClass *RC = NULL;
1846 if (RegVT == MVT::i32)
1847 RC = X86::GR32RegisterClass;
1848 else if (Is64Bit && RegVT == MVT::i64)
1849 RC = X86::GR64RegisterClass;
1850 else if (RegVT == MVT::f32)
1851 RC = X86::FR32RegisterClass;
1852 else if (RegVT == MVT::f64)
1853 RC = X86::FR64RegisterClass;
1854 else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1855 RC = X86::VR256RegisterClass;
1856 else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1857 RC = X86::VR128RegisterClass;
1858 else if (RegVT == MVT::x86mmx)
1859 RC = X86::VR64RegisterClass;
1861 llvm_unreachable("Unknown argument type!");
1863 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1864 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1866 // If this is an 8 or 16-bit value, it is really passed promoted to 32
1867 // bits. Insert an assert[sz]ext to capture this, then truncate to the
1869 if (VA.getLocInfo() == CCValAssign::SExt)
1870 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1871 DAG.getValueType(VA.getValVT()));
1872 else if (VA.getLocInfo() == CCValAssign::ZExt)
1873 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1874 DAG.getValueType(VA.getValVT()));
1875 else if (VA.getLocInfo() == CCValAssign::BCvt)
1876 ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1878 if (VA.isExtInLoc()) {
1879 // Handle MMX values passed in XMM regs.
1880 if (RegVT.isVector()) {
1881 ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1884 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1887 assert(VA.isMemLoc());
1888 ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1891 // If value is passed via pointer - do a load.
1892 if (VA.getLocInfo() == CCValAssign::Indirect)
1893 ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1894 MachinePointerInfo(), false, false, false, 0);
1896 InVals.push_back(ArgValue);
1899 // The x86-64 ABI for returning structs by value requires that we copy
1900 // the sret argument into %rax for the return. Save the argument into
1901 // a virtual register so that we can access it from the return points.
1902 if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1903 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1904 unsigned Reg = FuncInfo->getSRetReturnReg();
1906 Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1907 FuncInfo->setSRetReturnReg(Reg);
1909 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1910 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1913 unsigned StackSize = CCInfo.getNextStackOffset();
1914 // Align stack specially for tail calls.
1915 if (FuncIsMadeTailCallSafe(CallConv,
1916 MF.getTarget().Options.GuaranteedTailCallOpt))
1917 StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1919 // If the function takes variable number of arguments, make a frame index for
1920 // the start of the first vararg value... for expansion of llvm.va_start.
1922 if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1923 CallConv != CallingConv::X86_ThisCall)) {
1924 FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1927 unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1929 // FIXME: We should really autogenerate these arrays
1930 static const unsigned GPR64ArgRegsWin64[] = {
1931 X86::RCX, X86::RDX, X86::R8, X86::R9
1933 static const unsigned GPR64ArgRegs64Bit[] = {
1934 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1936 static const unsigned XMMArgRegs64Bit[] = {
1937 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1938 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1940 const unsigned *GPR64ArgRegs;
1941 unsigned NumXMMRegs = 0;
1944 // The XMM registers which might contain var arg parameters are shadowed
1945 // in their paired GPR. So we only need to save the GPR to their home
1947 TotalNumIntRegs = 4;
1948 GPR64ArgRegs = GPR64ArgRegsWin64;
1950 TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1951 GPR64ArgRegs = GPR64ArgRegs64Bit;
1953 NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
1956 unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1959 bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1960 assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1961 "SSE register cannot be used when SSE is disabled!");
1962 assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
1963 NoImplicitFloatOps) &&
1964 "SSE register cannot be used when SSE is disabled!");
1965 if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
1966 !Subtarget->hasSSE1())
1967 // Kernel mode asks for SSE to be disabled, so don't push them
1969 TotalNumXMMRegs = 0;
1972 const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1973 // Get to the caller-allocated home save location. Add 8 to account
1974 // for the return address.
1975 int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1976 FuncInfo->setRegSaveFrameIndex(
1977 MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1978 // Fixup to set vararg frame on shadow area (4 x i64).
1980 FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1982 // For X86-64, if there are vararg parameters that are passed via
1983 // registers, then we must store them to their spots on the stack so
1984 // they may be loaded by deferencing the result of va_next.
1985 FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1986 FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1987 FuncInfo->setRegSaveFrameIndex(
1988 MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1992 // Store the integer parameter registers.
1993 SmallVector<SDValue, 8> MemOps;
1994 SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1996 unsigned Offset = FuncInfo->getVarArgsGPOffset();
1997 for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1998 SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1999 DAG.getIntPtrConstant(Offset));
2000 unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
2001 X86::GR64RegisterClass);
2002 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2004 DAG.getStore(Val.getValue(1), dl, Val, FIN,
2005 MachinePointerInfo::getFixedStack(
2006 FuncInfo->getRegSaveFrameIndex(), Offset),
2008 MemOps.push_back(Store);
2012 if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2013 // Now store the XMM (fp + vector) parameter registers.
2014 SmallVector<SDValue, 11> SaveXMMOps;
2015 SaveXMMOps.push_back(Chain);
2017 unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
2018 SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2019 SaveXMMOps.push_back(ALVal);
2021 SaveXMMOps.push_back(DAG.getIntPtrConstant(
2022 FuncInfo->getRegSaveFrameIndex()));
2023 SaveXMMOps.push_back(DAG.getIntPtrConstant(
2024 FuncInfo->getVarArgsFPOffset()));
2026 for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2027 unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2028 X86::VR128RegisterClass);
2029 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2030 SaveXMMOps.push_back(Val);
2032 MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2034 &SaveXMMOps[0], SaveXMMOps.size()));
2037 if (!MemOps.empty())
2038 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2039 &MemOps[0], MemOps.size());
2043 // Some CCs need callee pop.
2044 if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2045 MF.getTarget().Options.GuaranteedTailCallOpt)) {
2046 FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2048 FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2049 // If this is an sret function, the return should pop the hidden pointer.
2050 if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2051 ArgsAreStructReturn(Ins))
2052 FuncInfo->setBytesToPopOnReturn(4);
2056 // RegSaveFrameIndex is X86-64 only.
2057 FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2058 if (CallConv == CallingConv::X86_FastCall ||
2059 CallConv == CallingConv::X86_ThisCall)
2060 // fastcc functions can't have varargs.
2061 FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2064 FuncInfo->setArgumentStackSize(StackSize);
2070 X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2071 SDValue StackPtr, SDValue Arg,
2072 DebugLoc dl, SelectionDAG &DAG,
2073 const CCValAssign &VA,
2074 ISD::ArgFlagsTy Flags) const {
2075 unsigned LocMemOffset = VA.getLocMemOffset();
2076 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2077 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2078 if (Flags.isByVal())
2079 return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2081 return DAG.getStore(Chain, dl, Arg, PtrOff,
2082 MachinePointerInfo::getStack(LocMemOffset),
2086 /// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2087 /// optimization is performed and it is required.
2089 X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2090 SDValue &OutRetAddr, SDValue Chain,
2091 bool IsTailCall, bool Is64Bit,
2092 int FPDiff, DebugLoc dl) const {
2093 // Adjust the Return address stack slot.
2094 EVT VT = getPointerTy();
2095 OutRetAddr = getReturnAddressFrameIndex(DAG);
2097 // Load the "old" Return address.
2098 OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2099 false, false, false, 0);
2100 return SDValue(OutRetAddr.getNode(), 1);
2103 /// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2104 /// optimization is performed and it is required (FPDiff!=0).
2106 EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2107 SDValue Chain, SDValue RetAddrFrIdx,
2108 bool Is64Bit, int FPDiff, DebugLoc dl) {
2109 // Store the return address to the appropriate stack slot.
2110 if (!FPDiff) return Chain;
2111 // Calculate the new stack slot for the return address.
2112 int SlotSize = Is64Bit ? 8 : 4;
2113 int NewReturnAddrFI =
2114 MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2115 EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2116 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2117 Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2118 MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2124 X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2125 CallingConv::ID CallConv, bool isVarArg,
2127 const SmallVectorImpl<ISD::OutputArg> &Outs,
2128 const SmallVectorImpl<SDValue> &OutVals,
2129 const SmallVectorImpl<ISD::InputArg> &Ins,
2130 DebugLoc dl, SelectionDAG &DAG,
2131 SmallVectorImpl<SDValue> &InVals) const {
2132 MachineFunction &MF = DAG.getMachineFunction();
2133 bool Is64Bit = Subtarget->is64Bit();
2134 bool IsWin64 = Subtarget->isTargetWin64();
2135 bool IsWindows = Subtarget->isTargetWindows();
2136 bool IsStructRet = CallIsStructReturn(Outs);
2137 bool IsSibcall = false;
2139 if (MF.getTarget().Options.DisableTailCalls)
2143 // Check if it's really possible to do a tail call.
2144 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2145 isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
2146 Outs, OutVals, Ins, DAG);
2148 // Sibcalls are automatically detected tailcalls which do not require
2150 if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2157 assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2158 "Var args not supported with calling convention fastcc or ghc");
2160 // Analyze operands of the call, assigning locations to each operand.
2161 SmallVector<CCValAssign, 16> ArgLocs;
2162 CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2163 ArgLocs, *DAG.getContext());
2165 // Allocate shadow area for Win64
2167 CCInfo.AllocateStack(32, 8);
2170 CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2172 // Get a count of how many bytes are to be pushed on the stack.
2173 unsigned NumBytes = CCInfo.getNextStackOffset();
2175 // This is a sibcall. The memory operands are available in caller's
2176 // own caller's stack.
2178 else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2179 IsTailCallConvention(CallConv))
2180 NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2183 if (isTailCall && !IsSibcall) {
2184 // Lower arguments at fp - stackoffset + fpdiff.
2185 unsigned NumBytesCallerPushed =
2186 MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2187 FPDiff = NumBytesCallerPushed - NumBytes;
2189 // Set the delta of movement of the returnaddr stackslot.
2190 // But only set if delta is greater than previous delta.
2191 if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2192 MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2196 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2198 SDValue RetAddrFrIdx;
2199 // Load return address for tail calls.
2200 if (isTailCall && FPDiff)
2201 Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2202 Is64Bit, FPDiff, dl);
2204 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2205 SmallVector<SDValue, 8> MemOpChains;
2208 // Walk the register/memloc assignments, inserting copies/loads. In the case
2209 // of tail call optimization arguments are handle later.
2210 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2211 CCValAssign &VA = ArgLocs[i];
2212 EVT RegVT = VA.getLocVT();
2213 SDValue Arg = OutVals[i];
2214 ISD::ArgFlagsTy Flags = Outs[i].Flags;
2215 bool isByVal = Flags.isByVal();
2217 // Promote the value if needed.
2218 switch (VA.getLocInfo()) {
2219 default: llvm_unreachable("Unknown loc info!");
2220 case CCValAssign::Full: break;
2221 case CCValAssign::SExt:
2222 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2224 case CCValAssign::ZExt:
2225 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2227 case CCValAssign::AExt:
2228 if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2229 // Special case: passing MMX values in XMM registers.
2230 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2231 Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2232 Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2234 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2236 case CCValAssign::BCvt:
2237 Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2239 case CCValAssign::Indirect: {
2240 // Store the argument.
2241 SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2242 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2243 Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2244 MachinePointerInfo::getFixedStack(FI),
2251 if (VA.isRegLoc()) {
2252 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2253 if (isVarArg && IsWin64) {
2254 // Win64 ABI requires argument XMM reg to be copied to the corresponding
2255 // shadow reg if callee is a varargs function.
2256 unsigned ShadowReg = 0;
2257 switch (VA.getLocReg()) {
2258 case X86::XMM0: ShadowReg = X86::RCX; break;
2259 case X86::XMM1: ShadowReg = X86::RDX; break;
2260 case X86::XMM2: ShadowReg = X86::R8; break;
2261 case X86::XMM3: ShadowReg = X86::R9; break;
2264 RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2266 } else if (!IsSibcall && (!isTailCall || isByVal)) {
2267 assert(VA.isMemLoc());
2268 if (StackPtr.getNode() == 0)
2269 StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2270 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2271 dl, DAG, VA, Flags));
2275 if (!MemOpChains.empty())
2276 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2277 &MemOpChains[0], MemOpChains.size());
2279 // Build a sequence of copy-to-reg nodes chained together with token chain
2280 // and flag operands which copy the outgoing args into registers.
2282 // Tail call byval lowering might overwrite argument registers so in case of
2283 // tail call optimization the copies to registers are lowered later.
2285 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2286 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2287 RegsToPass[i].second, InFlag);
2288 InFlag = Chain.getValue(1);
2291 if (Subtarget->isPICStyleGOT()) {
2292 // ELF / PIC requires GOT in the EBX register before function calls via PLT
2295 Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2296 DAG.getNode(X86ISD::GlobalBaseReg,
2297 DebugLoc(), getPointerTy()),
2299 InFlag = Chain.getValue(1);
2301 // If we are tail calling and generating PIC/GOT style code load the
2302 // address of the callee into ECX. The value in ecx is used as target of
2303 // the tail jump. This is done to circumvent the ebx/callee-saved problem
2304 // for tail calls on PIC/GOT architectures. Normally we would just put the
2305 // address of GOT into ebx and then call target@PLT. But for tail calls
2306 // ebx would be restored (since ebx is callee saved) before jumping to the
2309 // Note: The actual moving to ECX is done further down.
2310 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2311 if (G && !G->getGlobal()->hasHiddenVisibility() &&
2312 !G->getGlobal()->hasProtectedVisibility())
2313 Callee = LowerGlobalAddress(Callee, DAG);
2314 else if (isa<ExternalSymbolSDNode>(Callee))
2315 Callee = LowerExternalSymbol(Callee, DAG);
2319 if (Is64Bit && isVarArg && !IsWin64) {
2320 // From AMD64 ABI document:
2321 // For calls that may call functions that use varargs or stdargs
2322 // (prototype-less calls or calls to functions containing ellipsis (...) in
2323 // the declaration) %al is used as hidden argument to specify the number
2324 // of SSE registers used. The contents of %al do not need to match exactly
2325 // the number of registers, but must be an ubound on the number of SSE
2326 // registers used and is in the range 0 - 8 inclusive.
2328 // Count the number of XMM registers allocated.
2329 static const unsigned XMMArgRegs[] = {
2330 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2331 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2333 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2334 assert((Subtarget->hasSSE1() || !NumXMMRegs)
2335 && "SSE registers cannot be used when SSE is disabled");
2337 Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2338 DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2339 InFlag = Chain.getValue(1);
2343 // For tail calls lower the arguments to the 'real' stack slot.
2345 // Force all the incoming stack arguments to be loaded from the stack
2346 // before any new outgoing arguments are stored to the stack, because the
2347 // outgoing stack slots may alias the incoming argument stack slots, and
2348 // the alias isn't otherwise explicit. This is slightly more conservative
2349 // than necessary, because it means that each store effectively depends
2350 // on every argument instead of just those arguments it would clobber.
2351 SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2353 SmallVector<SDValue, 8> MemOpChains2;
2356 // Do not flag preceding copytoreg stuff together with the following stuff.
2358 if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2359 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2360 CCValAssign &VA = ArgLocs[i];
2363 assert(VA.isMemLoc());
2364 SDValue Arg = OutVals[i];
2365 ISD::ArgFlagsTy Flags = Outs[i].Flags;
2366 // Create frame index.
2367 int32_t Offset = VA.getLocMemOffset()+FPDiff;
2368 uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2369 FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2370 FIN = DAG.getFrameIndex(FI, getPointerTy());
2372 if (Flags.isByVal()) {
2373 // Copy relative to framepointer.
2374 SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2375 if (StackPtr.getNode() == 0)
2376 StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2378 Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2380 MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2384 // Store relative to framepointer.
2385 MemOpChains2.push_back(
2386 DAG.getStore(ArgChain, dl, Arg, FIN,
2387 MachinePointerInfo::getFixedStack(FI),
2393 if (!MemOpChains2.empty())
2394 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2395 &MemOpChains2[0], MemOpChains2.size());
2397 // Copy arguments to their registers.
2398 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2399 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2400 RegsToPass[i].second, InFlag);
2401 InFlag = Chain.getValue(1);
2405 // Store the return address to the appropriate stack slot.
2406 Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2410 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2411 assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2412 // In the 64-bit large code model, we have to make all calls
2413 // through a register, since the call instruction's 32-bit
2414 // pc-relative offset may not be large enough to hold the whole
2416 } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2417 // If the callee is a GlobalAddress node (quite common, every direct call
2418 // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2421 // We should use extra load for direct calls to dllimported functions in
2423 const GlobalValue *GV = G->getGlobal();
2424 if (!GV->hasDLLImportLinkage()) {
2425 unsigned char OpFlags = 0;
2426 bool ExtraLoad = false;
2427 unsigned WrapperKind = ISD::DELETED_NODE;
2429 // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2430 // external symbols most go through the PLT in PIC mode. If the symbol
2431 // has hidden or protected visibility, or if it is static or local, then
2432 // we don't need to use the PLT - we can directly call it.
2433 if (Subtarget->isTargetELF() &&
2434 getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2435 GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2436 OpFlags = X86II::MO_PLT;
2437 } else if (Subtarget->isPICStyleStubAny() &&
2438 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2439 (!Subtarget->getTargetTriple().isMacOSX() ||
2440 Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2441 // PC-relative references to external symbols should go through $stub,
2442 // unless we're building with the leopard linker or later, which
2443 // automatically synthesizes these stubs.
2444 OpFlags = X86II::MO_DARWIN_STUB;
2445 } else if (Subtarget->isPICStyleRIPRel() &&
2446 isa<Function>(GV) &&
2447 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2448 // If the function is marked as non-lazy, generate an indirect call
2449 // which loads from the GOT directly. This avoids runtime overhead
2450 // at the cost of eager binding (and one extra byte of encoding).
2451 OpFlags = X86II::MO_GOTPCREL;
2452 WrapperKind = X86ISD::WrapperRIP;
2456 Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2457 G->getOffset(), OpFlags);
2459 // Add a wrapper if needed.
2460 if (WrapperKind != ISD::DELETED_NODE)
2461 Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2462 // Add extra indirection if needed.
2464 Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2465 MachinePointerInfo::getGOT(),
2466 false, false, false, 0);
2468 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2469 unsigned char OpFlags = 0;
2471 // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2472 // external symbols should go through the PLT.
2473 if (Subtarget->isTargetELF() &&
2474 getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2475 OpFlags = X86II::MO_PLT;
2476 } else if (Subtarget->isPICStyleStubAny() &&
2477 (!Subtarget->getTargetTriple().isMacOSX() ||
2478 Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2479 // PC-relative references to external symbols should go through $stub,
2480 // unless we're building with the leopard linker or later, which
2481 // automatically synthesizes these stubs.
2482 OpFlags = X86II::MO_DARWIN_STUB;
2485 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2489 // Returns a chain & a flag for retval copy to use.
2490 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2491 SmallVector<SDValue, 8> Ops;
2493 if (!IsSibcall && isTailCall) {
2494 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2495 DAG.getIntPtrConstant(0, true), InFlag);
2496 InFlag = Chain.getValue(1);
2499 Ops.push_back(Chain);
2500 Ops.push_back(Callee);
2503 Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2505 // Add argument registers to the end of the list so that they are known live
2507 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2508 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2509 RegsToPass[i].second.getValueType()));
2511 // Add an implicit use GOT pointer in EBX.
2512 if (!isTailCall && Subtarget->isPICStyleGOT())
2513 Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2515 // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2516 if (Is64Bit && isVarArg && !IsWin64)
2517 Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2519 // Experimental: Add a register mask operand representing the call-preserved
2522 const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2523 const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2524 Ops.push_back(DAG.getRegisterMask(Mask));
2527 if (InFlag.getNode())
2528 Ops.push_back(InFlag);
2532 //// If this is the first return lowered for this function, add the regs
2533 //// to the liveout set for the function.
2534 // This isn't right, although it's probably harmless on x86; liveouts
2535 // should be computed from returns not tail calls. Consider a void
2536 // function making a tail call to a function returning int.
2537 return DAG.getNode(X86ISD::TC_RETURN, dl,
2538 NodeTys, &Ops[0], Ops.size());
2541 Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2542 InFlag = Chain.getValue(1);
2544 // Create the CALLSEQ_END node.
2545 unsigned NumBytesForCalleeToPush;
2546 if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2547 getTargetMachine().Options.GuaranteedTailCallOpt))
2548 NumBytesForCalleeToPush = NumBytes; // Callee pops everything
2549 else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2551 // If this is a call to a struct-return function, the callee
2552 // pops the hidden struct pointer, so we have to push it back.
2553 // This is common for Darwin/X86, Linux & Mingw32 targets.
2554 // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2555 NumBytesForCalleeToPush = 4;
2557 NumBytesForCalleeToPush = 0; // Callee pops nothing.
2559 // Returns a flag for retval copy to use.
2561 Chain = DAG.getCALLSEQ_END(Chain,
2562 DAG.getIntPtrConstant(NumBytes, true),
2563 DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2566 InFlag = Chain.getValue(1);
2569 // Handle result values, copying them out of physregs into vregs that we
2571 return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2572 Ins, dl, DAG, InVals);
2576 //===----------------------------------------------------------------------===//
2577 // Fast Calling Convention (tail call) implementation
2578 //===----------------------------------------------------------------------===//
2580 // Like std call, callee cleans arguments, convention except that ECX is
2581 // reserved for storing the tail called function address. Only 2 registers are
2582 // free for argument passing (inreg). Tail call optimization is performed
2584 // * tailcallopt is enabled
2585 // * caller/callee are fastcc
2586 // On X86_64 architecture with GOT-style position independent code only local
2587 // (within module) calls are supported at the moment.
2588 // To keep the stack aligned according to platform abi the function
2589 // GetAlignedArgumentStackSize ensures that argument delta is always multiples
2590 // of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2591 // If a tail called function callee has more arguments than the caller the
2592 // caller needs to make sure that there is room to move the RETADDR to. This is
2593 // achieved by reserving an area the size of the argument delta right after the
2594 // original REtADDR, but before the saved framepointer or the spilled registers
2595 // e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2607 /// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2608 /// for a 16 byte align requirement.
2610 X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2611 SelectionDAG& DAG) const {
2612 MachineFunction &MF = DAG.getMachineFunction();
2613 const TargetMachine &TM = MF.getTarget();
2614 const TargetFrameLowering &TFI = *TM.getFrameLowering();
2615 unsigned StackAlignment = TFI.getStackAlignment();
2616 uint64_t AlignMask = StackAlignment - 1;
2617 int64_t Offset = StackSize;
2618 uint64_t SlotSize = TD->getPointerSize();
2619 if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2620 // Number smaller than 12 so just add the difference.
2621 Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2623 // Mask out lower bits, add stackalignment once plus the 12 bytes.
2624 Offset = ((~AlignMask) & Offset) + StackAlignment +
2625 (StackAlignment-SlotSize);
2630 /// MatchingStackOffset - Return true if the given stack call argument is
2631 /// already available in the same position (relatively) of the caller's
2632 /// incoming argument stack.
2634 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2635 MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2636 const X86InstrInfo *TII) {
2637 unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2639 if (Arg.getOpcode() == ISD::CopyFromReg) {
2640 unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2641 if (!TargetRegisterInfo::isVirtualRegister(VR))
2643 MachineInstr *Def = MRI->getVRegDef(VR);
2646 if (!Flags.isByVal()) {
2647 if (!TII->isLoadFromStackSlot(Def, FI))
2650 unsigned Opcode = Def->getOpcode();
2651 if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2652 Def->getOperand(1).isFI()) {
2653 FI = Def->getOperand(1).getIndex();
2654 Bytes = Flags.getByValSize();
2658 } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2659 if (Flags.isByVal())
2660 // ByVal argument is passed in as a pointer but it's now being
2661 // dereferenced. e.g.
2662 // define @foo(%struct.X* %A) {
2663 // tail call @bar(%struct.X* byval %A)
2666 SDValue Ptr = Ld->getBasePtr();
2667 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2670 FI = FINode->getIndex();
2671 } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2672 FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2673 FI = FINode->getIndex();
2674 Bytes = Flags.getByValSize();
2678 assert(FI != INT_MAX);
2679 if (!MFI->isFixedObjectIndex(FI))
2681 return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2684 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2685 /// for tail call optimization. Targets which want to do tail call
2686 /// optimization should implement this function.
2688 X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2689 CallingConv::ID CalleeCC,
2691 bool isCalleeStructRet,
2692 bool isCallerStructRet,
2693 const SmallVectorImpl<ISD::OutputArg> &Outs,
2694 const SmallVectorImpl<SDValue> &OutVals,
2695 const SmallVectorImpl<ISD::InputArg> &Ins,
2696 SelectionDAG& DAG) const {
2697 if (!IsTailCallConvention(CalleeCC) &&
2698 CalleeCC != CallingConv::C)
2701 // If -tailcallopt is specified, make fastcc functions tail-callable.
2702 const MachineFunction &MF = DAG.getMachineFunction();
2703 const Function *CallerF = DAG.getMachineFunction().getFunction();
2704 CallingConv::ID CallerCC = CallerF->getCallingConv();
2705 bool CCMatch = CallerCC == CalleeCC;
2707 if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2708 if (IsTailCallConvention(CalleeCC) && CCMatch)
2713 // Look for obvious safe cases to perform tail call optimization that do not
2714 // require ABI changes. This is what gcc calls sibcall.
2716 // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2717 // emit a special epilogue.
2718 if (RegInfo->needsStackRealignment(MF))
2721 // Also avoid sibcall optimization if either caller or callee uses struct
2722 // return semantics.
2723 if (isCalleeStructRet || isCallerStructRet)
2726 // An stdcall caller is expected to clean up its arguments; the callee
2727 // isn't going to do that.
2728 if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2731 // Do not sibcall optimize vararg calls unless all arguments are passed via
2733 if (isVarArg && !Outs.empty()) {
2735 // Optimizing for varargs on Win64 is unlikely to be safe without
2736 // additional testing.
2737 if (Subtarget->isTargetWin64())
2740 SmallVector<CCValAssign, 16> ArgLocs;
2741 CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2742 getTargetMachine(), ArgLocs, *DAG.getContext());
2744 CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2745 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2746 if (!ArgLocs[i].isRegLoc())
2750 // If the call result is in ST0 / ST1, it needs to be popped off the x87
2751 // stack. Therefore, if it's not used by the call it is not safe to optimize
2752 // this into a sibcall.
2753 bool Unused = false;
2754 for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2761 SmallVector<CCValAssign, 16> RVLocs;
2762 CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2763 getTargetMachine(), RVLocs, *DAG.getContext());
2764 CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2765 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2766 CCValAssign &VA = RVLocs[i];
2767 if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2772 // If the calling conventions do not match, then we'd better make sure the
2773 // results are returned in the same way as what the caller expects.
2775 SmallVector<CCValAssign, 16> RVLocs1;
2776 CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2777 getTargetMachine(), RVLocs1, *DAG.getContext());
2778 CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2780 SmallVector<CCValAssign, 16> RVLocs2;
2781 CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2782 getTargetMachine(), RVLocs2, *DAG.getContext());
2783 CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2785 if (RVLocs1.size() != RVLocs2.size())
2787 for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2788 if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2790 if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2792 if (RVLocs1[i].isRegLoc()) {
2793 if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2796 if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2802 // If the callee takes no arguments then go on to check the results of the
2804 if (!Outs.empty()) {
2805 // Check if stack adjustment is needed. For now, do not do this if any
2806 // argument is passed on the stack.
2807 SmallVector<CCValAssign, 16> ArgLocs;
2808 CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2809 getTargetMachine(), ArgLocs, *DAG.getContext());
2811 // Allocate shadow area for Win64
2812 if (Subtarget->isTargetWin64()) {
2813 CCInfo.AllocateStack(32, 8);
2816 CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2817 if (CCInfo.getNextStackOffset()) {
2818 MachineFunction &MF = DAG.getMachineFunction();
2819 if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2822 // Check if the arguments are already laid out in the right way as
2823 // the caller's fixed stack objects.
2824 MachineFrameInfo *MFI = MF.getFrameInfo();
2825 const MachineRegisterInfo *MRI = &MF.getRegInfo();
2826 const X86InstrInfo *TII =
2827 ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2828 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2829 CCValAssign &VA = ArgLocs[i];
2830 SDValue Arg = OutVals[i];
2831 ISD::ArgFlagsTy Flags = Outs[i].Flags;
2832 if (VA.getLocInfo() == CCValAssign::Indirect)
2834 if (!VA.isRegLoc()) {
2835 if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2842 // If the tailcall address may be in a register, then make sure it's
2843 // possible to register allocate for it. In 32-bit, the call address can
2844 // only target EAX, EDX, or ECX since the tail call must be scheduled after
2845 // callee-saved registers are restored. These happen to be the same
2846 // registers used to pass 'inreg' arguments so watch out for those.
2847 if (!Subtarget->is64Bit() &&
2848 !isa<GlobalAddressSDNode>(Callee) &&
2849 !isa<ExternalSymbolSDNode>(Callee)) {
2850 unsigned NumInRegs = 0;
2851 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2852 CCValAssign &VA = ArgLocs[i];
2855 unsigned Reg = VA.getLocReg();
2858 case X86::EAX: case X86::EDX: case X86::ECX:
2859 if (++NumInRegs == 3)
2871 X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2872 return X86::createFastISel(funcInfo);
2876 //===----------------------------------------------------------------------===//
2877 // Other Lowering Hooks
2878 //===----------------------------------------------------------------------===//
2880 static bool MayFoldLoad(SDValue Op) {
2881 return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2884 static bool MayFoldIntoStore(SDValue Op) {
2885 return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2888 static bool isTargetShuffle(unsigned Opcode) {
2890 default: return false;
2891 case X86ISD::PSHUFD:
2892 case X86ISD::PSHUFHW:
2893 case X86ISD::PSHUFLW:
2895 case X86ISD::PALIGN:
2896 case X86ISD::MOVLHPS:
2897 case X86ISD::MOVLHPD:
2898 case X86ISD::MOVHLPS:
2899 case X86ISD::MOVLPS:
2900 case X86ISD::MOVLPD:
2901 case X86ISD::MOVSHDUP:
2902 case X86ISD::MOVSLDUP:
2903 case X86ISD::MOVDDUP:
2906 case X86ISD::UNPCKL:
2907 case X86ISD::UNPCKH:
2908 case X86ISD::VPERMILP:
2909 case X86ISD::VPERM2X128:
2914 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2915 SDValue V1, SelectionDAG &DAG) {
2917 default: llvm_unreachable("Unknown x86 shuffle node");
2918 case X86ISD::MOVSHDUP:
2919 case X86ISD::MOVSLDUP:
2920 case X86ISD::MOVDDUP:
2921 return DAG.getNode(Opc, dl, VT, V1);
2925 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2926 SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2928 default: llvm_unreachable("Unknown x86 shuffle node");
2929 case X86ISD::PSHUFD:
2930 case X86ISD::PSHUFHW:
2931 case X86ISD::PSHUFLW:
2932 case X86ISD::VPERMILP:
2933 return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2937 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2938 SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2940 default: llvm_unreachable("Unknown x86 shuffle node");
2941 case X86ISD::PALIGN:
2943 case X86ISD::VPERM2X128:
2944 return DAG.getNode(Opc, dl, VT, V1, V2,
2945 DAG.getConstant(TargetMask, MVT::i8));
2949 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2950 SDValue V1, SDValue V2, SelectionDAG &DAG) {
2952 default: llvm_unreachable("Unknown x86 shuffle node");
2953 case X86ISD::MOVLHPS:
2954 case X86ISD::MOVLHPD:
2955 case X86ISD::MOVHLPS:
2956 case X86ISD::MOVLPS:
2957 case X86ISD::MOVLPD:
2960 case X86ISD::UNPCKL:
2961 case X86ISD::UNPCKH:
2962 return DAG.getNode(Opc, dl, VT, V1, V2);
2966 SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2967 MachineFunction &MF = DAG.getMachineFunction();
2968 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2969 int ReturnAddrIndex = FuncInfo->getRAIndex();
2971 if (ReturnAddrIndex == 0) {
2972 // Set up a frame object for the return address.
2973 uint64_t SlotSize = TD->getPointerSize();
2974 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2976 FuncInfo->setRAIndex(ReturnAddrIndex);
2979 return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2983 bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2984 bool hasSymbolicDisplacement) {
2985 // Offset should fit into 32 bit immediate field.
2986 if (!isInt<32>(Offset))
2989 // If we don't have a symbolic displacement - we don't have any extra
2991 if (!hasSymbolicDisplacement)
2994 // FIXME: Some tweaks might be needed for medium code model.
2995 if (M != CodeModel::Small && M != CodeModel::Kernel)
2998 // For small code model we assume that latest object is 16MB before end of 31
2999 // bits boundary. We may also accept pretty large negative constants knowing
3000 // that all objects are in the positive half of address space.
3001 if (M == CodeModel::Small && Offset < 16*1024*1024)
3004 // For kernel code model we know that all object resist in the negative half
3005 // of 32bits address space. We may not accept negative offsets, since they may
3006 // be just off and we may accept pretty large positive ones.
3007 if (M == CodeModel::Kernel && Offset > 0)
3013 /// isCalleePop - Determines whether the callee is required to pop its
3014 /// own arguments. Callee pop is necessary to support tail calls.
3015 bool X86::isCalleePop(CallingConv::ID CallingConv,
3016 bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3020 switch (CallingConv) {
3023 case CallingConv::X86_StdCall:
3025 case CallingConv::X86_FastCall:
3027 case CallingConv::X86_ThisCall:
3029 case CallingConv::Fast:
3031 case CallingConv::GHC:
3036 /// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3037 /// specific condition code, returning the condition code and the LHS/RHS of the
3038 /// comparison to make.
3039 static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3040 SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3042 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3043 if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3044 // X > -1 -> X == 0, jump !sign.
3045 RHS = DAG.getConstant(0, RHS.getValueType());
3046 return X86::COND_NS;
3047 } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3048 // X < 0 -> X == 0, jump on sign.
3050 } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3052 RHS = DAG.getConstant(0, RHS.getValueType());
3053 return X86::COND_LE;
3057 switch (SetCCOpcode) {
3058 default: llvm_unreachable("Invalid integer condition!");
3059 case ISD::SETEQ: return X86::COND_E;
3060 case ISD::SETGT: return X86::COND_G;
3061 case ISD::SETGE: return X86::COND_GE;
3062 case ISD::SETLT: return X86::COND_L;
3063 case ISD::SETLE: return X86::COND_LE;
3064 case ISD::SETNE: return X86::COND_NE;
3065 case ISD::SETULT: return X86::COND_B;
3066 case ISD::SETUGT: return X86::COND_A;
3067 case ISD::SETULE: return X86::COND_BE;
3068 case ISD::SETUGE: return X86::COND_AE;
3072 // First determine if it is required or is profitable to flip the operands.
3074 // If LHS is a foldable load, but RHS is not, flip the condition.
3075 if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3076 !ISD::isNON_EXTLoad(RHS.getNode())) {
3077 SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3078 std::swap(LHS, RHS);
3081 switch (SetCCOpcode) {
3087 std::swap(LHS, RHS);
3091 // On a floating point condition, the flags are set as follows:
3093 // 0 | 0 | 0 | X > Y
3094 // 0 | 0 | 1 | X < Y
3095 // 1 | 0 | 0 | X == Y
3096 // 1 | 1 | 1 | unordered
3097 switch (SetCCOpcode) {
3098 default: llvm_unreachable("Condcode should be pre-legalized away");
3100 case ISD::SETEQ: return X86::COND_E;
3101 case ISD::SETOLT: // flipped
3103 case ISD::SETGT: return X86::COND_A;
3104 case ISD::SETOLE: // flipped
3106 case ISD::SETGE: return X86::COND_AE;
3107 case ISD::SETUGT: // flipped
3109 case ISD::SETLT: return X86::COND_B;
3110 case ISD::SETUGE: // flipped
3112 case ISD::SETLE: return X86::COND_BE;
3114 case ISD::SETNE: return X86::COND_NE;
3115 case ISD::SETUO: return X86::COND_P;
3116 case ISD::SETO: return X86::COND_NP;
3118 case ISD::SETUNE: return X86::COND_INVALID;
3122 /// hasFPCMov - is there a floating point cmov for the specific X86 condition
3123 /// code. Current x86 isa includes the following FP cmov instructions:
3124 /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3125 static bool hasFPCMov(unsigned X86CC) {
3141 /// isFPImmLegal - Returns true if the target can instruction select the
3142 /// specified FP immediate natively. If false, the legalizer will
3143 /// materialize the FP immediate as a load from a constant pool.
3144 bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3145 for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3146 if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3152 /// isUndefOrInRange - Return true if Val is undef or if its value falls within
3153 /// the specified range (L, H].
3154 static bool isUndefOrInRange(int Val, int Low, int Hi) {
3155 return (Val < 0) || (Val >= Low && Val < Hi);
3158 /// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3159 /// specified value.
3160 static bool isUndefOrEqual(int Val, int CmpVal) {
3161 if (Val < 0 || Val == CmpVal)
3166 /// isSequentialOrUndefInRange - Return true if every element in Mask, begining
3167 /// from position Pos and ending in Pos+Size, falls within the specified
3168 /// sequential range (L, L+Pos]. or is undef.
3169 static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3170 int Pos, int Size, int Low) {
3171 for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3172 if (!isUndefOrEqual(Mask[i], Low))
3177 /// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3178 /// is suitable for input to PSHUFD or PSHUFW. That is, it doesn't reference
3179 /// the second operand.
3180 static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
3181 if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3182 return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3183 if (VT == MVT::v2f64 || VT == MVT::v2i64)
3184 return (Mask[0] < 2 && Mask[1] < 2);
3188 bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
3189 return ::isPSHUFDMask(N->getMask(), N->getValueType(0));
3192 /// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3193 /// is suitable for input to PSHUFHW.
3194 static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT) {
3195 if (VT != MVT::v8i16)
3198 // Lower quadword copied in order or undef.
3199 if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3202 // Upper quadword shuffled.
3203 for (unsigned i = 4; i != 8; ++i)
3204 if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3210 bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
3211 return ::isPSHUFHWMask(N->getMask(), N->getValueType(0));
3214 /// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3215 /// is suitable for input to PSHUFLW.
3216 static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT) {
3217 if (VT != MVT::v8i16)
3220 // Upper quadword copied in order.
3221 if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3224 // Lower quadword shuffled.
3225 for (unsigned i = 0; i != 4; ++i)
3232 bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
3233 return ::isPSHUFLWMask(N->getMask(), N->getValueType(0));
3236 /// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3237 /// is suitable for input to PALIGNR.
3238 static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT,
3239 const X86Subtarget *Subtarget) {
3240 if ((VT.getSizeInBits() == 128 && !Subtarget->hasSSSE3()) ||
3241 (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2()))
3244 unsigned NumElts = VT.getVectorNumElements();
3245 unsigned NumLanes = VT.getSizeInBits()/128;
3246 unsigned NumLaneElts = NumElts/NumLanes;
3248 // Do not handle 64-bit element shuffles with palignr.
3249 if (NumLaneElts == 2)
3252 for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3254 for (i = 0; i != NumLaneElts; ++i) {
3259 // Lane is all undef, go to next lane
3260 if (i == NumLaneElts)
3263 int Start = Mask[i+l];
3265 // Make sure its in this lane in one of the sources
3266 if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3267 !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3270 // If not lane 0, then we must match lane 0
3271 if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3274 // Correct second source to be contiguous with first source
3275 if (Start >= (int)NumElts)
3276 Start -= NumElts - NumLaneElts;
3278 // Make sure we're shifting in the right direction.
3279 if (Start <= (int)(i+l))
3284 // Check the rest of the elements to see if they are consecutive.
3285 for (++i; i != NumLaneElts; ++i) {
3286 int Idx = Mask[i+l];
3288 // Make sure its in this lane
3289 if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3290 !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3293 // If not lane 0, then we must match lane 0
3294 if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3297 if (Idx >= (int)NumElts)
3298 Idx -= NumElts - NumLaneElts;
3300 if (!isUndefOrEqual(Idx, Start+i))
3309 /// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3310 /// the two vector operands have swapped position.
3311 static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3312 unsigned NumElems) {
3313 for (unsigned i = 0; i != NumElems; ++i) {
3317 else if (idx < (int)NumElems)
3318 Mask[i] = idx + NumElems;
3320 Mask[i] = idx - NumElems;
3324 /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3325 /// specifies a shuffle of elements that is suitable for input to 128/256-bit
3326 /// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3327 /// reverse of what x86 shuffles want.
3328 static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX,
3329 bool Commuted = false) {
3330 if (!HasAVX && VT.getSizeInBits() == 256)
3333 unsigned NumElems = VT.getVectorNumElements();
3334 unsigned NumLanes = VT.getSizeInBits()/128;
3335 unsigned NumLaneElems = NumElems/NumLanes;
3337 if (NumLaneElems != 2 && NumLaneElems != 4)
3340 // VSHUFPSY divides the resulting vector into 4 chunks.
3341 // The sources are also splitted into 4 chunks, and each destination
3342 // chunk must come from a different source chunk.
3344 // SRC1 => X7 X6 X5 X4 X3 X2 X1 X0
3345 // SRC2 => Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y9
3347 // DST => Y7..Y4, Y7..Y4, X7..X4, X7..X4,
3348 // Y3..Y0, Y3..Y0, X3..X0, X3..X0
3350 // VSHUFPDY divides the resulting vector into 4 chunks.
3351 // The sources are also splitted into 4 chunks, and each destination
3352 // chunk must come from a different source chunk.
3354 // SRC1 => X3 X2 X1 X0
3355 // SRC2 => Y3 Y2 Y1 Y0
3357 // DST => Y3..Y2, X3..X2, Y1..Y0, X1..X0
3359 unsigned HalfLaneElems = NumLaneElems/2;
3360 for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3361 for (unsigned i = 0; i != NumLaneElems; ++i) {
3362 int Idx = Mask[i+l];
3363 unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3364 if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3366 // For VSHUFPSY, the mask of the second half must be the same as the
3367 // first but with the appropriate offsets. This works in the same way as
3368 // VPERMILPS works with masks.
3369 if (NumElems != 8 || l == 0 || Mask[i] < 0)
3371 if (!isUndefOrEqual(Idx, Mask[i]+l))
3379 bool X86::isSHUFPMask(ShuffleVectorSDNode *N, bool HasAVX) {
3380 return ::isSHUFPMask(N->getMask(), N->getValueType(0), HasAVX);
3383 /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3384 /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3385 bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3386 EVT VT = N->getValueType(0);
3387 unsigned NumElems = VT.getVectorNumElements();
3389 if (VT.getSizeInBits() != 128)
3395 // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3396 return isUndefOrEqual(N->getMaskElt(0), 6) &&
3397 isUndefOrEqual(N->getMaskElt(1), 7) &&
3398 isUndefOrEqual(N->getMaskElt(2), 2) &&
3399 isUndefOrEqual(N->getMaskElt(3), 3);
3402 /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3403 /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3405 bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3406 EVT VT = N->getValueType(0);
3407 unsigned NumElems = VT.getVectorNumElements();
3409 if (VT.getSizeInBits() != 128)
3415 return isUndefOrEqual(N->getMaskElt(0), 2) &&
3416 isUndefOrEqual(N->getMaskElt(1), 3) &&
3417 isUndefOrEqual(N->getMaskElt(2), 2) &&
3418 isUndefOrEqual(N->getMaskElt(3), 3);
3421 /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3422 /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3423 bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3424 EVT VT = N->getValueType(0);
3426 if (VT.getSizeInBits() != 128)
3429 unsigned NumElems = N->getValueType(0).getVectorNumElements();
3431 if (NumElems != 2 && NumElems != 4)
3434 for (unsigned i = 0; i < NumElems/2; ++i)
3435 if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3438 for (unsigned i = NumElems/2; i < NumElems; ++i)
3439 if (!isUndefOrEqual(N->getMaskElt(i), i))
3445 /// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3446 /// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3447 bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3448 unsigned NumElems = N->getValueType(0).getVectorNumElements();
3450 if ((NumElems != 2 && NumElems != 4)
3451 || N->getValueType(0).getSizeInBits() > 128)
3454 for (unsigned i = 0; i < NumElems/2; ++i)
3455 if (!isUndefOrEqual(N->getMaskElt(i), i))
3458 for (unsigned i = 0; i < NumElems/2; ++i)
3459 if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3465 /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3466 /// specifies a shuffle of elements that is suitable for input to UNPCKL.
3467 static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
3468 bool HasAVX2, bool V2IsSplat = false) {
3469 unsigned NumElts = VT.getVectorNumElements();
3471 assert((VT.is128BitVector() || VT.is256BitVector()) &&
3472 "Unsupported vector type for unpckh");
3474 if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3475 (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3478 // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3479 // independently on 128-bit lanes.
3480 unsigned NumLanes = VT.getSizeInBits()/128;
3481 unsigned NumLaneElts = NumElts/NumLanes;
3483 for (unsigned l = 0; l != NumLanes; ++l) {
3484 for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3485 i != (l+1)*NumLaneElts;
3488 int BitI1 = Mask[i+1];
3489 if (!isUndefOrEqual(BitI, j))
3492 if (!isUndefOrEqual(BitI1, NumElts))
3495 if (!isUndefOrEqual(BitI1, j + NumElts))
3504 bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool HasAVX2, bool V2IsSplat) {
3505 return ::isUNPCKLMask(N->getMask(), N->getValueType(0), HasAVX2, V2IsSplat);
3508 /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3509 /// specifies a shuffle of elements that is suitable for input to UNPCKH.
3510 static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
3511 bool HasAVX2, bool V2IsSplat = false) {
3512 unsigned NumElts = VT.getVectorNumElements();
3514 assert((VT.is128BitVector() || VT.is256BitVector()) &&
3515 "Unsupported vector type for unpckh");
3517 if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3518 (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3521 // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3522 // independently on 128-bit lanes.
3523 unsigned NumLanes = VT.getSizeInBits()/128;
3524 unsigned NumLaneElts = NumElts/NumLanes;
3526 for (unsigned l = 0; l != NumLanes; ++l) {
3527 for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3528 i != (l+1)*NumLaneElts; i += 2, ++j) {
3530 int BitI1 = Mask[i+1];
3531 if (!isUndefOrEqual(BitI, j))
3534 if (isUndefOrEqual(BitI1, NumElts))
3537 if (!isUndefOrEqual(BitI1, j+NumElts))
3545 bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool HasAVX2, bool V2IsSplat) {
3546 return ::isUNPCKHMask(N->getMask(), N->getValueType(0), HasAVX2, V2IsSplat);
3549 /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3550 /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3552 static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT,
3554 unsigned NumElts = VT.getVectorNumElements();
3556 assert((VT.is128BitVector() || VT.is256BitVector()) &&
3557 "Unsupported vector type for unpckh");
3559 if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3560 (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3563 // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3564 // FIXME: Need a better way to get rid of this, there's no latency difference
3565 // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3566 // the former later. We should also remove the "_undef" special mask.
3567 if (NumElts == 4 && VT.getSizeInBits() == 256)
3570 // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3571 // independently on 128-bit lanes.
3572 unsigned NumLanes = VT.getSizeInBits()/128;
3573 unsigned NumLaneElts = NumElts/NumLanes;
3575 for (unsigned l = 0; l != NumLanes; ++l) {
3576 for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3577 i != (l+1)*NumLaneElts;
3580 int BitI1 = Mask[i+1];
3582 if (!isUndefOrEqual(BitI, j))
3584 if (!isUndefOrEqual(BitI1, j))
3592 bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N, bool HasAVX2) {
3593 return ::isUNPCKL_v_undef_Mask(N->getMask(), N->getValueType(0), HasAVX2);
3596 /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3597 /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3599 static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3600 unsigned NumElts = VT.getVectorNumElements();
3602 assert((VT.is128BitVector() || VT.is256BitVector()) &&
3603 "Unsupported vector type for unpckh");
3605 if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3606 (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3609 // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3610 // independently on 128-bit lanes.
3611 unsigned NumLanes = VT.getSizeInBits()/128;
3612 unsigned NumLaneElts = NumElts/NumLanes;
3614 for (unsigned l = 0; l != NumLanes; ++l) {
3615 for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3616 i != (l+1)*NumLaneElts; i += 2, ++j) {
3618 int BitI1 = Mask[i+1];
3619 if (!isUndefOrEqual(BitI, j))
3621 if (!isUndefOrEqual(BitI1, j))
3628 bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N, bool HasAVX2) {
3629 return ::isUNPCKH_v_undef_Mask(N->getMask(), N->getValueType(0), HasAVX2);
3632 /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3633 /// specifies a shuffle of elements that is suitable for input to MOVSS,
3634 /// MOVSD, and MOVD, i.e. setting the lowest element.
3635 static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
3636 if (VT.getVectorElementType().getSizeInBits() < 32)
3638 if (VT.getSizeInBits() == 256)
3641 unsigned NumElts = VT.getVectorNumElements();
3643 if (!isUndefOrEqual(Mask[0], NumElts))
3646 for (unsigned i = 1; i != NumElts; ++i)
3647 if (!isUndefOrEqual(Mask[i], i))
3653 bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3654 return ::isMOVLMask(N->getMask(), N->getValueType(0));
3657 /// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3658 /// as permutations between 128-bit chunks or halves. As an example: this
3660 /// vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3661 /// The first half comes from the second half of V1 and the second half from the
3662 /// the second half of V2.
3663 static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3664 if (!HasAVX || VT.getSizeInBits() != 256)
3667 // The shuffle result is divided into half A and half B. In total the two
3668 // sources have 4 halves, namely: C, D, E, F. The final values of A and
3669 // B must come from C, D, E or F.
3670 unsigned HalfSize = VT.getVectorNumElements()/2;
3671 bool MatchA = false, MatchB = false;
3673 // Check if A comes from one of C, D, E, F.
3674 for (unsigned Half = 0; Half != 4; ++Half) {
3675 if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3681 // Check if B comes from one of C, D, E, F.
3682 for (unsigned Half = 0; Half != 4; ++Half) {
3683 if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3689 return MatchA && MatchB;
3692 /// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3693 /// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3694 static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3695 EVT VT = SVOp->getValueType(0);
3697 unsigned HalfSize = VT.getVectorNumElements()/2;
3699 unsigned FstHalf = 0, SndHalf = 0;
3700 for (unsigned i = 0; i < HalfSize; ++i) {
3701 if (SVOp->getMaskElt(i) > 0) {
3702 FstHalf = SVOp->getMaskElt(i)/HalfSize;
3706 for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
3707 if (SVOp->getMaskElt(i) > 0) {
3708 SndHalf = SVOp->getMaskElt(i)/HalfSize;
3713 return (FstHalf | (SndHalf << 4));
3716 /// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3717 /// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3718 /// Note that VPERMIL mask matching is different depending whether theunderlying
3719 /// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3720 /// to the same elements of the low, but to the higher half of the source.
3721 /// In VPERMILPD the two lanes could be shuffled independently of each other
3722 /// with the same restriction that lanes can't be crossed.
3723 static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3727 unsigned NumElts = VT.getVectorNumElements();
3728 // Only match 256-bit with 32/64-bit types
3729 if (VT.getSizeInBits() != 256 || (NumElts != 4 && NumElts != 8))
3732 unsigned NumLanes = VT.getSizeInBits()/128;
3733 unsigned LaneSize = NumElts/NumLanes;
3734 for (unsigned l = 0; l != NumElts; l += LaneSize) {
3735 for (unsigned i = 0; i != LaneSize; ++i) {
3736 if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
3738 if (NumElts != 8 || l == 0)
3740 // VPERMILPS handling
3743 if (!isUndefOrEqual(Mask[i+l], Mask[i]+l))
3751 /// getShuffleVPERMILPImmediate - Return the appropriate immediate to shuffle
3752 /// the specified VECTOR_MASK mask with VPERMILPS/D* instructions.
3753 static unsigned getShuffleVPERMILPImmediate(ShuffleVectorSDNode *SVOp) {
3754 EVT VT = SVOp->getValueType(0);
3756 unsigned NumElts = VT.getVectorNumElements();
3757 unsigned NumLanes = VT.getSizeInBits()/128;
3758 unsigned LaneSize = NumElts/NumLanes;
3760 // Although the mask is equal for both lanes do it twice to get the cases
3761 // where a mask will match because the same mask element is undef on the
3762 // first half but valid on the second. This would get pathological cases
3763 // such as: shuffle <u, 0, 1, 2, 4, 4, 5, 6>, which is completely valid.
3764 unsigned Shift = (LaneSize == 4) ? 2 : 1;
3766 for (unsigned i = 0; i != NumElts; ++i) {
3767 int MaskElt = SVOp->getMaskElt(i);
3770 MaskElt %= LaneSize;
3772 // VPERMILPSY, the mask of the first half must be equal to the second one
3773 if (NumElts == 8) Shamt %= LaneSize;
3774 Mask |= MaskElt << (Shamt*Shift);
3780 /// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3781 /// of what x86 movss want. X86 movs requires the lowest element to be lowest
3782 /// element of vector 2 and the other elements to come from vector 1 in order.
3783 static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
3784 bool V2IsSplat = false, bool V2IsUndef = false) {
3785 unsigned NumOps = VT.getVectorNumElements();
3786 if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3789 if (!isUndefOrEqual(Mask[0], 0))
3792 for (unsigned i = 1; i != NumOps; ++i)
3793 if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3794 (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3795 (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3801 static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3802 bool V2IsUndef = false) {
3803 return isCommutedMOVLMask(N->getMask(), N->getValueType(0),
3804 V2IsSplat, V2IsUndef);
3807 /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3808 /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3809 /// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3810 bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N,
3811 const X86Subtarget *Subtarget) {
3812 if (!Subtarget->hasSSE3())
3815 // The second vector must be undef
3816 if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3819 EVT VT = N->getValueType(0);
3820 unsigned NumElems = VT.getVectorNumElements();
3822 if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3823 (VT.getSizeInBits() == 256 && NumElems != 8))
3826 // "i+1" is the value the indexed mask element must have
3827 for (unsigned i = 0; i < NumElems; i += 2)
3828 if (!isUndefOrEqual(N->getMaskElt(i), i+1) ||
3829 !isUndefOrEqual(N->getMaskElt(i+1), i+1))
3835 /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3836 /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3837 /// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3838 bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N,
3839 const X86Subtarget *Subtarget) {
3840 if (!Subtarget->hasSSE3())
3843 // The second vector must be undef
3844 if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3847 EVT VT = N->getValueType(0);
3848 unsigned NumElems = VT.getVectorNumElements();
3850 if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3851 (VT.getSizeInBits() == 256 && NumElems != 8))
3854 // "i" is the value the indexed mask element must have
3855 for (unsigned i = 0; i != NumElems; i += 2)
3856 if (!isUndefOrEqual(N->getMaskElt(i), i) ||
3857 !isUndefOrEqual(N->getMaskElt(i+1), i))
3863 /// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3864 /// specifies a shuffle of elements that is suitable for input to 256-bit
3865 /// version of MOVDDUP.
3866 static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3867 unsigned NumElts = VT.getVectorNumElements();
3869 if (!HasAVX || VT.getSizeInBits() != 256 || NumElts != 4)
3872 for (unsigned i = 0; i != NumElts/2; ++i)
3873 if (!isUndefOrEqual(Mask[i], 0))
3875 for (unsigned i = NumElts/2; i != NumElts; ++i)
3876 if (!isUndefOrEqual(Mask[i], NumElts/2))
3881 /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3882 /// specifies a shuffle of elements that is suitable for input to 128-bit
3883 /// version of MOVDDUP.
3884 bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3885 EVT VT = N->getValueType(0);
3887 if (VT.getSizeInBits() != 128)
3890 unsigned e = VT.getVectorNumElements() / 2;
3891 for (unsigned i = 0; i != e; ++i)
3892 if (!isUndefOrEqual(N->getMaskElt(i), i))
3894 for (unsigned i = 0; i != e; ++i)
3895 if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3900 /// isVEXTRACTF128Index - Return true if the specified
3901 /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3902 /// suitable for input to VEXTRACTF128.
3903 bool X86::isVEXTRACTF128Index(SDNode *N) {
3904 if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3907 // The index should be aligned on a 128-bit boundary.
3909 cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3911 unsigned VL = N->getValueType(0).getVectorNumElements();
3912 unsigned VBits = N->getValueType(0).getSizeInBits();
3913 unsigned ElSize = VBits / VL;
3914 bool Result = (Index * ElSize) % 128 == 0;
3919 /// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3920 /// operand specifies a subvector insert that is suitable for input to
3922 bool X86::isVINSERTF128Index(SDNode *N) {
3923 if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3926 // The index should be aligned on a 128-bit boundary.
3928 cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3930 unsigned VL = N->getValueType(0).getVectorNumElements();
3931 unsigned VBits = N->getValueType(0).getSizeInBits();
3932 unsigned ElSize = VBits / VL;
3933 bool Result = (Index * ElSize) % 128 == 0;
3938 /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3939 /// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3940 /// Handles 128-bit and 256-bit.
3941 unsigned X86::getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
3942 EVT VT = N->getValueType(0);
3944 assert((VT.is128BitVector() || VT.is256BitVector()) &&
3945 "Unsupported vector type for PSHUF/SHUFP");
3947 // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
3948 // independently on 128-bit lanes.
3949 unsigned NumElts = VT.getVectorNumElements();
3950 unsigned NumLanes = VT.getSizeInBits()/128;
3951 unsigned NumLaneElts = NumElts/NumLanes;
3953 assert((NumLaneElts == 2 || NumLaneElts == 4) &&
3954 "Only supports 2 or 4 elements per lane");
3956 unsigned Shift = (NumLaneElts == 4) ? 1 : 0;
3958 for (unsigned i = 0; i != NumElts; ++i) {
3959 int Elt = N->getMaskElt(i);
3960 if (Elt < 0) continue;
3962 unsigned ShAmt = i << Shift;
3963 if (ShAmt >= 8) ShAmt -= 8;
3964 Mask |= Elt << ShAmt;
3970 /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3971 /// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3972 unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3973 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3975 // 8 nodes, but we only care about the last 4.
3976 for (unsigned i = 7; i >= 4; --i) {
3977 int Val = SVOp->getMaskElt(i);
3986 /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3987 /// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3988 unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3989 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3991 // 8 nodes, but we only care about the first 4.
3992 for (int i = 3; i >= 0; --i) {
3993 int Val = SVOp->getMaskElt(i);
4002 /// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4003 /// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4004 static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
4005 EVT VT = SVOp->getValueType(0);
4006 unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
4008 unsigned NumElts = VT.getVectorNumElements();
4009 unsigned NumLanes = VT.getSizeInBits()/128;
4010 unsigned NumLaneElts = NumElts/NumLanes;
4014 for (i = 0; i != NumElts; ++i) {
4015 Val = SVOp->getMaskElt(i);
4019 if (Val >= (int)NumElts)
4020 Val -= NumElts - NumLaneElts;
4022 assert(Val - i > 0 && "PALIGNR imm should be positive");
4023 return (Val - i) * EltSize;
4026 /// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4027 /// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4029 unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4030 if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4031 llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4034 cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4036 EVT VecVT = N->getOperand(0).getValueType();
4037 EVT ElVT = VecVT.getVectorElementType();
4039 unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4040 return Index / NumElemsPerChunk;
4043 /// getInsertVINSERTF128Immediate - Return the appropriate immediate
4044 /// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4046 unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4047 if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4048 llvm_unreachable("Illegal insert subvector for VINSERTF128");
4051 cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4053 EVT VecVT = N->getValueType(0);
4054 EVT ElVT = VecVT.getVectorElementType();
4056 unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4057 return Index / NumElemsPerChunk;
4060 /// isZeroNode - Returns true if Elt is a constant zero or a floating point
4062 bool X86::isZeroNode(SDValue Elt) {
4063 return ((isa<ConstantSDNode>(Elt) &&
4064 cast<ConstantSDNode>(Elt)->isNullValue()) ||
4065 (isa<ConstantFPSDNode>(Elt) &&
4066 cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4069 /// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4070 /// their permute mask.
4071 static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4072 SelectionDAG &DAG) {
4073 EVT VT = SVOp->getValueType(0);
4074 unsigned NumElems = VT.getVectorNumElements();
4075 SmallVector<int, 8> MaskVec;
4077 for (unsigned i = 0; i != NumElems; ++i) {
4078 int idx = SVOp->getMaskElt(i);
4080 MaskVec.push_back(idx);
4081 else if (idx < (int)NumElems)
4082 MaskVec.push_back(idx + NumElems);
4084 MaskVec.push_back(idx - NumElems);
4086 return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4087 SVOp->getOperand(0), &MaskVec[0]);
4090 /// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4091 /// match movhlps. The lower half elements should come from upper half of
4092 /// V1 (and in order), and the upper half elements should come from the upper
4093 /// half of V2 (and in order).
4094 static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
4095 EVT VT = Op->getValueType(0);
4096 if (VT.getSizeInBits() != 128)
4098 if (VT.getVectorNumElements() != 4)
4100 for (unsigned i = 0, e = 2; i != e; ++i)
4101 if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
4103 for (unsigned i = 2; i != 4; ++i)
4104 if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
4109 /// isScalarLoadToVector - Returns true if the node is a scalar load that
4110 /// is promoted to a vector. It also returns the LoadSDNode by reference if
4112 static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4113 if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4115 N = N->getOperand(0).getNode();
4116 if (!ISD::isNON_EXTLoad(N))
4119 *LD = cast<LoadSDNode>(N);
4123 // Test whether the given value is a vector value which will be legalized
4125 static bool WillBeConstantPoolLoad(SDNode *N) {
4126 if (N->getOpcode() != ISD::BUILD_VECTOR)
4129 // Check for any non-constant elements.
4130 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4131 switch (N->getOperand(i).getNode()->getOpcode()) {
4133 case ISD::ConstantFP:
4140 // Vectors of all-zeros and all-ones are materialized with special
4141 // instructions rather than being loaded.
4142 return !ISD::isBuildVectorAllZeros(N) &&
4143 !ISD::isBuildVectorAllOnes(N);
4146 /// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4147 /// match movlp{s|d}. The lower half elements should come from lower half of
4148 /// V1 (and in order), and the upper half elements should come from the upper
4149 /// half of V2 (and in order). And since V1 will become the source of the
4150 /// MOVLP, it must be either a vector load or a scalar load to vector.
4151 static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4152 ShuffleVectorSDNode *Op) {
4153 EVT VT = Op->getValueType(0);
4154 if (VT.getSizeInBits() != 128)
4157 if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4159 // Is V2 is a vector load, don't do this transformation. We will try to use
4160 // load folding shufps op.
4161 if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4164 unsigned NumElems = VT.getVectorNumElements();
4166 if (NumElems != 2 && NumElems != 4)
4168 for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4169 if (!isUndefOrEqual(Op->getMaskElt(i), i))
4171 for (unsigned i = NumElems/2; i != NumElems; ++i)
4172 if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
4177 /// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4179 static bool isSplatVector(SDNode *N) {
4180 if (N->getOpcode() != ISD::BUILD_VECTOR)
4183 SDValue SplatValue = N->getOperand(0);
4184 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4185 if (N->getOperand(i) != SplatValue)
4190 /// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4191 /// to an zero vector.
4192 /// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4193 static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4194 SDValue V1 = N->getOperand(0);
4195 SDValue V2 = N->getOperand(1);
4196 unsigned NumElems = N->getValueType(0).getVectorNumElements();
4197 for (unsigned i = 0; i != NumElems; ++i) {
4198 int Idx = N->getMaskElt(i);
4199 if (Idx >= (int)NumElems) {
4200 unsigned Opc = V2.getOpcode();
4201 if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4203 if (Opc != ISD::BUILD_VECTOR ||
4204 !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4206 } else if (Idx >= 0) {
4207 unsigned Opc = V1.getOpcode();
4208 if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4210 if (Opc != ISD::BUILD_VECTOR ||
4211 !X86::isZeroNode(V1.getOperand(Idx)))
4218 /// getZeroVector - Returns a vector of specified type with all zero elements.
4220 static SDValue getZeroVector(EVT VT, bool HasSSE2, bool HasAVX2,
4221 SelectionDAG &DAG, DebugLoc dl) {
4222 assert(VT.isVector() && "Expected a vector type");
4224 // Always build SSE zero vectors as <4 x i32> bitcasted
4225 // to their dest type. This ensures they get CSE'd.
4227 if (VT.getSizeInBits() == 128) { // SSE
4228 if (HasSSE2) { // SSE2
4229 SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4230 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4232 SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4233 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4235 } else if (VT.getSizeInBits() == 256) { // AVX
4236 if (HasAVX2) { // AVX2
4237 SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4238 SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4239 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4241 // 256-bit logic and arithmetic instructions in AVX are all
4242 // floating-point, no support for integer ops. Emit fp zeroed vectors.
4243 SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4244 SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4245 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4248 return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4251 /// getOnesVector - Returns a vector of specified type with all bits set.
4252 /// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4253 /// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4254 /// Then bitcast to their original type, ensuring they get CSE'd.
4255 static SDValue getOnesVector(EVT VT, bool HasAVX2, SelectionDAG &DAG,
4257 assert(VT.isVector() && "Expected a vector type");
4258 assert((VT.is128BitVector() || VT.is256BitVector())
4259 && "Expected a 128-bit or 256-bit vector type");
4261 SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4263 if (VT.getSizeInBits() == 256) {
4264 if (HasAVX2) { // AVX2
4265 SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4266 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4268 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4269 SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
4270 Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
4271 Vec = Insert128BitVector(InsV, Vec,
4272 DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
4275 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4278 return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4281 /// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4282 /// that point to V2 points to its first element.
4283 static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4284 EVT VT = SVOp->getValueType(0);
4285 unsigned NumElems = VT.getVectorNumElements();
4287 bool Changed = false;
4288 SmallVector<int, 8> MaskVec(SVOp->getMask().begin(), SVOp->getMask().end());
4290 for (unsigned i = 0; i != NumElems; ++i) {
4291 if (MaskVec[i] > (int)NumElems) {
4292 MaskVec[i] = NumElems;
4297 return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
4298 SVOp->getOperand(1), &MaskVec[0]);
4299 return SDValue(SVOp, 0);
4302 /// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4303 /// operation of specified width.
4304 static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4306 unsigned NumElems = VT.getVectorNumElements();
4307 SmallVector<int, 8> Mask;
4308 Mask.push_back(NumElems);
4309 for (unsigned i = 1; i != NumElems; ++i)
4311 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4314 /// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4315 static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4317 unsigned NumElems = VT.getVectorNumElements();
4318 SmallVector<int, 8> Mask;
4319 for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4321 Mask.push_back(i + NumElems);
4323 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4326 /// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4327 static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4329 unsigned NumElems = VT.getVectorNumElements();
4330 unsigned Half = NumElems/2;
4331 SmallVector<int, 8> Mask;
4332 for (unsigned i = 0; i != Half; ++i) {
4333 Mask.push_back(i + Half);
4334 Mask.push_back(i + NumElems + Half);
4336 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4339 // PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4340 // a generic shuffle instruction because the target has no such instructions.
4341 // Generate shuffles which repeat i16 and i8 several times until they can be
4342 // represented by v4f32 and then be manipulated by target suported shuffles.
4343 static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4344 EVT VT = V.getValueType();
4345 int NumElems = VT.getVectorNumElements();
4346 DebugLoc dl = V.getDebugLoc();
4348 while (NumElems > 4) {
4349 if (EltNo < NumElems/2) {
4350 V = getUnpackl(DAG, dl, VT, V, V);
4352 V = getUnpackh(DAG, dl, VT, V, V);
4353 EltNo -= NumElems/2;
4360 /// getLegalSplat - Generate a legal splat with supported x86 shuffles
4361 static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4362 EVT VT = V.getValueType();
4363 DebugLoc dl = V.getDebugLoc();
4364 assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
4365 && "Vector size not supported");
4367 if (VT.getSizeInBits() == 128) {
4368 V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4369 int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4370 V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4373 // To use VPERMILPS to splat scalars, the second half of indicies must
4374 // refer to the higher part, which is a duplication of the lower one,
4375 // because VPERMILPS can only handle in-lane permutations.
4376 int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4377 EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4379 V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4380 V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4384 return DAG.getNode(ISD::BITCAST, dl, VT, V);
4387 /// PromoteSplat - Splat is promoted to target supported vector shuffles.
4388 static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4389 EVT SrcVT = SV->getValueType(0);
4390 SDValue V1 = SV->getOperand(0);
4391 DebugLoc dl = SV->getDebugLoc();
4393 int EltNo = SV->getSplatIndex();
4394 int NumElems = SrcVT.getVectorNumElements();
4395 unsigned Size = SrcVT.getSizeInBits();
4397 assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4398 "Unknown how to promote splat for type");
4400 // Extract the 128-bit part containing the splat element and update
4401 // the splat element index when it refers to the higher register.
4403 unsigned Idx = (EltNo >= NumElems/2) ? NumElems/2 : 0;
4404 V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
4406 EltNo -= NumElems/2;
4409 // All i16 and i8 vector types can't be used directly by a generic shuffle
4410 // instruction because the target has no such instruction. Generate shuffles
4411 // which repeat i16 and i8 several times until they fit in i32, and then can
4412 // be manipulated by target suported shuffles.
4413 EVT EltVT = SrcVT.getVectorElementType();
4414 if (EltVT == MVT::i8 || EltVT == MVT::i16)
4415 V1 = PromoteSplati8i16(V1, DAG, EltNo);
4417 // Recreate the 256-bit vector and place the same 128-bit vector
4418 // into the low and high part. This is necessary because we want
4419 // to use VPERM* to shuffle the vectors
4421 SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
4422 DAG.getConstant(0, MVT::i32), DAG, dl);
4423 V1 = Insert128BitVector(InsV, V1,
4424 DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4427 return getLegalSplat(DAG, V1, EltNo);
4430 /// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4431 /// vector of zero or undef vector. This produces a shuffle where the low
4432 /// element of V2 is swizzled into the zero/undef vector, landing at element
4433 /// Idx. This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3).
4434 static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4436 const X86Subtarget *Subtarget,
4437 SelectionDAG &DAG) {
4438 EVT VT = V2.getValueType();
4440 ? getZeroVector(VT, Subtarget->hasSSE2(), Subtarget->hasAVX2(), DAG,
4441 V2.getDebugLoc()) : DAG.getUNDEF(VT);
4442 unsigned NumElems = VT.getVectorNumElements();
4443 SmallVector<int, 16> MaskVec;
4444 for (unsigned i = 0; i != NumElems; ++i)
4445 // If this is the insertion idx, put the low elt of V2 here.
4446 MaskVec.push_back(i == Idx ? NumElems : i);
4447 return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4450 /// getShuffleScalarElt - Returns the scalar element that will make up the ith
4451 /// element of the result of the vector shuffle.
4452 static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
4455 return SDValue(); // Limit search depth.
4457 SDValue V = SDValue(N, 0);
4458 EVT VT = V.getValueType();
4459 unsigned Opcode = V.getOpcode();
4461 // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4462 if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4463 Index = SV->getMaskElt(Index);
4466 return DAG.getUNDEF(VT.getVectorElementType());
4468 int NumElems = VT.getVectorNumElements();
4469 SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
4470 return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
4473 // Recurse into target specific vector shuffles to find scalars.
4474 if (isTargetShuffle(Opcode)) {
4475 int NumElems = VT.getVectorNumElements();
4476 SmallVector<unsigned, 16> ShuffleMask;
4481 ImmN = N->getOperand(N->getNumOperands()-1);
4482 DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4485 case X86ISD::UNPCKH:
4486 DecodeUNPCKHMask(VT, ShuffleMask);
4488 case X86ISD::UNPCKL:
4489 DecodeUNPCKLMask(VT, ShuffleMask);
4491 case X86ISD::MOVHLPS:
4492 DecodeMOVHLPSMask(NumElems, ShuffleMask);
4494 case X86ISD::MOVLHPS:
4495 DecodeMOVLHPSMask(NumElems, ShuffleMask);
4497 case X86ISD::PSHUFD:
4498 ImmN = N->getOperand(N->getNumOperands()-1);
4499 DecodePSHUFMask(NumElems,
4500 cast<ConstantSDNode>(ImmN)->getZExtValue(),
4503 case X86ISD::PSHUFHW:
4504 ImmN = N->getOperand(N->getNumOperands()-1);
4505 DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4508 case X86ISD::PSHUFLW:
4509 ImmN = N->getOperand(N->getNumOperands()-1);
4510 DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4514 case X86ISD::MOVSD: {
4515 // The index 0 always comes from the first element of the second source,
4516 // this is why MOVSS and MOVSD are used in the first place. The other
4517 // elements come from the other positions of the first source vector.
4518 unsigned OpNum = (Index == 0) ? 1 : 0;
4519 return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
4522 case X86ISD::VPERMILP:
4523 ImmN = N->getOperand(N->getNumOperands()-1);
4524 DecodeVPERMILPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4527 case X86ISD::VPERM2X128:
4528 ImmN = N->getOperand(N->getNumOperands()-1);
4529 DecodeVPERM2F128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4532 case X86ISD::MOVDDUP:
4533 case X86ISD::MOVLHPD:
4534 case X86ISD::MOVLPD:
4535 case X86ISD::MOVLPS:
4536 case X86ISD::MOVSHDUP:
4537 case X86ISD::MOVSLDUP:
4538 case X86ISD::PALIGN:
4539 return SDValue(); // Not yet implemented.
4541 assert(0 && "unknown target shuffle node");
4545 Index = ShuffleMask[Index];
4547 return DAG.getUNDEF(VT.getVectorElementType());
4549 SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
4550 return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
4554 // Actual nodes that may contain scalar elements
4555 if (Opcode == ISD::BITCAST) {
4556 V = V.getOperand(0);
4557 EVT SrcVT = V.getValueType();
4558 unsigned NumElems = VT.getVectorNumElements();
4560 if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4564 if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4565 return (Index == 0) ? V.getOperand(0)
4566 : DAG.getUNDEF(VT.getVectorElementType());
4568 if (V.getOpcode() == ISD::BUILD_VECTOR)
4569 return V.getOperand(Index);
4574 /// getNumOfConsecutiveZeros - Return the number of elements of a vector
4575 /// shuffle operation which come from a consecutively from a zero. The
4576 /// search can start in two different directions, from left or right.
4578 unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
4579 bool ZerosFromLeft, SelectionDAG &DAG) {
4582 while (i < NumElems) {
4583 unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4584 SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
4585 if (!(Elt.getNode() &&
4586 (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4594 /// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
4595 /// MaskE correspond consecutively to elements from one of the vector operands,
4596 /// starting from its index OpIdx. Also tell OpNum which source vector operand.
4598 bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
4599 int OpIdx, int NumElems, unsigned &OpNum) {
4600 bool SeenV1 = false;
4601 bool SeenV2 = false;
4603 for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
4604 int Idx = SVOp->getMaskElt(i);
4605 // Ignore undef indicies
4614 // Only accept consecutive elements from the same vector
4615 if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4619 OpNum = SeenV1 ? 0 : 1;
4623 /// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4624 /// logical left shift of a vector.
4625 static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4626 bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4627 unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4628 unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4629 false /* check zeros from right */, DAG);
4635 // Considering the elements in the mask that are not consecutive zeros,
4636 // check if they consecutively come from only one of the source vectors.
4638 // V1 = {X, A, B, C} 0
4640 // vector_shuffle V1, V2 <1, 2, 3, X>
4642 if (!isShuffleMaskConsecutive(SVOp,
4643 0, // Mask Start Index
4644 NumElems-NumZeros-1, // Mask End Index
4645 NumZeros, // Where to start looking in the src vector
4646 NumElems, // Number of elements in vector
4647 OpSrc)) // Which source operand ?
4652 ShVal = SVOp->getOperand(OpSrc);
4656 /// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4657 /// logical left shift of a vector.
4658 static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4659 bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4660 unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4661 unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4662 true /* check zeros from left */, DAG);
4668 // Considering the elements in the mask that are not consecutive zeros,
4669 // check if they consecutively come from only one of the source vectors.
4671 // 0 { A, B, X, X } = V2
4673 // vector_shuffle V1, V2 <X, X, 4, 5>
4675 if (!isShuffleMaskConsecutive(SVOp,
4676 NumZeros, // Mask Start Index
4677 NumElems-1, // Mask End Index
4678 0, // Where to start looking in the src vector
4679 NumElems, // Number of elements in vector
4680 OpSrc)) // Which source operand ?
4685 ShVal = SVOp->getOperand(OpSrc);
4689 /// isVectorShift - Returns true if the shuffle can be implemented as a
4690 /// logical left or right shift of a vector.
4691 static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4692 bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4693 // Although the logic below support any bitwidth size, there are no
4694 // shift instructions which handle more than 128-bit vectors.
4695 if (SVOp->getValueType(0).getSizeInBits() > 128)
4698 if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4699 isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4705 /// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4707 static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4708 unsigned NumNonZero, unsigned NumZero,
4710 const TargetLowering &TLI) {
4714 DebugLoc dl = Op.getDebugLoc();
4717 for (unsigned i = 0; i < 16; ++i) {
4718 bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4719 if (ThisIsNonZero && First) {
4721 V = getZeroVector(MVT::v8i16, /*HasSSE2*/ true, /*HasAVX2*/ false,
4724 V = DAG.getUNDEF(MVT::v8i16);
4729 SDValue ThisElt(0, 0), LastElt(0, 0);
4730 bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4731 if (LastIsNonZero) {
4732 LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4733 MVT::i16, Op.getOperand(i-1));
4735 if (ThisIsNonZero) {
4736 ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4737 ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4738 ThisElt, DAG.getConstant(8, MVT::i8));
4740 ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4744 if (ThisElt.getNode())
4745 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4746 DAG.getIntPtrConstant(i/2));
4750 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4753 /// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4755 static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4756 unsigned NumNonZero, unsigned NumZero,
4758 const TargetLowering &TLI) {
4762 DebugLoc dl = Op.getDebugLoc();
4765 for (unsigned i = 0; i < 8; ++i) {
4766 bool isNonZero = (NonZeros & (1 << i)) != 0;
4770 V = getZeroVector(MVT::v8i16, /*HasSSE2*/ true, /*HasAVX2*/ false,
4773 V = DAG.getUNDEF(MVT::v8i16);
4776 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4777 MVT::v8i16, V, Op.getOperand(i),
4778 DAG.getIntPtrConstant(i));
4785 /// getVShift - Return a vector logical shift node.
4787 static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4788 unsigned NumBits, SelectionDAG &DAG,
4789 const TargetLowering &TLI, DebugLoc dl) {
4790 assert(VT.getSizeInBits() == 128 && "Unknown type for VShift");
4791 EVT ShVT = MVT::v2i64;
4792 unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
4793 SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4794 return DAG.getNode(ISD::BITCAST, dl, VT,
4795 DAG.getNode(Opc, dl, ShVT, SrcOp,
4796 DAG.getConstant(NumBits,
4797 TLI.getShiftAmountTy(SrcOp.getValueType()))));
4801 X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4802 SelectionDAG &DAG) const {
4804 // Check if the scalar load can be widened into a vector load. And if
4805 // the address is "base + cst" see if the cst can be "absorbed" into
4806 // the shuffle mask.
4807 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4808 SDValue Ptr = LD->getBasePtr();
4809 if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4811 EVT PVT = LD->getValueType(0);
4812 if (PVT != MVT::i32 && PVT != MVT::f32)
4817 if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4818 FI = FINode->getIndex();
4820 } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4821 isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4822 FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4823 Offset = Ptr.getConstantOperandVal(1);
4824 Ptr = Ptr.getOperand(0);
4829 // FIXME: 256-bit vector instructions don't require a strict alignment,
4830 // improve this code to support it better.
4831 unsigned RequiredAlign = VT.getSizeInBits()/8;
4832 SDValue Chain = LD->getChain();
4833 // Make sure the stack object alignment is at least 16 or 32.
4834 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4835 if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4836 if (MFI->isFixedObjectIndex(FI)) {
4837 // Can't change the alignment. FIXME: It's possible to compute
4838 // the exact stack offset and reference FI + adjust offset instead.
4839 // If someone *really* cares about this. That's the way to implement it.
4842 MFI->setObjectAlignment(FI, RequiredAlign);
4846 // (Offset % 16 or 32) must be multiple of 4. Then address is then
4847 // Ptr + (Offset & ~15).
4850 if ((Offset % RequiredAlign) & 3)
4852 int64_t StartOffset = Offset & ~(RequiredAlign-1);
4854 Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4855 Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4857 int EltNo = (Offset - StartOffset) >> 2;
4858 int NumElems = VT.getVectorNumElements();
4860 EVT CanonVT = VT.getSizeInBits() == 128 ? MVT::v4i32 : MVT::v8i32;
4861 EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4862 SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4863 LD->getPointerInfo().getWithOffset(StartOffset),
4864 false, false, false, 0);
4866 // Canonicalize it to a v4i32 or v8i32 shuffle.
4867 SmallVector<int, 8> Mask;
4868 for (int i = 0; i < NumElems; ++i)
4869 Mask.push_back(EltNo);
4871 V1 = DAG.getNode(ISD::BITCAST, dl, CanonVT, V1);
4872 return DAG.getNode(ISD::BITCAST, dl, NVT,
4873 DAG.getVectorShuffle(CanonVT, dl, V1,
4874 DAG.getUNDEF(CanonVT),&Mask[0]));
4880 /// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4881 /// vector of type 'VT', see if the elements can be replaced by a single large
4882 /// load which has the same value as a build_vector whose operands are 'elts'.
4884 /// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4886 /// FIXME: we'd also like to handle the case where the last elements are zero
4887 /// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4888 /// There's even a handy isZeroNode for that purpose.
4889 static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4890 DebugLoc &DL, SelectionDAG &DAG) {
4891 EVT EltVT = VT.getVectorElementType();
4892 unsigned NumElems = Elts.size();
4894 LoadSDNode *LDBase = NULL;
4895 unsigned LastLoadedElt = -1U;
4897 // For each element in the initializer, see if we've found a load or an undef.
4898 // If we don't find an initial load element, or later load elements are
4899 // non-consecutive, bail out.
4900 for (unsigned i = 0; i < NumElems; ++i) {
4901 SDValue Elt = Elts[i];
4903 if (!Elt.getNode() ||
4904 (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4907 if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4909 LDBase = cast<LoadSDNode>(Elt.getNode());
4913 if (Elt.getOpcode() == ISD::UNDEF)
4916 LoadSDNode *LD = cast<LoadSDNode>(Elt);
4917 if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4922 // If we have found an entire vector of loads and undefs, then return a large
4923 // load of the entire vector width starting at the base pointer. If we found
4924 // consecutive loads for the low half, generate a vzext_load node.
4925 if (LastLoadedElt == NumElems - 1) {
4926 if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4927 return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4928 LDBase->getPointerInfo(),
4929 LDBase->isVolatile(), LDBase->isNonTemporal(),
4930 LDBase->isInvariant(), 0);
4931 return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4932 LDBase->getPointerInfo(),
4933 LDBase->isVolatile(), LDBase->isNonTemporal(),
4934 LDBase->isInvariant(), LDBase->getAlignment());
4935 } else if (NumElems == 4 && LastLoadedElt == 1 &&
4936 DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
4937 SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4938 SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4940 DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
4941 LDBase->getPointerInfo(),
4942 LDBase->getAlignment(),
4943 false/*isVolatile*/, true/*ReadMem*/,
4945 return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4950 /// isVectorBroadcast - Check if the node chain is suitable to be xformed to
4951 /// a vbroadcast node. We support two patterns:
4952 /// 1. A splat BUILD_VECTOR which uses a single scalar load.
4953 /// 2. A splat shuffle which uses a scalar_to_vector node which comes from
4955 /// The scalar load node is returned when a pattern is found,
4956 /// or SDValue() otherwise.
4957 static SDValue isVectorBroadcast(SDValue &Op, const X86Subtarget *Subtarget) {
4958 if (!Subtarget->hasAVX())
4961 EVT VT = Op.getValueType();
4964 if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
4965 V = V.getOperand(0);
4967 //A suspected load to be broadcasted.
4970 switch (V.getOpcode()) {
4972 // Unknown pattern found.
4975 case ISD::BUILD_VECTOR: {
4976 // The BUILD_VECTOR node must be a splat.
4977 if (!isSplatVector(V.getNode()))
4980 Ld = V.getOperand(0);
4982 // The suspected load node has several users. Make sure that all
4983 // of its users are from the BUILD_VECTOR node.
4984 if (!Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
4989 case ISD::VECTOR_SHUFFLE: {
4990 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4992 // Shuffles must have a splat mask where the first element is
4994 if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
4997 SDValue Sc = Op.getOperand(0);
4998 if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR)
5001 Ld = Sc.getOperand(0);
5003 // The scalar_to_vector node and the suspected
5004 // load node must have exactly one user.
5005 if (!Sc.hasOneUse() || !Ld.hasOneUse())
5011 // The scalar source must be a normal load.
5012 if (!ISD::isNormalLoad(Ld.getNode()))
5015 bool Is256 = VT.getSizeInBits() == 256;
5016 bool Is128 = VT.getSizeInBits() == 128;
5017 unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5019 // VBroadcast to YMM
5020 if (Is256 && (ScalarSize == 32 || ScalarSize == 64))
5023 // VBroadcast to XMM
5024 if (Is128 && (ScalarSize == 32))
5027 // The integer check is needed for the 64-bit into 128-bit so it doesn't match
5028 // double since there is vbroadcastsd xmm
5029 if (Subtarget->hasAVX2() && Ld.getValueType().isInteger()) {
5030 // VBroadcast to YMM
5031 if (Is256 && (ScalarSize == 8 || ScalarSize == 16))
5034 // VBroadcast to XMM
5035 if (Is128 && (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64))
5039 // Unsupported broadcast.
5044 X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5045 DebugLoc dl = Op.getDebugLoc();
5047 EVT VT = Op.getValueType();
5048 EVT ExtVT = VT.getVectorElementType();
5049 unsigned NumElems = Op.getNumOperands();
5051 // Vectors containing all zeros can be matched by pxor and xorps later
5052 if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5053 // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5054 // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5055 if (Op.getValueType() == MVT::v4i32 ||
5056 Op.getValueType() == MVT::v8i32)
5059 return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(),
5060 Subtarget->hasAVX2(), DAG, dl);
5063 // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5064 // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5065 // vpcmpeqd on 256-bit vectors.
5066 if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5067 if (Op.getValueType() == MVT::v4i32 ||
5068 (Op.getValueType() == MVT::v8i32 && Subtarget->hasAVX2()))
5071 return getOnesVector(Op.getValueType(), Subtarget->hasAVX2(), DAG, dl);
5074 SDValue LD = isVectorBroadcast(Op, Subtarget);
5076 return DAG.getNode(X86ISD::VBROADCAST, dl, VT, LD);
5078 unsigned EVTBits = ExtVT.getSizeInBits();
5080 unsigned NumZero = 0;
5081 unsigned NumNonZero = 0;
5082 unsigned NonZeros = 0;
5083 bool IsAllConstants = true;
5084 SmallSet<SDValue, 8> Values;
5085 for (unsigned i = 0; i < NumElems; ++i) {
5086 SDValue Elt = Op.getOperand(i);
5087 if (Elt.getOpcode() == ISD::UNDEF)
5090 if (Elt.getOpcode() != ISD::Constant &&
5091 Elt.getOpcode() != ISD::ConstantFP)
5092 IsAllConstants = false;
5093 if (X86::isZeroNode(Elt))
5096 NonZeros |= (1 << i);
5101 // All undef vector. Return an UNDEF. All zero vectors were handled above.
5102 if (NumNonZero == 0)
5103 return DAG.getUNDEF(VT);
5105 // Special case for single non-zero, non-undef, element.
5106 if (NumNonZero == 1) {
5107 unsigned Idx = CountTrailingZeros_32(NonZeros);
5108 SDValue Item = Op.getOperand(Idx);
5110 // If this is an insertion of an i64 value on x86-32, and if the top bits of
5111 // the value are obviously zero, truncate the value to i32 and do the
5112 // insertion that way. Only do this if the value is non-constant or if the
5113 // value is a constant being inserted into element 0. It is cheaper to do
5114 // a constant pool load than it is to do a movd + shuffle.
5115 if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5116 (!IsAllConstants || Idx == 0)) {
5117 if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5119 assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5120 EVT VecVT = MVT::v4i32;
5121 unsigned VecElts = 4;
5123 // Truncate the value (which may itself be a constant) to i32, and
5124 // convert it to a vector with movd (S2V+shuffle to zero extend).
5125 Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5126 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5127 Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5129 // Now we have our 32-bit value zero extended in the low element of
5130 // a vector. If Idx != 0, swizzle it into place.
5132 SmallVector<int, 4> Mask;
5133 Mask.push_back(Idx);
5134 for (unsigned i = 1; i != VecElts; ++i)
5136 Item = DAG.getVectorShuffle(VecVT, dl, Item,
5137 DAG.getUNDEF(Item.getValueType()),
5140 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item);
5144 // If we have a constant or non-constant insertion into the low element of
5145 // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5146 // the rest of the elements. This will be matched as movd/movq/movss/movsd
5147 // depending on what the source datatype is.
5150 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5152 if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5153 (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5154 if (VT.getSizeInBits() == 256) {
5155 SDValue ZeroVec = getZeroVector(VT, Subtarget->hasSSE2(),
5156 Subtarget->hasAVX2(), DAG, dl);
5157 return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5158 Item, DAG.getIntPtrConstant(0));
5160 assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5161 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5162 // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5163 return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5166 if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5167 Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5168 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5169 if (VT.getSizeInBits() == 256) {
5170 SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget->hasSSE2(),
5171 Subtarget->hasAVX2(), DAG, dl);
5172 Item = Insert128BitVector(ZeroVec, Item, DAG.getConstant(0, MVT::i32),
5175 assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5176 Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5178 return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5182 // Is it a vector logical left shift?
5183 if (NumElems == 2 && Idx == 1 &&
5184 X86::isZeroNode(Op.getOperand(0)) &&
5185 !X86::isZeroNode(Op.getOperand(1))) {
5186 unsigned NumBits = VT.getSizeInBits();
5187 return getVShift(true, VT,
5188 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5189 VT, Op.getOperand(1)),
5190 NumBits/2, DAG, *this, dl);
5193 if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5196 // Otherwise, if this is a vector with i32 or f32 elements, and the element
5197 // is a non-constant being inserted into an element other than the low one,
5198 // we can't use a constant pool load. Instead, use SCALAR_TO_VECTOR (aka
5199 // movd/movss) to move this into the low element, then shuffle it into
5201 if (EVTBits == 32) {
5202 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5204 // Turn it into a shuffle of zero and zero-extended scalar to vector.
5205 Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5206 SmallVector<int, 8> MaskVec;
5207 for (unsigned i = 0; i < NumElems; i++)
5208 MaskVec.push_back(i == Idx ? 0 : 1);
5209 return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5213 // Splat is obviously ok. Let legalizer expand it to a shuffle.
5214 if (Values.size() == 1) {
5215 if (EVTBits == 32) {
5216 // Instead of a shuffle like this:
5217 // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5218 // Check if it's possible to issue this instead.
5219 // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5220 unsigned Idx = CountTrailingZeros_32(NonZeros);
5221 SDValue Item = Op.getOperand(Idx);
5222 if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5223 return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5228 // A vector full of immediates; various special cases are already
5229 // handled, so this is best done with a single constant-pool load.
5233 // For AVX-length vectors, build the individual 128-bit pieces and use
5234 // shuffles to put them in place.
5235 if (VT.getSizeInBits() == 256 && !ISD::isBuildVectorAllZeros(Op.getNode())) {
5236 SmallVector<SDValue, 32> V;
5237 for (unsigned i = 0; i < NumElems; ++i)
5238 V.push_back(Op.getOperand(i));
5240 EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5242 // Build both the lower and upper subvector.
5243 SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5244 SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5247 // Recreate the wider vector with the lower and upper part.
5248 SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Lower,
5249 DAG.getConstant(0, MVT::i32), DAG, dl);
5250 return Insert128BitVector(Vec, Upper, DAG.getConstant(NumElems/2, MVT::i32),
5254 // Let legalizer expand 2-wide build_vectors.
5255 if (EVTBits == 64) {
5256 if (NumNonZero == 1) {
5257 // One half is zero or undef.
5258 unsigned Idx = CountTrailingZeros_32(NonZeros);
5259 SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5260 Op.getOperand(Idx));
5261 return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5266 // If element VT is < 32 bits, convert it to inserts into a zero vector.
5267 if (EVTBits == 8 && NumElems == 16) {
5268 SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5270 if (V.getNode()) return V;
5273 if (EVTBits == 16 && NumElems == 8) {
5274 SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5276 if (V.getNode()) return V;
5279 // If element VT is == 32 bits, turn it into a number of shuffles.
5280 SmallVector<SDValue, 8> V;
5282 if (NumElems == 4 && NumZero > 0) {
5283 for (unsigned i = 0; i < 4; ++i) {
5284 bool isZero = !(NonZeros & (1 << i));
5286 V[i] = getZeroVector(VT, Subtarget->hasSSE2(), Subtarget->hasAVX2(),
5289 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5292 for (unsigned i = 0; i < 2; ++i) {
5293 switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5296 V[i] = V[i*2]; // Must be a zero vector.
5299 V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5302 V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5305 V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5310 SmallVector<int, 8> MaskVec;
5311 bool Reverse = (NonZeros & 0x3) == 2;
5312 for (unsigned i = 0; i < 2; ++i)
5313 MaskVec.push_back(Reverse ? 1-i : i);
5314 Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5315 for (unsigned i = 0; i < 2; ++i)
5316 MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
5317 return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5320 if (Values.size() > 1 && VT.getSizeInBits() == 128) {
5321 // Check for a build vector of consecutive loads.
5322 for (unsigned i = 0; i < NumElems; ++i)
5323 V[i] = Op.getOperand(i);
5325 // Check for elements which are consecutive loads.
5326 SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5330 // For SSE 4.1, use insertps to put the high elements into the low element.
5331 if (getSubtarget()->hasSSE41()) {
5333 if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5334 Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5336 Result = DAG.getUNDEF(VT);
5338 for (unsigned i = 1; i < NumElems; ++i) {
5339 if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5340 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5341 Op.getOperand(i), DAG.getIntPtrConstant(i));
5346 // Otherwise, expand into a number of unpckl*, start by extending each of
5347 // our (non-undef) elements to the full vector width with the element in the
5348 // bottom slot of the vector (which generates no code for SSE).
5349 for (unsigned i = 0; i < NumElems; ++i) {
5350 if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5351 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5353 V[i] = DAG.getUNDEF(VT);
5356 // Next, we iteratively mix elements, e.g. for v4f32:
5357 // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5358 // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5359 // Step 2: unpcklps X, Y ==> <3, 2, 1, 0>
5360 unsigned EltStride = NumElems >> 1;
5361 while (EltStride != 0) {
5362 for (unsigned i = 0; i < EltStride; ++i) {
5363 // If V[i+EltStride] is undef and this is the first round of mixing,
5364 // then it is safe to just drop this shuffle: V[i] is already in the
5365 // right place, the one element (since it's the first round) being
5366 // inserted as undef can be dropped. This isn't safe for successive
5367 // rounds because they will permute elements within both vectors.
5368 if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5369 EltStride == NumElems/2)
5372 V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5381 // LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5382 // them in a MMX register. This is better than doing a stack convert.
5383 static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5384 DebugLoc dl = Op.getDebugLoc();
5385 EVT ResVT = Op.getValueType();
5387 assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5388 ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5390 SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5391 SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5392 InVec = Op.getOperand(1);
5393 if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5394 unsigned NumElts = ResVT.getVectorNumElements();
5395 VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5396 VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5397 InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5399 InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5400 SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5401 Mask[0] = 0; Mask[1] = 2;
5402 VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5404 return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5407 // LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5408 // to create 256-bit vectors from two other 128-bit ones.
5409 static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5410 DebugLoc dl = Op.getDebugLoc();
5411 EVT ResVT = Op.getValueType();
5413 assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5415 SDValue V1 = Op.getOperand(0);
5416 SDValue V2 = Op.getOperand(1);
5417 unsigned NumElems = ResVT.getVectorNumElements();
5419 SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, ResVT), V1,
5420 DAG.getConstant(0, MVT::i32), DAG, dl);
5421 return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5426 X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5427 EVT ResVT = Op.getValueType();
5429 assert(Op.getNumOperands() == 2);
5430 assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5431 "Unsupported CONCAT_VECTORS for value type");
5433 // We support concatenate two MMX registers and place them in a MMX register.
5434 // This is better than doing a stack convert.
5435 if (ResVT.is128BitVector())
5436 return LowerMMXCONCAT_VECTORS(Op, DAG);
5438 // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5439 // from two other 128-bit ones.
5440 return LowerAVXCONCAT_VECTORS(Op, DAG);
5443 // v8i16 shuffles - Prefer shuffles in the following order:
5444 // 1. [all] pshuflw, pshufhw, optional move
5445 // 2. [ssse3] 1 x pshufb
5446 // 3. [ssse3] 2 x pshufb + 1 x por
5447 // 4. [all] mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5449 X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5450 SelectionDAG &DAG) const {
5451 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5452 SDValue V1 = SVOp->getOperand(0);
5453 SDValue V2 = SVOp->getOperand(1);
5454 DebugLoc dl = SVOp->getDebugLoc();
5455 SmallVector<int, 8> MaskVals;
5457 // Determine if more than 1 of the words in each of the low and high quadwords
5458 // of the result come from the same quadword of one of the two inputs. Undef
5459 // mask values count as coming from any quadword, for better codegen.
5460 unsigned LoQuad[] = { 0, 0, 0, 0 };
5461 unsigned HiQuad[] = { 0, 0, 0, 0 };
5462 BitVector InputQuads(4);
5463 for (unsigned i = 0; i < 8; ++i) {
5464 unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5465 int EltIdx = SVOp->getMaskElt(i);
5466 MaskVals.push_back(EltIdx);
5475 InputQuads.set(EltIdx / 4);
5478 int BestLoQuad = -1;
5479 unsigned MaxQuad = 1;
5480 for (unsigned i = 0; i < 4; ++i) {
5481 if (LoQuad[i] > MaxQuad) {
5483 MaxQuad = LoQuad[i];
5487 int BestHiQuad = -1;
5489 for (unsigned i = 0; i < 4; ++i) {
5490 if (HiQuad[i] > MaxQuad) {
5492 MaxQuad = HiQuad[i];
5496 // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5497 // of the two input vectors, shuffle them into one input vector so only a
5498 // single pshufb instruction is necessary. If There are more than 2 input
5499 // quads, disable the next transformation since it does not help SSSE3.
5500 bool V1Used = InputQuads[0] || InputQuads[1];
5501 bool V2Used = InputQuads[2] || InputQuads[3];
5502 if (Subtarget->hasSSSE3()) {
5503 if (InputQuads.count() == 2 && V1Used && V2Used) {
5504 BestLoQuad = InputQuads.find_first();
5505 BestHiQuad = InputQuads.find_next(BestLoQuad);
5507 if (InputQuads.count() > 2) {
5513 // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5514 // the shuffle mask. If a quad is scored as -1, that means that it contains
5515 // words from all 4 input quadwords.
5517 if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5518 SmallVector<int, 8> MaskV;
5519 MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
5520 MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
5521 NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5522 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5523 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5524 NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5526 // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5527 // source words for the shuffle, to aid later transformations.
5528 bool AllWordsInNewV = true;
5529 bool InOrder[2] = { true, true };
5530 for (unsigned i = 0; i != 8; ++i) {
5531 int idx = MaskVals[i];
5533 InOrder[i/4] = false;
5534 if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5536 AllWordsInNewV = false;
5540 bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5541 if (AllWordsInNewV) {
5542 for (int i = 0; i != 8; ++i) {
5543 int idx = MaskVals[i];
5546 idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5547 if ((idx != i) && idx < 4)
5549 if ((idx != i) && idx > 3)
5558 // If we've eliminated the use of V2, and the new mask is a pshuflw or
5559 // pshufhw, that's as cheap as it gets. Return the new shuffle.
5560 if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5561 unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5562 unsigned TargetMask = 0;
5563 NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5564 DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5565 TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
5566 X86::getShufflePSHUFLWImmediate(NewV.getNode());
5567 V1 = NewV.getOperand(0);
5568 return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5572 // If we have SSSE3, and all words of the result are from 1 input vector,
5573 // case 2 is generated, otherwise case 3 is generated. If no SSSE3
5574 // is present, fall back to case 4.
5575 if (Subtarget->hasSSSE3()) {
5576 SmallVector<SDValue,16> pshufbMask;
5578 // If we have elements from both input vectors, set the high bit of the
5579 // shuffle mask element to zero out elements that come from V2 in the V1
5580 // mask, and elements that come from V1 in the V2 mask, so that the two
5581 // results can be OR'd together.
5582 bool TwoInputs = V1Used && V2Used;
5583 for (unsigned i = 0; i != 8; ++i) {
5584 int EltIdx = MaskVals[i] * 2;
5585 if (TwoInputs && (EltIdx >= 16)) {
5586 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5587 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5590 pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5591 pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5593 V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5594 V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5595 DAG.getNode(ISD::BUILD_VECTOR, dl,
5596 MVT::v16i8, &pshufbMask[0], 16));
5598 return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5600 // Calculate the shuffle mask for the second input, shuffle it, and
5601 // OR it with the first shuffled input.
5603 for (unsigned i = 0; i != 8; ++i) {
5604 int EltIdx = MaskVals[i] * 2;
5606 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5607 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5610 pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5611 pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5613 V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5614 V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5615 DAG.getNode(ISD::BUILD_VECTOR, dl,
5616 MVT::v16i8, &pshufbMask[0], 16));
5617 V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5618 return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5621 // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5622 // and update MaskVals with new element order.
5623 BitVector InOrder(8);
5624 if (BestLoQuad >= 0) {
5625 SmallVector<int, 8> MaskV;
5626 for (int i = 0; i != 4; ++i) {
5627 int idx = MaskVals[i];
5629 MaskV.push_back(-1);
5631 } else if ((idx / 4) == BestLoQuad) {
5632 MaskV.push_back(idx & 3);
5635 MaskV.push_back(-1);
5638 for (unsigned i = 4; i != 8; ++i)
5640 NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5643 if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
5644 NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5646 X86::getShufflePSHUFLWImmediate(NewV.getNode()),
5650 // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5651 // and update MaskVals with the new element order.
5652 if (BestHiQuad >= 0) {
5653 SmallVector<int, 8> MaskV;
5654 for (unsigned i = 0; i != 4; ++i)
5656 for (unsigned i = 4; i != 8; ++i) {
5657 int idx = MaskVals[i];
5659 MaskV.push_back(-1);
5661 } else if ((idx / 4) == BestHiQuad) {
5662 MaskV.push_back((idx & 3) + 4);
5665 MaskV.push_back(-1);
5668 NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5671 if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
5672 NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5674 X86::getShufflePSHUFHWImmediate(NewV.getNode()),
5678 // In case BestHi & BestLo were both -1, which means each quadword has a word
5679 // from each of the four input quadwords, calculate the InOrder bitvector now
5680 // before falling through to the insert/extract cleanup.
5681 if (BestLoQuad == -1 && BestHiQuad == -1) {
5683 for (int i = 0; i != 8; ++i)
5684 if (MaskVals[i] < 0 || MaskVals[i] == i)
5688 // The other elements are put in the right place using pextrw and pinsrw.
5689 for (unsigned i = 0; i != 8; ++i) {
5692 int EltIdx = MaskVals[i];
5695 SDValue ExtOp = (EltIdx < 8)
5696 ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5697 DAG.getIntPtrConstant(EltIdx))
5698 : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5699 DAG.getIntPtrConstant(EltIdx - 8));
5700 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5701 DAG.getIntPtrConstant(i));
5706 // v16i8 shuffles - Prefer shuffles in the following order:
5707 // 1. [ssse3] 1 x pshufb
5708 // 2. [ssse3] 2 x pshufb + 1 x por
5709 // 3. [all] v8i16 shuffle + N x pextrw + rotate + pinsrw
5711 SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5713 const X86TargetLowering &TLI) {
5714 SDValue V1 = SVOp->getOperand(0);
5715 SDValue V2 = SVOp->getOperand(1);
5716 DebugLoc dl = SVOp->getDebugLoc();
5717 ArrayRef<int> MaskVals = SVOp->getMask();
5719 // If we have SSSE3, case 1 is generated when all result bytes come from
5720 // one of the inputs. Otherwise, case 2 is generated. If no SSSE3 is
5721 // present, fall back to case 3.
5722 // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5725 for (unsigned i = 0; i < 16; ++i) {
5726 int EltIdx = MaskVals[i];
5735 // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5736 if (TLI.getSubtarget()->hasSSSE3()) {
5737 SmallVector<SDValue,16> pshufbMask;
5739 // If all result elements are from one input vector, then only translate
5740 // undef mask values to 0x80 (zero out result) in the pshufb mask.
5742 // Otherwise, we have elements from both input vectors, and must zero out
5743 // elements that come from V2 in the first mask, and V1 in the second mask
5744 // so that we can OR them together.
5745 bool TwoInputs = !(V1Only || V2Only);
5746 for (unsigned i = 0; i != 16; ++i) {
5747 int EltIdx = MaskVals[i];
5748 if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5749 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5752 pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5754 // If all the elements are from V2, assign it to V1 and return after
5755 // building the first pshufb.
5758 V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5759 DAG.getNode(ISD::BUILD_VECTOR, dl,
5760 MVT::v16i8, &pshufbMask[0], 16));
5764 // Calculate the shuffle mask for the second input, shuffle it, and
5765 // OR it with the first shuffled input.
5767 for (unsigned i = 0; i != 16; ++i) {
5768 int EltIdx = MaskVals[i];
5770 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5773 pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5775 V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5776 DAG.getNode(ISD::BUILD_VECTOR, dl,
5777 MVT::v16i8, &pshufbMask[0], 16));
5778 return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5781 // No SSSE3 - Calculate in place words and then fix all out of place words
5782 // With 0-16 extracts & inserts. Worst case is 16 bytes out of order from
5783 // the 16 different words that comprise the two doublequadword input vectors.
5784 V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5785 V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5786 SDValue NewV = V2Only ? V2 : V1;
5787 for (int i = 0; i != 8; ++i) {
5788 int Elt0 = MaskVals[i*2];
5789 int Elt1 = MaskVals[i*2+1];
5791 // This word of the result is all undef, skip it.
5792 if (Elt0 < 0 && Elt1 < 0)
5795 // This word of the result is already in the correct place, skip it.
5796 if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5798 if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5801 SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5802 SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5805 // If Elt0 and Elt1 are defined, are consecutive, and can be load
5806 // using a single extract together, load it and store it.
5807 if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5808 InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5809 DAG.getIntPtrConstant(Elt1 / 2));
5810 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5811 DAG.getIntPtrConstant(i));
5815 // If Elt1 is defined, extract it from the appropriate source. If the
5816 // source byte is not also odd, shift the extracted word left 8 bits
5817 // otherwise clear the bottom 8 bits if we need to do an or.
5819 InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5820 DAG.getIntPtrConstant(Elt1 / 2));
5821 if ((Elt1 & 1) == 0)
5822 InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5824 TLI.getShiftAmountTy(InsElt.getValueType())));
5826 InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5827 DAG.getConstant(0xFF00, MVT::i16));
5829 // If Elt0 is defined, extract it from the appropriate source. If the
5830 // source byte is not also even, shift the extracted word right 8 bits. If
5831 // Elt1 was also defined, OR the extracted values together before
5832 // inserting them in the result.
5834 SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5835 Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5836 if ((Elt0 & 1) != 0)
5837 InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5839 TLI.getShiftAmountTy(InsElt0.getValueType())));
5841 InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5842 DAG.getConstant(0x00FF, MVT::i16));
5843 InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5846 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5847 DAG.getIntPtrConstant(i));
5849 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5852 /// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5853 /// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5854 /// done when every pair / quad of shuffle mask elements point to elements in
5855 /// the right sequence. e.g.
5856 /// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5858 SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5859 SelectionDAG &DAG, DebugLoc dl) {
5860 EVT VT = SVOp->getValueType(0);
5861 SDValue V1 = SVOp->getOperand(0);
5862 SDValue V2 = SVOp->getOperand(1);
5863 unsigned NumElems = VT.getVectorNumElements();
5864 unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5866 switch (VT.getSimpleVT().SimpleTy) {
5867 default: assert(false && "Unexpected!");
5868 case MVT::v4f32: NewVT = MVT::v2f64; break;
5869 case MVT::v4i32: NewVT = MVT::v2i64; break;
5870 case MVT::v8i16: NewVT = MVT::v4i32; break;
5871 case MVT::v16i8: NewVT = MVT::v4i32; break;
5874 int Scale = NumElems / NewWidth;
5875 SmallVector<int, 8> MaskVec;
5876 for (unsigned i = 0; i < NumElems; i += Scale) {
5878 for (int j = 0; j < Scale; ++j) {
5879 int EltIdx = SVOp->getMaskElt(i+j);
5883 StartIdx = EltIdx - (EltIdx % Scale);
5884 if (EltIdx != StartIdx + j)
5888 MaskVec.push_back(-1);
5890 MaskVec.push_back(StartIdx / Scale);
5893 V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5894 V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5895 return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5898 /// getVZextMovL - Return a zero-extending vector move low node.
5900 static SDValue getVZextMovL(EVT VT, EVT OpVT,
5901 SDValue SrcOp, SelectionDAG &DAG,
5902 const X86Subtarget *Subtarget, DebugLoc dl) {
5903 if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5904 LoadSDNode *LD = NULL;
5905 if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5906 LD = dyn_cast<LoadSDNode>(SrcOp);
5908 // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5910 MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5911 if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5912 SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5913 SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5914 SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5916 OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5917 return DAG.getNode(ISD::BITCAST, dl, VT,
5918 DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5919 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5927 return DAG.getNode(ISD::BITCAST, dl, VT,
5928 DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5929 DAG.getNode(ISD::BITCAST, dl,
5933 /// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
5934 /// which could not be matched by any known target speficic shuffle
5936 LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5937 EVT VT = SVOp->getValueType(0);
5939 unsigned NumElems = VT.getVectorNumElements();
5940 unsigned NumLaneElems = NumElems / 2;
5942 int MinRange[2][2] = { { static_cast<int>(NumElems),
5943 static_cast<int>(NumElems) },
5944 { static_cast<int>(NumElems),
5945 static_cast<int>(NumElems) } };
5946 int MaxRange[2][2] = { { -1, -1 }, { -1, -1 } };
5948 // Collect used ranges for each source in each lane
5949 for (unsigned l = 0; l < 2; ++l) {
5950 unsigned LaneStart = l*NumLaneElems;
5951 for (unsigned i = 0; i != NumLaneElems; ++i) {
5952 int Idx = SVOp->getMaskElt(i+LaneStart);
5957 if (Idx >= (int)NumElems) {
5962 if (Idx > MaxRange[l][Input])
5963 MaxRange[l][Input] = Idx;
5964 if (Idx < MinRange[l][Input])
5965 MinRange[l][Input] = Idx;
5969 // Make sure each range is 128-bits
5970 int ExtractIdx[2][2] = { { -1, -1 }, { -1, -1 } };
5971 for (unsigned l = 0; l < 2; ++l) {
5972 for (unsigned Input = 0; Input < 2; ++Input) {
5973 if (MinRange[l][Input] == (int)NumElems && MaxRange[l][Input] < 0)
5976 if (MinRange[l][Input] >= 0 && MinRange[l][Input] < (int)NumLaneElems)
5977 ExtractIdx[l][Input] = 0;
5978 else if (MinRange[l][Input] >= (int)NumLaneElems &&
5979 MinRange[l][Input] < (int)NumElems)
5980 ExtractIdx[l][Input] = NumLaneElems;
5986 DebugLoc dl = SVOp->getDebugLoc();
5987 MVT EltVT = VT.getVectorElementType().getSimpleVT();
5988 EVT NVT = MVT::getVectorVT(EltVT, NumElems/2);
5991 for (unsigned l = 0; l < 2; ++l) {
5992 for (unsigned Input = 0; Input < 2; ++Input) {
5993 if (ExtractIdx[l][Input] >= 0)
5994 Ops[l][Input] = Extract128BitVector(SVOp->getOperand(Input),
5995 DAG.getConstant(ExtractIdx[l][Input], MVT::i32),
5998 Ops[l][Input] = DAG.getUNDEF(NVT);
6002 // Generate 128-bit shuffles
6003 SmallVector<int, 16> Mask1, Mask2;
6004 for (unsigned i = 0; i != NumLaneElems; ++i) {
6005 int Elt = SVOp->getMaskElt(i);
6006 if (Elt >= (int)NumElems) {
6007 Elt %= NumLaneElems;
6008 Elt += NumLaneElems;
6009 } else if (Elt >= 0) {
6010 Elt %= NumLaneElems;
6012 Mask1.push_back(Elt);
6014 for (unsigned i = NumLaneElems; i != NumElems; ++i) {
6015 int Elt = SVOp->getMaskElt(i);
6016 if (Elt >= (int)NumElems) {
6017 Elt %= NumLaneElems;
6018 Elt += NumLaneElems;
6019 } else if (Elt >= 0) {
6020 Elt %= NumLaneElems;
6022 Mask2.push_back(Elt);
6025 SDValue Shuf1 = DAG.getVectorShuffle(NVT, dl, Ops[0][0], Ops[0][1], &Mask1[0]);
6026 SDValue Shuf2 = DAG.getVectorShuffle(NVT, dl, Ops[1][0], Ops[1][1], &Mask2[0]);
6028 // Concatenate the result back
6029 SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Shuf1,
6030 DAG.getConstant(0, MVT::i32), DAG, dl);
6031 return Insert128BitVector(V, Shuf2, DAG.getConstant(NumElems/2, MVT::i32),
6035 /// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6036 /// 4 elements, and match them with several different shuffle types.
6038 LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6039 SDValue V1 = SVOp->getOperand(0);
6040 SDValue V2 = SVOp->getOperand(1);
6041 DebugLoc dl = SVOp->getDebugLoc();
6042 EVT VT = SVOp->getValueType(0);
6044 assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
6046 SmallVector<std::pair<int, int>, 8> Locs;
6048 SmallVector<int, 8> Mask1(4U, -1);
6049 SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
6053 for (unsigned i = 0; i != 4; ++i) {
6054 int Idx = PermMask[i];
6056 Locs[i] = std::make_pair(-1, -1);
6058 assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6060 Locs[i] = std::make_pair(0, NumLo);
6064 Locs[i] = std::make_pair(1, NumHi);
6066 Mask1[2+NumHi] = Idx;
6072 if (NumLo <= 2 && NumHi <= 2) {
6073 // If no more than two elements come from either vector. This can be
6074 // implemented with two shuffles. First shuffle gather the elements.
6075 // The second shuffle, which takes the first shuffle as both of its
6076 // vector operands, put the elements into the right order.
6077 V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6079 SmallVector<int, 8> Mask2(4U, -1);
6081 for (unsigned i = 0; i != 4; ++i) {
6082 if (Locs[i].first == -1)
6085 unsigned Idx = (i < 2) ? 0 : 4;
6086 Idx += Locs[i].first * 2 + Locs[i].second;
6091 return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6092 } else if (NumLo == 3 || NumHi == 3) {
6093 // Otherwise, we must have three elements from one vector, call it X, and
6094 // one element from the other, call it Y. First, use a shufps to build an
6095 // intermediate vector with the one element from Y and the element from X
6096 // that will be in the same half in the final destination (the indexes don't
6097 // matter). Then, use a shufps to build the final vector, taking the half
6098 // containing the element from Y from the intermediate, and the other half
6101 // Normalize it so the 3 elements come from V1.
6102 CommuteVectorShuffleMask(PermMask, 4);
6106 // Find the element from V2.
6108 for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6109 int Val = PermMask[HiIndex];
6116 Mask1[0] = PermMask[HiIndex];
6118 Mask1[2] = PermMask[HiIndex^1];
6120 V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6123 Mask1[0] = PermMask[0];
6124 Mask1[1] = PermMask[1];
6125 Mask1[2] = HiIndex & 1 ? 6 : 4;
6126 Mask1[3] = HiIndex & 1 ? 4 : 6;
6127 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6129 Mask1[0] = HiIndex & 1 ? 2 : 0;
6130 Mask1[1] = HiIndex & 1 ? 0 : 2;
6131 Mask1[2] = PermMask[2];
6132 Mask1[3] = PermMask[3];
6137 return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6141 // Break it into (shuffle shuffle_hi, shuffle_lo).
6144 SmallVector<int,8> LoMask(4U, -1);
6145 SmallVector<int,8> HiMask(4U, -1);
6147 SmallVector<int,8> *MaskPtr = &LoMask;
6148 unsigned MaskIdx = 0;
6151 for (unsigned i = 0; i != 4; ++i) {
6158 int Idx = PermMask[i];
6160 Locs[i] = std::make_pair(-1, -1);
6161 } else if (Idx < 4) {
6162 Locs[i] = std::make_pair(MaskIdx, LoIdx);
6163 (*MaskPtr)[LoIdx] = Idx;
6166 Locs[i] = std::make_pair(MaskIdx, HiIdx);
6167 (*MaskPtr)[HiIdx] = Idx;
6172 SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6173 SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6174 SmallVector<int, 8> MaskOps;
6175 for (unsigned i = 0; i != 4; ++i) {
6176 if (Locs[i].first == -1) {
6177 MaskOps.push_back(-1);
6179 unsigned Idx = Locs[i].first * 4 + Locs[i].second;
6180 MaskOps.push_back(Idx);
6183 return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6186 static bool MayFoldVectorLoad(SDValue V) {
6187 if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6188 V = V.getOperand(0);
6189 if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6190 V = V.getOperand(0);
6191 if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6192 V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6193 // BUILD_VECTOR (load), undef
6194 V = V.getOperand(0);
6200 // FIXME: the version above should always be used. Since there's
6201 // a bug where several vector shuffles can't be folded because the
6202 // DAG is not updated during lowering and a node claims to have two
6203 // uses while it only has one, use this version, and let isel match
6204 // another instruction if the load really happens to have more than
6205 // one use. Remove this version after this bug get fixed.
6206 // rdar://8434668, PR8156
6207 static bool RelaxedMayFoldVectorLoad(SDValue V) {
6208 if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6209 V = V.getOperand(0);
6210 if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6211 V = V.getOperand(0);
6212 if (ISD::isNormalLoad(V.getNode()))
6217 /// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
6218 /// a vector extract, and if both can be later optimized into a single load.
6219 /// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
6220 /// here because otherwise a target specific shuffle node is going to be
6221 /// emitted for this shuffle, and the optimization not done.
6222 /// FIXME: This is probably not the best approach, but fix the problem
6223 /// until the right path is decided.
6225 bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
6226 const TargetLowering &TLI) {
6227 EVT VT = V.getValueType();
6228 ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
6230 // Be sure that the vector shuffle is present in a pattern like this:
6231 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
6235 SDNode *N = *V.getNode()->use_begin();
6236 if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6239 SDValue EltNo = N->getOperand(1);
6240 if (!isa<ConstantSDNode>(EltNo))
6243 // If the bit convert changed the number of elements, it is unsafe
6244 // to examine the mask.
6245 bool HasShuffleIntoBitcast = false;
6246 if (V.getOpcode() == ISD::BITCAST) {
6247 EVT SrcVT = V.getOperand(0).getValueType();
6248 if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
6250 V = V.getOperand(0);
6251 HasShuffleIntoBitcast = true;
6254 // Select the input vector, guarding against out of range extract vector.
6255 unsigned NumElems = VT.getVectorNumElements();
6256 unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
6257 int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
6258 V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
6260 // If we are accessing the upper part of a YMM register
6261 // then the EXTRACT_VECTOR_ELT is likely to be legalized to a sequence of
6262 // EXTRACT_SUBVECTOR + EXTRACT_VECTOR_ELT, which are not detected at this point
6263 // because the legalization of N did not happen yet.
6264 if (Idx >= (int)NumElems/2 && VT.getSizeInBits() == 256)
6267 // Skip one more bit_convert if necessary
6268 if (V.getOpcode() == ISD::BITCAST)
6269 V = V.getOperand(0);
6271 if (!ISD::isNormalLoad(V.getNode()))
6274 // Is the original load suitable?
6275 LoadSDNode *LN0 = cast<LoadSDNode>(V);
6277 if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile())
6280 if (!HasShuffleIntoBitcast)
6283 // If there's a bitcast before the shuffle, check if the load type and
6284 // alignment is valid.
6285 unsigned Align = LN0->getAlignment();
6287 TLI.getTargetData()->getABITypeAlignment(
6288 VT.getTypeForEVT(*DAG.getContext()));
6290 if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
6297 SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6298 EVT VT = Op.getValueType();
6300 // Canonizalize to v2f64.
6301 V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6302 return DAG.getNode(ISD::BITCAST, dl, VT,
6303 getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6308 SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6310 SDValue V1 = Op.getOperand(0);
6311 SDValue V2 = Op.getOperand(1);
6312 EVT VT = Op.getValueType();
6314 assert(VT != MVT::v2i64 && "unsupported shuffle type");
6316 if (HasSSE2 && VT == MVT::v2f64)
6317 return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6319 // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6320 return DAG.getNode(ISD::BITCAST, dl, VT,
6321 getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6322 DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6323 DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6327 SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6328 SDValue V1 = Op.getOperand(0);
6329 SDValue V2 = Op.getOperand(1);
6330 EVT VT = Op.getValueType();
6332 assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6333 "unsupported shuffle type");
6335 if (V2.getOpcode() == ISD::UNDEF)
6339 return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6343 SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6344 SDValue V1 = Op.getOperand(0);
6345 SDValue V2 = Op.getOperand(1);
6346 EVT VT = Op.getValueType();
6347 unsigned NumElems = VT.getVectorNumElements();
6349 // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6350 // operand of these instructions is only memory, so check if there's a
6351 // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6353 bool CanFoldLoad = false;
6355 // Trivial case, when V2 comes from a load.
6356 if (MayFoldVectorLoad(V2))
6359 // When V1 is a load, it can be folded later into a store in isel, example:
6360 // (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6362 // (MOVLPSmr addr:$src1, VR128:$src2)
6363 // So, recognize this potential and also use MOVLPS or MOVLPD
6364 else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6367 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6369 if (HasSSE2 && NumElems == 2)
6370 return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6373 // If we don't care about the second element, procede to use movss.
6374 if (SVOp->getMaskElt(1) != -1)
6375 return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6378 // movl and movlp will both match v2i64, but v2i64 is never matched by
6379 // movl earlier because we make it strict to avoid messing with the movlp load
6380 // folding logic (see the code above getMOVLP call). Match it here then,
6381 // this is horrible, but will stay like this until we move all shuffle
6382 // matching to x86 specific nodes. Note that for the 1st condition all
6383 // types are matched with movsd.
6385 // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6386 // as to remove this logic from here, as much as possible
6387 if (NumElems == 2 || !X86::isMOVLMask(SVOp))
6388 return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6389 return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6392 assert(VT != MVT::v4i32 && "unsupported shuffle type");
6394 // Invert the operand order and use SHUFPS to match it.
6395 return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
6396 X86::getShuffleSHUFImmediate(SVOp), DAG);
6400 SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
6401 const TargetLowering &TLI,
6402 const X86Subtarget *Subtarget) {
6403 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6404 EVT VT = Op.getValueType();
6405 DebugLoc dl = Op.getDebugLoc();
6406 SDValue V1 = Op.getOperand(0);
6407 SDValue V2 = Op.getOperand(1);
6409 if (isZeroShuffle(SVOp))
6410 return getZeroVector(VT, Subtarget->hasSSE2(), Subtarget->hasAVX2(),
6413 // Handle splat operations
6414 if (SVOp->isSplat()) {
6415 unsigned NumElem = VT.getVectorNumElements();
6416 int Size = VT.getSizeInBits();
6417 // Special case, this is the only place now where it's allowed to return
6418 // a vector_shuffle operation without using a target specific node, because
6419 // *hopefully* it will be optimized away by the dag combiner. FIXME: should
6420 // this be moved to DAGCombine instead?
6421 if (NumElem <= 4 && CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
6424 // Use vbroadcast whenever the splat comes from a foldable load
6425 SDValue LD = isVectorBroadcast(Op, Subtarget);
6427 return DAG.getNode(X86ISD::VBROADCAST, dl, VT, LD);
6429 // Handle splats by matching through known shuffle masks
6430 if ((Size == 128 && NumElem <= 4) ||
6431 (Size == 256 && NumElem < 8))
6434 // All remaning splats are promoted to target supported vector shuffles.
6435 return PromoteSplat(SVOp, DAG);
6438 // If the shuffle can be profitably rewritten as a narrower shuffle, then
6440 if (VT == MVT::v8i16 || VT == MVT::v16i8) {
6441 SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6442 if (NewOp.getNode())
6443 return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6444 } else if ((VT == MVT::v4i32 ||
6445 (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6446 // FIXME: Figure out a cleaner way to do this.
6447 // Try to make use of movq to zero out the top part.
6448 if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6449 SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6450 if (NewOp.getNode()) {
6451 if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
6452 return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
6453 DAG, Subtarget, dl);
6455 } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6456 SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6457 if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
6458 return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
6459 DAG, Subtarget, dl);
6466 X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6467 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6468 SDValue V1 = Op.getOperand(0);
6469 SDValue V2 = Op.getOperand(1);
6470 EVT VT = Op.getValueType();
6471 DebugLoc dl = Op.getDebugLoc();
6472 unsigned NumElems = VT.getVectorNumElements();
6473 bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6474 bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6475 bool V1IsSplat = false;
6476 bool V2IsSplat = false;
6477 bool HasSSE2 = Subtarget->hasSSE2();
6478 bool HasAVX = Subtarget->hasAVX();
6479 bool HasAVX2 = Subtarget->hasAVX2();
6480 MachineFunction &MF = DAG.getMachineFunction();
6481 bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6483 assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6485 if (V1IsUndef && V2IsUndef)
6486 return DAG.getUNDEF(VT);
6488 assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
6490 // Vector shuffle lowering takes 3 steps:
6492 // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6493 // narrowing and commutation of operands should be handled.
6494 // 2) Matching of shuffles with known shuffle masks to x86 target specific
6496 // 3) Rewriting of unmatched masks into new generic shuffle operations,
6497 // so the shuffle can be broken into other shuffles and the legalizer can
6498 // try the lowering again.
6500 // The general idea is that no vector_shuffle operation should be left to
6501 // be matched during isel, all of them must be converted to a target specific
6504 // Normalize the input vectors. Here splats, zeroed vectors, profitable
6505 // narrowing and commutation of operands should be handled. The actual code
6506 // doesn't include all of those, work in progress...
6507 SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
6508 if (NewOp.getNode())
6511 // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6512 // unpckh_undef). Only use pshufd if speed is more important than size.
6513 if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp, HasAVX2))
6514 return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6515 if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp, HasAVX2))
6516 return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6518 if (X86::isMOVDDUPMask(SVOp) && Subtarget->hasSSE3() &&
6519 V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6520 return getMOVDDup(Op, dl, V1, DAG);
6522 if (X86::isMOVHLPS_v_undef_Mask(SVOp))
6523 return getMOVHighToLow(Op, dl, DAG);
6525 // Use to match splats
6526 if (HasSSE2 && X86::isUNPCKHMask(SVOp, HasAVX2) && V2IsUndef &&
6527 (VT == MVT::v2f64 || VT == MVT::v2i64))
6528 return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6530 if (X86::isPSHUFDMask(SVOp)) {
6531 // The actual implementation will match the mask in the if above and then
6532 // during isel it can match several different instructions, not only pshufd
6533 // as its name says, sad but true, emulate the behavior for now...
6534 if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6535 return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6537 unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
6539 if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6540 return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6542 return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
6546 // Check if this can be converted into a logical shift.
6547 bool isLeft = false;
6550 bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6551 if (isShift && ShVal.hasOneUse()) {
6552 // If the shifted value has multiple uses, it may be cheaper to use
6553 // v_set0 + movlhps or movhlps, etc.
6554 EVT EltVT = VT.getVectorElementType();
6555 ShAmt *= EltVT.getSizeInBits();
6556 return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6559 if (X86::isMOVLMask(SVOp)) {
6560 if (ISD::isBuildVectorAllZeros(V1.getNode()))
6561 return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6562 if (!X86::isMOVLPMask(SVOp)) {
6563 if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6564 return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6566 if (VT == MVT::v4i32 || VT == MVT::v4f32)
6567 return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6571 // FIXME: fold these into legal mask.
6572 if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp, HasAVX2))
6573 return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6575 if (X86::isMOVHLPSMask(SVOp))
6576 return getMOVHighToLow(Op, dl, DAG);
6578 if (X86::isMOVSHDUPMask(SVOp, Subtarget))
6579 return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6581 if (X86::isMOVSLDUPMask(SVOp, Subtarget))
6582 return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6584 if (X86::isMOVLPMask(SVOp))
6585 return getMOVLP(Op, dl, DAG, HasSSE2);
6587 if (ShouldXformToMOVHLPS(SVOp) ||
6588 ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
6589 return CommuteVectorShuffle(SVOp, DAG);
6592 // No better options. Use a vshl / vsrl.
6593 EVT EltVT = VT.getVectorElementType();
6594 ShAmt *= EltVT.getSizeInBits();
6595 return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6598 bool Commuted = false;
6599 // FIXME: This should also accept a bitcast of a splat? Be careful, not
6600 // 1,1,1,1 -> v8i16 though.
6601 V1IsSplat = isSplatVector(V1.getNode());
6602 V2IsSplat = isSplatVector(V2.getNode());
6604 // Canonicalize the splat or undef, if present, to be on the RHS.
6605 if (V1IsSplat && !V2IsSplat) {
6606 Op = CommuteVectorShuffle(SVOp, DAG);
6607 SVOp = cast<ShuffleVectorSDNode>(Op);
6608 V1 = SVOp->getOperand(0);
6609 V2 = SVOp->getOperand(1);
6610 std::swap(V1IsSplat, V2IsSplat);
6614 ArrayRef<int> M = SVOp->getMask();
6616 if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6617 // Shuffling low element of v1 into undef, just return v1.
6620 // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6621 // the instruction selector will not match, so get a canonical MOVL with
6622 // swapped operands to undo the commute.
6623 return getMOVL(DAG, dl, VT, V2, V1);
6626 if (isUNPCKLMask(M, VT, HasAVX2))
6627 return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6629 if (isUNPCKHMask(M, VT, HasAVX2))
6630 return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6633 // Normalize mask so all entries that point to V2 points to its first
6634 // element then try to match unpck{h|l} again. If match, return a
6635 // new vector_shuffle with the corrected mask.
6636 SDValue NewMask = NormalizeMask(SVOp, DAG);
6637 ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
6638 if (NSVOp != SVOp) {
6639 if (X86::isUNPCKLMask(NSVOp, HasAVX2, true)) {
6641 } else if (X86::isUNPCKHMask(NSVOp, HasAVX2, true)) {
6648 // Commute is back and try unpck* again.
6649 // FIXME: this seems wrong.
6650 SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
6651 ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
6653 if (X86::isUNPCKLMask(NewSVOp, HasAVX2))
6654 return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V2, V1, DAG);
6656 if (X86::isUNPCKHMask(NewSVOp, HasAVX2))
6657 return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V2, V1, DAG);
6660 // Normalize the node to match x86 shuffle ops if needed
6661 if (!V2IsUndef && (isSHUFPMask(M, VT, HasAVX, /* Commuted */ true)))
6662 return CommuteVectorShuffle(SVOp, DAG);
6664 // The checks below are all present in isShuffleMaskLegal, but they are
6665 // inlined here right now to enable us to directly emit target specific
6666 // nodes, and remove one by one until they don't return Op anymore.
6668 if (isPALIGNRMask(M, VT, Subtarget))
6669 return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6670 getShufflePALIGNRImmediate(SVOp),
6673 if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6674 SVOp->getSplatIndex() == 0 && V2IsUndef) {
6675 if (VT == MVT::v2f64 || VT == MVT::v2i64)
6676 return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6679 if (isPSHUFHWMask(M, VT))
6680 return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6681 X86::getShufflePSHUFHWImmediate(SVOp),
6684 if (isPSHUFLWMask(M, VT))
6685 return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6686 X86::getShufflePSHUFLWImmediate(SVOp),
6689 if (isSHUFPMask(M, VT, HasAVX))
6690 return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
6691 X86::getShuffleSHUFImmediate(SVOp), DAG);
6693 if (isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6694 return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6695 if (isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6696 return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6698 //===--------------------------------------------------------------------===//
6699 // Generate target specific nodes for 128 or 256-bit shuffles only
6700 // supported in the AVX instruction set.
6703 // Handle VMOVDDUPY permutations
6704 if (V2IsUndef && isMOVDDUPYMask(M, VT, HasAVX))
6705 return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6707 // Handle VPERMILPS/D* permutations
6708 if (isVPERMILPMask(M, VT, HasAVX))
6709 return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
6710 getShuffleVPERMILPImmediate(SVOp), DAG);
6712 // Handle VPERM2F128/VPERM2I128 permutations
6713 if (isVPERM2X128Mask(M, VT, HasAVX))
6714 return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
6715 V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
6717 //===--------------------------------------------------------------------===//
6718 // Since no target specific shuffle was selected for this generic one,
6719 // lower it into other known shuffles. FIXME: this isn't true yet, but
6720 // this is the plan.
6723 // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6724 if (VT == MVT::v8i16) {
6725 SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6726 if (NewOp.getNode())
6730 if (VT == MVT::v16i8) {
6731 SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6732 if (NewOp.getNode())
6736 // Handle all 128-bit wide vectors with 4 elements, and match them with
6737 // several different shuffle types.
6738 if (NumElems == 4 && VT.getSizeInBits() == 128)
6739 return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6741 // Handle general 256-bit shuffles
6742 if (VT.is256BitVector())
6743 return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6749 X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6750 SelectionDAG &DAG) const {
6751 EVT VT = Op.getValueType();
6752 DebugLoc dl = Op.getDebugLoc();
6754 if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6757 if (VT.getSizeInBits() == 8) {
6758 SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6759 Op.getOperand(0), Op.getOperand(1));
6760 SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6761 DAG.getValueType(VT));
6762 return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6763 } else if (VT.getSizeInBits() == 16) {
6764 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6765 // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6767 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6768 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6769 DAG.getNode(ISD::BITCAST, dl,
6773 SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6774 Op.getOperand(0), Op.getOperand(1));
6775 SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6776 DAG.getValueType(VT));
6777 return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6778 } else if (VT == MVT::f32) {
6779 // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6780 // the result back to FR32 register. It's only worth matching if the
6781 // result has a single use which is a store or a bitcast to i32. And in
6782 // the case of a store, it's not worth it if the index is a constant 0,
6783 // because a MOVSSmr can be used instead, which is smaller and faster.
6784 if (!Op.hasOneUse())
6786 SDNode *User = *Op.getNode()->use_begin();
6787 if ((User->getOpcode() != ISD::STORE ||
6788 (isa<ConstantSDNode>(Op.getOperand(1)) &&
6789 cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6790 (User->getOpcode() != ISD::BITCAST ||
6791 User->getValueType(0) != MVT::i32))
6793 SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6794 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6797 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6798 } else if (VT == MVT::i32 || VT == MVT::i64) {
6799 // ExtractPS/pextrq works with constant index.
6800 if (isa<ConstantSDNode>(Op.getOperand(1)))
6808 X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6809 SelectionDAG &DAG) const {
6810 if (!isa<ConstantSDNode>(Op.getOperand(1)))
6813 SDValue Vec = Op.getOperand(0);
6814 EVT VecVT = Vec.getValueType();
6816 // If this is a 256-bit vector result, first extract the 128-bit vector and
6817 // then extract the element from the 128-bit vector.
6818 if (VecVT.getSizeInBits() == 256) {
6819 DebugLoc dl = Op.getNode()->getDebugLoc();
6820 unsigned NumElems = VecVT.getVectorNumElements();
6821 SDValue Idx = Op.getOperand(1);
6822 unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6824 // Get the 128-bit vector.
6825 bool Upper = IdxVal >= NumElems/2;
6826 Vec = Extract128BitVector(Vec,
6827 DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32), DAG, dl);
6829 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6830 Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : Idx);
6833 assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6835 if (Subtarget->hasSSE41()) {
6836 SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6841 EVT VT = Op.getValueType();
6842 DebugLoc dl = Op.getDebugLoc();
6843 // TODO: handle v16i8.
6844 if (VT.getSizeInBits() == 16) {
6845 SDValue Vec = Op.getOperand(0);
6846 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6848 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6849 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6850 DAG.getNode(ISD::BITCAST, dl,
6853 // Transform it so it match pextrw which produces a 32-bit result.
6854 EVT EltVT = MVT::i32;
6855 SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6856 Op.getOperand(0), Op.getOperand(1));
6857 SDValue Assert = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6858 DAG.getValueType(VT));
6859 return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6860 } else if (VT.getSizeInBits() == 32) {
6861 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6865 // SHUFPS the element to the lowest double word, then movss.
6866 int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6867 EVT VVT = Op.getOperand(0).getValueType();
6868 SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6869 DAG.getUNDEF(VVT), Mask);
6870 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6871 DAG.getIntPtrConstant(0));
6872 } else if (VT.getSizeInBits() == 64) {
6873 // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6874 // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6875 // to match extract_elt for f64.
6876 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6880 // UNPCKHPD the element to the lowest double word, then movsd.
6881 // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6882 // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6883 int Mask[2] = { 1, -1 };
6884 EVT VVT = Op.getOperand(0).getValueType();
6885 SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6886 DAG.getUNDEF(VVT), Mask);
6887 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6888 DAG.getIntPtrConstant(0));
6895 X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6896 SelectionDAG &DAG) const {
6897 EVT VT = Op.getValueType();
6898 EVT EltVT = VT.getVectorElementType();
6899 DebugLoc dl = Op.getDebugLoc();
6901 SDValue N0 = Op.getOperand(0);
6902 SDValue N1 = Op.getOperand(1);
6903 SDValue N2 = Op.getOperand(2);
6905 if (VT.getSizeInBits() == 256)
6908 if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6909 isa<ConstantSDNode>(N2)) {
6911 if (VT == MVT::v8i16)
6912 Opc = X86ISD::PINSRW;
6913 else if (VT == MVT::v16i8)
6914 Opc = X86ISD::PINSRB;
6916 Opc = X86ISD::PINSRB;
6918 // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6920 if (N1.getValueType() != MVT::i32)
6921 N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6922 if (N2.getValueType() != MVT::i32)
6923 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6924 return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6925 } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6926 // Bits [7:6] of the constant are the source select. This will always be
6927 // zero here. The DAG Combiner may combine an extract_elt index into these
6928 // bits. For example (insert (extract, 3), 2) could be matched by putting
6929 // the '3' into bits [7:6] of X86ISD::INSERTPS.
6930 // Bits [5:4] of the constant are the destination select. This is the
6931 // value of the incoming immediate.
6932 // Bits [3:0] of the constant are the zero mask. The DAG Combiner may
6933 // combine either bitwise AND or insert of float 0.0 to set these bits.
6934 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6935 // Create this as a scalar to vector..
6936 N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6937 return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
6938 } else if ((EltVT == MVT::i32 || EltVT == MVT::i64) &&
6939 isa<ConstantSDNode>(N2)) {
6940 // PINSR* works with constant index.
6947 X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
6948 EVT VT = Op.getValueType();
6949 EVT EltVT = VT.getVectorElementType();
6951 DebugLoc dl = Op.getDebugLoc();
6952 SDValue N0 = Op.getOperand(0);
6953 SDValue N1 = Op.getOperand(1);
6954 SDValue N2 = Op.getOperand(2);
6956 // If this is a 256-bit vector result, first extract the 128-bit vector,
6957 // insert the element into the extracted half and then place it back.
6958 if (VT.getSizeInBits() == 256) {
6959 if (!isa<ConstantSDNode>(N2))
6962 // Get the desired 128-bit vector half.
6963 unsigned NumElems = VT.getVectorNumElements();
6964 unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
6965 bool Upper = IdxVal >= NumElems/2;
6966 SDValue Ins128Idx = DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32);
6967 SDValue V = Extract128BitVector(N0, Ins128Idx, DAG, dl);
6969 // Insert the element into the desired half.
6970 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V,
6971 N1, Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : N2);
6973 // Insert the changed part back to the 256-bit vector
6974 return Insert128BitVector(N0, V, Ins128Idx, DAG, dl);
6977 if (Subtarget->hasSSE41())
6978 return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
6980 if (EltVT == MVT::i8)
6983 if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
6984 // Transform it so it match pinsrw which expects a 16-bit value in a GR32
6985 // as its second argument.
6986 if (N1.getValueType() != MVT::i32)
6987 N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6988 if (N2.getValueType() != MVT::i32)
6989 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6990 return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
6996 X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
6997 LLVMContext *Context = DAG.getContext();
6998 DebugLoc dl = Op.getDebugLoc();
6999 EVT OpVT = Op.getValueType();
7001 // If this is a 256-bit vector result, first insert into a 128-bit
7002 // vector and then insert into the 256-bit vector.
7003 if (OpVT.getSizeInBits() > 128) {
7004 // Insert into a 128-bit vector.
7005 EVT VT128 = EVT::getVectorVT(*Context,
7006 OpVT.getVectorElementType(),
7007 OpVT.getVectorNumElements() / 2);
7009 Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7011 // Insert the 128-bit vector.
7012 return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
7013 DAG.getConstant(0, MVT::i32),
7017 if (Op.getValueType() == MVT::v1i64 &&
7018 Op.getOperand(0).getValueType() == MVT::i64)
7019 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7021 SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7022 assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
7023 "Expected an SSE type!");
7024 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
7025 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7028 // Lower a node with an EXTRACT_SUBVECTOR opcode. This may result in
7029 // a simple subregister reference or explicit instructions to grab
7030 // upper bits of a vector.
7032 X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7033 if (Subtarget->hasAVX()) {
7034 DebugLoc dl = Op.getNode()->getDebugLoc();
7035 SDValue Vec = Op.getNode()->getOperand(0);
7036 SDValue Idx = Op.getNode()->getOperand(1);
7038 if (Op.getNode()->getValueType(0).getSizeInBits() == 128
7039 && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
7040 return Extract128BitVector(Vec, Idx, DAG, dl);
7046 // Lower a node with an INSERT_SUBVECTOR opcode. This may result in a
7047 // simple superregister reference or explicit instructions to insert
7048 // the upper bits of a vector.
7050 X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7051 if (Subtarget->hasAVX()) {
7052 DebugLoc dl = Op.getNode()->getDebugLoc();
7053 SDValue Vec = Op.getNode()->getOperand(0);
7054 SDValue SubVec = Op.getNode()->getOperand(1);
7055 SDValue Idx = Op.getNode()->getOperand(2);
7057 if (Op.getNode()->getValueType(0).getSizeInBits() == 256
7058 && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
7059 return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
7065 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7066 // their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7067 // one of the above mentioned nodes. It has to be wrapped because otherwise
7068 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7069 // be used to form addressing mode. These wrapped nodes will be selected
7072 X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7073 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7075 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7077 unsigned char OpFlag = 0;
7078 unsigned WrapperKind = X86ISD::Wrapper;
7079 CodeModel::Model M = getTargetMachine().getCodeModel();
7081 if (Subtarget->isPICStyleRIPRel() &&
7082 (M == CodeModel::Small || M == CodeModel::Kernel))
7083 WrapperKind = X86ISD::WrapperRIP;
7084 else if (Subtarget->isPICStyleGOT())
7085 OpFlag = X86II::MO_GOTOFF;
7086 else if (Subtarget->isPICStyleStubPIC())
7087 OpFlag = X86II::MO_PIC_BASE_OFFSET;
7089 SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7091 CP->getOffset(), OpFlag);
7092 DebugLoc DL = CP->getDebugLoc();
7093 Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7094 // With PIC, the address is actually $g + Offset.
7096 Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7097 DAG.getNode(X86ISD::GlobalBaseReg,
7098 DebugLoc(), getPointerTy()),
7105 SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7106 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7108 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7110 unsigned char OpFlag = 0;
7111 unsigned WrapperKind = X86ISD::Wrapper;
7112 CodeModel::Model M = getTargetMachine().getCodeModel();
7114 if (Subtarget->isPICStyleRIPRel() &&
7115 (M == CodeModel::Small || M == CodeModel::Kernel))
7116 WrapperKind = X86ISD::WrapperRIP;
7117 else if (Subtarget->isPICStyleGOT())
7118 OpFlag = X86II::MO_GOTOFF;
7119 else if (Subtarget->isPICStyleStubPIC())
7120 OpFlag = X86II::MO_PIC_BASE_OFFSET;
7122 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7124 DebugLoc DL = JT->getDebugLoc();
7125 Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7127 // With PIC, the address is actually $g + Offset.
7129 Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7130 DAG.getNode(X86ISD::GlobalBaseReg,
7131 DebugLoc(), getPointerTy()),
7138 X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7139 const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7141 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7143 unsigned char OpFlag = 0;
7144 unsigned WrapperKind = X86ISD::Wrapper;
7145 CodeModel::Model M = getTargetMachine().getCodeModel();
7147 if (Subtarget->isPICStyleRIPRel() &&
7148 (M == CodeModel::Small || M == CodeModel::Kernel)) {
7149 if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7150 OpFlag = X86II::MO_GOTPCREL;
7151 WrapperKind = X86ISD::WrapperRIP;
7152 } else if (Subtarget->isPICStyleGOT()) {
7153 OpFlag = X86II::MO_GOT;
7154 } else if (Subtarget->isPICStyleStubPIC()) {
7155 OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7156 } else if (Subtarget->isPICStyleStubNoDynamic()) {
7157 OpFlag = X86II::MO_DARWIN_NONLAZY;
7160 SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7162 DebugLoc DL = Op.getDebugLoc();
7163 Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7166 // With PIC, the address is actually $g + Offset.
7167 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7168 !Subtarget->is64Bit()) {
7169 Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7170 DAG.getNode(X86ISD::GlobalBaseReg,
7171 DebugLoc(), getPointerTy()),
7175 // For symbols that require a load from a stub to get the address, emit the
7177 if (isGlobalStubReference(OpFlag))
7178 Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7179 MachinePointerInfo::getGOT(), false, false, false, 0);
7185 X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7186 // Create the TargetBlockAddressAddress node.
7187 unsigned char OpFlags =
7188 Subtarget->ClassifyBlockAddressReference();
7189 CodeModel::Model M = getTargetMachine().getCodeModel();
7190 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7191 DebugLoc dl = Op.getDebugLoc();
7192 SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
7193 /*isTarget=*/true, OpFlags);
7195 if (Subtarget->isPICStyleRIPRel() &&
7196 (M == CodeModel::Small || M == CodeModel::Kernel))
7197 Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7199 Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7201 // With PIC, the address is actually $g + Offset.
7202 if (isGlobalRelativeToPICBase(OpFlags)) {
7203 Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7204 DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7212 X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7214 SelectionDAG &DAG) const {
7215 // Create the TargetGlobalAddress node, folding in the constant
7216 // offset if it is legal.
7217 unsigned char OpFlags =
7218 Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7219 CodeModel::Model M = getTargetMachine().getCodeModel();
7221 if (OpFlags == X86II::MO_NO_FLAG &&
7222 X86::isOffsetSuitableForCodeModel(Offset, M)) {
7223 // A direct static reference to a global.
7224 Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7227 Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7230 if (Subtarget->isPICStyleRIPRel() &&
7231 (M == CodeModel::Small || M == CodeModel::Kernel))
7232 Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7234 Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7236 // With PIC, the address is actually $g + Offset.
7237 if (isGlobalRelativeToPICBase(OpFlags)) {
7238 Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7239 DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7243 // For globals that require a load from a stub to get the address, emit the
7245 if (isGlobalStubReference(OpFlags))
7246 Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7247 MachinePointerInfo::getGOT(), false, false, false, 0);
7249 // If there was a non-zero offset that we didn't fold, create an explicit
7252 Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7253 DAG.getConstant(Offset, getPointerTy()));
7259 X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7260 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7261 int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7262 return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7266 GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7267 SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7268 unsigned char OperandFlags) {
7269 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7270 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7271 DebugLoc dl = GA->getDebugLoc();
7272 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7273 GA->getValueType(0),
7277 SDValue Ops[] = { Chain, TGA, *InFlag };
7278 Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
7280 SDValue Ops[] = { Chain, TGA };
7281 Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
7284 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7285 MFI->setAdjustsStack(true);
7287 SDValue Flag = Chain.getValue(1);
7288 return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7291 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7293 LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7296 DebugLoc dl = GA->getDebugLoc(); // ? function entry point might be better
7297 SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7298 DAG.getNode(X86ISD::GlobalBaseReg,
7299 DebugLoc(), PtrVT), InFlag);
7300 InFlag = Chain.getValue(1);
7302 return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7305 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7307 LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7309 return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7310 X86::RAX, X86II::MO_TLSGD);
7313 // Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
7314 // "local exec" model.
7315 static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7316 const EVT PtrVT, TLSModel::Model model,
7318 DebugLoc dl = GA->getDebugLoc();
7320 // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7321 Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7322 is64Bit ? 257 : 256));
7324 SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7325 DAG.getIntPtrConstant(0),
7326 MachinePointerInfo(Ptr),
7327 false, false, false, 0);
7329 unsigned char OperandFlags = 0;
7330 // Most TLS accesses are not RIP relative, even on x86-64. One exception is
7332 unsigned WrapperKind = X86ISD::Wrapper;
7333 if (model == TLSModel::LocalExec) {
7334 OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7335 } else if (is64Bit) {
7336 assert(model == TLSModel::InitialExec);
7337 OperandFlags = X86II::MO_GOTTPOFF;
7338 WrapperKind = X86ISD::WrapperRIP;
7340 assert(model == TLSModel::InitialExec);
7341 OperandFlags = X86II::MO_INDNTPOFF;
7344 // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
7346 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7347 GA->getValueType(0),
7348 GA->getOffset(), OperandFlags);
7349 SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7351 if (model == TLSModel::InitialExec)
7352 Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7353 MachinePointerInfo::getGOT(), false, false, false, 0);
7355 // The address of the thread local variable is the add of the thread
7356 // pointer with the offset of the variable.
7357 return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7361 X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7363 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7364 const GlobalValue *GV = GA->getGlobal();
7366 if (Subtarget->isTargetELF()) {
7367 // TODO: implement the "local dynamic" model
7368 // TODO: implement the "initial exec"model for pic executables
7370 // If GV is an alias then use the aliasee for determining
7371 // thread-localness.
7372 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7373 GV = GA->resolveAliasedGlobal(false);
7375 TLSModel::Model model
7376 = getTLSModel(GV, getTargetMachine().getRelocationModel());
7379 case TLSModel::GeneralDynamic:
7380 case TLSModel::LocalDynamic: // not implemented
7381 if (Subtarget->is64Bit())
7382 return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7383 return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7385 case TLSModel::InitialExec:
7386 case TLSModel::LocalExec:
7387 return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7388 Subtarget->is64Bit());
7390 } else if (Subtarget->isTargetDarwin()) {
7391 // Darwin only has one model of TLS. Lower to that.
7392 unsigned char OpFlag = 0;
7393 unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7394 X86ISD::WrapperRIP : X86ISD::Wrapper;
7396 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7398 bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7399 !Subtarget->is64Bit();
7401 OpFlag = X86II::MO_TLVP_PIC_BASE;
7403 OpFlag = X86II::MO_TLVP;
7404 DebugLoc DL = Op.getDebugLoc();
7405 SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7406 GA->getValueType(0),
7407 GA->getOffset(), OpFlag);
7408 SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7410 // With PIC32, the address is actually $g + Offset.
7412 Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7413 DAG.getNode(X86ISD::GlobalBaseReg,
7414 DebugLoc(), getPointerTy()),
7417 // Lowering the machine isd will make sure everything is in the right
7419 SDValue Chain = DAG.getEntryNode();
7420 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7421 SDValue Args[] = { Chain, Offset };
7422 Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7424 // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7425 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7426 MFI->setAdjustsStack(true);
7428 // And our return value (tls address) is in the standard call return value
7430 unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7431 return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7435 llvm_unreachable("TLS not implemented for this target.");
7439 /// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
7440 /// and take a 2 x i32 value to shift plus a shift amount.
7441 SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
7442 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7443 EVT VT = Op.getValueType();
7444 unsigned VTBits = VT.getSizeInBits();
7445 DebugLoc dl = Op.getDebugLoc();
7446 bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7447 SDValue ShOpLo = Op.getOperand(0);
7448 SDValue ShOpHi = Op.getOperand(1);
7449 SDValue ShAmt = Op.getOperand(2);
7450 SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7451 DAG.getConstant(VTBits - 1, MVT::i8))
7452 : DAG.getConstant(0, VT);
7455 if (Op.getOpcode() == ISD::SHL_PARTS) {
7456 Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7457 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7459 Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7460 Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7463 SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7464 DAG.getConstant(VTBits, MVT::i8));
7465 SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7466 AndNode, DAG.getConstant(0, MVT::i8));
7469 SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7470 SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7471 SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7473 if (Op.getOpcode() == ISD::SHL_PARTS) {
7474 Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7475 Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7477 Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7478 Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7481 SDValue Ops[2] = { Lo, Hi };
7482 return DAG.getMergeValues(Ops, 2, dl);
7485 SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7486 SelectionDAG &DAG) const {
7487 EVT SrcVT = Op.getOperand(0).getValueType();
7489 if (SrcVT.isVector())
7492 assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7493 "Unknown SINT_TO_FP to lower!");
7495 // These are really Legal; return the operand so the caller accepts it as
7497 if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7499 if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7500 Subtarget->is64Bit()) {
7504 DebugLoc dl = Op.getDebugLoc();
7505 unsigned Size = SrcVT.getSizeInBits()/8;
7506 MachineFunction &MF = DAG.getMachineFunction();
7507 int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7508 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7509 SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7511 MachinePointerInfo::getFixedStack(SSFI),
7513 return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7516 SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7518 SelectionDAG &DAG) const {
7520 DebugLoc DL = Op.getDebugLoc();
7522 bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7524 Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7526 Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7528 unsigned ByteSize = SrcVT.getSizeInBits()/8;
7530 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7531 MachineMemOperand *MMO;
7533 int SSFI = FI->getIndex();
7535 DAG.getMachineFunction()
7536 .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7537 MachineMemOperand::MOLoad, ByteSize, ByteSize);
7539 MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7540 StackSlot = StackSlot.getOperand(1);
7542 SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7543 SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7545 Tys, Ops, array_lengthof(Ops),
7549 Chain = Result.getValue(1);
7550 SDValue InFlag = Result.getValue(2);
7552 // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7553 // shouldn't be necessary except that RFP cannot be live across
7554 // multiple blocks. When stackifier is fixed, they can be uncoupled.
7555 MachineFunction &MF = DAG.getMachineFunction();
7556 unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7557 int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7558 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7559 Tys = DAG.getVTList(MVT::Other);
7561 Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7563 MachineMemOperand *MMO =
7564 DAG.getMachineFunction()
7565 .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7566 MachineMemOperand::MOStore, SSFISize, SSFISize);
7568 Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7569 Ops, array_lengthof(Ops),
7570 Op.getValueType(), MMO);
7571 Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7572 MachinePointerInfo::getFixedStack(SSFI),
7573 false, false, false, 0);
7579 // LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7580 SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7581 SelectionDAG &DAG) const {
7582 // This algorithm is not obvious. Here it is what we're trying to output:
7585 punpckldq (c0), %xmm0 // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
7586 subpd (c1), %xmm0 // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
7590 pshufd $0x4e, %xmm0, %xmm1
7595 DebugLoc dl = Op.getDebugLoc();
7596 LLVMContext *Context = DAG.getContext();
7598 // Build some magic constants.
7599 SmallVector<Constant*,4> CV0;
7600 CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
7601 CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
7602 CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7603 CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7604 Constant *C0 = ConstantVector::get(CV0);
7605 SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7607 SmallVector<Constant*,2> CV1;
7609 ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7611 ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7612 Constant *C1 = ConstantVector::get(CV1);
7613 SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7615 // Load the 64-bit value into an XMM register.
7616 SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
7618 SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7619 MachinePointerInfo::getConstantPool(),
7620 false, false, false, 16);
7621 SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
7622 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
7625 SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7626 MachinePointerInfo::getConstantPool(),
7627 false, false, false, 16);
7628 SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
7629 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7632 if (Subtarget->hasSSE3()) {
7633 // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
7634 Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
7636 SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
7637 SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
7639 Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
7640 DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
7644 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
7645 DAG.getIntPtrConstant(0));
7648 // LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7649 SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7650 SelectionDAG &DAG) const {
7651 DebugLoc dl = Op.getDebugLoc();
7652 // FP constant to bias correct the final result.
7653 SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7656 // Load the 32-bit value into an XMM register.
7657 SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7660 // Zero out the upper parts of the register.
7661 Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
7663 Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7664 DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7665 DAG.getIntPtrConstant(0));
7667 // Or the load with the bias.
7668 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7669 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7670 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7672 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7673 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7674 MVT::v2f64, Bias)));
7675 Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7676 DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7677 DAG.getIntPtrConstant(0));
7679 // Subtract the bias.
7680 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7682 // Handle final rounding.
7683 EVT DestVT = Op.getValueType();
7685 if (DestVT.bitsLT(MVT::f64)) {
7686 return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7687 DAG.getIntPtrConstant(0));
7688 } else if (DestVT.bitsGT(MVT::f64)) {
7689 return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7692 // Handle final rounding.
7696 SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7697 SelectionDAG &DAG) const {
7698 SDValue N0 = Op.getOperand(0);
7699 DebugLoc dl = Op.getDebugLoc();
7701 // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7702 // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7703 // the optimization here.
7704 if (DAG.SignBitIsZero(N0))
7705 return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7707 EVT SrcVT = N0.getValueType();
7708 EVT DstVT = Op.getValueType();
7709 if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7710 return LowerUINT_TO_FP_i64(Op, DAG);
7711 else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7712 return LowerUINT_TO_FP_i32(Op, DAG);
7713 else if (Subtarget->is64Bit() &&
7714 SrcVT == MVT::i64 && DstVT == MVT::f32)
7717 // Make a 64-bit buffer, and use it to build an FILD.
7718 SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7719 if (SrcVT == MVT::i32) {
7720 SDValue WordOff = DAG.getConstant(4, getPointerTy());
7721 SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7722 getPointerTy(), StackSlot, WordOff);
7723 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7724 StackSlot, MachinePointerInfo(),
7726 SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7727 OffsetSlot, MachinePointerInfo(),
7729 SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7733 assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7734 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7735 StackSlot, MachinePointerInfo(),
7737 // For i64 source, we need to add the appropriate power of 2 if the input
7738 // was negative. This is the same as the optimization in
7739 // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7740 // we must be careful to do the computation in x87 extended precision, not
7741 // in SSE. (The generic code can't know it's OK to do this, or how to.)
7742 int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7743 MachineMemOperand *MMO =
7744 DAG.getMachineFunction()
7745 .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7746 MachineMemOperand::MOLoad, 8, 8);
7748 SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7749 SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7750 SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7753 APInt FF(32, 0x5F800000ULL);
7755 // Check whether the sign bit is set.
7756 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7757 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7760 // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7761 SDValue FudgePtr = DAG.getConstantPool(
7762 ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7765 // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7766 SDValue Zero = DAG.getIntPtrConstant(0);
7767 SDValue Four = DAG.getIntPtrConstant(4);
7768 SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7770 FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7772 // Load the value out, extending it from f32 to f80.
7773 // FIXME: Avoid the extend by constructing the right constant pool?
7774 SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7775 FudgePtr, MachinePointerInfo::getConstantPool(),
7776 MVT::f32, false, false, 4);
7777 // Extend everything to 80 bits to force it to be done on x87.
7778 SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7779 return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7782 std::pair<SDValue,SDValue> X86TargetLowering::
7783 FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
7784 DebugLoc DL = Op.getDebugLoc();
7786 EVT DstTy = Op.getValueType();
7789 assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7793 assert(DstTy.getSimpleVT() <= MVT::i64 &&
7794 DstTy.getSimpleVT() >= MVT::i16 &&
7795 "Unknown FP_TO_SINT to lower!");
7797 // These are really Legal.
7798 if (DstTy == MVT::i32 &&
7799 isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7800 return std::make_pair(SDValue(), SDValue());
7801 if (Subtarget->is64Bit() &&
7802 DstTy == MVT::i64 &&
7803 isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7804 return std::make_pair(SDValue(), SDValue());
7806 // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
7808 MachineFunction &MF = DAG.getMachineFunction();
7809 unsigned MemSize = DstTy.getSizeInBits()/8;
7810 int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7811 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7816 switch (DstTy.getSimpleVT().SimpleTy) {
7817 default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7818 case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7819 case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7820 case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7823 SDValue Chain = DAG.getEntryNode();
7824 SDValue Value = Op.getOperand(0);
7825 EVT TheVT = Op.getOperand(0).getValueType();
7826 if (isScalarFPTypeInSSEReg(TheVT)) {
7827 assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7828 Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7829 MachinePointerInfo::getFixedStack(SSFI),
7831 SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7833 Chain, StackSlot, DAG.getValueType(TheVT)
7836 MachineMemOperand *MMO =
7837 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7838 MachineMemOperand::MOLoad, MemSize, MemSize);
7839 Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7841 Chain = Value.getValue(1);
7842 SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7843 StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7846 MachineMemOperand *MMO =
7847 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7848 MachineMemOperand::MOStore, MemSize, MemSize);
7850 // Build the FP_TO_INT*_IN_MEM
7851 SDValue Ops[] = { Chain, Value, StackSlot };
7852 SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7853 Ops, 3, DstTy, MMO);
7855 return std::make_pair(FIST, StackSlot);
7858 SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7859 SelectionDAG &DAG) const {
7860 if (Op.getValueType().isVector())
7863 std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
7864 SDValue FIST = Vals.first, StackSlot = Vals.second;
7865 // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7866 if (FIST.getNode() == 0) return Op;
7869 return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7870 FIST, StackSlot, MachinePointerInfo(),
7871 false, false, false, 0);
7874 SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7875 SelectionDAG &DAG) const {
7876 std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
7877 SDValue FIST = Vals.first, StackSlot = Vals.second;
7878 assert(FIST.getNode() && "Unexpected failure");
7881 return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7882 FIST, StackSlot, MachinePointerInfo(),
7883 false, false, false, 0);
7886 SDValue X86TargetLowering::LowerFABS(SDValue Op,
7887 SelectionDAG &DAG) const {
7888 LLVMContext *Context = DAG.getContext();
7889 DebugLoc dl = Op.getDebugLoc();
7890 EVT VT = Op.getValueType();
7893 EltVT = VT.getVectorElementType();
7894 SmallVector<Constant*,4> CV;
7895 if (EltVT == MVT::f64) {
7896 Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
7899 Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
7902 Constant *C = ConstantVector::get(CV);
7903 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7904 SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7905 MachinePointerInfo::getConstantPool(),
7906 false, false, false, 16);
7907 return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
7910 SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
7911 LLVMContext *Context = DAG.getContext();
7912 DebugLoc dl = Op.getDebugLoc();
7913 EVT VT = Op.getValueType();
7915 unsigned NumElts = VT == MVT::f64 ? 2 : 4;
7916 if (VT.isVector()) {
7917 EltVT = VT.getVectorElementType();
7918 NumElts = VT.getVectorNumElements();
7920 SmallVector<Constant*,8> CV;
7921 if (EltVT == MVT::f64) {
7922 Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
7923 CV.assign(NumElts, C);
7925 Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
7926 CV.assign(NumElts, C);
7928 Constant *C = ConstantVector::get(CV);
7929 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7930 SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7931 MachinePointerInfo::getConstantPool(),
7932 false, false, false, 16);
7933 if (VT.isVector()) {
7934 MVT XORVT = VT.getSizeInBits() == 128 ? MVT::v2i64 : MVT::v4i64;
7935 return DAG.getNode(ISD::BITCAST, dl, VT,
7936 DAG.getNode(ISD::XOR, dl, XORVT,
7937 DAG.getNode(ISD::BITCAST, dl, XORVT,
7939 DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
7941 return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
7945 SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
7946 LLVMContext *Context = DAG.getContext();
7947 SDValue Op0 = Op.getOperand(0);
7948 SDValue Op1 = Op.getOperand(1);
7949 DebugLoc dl = Op.getDebugLoc();
7950 EVT VT = Op.getValueType();
7951 EVT SrcVT = Op1.getValueType();
7953 // If second operand is smaller, extend it first.
7954 if (SrcVT.bitsLT(VT)) {
7955 Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
7958 // And if it is bigger, shrink it first.
7959 if (SrcVT.bitsGT(VT)) {
7960 Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
7964 // At this point the operands and the result should have the same
7965 // type, and that won't be f80 since that is not custom lowered.
7967 // First get the sign bit of second operand.
7968 SmallVector<Constant*,4> CV;
7969 if (SrcVT == MVT::f64) {
7970 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
7971 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7973 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
7974 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7975 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7976 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7978 Constant *C = ConstantVector::get(CV);
7979 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7980 SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
7981 MachinePointerInfo::getConstantPool(),
7982 false, false, false, 16);
7983 SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
7985 // Shift sign bit right or left if the two operands have different types.
7986 if (SrcVT.bitsGT(VT)) {
7987 // Op0 is MVT::f32, Op1 is MVT::f64.
7988 SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
7989 SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
7990 DAG.getConstant(32, MVT::i32));
7991 SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
7992 SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
7993 DAG.getIntPtrConstant(0));
7996 // Clear first operand sign bit.
7998 if (VT == MVT::f64) {
7999 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8000 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8002 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8003 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8004 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8005 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8007 C = ConstantVector::get(CV);
8008 CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8009 SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8010 MachinePointerInfo::getConstantPool(),
8011 false, false, false, 16);
8012 SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8014 // Or the value with the sign bit.
8015 return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8018 SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
8019 SDValue N0 = Op.getOperand(0);
8020 DebugLoc dl = Op.getDebugLoc();
8021 EVT VT = Op.getValueType();
8023 // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8024 SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8025 DAG.getConstant(1, VT));
8026 return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8029 /// Emit nodes that will be selected as "test Op0,Op0", or something
8031 SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8032 SelectionDAG &DAG) const {
8033 DebugLoc dl = Op.getDebugLoc();
8035 // CF and OF aren't always set the way we want. Determine which
8036 // of these we need.
8037 bool NeedCF = false;
8038 bool NeedOF = false;
8041 case X86::COND_A: case X86::COND_AE:
8042 case X86::COND_B: case X86::COND_BE:
8045 case X86::COND_G: case X86::COND_GE:
8046 case X86::COND_L: case X86::COND_LE:
8047 case X86::COND_O: case X86::COND_NO:
8052 // See if we can use the EFLAGS value from the operand instead of
8053 // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8054 // we prove that the arithmetic won't overflow, we can't use OF or CF.
8055 if (Op.getResNo() != 0 || NeedOF || NeedCF)
8056 // Emit a CMP with 0, which is the TEST pattern.
8057 return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8058 DAG.getConstant(0, Op.getValueType()));
8060 unsigned Opcode = 0;
8061 unsigned NumOperands = 0;
8062 switch (Op.getNode()->getOpcode()) {
8064 // Due to an isel shortcoming, be conservative if this add is likely to be
8065 // selected as part of a load-modify-store instruction. When the root node
8066 // in a match is a store, isel doesn't know how to remap non-chain non-flag
8067 // uses of other nodes in the match, such as the ADD in this case. This
8068 // leads to the ADD being left around and reselected, with the result being
8069 // two adds in the output. Alas, even if none our users are stores, that
8070 // doesn't prove we're O.K. Ergo, if we have any parents that aren't
8071 // CopyToReg or SETCC, eschew INC/DEC. A better fix seems to require
8072 // climbing the DAG back to the root, and it doesn't seem to be worth the
8074 for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8075 UE = Op.getNode()->use_end(); UI != UE; ++UI)
8076 if (UI->getOpcode() != ISD::CopyToReg &&
8077 UI->getOpcode() != ISD::SETCC &&
8078 UI->getOpcode() != ISD::STORE)
8081 if (ConstantSDNode *C =
8082 dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
8083 // An add of one will be selected as an INC.
8084 if (C->getAPIntValue() == 1) {
8085 Opcode = X86ISD::INC;
8090 // An add of negative one (subtract of one) will be selected as a DEC.
8091 if (C->getAPIntValue().isAllOnesValue()) {
8092 Opcode = X86ISD::DEC;
8098 // Otherwise use a regular EFLAGS-setting add.
8099 Opcode = X86ISD::ADD;
8103 // If the primary and result isn't used, don't bother using X86ISD::AND,
8104 // because a TEST instruction will be better.
8105 bool NonFlagUse = false;
8106 for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8107 UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8109 unsigned UOpNo = UI.getOperandNo();
8110 if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8111 // Look pass truncate.
8112 UOpNo = User->use_begin().getOperandNo();
8113 User = *User->use_begin();
8116 if (User->getOpcode() != ISD::BRCOND &&
8117 User->getOpcode() != ISD::SETCC &&
8118 (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
8131 // Due to the ISEL shortcoming noted above, be conservative if this op is
8132 // likely to be selected as part of a load-modify-store instruction.
8133 for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8134 UE = Op.getNode()->use_end(); UI != UE; ++UI)
8135 if (UI->getOpcode() == ISD::STORE)
8138 // Otherwise use a regular EFLAGS-setting instruction.
8139 switch (Op.getNode()->getOpcode()) {
8140 default: llvm_unreachable("unexpected operator!");
8141 case ISD::SUB: Opcode = X86ISD::SUB; break;
8142 case ISD::OR: Opcode = X86ISD::OR; break;
8143 case ISD::XOR: Opcode = X86ISD::XOR; break;
8144 case ISD::AND: Opcode = X86ISD::AND; break;
8156 return SDValue(Op.getNode(), 1);
8163 // Emit a CMP with 0, which is the TEST pattern.
8164 return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8165 DAG.getConstant(0, Op.getValueType()));
8167 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8168 SmallVector<SDValue, 4> Ops;
8169 for (unsigned i = 0; i != NumOperands; ++i)
8170 Ops.push_back(Op.getOperand(i));
8172 SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8173 DAG.ReplaceAllUsesWith(Op, New);
8174 return SDValue(New.getNode(), 1);
8177 /// Emit nodes that will be selected as "cmp Op0,Op1", or something
8179 SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8180 SelectionDAG &DAG) const {
8181 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8182 if (C->getAPIntValue() == 0)
8183 return EmitTest(Op0, X86CC, DAG);
8185 DebugLoc dl = Op0.getDebugLoc();
8186 return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8189 /// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8190 /// if it's possible.
8191 SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8192 DebugLoc dl, SelectionDAG &DAG) const {
8193 SDValue Op0 = And.getOperand(0);
8194 SDValue Op1 = And.getOperand(1);
8195 if (Op0.getOpcode() == ISD::TRUNCATE)
8196 Op0 = Op0.getOperand(0);
8197 if (Op1.getOpcode() == ISD::TRUNCATE)
8198 Op1 = Op1.getOperand(0);
8201 if (Op1.getOpcode() == ISD::SHL)
8202 std::swap(Op0, Op1);
8203 if (Op0.getOpcode() == ISD::SHL) {
8204 if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8205 if (And00C->getZExtValue() == 1) {
8206 // If we looked past a truncate, check that it's only truncating away
8208 unsigned BitWidth = Op0.getValueSizeInBits();
8209 unsigned AndBitWidth = And.getValueSizeInBits();
8210 if (BitWidth > AndBitWidth) {
8211 APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
8212 DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
8213 if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8217 RHS = Op0.getOperand(1);
8219 } else if (Op1.getOpcode() == ISD::Constant) {
8220 ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8221 uint64_t AndRHSVal = AndRHS->getZExtValue();
8222 SDValue AndLHS = Op0;
8224 if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
8225 LHS = AndLHS.getOperand(0);
8226 RHS = AndLHS.getOperand(1);
8229 // Use BT if the immediate can't be encoded in a TEST instruction.
8230 if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
8232 RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
8236 if (LHS.getNode()) {
8237 // If LHS is i8, promote it to i32 with any_extend. There is no i8 BT
8238 // instruction. Since the shift amount is in-range-or-undefined, we know
8239 // that doing a bittest on the i32 value is ok. We extend to i32 because
8240 // the encoding for the i16 version is larger than the i32 version.
8241 // Also promote i16 to i32 for performance / code size reason.
8242 if (LHS.getValueType() == MVT::i8 ||
8243 LHS.getValueType() == MVT::i16)
8244 LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8246 // If the operand types disagree, extend the shift amount to match. Since
8247 // BT ignores high bits (like shifts) we can use anyextend.
8248 if (LHS.getValueType() != RHS.getValueType())
8249 RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8251 SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8252 unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8253 return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8254 DAG.getConstant(Cond, MVT::i8), BT);
8260 SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8262 if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8264 assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8265 SDValue Op0 = Op.getOperand(0);
8266 SDValue Op1 = Op.getOperand(1);
8267 DebugLoc dl = Op.getDebugLoc();
8268 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8270 // Optimize to BT if possible.
8271 // Lower (X & (1 << N)) == 0 to BT(X, N).
8272 // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8273 // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8274 if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8275 Op1.getOpcode() == ISD::Constant &&
8276 cast<ConstantSDNode>(Op1)->isNullValue() &&
8277 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8278 SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8279 if (NewSetCC.getNode())
8283 // Look for X == 0, X == 1, X != 0, or X != 1. We can simplify some forms of
8285 if (Op1.getOpcode() == ISD::Constant &&
8286 (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8287 cast<ConstantSDNode>(Op1)->isNullValue()) &&
8288 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8290 // If the input is a setcc, then reuse the input setcc or use a new one with
8291 // the inverted condition.
8292 if (Op0.getOpcode() == X86ISD::SETCC) {
8293 X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8294 bool Invert = (CC == ISD::SETNE) ^
8295 cast<ConstantSDNode>(Op1)->isNullValue();
8296 if (!Invert) return Op0;
8298 CCode = X86::GetOppositeBranchCondition(CCode);
8299 return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8300 DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8304 bool isFP = Op1.getValueType().isFloatingPoint();
8305 unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8306 if (X86CC == X86::COND_INVALID)
8309 SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8310 return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8311 DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8314 // Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8315 // ones, and then concatenate the result back.
8316 static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8317 EVT VT = Op.getValueType();
8319 assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC &&
8320 "Unsupported value type for operation");
8322 int NumElems = VT.getVectorNumElements();
8323 DebugLoc dl = Op.getDebugLoc();
8324 SDValue CC = Op.getOperand(2);
8325 SDValue Idx0 = DAG.getConstant(0, MVT::i32);
8326 SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
8328 // Extract the LHS vectors
8329 SDValue LHS = Op.getOperand(0);
8330 SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
8331 SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
8333 // Extract the RHS vectors
8334 SDValue RHS = Op.getOperand(1);
8335 SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
8336 SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
8338 // Issue the operation on the smaller types and concatenate the result back
8339 MVT EltVT = VT.getVectorElementType().getSimpleVT();
8340 EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8341 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8342 DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8343 DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8347 SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8349 SDValue Op0 = Op.getOperand(0);
8350 SDValue Op1 = Op.getOperand(1);
8351 SDValue CC = Op.getOperand(2);
8352 EVT VT = Op.getValueType();
8353 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8354 bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8355 DebugLoc dl = Op.getDebugLoc();
8359 EVT EltVT = Op0.getValueType().getVectorElementType();
8360 assert(EltVT == MVT::f32 || EltVT == MVT::f64);
8362 unsigned Opc = EltVT == MVT::f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
8365 // SSE Condition code mapping:
8374 switch (SetCCOpcode) {
8377 case ISD::SETEQ: SSECC = 0; break;
8379 case ISD::SETGT: Swap = true; // Fallthrough
8381 case ISD::SETOLT: SSECC = 1; break;
8383 case ISD::SETGE: Swap = true; // Fallthrough
8385 case ISD::SETOLE: SSECC = 2; break;
8386 case ISD::SETUO: SSECC = 3; break;
8388 case ISD::SETNE: SSECC = 4; break;
8389 case ISD::SETULE: Swap = true;
8390 case ISD::SETUGE: SSECC = 5; break;
8391 case ISD::SETULT: Swap = true;
8392 case ISD::SETUGT: SSECC = 6; break;
8393 case ISD::SETO: SSECC = 7; break;
8396 std::swap(Op0, Op1);
8398 // In the two special cases we can't handle, emit two comparisons.
8400 if (SetCCOpcode == ISD::SETUEQ) {
8402 UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
8403 EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
8404 return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
8405 } else if (SetCCOpcode == ISD::SETONE) {
8407 ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
8408 NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
8409 return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
8411 llvm_unreachable("Illegal FP comparison");
8413 // Handle all other FP comparisons here.
8414 return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
8417 // Break 256-bit integer vector compare into smaller ones.
8418 if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
8419 return Lower256IntVSETCC(Op, DAG);
8421 // We are handling one of the integer comparisons here. Since SSE only has
8422 // GT and EQ comparisons for integer, swapping operands and multiple
8423 // operations may be required for some comparisons.
8424 unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
8425 bool Swap = false, Invert = false, FlipSigns = false;
8427 switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
8429 case MVT::i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
8430 case MVT::i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
8431 case MVT::i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
8432 case MVT::i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
8435 switch (SetCCOpcode) {
8437 case ISD::SETNE: Invert = true;
8438 case ISD::SETEQ: Opc = EQOpc; break;
8439 case ISD::SETLT: Swap = true;
8440 case ISD::SETGT: Opc = GTOpc; break;
8441 case ISD::SETGE: Swap = true;
8442 case ISD::SETLE: Opc = GTOpc; Invert = true; break;
8443 case ISD::SETULT: Swap = true;
8444 case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
8445 case ISD::SETUGE: Swap = true;
8446 case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
8449 std::swap(Op0, Op1);
8451 // Check that the operation in question is available (most are plain SSE2,
8452 // but PCMPGTQ and PCMPEQQ have different requirements).
8453 if (Opc == X86ISD::PCMPGTQ && !Subtarget->hasSSE42())
8455 if (Opc == X86ISD::PCMPEQQ && !Subtarget->hasSSE41())
8458 // Since SSE has no unsigned integer comparisons, we need to flip the sign
8459 // bits of the inputs before performing those operations.
8461 EVT EltVT = VT.getVectorElementType();
8462 SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8464 std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8465 SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8467 Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8468 Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8471 SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8473 // If the logical-not of the result is required, perform that now.
8475 Result = DAG.getNOT(dl, Result, VT);
8480 // isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8481 static bool isX86LogicalCmp(SDValue Op) {
8482 unsigned Opc = Op.getNode()->getOpcode();
8483 if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
8485 if (Op.getResNo() == 1 &&
8486 (Opc == X86ISD::ADD ||
8487 Opc == X86ISD::SUB ||
8488 Opc == X86ISD::ADC ||
8489 Opc == X86ISD::SBB ||
8490 Opc == X86ISD::SMUL ||
8491 Opc == X86ISD::UMUL ||
8492 Opc == X86ISD::INC ||
8493 Opc == X86ISD::DEC ||
8494 Opc == X86ISD::OR ||
8495 Opc == X86ISD::XOR ||
8496 Opc == X86ISD::AND))
8499 if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8505 static bool isZero(SDValue V) {
8506 ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8507 return C && C->isNullValue();
8510 static bool isAllOnes(SDValue V) {
8511 ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8512 return C && C->isAllOnesValue();
8515 SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8516 bool addTest = true;
8517 SDValue Cond = Op.getOperand(0);
8518 SDValue Op1 = Op.getOperand(1);
8519 SDValue Op2 = Op.getOperand(2);
8520 DebugLoc DL = Op.getDebugLoc();
8523 if (Cond.getOpcode() == ISD::SETCC) {
8524 SDValue NewCond = LowerSETCC(Cond, DAG);
8525 if (NewCond.getNode())
8529 // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8530 // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8531 // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8532 // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8533 if (Cond.getOpcode() == X86ISD::SETCC &&
8534 Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8535 isZero(Cond.getOperand(1).getOperand(1))) {
8536 SDValue Cmp = Cond.getOperand(1);
8538 unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8540 if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8541 (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8542 SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8544 SDValue CmpOp0 = Cmp.getOperand(0);
8545 Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8546 CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8548 SDValue Res = // Res = 0 or -1.
8549 DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8550 DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8552 if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8553 Res = DAG.getNOT(DL, Res, Res.getValueType());
8555 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8556 if (N2C == 0 || !N2C->isNullValue())
8557 Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8562 // Look past (and (setcc_carry (cmp ...)), 1).
8563 if (Cond.getOpcode() == ISD::AND &&
8564 Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8565 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8566 if (C && C->getAPIntValue() == 1)
8567 Cond = Cond.getOperand(0);
8570 // If condition flag is set by a X86ISD::CMP, then use it as the condition
8571 // setting operand in place of the X86ISD::SETCC.
8572 unsigned CondOpcode = Cond.getOpcode();
8573 if (CondOpcode == X86ISD::SETCC ||
8574 CondOpcode == X86ISD::SETCC_CARRY) {
8575 CC = Cond.getOperand(0);
8577 SDValue Cmp = Cond.getOperand(1);
8578 unsigned Opc = Cmp.getOpcode();
8579 EVT VT = Op.getValueType();
8581 bool IllegalFPCMov = false;
8582 if (VT.isFloatingPoint() && !VT.isVector() &&
8583 !isScalarFPTypeInSSEReg(VT)) // FPStack?
8584 IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8586 if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8587 Opc == X86ISD::BT) { // FIXME
8591 } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8592 CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8593 ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8594 Cond.getOperand(0).getValueType() != MVT::i8)) {
8595 SDValue LHS = Cond.getOperand(0);
8596 SDValue RHS = Cond.getOperand(1);
8600 switch (CondOpcode) {
8601 case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8602 case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8603 case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8604 case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8605 case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8606 case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8607 default: llvm_unreachable("unexpected overflowing operator");
8609 if (CondOpcode == ISD::UMULO)
8610 VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8613 VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8615 SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
8617 if (CondOpcode == ISD::UMULO)
8618 Cond = X86Op.getValue(2);
8620 Cond = X86Op.getValue(1);
8622 CC = DAG.getConstant(X86Cond, MVT::i8);
8627 // Look pass the truncate.
8628 if (Cond.getOpcode() == ISD::TRUNCATE)
8629 Cond = Cond.getOperand(0);
8631 // We know the result of AND is compared against zero. Try to match
8633 if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8634 SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8635 if (NewSetCC.getNode()) {
8636 CC = NewSetCC.getOperand(0);
8637 Cond = NewSetCC.getOperand(1);
8644 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8645 Cond = EmitTest(Cond, X86::COND_NE, DAG);
8648 // a < b ? -1 : 0 -> RES = ~setcc_carry
8649 // a < b ? 0 : -1 -> RES = setcc_carry
8650 // a >= b ? -1 : 0 -> RES = setcc_carry
8651 // a >= b ? 0 : -1 -> RES = ~setcc_carry
8652 if (Cond.getOpcode() == X86ISD::CMP) {
8653 unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8655 if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8656 (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8657 SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8658 DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8659 if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8660 return DAG.getNOT(DL, Res, Res.getValueType());
8665 // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8666 // condition is true.
8667 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8668 SDValue Ops[] = { Op2, Op1, CC, Cond };
8669 return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8672 // isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8673 // ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8674 // from the AND / OR.
8675 static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8676 Opc = Op.getOpcode();
8677 if (Opc != ISD::OR && Opc != ISD::AND)
8679 return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8680 Op.getOperand(0).hasOneUse() &&
8681 Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8682 Op.getOperand(1).hasOneUse());
8685 // isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8686 // 1 and that the SETCC node has a single use.
8687 static bool isXor1OfSetCC(SDValue Op) {
8688 if (Op.getOpcode() != ISD::XOR)
8690 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8691 if (N1C && N1C->getAPIntValue() == 1) {
8692 return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8693 Op.getOperand(0).hasOneUse();
8698 SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8699 bool addTest = true;
8700 SDValue Chain = Op.getOperand(0);
8701 SDValue Cond = Op.getOperand(1);
8702 SDValue Dest = Op.getOperand(2);
8703 DebugLoc dl = Op.getDebugLoc();
8705 bool Inverted = false;
8707 if (Cond.getOpcode() == ISD::SETCC) {
8708 // Check for setcc([su]{add,sub,mul}o == 0).
8709 if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
8710 isa<ConstantSDNode>(Cond.getOperand(1)) &&
8711 cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
8712 Cond.getOperand(0).getResNo() == 1 &&
8713 (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
8714 Cond.getOperand(0).getOpcode() == ISD::UADDO ||
8715 Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
8716 Cond.getOperand(0).getOpcode() == ISD::USUBO ||
8717 Cond.getOperand(0).getOpcode() == ISD::SMULO ||
8718 Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
8720 Cond = Cond.getOperand(0);
8722 SDValue NewCond = LowerSETCC(Cond, DAG);
8723 if (NewCond.getNode())
8728 // FIXME: LowerXALUO doesn't handle these!!
8729 else if (Cond.getOpcode() == X86ISD::ADD ||
8730 Cond.getOpcode() == X86ISD::SUB ||
8731 Cond.getOpcode() == X86ISD::SMUL ||
8732 Cond.getOpcode() == X86ISD::UMUL)
8733 Cond = LowerXALUO(Cond, DAG);
8736 // Look pass (and (setcc_carry (cmp ...)), 1).
8737 if (Cond.getOpcode() == ISD::AND &&
8738 Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8739 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8740 if (C && C->getAPIntValue() == 1)
8741 Cond = Cond.getOperand(0);
8744 // If condition flag is set by a X86ISD::CMP, then use it as the condition
8745 // setting operand in place of the X86ISD::SETCC.
8746 unsigned CondOpcode = Cond.getOpcode();
8747 if (CondOpcode == X86ISD::SETCC ||
8748 CondOpcode == X86ISD::SETCC_CARRY) {
8749 CC = Cond.getOperand(0);
8751 SDValue Cmp = Cond.getOperand(1);
8752 unsigned Opc = Cmp.getOpcode();
8753 // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8754 if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8758 switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8762 // These can only come from an arithmetic instruction with overflow,
8763 // e.g. SADDO, UADDO.
8764 Cond = Cond.getNode()->getOperand(1);
8770 CondOpcode = Cond.getOpcode();
8771 if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8772 CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8773 ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8774 Cond.getOperand(0).getValueType() != MVT::i8)) {
8775 SDValue LHS = Cond.getOperand(0);
8776 SDValue RHS = Cond.getOperand(1);
8780 switch (CondOpcode) {
8781 case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8782 case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8783 case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8784 case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8785 case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8786 case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8787 default: llvm_unreachable("unexpected overflowing operator");
8790 X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
8791 if (CondOpcode == ISD::UMULO)
8792 VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8795 VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8797 SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
8799 if (CondOpcode == ISD::UMULO)
8800 Cond = X86Op.getValue(2);
8802 Cond = X86Op.getValue(1);
8804 CC = DAG.getConstant(X86Cond, MVT::i8);
8808 if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
8809 SDValue Cmp = Cond.getOperand(0).getOperand(1);
8810 if (CondOpc == ISD::OR) {
8811 // Also, recognize the pattern generated by an FCMP_UNE. We can emit
8812 // two branches instead of an explicit OR instruction with a
8814 if (Cmp == Cond.getOperand(1).getOperand(1) &&
8815 isX86LogicalCmp(Cmp)) {
8816 CC = Cond.getOperand(0).getOperand(0);
8817 Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8818 Chain, Dest, CC, Cmp);
8819 CC = Cond.getOperand(1).getOperand(0);
8823 } else { // ISD::AND
8824 // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
8825 // two branches instead of an explicit AND instruction with a
8826 // separate test. However, we only do this if this block doesn't
8827 // have a fall-through edge, because this requires an explicit
8828 // jmp when the condition is false.
8829 if (Cmp == Cond.getOperand(1).getOperand(1) &&
8830 isX86LogicalCmp(Cmp) &&
8831 Op.getNode()->hasOneUse()) {
8832 X86::CondCode CCode =
8833 (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8834 CCode = X86::GetOppositeBranchCondition(CCode);
8835 CC = DAG.getConstant(CCode, MVT::i8);
8836 SDNode *User = *Op.getNode()->use_begin();
8837 // Look for an unconditional branch following this conditional branch.
8838 // We need this because we need to reverse the successors in order
8839 // to implement FCMP_OEQ.
8840 if (User->getOpcode() == ISD::BR) {
8841 SDValue FalseBB = User->getOperand(1);
8843 DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8844 assert(NewBR == User);
8848 Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8849 Chain, Dest, CC, Cmp);
8850 X86::CondCode CCode =
8851 (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
8852 CCode = X86::GetOppositeBranchCondition(CCode);
8853 CC = DAG.getConstant(CCode, MVT::i8);
8859 } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
8860 // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
8861 // It should be transformed during dag combiner except when the condition
8862 // is set by a arithmetics with overflow node.
8863 X86::CondCode CCode =
8864 (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8865 CCode = X86::GetOppositeBranchCondition(CCode);
8866 CC = DAG.getConstant(CCode, MVT::i8);
8867 Cond = Cond.getOperand(0).getOperand(1);
8869 } else if (Cond.getOpcode() == ISD::SETCC &&
8870 cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
8871 // For FCMP_OEQ, we can emit
8872 // two branches instead of an explicit AND instruction with a
8873 // separate test. However, we only do this if this block doesn't
8874 // have a fall-through edge, because this requires an explicit
8875 // jmp when the condition is false.
8876 if (Op.getNode()->hasOneUse()) {
8877 SDNode *User = *Op.getNode()->use_begin();
8878 // Look for an unconditional branch following this conditional branch.
8879 // We need this because we need to reverse the successors in order
8880 // to implement FCMP_OEQ.
8881 if (User->getOpcode() == ISD::BR) {
8882 SDValue FalseBB = User->getOperand(1);
8884 DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8885 assert(NewBR == User);
8889 SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8890 Cond.getOperand(0), Cond.getOperand(1));
8891 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8892 Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8893 Chain, Dest, CC, Cmp);
8894 CC = DAG.getConstant(X86::COND_P, MVT::i8);
8899 } else if (Cond.getOpcode() == ISD::SETCC &&
8900 cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
8901 // For FCMP_UNE, we can emit
8902 // two branches instead of an explicit AND instruction with a
8903 // separate test. However, we only do this if this block doesn't
8904 // have a fall-through edge, because this requires an explicit
8905 // jmp when the condition is false.
8906 if (Op.getNode()->hasOneUse()) {
8907 SDNode *User = *Op.getNode()->use_begin();
8908 // Look for an unconditional branch following this conditional branch.
8909 // We need this because we need to reverse the successors in order
8910 // to implement FCMP_UNE.
8911 if (User->getOpcode() == ISD::BR) {
8912 SDValue FalseBB = User->getOperand(1);
8914 DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8915 assert(NewBR == User);
8918 SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8919 Cond.getOperand(0), Cond.getOperand(1));
8920 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8921 Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8922 Chain, Dest, CC, Cmp);
8923 CC = DAG.getConstant(X86::COND_NP, MVT::i8);
8933 // Look pass the truncate.
8934 if (Cond.getOpcode() == ISD::TRUNCATE)
8935 Cond = Cond.getOperand(0);
8937 // We know the result of AND is compared against zero. Try to match
8939 if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8940 SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
8941 if (NewSetCC.getNode()) {
8942 CC = NewSetCC.getOperand(0);
8943 Cond = NewSetCC.getOperand(1);
8950 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8951 Cond = EmitTest(Cond, X86::COND_NE, DAG);
8953 return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8954 Chain, Dest, CC, Cond);
8958 // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
8959 // Calls to _alloca is needed to probe the stack when allocating more than 4k
8960 // bytes in one go. Touching the stack at 4K increments is necessary to ensure
8961 // that the guard pages used by the OS virtual memory manager are allocated in
8962 // correct sequence.
8964 X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
8965 SelectionDAG &DAG) const {
8966 assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
8967 getTargetMachine().Options.EnableSegmentedStacks) &&
8968 "This should be used only on Windows targets or when segmented stacks "
8970 assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
8971 DebugLoc dl = Op.getDebugLoc();
8974 SDValue Chain = Op.getOperand(0);
8975 SDValue Size = Op.getOperand(1);
8976 // FIXME: Ensure alignment here
8978 bool Is64Bit = Subtarget->is64Bit();
8979 EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
8981 if (getTargetMachine().Options.EnableSegmentedStacks) {
8982 MachineFunction &MF = DAG.getMachineFunction();
8983 MachineRegisterInfo &MRI = MF.getRegInfo();
8986 // The 64 bit implementation of segmented stacks needs to clobber both r10
8987 // r11. This makes it impossible to use it along with nested parameters.
8988 const Function *F = MF.getFunction();
8990 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
8992 if (I->hasNestAttr())
8993 report_fatal_error("Cannot use segmented stacks with functions that "
8994 "have nested arguments.");
8997 const TargetRegisterClass *AddrRegClass =
8998 getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
8999 unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
9000 Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
9001 SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
9002 DAG.getRegister(Vreg, SPTy));
9003 SDValue Ops1[2] = { Value, Chain };
9004 return DAG.getMergeValues(Ops1, 2, dl);
9007 unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
9009 Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
9010 Flag = Chain.getValue(1);
9011 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9013 Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
9014 Flag = Chain.getValue(1);
9016 Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
9018 SDValue Ops1[2] = { Chain.getValue(0), Chain };
9019 return DAG.getMergeValues(Ops1, 2, dl);
9023 SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
9024 MachineFunction &MF = DAG.getMachineFunction();
9025 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
9027 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9028 DebugLoc DL = Op.getDebugLoc();
9030 if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
9031 // vastart just stores the address of the VarArgsFrameIndex slot into the
9032 // memory location argument.
9033 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9035 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
9036 MachinePointerInfo(SV), false, false, 0);
9040 // gp_offset (0 - 6 * 8)
9041 // fp_offset (48 - 48 + 8 * 16)
9042 // overflow_arg_area (point to parameters coming in memory).
9044 SmallVector<SDValue, 8> MemOps;
9045 SDValue FIN = Op.getOperand(1);
9047 SDValue Store = DAG.getStore(Op.getOperand(0), DL,
9048 DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
9050 FIN, MachinePointerInfo(SV), false, false, 0);
9051 MemOps.push_back(Store);
9054 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9055 FIN, DAG.getIntPtrConstant(4));
9056 Store = DAG.getStore(Op.getOperand(0), DL,
9057 DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
9059 FIN, MachinePointerInfo(SV, 4), false, false, 0);
9060 MemOps.push_back(Store);
9062 // Store ptr to overflow_arg_area
9063 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9064 FIN, DAG.getIntPtrConstant(4));
9065 SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9067 Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9068 MachinePointerInfo(SV, 8),
9070 MemOps.push_back(Store);
9072 // Store ptr to reg_save_area.
9073 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9074 FIN, DAG.getIntPtrConstant(8));
9075 SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9077 Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9078 MachinePointerInfo(SV, 16), false, false, 0);
9079 MemOps.push_back(Store);
9080 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9081 &MemOps[0], MemOps.size());
9084 SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9085 assert(Subtarget->is64Bit() &&
9086 "LowerVAARG only handles 64-bit va_arg!");
9087 assert((Subtarget->isTargetLinux() ||
9088 Subtarget->isTargetDarwin()) &&
9089 "Unhandled target in LowerVAARG");
9090 assert(Op.getNode()->getNumOperands() == 4);
9091 SDValue Chain = Op.getOperand(0);
9092 SDValue SrcPtr = Op.getOperand(1);
9093 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9094 unsigned Align = Op.getConstantOperandVal(3);
9095 DebugLoc dl = Op.getDebugLoc();
9097 EVT ArgVT = Op.getNode()->getValueType(0);
9098 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9099 uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
9102 // Decide which area this value should be read from.
9103 // TODO: Implement the AMD64 ABI in its entirety. This simple
9104 // selection mechanism works only for the basic types.
9105 if (ArgVT == MVT::f80) {
9106 llvm_unreachable("va_arg for f80 not yet implemented");
9107 } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9108 ArgMode = 2; // Argument passed in XMM register. Use fp_offset.
9109 } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9110 ArgMode = 1; // Argument passed in GPR64 register(s). Use gp_offset.
9112 llvm_unreachable("Unhandled argument type in LowerVAARG");
9116 // Sanity Check: Make sure using fp_offset makes sense.
9117 assert(!getTargetMachine().Options.UseSoftFloat &&
9118 !(DAG.getMachineFunction()
9119 .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
9120 Subtarget->hasSSE1());
9123 // Insert VAARG_64 node into the DAG
9124 // VAARG_64 returns two values: Variable Argument Address, Chain
9125 SmallVector<SDValue, 11> InstOps;
9126 InstOps.push_back(Chain);
9127 InstOps.push_back(SrcPtr);
9128 InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9129 InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9130 InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9131 SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9132 SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9133 VTs, &InstOps[0], InstOps.size(),
9135 MachinePointerInfo(SV),
9140 Chain = VAARG.getValue(1);
9142 // Load the next argument and return it
9143 return DAG.getLoad(ArgVT, dl,
9146 MachinePointerInfo(),
9147 false, false, false, 0);
9150 SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
9151 // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9152 assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9153 SDValue Chain = Op.getOperand(0);
9154 SDValue DstPtr = Op.getOperand(1);
9155 SDValue SrcPtr = Op.getOperand(2);
9156 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9157 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9158 DebugLoc DL = Op.getDebugLoc();
9160 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9161 DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9163 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9167 X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9168 DebugLoc dl = Op.getDebugLoc();
9169 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9171 default: return SDValue(); // Don't custom lower most intrinsics.
9172 // Comparison intrinsics.
9173 case Intrinsic::x86_sse_comieq_ss:
9174 case Intrinsic::x86_sse_comilt_ss:
9175 case Intrinsic::x86_sse_comile_ss:
9176 case Intrinsic::x86_sse_comigt_ss:
9177 case Intrinsic::x86_sse_comige_ss:
9178 case Intrinsic::x86_sse_comineq_ss:
9179 case Intrinsic::x86_sse_ucomieq_ss:
9180 case Intrinsic::x86_sse_ucomilt_ss:
9181 case Intrinsic::x86_sse_ucomile_ss:
9182 case Intrinsic::x86_sse_ucomigt_ss:
9183 case Intrinsic::x86_sse_ucomige_ss:
9184 case Intrinsic::x86_sse_ucomineq_ss:
9185 case Intrinsic::x86_sse2_comieq_sd:
9186 case Intrinsic::x86_sse2_comilt_sd:
9187 case Intrinsic::x86_sse2_comile_sd:
9188 case Intrinsic::x86_sse2_comigt_sd:
9189 case Intrinsic::x86_sse2_comige_sd:
9190 case Intrinsic::x86_sse2_comineq_sd:
9191 case Intrinsic::x86_sse2_ucomieq_sd:
9192 case Intrinsic::x86_sse2_ucomilt_sd:
9193 case Intrinsic::x86_sse2_ucomile_sd:
9194 case Intrinsic::x86_sse2_ucomigt_sd:
9195 case Intrinsic::x86_sse2_ucomige_sd:
9196 case Intrinsic::x86_sse2_ucomineq_sd: {
9198 ISD::CondCode CC = ISD::SETCC_INVALID;
9201 case Intrinsic::x86_sse_comieq_ss:
9202 case Intrinsic::x86_sse2_comieq_sd:
9206 case Intrinsic::x86_sse_comilt_ss:
9207 case Intrinsic::x86_sse2_comilt_sd:
9211 case Intrinsic::x86_sse_comile_ss:
9212 case Intrinsic::x86_sse2_comile_sd:
9216 case Intrinsic::x86_sse_comigt_ss:
9217 case Intrinsic::x86_sse2_comigt_sd:
9221 case Intrinsic::x86_sse_comige_ss:
9222 case Intrinsic::x86_sse2_comige_sd:
9226 case Intrinsic::x86_sse_comineq_ss:
9227 case Intrinsic::x86_sse2_comineq_sd:
9231 case Intrinsic::x86_sse_ucomieq_ss:
9232 case Intrinsic::x86_sse2_ucomieq_sd:
9233 Opc = X86ISD::UCOMI;
9236 case Intrinsic::x86_sse_ucomilt_ss:
9237 case Intrinsic::x86_sse2_ucomilt_sd:
9238 Opc = X86ISD::UCOMI;
9241 case Intrinsic::x86_sse_ucomile_ss:
9242 case Intrinsic::x86_sse2_ucomile_sd:
9243 Opc = X86ISD::UCOMI;
9246 case Intrinsic::x86_sse_ucomigt_ss:
9247 case Intrinsic::x86_sse2_ucomigt_sd:
9248 Opc = X86ISD::UCOMI;
9251 case Intrinsic::x86_sse_ucomige_ss:
9252 case Intrinsic::x86_sse2_ucomige_sd:
9253 Opc = X86ISD::UCOMI;
9256 case Intrinsic::x86_sse_ucomineq_ss:
9257 case Intrinsic::x86_sse2_ucomineq_sd:
9258 Opc = X86ISD::UCOMI;
9263 SDValue LHS = Op.getOperand(1);
9264 SDValue RHS = Op.getOperand(2);
9265 unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9266 assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9267 SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9268 SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9269 DAG.getConstant(X86CC, MVT::i8), Cond);
9270 return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9272 // Arithmetic intrinsics.
9273 case Intrinsic::x86_sse3_hadd_ps:
9274 case Intrinsic::x86_sse3_hadd_pd:
9275 case Intrinsic::x86_avx_hadd_ps_256:
9276 case Intrinsic::x86_avx_hadd_pd_256:
9277 return DAG.getNode(X86ISD::FHADD, dl, Op.getValueType(),
9278 Op.getOperand(1), Op.getOperand(2));
9279 case Intrinsic::x86_sse3_hsub_ps:
9280 case Intrinsic::x86_sse3_hsub_pd:
9281 case Intrinsic::x86_avx_hsub_ps_256:
9282 case Intrinsic::x86_avx_hsub_pd_256:
9283 return DAG.getNode(X86ISD::FHSUB, dl, Op.getValueType(),
9284 Op.getOperand(1), Op.getOperand(2));
9285 case Intrinsic::x86_avx2_psllv_d:
9286 case Intrinsic::x86_avx2_psllv_q:
9287 case Intrinsic::x86_avx2_psllv_d_256:
9288 case Intrinsic::x86_avx2_psllv_q_256:
9289 return DAG.getNode(ISD::SHL, dl, Op.getValueType(),
9290 Op.getOperand(1), Op.getOperand(2));
9291 case Intrinsic::x86_avx2_psrlv_d:
9292 case Intrinsic::x86_avx2_psrlv_q:
9293 case Intrinsic::x86_avx2_psrlv_d_256:
9294 case Intrinsic::x86_avx2_psrlv_q_256:
9295 return DAG.getNode(ISD::SRL, dl, Op.getValueType(),
9296 Op.getOperand(1), Op.getOperand(2));
9297 case Intrinsic::x86_avx2_psrav_d:
9298 case Intrinsic::x86_avx2_psrav_d_256:
9299 return DAG.getNode(ISD::SRA, dl, Op.getValueType(),
9300 Op.getOperand(1), Op.getOperand(2));
9302 // ptest and testp intrinsics. The intrinsic these come from are designed to
9303 // return an integer value, not just an instruction so lower it to the ptest
9304 // or testp pattern and a setcc for the result.
9305 case Intrinsic::x86_sse41_ptestz:
9306 case Intrinsic::x86_sse41_ptestc:
9307 case Intrinsic::x86_sse41_ptestnzc:
9308 case Intrinsic::x86_avx_ptestz_256:
9309 case Intrinsic::x86_avx_ptestc_256:
9310 case Intrinsic::x86_avx_ptestnzc_256:
9311 case Intrinsic::x86_avx_vtestz_ps:
9312 case Intrinsic::x86_avx_vtestc_ps:
9313 case Intrinsic::x86_avx_vtestnzc_ps:
9314 case Intrinsic::x86_avx_vtestz_pd:
9315 case Intrinsic::x86_avx_vtestc_pd:
9316 case Intrinsic::x86_avx_vtestnzc_pd:
9317 case Intrinsic::x86_avx_vtestz_ps_256:
9318 case Intrinsic::x86_avx_vtestc_ps_256:
9319 case Intrinsic::x86_avx_vtestnzc_ps_256:
9320 case Intrinsic::x86_avx_vtestz_pd_256:
9321 case Intrinsic::x86_avx_vtestc_pd_256:
9322 case Intrinsic::x86_avx_vtestnzc_pd_256: {
9323 bool IsTestPacked = false;
9326 default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9327 case Intrinsic::x86_avx_vtestz_ps:
9328 case Intrinsic::x86_avx_vtestz_pd:
9329 case Intrinsic::x86_avx_vtestz_ps_256:
9330 case Intrinsic::x86_avx_vtestz_pd_256:
9331 IsTestPacked = true; // Fallthrough
9332 case Intrinsic::x86_sse41_ptestz:
9333 case Intrinsic::x86_avx_ptestz_256:
9335 X86CC = X86::COND_E;
9337 case Intrinsic::x86_avx_vtestc_ps:
9338 case Intrinsic::x86_avx_vtestc_pd:
9339 case Intrinsic::x86_avx_vtestc_ps_256:
9340 case Intrinsic::x86_avx_vtestc_pd_256:
9341 IsTestPacked = true; // Fallthrough
9342 case Intrinsic::x86_sse41_ptestc:
9343 case Intrinsic::x86_avx_ptestc_256:
9345 X86CC = X86::COND_B;
9347 case Intrinsic::x86_avx_vtestnzc_ps:
9348 case Intrinsic::x86_avx_vtestnzc_pd:
9349 case Intrinsic::x86_avx_vtestnzc_ps_256:
9350 case Intrinsic::x86_avx_vtestnzc_pd_256:
9351 IsTestPacked = true; // Fallthrough
9352 case Intrinsic::x86_sse41_ptestnzc:
9353 case Intrinsic::x86_avx_ptestnzc_256:
9355 X86CC = X86::COND_A;
9359 SDValue LHS = Op.getOperand(1);
9360 SDValue RHS = Op.getOperand(2);
9361 unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9362 SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9363 SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9364 SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9365 return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9368 // Fix vector shift instructions where the last operand is a non-immediate
9370 case Intrinsic::x86_avx2_pslli_w:
9371 case Intrinsic::x86_avx2_pslli_d:
9372 case Intrinsic::x86_avx2_pslli_q:
9373 case Intrinsic::x86_avx2_psrli_w:
9374 case Intrinsic::x86_avx2_psrli_d:
9375 case Intrinsic::x86_avx2_psrli_q:
9376 case Intrinsic::x86_avx2_psrai_w:
9377 case Intrinsic::x86_avx2_psrai_d:
9378 case Intrinsic::x86_sse2_pslli_w:
9379 case Intrinsic::x86_sse2_pslli_d:
9380 case Intrinsic::x86_sse2_pslli_q:
9381 case Intrinsic::x86_sse2_psrli_w:
9382 case Intrinsic::x86_sse2_psrli_d:
9383 case Intrinsic::x86_sse2_psrli_q:
9384 case Intrinsic::x86_sse2_psrai_w:
9385 case Intrinsic::x86_sse2_psrai_d:
9386 case Intrinsic::x86_mmx_pslli_w:
9387 case Intrinsic::x86_mmx_pslli_d:
9388 case Intrinsic::x86_mmx_pslli_q:
9389 case Intrinsic::x86_mmx_psrli_w:
9390 case Intrinsic::x86_mmx_psrli_d:
9391 case Intrinsic::x86_mmx_psrli_q:
9392 case Intrinsic::x86_mmx_psrai_w:
9393 case Intrinsic::x86_mmx_psrai_d: {
9394 SDValue ShAmt = Op.getOperand(2);
9395 if (isa<ConstantSDNode>(ShAmt))
9398 unsigned NewIntNo = 0;
9399 EVT ShAmtVT = MVT::v4i32;
9401 case Intrinsic::x86_sse2_pslli_w:
9402 NewIntNo = Intrinsic::x86_sse2_psll_w;
9404 case Intrinsic::x86_sse2_pslli_d:
9405 NewIntNo = Intrinsic::x86_sse2_psll_d;
9407 case Intrinsic::x86_sse2_pslli_q:
9408 NewIntNo = Intrinsic::x86_sse2_psll_q;
9410 case Intrinsic::x86_sse2_psrli_w:
9411 NewIntNo = Intrinsic::x86_sse2_psrl_w;
9413 case Intrinsic::x86_sse2_psrli_d:
9414 NewIntNo = Intrinsic::x86_sse2_psrl_d;
9416 case Intrinsic::x86_sse2_psrli_q:
9417 NewIntNo = Intrinsic::x86_sse2_psrl_q;
9419 case Intrinsic::x86_sse2_psrai_w:
9420 NewIntNo = Intrinsic::x86_sse2_psra_w;
9422 case Intrinsic::x86_sse2_psrai_d:
9423 NewIntNo = Intrinsic::x86_sse2_psra_d;
9425 case Intrinsic::x86_avx2_pslli_w:
9426 NewIntNo = Intrinsic::x86_avx2_psll_w;
9428 case Intrinsic::x86_avx2_pslli_d:
9429 NewIntNo = Intrinsic::x86_avx2_psll_d;
9431 case Intrinsic::x86_avx2_pslli_q:
9432 NewIntNo = Intrinsic::x86_avx2_psll_q;
9434 case Intrinsic::x86_avx2_psrli_w:
9435 NewIntNo = Intrinsic::x86_avx2_psrl_w;
9437 case Intrinsic::x86_avx2_psrli_d:
9438 NewIntNo = Intrinsic::x86_avx2_psrl_d;
9440 case Intrinsic::x86_avx2_psrli_q:
9441 NewIntNo = Intrinsic::x86_avx2_psrl_q;
9443 case Intrinsic::x86_avx2_psrai_w:
9444 NewIntNo = Intrinsic::x86_avx2_psra_w;
9446 case Intrinsic::x86_avx2_psrai_d:
9447 NewIntNo = Intrinsic::x86_avx2_psra_d;
9450 ShAmtVT = MVT::v2i32;
9452 case Intrinsic::x86_mmx_pslli_w:
9453 NewIntNo = Intrinsic::x86_mmx_psll_w;
9455 case Intrinsic::x86_mmx_pslli_d:
9456 NewIntNo = Intrinsic::x86_mmx_psll_d;
9458 case Intrinsic::x86_mmx_pslli_q:
9459 NewIntNo = Intrinsic::x86_mmx_psll_q;
9461 case Intrinsic::x86_mmx_psrli_w:
9462 NewIntNo = Intrinsic::x86_mmx_psrl_w;
9464 case Intrinsic::x86_mmx_psrli_d:
9465 NewIntNo = Intrinsic::x86_mmx_psrl_d;
9467 case Intrinsic::x86_mmx_psrli_q:
9468 NewIntNo = Intrinsic::x86_mmx_psrl_q;
9470 case Intrinsic::x86_mmx_psrai_w:
9471 NewIntNo = Intrinsic::x86_mmx_psra_w;
9473 case Intrinsic::x86_mmx_psrai_d:
9474 NewIntNo = Intrinsic::x86_mmx_psra_d;
9476 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
9482 // The vector shift intrinsics with scalars uses 32b shift amounts but
9483 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
9487 ShOps[1] = DAG.getConstant(0, MVT::i32);
9488 if (ShAmtVT == MVT::v4i32) {
9489 ShOps[2] = DAG.getUNDEF(MVT::i32);
9490 ShOps[3] = DAG.getUNDEF(MVT::i32);
9491 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
9493 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
9494 // FIXME this must be lowered to get rid of the invalid type.
9497 EVT VT = Op.getValueType();
9498 ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9499 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9500 DAG.getConstant(NewIntNo, MVT::i32),
9501 Op.getOperand(1), ShAmt);
9506 SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
9507 SelectionDAG &DAG) const {
9508 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9509 MFI->setReturnAddressIsTaken(true);
9511 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9512 DebugLoc dl = Op.getDebugLoc();
9515 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
9517 DAG.getConstant(TD->getPointerSize(),
9518 Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9519 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9520 DAG.getNode(ISD::ADD, dl, getPointerTy(),
9522 MachinePointerInfo(), false, false, false, 0);
9525 // Just load the return address.
9526 SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
9527 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9528 RetAddrFI, MachinePointerInfo(), false, false, false, 0);
9531 SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
9532 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9533 MFI->setFrameAddressIsTaken(true);
9535 EVT VT = Op.getValueType();
9536 DebugLoc dl = Op.getDebugLoc(); // FIXME probably not meaningful
9537 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9538 unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
9539 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
9541 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
9542 MachinePointerInfo(),
9543 false, false, false, 0);
9547 SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
9548 SelectionDAG &DAG) const {
9549 return DAG.getIntPtrConstant(2*TD->getPointerSize());
9552 SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
9553 MachineFunction &MF = DAG.getMachineFunction();
9554 SDValue Chain = Op.getOperand(0);
9555 SDValue Offset = Op.getOperand(1);
9556 SDValue Handler = Op.getOperand(2);
9557 DebugLoc dl = Op.getDebugLoc();
9559 SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
9560 Subtarget->is64Bit() ? X86::RBP : X86::EBP,
9562 unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
9564 SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
9565 DAG.getIntPtrConstant(TD->getPointerSize()));
9566 StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
9567 Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
9569 Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
9570 MF.getRegInfo().addLiveOut(StoreAddrReg);
9572 return DAG.getNode(X86ISD::EH_RETURN, dl,
9574 Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
9577 SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
9578 SelectionDAG &DAG) const {
9579 return Op.getOperand(0);
9582 SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
9583 SelectionDAG &DAG) const {
9584 SDValue Root = Op.getOperand(0);
9585 SDValue Trmp = Op.getOperand(1); // trampoline
9586 SDValue FPtr = Op.getOperand(2); // nested function
9587 SDValue Nest = Op.getOperand(3); // 'nest' parameter value
9588 DebugLoc dl = Op.getDebugLoc();
9590 const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9592 if (Subtarget->is64Bit()) {
9593 SDValue OutChains[6];
9595 // Large code-model.
9596 const unsigned char JMP64r = 0xFF; // 64-bit jmp through register opcode.
9597 const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
9599 const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
9600 const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
9602 const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
9604 // Load the pointer to the nested function into R11.
9605 unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
9606 SDValue Addr = Trmp;
9607 OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9608 Addr, MachinePointerInfo(TrmpAddr),
9611 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9612 DAG.getConstant(2, MVT::i64));
9613 OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
9614 MachinePointerInfo(TrmpAddr, 2),
9617 // Load the 'nest' parameter value into R10.
9618 // R10 is specified in X86CallingConv.td
9619 OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
9620 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9621 DAG.getConstant(10, MVT::i64));
9622 OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9623 Addr, MachinePointerInfo(TrmpAddr, 10),
9626 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9627 DAG.getConstant(12, MVT::i64));
9628 OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
9629 MachinePointerInfo(TrmpAddr, 12),
9632 // Jump to the nested function.
9633 OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
9634 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9635 DAG.getConstant(20, MVT::i64));
9636 OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9637 Addr, MachinePointerInfo(TrmpAddr, 20),
9640 unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
9641 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9642 DAG.getConstant(22, MVT::i64));
9643 OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
9644 MachinePointerInfo(TrmpAddr, 22),
9647 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
9649 const Function *Func =
9650 cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
9651 CallingConv::ID CC = Func->getCallingConv();
9656 llvm_unreachable("Unsupported calling convention");
9657 case CallingConv::C:
9658 case CallingConv::X86_StdCall: {
9659 // Pass 'nest' parameter in ECX.
9660 // Must be kept in sync with X86CallingConv.td
9663 // Check that ECX wasn't needed by an 'inreg' parameter.
9664 FunctionType *FTy = Func->getFunctionType();
9665 const AttrListPtr &Attrs = Func->getAttributes();
9667 if (!Attrs.isEmpty() && !Func->isVarArg()) {
9668 unsigned InRegCount = 0;
9671 for (FunctionType::param_iterator I = FTy->param_begin(),
9672 E = FTy->param_end(); I != E; ++I, ++Idx)
9673 if (Attrs.paramHasAttr(Idx, Attribute::InReg))
9674 // FIXME: should only count parameters that are lowered to integers.
9675 InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
9677 if (InRegCount > 2) {
9678 report_fatal_error("Nest register in use - reduce number of inreg"
9684 case CallingConv::X86_FastCall:
9685 case CallingConv::X86_ThisCall:
9686 case CallingConv::Fast:
9687 // Pass 'nest' parameter in EAX.
9688 // Must be kept in sync with X86CallingConv.td
9693 SDValue OutChains[4];
9696 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9697 DAG.getConstant(10, MVT::i32));
9698 Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
9700 // This is storing the opcode for MOV32ri.
9701 const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
9702 const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
9703 OutChains[0] = DAG.getStore(Root, dl,
9704 DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
9705 Trmp, MachinePointerInfo(TrmpAddr),
9708 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9709 DAG.getConstant(1, MVT::i32));
9710 OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
9711 MachinePointerInfo(TrmpAddr, 1),
9714 const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
9715 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9716 DAG.getConstant(5, MVT::i32));
9717 OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
9718 MachinePointerInfo(TrmpAddr, 5),
9721 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9722 DAG.getConstant(6, MVT::i32));
9723 OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
9724 MachinePointerInfo(TrmpAddr, 6),
9727 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
9731 SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
9732 SelectionDAG &DAG) const {
9734 The rounding mode is in bits 11:10 of FPSR, and has the following
9741 FLT_ROUNDS, on the other hand, expects the following:
9748 To perform the conversion, we do:
9749 (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
9752 MachineFunction &MF = DAG.getMachineFunction();
9753 const TargetMachine &TM = MF.getTarget();
9754 const TargetFrameLowering &TFI = *TM.getFrameLowering();
9755 unsigned StackAlignment = TFI.getStackAlignment();
9756 EVT VT = Op.getValueType();
9757 DebugLoc DL = Op.getDebugLoc();
9759 // Save FP Control Word to stack slot
9760 int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
9761 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
9764 MachineMemOperand *MMO =
9765 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
9766 MachineMemOperand::MOStore, 2, 2);
9768 SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
9769 SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
9770 DAG.getVTList(MVT::Other),
9771 Ops, 2, MVT::i16, MMO);
9773 // Load FP Control Word from stack slot
9774 SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
9775 MachinePointerInfo(), false, false, false, 0);
9777 // Transform as necessary
9779 DAG.getNode(ISD::SRL, DL, MVT::i16,
9780 DAG.getNode(ISD::AND, DL, MVT::i16,
9781 CWD, DAG.getConstant(0x800, MVT::i16)),
9782 DAG.getConstant(11, MVT::i8));
9784 DAG.getNode(ISD::SRL, DL, MVT::i16,
9785 DAG.getNode(ISD::AND, DL, MVT::i16,
9786 CWD, DAG.getConstant(0x400, MVT::i16)),
9787 DAG.getConstant(9, MVT::i8));
9790 DAG.getNode(ISD::AND, DL, MVT::i16,
9791 DAG.getNode(ISD::ADD, DL, MVT::i16,
9792 DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
9793 DAG.getConstant(1, MVT::i16)),
9794 DAG.getConstant(3, MVT::i16));
9797 return DAG.getNode((VT.getSizeInBits() < 16 ?
9798 ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
9801 SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
9802 EVT VT = Op.getValueType();
9804 unsigned NumBits = VT.getSizeInBits();
9805 DebugLoc dl = Op.getDebugLoc();
9807 Op = Op.getOperand(0);
9808 if (VT == MVT::i8) {
9809 // Zero extend to i32 since there is not an i8 bsr.
9811 Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9814 // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
9815 SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9816 Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
9818 // If src is zero (i.e. bsr sets ZF), returns NumBits.
9821 DAG.getConstant(NumBits+NumBits-1, OpVT),
9822 DAG.getConstant(X86::COND_E, MVT::i8),
9825 Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9827 // Finally xor with NumBits-1.
9828 Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
9831 Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9835 SDValue X86TargetLowering::LowerCTLZ_ZERO_UNDEF(SDValue Op,
9836 SelectionDAG &DAG) const {
9837 EVT VT = Op.getValueType();
9839 unsigned NumBits = VT.getSizeInBits();
9840 DebugLoc dl = Op.getDebugLoc();
9842 Op = Op.getOperand(0);
9843 if (VT == MVT::i8) {
9844 // Zero extend to i32 since there is not an i8 bsr.
9846 Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9849 // Issue a bsr (scan bits in reverse).
9850 SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9851 Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
9853 // And xor with NumBits-1.
9854 Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
9857 Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9861 SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
9862 EVT VT = Op.getValueType();
9863 unsigned NumBits = VT.getSizeInBits();
9864 DebugLoc dl = Op.getDebugLoc();
9865 Op = Op.getOperand(0);
9867 // Issue a bsf (scan bits forward) which also sets EFLAGS.
9868 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
9869 Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
9871 // If src is zero (i.e. bsf sets ZF), returns NumBits.
9874 DAG.getConstant(NumBits, VT),
9875 DAG.getConstant(X86::COND_E, MVT::i8),
9878 return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
9881 // Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
9882 // ones, and then concatenate the result back.
9883 static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
9884 EVT VT = Op.getValueType();
9886 assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
9887 "Unsupported value type for operation");
9889 int NumElems = VT.getVectorNumElements();
9890 DebugLoc dl = Op.getDebugLoc();
9891 SDValue Idx0 = DAG.getConstant(0, MVT::i32);
9892 SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
9894 // Extract the LHS vectors
9895 SDValue LHS = Op.getOperand(0);
9896 SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
9897 SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
9899 // Extract the RHS vectors
9900 SDValue RHS = Op.getOperand(1);
9901 SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
9902 SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
9904 MVT EltVT = VT.getVectorElementType().getSimpleVT();
9905 EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9907 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9908 DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
9909 DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
9912 SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
9913 assert(Op.getValueType().getSizeInBits() == 256 &&
9914 Op.getValueType().isInteger() &&
9915 "Only handle AVX 256-bit vector integer operation");
9916 return Lower256IntArith(Op, DAG);
9919 SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
9920 assert(Op.getValueType().getSizeInBits() == 256 &&
9921 Op.getValueType().isInteger() &&
9922 "Only handle AVX 256-bit vector integer operation");
9923 return Lower256IntArith(Op, DAG);
9926 SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
9927 EVT VT = Op.getValueType();
9929 // Decompose 256-bit ops into smaller 128-bit ops.
9930 if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
9931 return Lower256IntArith(Op, DAG);
9933 DebugLoc dl = Op.getDebugLoc();
9935 SDValue A = Op.getOperand(0);
9936 SDValue B = Op.getOperand(1);
9938 if (VT == MVT::v4i64) {
9939 assert(Subtarget->hasAVX2() && "Lowering v4i64 multiply requires AVX2");
9941 // ulong2 Ahi = __builtin_ia32_psrlqi256( a, 32);
9942 // ulong2 Bhi = __builtin_ia32_psrlqi256( b, 32);
9943 // ulong2 AloBlo = __builtin_ia32_pmuludq256( a, b );
9944 // ulong2 AloBhi = __builtin_ia32_pmuludq256( a, Bhi );
9945 // ulong2 AhiBlo = __builtin_ia32_pmuludq256( Ahi, b );
9947 // AloBhi = __builtin_ia32_psllqi256( AloBhi, 32 );
9948 // AhiBlo = __builtin_ia32_psllqi256( AhiBlo, 32 );
9949 // return AloBlo + AloBhi + AhiBlo;
9951 SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9952 DAG.getConstant(Intrinsic::x86_avx2_psrli_q, MVT::i32),
9953 A, DAG.getConstant(32, MVT::i32));
9954 SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9955 DAG.getConstant(Intrinsic::x86_avx2_psrli_q, MVT::i32),
9956 B, DAG.getConstant(32, MVT::i32));
9957 SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9958 DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
9960 SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9961 DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
9963 SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9964 DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
9966 AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9967 DAG.getConstant(Intrinsic::x86_avx2_pslli_q, MVT::i32),
9968 AloBhi, DAG.getConstant(32, MVT::i32));
9969 AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9970 DAG.getConstant(Intrinsic::x86_avx2_pslli_q, MVT::i32),
9971 AhiBlo, DAG.getConstant(32, MVT::i32));
9972 SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
9973 Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
9977 assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
9979 // ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
9980 // ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
9981 // ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
9982 // ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
9983 // ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
9985 // AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
9986 // AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
9987 // return AloBlo + AloBhi + AhiBlo;
9989 SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9990 DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9991 A, DAG.getConstant(32, MVT::i32));
9992 SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9993 DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9994 B, DAG.getConstant(32, MVT::i32));
9995 SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9996 DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9998 SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9999 DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
10001 SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10002 DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
10004 AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10005 DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
10006 AloBhi, DAG.getConstant(32, MVT::i32));
10007 AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10008 DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
10009 AhiBlo, DAG.getConstant(32, MVT::i32));
10010 SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10011 Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10015 SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
10017 EVT VT = Op.getValueType();
10018 DebugLoc dl = Op.getDebugLoc();
10019 SDValue R = Op.getOperand(0);
10020 SDValue Amt = Op.getOperand(1);
10021 LLVMContext *Context = DAG.getContext();
10023 if (!Subtarget->hasSSE2())
10026 // Optimize shl/srl/sra with constant shift amount.
10027 if (isSplatVector(Amt.getNode())) {
10028 SDValue SclrAmt = Amt->getOperand(0);
10029 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
10030 uint64_t ShiftAmt = C->getZExtValue();
10032 if (VT == MVT::v16i8 && Op.getOpcode() == ISD::SHL) {
10033 // Make a large shift.
10035 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10036 DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10037 R, DAG.getConstant(ShiftAmt, MVT::i32));
10038 // Zero out the rightmost bits.
10039 SmallVector<SDValue, 16> V(16, DAG.getConstant(uint8_t(-1U << ShiftAmt),
10041 return DAG.getNode(ISD::AND, dl, VT, SHL,
10042 DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10045 if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SHL)
10046 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10047 DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
10048 R, DAG.getConstant(ShiftAmt, MVT::i32));
10050 if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SHL)
10051 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10052 DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
10053 R, DAG.getConstant(ShiftAmt, MVT::i32));
10055 if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SHL)
10056 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10057 DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10058 R, DAG.getConstant(ShiftAmt, MVT::i32));
10060 if (VT == MVT::v16i8 && Op.getOpcode() == ISD::SRL) {
10061 // Make a large shift.
10063 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10064 DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
10065 R, DAG.getConstant(ShiftAmt, MVT::i32));
10066 // Zero out the leftmost bits.
10067 SmallVector<SDValue, 16> V(16, DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10069 return DAG.getNode(ISD::AND, dl, VT, SRL,
10070 DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10073 if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SRL)
10074 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10075 DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
10076 R, DAG.getConstant(ShiftAmt, MVT::i32));
10078 if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRL)
10079 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10080 DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
10081 R, DAG.getConstant(ShiftAmt, MVT::i32));
10083 if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRL)
10084 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10085 DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
10086 R, DAG.getConstant(ShiftAmt, MVT::i32));
10088 if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRA)
10089 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10090 DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
10091 R, DAG.getConstant(ShiftAmt, MVT::i32));
10093 if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRA)
10094 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10095 DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
10096 R, DAG.getConstant(ShiftAmt, MVT::i32));
10098 if (VT == MVT::v16i8 && Op.getOpcode() == ISD::SRA) {
10099 if (ShiftAmt == 7) {
10100 // R s>> 7 === R s< 0
10101 SDValue Zeros = getZeroVector(VT, /* HasSSE2 */true,
10102 /* HasAVX2 */false, DAG, dl);
10103 return DAG.getNode(X86ISD::PCMPGTB, dl, VT, Zeros, R);
10106 // R s>> a === ((R u>> a) ^ m) - m
10107 SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10108 SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
10110 SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
10111 Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10112 Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10116 if (Subtarget->hasAVX2() && VT == MVT::v32i8) {
10117 if (Op.getOpcode() == ISD::SHL) {
10118 // Make a large shift.
10120 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10121 DAG.getConstant(Intrinsic::x86_avx2_pslli_w, MVT::i32),
10122 R, DAG.getConstant(ShiftAmt, MVT::i32));
10123 // Zero out the rightmost bits.
10124 SmallVector<SDValue, 32> V(32, DAG.getConstant(uint8_t(-1U << ShiftAmt),
10126 return DAG.getNode(ISD::AND, dl, VT, SHL,
10127 DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10129 if (Op.getOpcode() == ISD::SRL) {
10130 // Make a large shift.
10132 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10133 DAG.getConstant(Intrinsic::x86_avx2_psrli_w, MVT::i32),
10134 R, DAG.getConstant(ShiftAmt, MVT::i32));
10135 // Zero out the leftmost bits.
10136 SmallVector<SDValue, 32> V(32, DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10138 return DAG.getNode(ISD::AND, dl, VT, SRL,
10139 DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10141 if (Op.getOpcode() == ISD::SRA) {
10142 if (ShiftAmt == 7) {
10143 // R s>> 7 === R s< 0
10144 SDValue Zeros = getZeroVector(VT, true /* HasSSE2 */,
10145 true /* HasAVX2 */, DAG, dl);
10146 return DAG.getNode(X86ISD::PCMPGTB, dl, VT, Zeros, R);
10149 // R s>> a === ((R u>> a) ^ m) - m
10150 SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10151 SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
10153 SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
10154 Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10155 Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10162 // Lower SHL with variable shift amount.
10163 if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
10164 Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10165 DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
10166 Op.getOperand(1), DAG.getConstant(23, MVT::i32));
10168 ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
10170 std::vector<Constant*> CV(4, CI);
10171 Constant *C = ConstantVector::get(CV);
10172 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10173 SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10174 MachinePointerInfo::getConstantPool(),
10175 false, false, false, 16);
10177 Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
10178 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
10179 Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
10180 return DAG.getNode(ISD::MUL, dl, VT, Op, R);
10182 if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
10183 assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
10186 Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10187 DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10188 Op.getOperand(1), DAG.getConstant(5, MVT::i32));
10190 // Turn 'a' into a mask suitable for VSELECT
10191 SDValue VSelM = DAG.getConstant(0x80, VT);
10192 SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10193 OpVSel = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10194 DAG.getConstant(Intrinsic::x86_sse2_pcmpeq_b, MVT::i32),
10197 SDValue CM1 = DAG.getConstant(0x0f, VT);
10198 SDValue CM2 = DAG.getConstant(0x3f, VT);
10200 // r = VSELECT(r, psllw(r & (char16)15, 4), a);
10201 SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
10202 M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10203 DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
10204 DAG.getConstant(4, MVT::i32));
10205 R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10208 Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10209 OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10210 OpVSel = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10211 DAG.getConstant(Intrinsic::x86_sse2_pcmpeq_b, MVT::i32),
10214 // r = VSELECT(r, psllw(r & (char16)63, 2), a);
10215 M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
10216 M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10217 DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
10218 DAG.getConstant(2, MVT::i32));
10219 R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10222 Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10223 OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10224 OpVSel = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10225 DAG.getConstant(Intrinsic::x86_sse2_pcmpeq_b, MVT::i32),
10228 // return VSELECT(r, r+r, a);
10229 R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
10230 DAG.getNode(ISD::ADD, dl, VT, R, R), R);
10234 // Decompose 256-bit shifts into smaller 128-bit shifts.
10235 if (VT.getSizeInBits() == 256) {
10236 int NumElems = VT.getVectorNumElements();
10237 MVT EltVT = VT.getVectorElementType().getSimpleVT();
10238 EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10240 // Extract the two vectors
10241 SDValue V1 = Extract128BitVector(R, DAG.getConstant(0, MVT::i32), DAG, dl);
10242 SDValue V2 = Extract128BitVector(R, DAG.getConstant(NumElems/2, MVT::i32),
10245 // Recreate the shift amount vectors
10246 SDValue Amt1, Amt2;
10247 if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
10248 // Constant shift amount
10249 SmallVector<SDValue, 4> Amt1Csts;
10250 SmallVector<SDValue, 4> Amt2Csts;
10251 for (int i = 0; i < NumElems/2; ++i)
10252 Amt1Csts.push_back(Amt->getOperand(i));
10253 for (int i = NumElems/2; i < NumElems; ++i)
10254 Amt2Csts.push_back(Amt->getOperand(i));
10256 Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10257 &Amt1Csts[0], NumElems/2);
10258 Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10259 &Amt2Csts[0], NumElems/2);
10261 // Variable shift amount
10262 Amt1 = Extract128BitVector(Amt, DAG.getConstant(0, MVT::i32), DAG, dl);
10263 Amt2 = Extract128BitVector(Amt, DAG.getConstant(NumElems/2, MVT::i32),
10267 // Issue new vector shifts for the smaller types
10268 V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
10269 V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
10271 // Concatenate the result back
10272 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
10278 SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
10279 // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
10280 // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
10281 // looks for this combo and may remove the "setcc" instruction if the "setcc"
10282 // has only one use.
10283 SDNode *N = Op.getNode();
10284 SDValue LHS = N->getOperand(0);
10285 SDValue RHS = N->getOperand(1);
10286 unsigned BaseOp = 0;
10288 DebugLoc DL = Op.getDebugLoc();
10289 switch (Op.getOpcode()) {
10290 default: llvm_unreachable("Unknown ovf instruction!");
10292 // A subtract of one will be selected as a INC. Note that INC doesn't
10293 // set CF, so we can't do this for UADDO.
10294 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10296 BaseOp = X86ISD::INC;
10297 Cond = X86::COND_O;
10300 BaseOp = X86ISD::ADD;
10301 Cond = X86::COND_O;
10304 BaseOp = X86ISD::ADD;
10305 Cond = X86::COND_B;
10308 // A subtract of one will be selected as a DEC. Note that DEC doesn't
10309 // set CF, so we can't do this for USUBO.
10310 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10312 BaseOp = X86ISD::DEC;
10313 Cond = X86::COND_O;
10316 BaseOp = X86ISD::SUB;
10317 Cond = X86::COND_O;
10320 BaseOp = X86ISD::SUB;
10321 Cond = X86::COND_B;
10324 BaseOp = X86ISD::SMUL;
10325 Cond = X86::COND_O;
10327 case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
10328 SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
10330 SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
10333 DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10334 DAG.getConstant(X86::COND_O, MVT::i32),
10335 SDValue(Sum.getNode(), 2));
10337 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10341 // Also sets EFLAGS.
10342 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
10343 SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
10346 DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
10347 DAG.getConstant(Cond, MVT::i32),
10348 SDValue(Sum.getNode(), 1));
10350 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10353 SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
10354 SelectionDAG &DAG) const {
10355 DebugLoc dl = Op.getDebugLoc();
10356 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
10357 EVT VT = Op.getValueType();
10359 if (Subtarget->hasSSE2() && VT.isVector()) {
10360 unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
10361 ExtraVT.getScalarType().getSizeInBits();
10362 SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
10364 unsigned SHLIntrinsicsID = 0;
10365 unsigned SRAIntrinsicsID = 0;
10366 switch (VT.getSimpleVT().SimpleTy) {
10370 SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_d;
10371 SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_d;
10374 SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_w;
10375 SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_w;
10379 if (!Subtarget->hasAVX())
10381 if (!Subtarget->hasAVX2()) {
10382 // needs to be split
10383 int NumElems = VT.getVectorNumElements();
10384 SDValue Idx0 = DAG.getConstant(0, MVT::i32);
10385 SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
10387 // Extract the LHS vectors
10388 SDValue LHS = Op.getOperand(0);
10389 SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
10390 SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
10392 MVT EltVT = VT.getVectorElementType().getSimpleVT();
10393 EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10395 EVT ExtraEltVT = ExtraVT.getVectorElementType();
10396 int ExtraNumElems = ExtraVT.getVectorNumElements();
10397 ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
10399 SDValue Extra = DAG.getValueType(ExtraVT);
10401 LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
10402 LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
10404 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);;
10406 if (VT == MVT::v8i32) {
10407 SHLIntrinsicsID = Intrinsic::x86_avx2_pslli_d;
10408 SRAIntrinsicsID = Intrinsic::x86_avx2_psrai_d;
10410 SHLIntrinsicsID = Intrinsic::x86_avx2_pslli_w;
10411 SRAIntrinsicsID = Intrinsic::x86_avx2_psrai_w;
10415 SDValue Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10416 DAG.getConstant(SHLIntrinsicsID, MVT::i32),
10417 Op.getOperand(0), ShAmt);
10419 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10420 DAG.getConstant(SRAIntrinsicsID, MVT::i32),
10428 SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
10429 DebugLoc dl = Op.getDebugLoc();
10431 // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10432 // There isn't any reason to disable it if the target processor supports it.
10433 if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
10434 SDValue Chain = Op.getOperand(0);
10435 SDValue Zero = DAG.getConstant(0, MVT::i32);
10437 DAG.getRegister(X86::ESP, MVT::i32), // Base
10438 DAG.getTargetConstant(1, MVT::i8), // Scale
10439 DAG.getRegister(0, MVT::i32), // Index
10440 DAG.getTargetConstant(0, MVT::i32), // Disp
10441 DAG.getRegister(0, MVT::i32), // Segment.
10446 DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10447 array_lengthof(Ops));
10448 return SDValue(Res, 0);
10451 unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10453 return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10455 unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10456 unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10457 unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10458 unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10460 // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10461 if (!Op1 && !Op2 && !Op3 && Op4)
10462 return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10464 // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10465 if (Op1 && !Op2 && !Op3 && !Op4)
10466 return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10468 // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10470 return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10473 SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10474 SelectionDAG &DAG) const {
10475 DebugLoc dl = Op.getDebugLoc();
10476 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10477 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10478 SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10479 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10481 // The only fence that needs an instruction is a sequentially-consistent
10482 // cross-thread fence.
10483 if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
10484 // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
10485 // no-sse2). There isn't any reason to disable it if the target processor
10487 if (Subtarget->hasSSE2() || Subtarget->is64Bit())
10488 return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10490 SDValue Chain = Op.getOperand(0);
10491 SDValue Zero = DAG.getConstant(0, MVT::i32);
10493 DAG.getRegister(X86::ESP, MVT::i32), // Base
10494 DAG.getTargetConstant(1, MVT::i8), // Scale
10495 DAG.getRegister(0, MVT::i32), // Index
10496 DAG.getTargetConstant(0, MVT::i32), // Disp
10497 DAG.getRegister(0, MVT::i32), // Segment.
10502 DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10503 array_lengthof(Ops));
10504 return SDValue(Res, 0);
10507 // MEMBARRIER is a compiler barrier; it codegens to a no-op.
10508 return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10512 SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10513 EVT T = Op.getValueType();
10514 DebugLoc DL = Op.getDebugLoc();
10517 switch(T.getSimpleVT().SimpleTy) {
10519 assert(false && "Invalid value type!");
10520 case MVT::i8: Reg = X86::AL; size = 1; break;
10521 case MVT::i16: Reg = X86::AX; size = 2; break;
10522 case MVT::i32: Reg = X86::EAX; size = 4; break;
10524 assert(Subtarget->is64Bit() && "Node not type legal!");
10525 Reg = X86::RAX; size = 8;
10528 SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
10529 Op.getOperand(2), SDValue());
10530 SDValue Ops[] = { cpIn.getValue(0),
10533 DAG.getTargetConstant(size, MVT::i8),
10534 cpIn.getValue(1) };
10535 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10536 MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
10537 SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
10540 DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
10544 SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
10545 SelectionDAG &DAG) const {
10546 assert(Subtarget->is64Bit() && "Result not type legalized?");
10547 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10548 SDValue TheChain = Op.getOperand(0);
10549 DebugLoc dl = Op.getDebugLoc();
10550 SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10551 SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
10552 SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
10554 SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
10555 DAG.getConstant(32, MVT::i8));
10557 DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
10560 return DAG.getMergeValues(Ops, 2, dl);
10563 SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
10564 SelectionDAG &DAG) const {
10565 EVT SrcVT = Op.getOperand(0).getValueType();
10566 EVT DstVT = Op.getValueType();
10567 assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
10568 Subtarget->hasMMX() && "Unexpected custom BITCAST");
10569 assert((DstVT == MVT::i64 ||
10570 (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
10571 "Unexpected custom BITCAST");
10572 // i64 <=> MMX conversions are Legal.
10573 if (SrcVT==MVT::i64 && DstVT.isVector())
10575 if (DstVT==MVT::i64 && SrcVT.isVector())
10577 // MMX <=> MMX conversions are Legal.
10578 if (SrcVT.isVector() && DstVT.isVector())
10580 // All other conversions need to be expanded.
10584 SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
10585 SDNode *Node = Op.getNode();
10586 DebugLoc dl = Node->getDebugLoc();
10587 EVT T = Node->getValueType(0);
10588 SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
10589 DAG.getConstant(0, T), Node->getOperand(2));
10590 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
10591 cast<AtomicSDNode>(Node)->getMemoryVT(),
10592 Node->getOperand(0),
10593 Node->getOperand(1), negOp,
10594 cast<AtomicSDNode>(Node)->getSrcValue(),
10595 cast<AtomicSDNode>(Node)->getAlignment(),
10596 cast<AtomicSDNode>(Node)->getOrdering(),
10597 cast<AtomicSDNode>(Node)->getSynchScope());
10600 static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
10601 SDNode *Node = Op.getNode();
10602 DebugLoc dl = Node->getDebugLoc();
10603 EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10605 // Convert seq_cst store -> xchg
10606 // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
10607 // FIXME: On 32-bit, store -> fist or movq would be more efficient
10608 // (The only way to get a 16-byte store is cmpxchg16b)
10609 // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
10610 if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
10611 !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10612 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
10613 cast<AtomicSDNode>(Node)->getMemoryVT(),
10614 Node->getOperand(0),
10615 Node->getOperand(1), Node->getOperand(2),
10616 cast<AtomicSDNode>(Node)->getMemOperand(),
10617 cast<AtomicSDNode>(Node)->getOrdering(),
10618 cast<AtomicSDNode>(Node)->getSynchScope());
10619 return Swap.getValue(1);
10621 // Other atomic stores have a simple pattern.
10625 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
10626 EVT VT = Op.getNode()->getValueType(0);
10628 // Let legalize expand this if it isn't a legal type yet.
10629 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10632 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10635 bool ExtraOp = false;
10636 switch (Op.getOpcode()) {
10637 default: assert(0 && "Invalid code");
10638 case ISD::ADDC: Opc = X86ISD::ADD; break;
10639 case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
10640 case ISD::SUBC: Opc = X86ISD::SUB; break;
10641 case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
10645 return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10647 return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10648 Op.getOperand(1), Op.getOperand(2));
10651 /// LowerOperation - Provide custom lowering hooks for some operations.
10653 SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10654 switch (Op.getOpcode()) {
10655 default: llvm_unreachable("Should not custom lower this!");
10656 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op,DAG);
10657 case ISD::MEMBARRIER: return LowerMEMBARRIER(Op,DAG);
10658 case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op,DAG);
10659 case ISD::ATOMIC_CMP_SWAP: return LowerCMP_SWAP(Op,DAG);
10660 case ISD::ATOMIC_LOAD_SUB: return LowerLOAD_SUB(Op,DAG);
10661 case ISD::ATOMIC_STORE: return LowerATOMIC_STORE(Op,DAG);
10662 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
10663 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
10664 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
10665 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10666 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
10667 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
10668 case ISD::INSERT_SUBVECTOR: return LowerINSERT_SUBVECTOR(Op, DAG);
10669 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
10670 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
10671 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
10672 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
10673 case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
10674 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
10675 case ISD::SHL_PARTS:
10676 case ISD::SRA_PARTS:
10677 case ISD::SRL_PARTS: return LowerShiftParts(Op, DAG);
10678 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
10679 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
10680 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
10681 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
10682 case ISD::FABS: return LowerFABS(Op, DAG);
10683 case ISD::FNEG: return LowerFNEG(Op, DAG);
10684 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
10685 case ISD::FGETSIGN: return LowerFGETSIGN(Op, DAG);
10686 case ISD::SETCC: return LowerSETCC(Op, DAG);
10687 case ISD::SELECT: return LowerSELECT(Op, DAG);
10688 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
10689 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
10690 case ISD::VASTART: return LowerVASTART(Op, DAG);
10691 case ISD::VAARG: return LowerVAARG(Op, DAG);
10692 case ISD::VACOPY: return LowerVACOPY(Op, DAG);
10693 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10694 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
10695 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
10696 case ISD::FRAME_TO_ARGS_OFFSET:
10697 return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
10698 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10699 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
10700 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG);
10701 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG);
10702 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
10703 case ISD::CTLZ: return LowerCTLZ(Op, DAG);
10704 case ISD::CTLZ_ZERO_UNDEF: return LowerCTLZ_ZERO_UNDEF(Op, DAG);
10705 case ISD::CTTZ: return LowerCTTZ(Op, DAG);
10706 case ISD::MUL: return LowerMUL(Op, DAG);
10709 case ISD::SHL: return LowerShift(Op, DAG);
10715 case ISD::UMULO: return LowerXALUO(Op, DAG);
10716 case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, DAG);
10717 case ISD::BITCAST: return LowerBITCAST(Op, DAG);
10721 case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
10722 case ISD::ADD: return LowerADD(Op, DAG);
10723 case ISD::SUB: return LowerSUB(Op, DAG);
10727 static void ReplaceATOMIC_LOAD(SDNode *Node,
10728 SmallVectorImpl<SDValue> &Results,
10729 SelectionDAG &DAG) {
10730 DebugLoc dl = Node->getDebugLoc();
10731 EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10733 // Convert wide load -> cmpxchg8b/cmpxchg16b
10734 // FIXME: On 32-bit, load -> fild or movq would be more efficient
10735 // (The only way to get a 16-byte load is cmpxchg16b)
10736 // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
10737 SDValue Zero = DAG.getConstant(0, VT);
10738 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
10739 Node->getOperand(0),
10740 Node->getOperand(1), Zero, Zero,
10741 cast<AtomicSDNode>(Node)->getMemOperand(),
10742 cast<AtomicSDNode>(Node)->getOrdering(),
10743 cast<AtomicSDNode>(Node)->getSynchScope());
10744 Results.push_back(Swap.getValue(0));
10745 Results.push_back(Swap.getValue(1));
10748 void X86TargetLowering::
10749 ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
10750 SelectionDAG &DAG, unsigned NewOp) const {
10751 DebugLoc dl = Node->getDebugLoc();
10752 assert (Node->getValueType(0) == MVT::i64 &&
10753 "Only know how to expand i64 atomics");
10755 SDValue Chain = Node->getOperand(0);
10756 SDValue In1 = Node->getOperand(1);
10757 SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10758 Node->getOperand(2), DAG.getIntPtrConstant(0));
10759 SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10760 Node->getOperand(2), DAG.getIntPtrConstant(1));
10761 SDValue Ops[] = { Chain, In1, In2L, In2H };
10762 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10764 DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
10765 cast<MemSDNode>(Node)->getMemOperand());
10766 SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
10767 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
10768 Results.push_back(Result.getValue(2));
10771 /// ReplaceNodeResults - Replace a node with an illegal result type
10772 /// with a new node built out of custom code.
10773 void X86TargetLowering::ReplaceNodeResults(SDNode *N,
10774 SmallVectorImpl<SDValue>&Results,
10775 SelectionDAG &DAG) const {
10776 DebugLoc dl = N->getDebugLoc();
10777 switch (N->getOpcode()) {
10779 assert(false && "Do not know how to custom type legalize this operation!");
10781 case ISD::SIGN_EXTEND_INREG:
10786 // We don't want to expand or promote these.
10788 case ISD::FP_TO_SINT: {
10789 std::pair<SDValue,SDValue> Vals =
10790 FP_TO_INTHelper(SDValue(N, 0), DAG, true);
10791 SDValue FIST = Vals.first, StackSlot = Vals.second;
10792 if (FIST.getNode() != 0) {
10793 EVT VT = N->getValueType(0);
10794 // Return a load from the stack slot.
10795 Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
10796 MachinePointerInfo(),
10797 false, false, false, 0));
10801 case ISD::READCYCLECOUNTER: {
10802 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10803 SDValue TheChain = N->getOperand(0);
10804 SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10805 SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
10807 SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
10809 // Use a buildpair to merge the two 32-bit values into a 64-bit one.
10810 SDValue Ops[] = { eax, edx };
10811 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
10812 Results.push_back(edx.getValue(1));
10815 case ISD::ATOMIC_CMP_SWAP: {
10816 EVT T = N->getValueType(0);
10817 assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
10818 bool Regs64bit = T == MVT::i128;
10819 EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
10820 SDValue cpInL, cpInH;
10821 cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10822 DAG.getConstant(0, HalfT));
10823 cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10824 DAG.getConstant(1, HalfT));
10825 cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
10826 Regs64bit ? X86::RAX : X86::EAX,
10828 cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
10829 Regs64bit ? X86::RDX : X86::EDX,
10830 cpInH, cpInL.getValue(1));
10831 SDValue swapInL, swapInH;
10832 swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10833 DAG.getConstant(0, HalfT));
10834 swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10835 DAG.getConstant(1, HalfT));
10836 swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
10837 Regs64bit ? X86::RBX : X86::EBX,
10838 swapInL, cpInH.getValue(1));
10839 swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
10840 Regs64bit ? X86::RCX : X86::ECX,
10841 swapInH, swapInL.getValue(1));
10842 SDValue Ops[] = { swapInH.getValue(0),
10844 swapInH.getValue(1) };
10845 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10846 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
10847 unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
10848 X86ISD::LCMPXCHG8_DAG;
10849 SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
10851 SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
10852 Regs64bit ? X86::RAX : X86::EAX,
10853 HalfT, Result.getValue(1));
10854 SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
10855 Regs64bit ? X86::RDX : X86::EDX,
10856 HalfT, cpOutL.getValue(2));
10857 SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
10858 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
10859 Results.push_back(cpOutH.getValue(1));
10862 case ISD::ATOMIC_LOAD_ADD:
10863 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
10865 case ISD::ATOMIC_LOAD_AND:
10866 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
10868 case ISD::ATOMIC_LOAD_NAND:
10869 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
10871 case ISD::ATOMIC_LOAD_OR:
10872 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
10874 case ISD::ATOMIC_LOAD_SUB:
10875 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
10877 case ISD::ATOMIC_LOAD_XOR:
10878 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
10880 case ISD::ATOMIC_SWAP:
10881 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
10883 case ISD::ATOMIC_LOAD:
10884 ReplaceATOMIC_LOAD(N, Results, DAG);
10888 const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
10890 default: return NULL;
10891 case X86ISD::BSF: return "X86ISD::BSF";
10892 case X86ISD::BSR: return "X86ISD::BSR";
10893 case X86ISD::SHLD: return "X86ISD::SHLD";
10894 case X86ISD::SHRD: return "X86ISD::SHRD";
10895 case X86ISD::FAND: return "X86ISD::FAND";
10896 case X86ISD::FOR: return "X86ISD::FOR";
10897 case X86ISD::FXOR: return "X86ISD::FXOR";
10898 case X86ISD::FSRL: return "X86ISD::FSRL";
10899 case X86ISD::FILD: return "X86ISD::FILD";
10900 case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG";
10901 case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
10902 case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
10903 case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
10904 case X86ISD::FLD: return "X86ISD::FLD";
10905 case X86ISD::FST: return "X86ISD::FST";
10906 case X86ISD::CALL: return "X86ISD::CALL";
10907 case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG";
10908 case X86ISD::BT: return "X86ISD::BT";
10909 case X86ISD::CMP: return "X86ISD::CMP";
10910 case X86ISD::COMI: return "X86ISD::COMI";
10911 case X86ISD::UCOMI: return "X86ISD::UCOMI";
10912 case X86ISD::SETCC: return "X86ISD::SETCC";
10913 case X86ISD::SETCC_CARRY: return "X86ISD::SETCC_CARRY";
10914 case X86ISD::FSETCCsd: return "X86ISD::FSETCCsd";
10915 case X86ISD::FSETCCss: return "X86ISD::FSETCCss";
10916 case X86ISD::CMOV: return "X86ISD::CMOV";
10917 case X86ISD::BRCOND: return "X86ISD::BRCOND";
10918 case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG";
10919 case X86ISD::REP_STOS: return "X86ISD::REP_STOS";
10920 case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS";
10921 case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg";
10922 case X86ISD::Wrapper: return "X86ISD::Wrapper";
10923 case X86ISD::WrapperRIP: return "X86ISD::WrapperRIP";
10924 case X86ISD::PEXTRB: return "X86ISD::PEXTRB";
10925 case X86ISD::PEXTRW: return "X86ISD::PEXTRW";
10926 case X86ISD::INSERTPS: return "X86ISD::INSERTPS";
10927 case X86ISD::PINSRB: return "X86ISD::PINSRB";
10928 case X86ISD::PINSRW: return "X86ISD::PINSRW";
10929 case X86ISD::PSHUFB: return "X86ISD::PSHUFB";
10930 case X86ISD::ANDNP: return "X86ISD::ANDNP";
10931 case X86ISD::PSIGN: return "X86ISD::PSIGN";
10932 case X86ISD::BLENDV: return "X86ISD::BLENDV";
10933 case X86ISD::HADD: return "X86ISD::HADD";
10934 case X86ISD::HSUB: return "X86ISD::HSUB";
10935 case X86ISD::FHADD: return "X86ISD::FHADD";
10936 case X86ISD::FHSUB: return "X86ISD::FHSUB";
10937 case X86ISD::FMAX: return "X86ISD::FMAX";
10938 case X86ISD::FMIN: return "X86ISD::FMIN";
10939 case X86ISD::FRSQRT: return "X86ISD::FRSQRT";
10940 case X86ISD::FRCP: return "X86ISD::FRCP";
10941 case X86ISD::TLSADDR: return "X86ISD::TLSADDR";
10942 case X86ISD::TLSCALL: return "X86ISD::TLSCALL";
10943 case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN";
10944 case X86ISD::TC_RETURN: return "X86ISD::TC_RETURN";
10945 case X86ISD::FNSTCW16m: return "X86ISD::FNSTCW16m";
10946 case X86ISD::LCMPXCHG_DAG: return "X86ISD::LCMPXCHG_DAG";
10947 case X86ISD::LCMPXCHG8_DAG: return "X86ISD::LCMPXCHG8_DAG";
10948 case X86ISD::ATOMADD64_DAG: return "X86ISD::ATOMADD64_DAG";
10949 case X86ISD::ATOMSUB64_DAG: return "X86ISD::ATOMSUB64_DAG";
10950 case X86ISD::ATOMOR64_DAG: return "X86ISD::ATOMOR64_DAG";
10951 case X86ISD::ATOMXOR64_DAG: return "X86ISD::ATOMXOR64_DAG";
10952 case X86ISD::ATOMAND64_DAG: return "X86ISD::ATOMAND64_DAG";
10953 case X86ISD::ATOMNAND64_DAG: return "X86ISD::ATOMNAND64_DAG";
10954 case X86ISD::VZEXT_MOVL: return "X86ISD::VZEXT_MOVL";
10955 case X86ISD::VZEXT_LOAD: return "X86ISD::VZEXT_LOAD";
10956 case X86ISD::VSHL: return "X86ISD::VSHL";
10957 case X86ISD::VSRL: return "X86ISD::VSRL";
10958 case X86ISD::CMPPD: return "X86ISD::CMPPD";
10959 case X86ISD::CMPPS: return "X86ISD::CMPPS";
10960 case X86ISD::PCMPEQB: return "X86ISD::PCMPEQB";
10961 case X86ISD::PCMPEQW: return "X86ISD::PCMPEQW";
10962 case X86ISD::PCMPEQD: return "X86ISD::PCMPEQD";
10963 case X86ISD::PCMPEQQ: return "X86ISD::PCMPEQQ";
10964 case X86ISD::PCMPGTB: return "X86ISD::PCMPGTB";
10965 case X86ISD::PCMPGTW: return "X86ISD::PCMPGTW";
10966 case X86ISD::PCMPGTD: return "X86ISD::PCMPGTD";
10967 case X86ISD::PCMPGTQ: return "X86ISD::PCMPGTQ";
10968 case X86ISD::ADD: return "X86ISD::ADD";
10969 case X86ISD::SUB: return "X86ISD::SUB";
10970 case X86ISD::ADC: return "X86ISD::ADC";
10971 case X86ISD::SBB: return "X86ISD::SBB";
10972 case X86ISD::SMUL: return "X86ISD::SMUL";
10973 case X86ISD::UMUL: return "X86ISD::UMUL";
10974 case X86ISD::INC: return "X86ISD::INC";
10975 case X86ISD::DEC: return "X86ISD::DEC";
10976 case X86ISD::OR: return "X86ISD::OR";
10977 case X86ISD::XOR: return "X86ISD::XOR";
10978 case X86ISD::AND: return "X86ISD::AND";
10979 case X86ISD::ANDN: return "X86ISD::ANDN";
10980 case X86ISD::BLSI: return "X86ISD::BLSI";
10981 case X86ISD::BLSMSK: return "X86ISD::BLSMSK";
10982 case X86ISD::BLSR: return "X86ISD::BLSR";
10983 case X86ISD::MUL_IMM: return "X86ISD::MUL_IMM";
10984 case X86ISD::PTEST: return "X86ISD::PTEST";
10985 case X86ISD::TESTP: return "X86ISD::TESTP";
10986 case X86ISD::PALIGN: return "X86ISD::PALIGN";
10987 case X86ISD::PSHUFD: return "X86ISD::PSHUFD";
10988 case X86ISD::PSHUFHW: return "X86ISD::PSHUFHW";
10989 case X86ISD::PSHUFHW_LD: return "X86ISD::PSHUFHW_LD";
10990 case X86ISD::PSHUFLW: return "X86ISD::PSHUFLW";
10991 case X86ISD::PSHUFLW_LD: return "X86ISD::PSHUFLW_LD";
10992 case X86ISD::SHUFP: return "X86ISD::SHUFP";
10993 case X86ISD::MOVLHPS: return "X86ISD::MOVLHPS";
10994 case X86ISD::MOVLHPD: return "X86ISD::MOVLHPD";
10995 case X86ISD::MOVHLPS: return "X86ISD::MOVHLPS";
10996 case X86ISD::MOVLPS: return "X86ISD::MOVLPS";
10997 case X86ISD::MOVLPD: return "X86ISD::MOVLPD";
10998 case X86ISD::MOVDDUP: return "X86ISD::MOVDDUP";
10999 case X86ISD::MOVSHDUP: return "X86ISD::MOVSHDUP";
11000 case X86ISD::MOVSLDUP: return "X86ISD::MOVSLDUP";
11001 case X86ISD::MOVSHDUP_LD: return "X86ISD::MOVSHDUP_LD";
11002 case X86ISD::MOVSLDUP_LD: return "X86ISD::MOVSLDUP_LD";
11003 case X86ISD::MOVSD: return "X86ISD::MOVSD";
11004 case X86ISD::MOVSS: return "X86ISD::MOVSS";
11005 case X86ISD::UNPCKL: return "X86ISD::UNPCKL";
11006 case X86ISD::UNPCKH: return "X86ISD::UNPCKH";
11007 case X86ISD::VBROADCAST: return "X86ISD::VBROADCAST";
11008 case X86ISD::VPERMILP: return "X86ISD::VPERMILP";
11009 case X86ISD::VPERM2X128: return "X86ISD::VPERM2X128";
11010 case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
11011 case X86ISD::VAARG_64: return "X86ISD::VAARG_64";
11012 case X86ISD::WIN_ALLOCA: return "X86ISD::WIN_ALLOCA";
11013 case X86ISD::MEMBARRIER: return "X86ISD::MEMBARRIER";
11014 case X86ISD::SEG_ALLOCA: return "X86ISD::SEG_ALLOCA";
11018 // isLegalAddressingMode - Return true if the addressing mode represented
11019 // by AM is legal for this target, for a load/store of the specified type.
11020 bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
11022 // X86 supports extremely general addressing modes.
11023 CodeModel::Model M = getTargetMachine().getCodeModel();
11024 Reloc::Model R = getTargetMachine().getRelocationModel();
11026 // X86 allows a sign-extended 32-bit immediate field as a displacement.
11027 if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
11032 Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
11034 // If a reference to this global requires an extra load, we can't fold it.
11035 if (isGlobalStubReference(GVFlags))
11038 // If BaseGV requires a register for the PIC base, we cannot also have a
11039 // BaseReg specified.
11040 if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
11043 // If lower 4G is not available, then we must use rip-relative addressing.
11044 if ((M != CodeModel::Small || R != Reloc::Static) &&
11045 Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
11049 switch (AM.Scale) {
11055 // These scales always work.
11060 // These scales are formed with basereg+scalereg. Only accept if there is
11065 default: // Other stuff never works.
11073 bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11074 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11076 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11077 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11078 if (NumBits1 <= NumBits2)
11083 bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11084 if (!VT1.isInteger() || !VT2.isInteger())
11086 unsigned NumBits1 = VT1.getSizeInBits();
11087 unsigned NumBits2 = VT2.getSizeInBits();
11088 if (NumBits1 <= NumBits2)
11093 bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
11094 // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11095 return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
11098 bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
11099 // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11100 return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
11103 bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
11104 // i16 instructions are longer (0x66 prefix) and potentially slower.
11105 return !(VT1 == MVT::i32 && VT2 == MVT::i16);
11108 /// isShuffleMaskLegal - Targets can use this to indicate that they only
11109 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
11110 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
11111 /// are assumed to be legal.
11113 X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
11115 // Very little shuffling can be done for 64-bit vectors right now.
11116 if (VT.getSizeInBits() == 64)
11119 // FIXME: pshufb, blends, shifts.
11120 return (VT.getVectorNumElements() == 2 ||
11121 ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
11122 isMOVLMask(M, VT) ||
11123 isSHUFPMask(M, VT, Subtarget->hasAVX()) ||
11124 isPSHUFDMask(M, VT) ||
11125 isPSHUFHWMask(M, VT) ||
11126 isPSHUFLWMask(M, VT) ||
11127 isPALIGNRMask(M, VT, Subtarget) ||
11128 isUNPCKLMask(M, VT, Subtarget->hasAVX2()) ||
11129 isUNPCKHMask(M, VT, Subtarget->hasAVX2()) ||
11130 isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasAVX2()) ||
11131 isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasAVX2()));
11135 X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
11137 unsigned NumElts = VT.getVectorNumElements();
11138 // FIXME: This collection of masks seems suspect.
11141 if (NumElts == 4 && VT.getSizeInBits() == 128) {
11142 return (isMOVLMask(Mask, VT) ||
11143 isCommutedMOVLMask(Mask, VT, true) ||
11144 isSHUFPMask(Mask, VT, Subtarget->hasAVX()) ||
11145 isSHUFPMask(Mask, VT, Subtarget->hasAVX(), /* Commuted */ true));
11150 //===----------------------------------------------------------------------===//
11151 // X86 Scheduler Hooks
11152 //===----------------------------------------------------------------------===//
11154 // private utility function
11155 MachineBasicBlock *
11156 X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
11157 MachineBasicBlock *MBB,
11164 TargetRegisterClass *RC,
11165 bool invSrc) const {
11166 // For the atomic bitwise operator, we generate
11169 // ld t1 = [bitinstr.addr]
11170 // op t2 = t1, [bitinstr.val]
11172 // lcs dest = [bitinstr.addr], t2 [EAX is implicit]
11174 // fallthrough -->nextMBB
11175 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11176 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11177 MachineFunction::iterator MBBIter = MBB;
11180 /// First build the CFG
11181 MachineFunction *F = MBB->getParent();
11182 MachineBasicBlock *thisMBB = MBB;
11183 MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11184 MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11185 F->insert(MBBIter, newMBB);
11186 F->insert(MBBIter, nextMBB);
11188 // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11189 nextMBB->splice(nextMBB->begin(), thisMBB,
11190 llvm::next(MachineBasicBlock::iterator(bInstr)),
11192 nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11194 // Update thisMBB to fall through to newMBB
11195 thisMBB->addSuccessor(newMBB);
11197 // newMBB jumps to itself and fall through to nextMBB
11198 newMBB->addSuccessor(nextMBB);
11199 newMBB->addSuccessor(newMBB);
11201 // Insert instructions into newMBB based on incoming instruction
11202 assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11203 "unexpected number of operands");
11204 DebugLoc dl = bInstr->getDebugLoc();
11205 MachineOperand& destOper = bInstr->getOperand(0);
11206 MachineOperand* argOpers[2 + X86::AddrNumOperands];
11207 int numArgs = bInstr->getNumOperands() - 1;
11208 for (int i=0; i < numArgs; ++i)
11209 argOpers[i] = &bInstr->getOperand(i+1);
11211 // x86 address has 4 operands: base, index, scale, and displacement
11212 int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11213 int valArgIndx = lastAddrIndx + 1;
11215 unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11216 MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
11217 for (int i=0; i <= lastAddrIndx; ++i)
11218 (*MIB).addOperand(*argOpers[i]);
11220 unsigned tt = F->getRegInfo().createVirtualRegister(RC);
11222 MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
11227 unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11228 assert((argOpers[valArgIndx]->isReg() ||
11229 argOpers[valArgIndx]->isImm()) &&
11230 "invalid operand");
11231 if (argOpers[valArgIndx]->isReg())
11232 MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
11234 MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
11236 (*MIB).addOperand(*argOpers[valArgIndx]);
11238 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
11241 MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
11242 for (int i=0; i <= lastAddrIndx; ++i)
11243 (*MIB).addOperand(*argOpers[i]);
11245 assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11246 (*MIB).setMemRefs(bInstr->memoperands_begin(),
11247 bInstr->memoperands_end());
11249 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11250 MIB.addReg(EAXreg);
11253 BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11255 bInstr->eraseFromParent(); // The pseudo instruction is gone now.
11259 // private utility function: 64 bit atomics on 32 bit host.
11260 MachineBasicBlock *
11261 X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
11262 MachineBasicBlock *MBB,
11267 bool invSrc) const {
11268 // For the atomic bitwise operator, we generate
11269 // thisMBB (instructions are in pairs, except cmpxchg8b)
11270 // ld t1,t2 = [bitinstr.addr]
11272 // out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
11273 // op t5, t6 <- out1, out2, [bitinstr.val]
11274 // (for SWAP, substitute: mov t5, t6 <- [bitinstr.val])
11275 // mov ECX, EBX <- t5, t6
11276 // mov EAX, EDX <- t1, t2
11277 // cmpxchg8b [bitinstr.addr] [EAX, EDX, EBX, ECX implicit]
11278 // mov t3, t4 <- EAX, EDX
11280 // result in out1, out2
11281 // fallthrough -->nextMBB
11283 const TargetRegisterClass *RC = X86::GR32RegisterClass;
11284 const unsigned LoadOpc = X86::MOV32rm;
11285 const unsigned NotOpc = X86::NOT32r;
11286 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11287 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11288 MachineFunction::iterator MBBIter = MBB;
11291 /// First build the CFG
11292 MachineFunction *F = MBB->getParent();
11293 MachineBasicBlock *thisMBB = MBB;
11294 MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11295 MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11296 F->insert(MBBIter, newMBB);
11297 F->insert(MBBIter, nextMBB);
11299 // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11300 nextMBB->splice(nextMBB->begin(), thisMBB,
11301 llvm::next(MachineBasicBlock::iterator(bInstr)),
11303 nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11305 // Update thisMBB to fall through to newMBB
11306 thisMBB->addSuccessor(newMBB);
11308 // newMBB jumps to itself and fall through to nextMBB
11309 newMBB->addSuccessor(nextMBB);
11310 newMBB->addSuccessor(newMBB);
11312 DebugLoc dl = bInstr->getDebugLoc();
11313 // Insert instructions into newMBB based on incoming instruction
11314 // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
11315 assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
11316 "unexpected number of operands");
11317 MachineOperand& dest1Oper = bInstr->getOperand(0);
11318 MachineOperand& dest2Oper = bInstr->getOperand(1);
11319 MachineOperand* argOpers[2 + X86::AddrNumOperands];
11320 for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
11321 argOpers[i] = &bInstr->getOperand(i+2);
11323 // We use some of the operands multiple times, so conservatively just
11324 // clear any kill flags that might be present.
11325 if (argOpers[i]->isReg() && argOpers[i]->isUse())
11326 argOpers[i]->setIsKill(false);
11329 // x86 address has 5 operands: base, index, scale, displacement, and segment.
11330 int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11332 unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11333 MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
11334 for (int i=0; i <= lastAddrIndx; ++i)
11335 (*MIB).addOperand(*argOpers[i]);
11336 unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11337 MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
11338 // add 4 to displacement.
11339 for (int i=0; i <= lastAddrIndx-2; ++i)
11340 (*MIB).addOperand(*argOpers[i]);
11341 MachineOperand newOp3 = *(argOpers[3]);
11342 if (newOp3.isImm())
11343 newOp3.setImm(newOp3.getImm()+4);
11345 newOp3.setOffset(newOp3.getOffset()+4);
11346 (*MIB).addOperand(newOp3);
11347 (*MIB).addOperand(*argOpers[lastAddrIndx]);
11349 // t3/4 are defined later, at the bottom of the loop
11350 unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11351 unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
11352 BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
11353 .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
11354 BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
11355 .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
11357 // The subsequent operations should be using the destination registers of
11358 //the PHI instructions.
11360 t1 = F->getRegInfo().createVirtualRegister(RC);
11361 t2 = F->getRegInfo().createVirtualRegister(RC);
11362 MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
11363 MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
11365 t1 = dest1Oper.getReg();
11366 t2 = dest2Oper.getReg();
11369 int valArgIndx = lastAddrIndx + 1;
11370 assert((argOpers[valArgIndx]->isReg() ||
11371 argOpers[valArgIndx]->isImm()) &&
11372 "invalid operand");
11373 unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
11374 unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
11375 if (argOpers[valArgIndx]->isReg())
11376 MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
11378 MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
11379 if (regOpcL != X86::MOV32rr)
11381 (*MIB).addOperand(*argOpers[valArgIndx]);
11382 assert(argOpers[valArgIndx + 1]->isReg() ==
11383 argOpers[valArgIndx]->isReg());
11384 assert(argOpers[valArgIndx + 1]->isImm() ==
11385 argOpers[valArgIndx]->isImm());
11386 if (argOpers[valArgIndx + 1]->isReg())
11387 MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
11389 MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
11390 if (regOpcH != X86::MOV32rr)
11392 (*MIB).addOperand(*argOpers[valArgIndx + 1]);
11394 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11396 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
11399 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
11401 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
11404 MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
11405 for (int i=0; i <= lastAddrIndx; ++i)
11406 (*MIB).addOperand(*argOpers[i]);
11408 assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11409 (*MIB).setMemRefs(bInstr->memoperands_begin(),
11410 bInstr->memoperands_end());
11412 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
11413 MIB.addReg(X86::EAX);
11414 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
11415 MIB.addReg(X86::EDX);
11418 BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11420 bInstr->eraseFromParent(); // The pseudo instruction is gone now.
11424 // private utility function
11425 MachineBasicBlock *
11426 X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
11427 MachineBasicBlock *MBB,
11428 unsigned cmovOpc) const {
11429 // For the atomic min/max operator, we generate
11432 // ld t1 = [min/max.addr]
11433 // mov t2 = [min/max.val]
11435 // cmov[cond] t2 = t1
11437 // lcs dest = [bitinstr.addr], t2 [EAX is implicit]
11439 // fallthrough -->nextMBB
11441 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11442 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11443 MachineFunction::iterator MBBIter = MBB;
11446 /// First build the CFG
11447 MachineFunction *F = MBB->getParent();
11448 MachineBasicBlock *thisMBB = MBB;
11449 MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11450 MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11451 F->insert(MBBIter, newMBB);
11452 F->insert(MBBIter, nextMBB);
11454 // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11455 nextMBB->splice(nextMBB->begin(), thisMBB,
11456 llvm::next(MachineBasicBlock::iterator(mInstr)),
11458 nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11460 // Update thisMBB to fall through to newMBB
11461 thisMBB->addSuccessor(newMBB);
11463 // newMBB jumps to newMBB and fall through to nextMBB
11464 newMBB->addSuccessor(nextMBB);
11465 newMBB->addSuccessor(newMBB);
11467 DebugLoc dl = mInstr->getDebugLoc();
11468 // Insert instructions into newMBB based on incoming instruction
11469 assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11470 "unexpected number of operands");
11471 MachineOperand& destOper = mInstr->getOperand(0);
11472 MachineOperand* argOpers[2 + X86::AddrNumOperands];
11473 int numArgs = mInstr->getNumOperands() - 1;
11474 for (int i=0; i < numArgs; ++i)
11475 argOpers[i] = &mInstr->getOperand(i+1);
11477 // x86 address has 4 operands: base, index, scale, and displacement
11478 int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11479 int valArgIndx = lastAddrIndx + 1;
11481 unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11482 MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
11483 for (int i=0; i <= lastAddrIndx; ++i)
11484 (*MIB).addOperand(*argOpers[i]);
11486 // We only support register and immediate values
11487 assert((argOpers[valArgIndx]->isReg() ||
11488 argOpers[valArgIndx]->isImm()) &&
11489 "invalid operand");
11491 unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11492 if (argOpers[valArgIndx]->isReg())
11493 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
11495 MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
11496 (*MIB).addOperand(*argOpers[valArgIndx]);
11498 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11501 MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
11506 unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11507 MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
11511 // Cmp and exchange if none has modified the memory location
11512 MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
11513 for (int i=0; i <= lastAddrIndx; ++i)
11514 (*MIB).addOperand(*argOpers[i]);
11516 assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11517 (*MIB).setMemRefs(mInstr->memoperands_begin(),
11518 mInstr->memoperands_end());
11520 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11521 MIB.addReg(X86::EAX);
11524 BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11526 mInstr->eraseFromParent(); // The pseudo instruction is gone now.
11530 // FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
11531 // or XMM0_V32I8 in AVX all of this code can be replaced with that
11532 // in the .td file.
11533 MachineBasicBlock *
11534 X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
11535 unsigned numArgs, bool memArg) const {
11536 assert(Subtarget->hasSSE42() &&
11537 "Target must have SSE4.2 or AVX features enabled");
11539 DebugLoc dl = MI->getDebugLoc();
11540 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11542 if (!Subtarget->hasAVX()) {
11544 Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
11546 Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
11549 Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
11551 Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
11554 MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
11555 for (unsigned i = 0; i < numArgs; ++i) {
11556 MachineOperand &Op = MI->getOperand(i+1);
11557 if (!(Op.isReg() && Op.isImplicit()))
11558 MIB.addOperand(Op);
11560 BuildMI(*BB, MI, dl,
11561 TII->get(Subtarget->hasAVX() ? X86::VMOVAPSrr : X86::MOVAPSrr),
11562 MI->getOperand(0).getReg())
11563 .addReg(X86::XMM0);
11565 MI->eraseFromParent();
11569 MachineBasicBlock *
11570 X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
11571 DebugLoc dl = MI->getDebugLoc();
11572 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11574 // Address into RAX/EAX, other two args into ECX, EDX.
11575 unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
11576 unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11577 MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
11578 for (int i = 0; i < X86::AddrNumOperands; ++i)
11579 MIB.addOperand(MI->getOperand(i));
11581 unsigned ValOps = X86::AddrNumOperands;
11582 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11583 .addReg(MI->getOperand(ValOps).getReg());
11584 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
11585 .addReg(MI->getOperand(ValOps+1).getReg());
11587 // The instruction doesn't actually take any operands though.
11588 BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
11590 MI->eraseFromParent(); // The pseudo is gone now.
11594 MachineBasicBlock *
11595 X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
11596 DebugLoc dl = MI->getDebugLoc();
11597 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11599 // First arg in ECX, the second in EAX.
11600 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11601 .addReg(MI->getOperand(0).getReg());
11602 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
11603 .addReg(MI->getOperand(1).getReg());
11605 // The instruction doesn't actually take any operands though.
11606 BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
11608 MI->eraseFromParent(); // The pseudo is gone now.
11612 MachineBasicBlock *
11613 X86TargetLowering::EmitVAARG64WithCustomInserter(
11615 MachineBasicBlock *MBB) const {
11616 // Emit va_arg instruction on X86-64.
11618 // Operands to this pseudo-instruction:
11619 // 0 ) Output : destination address (reg)
11620 // 1-5) Input : va_list address (addr, i64mem)
11621 // 6 ) ArgSize : Size (in bytes) of vararg type
11622 // 7 ) ArgMode : 0=overflow only, 1=use gp_offset, 2=use fp_offset
11623 // 8 ) Align : Alignment of type
11624 // 9 ) EFLAGS (implicit-def)
11626 assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
11627 assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
11629 unsigned DestReg = MI->getOperand(0).getReg();
11630 MachineOperand &Base = MI->getOperand(1);
11631 MachineOperand &Scale = MI->getOperand(2);
11632 MachineOperand &Index = MI->getOperand(3);
11633 MachineOperand &Disp = MI->getOperand(4);
11634 MachineOperand &Segment = MI->getOperand(5);
11635 unsigned ArgSize = MI->getOperand(6).getImm();
11636 unsigned ArgMode = MI->getOperand(7).getImm();
11637 unsigned Align = MI->getOperand(8).getImm();
11639 // Memory Reference
11640 assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
11641 MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
11642 MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
11644 // Machine Information
11645 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11646 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11647 const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
11648 const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
11649 DebugLoc DL = MI->getDebugLoc();
11651 // struct va_list {
11654 // i64 overflow_area (address)
11655 // i64 reg_save_area (address)
11657 // sizeof(va_list) = 24
11658 // alignment(va_list) = 8
11660 unsigned TotalNumIntRegs = 6;
11661 unsigned TotalNumXMMRegs = 8;
11662 bool UseGPOffset = (ArgMode == 1);
11663 bool UseFPOffset = (ArgMode == 2);
11664 unsigned MaxOffset = TotalNumIntRegs * 8 +
11665 (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
11667 /* Align ArgSize to a multiple of 8 */
11668 unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
11669 bool NeedsAlign = (Align > 8);
11671 MachineBasicBlock *thisMBB = MBB;
11672 MachineBasicBlock *overflowMBB;
11673 MachineBasicBlock *offsetMBB;
11674 MachineBasicBlock *endMBB;
11676 unsigned OffsetDestReg = 0; // Argument address computed by offsetMBB
11677 unsigned OverflowDestReg = 0; // Argument address computed by overflowMBB
11678 unsigned OffsetReg = 0;
11680 if (!UseGPOffset && !UseFPOffset) {
11681 // If we only pull from the overflow region, we don't create a branch.
11682 // We don't need to alter control flow.
11683 OffsetDestReg = 0; // unused
11684 OverflowDestReg = DestReg;
11687 overflowMBB = thisMBB;
11690 // First emit code to check if gp_offset (or fp_offset) is below the bound.
11691 // If so, pull the argument from reg_save_area. (branch to offsetMBB)
11692 // If not, pull from overflow_area. (branch to overflowMBB)
11697 // offsetMBB overflowMBB
11702 // Registers for the PHI in endMBB
11703 OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
11704 OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
11706 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11707 MachineFunction *MF = MBB->getParent();
11708 overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11709 offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11710 endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11712 MachineFunction::iterator MBBIter = MBB;
11715 // Insert the new basic blocks
11716 MF->insert(MBBIter, offsetMBB);
11717 MF->insert(MBBIter, overflowMBB);
11718 MF->insert(MBBIter, endMBB);
11720 // Transfer the remainder of MBB and its successor edges to endMBB.
11721 endMBB->splice(endMBB->begin(), thisMBB,
11722 llvm::next(MachineBasicBlock::iterator(MI)),
11724 endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11726 // Make offsetMBB and overflowMBB successors of thisMBB
11727 thisMBB->addSuccessor(offsetMBB);
11728 thisMBB->addSuccessor(overflowMBB);
11730 // endMBB is a successor of both offsetMBB and overflowMBB
11731 offsetMBB->addSuccessor(endMBB);
11732 overflowMBB->addSuccessor(endMBB);
11734 // Load the offset value into a register
11735 OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11736 BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
11740 .addDisp(Disp, UseFPOffset ? 4 : 0)
11741 .addOperand(Segment)
11742 .setMemRefs(MMOBegin, MMOEnd);
11744 // Check if there is enough room left to pull this argument.
11745 BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
11747 .addImm(MaxOffset + 8 - ArgSizeA8);
11749 // Branch to "overflowMBB" if offset >= max
11750 // Fall through to "offsetMBB" otherwise
11751 BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
11752 .addMBB(overflowMBB);
11755 // In offsetMBB, emit code to use the reg_save_area.
11757 assert(OffsetReg != 0);
11759 // Read the reg_save_area address.
11760 unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
11761 BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
11766 .addOperand(Segment)
11767 .setMemRefs(MMOBegin, MMOEnd);
11769 // Zero-extend the offset
11770 unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
11771 BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
11774 .addImm(X86::sub_32bit);
11776 // Add the offset to the reg_save_area to get the final address.
11777 BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
11778 .addReg(OffsetReg64)
11779 .addReg(RegSaveReg);
11781 // Compute the offset for the next argument
11782 unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11783 BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
11785 .addImm(UseFPOffset ? 16 : 8);
11787 // Store it back into the va_list.
11788 BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
11792 .addDisp(Disp, UseFPOffset ? 4 : 0)
11793 .addOperand(Segment)
11794 .addReg(NextOffsetReg)
11795 .setMemRefs(MMOBegin, MMOEnd);
11798 BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
11803 // Emit code to use overflow area
11806 // Load the overflow_area address into a register.
11807 unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
11808 BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
11813 .addOperand(Segment)
11814 .setMemRefs(MMOBegin, MMOEnd);
11816 // If we need to align it, do so. Otherwise, just copy the address
11817 // to OverflowDestReg.
11819 // Align the overflow address
11820 assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
11821 unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
11823 // aligned_addr = (addr + (align-1)) & ~(align-1)
11824 BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
11825 .addReg(OverflowAddrReg)
11828 BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
11830 .addImm(~(uint64_t)(Align-1));
11832 BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
11833 .addReg(OverflowAddrReg);
11836 // Compute the next overflow address after this argument.
11837 // (the overflow address should be kept 8-byte aligned)
11838 unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
11839 BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
11840 .addReg(OverflowDestReg)
11841 .addImm(ArgSizeA8);
11843 // Store the new overflow address.
11844 BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
11849 .addOperand(Segment)
11850 .addReg(NextAddrReg)
11851 .setMemRefs(MMOBegin, MMOEnd);
11853 // If we branched, emit the PHI to the front of endMBB.
11855 BuildMI(*endMBB, endMBB->begin(), DL,
11856 TII->get(X86::PHI), DestReg)
11857 .addReg(OffsetDestReg).addMBB(offsetMBB)
11858 .addReg(OverflowDestReg).addMBB(overflowMBB);
11861 // Erase the pseudo instruction
11862 MI->eraseFromParent();
11867 MachineBasicBlock *
11868 X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
11870 MachineBasicBlock *MBB) const {
11871 // Emit code to save XMM registers to the stack. The ABI says that the
11872 // number of registers to save is given in %al, so it's theoretically
11873 // possible to do an indirect jump trick to avoid saving all of them,
11874 // however this code takes a simpler approach and just executes all
11875 // of the stores if %al is non-zero. It's less code, and it's probably
11876 // easier on the hardware branch predictor, and stores aren't all that
11877 // expensive anyway.
11879 // Create the new basic blocks. One block contains all the XMM stores,
11880 // and one block is the final destination regardless of whether any
11881 // stores were performed.
11882 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11883 MachineFunction *F = MBB->getParent();
11884 MachineFunction::iterator MBBIter = MBB;
11886 MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
11887 MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
11888 F->insert(MBBIter, XMMSaveMBB);
11889 F->insert(MBBIter, EndMBB);
11891 // Transfer the remainder of MBB and its successor edges to EndMBB.
11892 EndMBB->splice(EndMBB->begin(), MBB,
11893 llvm::next(MachineBasicBlock::iterator(MI)),
11895 EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
11897 // The original block will now fall through to the XMM save block.
11898 MBB->addSuccessor(XMMSaveMBB);
11899 // The XMMSaveMBB will fall through to the end block.
11900 XMMSaveMBB->addSuccessor(EndMBB);
11902 // Now add the instructions.
11903 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11904 DebugLoc DL = MI->getDebugLoc();
11906 unsigned CountReg = MI->getOperand(0).getReg();
11907 int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
11908 int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
11910 if (!Subtarget->isTargetWin64()) {
11911 // If %al is 0, branch around the XMM save block.
11912 BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
11913 BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
11914 MBB->addSuccessor(EndMBB);
11917 unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
11918 // In the XMM save block, save all the XMM argument registers.
11919 for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
11920 int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
11921 MachineMemOperand *MMO =
11922 F->getMachineMemOperand(
11923 MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
11924 MachineMemOperand::MOStore,
11925 /*Size=*/16, /*Align=*/16);
11926 BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
11927 .addFrameIndex(RegSaveFrameIndex)
11928 .addImm(/*Scale=*/1)
11929 .addReg(/*IndexReg=*/0)
11930 .addImm(/*Disp=*/Offset)
11931 .addReg(/*Segment=*/0)
11932 .addReg(MI->getOperand(i).getReg())
11933 .addMemOperand(MMO);
11936 MI->eraseFromParent(); // The pseudo instruction is gone now.
11941 MachineBasicBlock *
11942 X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
11943 MachineBasicBlock *BB) const {
11944 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11945 DebugLoc DL = MI->getDebugLoc();
11947 // To "insert" a SELECT_CC instruction, we actually have to insert the
11948 // diamond control-flow pattern. The incoming instruction knows the
11949 // destination vreg to set, the condition code register to branch on, the
11950 // true/false values to select between, and a branch opcode to use.
11951 const BasicBlock *LLVM_BB = BB->getBasicBlock();
11952 MachineFunction::iterator It = BB;
11958 // cmpTY ccX, r1, r2
11960 // fallthrough --> copy0MBB
11961 MachineBasicBlock *thisMBB = BB;
11962 MachineFunction *F = BB->getParent();
11963 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11964 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11965 F->insert(It, copy0MBB);
11966 F->insert(It, sinkMBB);
11968 // If the EFLAGS register isn't dead in the terminator, then claim that it's
11969 // live into the sink and copy blocks.
11970 if (!MI->killsRegister(X86::EFLAGS)) {
11971 copy0MBB->addLiveIn(X86::EFLAGS);
11972 sinkMBB->addLiveIn(X86::EFLAGS);
11975 // Transfer the remainder of BB and its successor edges to sinkMBB.
11976 sinkMBB->splice(sinkMBB->begin(), BB,
11977 llvm::next(MachineBasicBlock::iterator(MI)),
11979 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11981 // Add the true and fallthrough blocks as its successors.
11982 BB->addSuccessor(copy0MBB);
11983 BB->addSuccessor(sinkMBB);
11985 // Create the conditional branch instruction.
11987 X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
11988 BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
11991 // %FalseValue = ...
11992 // # fallthrough to sinkMBB
11993 copy0MBB->addSuccessor(sinkMBB);
11996 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11998 BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11999 TII->get(X86::PHI), MI->getOperand(0).getReg())
12000 .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
12001 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
12003 MI->eraseFromParent(); // The pseudo instruction is gone now.
12007 MachineBasicBlock *
12008 X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
12009 bool Is64Bit) const {
12010 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12011 DebugLoc DL = MI->getDebugLoc();
12012 MachineFunction *MF = BB->getParent();
12013 const BasicBlock *LLVM_BB = BB->getBasicBlock();
12015 assert(getTargetMachine().Options.EnableSegmentedStacks);
12017 unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
12018 unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
12021 // ... [Till the alloca]
12022 // If stacklet is not large enough, jump to mallocMBB
12025 // Allocate by subtracting from RSP
12026 // Jump to continueMBB
12029 // Allocate by call to runtime
12033 // [rest of original BB]
12036 MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12037 MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12038 MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12040 MachineRegisterInfo &MRI = MF->getRegInfo();
12041 const TargetRegisterClass *AddrRegClass =
12042 getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
12044 unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12045 bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12046 tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
12047 SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
12048 sizeVReg = MI->getOperand(1).getReg(),
12049 physSPReg = Is64Bit ? X86::RSP : X86::ESP;
12051 MachineFunction::iterator MBBIter = BB;
12054 MF->insert(MBBIter, bumpMBB);
12055 MF->insert(MBBIter, mallocMBB);
12056 MF->insert(MBBIter, continueMBB);
12058 continueMBB->splice(continueMBB->begin(), BB, llvm::next
12059 (MachineBasicBlock::iterator(MI)), BB->end());
12060 continueMBB->transferSuccessorsAndUpdatePHIs(BB);
12062 // Add code to the main basic block to check if the stack limit has been hit,
12063 // and if so, jump to mallocMBB otherwise to bumpMBB.
12064 BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
12065 BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
12066 .addReg(tmpSPVReg).addReg(sizeVReg);
12067 BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
12068 .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
12069 .addReg(SPLimitVReg);
12070 BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
12072 // bumpMBB simply decreases the stack pointer, since we know the current
12073 // stacklet has enough space.
12074 BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
12075 .addReg(SPLimitVReg);
12076 BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
12077 .addReg(SPLimitVReg);
12078 BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12080 // Calls into a routine in libgcc to allocate more space from the heap.
12082 BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
12084 BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
12085 .addExternalSymbol("__morestack_allocate_stack_space").addReg(X86::RDI);
12087 BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
12089 BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
12090 BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
12091 .addExternalSymbol("__morestack_allocate_stack_space");
12095 BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
12098 BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
12099 .addReg(Is64Bit ? X86::RAX : X86::EAX);
12100 BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12102 // Set up the CFG correctly.
12103 BB->addSuccessor(bumpMBB);
12104 BB->addSuccessor(mallocMBB);
12105 mallocMBB->addSuccessor(continueMBB);
12106 bumpMBB->addSuccessor(continueMBB);
12108 // Take care of the PHI nodes.
12109 BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
12110 MI->getOperand(0).getReg())
12111 .addReg(mallocPtrVReg).addMBB(mallocMBB)
12112 .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
12114 // Delete the original pseudo instruction.
12115 MI->eraseFromParent();
12118 return continueMBB;
12121 MachineBasicBlock *
12122 X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
12123 MachineBasicBlock *BB) const {
12124 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12125 DebugLoc DL = MI->getDebugLoc();
12127 assert(!Subtarget->isTargetEnvMacho());
12129 // The lowering is pretty easy: we're just emitting the call to _alloca. The
12130 // non-trivial part is impdef of ESP.
12132 if (Subtarget->isTargetWin64()) {
12133 if (Subtarget->isTargetCygMing()) {
12134 // ___chkstk(Mingw64):
12135 // Clobbers R10, R11, RAX and EFLAGS.
12137 BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12138 .addExternalSymbol("___chkstk")
12139 .addReg(X86::RAX, RegState::Implicit)
12140 .addReg(X86::RSP, RegState::Implicit)
12141 .addReg(X86::RAX, RegState::Define | RegState::Implicit)
12142 .addReg(X86::RSP, RegState::Define | RegState::Implicit)
12143 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12145 // __chkstk(MSVCRT): does not update stack pointer.
12146 // Clobbers R10, R11 and EFLAGS.
12147 // FIXME: RAX(allocated size) might be reused and not killed.
12148 BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12149 .addExternalSymbol("__chkstk")
12150 .addReg(X86::RAX, RegState::Implicit)
12151 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12152 // RAX has the offset to subtracted from RSP.
12153 BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
12158 const char *StackProbeSymbol =
12159 Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
12161 BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
12162 .addExternalSymbol(StackProbeSymbol)
12163 .addReg(X86::EAX, RegState::Implicit)
12164 .addReg(X86::ESP, RegState::Implicit)
12165 .addReg(X86::EAX, RegState::Define | RegState::Implicit)
12166 .addReg(X86::ESP, RegState::Define | RegState::Implicit)
12167 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12170 MI->eraseFromParent(); // The pseudo instruction is gone now.
12174 MachineBasicBlock *
12175 X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
12176 MachineBasicBlock *BB) const {
12177 // This is pretty easy. We're taking the value that we received from
12178 // our load from the relocation, sticking it in either RDI (x86-64)
12179 // or EAX and doing an indirect call. The return value will then
12180 // be in the normal return register.
12181 const X86InstrInfo *TII
12182 = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
12183 DebugLoc DL = MI->getDebugLoc();
12184 MachineFunction *F = BB->getParent();
12186 assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
12187 assert(MI->getOperand(3).isGlobal() && "This should be a global");
12189 if (Subtarget->is64Bit()) {
12190 MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12191 TII->get(X86::MOV64rm), X86::RDI)
12193 .addImm(0).addReg(0)
12194 .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12195 MI->getOperand(3).getTargetFlags())
12197 MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
12198 addDirectMem(MIB, X86::RDI);
12199 } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
12200 MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12201 TII->get(X86::MOV32rm), X86::EAX)
12203 .addImm(0).addReg(0)
12204 .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12205 MI->getOperand(3).getTargetFlags())
12207 MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12208 addDirectMem(MIB, X86::EAX);
12210 MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12211 TII->get(X86::MOV32rm), X86::EAX)
12212 .addReg(TII->getGlobalBaseReg(F))
12213 .addImm(0).addReg(0)
12214 .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12215 MI->getOperand(3).getTargetFlags())
12217 MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12218 addDirectMem(MIB, X86::EAX);
12221 MI->eraseFromParent(); // The pseudo instruction is gone now.
12225 MachineBasicBlock *
12226 X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
12227 MachineBasicBlock *BB) const {
12228 switch (MI->getOpcode()) {
12229 default: assert(0 && "Unexpected instr type to insert");
12230 case X86::TAILJMPd64:
12231 case X86::TAILJMPr64:
12232 case X86::TAILJMPm64:
12233 assert(0 && "TAILJMP64 would not be touched here.");
12234 case X86::TCRETURNdi64:
12235 case X86::TCRETURNri64:
12236 case X86::TCRETURNmi64:
12237 // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
12238 // On AMD64, additional defs should be added before register allocation.
12239 if (!Subtarget->isTargetWin64()) {
12240 MI->addRegisterDefined(X86::RSI);
12241 MI->addRegisterDefined(X86::RDI);
12242 MI->addRegisterDefined(X86::XMM6);
12243 MI->addRegisterDefined(X86::XMM7);
12244 MI->addRegisterDefined(X86::XMM8);
12245 MI->addRegisterDefined(X86::XMM9);
12246 MI->addRegisterDefined(X86::XMM10);
12247 MI->addRegisterDefined(X86::XMM11);
12248 MI->addRegisterDefined(X86::XMM12);
12249 MI->addRegisterDefined(X86::XMM13);
12250 MI->addRegisterDefined(X86::XMM14);
12251 MI->addRegisterDefined(X86::XMM15);
12254 case X86::WIN_ALLOCA:
12255 return EmitLoweredWinAlloca(MI, BB);
12256 case X86::SEG_ALLOCA_32:
12257 return EmitLoweredSegAlloca(MI, BB, false);
12258 case X86::SEG_ALLOCA_64:
12259 return EmitLoweredSegAlloca(MI, BB, true);
12260 case X86::TLSCall_32:
12261 case X86::TLSCall_64:
12262 return EmitLoweredTLSCall(MI, BB);
12263 case X86::CMOV_GR8:
12264 case X86::CMOV_FR32:
12265 case X86::CMOV_FR64:
12266 case X86::CMOV_V4F32:
12267 case X86::CMOV_V2F64:
12268 case X86::CMOV_V2I64:
12269 case X86::CMOV_V8F32:
12270 case X86::CMOV_V4F64:
12271 case X86::CMOV_V4I64:
12272 case X86::CMOV_GR16:
12273 case X86::CMOV_GR32:
12274 case X86::CMOV_RFP32:
12275 case X86::CMOV_RFP64:
12276 case X86::CMOV_RFP80:
12277 return EmitLoweredSelect(MI, BB);
12279 case X86::FP32_TO_INT16_IN_MEM:
12280 case X86::FP32_TO_INT32_IN_MEM:
12281 case X86::FP32_TO_INT64_IN_MEM:
12282 case X86::FP64_TO_INT16_IN_MEM:
12283 case X86::FP64_TO_INT32_IN_MEM:
12284 case X86::FP64_TO_INT64_IN_MEM:
12285 case X86::FP80_TO_INT16_IN_MEM:
12286 case X86::FP80_TO_INT32_IN_MEM:
12287 case X86::FP80_TO_INT64_IN_MEM: {
12288 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12289 DebugLoc DL = MI->getDebugLoc();
12291 // Change the floating point control register to use "round towards zero"
12292 // mode when truncating to an integer value.
12293 MachineFunction *F = BB->getParent();
12294 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
12295 addFrameReference(BuildMI(*BB, MI, DL,
12296 TII->get(X86::FNSTCW16m)), CWFrameIdx);
12298 // Load the old value of the high byte of the control word...
12300 F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
12301 addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
12304 // Set the high part to be round to zero...
12305 addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
12308 // Reload the modified control word now...
12309 addFrameReference(BuildMI(*BB, MI, DL,
12310 TII->get(X86::FLDCW16m)), CWFrameIdx);
12312 // Restore the memory image of control word to original value
12313 addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
12316 // Get the X86 opcode to use.
12318 switch (MI->getOpcode()) {
12319 default: llvm_unreachable("illegal opcode!");
12320 case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
12321 case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
12322 case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
12323 case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
12324 case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
12325 case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
12326 case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
12327 case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
12328 case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
12332 MachineOperand &Op = MI->getOperand(0);
12334 AM.BaseType = X86AddressMode::RegBase;
12335 AM.Base.Reg = Op.getReg();
12337 AM.BaseType = X86AddressMode::FrameIndexBase;
12338 AM.Base.FrameIndex = Op.getIndex();
12340 Op = MI->getOperand(1);
12342 AM.Scale = Op.getImm();
12343 Op = MI->getOperand(2);
12345 AM.IndexReg = Op.getImm();
12346 Op = MI->getOperand(3);
12347 if (Op.isGlobal()) {
12348 AM.GV = Op.getGlobal();
12350 AM.Disp = Op.getImm();
12352 addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
12353 .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
12355 // Reload the original control word now.
12356 addFrameReference(BuildMI(*BB, MI, DL,
12357 TII->get(X86::FLDCW16m)), CWFrameIdx);
12359 MI->eraseFromParent(); // The pseudo instruction is gone now.
12362 // String/text processing lowering.
12363 case X86::PCMPISTRM128REG:
12364 case X86::VPCMPISTRM128REG:
12365 return EmitPCMP(MI, BB, 3, false /* in-mem */);
12366 case X86::PCMPISTRM128MEM:
12367 case X86::VPCMPISTRM128MEM:
12368 return EmitPCMP(MI, BB, 3, true /* in-mem */);
12369 case X86::PCMPESTRM128REG:
12370 case X86::VPCMPESTRM128REG:
12371 return EmitPCMP(MI, BB, 5, false /* in mem */);
12372 case X86::PCMPESTRM128MEM:
12373 case X86::VPCMPESTRM128MEM:
12374 return EmitPCMP(MI, BB, 5, true /* in mem */);
12376 // Thread synchronization.
12378 return EmitMonitor(MI, BB);
12380 return EmitMwait(MI, BB);
12382 // Atomic Lowering.
12383 case X86::ATOMAND32:
12384 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12385 X86::AND32ri, X86::MOV32rm,
12387 X86::NOT32r, X86::EAX,
12388 X86::GR32RegisterClass);
12389 case X86::ATOMOR32:
12390 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
12391 X86::OR32ri, X86::MOV32rm,
12393 X86::NOT32r, X86::EAX,
12394 X86::GR32RegisterClass);
12395 case X86::ATOMXOR32:
12396 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
12397 X86::XOR32ri, X86::MOV32rm,
12399 X86::NOT32r, X86::EAX,
12400 X86::GR32RegisterClass);
12401 case X86::ATOMNAND32:
12402 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12403 X86::AND32ri, X86::MOV32rm,
12405 X86::NOT32r, X86::EAX,
12406 X86::GR32RegisterClass, true);
12407 case X86::ATOMMIN32:
12408 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
12409 case X86::ATOMMAX32:
12410 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
12411 case X86::ATOMUMIN32:
12412 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
12413 case X86::ATOMUMAX32:
12414 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
12416 case X86::ATOMAND16:
12417 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12418 X86::AND16ri, X86::MOV16rm,
12420 X86::NOT16r, X86::AX,
12421 X86::GR16RegisterClass);
12422 case X86::ATOMOR16:
12423 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
12424 X86::OR16ri, X86::MOV16rm,
12426 X86::NOT16r, X86::AX,
12427 X86::GR16RegisterClass);
12428 case X86::ATOMXOR16:
12429 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
12430 X86::XOR16ri, X86::MOV16rm,
12432 X86::NOT16r, X86::AX,
12433 X86::GR16RegisterClass);
12434 case X86::ATOMNAND16:
12435 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12436 X86::AND16ri, X86::MOV16rm,
12438 X86::NOT16r, X86::AX,
12439 X86::GR16RegisterClass, true);
12440 case X86::ATOMMIN16:
12441 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
12442 case X86::ATOMMAX16:
12443 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
12444 case X86::ATOMUMIN16:
12445 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
12446 case X86::ATOMUMAX16:
12447 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
12449 case X86::ATOMAND8:
12450 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12451 X86::AND8ri, X86::MOV8rm,
12453 X86::NOT8r, X86::AL,
12454 X86::GR8RegisterClass);
12456 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
12457 X86::OR8ri, X86::MOV8rm,
12459 X86::NOT8r, X86::AL,
12460 X86::GR8RegisterClass);
12461 case X86::ATOMXOR8:
12462 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
12463 X86::XOR8ri, X86::MOV8rm,
12465 X86::NOT8r, X86::AL,
12466 X86::GR8RegisterClass);
12467 case X86::ATOMNAND8:
12468 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12469 X86::AND8ri, X86::MOV8rm,
12471 X86::NOT8r, X86::AL,
12472 X86::GR8RegisterClass, true);
12473 // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
12474 // This group is for 64-bit host.
12475 case X86::ATOMAND64:
12476 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12477 X86::AND64ri32, X86::MOV64rm,
12479 X86::NOT64r, X86::RAX,
12480 X86::GR64RegisterClass);
12481 case X86::ATOMOR64:
12482 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
12483 X86::OR64ri32, X86::MOV64rm,
12485 X86::NOT64r, X86::RAX,
12486 X86::GR64RegisterClass);
12487 case X86::ATOMXOR64:
12488 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
12489 X86::XOR64ri32, X86::MOV64rm,
12491 X86::NOT64r, X86::RAX,
12492 X86::GR64RegisterClass);
12493 case X86::ATOMNAND64:
12494 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12495 X86::AND64ri32, X86::MOV64rm,
12497 X86::NOT64r, X86::RAX,
12498 X86::GR64RegisterClass, true);
12499 case X86::ATOMMIN64:
12500 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
12501 case X86::ATOMMAX64:
12502 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
12503 case X86::ATOMUMIN64:
12504 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
12505 case X86::ATOMUMAX64:
12506 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
12508 // This group does 64-bit operations on a 32-bit host.
12509 case X86::ATOMAND6432:
12510 return EmitAtomicBit6432WithCustomInserter(MI, BB,
12511 X86::AND32rr, X86::AND32rr,
12512 X86::AND32ri, X86::AND32ri,
12514 case X86::ATOMOR6432:
12515 return EmitAtomicBit6432WithCustomInserter(MI, BB,
12516 X86::OR32rr, X86::OR32rr,
12517 X86::OR32ri, X86::OR32ri,
12519 case X86::ATOMXOR6432:
12520 return EmitAtomicBit6432WithCustomInserter(MI, BB,
12521 X86::XOR32rr, X86::XOR32rr,
12522 X86::XOR32ri, X86::XOR32ri,
12524 case X86::ATOMNAND6432:
12525 return EmitAtomicBit6432WithCustomInserter(MI, BB,
12526 X86::AND32rr, X86::AND32rr,
12527 X86::AND32ri, X86::AND32ri,
12529 case X86::ATOMADD6432:
12530 return EmitAtomicBit6432WithCustomInserter(MI, BB,
12531 X86::ADD32rr, X86::ADC32rr,
12532 X86::ADD32ri, X86::ADC32ri,
12534 case X86::ATOMSUB6432:
12535 return EmitAtomicBit6432WithCustomInserter(MI, BB,
12536 X86::SUB32rr, X86::SBB32rr,
12537 X86::SUB32ri, X86::SBB32ri,
12539 case X86::ATOMSWAP6432:
12540 return EmitAtomicBit6432WithCustomInserter(MI, BB,
12541 X86::MOV32rr, X86::MOV32rr,
12542 X86::MOV32ri, X86::MOV32ri,
12544 case X86::VASTART_SAVE_XMM_REGS:
12545 return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
12547 case X86::VAARG_64:
12548 return EmitVAARG64WithCustomInserter(MI, BB);
12552 //===----------------------------------------------------------------------===//
12553 // X86 Optimization Hooks
12554 //===----------------------------------------------------------------------===//
12556 void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
12560 const SelectionDAG &DAG,
12561 unsigned Depth) const {
12562 unsigned Opc = Op.getOpcode();
12563 assert((Opc >= ISD::BUILTIN_OP_END ||
12564 Opc == ISD::INTRINSIC_WO_CHAIN ||
12565 Opc == ISD::INTRINSIC_W_CHAIN ||
12566 Opc == ISD::INTRINSIC_VOID) &&
12567 "Should use MaskedValueIsZero if you don't know whether Op"
12568 " is a target node!");
12570 KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0); // Don't know anything.
12584 // These nodes' second result is a boolean.
12585 if (Op.getResNo() == 0)
12588 case X86ISD::SETCC:
12589 KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
12590 Mask.getBitWidth() - 1);
12592 case ISD::INTRINSIC_WO_CHAIN: {
12593 unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12594 unsigned NumLoBits = 0;
12597 case Intrinsic::x86_sse_movmsk_ps:
12598 case Intrinsic::x86_avx_movmsk_ps_256:
12599 case Intrinsic::x86_sse2_movmsk_pd:
12600 case Intrinsic::x86_avx_movmsk_pd_256:
12601 case Intrinsic::x86_mmx_pmovmskb:
12602 case Intrinsic::x86_sse2_pmovmskb_128:
12603 case Intrinsic::x86_avx2_pmovmskb: {
12604 // High bits of movmskp{s|d}, pmovmskb are known zero.
12606 case Intrinsic::x86_sse_movmsk_ps: NumLoBits = 4; break;
12607 case Intrinsic::x86_avx_movmsk_ps_256: NumLoBits = 8; break;
12608 case Intrinsic::x86_sse2_movmsk_pd: NumLoBits = 2; break;
12609 case Intrinsic::x86_avx_movmsk_pd_256: NumLoBits = 4; break;
12610 case Intrinsic::x86_mmx_pmovmskb: NumLoBits = 8; break;
12611 case Intrinsic::x86_sse2_pmovmskb_128: NumLoBits = 16; break;
12612 case Intrinsic::x86_avx2_pmovmskb: NumLoBits = 32; break;
12614 KnownZero = APInt::getHighBitsSet(Mask.getBitWidth(),
12615 Mask.getBitWidth() - NumLoBits);
12624 unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
12625 unsigned Depth) const {
12626 // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
12627 if (Op.getOpcode() == X86ISD::SETCC_CARRY)
12628 return Op.getValueType().getScalarType().getSizeInBits();
12634 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
12635 /// node is a GlobalAddress + offset.
12636 bool X86TargetLowering::isGAPlusOffset(SDNode *N,
12637 const GlobalValue* &GA,
12638 int64_t &Offset) const {
12639 if (N->getOpcode() == X86ISD::Wrapper) {
12640 if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
12641 GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
12642 Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
12646 return TargetLowering::isGAPlusOffset(N, GA, Offset);
12649 /// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
12650 /// same as extracting the high 128-bit part of 256-bit vector and then
12651 /// inserting the result into the low part of a new 256-bit vector
12652 static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
12653 EVT VT = SVOp->getValueType(0);
12654 int NumElems = VT.getVectorNumElements();
12656 // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12657 for (int i = 0, j = NumElems/2; i < NumElems/2; ++i, ++j)
12658 if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12659 SVOp->getMaskElt(j) >= 0)
12665 /// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
12666 /// same as extracting the low 128-bit part of 256-bit vector and then
12667 /// inserting the result into the high part of a new 256-bit vector
12668 static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
12669 EVT VT = SVOp->getValueType(0);
12670 int NumElems = VT.getVectorNumElements();
12672 // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12673 for (int i = NumElems/2, j = 0; i < NumElems; ++i, ++j)
12674 if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12675 SVOp->getMaskElt(j) >= 0)
12681 /// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
12682 static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
12683 TargetLowering::DAGCombinerInfo &DCI,
12685 DebugLoc dl = N->getDebugLoc();
12686 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
12687 SDValue V1 = SVOp->getOperand(0);
12688 SDValue V2 = SVOp->getOperand(1);
12689 EVT VT = SVOp->getValueType(0);
12690 int NumElems = VT.getVectorNumElements();
12692 if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
12693 V2.getOpcode() == ISD::CONCAT_VECTORS) {
12697 // V UNDEF BUILD_VECTOR UNDEF
12699 // CONCAT_VECTOR CONCAT_VECTOR
12702 // RESULT: V + zero extended
12704 if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
12705 V2.getOperand(1).getOpcode() != ISD::UNDEF ||
12706 V1.getOperand(1).getOpcode() != ISD::UNDEF)
12709 if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
12712 // To match the shuffle mask, the first half of the mask should
12713 // be exactly the first vector, and all the rest a splat with the
12714 // first element of the second one.
12715 for (int i = 0; i < NumElems/2; ++i)
12716 if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
12717 !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
12720 // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
12721 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
12722 SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
12723 SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
12725 DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2,
12727 Ld->getPointerInfo(),
12728 Ld->getAlignment(),
12729 false/*isVolatile*/, true/*ReadMem*/,
12730 false/*WriteMem*/);
12731 return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
12734 // Emit a zeroed vector and insert the desired subvector on its
12736 SDValue Zeros = getZeroVector(VT, true /* HasSSE2 */, HasAVX2, DAG, dl);
12737 SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
12738 DAG.getConstant(0, MVT::i32), DAG, dl);
12739 return DCI.CombineTo(N, InsV);
12742 //===--------------------------------------------------------------------===//
12743 // Combine some shuffles into subvector extracts and inserts:
12746 // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12747 if (isShuffleHigh128VectorInsertLow(SVOp)) {
12748 SDValue V = Extract128BitVector(V1, DAG.getConstant(NumElems/2, MVT::i32),
12750 SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12751 V, DAG.getConstant(0, MVT::i32), DAG, dl);
12752 return DCI.CombineTo(N, InsV);
12755 // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12756 if (isShuffleLow128VectorInsertHigh(SVOp)) {
12757 SDValue V = Extract128BitVector(V1, DAG.getConstant(0, MVT::i32), DAG, dl);
12758 SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12759 V, DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
12760 return DCI.CombineTo(N, InsV);
12766 /// PerformShuffleCombine - Performs several different shuffle combines.
12767 static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
12768 TargetLowering::DAGCombinerInfo &DCI,
12769 const X86Subtarget *Subtarget) {
12770 DebugLoc dl = N->getDebugLoc();
12771 EVT VT = N->getValueType(0);
12773 // Don't create instructions with illegal types after legalize types has run.
12774 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12775 if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
12778 // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
12779 if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
12780 N->getOpcode() == ISD::VECTOR_SHUFFLE)
12781 return PerformShuffleCombine256(N, DAG, DCI, Subtarget->hasAVX2());
12783 // Only handle 128 wide vector from here on.
12784 if (VT.getSizeInBits() != 128)
12787 // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
12788 // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
12789 // consecutive, non-overlapping, and in the right order.
12790 SmallVector<SDValue, 16> Elts;
12791 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
12792 Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
12794 return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
12797 /// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
12798 /// generation and convert it from being a bunch of shuffles and extracts
12799 /// to a simple store and scalar loads to extract the elements.
12800 static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
12801 const TargetLowering &TLI) {
12802 SDValue InputVector = N->getOperand(0);
12804 // Only operate on vectors of 4 elements, where the alternative shuffling
12805 // gets to be more expensive.
12806 if (InputVector.getValueType() != MVT::v4i32)
12809 // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
12810 // single use which is a sign-extend or zero-extend, and all elements are
12812 SmallVector<SDNode *, 4> Uses;
12813 unsigned ExtractedElements = 0;
12814 for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
12815 UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
12816 if (UI.getUse().getResNo() != InputVector.getResNo())
12819 SDNode *Extract = *UI;
12820 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12823 if (Extract->getValueType(0) != MVT::i32)
12825 if (!Extract->hasOneUse())
12827 if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
12828 Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
12830 if (!isa<ConstantSDNode>(Extract->getOperand(1)))
12833 // Record which element was extracted.
12834 ExtractedElements |=
12835 1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
12837 Uses.push_back(Extract);
12840 // If not all the elements were used, this may not be worthwhile.
12841 if (ExtractedElements != 15)
12844 // Ok, we've now decided to do the transformation.
12845 DebugLoc dl = InputVector.getDebugLoc();
12847 // Store the value to a temporary stack slot.
12848 SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
12849 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
12850 MachinePointerInfo(), false, false, 0);
12852 // Replace each use (extract) with a load of the appropriate element.
12853 for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
12854 UE = Uses.end(); UI != UE; ++UI) {
12855 SDNode *Extract = *UI;
12857 // cOMpute the element's address.
12858 SDValue Idx = Extract->getOperand(1);
12860 InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
12861 uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
12862 SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
12864 SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
12865 StackPtr, OffsetVal);
12867 // Load the scalar.
12868 SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
12869 ScalarAddr, MachinePointerInfo(),
12870 false, false, false, 0);
12872 // Replace the exact with the load.
12873 DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
12876 // The replacement was made in place; don't return anything.
12880 /// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
12882 static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
12883 TargetLowering::DAGCombinerInfo &DCI,
12884 const X86Subtarget *Subtarget) {
12885 DebugLoc DL = N->getDebugLoc();
12886 SDValue Cond = N->getOperand(0);
12887 // Get the LHS/RHS of the select.
12888 SDValue LHS = N->getOperand(1);
12889 SDValue RHS = N->getOperand(2);
12890 EVT VT = LHS.getValueType();
12892 // If we have SSE[12] support, try to form min/max nodes. SSE min/max
12893 // instructions match the semantics of the common C idiom x<y?x:y but not
12894 // x<=y?x:y, because of how they handle negative zero (which can be
12895 // ignored in unsafe-math mode).
12896 if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
12897 VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
12898 (Subtarget->hasSSE2() ||
12899 (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
12900 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
12902 unsigned Opcode = 0;
12903 // Check for x CC y ? x : y.
12904 if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
12905 DAG.isEqualTo(RHS, Cond.getOperand(1))) {
12909 // Converting this to a min would handle NaNs incorrectly, and swapping
12910 // the operands would cause it to handle comparisons between positive
12911 // and negative zero incorrectly.
12912 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
12913 if (!DAG.getTarget().Options.UnsafeFPMath &&
12914 !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
12916 std::swap(LHS, RHS);
12918 Opcode = X86ISD::FMIN;
12921 // Converting this to a min would handle comparisons between positive
12922 // and negative zero incorrectly.
12923 if (!DAG.getTarget().Options.UnsafeFPMath &&
12924 !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
12926 Opcode = X86ISD::FMIN;
12929 // Converting this to a min would handle both negative zeros and NaNs
12930 // incorrectly, but we can swap the operands to fix both.
12931 std::swap(LHS, RHS);
12935 Opcode = X86ISD::FMIN;
12939 // Converting this to a max would handle comparisons between positive
12940 // and negative zero incorrectly.
12941 if (!DAG.getTarget().Options.UnsafeFPMath &&
12942 !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
12944 Opcode = X86ISD::FMAX;
12947 // Converting this to a max would handle NaNs incorrectly, and swapping
12948 // the operands would cause it to handle comparisons between positive
12949 // and negative zero incorrectly.
12950 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
12951 if (!DAG.getTarget().Options.UnsafeFPMath &&
12952 !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
12954 std::swap(LHS, RHS);
12956 Opcode = X86ISD::FMAX;
12959 // Converting this to a max would handle both negative zeros and NaNs
12960 // incorrectly, but we can swap the operands to fix both.
12961 std::swap(LHS, RHS);
12965 Opcode = X86ISD::FMAX;
12968 // Check for x CC y ? y : x -- a min/max with reversed arms.
12969 } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
12970 DAG.isEqualTo(RHS, Cond.getOperand(0))) {
12974 // Converting this to a min would handle comparisons between positive
12975 // and negative zero incorrectly, and swapping the operands would
12976 // cause it to handle NaNs incorrectly.
12977 if (!DAG.getTarget().Options.UnsafeFPMath &&
12978 !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
12979 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12981 std::swap(LHS, RHS);
12983 Opcode = X86ISD::FMIN;
12986 // Converting this to a min would handle NaNs incorrectly.
12987 if (!DAG.getTarget().Options.UnsafeFPMath &&
12988 (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
12990 Opcode = X86ISD::FMIN;
12993 // Converting this to a min would handle both negative zeros and NaNs
12994 // incorrectly, but we can swap the operands to fix both.
12995 std::swap(LHS, RHS);
12999 Opcode = X86ISD::FMIN;
13003 // Converting this to a max would handle NaNs incorrectly.
13004 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13006 Opcode = X86ISD::FMAX;
13009 // Converting this to a max would handle comparisons between positive
13010 // and negative zero incorrectly, and swapping the operands would
13011 // cause it to handle NaNs incorrectly.
13012 if (!DAG.getTarget().Options.UnsafeFPMath &&
13013 !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
13014 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13016 std::swap(LHS, RHS);
13018 Opcode = X86ISD::FMAX;
13021 // Converting this to a max would handle both negative zeros and NaNs
13022 // incorrectly, but we can swap the operands to fix both.
13023 std::swap(LHS, RHS);
13027 Opcode = X86ISD::FMAX;
13033 return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
13036 // If this is a select between two integer constants, try to do some
13038 if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
13039 if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
13040 // Don't do this for crazy integer types.
13041 if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
13042 // If this is efficiently invertible, canonicalize the LHSC/RHSC values
13043 // so that TrueC (the true value) is larger than FalseC.
13044 bool NeedsCondInvert = false;
13046 if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
13047 // Efficiently invertible.
13048 (Cond.getOpcode() == ISD::SETCC || // setcc -> invertible.
13049 (Cond.getOpcode() == ISD::XOR && // xor(X, C) -> invertible.
13050 isa<ConstantSDNode>(Cond.getOperand(1))))) {
13051 NeedsCondInvert = true;
13052 std::swap(TrueC, FalseC);
13055 // Optimize C ? 8 : 0 -> zext(C) << 3. Likewise for any pow2/0.
13056 if (FalseC->getAPIntValue() == 0 &&
13057 TrueC->getAPIntValue().isPowerOf2()) {
13058 if (NeedsCondInvert) // Invert the condition if needed.
13059 Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13060 DAG.getConstant(1, Cond.getValueType()));
13062 // Zero extend the condition if needed.
13063 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
13065 unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13066 return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
13067 DAG.getConstant(ShAmt, MVT::i8));
13070 // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
13071 if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13072 if (NeedsCondInvert) // Invert the condition if needed.
13073 Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13074 DAG.getConstant(1, Cond.getValueType()));
13076 // Zero extend the condition if needed.
13077 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13078 FalseC->getValueType(0), Cond);
13079 return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13080 SDValue(FalseC, 0));
13083 // Optimize cases that will turn into an LEA instruction. This requires
13084 // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13085 if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13086 uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13087 if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13089 bool isFastMultiplier = false;
13091 switch ((unsigned char)Diff) {
13093 case 1: // result = add base, cond
13094 case 2: // result = lea base( , cond*2)
13095 case 3: // result = lea base(cond, cond*2)
13096 case 4: // result = lea base( , cond*4)
13097 case 5: // result = lea base(cond, cond*4)
13098 case 8: // result = lea base( , cond*8)
13099 case 9: // result = lea base(cond, cond*8)
13100 isFastMultiplier = true;
13105 if (isFastMultiplier) {
13106 APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13107 if (NeedsCondInvert) // Invert the condition if needed.
13108 Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13109 DAG.getConstant(1, Cond.getValueType()));
13111 // Zero extend the condition if needed.
13112 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13114 // Scale the condition by the difference.
13116 Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13117 DAG.getConstant(Diff, Cond.getValueType()));
13119 // Add the base if non-zero.
13120 if (FalseC->getAPIntValue() != 0)
13121 Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13122 SDValue(FalseC, 0));
13129 // Canonicalize max and min:
13130 // (x > y) ? x : y -> (x >= y) ? x : y
13131 // (x < y) ? x : y -> (x <= y) ? x : y
13132 // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
13133 // the need for an extra compare
13134 // against zero. e.g.
13135 // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
13137 // testl %edi, %edi
13139 // cmovgl %edi, %eax
13143 // cmovsl %eax, %edi
13144 if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
13145 DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13146 DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13147 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13152 ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
13153 Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
13154 Cond.getOperand(0), Cond.getOperand(1), NewCC);
13155 return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
13160 // If we know that this node is legal then we know that it is going to be
13161 // matched by one of the SSE/AVX BLEND instructions. These instructions only
13162 // depend on the highest bit in each word. Try to use SimplifyDemandedBits
13163 // to simplify previous instructions.
13164 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13165 if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
13166 !DCI.isBeforeLegalize() &&
13167 TLI.isOperationLegal(ISD::VSELECT, VT)) {
13168 unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
13169 assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
13170 APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
13172 APInt KnownZero, KnownOne;
13173 TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
13174 DCI.isBeforeLegalizeOps());
13175 if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
13176 TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
13177 DCI.CommitTargetLoweringOpt(TLO);
13183 /// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
13184 static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
13185 TargetLowering::DAGCombinerInfo &DCI) {
13186 DebugLoc DL = N->getDebugLoc();
13188 // If the flag operand isn't dead, don't touch this CMOV.
13189 if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
13192 SDValue FalseOp = N->getOperand(0);
13193 SDValue TrueOp = N->getOperand(1);
13194 X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
13195 SDValue Cond = N->getOperand(3);
13196 if (CC == X86::COND_E || CC == X86::COND_NE) {
13197 switch (Cond.getOpcode()) {
13201 // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
13202 if (DAG.isKnownNeverZero(Cond.getOperand(0)))
13203 return (CC == X86::COND_E) ? FalseOp : TrueOp;
13207 // If this is a select between two integer constants, try to do some
13208 // optimizations. Note that the operands are ordered the opposite of SELECT
13210 if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
13211 if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
13212 // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
13213 // larger than FalseC (the false value).
13214 if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
13215 CC = X86::GetOppositeBranchCondition(CC);
13216 std::swap(TrueC, FalseC);
13219 // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3. Likewise for any pow2/0.
13220 // This is efficient for any integer data type (including i8/i16) and
13222 if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
13223 Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13224 DAG.getConstant(CC, MVT::i8), Cond);
13226 // Zero extend the condition if needed.
13227 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
13229 unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13230 Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
13231 DAG.getConstant(ShAmt, MVT::i8));
13232 if (N->getNumValues() == 2) // Dead flag value?
13233 return DCI.CombineTo(N, Cond, SDValue());
13237 // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. This is efficient
13238 // for any integer data type, including i8/i16.
13239 if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13240 Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13241 DAG.getConstant(CC, MVT::i8), Cond);
13243 // Zero extend the condition if needed.
13244 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13245 FalseC->getValueType(0), Cond);
13246 Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13247 SDValue(FalseC, 0));
13249 if (N->getNumValues() == 2) // Dead flag value?
13250 return DCI.CombineTo(N, Cond, SDValue());
13254 // Optimize cases that will turn into an LEA instruction. This requires
13255 // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13256 if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13257 uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13258 if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13260 bool isFastMultiplier = false;
13262 switch ((unsigned char)Diff) {
13264 case 1: // result = add base, cond
13265 case 2: // result = lea base( , cond*2)
13266 case 3: // result = lea base(cond, cond*2)
13267 case 4: // result = lea base( , cond*4)
13268 case 5: // result = lea base(cond, cond*4)
13269 case 8: // result = lea base( , cond*8)
13270 case 9: // result = lea base(cond, cond*8)
13271 isFastMultiplier = true;
13276 if (isFastMultiplier) {
13277 APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13278 Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13279 DAG.getConstant(CC, MVT::i8), Cond);
13280 // Zero extend the condition if needed.
13281 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13283 // Scale the condition by the difference.
13285 Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13286 DAG.getConstant(Diff, Cond.getValueType()));
13288 // Add the base if non-zero.
13289 if (FalseC->getAPIntValue() != 0)
13290 Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13291 SDValue(FalseC, 0));
13292 if (N->getNumValues() == 2) // Dead flag value?
13293 return DCI.CombineTo(N, Cond, SDValue());
13303 /// PerformMulCombine - Optimize a single multiply with constant into two
13304 /// in order to implement it with two cheaper instructions, e.g.
13305 /// LEA + SHL, LEA + LEA.
13306 static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
13307 TargetLowering::DAGCombinerInfo &DCI) {
13308 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
13311 EVT VT = N->getValueType(0);
13312 if (VT != MVT::i64)
13315 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
13318 uint64_t MulAmt = C->getZExtValue();
13319 if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
13322 uint64_t MulAmt1 = 0;
13323 uint64_t MulAmt2 = 0;
13324 if ((MulAmt % 9) == 0) {
13326 MulAmt2 = MulAmt / 9;
13327 } else if ((MulAmt % 5) == 0) {
13329 MulAmt2 = MulAmt / 5;
13330 } else if ((MulAmt % 3) == 0) {
13332 MulAmt2 = MulAmt / 3;
13335 (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
13336 DebugLoc DL = N->getDebugLoc();
13338 if (isPowerOf2_64(MulAmt2) &&
13339 !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
13340 // If second multiplifer is pow2, issue it first. We want the multiply by
13341 // 3, 5, or 9 to be folded into the addressing mode unless the lone use
13343 std::swap(MulAmt1, MulAmt2);
13346 if (isPowerOf2_64(MulAmt1))
13347 NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
13348 DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
13350 NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
13351 DAG.getConstant(MulAmt1, VT));
13353 if (isPowerOf2_64(MulAmt2))
13354 NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
13355 DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
13357 NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
13358 DAG.getConstant(MulAmt2, VT));
13360 // Do not add new nodes to DAG combiner worklist.
13361 DCI.CombineTo(N, NewMul, false);
13366 static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
13367 SDValue N0 = N->getOperand(0);
13368 SDValue N1 = N->getOperand(1);
13369 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
13370 EVT VT = N0.getValueType();
13372 // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
13373 // since the result of setcc_c is all zero's or all ones.
13374 if (VT.isInteger() && !VT.isVector() &&
13375 N1C && N0.getOpcode() == ISD::AND &&
13376 N0.getOperand(1).getOpcode() == ISD::Constant) {
13377 SDValue N00 = N0.getOperand(0);
13378 if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
13379 ((N00.getOpcode() == ISD::ANY_EXTEND ||
13380 N00.getOpcode() == ISD::ZERO_EXTEND) &&
13381 N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
13382 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
13383 APInt ShAmt = N1C->getAPIntValue();
13384 Mask = Mask.shl(ShAmt);
13386 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
13387 N00, DAG.getConstant(Mask, VT));
13392 // Hardware support for vector shifts is sparse which makes us scalarize the
13393 // vector operations in many cases. Also, on sandybridge ADD is faster than
13395 // (shl V, 1) -> add V,V
13396 if (isSplatVector(N1.getNode())) {
13397 assert(N0.getValueType().isVector() && "Invalid vector shift type");
13398 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
13399 // We shift all of the values by one. In many cases we do not have
13400 // hardware support for this operation. This is better expressed as an ADD
13402 if (N1C && (1 == N1C->getZExtValue())) {
13403 return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
13410 /// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
13412 static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
13413 const X86Subtarget *Subtarget) {
13414 EVT VT = N->getValueType(0);
13415 if (N->getOpcode() == ISD::SHL) {
13416 SDValue V = PerformSHLCombine(N, DAG);
13417 if (V.getNode()) return V;
13420 // On X86 with SSE2 support, we can transform this to a vector shift if
13421 // all elements are shifted by the same amount. We can't do this in legalize
13422 // because the a constant vector is typically transformed to a constant pool
13423 // so we have no knowledge of the shift amount.
13424 if (!Subtarget->hasSSE2())
13427 if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
13428 (!Subtarget->hasAVX2() ||
13429 (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
13432 SDValue ShAmtOp = N->getOperand(1);
13433 EVT EltVT = VT.getVectorElementType();
13434 DebugLoc DL = N->getDebugLoc();
13435 SDValue BaseShAmt = SDValue();
13436 if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
13437 unsigned NumElts = VT.getVectorNumElements();
13439 for (; i != NumElts; ++i) {
13440 SDValue Arg = ShAmtOp.getOperand(i);
13441 if (Arg.getOpcode() == ISD::UNDEF) continue;
13445 // Handle the case where the build_vector is all undef
13446 // FIXME: Should DAG allow this?
13450 for (; i != NumElts; ++i) {
13451 SDValue Arg = ShAmtOp.getOperand(i);
13452 if (Arg.getOpcode() == ISD::UNDEF) continue;
13453 if (Arg != BaseShAmt) {
13457 } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
13458 cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
13459 SDValue InVec = ShAmtOp.getOperand(0);
13460 if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
13461 unsigned NumElts = InVec.getValueType().getVectorNumElements();
13463 for (; i != NumElts; ++i) {
13464 SDValue Arg = InVec.getOperand(i);
13465 if (Arg.getOpcode() == ISD::UNDEF) continue;
13469 } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
13470 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
13471 unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
13472 if (C->getZExtValue() == SplatIdx)
13473 BaseShAmt = InVec.getOperand(1);
13476 if (BaseShAmt.getNode() == 0)
13477 BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
13478 DAG.getIntPtrConstant(0));
13482 // The shift amount is an i32.
13483 if (EltVT.bitsGT(MVT::i32))
13484 BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
13485 else if (EltVT.bitsLT(MVT::i32))
13486 BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
13488 // The shift amount is identical so we can do a vector shift.
13489 SDValue ValOp = N->getOperand(0);
13490 switch (N->getOpcode()) {
13492 llvm_unreachable("Unknown shift opcode!");
13494 if (VT == MVT::v2i64)
13495 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13496 DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
13498 if (VT == MVT::v4i32)
13499 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13500 DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
13502 if (VT == MVT::v8i16)
13503 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13504 DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
13506 if (VT == MVT::v4i64)
13507 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13508 DAG.getConstant(Intrinsic::x86_avx2_pslli_q, MVT::i32),
13510 if (VT == MVT::v8i32)
13511 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13512 DAG.getConstant(Intrinsic::x86_avx2_pslli_d, MVT::i32),
13514 if (VT == MVT::v16i16)
13515 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13516 DAG.getConstant(Intrinsic::x86_avx2_pslli_w, MVT::i32),
13520 if (VT == MVT::v4i32)
13521 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13522 DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
13524 if (VT == MVT::v8i16)
13525 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13526 DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
13528 if (VT == MVT::v8i32)
13529 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13530 DAG.getConstant(Intrinsic::x86_avx2_psrai_d, MVT::i32),
13532 if (VT == MVT::v16i16)
13533 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13534 DAG.getConstant(Intrinsic::x86_avx2_psrai_w, MVT::i32),
13538 if (VT == MVT::v2i64)
13539 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13540 DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
13542 if (VT == MVT::v4i32)
13543 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13544 DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
13546 if (VT == MVT::v8i16)
13547 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13548 DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
13550 if (VT == MVT::v4i64)
13551 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13552 DAG.getConstant(Intrinsic::x86_avx2_psrli_q, MVT::i32),
13554 if (VT == MVT::v8i32)
13555 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13556 DAG.getConstant(Intrinsic::x86_avx2_psrli_d, MVT::i32),
13558 if (VT == MVT::v16i16)
13559 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13560 DAG.getConstant(Intrinsic::x86_avx2_psrli_w, MVT::i32),
13568 // CMPEQCombine - Recognize the distinctive (AND (setcc ...) (setcc ..))
13569 // where both setccs reference the same FP CMP, and rewrite for CMPEQSS
13570 // and friends. Likewise for OR -> CMPNEQSS.
13571 static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
13572 TargetLowering::DAGCombinerInfo &DCI,
13573 const X86Subtarget *Subtarget) {
13576 // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
13577 // we're requiring SSE2 for both.
13578 if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
13579 SDValue N0 = N->getOperand(0);
13580 SDValue N1 = N->getOperand(1);
13581 SDValue CMP0 = N0->getOperand(1);
13582 SDValue CMP1 = N1->getOperand(1);
13583 DebugLoc DL = N->getDebugLoc();
13585 // The SETCCs should both refer to the same CMP.
13586 if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
13589 SDValue CMP00 = CMP0->getOperand(0);
13590 SDValue CMP01 = CMP0->getOperand(1);
13591 EVT VT = CMP00.getValueType();
13593 if (VT == MVT::f32 || VT == MVT::f64) {
13594 bool ExpectingFlags = false;
13595 // Check for any users that want flags:
13596 for (SDNode::use_iterator UI = N->use_begin(),
13598 !ExpectingFlags && UI != UE; ++UI)
13599 switch (UI->getOpcode()) {
13604 ExpectingFlags = true;
13606 case ISD::CopyToReg:
13607 case ISD::SIGN_EXTEND:
13608 case ISD::ZERO_EXTEND:
13609 case ISD::ANY_EXTEND:
13613 if (!ExpectingFlags) {
13614 enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
13615 enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
13617 if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
13618 X86::CondCode tmp = cc0;
13623 if ((cc0 == X86::COND_E && cc1 == X86::COND_NP) ||
13624 (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
13625 bool is64BitFP = (CMP00.getValueType() == MVT::f64);
13626 X86ISD::NodeType NTOperator = is64BitFP ?
13627 X86ISD::FSETCCsd : X86ISD::FSETCCss;
13628 // FIXME: need symbolic constants for these magic numbers.
13629 // See X86ATTInstPrinter.cpp:printSSECC().
13630 unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
13631 SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
13632 DAG.getConstant(x86cc, MVT::i8));
13633 SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
13635 SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
13636 DAG.getConstant(1, MVT::i32));
13637 SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
13638 return OneBitOfTruth;
13646 /// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
13647 /// so it can be folded inside ANDNP.
13648 static bool CanFoldXORWithAllOnes(const SDNode *N) {
13649 EVT VT = N->getValueType(0);
13651 // Match direct AllOnes for 128 and 256-bit vectors
13652 if (ISD::isBuildVectorAllOnes(N))
13655 // Look through a bit convert.
13656 if (N->getOpcode() == ISD::BITCAST)
13657 N = N->getOperand(0).getNode();
13659 // Sometimes the operand may come from a insert_subvector building a 256-bit
13661 if (VT.getSizeInBits() == 256 &&
13662 N->getOpcode() == ISD::INSERT_SUBVECTOR) {
13663 SDValue V1 = N->getOperand(0);
13664 SDValue V2 = N->getOperand(1);
13666 if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
13667 V1.getOperand(0).getOpcode() == ISD::UNDEF &&
13668 ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
13669 ISD::isBuildVectorAllOnes(V2.getNode()))
13676 static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
13677 TargetLowering::DAGCombinerInfo &DCI,
13678 const X86Subtarget *Subtarget) {
13679 if (DCI.isBeforeLegalizeOps())
13682 SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13686 EVT VT = N->getValueType(0);
13688 // Create ANDN, BLSI, and BLSR instructions
13689 // BLSI is X & (-X)
13690 // BLSR is X & (X-1)
13691 if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
13692 SDValue N0 = N->getOperand(0);
13693 SDValue N1 = N->getOperand(1);
13694 DebugLoc DL = N->getDebugLoc();
13696 // Check LHS for not
13697 if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
13698 return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
13699 // Check RHS for not
13700 if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
13701 return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
13703 // Check LHS for neg
13704 if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
13705 isZero(N0.getOperand(0)))
13706 return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
13708 // Check RHS for neg
13709 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
13710 isZero(N1.getOperand(0)))
13711 return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
13713 // Check LHS for X-1
13714 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
13715 isAllOnes(N0.getOperand(1)))
13716 return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
13718 // Check RHS for X-1
13719 if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
13720 isAllOnes(N1.getOperand(1)))
13721 return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
13726 // Want to form ANDNP nodes:
13727 // 1) In the hopes of then easily combining them with OR and AND nodes
13728 // to form PBLEND/PSIGN.
13729 // 2) To match ANDN packed intrinsics
13730 if (VT != MVT::v2i64 && VT != MVT::v4i64)
13733 SDValue N0 = N->getOperand(0);
13734 SDValue N1 = N->getOperand(1);
13735 DebugLoc DL = N->getDebugLoc();
13737 // Check LHS for vnot
13738 if (N0.getOpcode() == ISD::XOR &&
13739 //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
13740 CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
13741 return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
13743 // Check RHS for vnot
13744 if (N1.getOpcode() == ISD::XOR &&
13745 //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
13746 CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
13747 return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
13752 static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
13753 TargetLowering::DAGCombinerInfo &DCI,
13754 const X86Subtarget *Subtarget) {
13755 if (DCI.isBeforeLegalizeOps())
13758 SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13762 EVT VT = N->getValueType(0);
13764 SDValue N0 = N->getOperand(0);
13765 SDValue N1 = N->getOperand(1);
13767 // look for psign/blend
13768 if (VT == MVT::v2i64 || VT == MVT::v4i64) {
13769 if (!Subtarget->hasSSSE3() ||
13770 (VT == MVT::v4i64 && !Subtarget->hasAVX2()))
13773 // Canonicalize pandn to RHS
13774 if (N0.getOpcode() == X86ISD::ANDNP)
13776 // or (and (m, y), (pandn m, x))
13777 if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
13778 SDValue Mask = N1.getOperand(0);
13779 SDValue X = N1.getOperand(1);
13781 if (N0.getOperand(0) == Mask)
13782 Y = N0.getOperand(1);
13783 if (N0.getOperand(1) == Mask)
13784 Y = N0.getOperand(0);
13786 // Check to see if the mask appeared in both the AND and ANDNP and
13790 // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
13791 if (Mask.getOpcode() != ISD::BITCAST ||
13792 X.getOpcode() != ISD::BITCAST ||
13793 Y.getOpcode() != ISD::BITCAST)
13796 // Look through mask bitcast.
13797 Mask = Mask.getOperand(0);
13798 EVT MaskVT = Mask.getValueType();
13800 // Validate that the Mask operand is a vector sra node. The sra node
13801 // will be an intrinsic.
13802 if (Mask.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
13805 // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
13806 // there is no psrai.b
13807 switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) {
13808 case Intrinsic::x86_sse2_psrai_w:
13809 case Intrinsic::x86_sse2_psrai_d:
13810 case Intrinsic::x86_avx2_psrai_w:
13811 case Intrinsic::x86_avx2_psrai_d:
13813 default: return SDValue();
13816 // Check that the SRA is all signbits.
13817 SDValue SraC = Mask.getOperand(2);
13818 unsigned SraAmt = cast<ConstantSDNode>(SraC)->getZExtValue();
13819 unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
13820 if ((SraAmt + 1) != EltBits)
13823 DebugLoc DL = N->getDebugLoc();
13825 // Now we know we at least have a plendvb with the mask val. See if
13826 // we can form a psignb/w/d.
13827 // psign = x.type == y.type == mask.type && y = sub(0, x);
13828 X = X.getOperand(0);
13829 Y = Y.getOperand(0);
13830 if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
13831 ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
13832 X.getValueType() == MaskVT && X.getValueType() == Y.getValueType() &&
13833 (EltBits == 8 || EltBits == 16 || EltBits == 32)) {
13834 SDValue Sign = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X,
13835 Mask.getOperand(1));
13836 return DAG.getNode(ISD::BITCAST, DL, VT, Sign);
13838 // PBLENDVB only available on SSE 4.1
13839 if (!Subtarget->hasSSE41())
13842 EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
13844 X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
13845 Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
13846 Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
13847 Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
13848 return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
13852 if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
13855 // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
13856 if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
13858 if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
13860 if (!N0.hasOneUse() || !N1.hasOneUse())
13863 SDValue ShAmt0 = N0.getOperand(1);
13864 if (ShAmt0.getValueType() != MVT::i8)
13866 SDValue ShAmt1 = N1.getOperand(1);
13867 if (ShAmt1.getValueType() != MVT::i8)
13869 if (ShAmt0.getOpcode() == ISD::TRUNCATE)
13870 ShAmt0 = ShAmt0.getOperand(0);
13871 if (ShAmt1.getOpcode() == ISD::TRUNCATE)
13872 ShAmt1 = ShAmt1.getOperand(0);
13874 DebugLoc DL = N->getDebugLoc();
13875 unsigned Opc = X86ISD::SHLD;
13876 SDValue Op0 = N0.getOperand(0);
13877 SDValue Op1 = N1.getOperand(0);
13878 if (ShAmt0.getOpcode() == ISD::SUB) {
13879 Opc = X86ISD::SHRD;
13880 std::swap(Op0, Op1);
13881 std::swap(ShAmt0, ShAmt1);
13884 unsigned Bits = VT.getSizeInBits();
13885 if (ShAmt1.getOpcode() == ISD::SUB) {
13886 SDValue Sum = ShAmt1.getOperand(0);
13887 if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
13888 SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
13889 if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
13890 ShAmt1Op1 = ShAmt1Op1.getOperand(0);
13891 if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
13892 return DAG.getNode(Opc, DL, VT,
13894 DAG.getNode(ISD::TRUNCATE, DL,
13897 } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
13898 ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
13900 ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
13901 return DAG.getNode(Opc, DL, VT,
13902 N0.getOperand(0), N1.getOperand(0),
13903 DAG.getNode(ISD::TRUNCATE, DL,
13910 // PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
13911 static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
13912 TargetLowering::DAGCombinerInfo &DCI,
13913 const X86Subtarget *Subtarget) {
13914 if (DCI.isBeforeLegalizeOps())
13917 EVT VT = N->getValueType(0);
13919 if (VT != MVT::i32 && VT != MVT::i64)
13922 assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
13924 // Create BLSMSK instructions by finding X ^ (X-1)
13925 SDValue N0 = N->getOperand(0);
13926 SDValue N1 = N->getOperand(1);
13927 DebugLoc DL = N->getDebugLoc();
13929 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
13930 isAllOnes(N0.getOperand(1)))
13931 return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
13933 if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
13934 isAllOnes(N1.getOperand(1)))
13935 return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
13940 /// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
13941 static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
13942 const X86Subtarget *Subtarget) {
13943 LoadSDNode *Ld = cast<LoadSDNode>(N);
13944 EVT RegVT = Ld->getValueType(0);
13945 EVT MemVT = Ld->getMemoryVT();
13946 DebugLoc dl = Ld->getDebugLoc();
13947 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13949 ISD::LoadExtType Ext = Ld->getExtensionType();
13951 // If this is a vector EXT Load then attempt to optimize it using a
13952 // shuffle. We need SSE4 for the shuffles.
13953 // TODO: It is possible to support ZExt by zeroing the undef values
13954 // during the shuffle phase or after the shuffle.
13955 if (RegVT.isVector() && RegVT.isInteger() &&
13956 Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
13957 assert(MemVT != RegVT && "Cannot extend to the same type");
13958 assert(MemVT.isVector() && "Must load a vector from memory");
13960 unsigned NumElems = RegVT.getVectorNumElements();
13961 unsigned RegSz = RegVT.getSizeInBits();
13962 unsigned MemSz = MemVT.getSizeInBits();
13963 assert(RegSz > MemSz && "Register size must be greater than the mem size");
13964 // All sizes must be a power of two
13965 if (!isPowerOf2_32(RegSz * MemSz * NumElems)) return SDValue();
13967 // Attempt to load the original value using a single load op.
13968 // Find a scalar type which is equal to the loaded word size.
13969 MVT SclrLoadTy = MVT::i8;
13970 for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
13971 tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
13972 MVT Tp = (MVT::SimpleValueType)tp;
13973 if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() == MemSz) {
13979 // Proceed if a load word is found.
13980 if (SclrLoadTy.getSizeInBits() != MemSz) return SDValue();
13982 EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
13983 RegSz/SclrLoadTy.getSizeInBits());
13985 EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
13986 RegSz/MemVT.getScalarType().getSizeInBits());
13987 // Can't shuffle using an illegal type.
13988 if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
13990 // Perform a single load.
13991 SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
13993 Ld->getPointerInfo(), Ld->isVolatile(),
13994 Ld->isNonTemporal(), Ld->isInvariant(),
13995 Ld->getAlignment());
13997 // Insert the word loaded into a vector.
13998 SDValue ScalarInVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
13999 LoadUnitVecVT, ScalarLoad);
14001 // Bitcast the loaded value to a vector of the original element type, in
14002 // the size of the target vector type.
14003 SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT,
14005 unsigned SizeRatio = RegSz/MemSz;
14007 // Redistribute the loaded elements into the different locations.
14008 SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14009 for (unsigned i = 0; i < NumElems; i++) ShuffleVec[i*SizeRatio] = i;
14011 SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
14012 DAG.getUNDEF(SlicedVec.getValueType()),
14013 ShuffleVec.data());
14015 // Bitcast to the requested type.
14016 Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
14017 // Replace the original load with the new sequence
14018 // and return the new chain.
14019 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Shuff);
14020 return SDValue(ScalarLoad.getNode(), 1);
14026 /// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
14027 static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
14028 const X86Subtarget *Subtarget) {
14029 StoreSDNode *St = cast<StoreSDNode>(N);
14030 EVT VT = St->getValue().getValueType();
14031 EVT StVT = St->getMemoryVT();
14032 DebugLoc dl = St->getDebugLoc();
14033 SDValue StoredVal = St->getOperand(1);
14034 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14036 // If we are saving a concatenation of two XMM registers, perform two stores.
14037 // This is better in Sandy Bridge cause one 256-bit mem op is done via two
14038 // 128-bit ones. If in the future the cost becomes only one memory access the
14039 // first version would be better.
14040 if (VT.getSizeInBits() == 256 &&
14041 StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
14042 StoredVal.getNumOperands() == 2) {
14044 SDValue Value0 = StoredVal.getOperand(0);
14045 SDValue Value1 = StoredVal.getOperand(1);
14047 SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
14048 SDValue Ptr0 = St->getBasePtr();
14049 SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
14051 SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
14052 St->getPointerInfo(), St->isVolatile(),
14053 St->isNonTemporal(), St->getAlignment());
14054 SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
14055 St->getPointerInfo(), St->isVolatile(),
14056 St->isNonTemporal(), St->getAlignment());
14057 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
14060 // Optimize trunc store (of multiple scalars) to shuffle and store.
14061 // First, pack all of the elements in one place. Next, store to memory
14062 // in fewer chunks.
14063 if (St->isTruncatingStore() && VT.isVector()) {
14064 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14065 unsigned NumElems = VT.getVectorNumElements();
14066 assert(StVT != VT && "Cannot truncate to the same type");
14067 unsigned FromSz = VT.getVectorElementType().getSizeInBits();
14068 unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
14070 // From, To sizes and ElemCount must be pow of two
14071 if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
14072 // We are going to use the original vector elt for storing.
14073 // Accumulated smaller vector elements must be a multiple of the store size.
14074 if (0 != (NumElems * FromSz) % ToSz) return SDValue();
14076 unsigned SizeRatio = FromSz / ToSz;
14078 assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
14080 // Create a type on which we perform the shuffle
14081 EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
14082 StVT.getScalarType(), NumElems*SizeRatio);
14084 assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
14086 SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
14087 SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14088 for (unsigned i = 0; i < NumElems; i++ ) ShuffleVec[i] = i * SizeRatio;
14090 // Can't shuffle using an illegal type
14091 if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14093 SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
14094 DAG.getUNDEF(WideVec.getValueType()),
14095 ShuffleVec.data());
14096 // At this point all of the data is stored at the bottom of the
14097 // register. We now need to save it to mem.
14099 // Find the largest store unit
14100 MVT StoreType = MVT::i8;
14101 for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14102 tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14103 MVT Tp = (MVT::SimpleValueType)tp;
14104 if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
14108 // Bitcast the original vector into a vector of store-size units
14109 EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
14110 StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
14111 assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
14112 SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
14113 SmallVector<SDValue, 8> Chains;
14114 SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
14115 TLI.getPointerTy());
14116 SDValue Ptr = St->getBasePtr();
14118 // Perform one or more big stores into memory.
14119 for (unsigned i = 0; i < (ToSz*NumElems)/StoreType.getSizeInBits() ; i++) {
14120 SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
14121 StoreType, ShuffWide,
14122 DAG.getIntPtrConstant(i));
14123 SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
14124 St->getPointerInfo(), St->isVolatile(),
14125 St->isNonTemporal(), St->getAlignment());
14126 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14127 Chains.push_back(Ch);
14130 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
14135 // Turn load->store of MMX types into GPR load/stores. This avoids clobbering
14136 // the FP state in cases where an emms may be missing.
14137 // A preferable solution to the general problem is to figure out the right
14138 // places to insert EMMS. This qualifies as a quick hack.
14140 // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
14141 if (VT.getSizeInBits() != 64)
14144 const Function *F = DAG.getMachineFunction().getFunction();
14145 bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
14146 bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
14147 && Subtarget->hasSSE2();
14148 if ((VT.isVector() ||
14149 (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
14150 isa<LoadSDNode>(St->getValue()) &&
14151 !cast<LoadSDNode>(St->getValue())->isVolatile() &&
14152 St->getChain().hasOneUse() && !St->isVolatile()) {
14153 SDNode* LdVal = St->getValue().getNode();
14154 LoadSDNode *Ld = 0;
14155 int TokenFactorIndex = -1;
14156 SmallVector<SDValue, 8> Ops;
14157 SDNode* ChainVal = St->getChain().getNode();
14158 // Must be a store of a load. We currently handle two cases: the load
14159 // is a direct child, and it's under an intervening TokenFactor. It is
14160 // possible to dig deeper under nested TokenFactors.
14161 if (ChainVal == LdVal)
14162 Ld = cast<LoadSDNode>(St->getChain());
14163 else if (St->getValue().hasOneUse() &&
14164 ChainVal->getOpcode() == ISD::TokenFactor) {
14165 for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
14166 if (ChainVal->getOperand(i).getNode() == LdVal) {
14167 TokenFactorIndex = i;
14168 Ld = cast<LoadSDNode>(St->getValue());
14170 Ops.push_back(ChainVal->getOperand(i));
14174 if (!Ld || !ISD::isNormalLoad(Ld))
14177 // If this is not the MMX case, i.e. we are just turning i64 load/store
14178 // into f64 load/store, avoid the transformation if there are multiple
14179 // uses of the loaded value.
14180 if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
14183 DebugLoc LdDL = Ld->getDebugLoc();
14184 DebugLoc StDL = N->getDebugLoc();
14185 // If we are a 64-bit capable x86, lower to a single movq load/store pair.
14186 // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
14188 if (Subtarget->is64Bit() || F64IsLegal) {
14189 EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
14190 SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
14191 Ld->getPointerInfo(), Ld->isVolatile(),
14192 Ld->isNonTemporal(), Ld->isInvariant(),
14193 Ld->getAlignment());
14194 SDValue NewChain = NewLd.getValue(1);
14195 if (TokenFactorIndex != -1) {
14196 Ops.push_back(NewChain);
14197 NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14200 return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
14201 St->getPointerInfo(),
14202 St->isVolatile(), St->isNonTemporal(),
14203 St->getAlignment());
14206 // Otherwise, lower to two pairs of 32-bit loads / stores.
14207 SDValue LoAddr = Ld->getBasePtr();
14208 SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
14209 DAG.getConstant(4, MVT::i32));
14211 SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
14212 Ld->getPointerInfo(),
14213 Ld->isVolatile(), Ld->isNonTemporal(),
14214 Ld->isInvariant(), Ld->getAlignment());
14215 SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
14216 Ld->getPointerInfo().getWithOffset(4),
14217 Ld->isVolatile(), Ld->isNonTemporal(),
14219 MinAlign(Ld->getAlignment(), 4));
14221 SDValue NewChain = LoLd.getValue(1);
14222 if (TokenFactorIndex != -1) {
14223 Ops.push_back(LoLd);
14224 Ops.push_back(HiLd);
14225 NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14229 LoAddr = St->getBasePtr();
14230 HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
14231 DAG.getConstant(4, MVT::i32));
14233 SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
14234 St->getPointerInfo(),
14235 St->isVolatile(), St->isNonTemporal(),
14236 St->getAlignment());
14237 SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
14238 St->getPointerInfo().getWithOffset(4),
14240 St->isNonTemporal(),
14241 MinAlign(St->getAlignment(), 4));
14242 return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
14247 /// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
14248 /// and return the operands for the horizontal operation in LHS and RHS. A
14249 /// horizontal operation performs the binary operation on successive elements
14250 /// of its first operand, then on successive elements of its second operand,
14251 /// returning the resulting values in a vector. For example, if
14252 /// A = < float a0, float a1, float a2, float a3 >
14254 /// B = < float b0, float b1, float b2, float b3 >
14255 /// then the result of doing a horizontal operation on A and B is
14256 /// A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
14257 /// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
14258 /// A horizontal-op B, for some already available A and B, and if so then LHS is
14259 /// set to A, RHS to B, and the routine returns 'true'.
14260 /// Note that the binary operation should have the property that if one of the
14261 /// operands is UNDEF then the result is UNDEF.
14262 static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
14263 // Look for the following pattern: if
14264 // A = < float a0, float a1, float a2, float a3 >
14265 // B = < float b0, float b1, float b2, float b3 >
14267 // LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
14268 // RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
14269 // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
14270 // which is A horizontal-op B.
14272 // At least one of the operands should be a vector shuffle.
14273 if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14274 RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
14277 EVT VT = LHS.getValueType();
14279 assert((VT.is128BitVector() || VT.is256BitVector()) &&
14280 "Unsupported vector type for horizontal add/sub");
14282 // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
14283 // operate independently on 128-bit lanes.
14284 unsigned NumElts = VT.getVectorNumElements();
14285 unsigned NumLanes = VT.getSizeInBits()/128;
14286 unsigned NumLaneElts = NumElts / NumLanes;
14287 assert((NumLaneElts % 2 == 0) &&
14288 "Vector type should have an even number of elements in each lane");
14289 unsigned HalfLaneElts = NumLaneElts/2;
14291 // View LHS in the form
14292 // LHS = VECTOR_SHUFFLE A, B, LMask
14293 // If LHS is not a shuffle then pretend it is the shuffle
14294 // LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
14295 // NOTE: in what follows a default initialized SDValue represents an UNDEF of
14298 SmallVector<int, 16> LMask(NumElts);
14299 if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14300 if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
14301 A = LHS.getOperand(0);
14302 if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
14303 B = LHS.getOperand(1);
14304 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
14305 std::copy(Mask.begin(), Mask.end(), LMask.begin());
14307 if (LHS.getOpcode() != ISD::UNDEF)
14309 for (unsigned i = 0; i != NumElts; ++i)
14313 // Likewise, view RHS in the form
14314 // RHS = VECTOR_SHUFFLE C, D, RMask
14316 SmallVector<int, 16> RMask(NumElts);
14317 if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14318 if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
14319 C = RHS.getOperand(0);
14320 if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
14321 D = RHS.getOperand(1);
14322 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
14323 std::copy(Mask.begin(), Mask.end(), RMask.begin());
14325 if (RHS.getOpcode() != ISD::UNDEF)
14327 for (unsigned i = 0; i != NumElts; ++i)
14331 // Check that the shuffles are both shuffling the same vectors.
14332 if (!(A == C && B == D) && !(A == D && B == C))
14335 // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
14336 if (!A.getNode() && !B.getNode())
14339 // If A and B occur in reverse order in RHS, then "swap" them (which means
14340 // rewriting the mask).
14342 CommuteVectorShuffleMask(RMask, NumElts);
14344 // At this point LHS and RHS are equivalent to
14345 // LHS = VECTOR_SHUFFLE A, B, LMask
14346 // RHS = VECTOR_SHUFFLE A, B, RMask
14347 // Check that the masks correspond to performing a horizontal operation.
14348 for (unsigned i = 0; i != NumElts; ++i) {
14349 int LIdx = LMask[i], RIdx = RMask[i];
14351 // Ignore any UNDEF components.
14352 if (LIdx < 0 || RIdx < 0 ||
14353 (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
14354 (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
14357 // Check that successive elements are being operated on. If not, this is
14358 // not a horizontal operation.
14359 unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
14360 unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
14361 int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
14362 if (!(LIdx == Index && RIdx == Index + 1) &&
14363 !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
14367 LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
14368 RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
14372 /// PerformFADDCombine - Do target-specific dag combines on floating point adds.
14373 static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
14374 const X86Subtarget *Subtarget) {
14375 EVT VT = N->getValueType(0);
14376 SDValue LHS = N->getOperand(0);
14377 SDValue RHS = N->getOperand(1);
14379 // Try to synthesize horizontal adds from adds of shuffles.
14380 if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14381 (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14382 isHorizontalBinOp(LHS, RHS, true))
14383 return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
14387 /// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
14388 static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
14389 const X86Subtarget *Subtarget) {
14390 EVT VT = N->getValueType(0);
14391 SDValue LHS = N->getOperand(0);
14392 SDValue RHS = N->getOperand(1);
14394 // Try to synthesize horizontal subs from subs of shuffles.
14395 if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14396 (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14397 isHorizontalBinOp(LHS, RHS, false))
14398 return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
14402 /// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
14403 /// X86ISD::FXOR nodes.
14404 static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
14405 assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
14406 // F[X]OR(0.0, x) -> x
14407 // F[X]OR(x, 0.0) -> x
14408 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14409 if (C->getValueAPF().isPosZero())
14410 return N->getOperand(1);
14411 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14412 if (C->getValueAPF().isPosZero())
14413 return N->getOperand(0);
14417 /// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
14418 static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
14419 // FAND(0.0, x) -> 0.0
14420 // FAND(x, 0.0) -> 0.0
14421 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14422 if (C->getValueAPF().isPosZero())
14423 return N->getOperand(0);
14424 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14425 if (C->getValueAPF().isPosZero())
14426 return N->getOperand(1);
14430 static SDValue PerformBTCombine(SDNode *N,
14432 TargetLowering::DAGCombinerInfo &DCI) {
14433 // BT ignores high bits in the bit index operand.
14434 SDValue Op1 = N->getOperand(1);
14435 if (Op1.hasOneUse()) {
14436 unsigned BitWidth = Op1.getValueSizeInBits();
14437 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
14438 APInt KnownZero, KnownOne;
14439 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
14440 !DCI.isBeforeLegalizeOps());
14441 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14442 if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
14443 TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
14444 DCI.CommitTargetLoweringOpt(TLO);
14449 static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
14450 SDValue Op = N->getOperand(0);
14451 if (Op.getOpcode() == ISD::BITCAST)
14452 Op = Op.getOperand(0);
14453 EVT VT = N->getValueType(0), OpVT = Op.getValueType();
14454 if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
14455 VT.getVectorElementType().getSizeInBits() ==
14456 OpVT.getVectorElementType().getSizeInBits()) {
14457 return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
14462 static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
14463 // (i32 zext (and (i8 x86isd::setcc_carry), 1)) ->
14464 // (and (i32 x86isd::setcc_carry), 1)
14465 // This eliminates the zext. This transformation is necessary because
14466 // ISD::SETCC is always legalized to i8.
14467 DebugLoc dl = N->getDebugLoc();
14468 SDValue N0 = N->getOperand(0);
14469 EVT VT = N->getValueType(0);
14470 if (N0.getOpcode() == ISD::AND &&
14472 N0.getOperand(0).hasOneUse()) {
14473 SDValue N00 = N0.getOperand(0);
14474 if (N00.getOpcode() != X86ISD::SETCC_CARRY)
14476 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
14477 if (!C || C->getZExtValue() != 1)
14479 return DAG.getNode(ISD::AND, dl, VT,
14480 DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
14481 N00.getOperand(0), N00.getOperand(1)),
14482 DAG.getConstant(1, VT));
14488 // Optimize RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
14489 static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
14490 unsigned X86CC = N->getConstantOperandVal(0);
14491 SDValue EFLAG = N->getOperand(1);
14492 DebugLoc DL = N->getDebugLoc();
14494 // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
14495 // a zext and produces an all-ones bit which is more useful than 0/1 in some
14497 if (X86CC == X86::COND_B)
14498 return DAG.getNode(ISD::AND, DL, MVT::i8,
14499 DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
14500 DAG.getConstant(X86CC, MVT::i8), EFLAG),
14501 DAG.getConstant(1, MVT::i8));
14506 static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
14507 const X86TargetLowering *XTLI) {
14508 SDValue Op0 = N->getOperand(0);
14509 // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
14510 // a 32-bit target where SSE doesn't support i64->FP operations.
14511 if (Op0.getOpcode() == ISD::LOAD) {
14512 LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
14513 EVT VT = Ld->getValueType(0);
14514 if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
14515 ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
14516 !XTLI->getSubtarget()->is64Bit() &&
14517 !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
14518 SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
14519 Ld->getChain(), Op0, DAG);
14520 DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
14527 // Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
14528 static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
14529 X86TargetLowering::DAGCombinerInfo &DCI) {
14530 // If the LHS and RHS of the ADC node are zero, then it can't overflow and
14531 // the result is either zero or one (depending on the input carry bit).
14532 // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
14533 if (X86::isZeroNode(N->getOperand(0)) &&
14534 X86::isZeroNode(N->getOperand(1)) &&
14535 // We don't have a good way to replace an EFLAGS use, so only do this when
14537 SDValue(N, 1).use_empty()) {
14538 DebugLoc DL = N->getDebugLoc();
14539 EVT VT = N->getValueType(0);
14540 SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
14541 SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
14542 DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
14543 DAG.getConstant(X86::COND_B,MVT::i8),
14545 DAG.getConstant(1, VT));
14546 return DCI.CombineTo(N, Res1, CarryOut);
14552 // fold (add Y, (sete X, 0)) -> adc 0, Y
14553 // (add Y, (setne X, 0)) -> sbb -1, Y
14554 // (sub (sete X, 0), Y) -> sbb 0, Y
14555 // (sub (setne X, 0), Y) -> adc -1, Y
14556 static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
14557 DebugLoc DL = N->getDebugLoc();
14559 // Look through ZExts.
14560 SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
14561 if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
14564 SDValue SetCC = Ext.getOperand(0);
14565 if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
14568 X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
14569 if (CC != X86::COND_E && CC != X86::COND_NE)
14572 SDValue Cmp = SetCC.getOperand(1);
14573 if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
14574 !X86::isZeroNode(Cmp.getOperand(1)) ||
14575 !Cmp.getOperand(0).getValueType().isInteger())
14578 SDValue CmpOp0 = Cmp.getOperand(0);
14579 SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
14580 DAG.getConstant(1, CmpOp0.getValueType()));
14582 SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
14583 if (CC == X86::COND_NE)
14584 return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
14585 DL, OtherVal.getValueType(), OtherVal,
14586 DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
14587 return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
14588 DL, OtherVal.getValueType(), OtherVal,
14589 DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
14592 /// PerformADDCombine - Do target-specific dag combines on integer adds.
14593 static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
14594 const X86Subtarget *Subtarget) {
14595 EVT VT = N->getValueType(0);
14596 SDValue Op0 = N->getOperand(0);
14597 SDValue Op1 = N->getOperand(1);
14599 // Try to synthesize horizontal adds from adds of shuffles.
14600 if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
14601 (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
14602 isHorizontalBinOp(Op0, Op1, true))
14603 return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
14605 return OptimizeConditionalInDecrement(N, DAG);
14608 static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
14609 const X86Subtarget *Subtarget) {
14610 SDValue Op0 = N->getOperand(0);
14611 SDValue Op1 = N->getOperand(1);
14613 // X86 can't encode an immediate LHS of a sub. See if we can push the
14614 // negation into a preceding instruction.
14615 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
14616 // If the RHS of the sub is a XOR with one use and a constant, invert the
14617 // immediate. Then add one to the LHS of the sub so we can turn
14618 // X-Y -> X+~Y+1, saving one register.
14619 if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
14620 isa<ConstantSDNode>(Op1.getOperand(1))) {
14621 APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
14622 EVT VT = Op0.getValueType();
14623 SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
14625 DAG.getConstant(~XorC, VT));
14626 return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
14627 DAG.getConstant(C->getAPIntValue()+1, VT));
14631 // Try to synthesize horizontal adds from adds of shuffles.
14632 EVT VT = N->getValueType(0);
14633 if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
14634 (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
14635 isHorizontalBinOp(Op0, Op1, true))
14636 return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
14638 return OptimizeConditionalInDecrement(N, DAG);
14641 SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
14642 DAGCombinerInfo &DCI) const {
14643 SelectionDAG &DAG = DCI.DAG;
14644 switch (N->getOpcode()) {
14646 case ISD::EXTRACT_VECTOR_ELT:
14647 return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
14649 case ISD::SELECT: return PerformSELECTCombine(N, DAG, DCI, Subtarget);
14650 case X86ISD::CMOV: return PerformCMOVCombine(N, DAG, DCI);
14651 case ISD::ADD: return PerformAddCombine(N, DAG, Subtarget);
14652 case ISD::SUB: return PerformSubCombine(N, DAG, Subtarget);
14653 case X86ISD::ADC: return PerformADCCombine(N, DAG, DCI);
14654 case ISD::MUL: return PerformMulCombine(N, DAG, DCI);
14657 case ISD::SRL: return PerformShiftCombine(N, DAG, Subtarget);
14658 case ISD::AND: return PerformAndCombine(N, DAG, DCI, Subtarget);
14659 case ISD::OR: return PerformOrCombine(N, DAG, DCI, Subtarget);
14660 case ISD::XOR: return PerformXorCombine(N, DAG, DCI, Subtarget);
14661 case ISD::LOAD: return PerformLOADCombine(N, DAG, Subtarget);
14662 case ISD::STORE: return PerformSTORECombine(N, DAG, Subtarget);
14663 case ISD::SINT_TO_FP: return PerformSINT_TO_FPCombine(N, DAG, this);
14664 case ISD::FADD: return PerformFADDCombine(N, DAG, Subtarget);
14665 case ISD::FSUB: return PerformFSUBCombine(N, DAG, Subtarget);
14667 case X86ISD::FOR: return PerformFORCombine(N, DAG);
14668 case X86ISD::FAND: return PerformFANDCombine(N, DAG);
14669 case X86ISD::BT: return PerformBTCombine(N, DAG, DCI);
14670 case X86ISD::VZEXT_MOVL: return PerformVZEXT_MOVLCombine(N, DAG);
14671 case ISD::ZERO_EXTEND: return PerformZExtCombine(N, DAG);
14672 case X86ISD::SETCC: return PerformSETCCCombine(N, DAG);
14673 case X86ISD::SHUFP: // Handle all target specific shuffles
14674 case X86ISD::PALIGN:
14675 case X86ISD::UNPCKH:
14676 case X86ISD::UNPCKL:
14677 case X86ISD::MOVHLPS:
14678 case X86ISD::MOVLHPS:
14679 case X86ISD::PSHUFD:
14680 case X86ISD::PSHUFHW:
14681 case X86ISD::PSHUFLW:
14682 case X86ISD::MOVSS:
14683 case X86ISD::MOVSD:
14684 case X86ISD::VPERMILP:
14685 case X86ISD::VPERM2X128:
14686 case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
14692 /// isTypeDesirableForOp - Return true if the target has native support for
14693 /// the specified value type and it is 'desirable' to use the type for the
14694 /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
14695 /// instruction encodings are longer and some i16 instructions are slow.
14696 bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
14697 if (!isTypeLegal(VT))
14699 if (VT != MVT::i16)
14706 case ISD::SIGN_EXTEND:
14707 case ISD::ZERO_EXTEND:
14708 case ISD::ANY_EXTEND:
14721 /// IsDesirableToPromoteOp - This method query the target whether it is
14722 /// beneficial for dag combiner to promote the specified node. If true, it
14723 /// should return the desired promotion type by reference.
14724 bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
14725 EVT VT = Op.getValueType();
14726 if (VT != MVT::i16)
14729 bool Promote = false;
14730 bool Commute = false;
14731 switch (Op.getOpcode()) {
14734 LoadSDNode *LD = cast<LoadSDNode>(Op);
14735 // If the non-extending load has a single use and it's not live out, then it
14736 // might be folded.
14737 if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
14738 Op.hasOneUse()*/) {
14739 for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
14740 UE = Op.getNode()->use_end(); UI != UE; ++UI) {
14741 // The only case where we'd want to promote LOAD (rather then it being
14742 // promoted as an operand is when it's only use is liveout.
14743 if (UI->getOpcode() != ISD::CopyToReg)
14750 case ISD::SIGN_EXTEND:
14751 case ISD::ZERO_EXTEND:
14752 case ISD::ANY_EXTEND:
14757 SDValue N0 = Op.getOperand(0);
14758 // Look out for (store (shl (load), x)).
14759 if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
14772 SDValue N0 = Op.getOperand(0);
14773 SDValue N1 = Op.getOperand(1);
14774 if (!Commute && MayFoldLoad(N1))
14776 // Avoid disabling potential load folding opportunities.
14777 if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
14779 if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
14789 //===----------------------------------------------------------------------===//
14790 // X86 Inline Assembly Support
14791 //===----------------------------------------------------------------------===//
14794 // Helper to match a string separated by whitespace.
14795 bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
14796 s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
14798 for (unsigned i = 0, e = args.size(); i != e; ++i) {
14799 StringRef piece(*args[i]);
14800 if (!s.startswith(piece)) // Check if the piece matches.
14803 s = s.substr(piece.size());
14804 StringRef::size_type pos = s.find_first_not_of(" \t");
14805 if (pos == 0) // We matched a prefix.
14813 const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
14816 bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
14817 InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
14819 std::string AsmStr = IA->getAsmString();
14821 IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14822 if (!Ty || Ty->getBitWidth() % 16 != 0)
14825 // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
14826 SmallVector<StringRef, 4> AsmPieces;
14827 SplitString(AsmStr, AsmPieces, ";\n");
14829 switch (AsmPieces.size()) {
14830 default: return false;
14832 // FIXME: this should verify that we are targeting a 486 or better. If not,
14833 // we will turn this bswap into something that will be lowered to logical
14834 // ops instead of emitting the bswap asm. For now, we don't support 486 or
14835 // lower so don't worry about this.
14837 if (matchAsm(AsmPieces[0], "bswap", "$0") ||
14838 matchAsm(AsmPieces[0], "bswapl", "$0") ||
14839 matchAsm(AsmPieces[0], "bswapq", "$0") ||
14840 matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
14841 matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
14842 matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
14843 // No need to check constraints, nothing other than the equivalent of
14844 // "=r,0" would be valid here.
14845 return IntrinsicLowering::LowerToByteSwap(CI);
14848 // rorw $$8, ${0:w} --> llvm.bswap.i16
14849 if (CI->getType()->isIntegerTy(16) &&
14850 IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
14851 (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
14852 matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
14854 const std::string &ConstraintsStr = IA->getConstraintString();
14855 SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14856 std::sort(AsmPieces.begin(), AsmPieces.end());
14857 if (AsmPieces.size() == 4 &&
14858 AsmPieces[0] == "~{cc}" &&
14859 AsmPieces[1] == "~{dirflag}" &&
14860 AsmPieces[2] == "~{flags}" &&
14861 AsmPieces[3] == "~{fpsr}")
14862 return IntrinsicLowering::LowerToByteSwap(CI);
14866 if (CI->getType()->isIntegerTy(32) &&
14867 IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
14868 matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
14869 matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
14870 matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
14872 const std::string &ConstraintsStr = IA->getConstraintString();
14873 SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14874 std::sort(AsmPieces.begin(), AsmPieces.end());
14875 if (AsmPieces.size() == 4 &&
14876 AsmPieces[0] == "~{cc}" &&
14877 AsmPieces[1] == "~{dirflag}" &&
14878 AsmPieces[2] == "~{flags}" &&
14879 AsmPieces[3] == "~{fpsr}")
14880 return IntrinsicLowering::LowerToByteSwap(CI);
14883 if (CI->getType()->isIntegerTy(64)) {
14884 InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
14885 if (Constraints.size() >= 2 &&
14886 Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
14887 Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
14888 // bswap %eax / bswap %edx / xchgl %eax, %edx -> llvm.bswap.i64
14889 if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
14890 matchAsm(AsmPieces[1], "bswap", "%edx") &&
14891 matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
14892 return IntrinsicLowering::LowerToByteSwap(CI);
14902 /// getConstraintType - Given a constraint letter, return the type of
14903 /// constraint it is for this target.
14904 X86TargetLowering::ConstraintType
14905 X86TargetLowering::getConstraintType(const std::string &Constraint) const {
14906 if (Constraint.size() == 1) {
14907 switch (Constraint[0]) {
14918 return C_RegisterClass;
14942 return TargetLowering::getConstraintType(Constraint);
14945 /// Examine constraint type and operand type and determine a weight value.
14946 /// This object must already have been set up with the operand type
14947 /// and the current alternative constraint selected.
14948 TargetLowering::ConstraintWeight
14949 X86TargetLowering::getSingleConstraintMatchWeight(
14950 AsmOperandInfo &info, const char *constraint) const {
14951 ConstraintWeight weight = CW_Invalid;
14952 Value *CallOperandVal = info.CallOperandVal;
14953 // If we don't have a value, we can't do a match,
14954 // but allow it at the lowest weight.
14955 if (CallOperandVal == NULL)
14957 Type *type = CallOperandVal->getType();
14958 // Look at the constraint type.
14959 switch (*constraint) {
14961 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
14972 if (CallOperandVal->getType()->isIntegerTy())
14973 weight = CW_SpecificReg;
14978 if (type->isFloatingPointTy())
14979 weight = CW_SpecificReg;
14982 if (type->isX86_MMXTy() && Subtarget->hasMMX())
14983 weight = CW_SpecificReg;
14987 if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
14988 ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasAVX()))
14989 weight = CW_Register;
14992 if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
14993 if (C->getZExtValue() <= 31)
14994 weight = CW_Constant;
14998 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14999 if (C->getZExtValue() <= 63)
15000 weight = CW_Constant;
15004 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15005 if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
15006 weight = CW_Constant;
15010 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15011 if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
15012 weight = CW_Constant;
15016 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15017 if (C->getZExtValue() <= 3)
15018 weight = CW_Constant;
15022 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15023 if (C->getZExtValue() <= 0xff)
15024 weight = CW_Constant;
15029 if (dyn_cast<ConstantFP>(CallOperandVal)) {
15030 weight = CW_Constant;
15034 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15035 if ((C->getSExtValue() >= -0x80000000LL) &&
15036 (C->getSExtValue() <= 0x7fffffffLL))
15037 weight = CW_Constant;
15041 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15042 if (C->getZExtValue() <= 0xffffffff)
15043 weight = CW_Constant;
15050 /// LowerXConstraint - try to replace an X constraint, which matches anything,
15051 /// with another that has more specific requirements based on the type of the
15052 /// corresponding operand.
15053 const char *X86TargetLowering::
15054 LowerXConstraint(EVT ConstraintVT) const {
15055 // FP X constraints get lowered to SSE1/2 registers if available, otherwise
15056 // 'f' like normal targets.
15057 if (ConstraintVT.isFloatingPoint()) {
15058 if (Subtarget->hasSSE2())
15060 if (Subtarget->hasSSE1())
15064 return TargetLowering::LowerXConstraint(ConstraintVT);
15067 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15068 /// vector. If it is invalid, don't add anything to Ops.
15069 void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15070 std::string &Constraint,
15071 std::vector<SDValue>&Ops,
15072 SelectionDAG &DAG) const {
15073 SDValue Result(0, 0);
15075 // Only support length 1 constraints for now.
15076 if (Constraint.length() > 1) return;
15078 char ConstraintLetter = Constraint[0];
15079 switch (ConstraintLetter) {
15082 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15083 if (C->getZExtValue() <= 31) {
15084 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15090 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15091 if (C->getZExtValue() <= 63) {
15092 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15098 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15099 if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
15100 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15106 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15107 if (C->getZExtValue() <= 255) {
15108 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15114 // 32-bit signed value
15115 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15116 if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15117 C->getSExtValue())) {
15118 // Widen to 64 bits here to get it sign extended.
15119 Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
15122 // FIXME gcc accepts some relocatable values here too, but only in certain
15123 // memory models; it's complicated.
15128 // 32-bit unsigned value
15129 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15130 if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15131 C->getZExtValue())) {
15132 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15136 // FIXME gcc accepts some relocatable values here too, but only in certain
15137 // memory models; it's complicated.
15141 // Literal immediates are always ok.
15142 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
15143 // Widen to 64 bits here to get it sign extended.
15144 Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
15148 // In any sort of PIC mode addresses need to be computed at runtime by
15149 // adding in a register or some sort of table lookup. These can't
15150 // be used as immediates.
15151 if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
15154 // If we are in non-pic codegen mode, we allow the address of a global (with
15155 // an optional displacement) to be used with 'i'.
15156 GlobalAddressSDNode *GA = 0;
15157 int64_t Offset = 0;
15159 // Match either (GA), (GA+C), (GA+C1+C2), etc.
15161 if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
15162 Offset += GA->getOffset();
15164 } else if (Op.getOpcode() == ISD::ADD) {
15165 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15166 Offset += C->getZExtValue();
15167 Op = Op.getOperand(0);
15170 } else if (Op.getOpcode() == ISD::SUB) {
15171 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15172 Offset += -C->getZExtValue();
15173 Op = Op.getOperand(0);
15178 // Otherwise, this isn't something we can handle, reject it.
15182 const GlobalValue *GV = GA->getGlobal();
15183 // If we require an extra load to get this address, as in PIC mode, we
15184 // can't accept it.
15185 if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
15186 getTargetMachine())))
15189 Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
15190 GA->getValueType(0), Offset);
15195 if (Result.getNode()) {
15196 Ops.push_back(Result);
15199 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15202 std::pair<unsigned, const TargetRegisterClass*>
15203 X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
15205 // First, see if this is a constraint that directly corresponds to an LLVM
15207 if (Constraint.size() == 1) {
15208 // GCC Constraint Letters
15209 switch (Constraint[0]) {
15211 // TODO: Slight differences here in allocation order and leaving
15212 // RIP in the class. Do they matter any more here than they do
15213 // in the normal allocation?
15214 case 'q': // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
15215 if (Subtarget->is64Bit()) {
15216 if (VT == MVT::i32 || VT == MVT::f32)
15217 return std::make_pair(0U, X86::GR32RegisterClass);
15218 else if (VT == MVT::i16)
15219 return std::make_pair(0U, X86::GR16RegisterClass);
15220 else if (VT == MVT::i8 || VT == MVT::i1)
15221 return std::make_pair(0U, X86::GR8RegisterClass);
15222 else if (VT == MVT::i64 || VT == MVT::f64)
15223 return std::make_pair(0U, X86::GR64RegisterClass);
15226 // 32-bit fallthrough
15227 case 'Q': // Q_REGS
15228 if (VT == MVT::i32 || VT == MVT::f32)
15229 return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
15230 else if (VT == MVT::i16)
15231 return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
15232 else if (VT == MVT::i8 || VT == MVT::i1)
15233 return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
15234 else if (VT == MVT::i64)
15235 return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
15237 case 'r': // GENERAL_REGS
15238 case 'l': // INDEX_REGS
15239 if (VT == MVT::i8 || VT == MVT::i1)
15240 return std::make_pair(0U, X86::GR8RegisterClass);
15241 if (VT == MVT::i16)
15242 return std::make_pair(0U, X86::GR16RegisterClass);
15243 if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
15244 return std::make_pair(0U, X86::GR32RegisterClass);
15245 return std::make_pair(0U, X86::GR64RegisterClass);
15246 case 'R': // LEGACY_REGS
15247 if (VT == MVT::i8 || VT == MVT::i1)
15248 return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
15249 if (VT == MVT::i16)
15250 return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
15251 if (VT == MVT::i32 || !Subtarget->is64Bit())
15252 return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
15253 return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
15254 case 'f': // FP Stack registers.
15255 // If SSE is enabled for this VT, use f80 to ensure the isel moves the
15256 // value to the correct fpstack register class.
15257 if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
15258 return std::make_pair(0U, X86::RFP32RegisterClass);
15259 if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
15260 return std::make_pair(0U, X86::RFP64RegisterClass);
15261 return std::make_pair(0U, X86::RFP80RegisterClass);
15262 case 'y': // MMX_REGS if MMX allowed.
15263 if (!Subtarget->hasMMX()) break;
15264 return std::make_pair(0U, X86::VR64RegisterClass);
15265 case 'Y': // SSE_REGS if SSE2 allowed
15266 if (!Subtarget->hasSSE2()) break;
15268 case 'x': // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
15269 if (!Subtarget->hasSSE1()) break;
15271 switch (VT.getSimpleVT().SimpleTy) {
15273 // Scalar SSE types.
15276 return std::make_pair(0U, X86::FR32RegisterClass);
15279 return std::make_pair(0U, X86::FR64RegisterClass);
15287 return std::make_pair(0U, X86::VR128RegisterClass);
15295 return std::make_pair(0U, X86::VR256RegisterClass);
15302 // Use the default implementation in TargetLowering to convert the register
15303 // constraint into a member of a register class.
15304 std::pair<unsigned, const TargetRegisterClass*> Res;
15305 Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
15307 // Not found as a standard register?
15308 if (Res.second == 0) {
15309 // Map st(0) -> st(7) -> ST0
15310 if (Constraint.size() == 7 && Constraint[0] == '{' &&
15311 tolower(Constraint[1]) == 's' &&
15312 tolower(Constraint[2]) == 't' &&
15313 Constraint[3] == '(' &&
15314 (Constraint[4] >= '0' && Constraint[4] <= '7') &&
15315 Constraint[5] == ')' &&
15316 Constraint[6] == '}') {
15318 Res.first = X86::ST0+Constraint[4]-'0';
15319 Res.second = X86::RFP80RegisterClass;
15323 // GCC allows "st(0)" to be called just plain "st".
15324 if (StringRef("{st}").equals_lower(Constraint)) {
15325 Res.first = X86::ST0;
15326 Res.second = X86::RFP80RegisterClass;
15331 if (StringRef("{flags}").equals_lower(Constraint)) {
15332 Res.first = X86::EFLAGS;
15333 Res.second = X86::CCRRegisterClass;
15337 // 'A' means EAX + EDX.
15338 if (Constraint == "A") {
15339 Res.first = X86::EAX;
15340 Res.second = X86::GR32_ADRegisterClass;
15346 // Otherwise, check to see if this is a register class of the wrong value
15347 // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to
15348 // turn into {ax},{dx}.
15349 if (Res.second->hasType(VT))
15350 return Res; // Correct type already, nothing to do.
15352 // All of the single-register GCC register classes map their values onto
15353 // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we
15354 // really want an 8-bit or 32-bit register, map to the appropriate register
15355 // class and return the appropriate register.
15356 if (Res.second == X86::GR16RegisterClass) {
15357 if (VT == MVT::i8) {
15358 unsigned DestReg = 0;
15359 switch (Res.first) {
15361 case X86::AX: DestReg = X86::AL; break;
15362 case X86::DX: DestReg = X86::DL; break;
15363 case X86::CX: DestReg = X86::CL; break;
15364 case X86::BX: DestReg = X86::BL; break;
15367 Res.first = DestReg;
15368 Res.second = X86::GR8RegisterClass;
15370 } else if (VT == MVT::i32) {
15371 unsigned DestReg = 0;
15372 switch (Res.first) {
15374 case X86::AX: DestReg = X86::EAX; break;
15375 case X86::DX: DestReg = X86::EDX; break;
15376 case X86::CX: DestReg = X86::ECX; break;
15377 case X86::BX: DestReg = X86::EBX; break;
15378 case X86::SI: DestReg = X86::ESI; break;
15379 case X86::DI: DestReg = X86::EDI; break;
15380 case X86::BP: DestReg = X86::EBP; break;
15381 case X86::SP: DestReg = X86::ESP; break;
15384 Res.first = DestReg;
15385 Res.second = X86::GR32RegisterClass;
15387 } else if (VT == MVT::i64) {
15388 unsigned DestReg = 0;
15389 switch (Res.first) {
15391 case X86::AX: DestReg = X86::RAX; break;
15392 case X86::DX: DestReg = X86::RDX; break;
15393 case X86::CX: DestReg = X86::RCX; break;
15394 case X86::BX: DestReg = X86::RBX; break;
15395 case X86::SI: DestReg = X86::RSI; break;
15396 case X86::DI: DestReg = X86::RDI; break;
15397 case X86::BP: DestReg = X86::RBP; break;
15398 case X86::SP: DestReg = X86::RSP; break;
15401 Res.first = DestReg;
15402 Res.second = X86::GR64RegisterClass;
15405 } else if (Res.second == X86::FR32RegisterClass ||
15406 Res.second == X86::FR64RegisterClass ||
15407 Res.second == X86::VR128RegisterClass) {
15408 // Handle references to XMM physical registers that got mapped into the
15409 // wrong class. This can happen with constraints like {xmm0} where the
15410 // target independent register mapper will just pick the first match it can
15411 // find, ignoring the required type.
15412 if (VT == MVT::f32)
15413 Res.second = X86::FR32RegisterClass;
15414 else if (VT == MVT::f64)
15415 Res.second = X86::FR64RegisterClass;
15416 else if (X86::VR128RegisterClass->hasType(VT))
15417 Res.second = X86::VR128RegisterClass;