1 //===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the interfaces that X86 uses to lower LLVM code into a
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "x86-isel"
16 #include "X86ISelLowering.h"
18 #include "X86InstrBuilder.h"
19 #include "X86TargetMachine.h"
20 #include "X86TargetObjectFile.h"
21 #include "Utils/X86ShuffleDecode.h"
22 #include "llvm/CallingConv.h"
23 #include "llvm/Constants.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/GlobalAlias.h"
26 #include "llvm/GlobalVariable.h"
27 #include "llvm/Function.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/Intrinsics.h"
30 #include "llvm/LLVMContext.h"
31 #include "llvm/CodeGen/IntrinsicLowering.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineJumpTableInfo.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/MC/MCAsmInfo.h"
39 #include "llvm/MC/MCContext.h"
40 #include "llvm/MC/MCExpr.h"
41 #include "llvm/MC/MCSymbol.h"
42 #include "llvm/ADT/SmallSet.h"
43 #include "llvm/ADT/Statistic.h"
44 #include "llvm/ADT/StringExtras.h"
45 #include "llvm/ADT/VariadicFunction.h"
46 #include "llvm/Support/CallSite.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/MathExtras.h"
50 #include "llvm/Target/TargetOptions.h"
54 STATISTIC(NumTailCalls, "Number of tail calls");
56 // Forward declarations.
57 static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
60 /// Generate a DAG to grab 128-bits from a vector > 128 bits. This
61 /// sets things up to match to an AVX VEXTRACTF128 instruction or a
62 /// simple subregister reference. Idx is an index in the 128 bits we
63 /// want. It need not be aligned to a 128-bit bounday. That makes
64 /// lowering EXTRACT_VECTOR_ELT operations easier.
65 static SDValue Extract128BitVector(SDValue Vec,
69 EVT VT = Vec.getValueType();
70 assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
71 EVT ElVT = VT.getVectorElementType();
72 int Factor = VT.getSizeInBits()/128;
73 EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
74 VT.getVectorNumElements()/Factor);
76 // Extract from UNDEF is UNDEF.
77 if (Vec.getOpcode() == ISD::UNDEF)
78 return DAG.getNode(ISD::UNDEF, dl, ResultVT);
80 if (isa<ConstantSDNode>(Idx)) {
81 unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
83 // Extract the relevant 128 bits. Generate an EXTRACT_SUBVECTOR
84 // we can match to VEXTRACTF128.
85 unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
87 // This is the index of the first element of the 128-bit chunk
89 unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
92 SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
93 SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
102 /// Generate a DAG to put 128-bits into a vector > 128 bits. This
103 /// sets things up to match to an AVX VINSERTF128 instruction or a
104 /// simple superregister reference. Idx is an index in the 128 bits
105 /// we want. It need not be aligned to a 128-bit bounday. That makes
106 /// lowering INSERT_VECTOR_ELT operations easier.
107 static SDValue Insert128BitVector(SDValue Result,
112 if (isa<ConstantSDNode>(Idx)) {
113 EVT VT = Vec.getValueType();
114 assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
116 EVT ElVT = VT.getVectorElementType();
117 unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
118 EVT ResultVT = Result.getValueType();
120 // Insert the relevant 128 bits.
121 unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
123 // This is the index of the first element of the 128-bit chunk
125 unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
128 SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
129 Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
137 static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
138 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
139 bool is64Bit = Subtarget->is64Bit();
141 if (Subtarget->isTargetEnvMacho()) {
143 return new X8664_MachoTargetObjectFile();
144 return new TargetLoweringObjectFileMachO();
147 if (Subtarget->isTargetELF())
148 return new TargetLoweringObjectFileELF();
149 if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
150 return new TargetLoweringObjectFileCOFF();
151 llvm_unreachable("unknown subtarget type");
154 X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
155 : TargetLowering(TM, createTLOF(TM)) {
156 Subtarget = &TM.getSubtarget<X86Subtarget>();
157 X86ScalarSSEf64 = Subtarget->hasSSE2();
158 X86ScalarSSEf32 = Subtarget->hasSSE1();
159 X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
161 RegInfo = TM.getRegisterInfo();
162 TD = getTargetData();
164 // Set up the TargetLowering object.
165 static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
167 // X86 is weird, it always uses i8 for shift amounts and setcc results.
168 setBooleanContents(ZeroOrOneBooleanContent);
169 // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
170 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
172 // For 64-bit since we have so many registers use the ILP scheduler, for
173 // 32-bit code use the register pressure specific scheduling.
174 // For 32 bit Atom, use Hybrid (register pressure + latency) scheduling.
175 if (Subtarget->is64Bit())
176 setSchedulingPreference(Sched::ILP);
177 else if (Subtarget->isAtom())
178 setSchedulingPreference(Sched::Hybrid);
180 setSchedulingPreference(Sched::RegPressure);
181 setStackPointerRegisterToSaveRestore(X86StackPtr);
183 if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
184 // Setup Windows compiler runtime calls.
185 setLibcallName(RTLIB::SDIV_I64, "_alldiv");
186 setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
187 setLibcallName(RTLIB::SREM_I64, "_allrem");
188 setLibcallName(RTLIB::UREM_I64, "_aullrem");
189 setLibcallName(RTLIB::MUL_I64, "_allmul");
190 setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
191 setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
192 setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
193 setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
194 setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
196 // The _ftol2 runtime function has an unusual calling conv, which
197 // is modeled by a special pseudo-instruction.
198 setLibcallName(RTLIB::FPTOUINT_F64_I64, 0);
199 setLibcallName(RTLIB::FPTOUINT_F32_I64, 0);
200 setLibcallName(RTLIB::FPTOUINT_F64_I32, 0);
201 setLibcallName(RTLIB::FPTOUINT_F32_I32, 0);
204 if (Subtarget->isTargetDarwin()) {
205 // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
206 setUseUnderscoreSetJmp(false);
207 setUseUnderscoreLongJmp(false);
208 } else if (Subtarget->isTargetMingw()) {
209 // MS runtime is weird: it exports _setjmp, but longjmp!
210 setUseUnderscoreSetJmp(true);
211 setUseUnderscoreLongJmp(false);
213 setUseUnderscoreSetJmp(true);
214 setUseUnderscoreLongJmp(true);
217 // Set up the register classes.
218 addRegisterClass(MVT::i8, X86::GR8RegisterClass);
219 addRegisterClass(MVT::i16, X86::GR16RegisterClass);
220 addRegisterClass(MVT::i32, X86::GR32RegisterClass);
221 if (Subtarget->is64Bit())
222 addRegisterClass(MVT::i64, X86::GR64RegisterClass);
224 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
226 // We don't accept any truncstore of integer registers.
227 setTruncStoreAction(MVT::i64, MVT::i32, Expand);
228 setTruncStoreAction(MVT::i64, MVT::i16, Expand);
229 setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
230 setTruncStoreAction(MVT::i32, MVT::i16, Expand);
231 setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
232 setTruncStoreAction(MVT::i16, MVT::i8, Expand);
234 // SETOEQ and SETUNE require checking two conditions.
235 setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
236 setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
237 setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
238 setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
239 setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
240 setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
242 // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
244 setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote);
245 setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote);
246 setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote);
248 if (Subtarget->is64Bit()) {
249 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
250 setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom);
251 } else if (!TM.Options.UseSoftFloat) {
252 // We have an algorithm for SSE2->double, and we turn this into a
253 // 64-bit FILD followed by conditional FADD for other targets.
254 setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom);
255 // We have an algorithm for SSE2, and we turn this into a 64-bit
256 // FILD for other targets.
257 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Custom);
260 // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
262 setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote);
263 setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote);
265 if (!TM.Options.UseSoftFloat) {
266 // SSE has no i16 to fp conversion, only i32
267 if (X86ScalarSSEf32) {
268 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
269 // f32 and f64 cases are Legal, f80 case is not
270 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
272 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom);
273 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
276 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
277 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Promote);
280 // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64
281 // are Legal, f80 is custom lowered.
282 setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom);
283 setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom);
285 // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
287 setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote);
288 setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote);
290 if (X86ScalarSSEf32) {
291 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote);
292 // f32 and f64 cases are Legal, f80 case is not
293 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
295 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom);
296 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
299 // Handle FP_TO_UINT by promoting the destination to a larger signed
301 setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote);
302 setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote);
303 setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote);
305 if (Subtarget->is64Bit()) {
306 setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand);
307 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
308 } else if (!TM.Options.UseSoftFloat) {
309 // Since AVX is a superset of SSE3, only check for SSE here.
310 if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
311 // Expand FP_TO_UINT into a select.
312 // FIXME: We would like to use a Custom expander here eventually to do
313 // the optimal thing for SSE vs. the default expansion in the legalizer.
314 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand);
316 // With SSE3 we can use fisttpll to convert to a signed i64; without
317 // SSE, we're stuck with a fistpll.
318 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Custom);
321 if (isTargetFTOL()) {
322 // Use the _ftol2 runtime function, which has a pseudo-instruction
323 // to handle its weird calling convention.
324 setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Custom);
327 // TODO: when we have SSE, these could be more efficient, by using movd/movq.
328 if (!X86ScalarSSEf64) {
329 setOperationAction(ISD::BITCAST , MVT::f32 , Expand);
330 setOperationAction(ISD::BITCAST , MVT::i32 , Expand);
331 if (Subtarget->is64Bit()) {
332 setOperationAction(ISD::BITCAST , MVT::f64 , Expand);
333 // Without SSE, i64->f64 goes through memory.
334 setOperationAction(ISD::BITCAST , MVT::i64 , Expand);
338 // Scalar integer divide and remainder are lowered to use operations that
339 // produce two results, to match the available instructions. This exposes
340 // the two-result form to trivial CSE, which is able to combine x/y and x%y
341 // into a single instruction.
343 // Scalar integer multiply-high is also lowered to use two-result
344 // operations, to match the available instructions. However, plain multiply
345 // (low) operations are left as Legal, as there are single-result
346 // instructions for this in x86. Using the two-result multiply instructions
347 // when both high and low results are needed must be arranged by dagcombine.
348 for (unsigned i = 0, e = 4; i != e; ++i) {
350 setOperationAction(ISD::MULHS, VT, Expand);
351 setOperationAction(ISD::MULHU, VT, Expand);
352 setOperationAction(ISD::SDIV, VT, Expand);
353 setOperationAction(ISD::UDIV, VT, Expand);
354 setOperationAction(ISD::SREM, VT, Expand);
355 setOperationAction(ISD::UREM, VT, Expand);
357 // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
358 setOperationAction(ISD::ADDC, VT, Custom);
359 setOperationAction(ISD::ADDE, VT, Custom);
360 setOperationAction(ISD::SUBC, VT, Custom);
361 setOperationAction(ISD::SUBE, VT, Custom);
364 setOperationAction(ISD::BR_JT , MVT::Other, Expand);
365 setOperationAction(ISD::BRCOND , MVT::Other, Custom);
366 setOperationAction(ISD::BR_CC , MVT::Other, Expand);
367 setOperationAction(ISD::SELECT_CC , MVT::Other, Expand);
368 if (Subtarget->is64Bit())
369 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
370 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal);
371 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
372 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
373 setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand);
374 setOperationAction(ISD::FREM , MVT::f32 , Expand);
375 setOperationAction(ISD::FREM , MVT::f64 , Expand);
376 setOperationAction(ISD::FREM , MVT::f80 , Expand);
377 setOperationAction(ISD::FLT_ROUNDS_ , MVT::i32 , Custom);
379 // Promote the i8 variants and force them on up to i32 which has a shorter
381 setOperationAction(ISD::CTTZ , MVT::i8 , Promote);
382 AddPromotedToType (ISD::CTTZ , MVT::i8 , MVT::i32);
383 setOperationAction(ISD::CTTZ_ZERO_UNDEF , MVT::i8 , Promote);
384 AddPromotedToType (ISD::CTTZ_ZERO_UNDEF , MVT::i8 , MVT::i32);
385 if (Subtarget->hasBMI()) {
386 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16 , Expand);
387 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32 , Expand);
388 if (Subtarget->is64Bit())
389 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
391 setOperationAction(ISD::CTTZ , MVT::i16 , Custom);
392 setOperationAction(ISD::CTTZ , MVT::i32 , Custom);
393 if (Subtarget->is64Bit())
394 setOperationAction(ISD::CTTZ , MVT::i64 , Custom);
397 if (Subtarget->hasLZCNT()) {
398 // When promoting the i8 variants, force them to i32 for a shorter
400 setOperationAction(ISD::CTLZ , MVT::i8 , Promote);
401 AddPromotedToType (ISD::CTLZ , MVT::i8 , MVT::i32);
402 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8 , Promote);
403 AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8 , MVT::i32);
404 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16 , Expand);
405 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32 , Expand);
406 if (Subtarget->is64Bit())
407 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
409 setOperationAction(ISD::CTLZ , MVT::i8 , Custom);
410 setOperationAction(ISD::CTLZ , MVT::i16 , Custom);
411 setOperationAction(ISD::CTLZ , MVT::i32 , Custom);
412 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8 , Custom);
413 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16 , Custom);
414 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32 , Custom);
415 if (Subtarget->is64Bit()) {
416 setOperationAction(ISD::CTLZ , MVT::i64 , Custom);
417 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
421 if (Subtarget->hasPOPCNT()) {
422 setOperationAction(ISD::CTPOP , MVT::i8 , Promote);
424 setOperationAction(ISD::CTPOP , MVT::i8 , Expand);
425 setOperationAction(ISD::CTPOP , MVT::i16 , Expand);
426 setOperationAction(ISD::CTPOP , MVT::i32 , Expand);
427 if (Subtarget->is64Bit())
428 setOperationAction(ISD::CTPOP , MVT::i64 , Expand);
431 setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom);
432 setOperationAction(ISD::BSWAP , MVT::i16 , Expand);
434 // These should be promoted to a larger select which is supported.
435 setOperationAction(ISD::SELECT , MVT::i1 , Promote);
436 // X86 wants to expand cmov itself.
437 setOperationAction(ISD::SELECT , MVT::i8 , Custom);
438 setOperationAction(ISD::SELECT , MVT::i16 , Custom);
439 setOperationAction(ISD::SELECT , MVT::i32 , Custom);
440 setOperationAction(ISD::SELECT , MVT::f32 , Custom);
441 setOperationAction(ISD::SELECT , MVT::f64 , Custom);
442 setOperationAction(ISD::SELECT , MVT::f80 , Custom);
443 setOperationAction(ISD::SETCC , MVT::i8 , Custom);
444 setOperationAction(ISD::SETCC , MVT::i16 , Custom);
445 setOperationAction(ISD::SETCC , MVT::i32 , Custom);
446 setOperationAction(ISD::SETCC , MVT::f32 , Custom);
447 setOperationAction(ISD::SETCC , MVT::f64 , Custom);
448 setOperationAction(ISD::SETCC , MVT::f80 , Custom);
449 if (Subtarget->is64Bit()) {
450 setOperationAction(ISD::SELECT , MVT::i64 , Custom);
451 setOperationAction(ISD::SETCC , MVT::i64 , Custom);
453 setOperationAction(ISD::EH_RETURN , MVT::Other, Custom);
456 setOperationAction(ISD::ConstantPool , MVT::i32 , Custom);
457 setOperationAction(ISD::JumpTable , MVT::i32 , Custom);
458 setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom);
459 setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom);
460 if (Subtarget->is64Bit())
461 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
462 setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom);
463 setOperationAction(ISD::BlockAddress , MVT::i32 , Custom);
464 if (Subtarget->is64Bit()) {
465 setOperationAction(ISD::ConstantPool , MVT::i64 , Custom);
466 setOperationAction(ISD::JumpTable , MVT::i64 , Custom);
467 setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom);
468 setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom);
469 setOperationAction(ISD::BlockAddress , MVT::i64 , Custom);
471 // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
472 setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom);
473 setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom);
474 setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom);
475 if (Subtarget->is64Bit()) {
476 setOperationAction(ISD::SHL_PARTS , MVT::i64 , Custom);
477 setOperationAction(ISD::SRA_PARTS , MVT::i64 , Custom);
478 setOperationAction(ISD::SRL_PARTS , MVT::i64 , Custom);
481 if (Subtarget->hasSSE1())
482 setOperationAction(ISD::PREFETCH , MVT::Other, Legal);
484 setOperationAction(ISD::MEMBARRIER , MVT::Other, Custom);
485 setOperationAction(ISD::ATOMIC_FENCE , MVT::Other, Custom);
487 // On X86 and X86-64, atomic operations are lowered to locked instructions.
488 // Locked instructions, in turn, have implicit fence semantics (all memory
489 // operations are flushed before issuing the locked instruction, and they
490 // are not buffered), so we can fold away the common pattern of
491 // fence-atomic-fence.
492 setShouldFoldAtomicFences(true);
494 // Expand certain atomics
495 for (unsigned i = 0, e = 4; i != e; ++i) {
497 setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
498 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
499 setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
502 if (!Subtarget->is64Bit()) {
503 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
504 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
505 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
506 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
507 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
508 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
509 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
510 setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
513 if (Subtarget->hasCmpxchg16b()) {
514 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
517 // FIXME - use subtarget debug flags
518 if (!Subtarget->isTargetDarwin() &&
519 !Subtarget->isTargetELF() &&
520 !Subtarget->isTargetCygMing()) {
521 setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
524 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
525 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
526 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
527 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
528 if (Subtarget->is64Bit()) {
529 setExceptionPointerRegister(X86::RAX);
530 setExceptionSelectorRegister(X86::RDX);
532 setExceptionPointerRegister(X86::EAX);
533 setExceptionSelectorRegister(X86::EDX);
535 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
536 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
538 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
539 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
541 setOperationAction(ISD::TRAP, MVT::Other, Legal);
543 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
544 setOperationAction(ISD::VASTART , MVT::Other, Custom);
545 setOperationAction(ISD::VAEND , MVT::Other, Expand);
546 if (Subtarget->is64Bit()) {
547 setOperationAction(ISD::VAARG , MVT::Other, Custom);
548 setOperationAction(ISD::VACOPY , MVT::Other, Custom);
550 setOperationAction(ISD::VAARG , MVT::Other, Expand);
551 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
554 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
555 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
557 if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
558 setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
559 MVT::i64 : MVT::i32, Custom);
560 else if (TM.Options.EnableSegmentedStacks)
561 setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
562 MVT::i64 : MVT::i32, Custom);
564 setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
565 MVT::i64 : MVT::i32, Expand);
567 if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
568 // f32 and f64 use SSE.
569 // Set up the FP register classes.
570 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
571 addRegisterClass(MVT::f64, X86::FR64RegisterClass);
573 // Use ANDPD to simulate FABS.
574 setOperationAction(ISD::FABS , MVT::f64, Custom);
575 setOperationAction(ISD::FABS , MVT::f32, Custom);
577 // Use XORP to simulate FNEG.
578 setOperationAction(ISD::FNEG , MVT::f64, Custom);
579 setOperationAction(ISD::FNEG , MVT::f32, Custom);
581 // Use ANDPD and ORPD to simulate FCOPYSIGN.
582 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
583 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
585 // Lower this to FGETSIGNx86 plus an AND.
586 setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
587 setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
589 // We don't support sin/cos/fmod
590 setOperationAction(ISD::FSIN , MVT::f64, Expand);
591 setOperationAction(ISD::FCOS , MVT::f64, Expand);
592 setOperationAction(ISD::FSIN , MVT::f32, Expand);
593 setOperationAction(ISD::FCOS , MVT::f32, Expand);
595 // Expand FP immediates into loads from the stack, except for the special
597 addLegalFPImmediate(APFloat(+0.0)); // xorpd
598 addLegalFPImmediate(APFloat(+0.0f)); // xorps
599 } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
600 // Use SSE for f32, x87 for f64.
601 // Set up the FP register classes.
602 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
603 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
605 // Use ANDPS to simulate FABS.
606 setOperationAction(ISD::FABS , MVT::f32, Custom);
608 // Use XORP to simulate FNEG.
609 setOperationAction(ISD::FNEG , MVT::f32, Custom);
611 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
613 // Use ANDPS and ORPS to simulate FCOPYSIGN.
614 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
615 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
617 // We don't support sin/cos/fmod
618 setOperationAction(ISD::FSIN , MVT::f32, Expand);
619 setOperationAction(ISD::FCOS , MVT::f32, Expand);
621 // Special cases we handle for FP constants.
622 addLegalFPImmediate(APFloat(+0.0f)); // xorps
623 addLegalFPImmediate(APFloat(+0.0)); // FLD0
624 addLegalFPImmediate(APFloat(+1.0)); // FLD1
625 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
626 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
628 if (!TM.Options.UnsafeFPMath) {
629 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
630 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
632 } else if (!TM.Options.UseSoftFloat) {
633 // f32 and f64 in x87.
634 // Set up the FP register classes.
635 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
636 addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
638 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
639 setOperationAction(ISD::UNDEF, MVT::f32, Expand);
640 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
641 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
643 if (!TM.Options.UnsafeFPMath) {
644 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
645 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
647 addLegalFPImmediate(APFloat(+0.0)); // FLD0
648 addLegalFPImmediate(APFloat(+1.0)); // FLD1
649 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
650 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
651 addLegalFPImmediate(APFloat(+0.0f)); // FLD0
652 addLegalFPImmediate(APFloat(+1.0f)); // FLD1
653 addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
654 addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
657 // We don't support FMA.
658 setOperationAction(ISD::FMA, MVT::f64, Expand);
659 setOperationAction(ISD::FMA, MVT::f32, Expand);
661 // Long double always uses X87.
662 if (!TM.Options.UseSoftFloat) {
663 addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
664 setOperationAction(ISD::UNDEF, MVT::f80, Expand);
665 setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
667 APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
668 addLegalFPImmediate(TmpFlt); // FLD0
670 addLegalFPImmediate(TmpFlt); // FLD0/FCHS
673 APFloat TmpFlt2(+1.0);
674 TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
676 addLegalFPImmediate(TmpFlt2); // FLD1
677 TmpFlt2.changeSign();
678 addLegalFPImmediate(TmpFlt2); // FLD1/FCHS
681 if (!TM.Options.UnsafeFPMath) {
682 setOperationAction(ISD::FSIN , MVT::f80 , Expand);
683 setOperationAction(ISD::FCOS , MVT::f80 , Expand);
686 setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
687 setOperationAction(ISD::FCEIL, MVT::f80, Expand);
688 setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
689 setOperationAction(ISD::FRINT, MVT::f80, Expand);
690 setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
691 setOperationAction(ISD::FMA, MVT::f80, Expand);
694 // Always use a library call for pow.
695 setOperationAction(ISD::FPOW , MVT::f32 , Expand);
696 setOperationAction(ISD::FPOW , MVT::f64 , Expand);
697 setOperationAction(ISD::FPOW , MVT::f80 , Expand);
699 setOperationAction(ISD::FLOG, MVT::f80, Expand);
700 setOperationAction(ISD::FLOG2, MVT::f80, Expand);
701 setOperationAction(ISD::FLOG10, MVT::f80, Expand);
702 setOperationAction(ISD::FEXP, MVT::f80, Expand);
703 setOperationAction(ISD::FEXP2, MVT::f80, Expand);
705 // First set operation action for all vector types to either promote
706 // (for widening) or expand (for scalarization). Then we will selectively
707 // turn on ones that can be effectively codegen'd.
708 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
709 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
710 setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
711 setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
712 setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
713 setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
714 setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
715 setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
716 setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
717 setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
718 setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
719 setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
720 setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
721 setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
722 setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
723 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
724 setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
725 setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
726 setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
727 setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
728 setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
729 setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
730 setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
731 setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
732 setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
733 setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
734 setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
735 setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
736 setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
737 setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
738 setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
739 setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
740 setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
741 setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
742 setOperationAction(ISD::CTTZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
743 setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
744 setOperationAction(ISD::CTLZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
745 setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
746 setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
747 setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
748 setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
749 setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
750 setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
751 setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
752 setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
753 setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
754 setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
755 setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
756 setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
757 setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
758 setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
759 setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
760 setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
761 setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
762 setOperationAction(ISD::TRUNCATE, (MVT::SimpleValueType)VT, Expand);
763 setOperationAction(ISD::SIGN_EXTEND, (MVT::SimpleValueType)VT, Expand);
764 setOperationAction(ISD::ZERO_EXTEND, (MVT::SimpleValueType)VT, Expand);
765 setOperationAction(ISD::ANY_EXTEND, (MVT::SimpleValueType)VT, Expand);
766 setOperationAction(ISD::VSELECT, (MVT::SimpleValueType)VT, Expand);
767 for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
768 InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
769 setTruncStoreAction((MVT::SimpleValueType)VT,
770 (MVT::SimpleValueType)InnerVT, Expand);
771 setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
772 setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
773 setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
776 // FIXME: In order to prevent SSE instructions being expanded to MMX ones
777 // with -msoft-float, disable use of MMX as well.
778 if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
779 addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
780 // No operations on x86mmx supported, everything uses intrinsics.
783 // MMX-sized vectors (other than x86mmx) are expected to be expanded
784 // into smaller operations.
785 setOperationAction(ISD::MULHS, MVT::v8i8, Expand);
786 setOperationAction(ISD::MULHS, MVT::v4i16, Expand);
787 setOperationAction(ISD::MULHS, MVT::v2i32, Expand);
788 setOperationAction(ISD::MULHS, MVT::v1i64, Expand);
789 setOperationAction(ISD::AND, MVT::v8i8, Expand);
790 setOperationAction(ISD::AND, MVT::v4i16, Expand);
791 setOperationAction(ISD::AND, MVT::v2i32, Expand);
792 setOperationAction(ISD::AND, MVT::v1i64, Expand);
793 setOperationAction(ISD::OR, MVT::v8i8, Expand);
794 setOperationAction(ISD::OR, MVT::v4i16, Expand);
795 setOperationAction(ISD::OR, MVT::v2i32, Expand);
796 setOperationAction(ISD::OR, MVT::v1i64, Expand);
797 setOperationAction(ISD::XOR, MVT::v8i8, Expand);
798 setOperationAction(ISD::XOR, MVT::v4i16, Expand);
799 setOperationAction(ISD::XOR, MVT::v2i32, Expand);
800 setOperationAction(ISD::XOR, MVT::v1i64, Expand);
801 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Expand);
802 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Expand);
803 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i32, Expand);
804 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Expand);
805 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v1i64, Expand);
806 setOperationAction(ISD::SELECT, MVT::v8i8, Expand);
807 setOperationAction(ISD::SELECT, MVT::v4i16, Expand);
808 setOperationAction(ISD::SELECT, MVT::v2i32, Expand);
809 setOperationAction(ISD::SELECT, MVT::v1i64, Expand);
810 setOperationAction(ISD::BITCAST, MVT::v8i8, Expand);
811 setOperationAction(ISD::BITCAST, MVT::v4i16, Expand);
812 setOperationAction(ISD::BITCAST, MVT::v2i32, Expand);
813 setOperationAction(ISD::BITCAST, MVT::v1i64, Expand);
815 if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
816 addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
818 setOperationAction(ISD::FADD, MVT::v4f32, Legal);
819 setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
820 setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
821 setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
822 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
823 setOperationAction(ISD::FNEG, MVT::v4f32, Custom);
824 setOperationAction(ISD::LOAD, MVT::v4f32, Legal);
825 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
826 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
827 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
828 setOperationAction(ISD::SELECT, MVT::v4f32, Custom);
829 setOperationAction(ISD::SETCC, MVT::v4f32, Custom);
832 if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
833 addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
835 // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
836 // registers cannot be used even for integer operations.
837 addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
838 addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
839 addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
840 addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
842 setOperationAction(ISD::ADD, MVT::v16i8, Legal);
843 setOperationAction(ISD::ADD, MVT::v8i16, Legal);
844 setOperationAction(ISD::ADD, MVT::v4i32, Legal);
845 setOperationAction(ISD::ADD, MVT::v2i64, Legal);
846 setOperationAction(ISD::MUL, MVT::v2i64, Custom);
847 setOperationAction(ISD::SUB, MVT::v16i8, Legal);
848 setOperationAction(ISD::SUB, MVT::v8i16, Legal);
849 setOperationAction(ISD::SUB, MVT::v4i32, Legal);
850 setOperationAction(ISD::SUB, MVT::v2i64, Legal);
851 setOperationAction(ISD::MUL, MVT::v8i16, Legal);
852 setOperationAction(ISD::FADD, MVT::v2f64, Legal);
853 setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
854 setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
855 setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
856 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
857 setOperationAction(ISD::FNEG, MVT::v2f64, Custom);
859 setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
860 setOperationAction(ISD::SETCC, MVT::v16i8, Custom);
861 setOperationAction(ISD::SETCC, MVT::v8i16, Custom);
862 setOperationAction(ISD::SETCC, MVT::v4i32, Custom);
864 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom);
865 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom);
866 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
867 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
868 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
870 setOperationAction(ISD::CONCAT_VECTORS, MVT::v2f64, Custom);
871 setOperationAction(ISD::CONCAT_VECTORS, MVT::v2i64, Custom);
872 setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i8, Custom);
873 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i16, Custom);
874 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
876 // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
877 for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
878 EVT VT = (MVT::SimpleValueType)i;
879 // Do not attempt to custom lower non-power-of-2 vectors
880 if (!isPowerOf2_32(VT.getVectorNumElements()))
882 // Do not attempt to custom lower non-128-bit vectors
883 if (!VT.is128BitVector())
885 setOperationAction(ISD::BUILD_VECTOR,
886 VT.getSimpleVT().SimpleTy, Custom);
887 setOperationAction(ISD::VECTOR_SHUFFLE,
888 VT.getSimpleVT().SimpleTy, Custom);
889 setOperationAction(ISD::EXTRACT_VECTOR_ELT,
890 VT.getSimpleVT().SimpleTy, Custom);
893 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
894 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
895 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
896 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
897 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
898 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
900 if (Subtarget->is64Bit()) {
901 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom);
902 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
905 // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
906 for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
907 MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
910 // Do not attempt to promote non-128-bit vectors
911 if (!VT.is128BitVector())
914 setOperationAction(ISD::AND, SVT, Promote);
915 AddPromotedToType (ISD::AND, SVT, MVT::v2i64);
916 setOperationAction(ISD::OR, SVT, Promote);
917 AddPromotedToType (ISD::OR, SVT, MVT::v2i64);
918 setOperationAction(ISD::XOR, SVT, Promote);
919 AddPromotedToType (ISD::XOR, SVT, MVT::v2i64);
920 setOperationAction(ISD::LOAD, SVT, Promote);
921 AddPromotedToType (ISD::LOAD, SVT, MVT::v2i64);
922 setOperationAction(ISD::SELECT, SVT, Promote);
923 AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
926 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
928 // Custom lower v2i64 and v2f64 selects.
929 setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
930 setOperationAction(ISD::LOAD, MVT::v2i64, Legal);
931 setOperationAction(ISD::SELECT, MVT::v2f64, Custom);
932 setOperationAction(ISD::SELECT, MVT::v2i64, Custom);
934 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
935 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
938 if (Subtarget->hasSSE41()) {
939 setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
940 setOperationAction(ISD::FCEIL, MVT::f32, Legal);
941 setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
942 setOperationAction(ISD::FRINT, MVT::f32, Legal);
943 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
944 setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
945 setOperationAction(ISD::FCEIL, MVT::f64, Legal);
946 setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
947 setOperationAction(ISD::FRINT, MVT::f64, Legal);
948 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
950 // FIXME: Do we need to handle scalar-to-vector here?
951 setOperationAction(ISD::MUL, MVT::v4i32, Legal);
953 setOperationAction(ISD::VSELECT, MVT::v2f64, Legal);
954 setOperationAction(ISD::VSELECT, MVT::v2i64, Legal);
955 setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
956 setOperationAction(ISD::VSELECT, MVT::v4i32, Legal);
957 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
959 // i8 and i16 vectors are custom , because the source register and source
960 // source memory operand types are not the same width. f32 vectors are
961 // custom since the immediate controlling the insert encodes additional
963 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
964 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
965 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
966 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
968 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
969 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
970 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
971 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
973 // FIXME: these should be Legal but thats only for the case where
974 // the index is constant. For now custom expand to deal with that.
975 if (Subtarget->is64Bit()) {
976 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom);
977 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
981 if (Subtarget->hasSSE2()) {
982 setOperationAction(ISD::SRL, MVT::v8i16, Custom);
983 setOperationAction(ISD::SRL, MVT::v16i8, Custom);
985 setOperationAction(ISD::SHL, MVT::v8i16, Custom);
986 setOperationAction(ISD::SHL, MVT::v16i8, Custom);
988 setOperationAction(ISD::SRA, MVT::v8i16, Custom);
989 setOperationAction(ISD::SRA, MVT::v16i8, Custom);
991 if (Subtarget->hasAVX2()) {
992 setOperationAction(ISD::SRL, MVT::v2i64, Legal);
993 setOperationAction(ISD::SRL, MVT::v4i32, Legal);
995 setOperationAction(ISD::SHL, MVT::v2i64, Legal);
996 setOperationAction(ISD::SHL, MVT::v4i32, Legal);
998 setOperationAction(ISD::SRA, MVT::v4i32, Legal);
1000 setOperationAction(ISD::SRL, MVT::v2i64, Custom);
1001 setOperationAction(ISD::SRL, MVT::v4i32, Custom);
1003 setOperationAction(ISD::SHL, MVT::v2i64, Custom);
1004 setOperationAction(ISD::SHL, MVT::v4i32, Custom);
1006 setOperationAction(ISD::SRA, MVT::v4i32, Custom);
1010 if (Subtarget->hasSSE42())
1011 setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
1013 if (!TM.Options.UseSoftFloat && Subtarget->hasAVX()) {
1014 addRegisterClass(MVT::v32i8, X86::VR256RegisterClass);
1015 addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
1016 addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
1017 addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
1018 addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
1019 addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
1021 setOperationAction(ISD::LOAD, MVT::v8f32, Legal);
1022 setOperationAction(ISD::LOAD, MVT::v4f64, Legal);
1023 setOperationAction(ISD::LOAD, MVT::v4i64, Legal);
1025 setOperationAction(ISD::FADD, MVT::v8f32, Legal);
1026 setOperationAction(ISD::FSUB, MVT::v8f32, Legal);
1027 setOperationAction(ISD::FMUL, MVT::v8f32, Legal);
1028 setOperationAction(ISD::FDIV, MVT::v8f32, Legal);
1029 setOperationAction(ISD::FSQRT, MVT::v8f32, Legal);
1030 setOperationAction(ISD::FNEG, MVT::v8f32, Custom);
1032 setOperationAction(ISD::FADD, MVT::v4f64, Legal);
1033 setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
1034 setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
1035 setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
1036 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
1037 setOperationAction(ISD::FNEG, MVT::v4f64, Custom);
1039 setOperationAction(ISD::FP_TO_SINT, MVT::v8i32, Legal);
1040 setOperationAction(ISD::SINT_TO_FP, MVT::v8i32, Legal);
1041 setOperationAction(ISD::FP_ROUND, MVT::v4f32, Legal);
1043 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f64, Custom);
1044 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i64, Custom);
1045 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
1046 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
1047 setOperationAction(ISD::CONCAT_VECTORS, MVT::v32i8, Custom);
1048 setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i16, Custom);
1050 setOperationAction(ISD::SRL, MVT::v16i16, Custom);
1051 setOperationAction(ISD::SRL, MVT::v32i8, Custom);
1053 setOperationAction(ISD::SHL, MVT::v16i16, Custom);
1054 setOperationAction(ISD::SHL, MVT::v32i8, Custom);
1056 setOperationAction(ISD::SRA, MVT::v16i16, Custom);
1057 setOperationAction(ISD::SRA, MVT::v32i8, Custom);
1059 setOperationAction(ISD::SETCC, MVT::v32i8, Custom);
1060 setOperationAction(ISD::SETCC, MVT::v16i16, Custom);
1061 setOperationAction(ISD::SETCC, MVT::v8i32, Custom);
1062 setOperationAction(ISD::SETCC, MVT::v4i64, Custom);
1064 setOperationAction(ISD::SELECT, MVT::v4f64, Custom);
1065 setOperationAction(ISD::SELECT, MVT::v4i64, Custom);
1066 setOperationAction(ISD::SELECT, MVT::v8f32, Custom);
1068 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
1069 setOperationAction(ISD::VSELECT, MVT::v4i64, Legal);
1070 setOperationAction(ISD::VSELECT, MVT::v8i32, Legal);
1071 setOperationAction(ISD::VSELECT, MVT::v8f32, Legal);
1073 if (Subtarget->hasAVX2()) {
1074 setOperationAction(ISD::ADD, MVT::v4i64, Legal);
1075 setOperationAction(ISD::ADD, MVT::v8i32, Legal);
1076 setOperationAction(ISD::ADD, MVT::v16i16, Legal);
1077 setOperationAction(ISD::ADD, MVT::v32i8, Legal);
1079 setOperationAction(ISD::SUB, MVT::v4i64, Legal);
1080 setOperationAction(ISD::SUB, MVT::v8i32, Legal);
1081 setOperationAction(ISD::SUB, MVT::v16i16, Legal);
1082 setOperationAction(ISD::SUB, MVT::v32i8, Legal);
1084 setOperationAction(ISD::MUL, MVT::v4i64, Custom);
1085 setOperationAction(ISD::MUL, MVT::v8i32, Legal);
1086 setOperationAction(ISD::MUL, MVT::v16i16, Legal);
1087 // Don't lower v32i8 because there is no 128-bit byte mul
1089 setOperationAction(ISD::VSELECT, MVT::v32i8, Legal);
1091 setOperationAction(ISD::SRL, MVT::v4i64, Legal);
1092 setOperationAction(ISD::SRL, MVT::v8i32, Legal);
1094 setOperationAction(ISD::SHL, MVT::v4i64, Legal);
1095 setOperationAction(ISD::SHL, MVT::v8i32, Legal);
1097 setOperationAction(ISD::SRA, MVT::v8i32, Legal);
1099 setOperationAction(ISD::ADD, MVT::v4i64, Custom);
1100 setOperationAction(ISD::ADD, MVT::v8i32, Custom);
1101 setOperationAction(ISD::ADD, MVT::v16i16, Custom);
1102 setOperationAction(ISD::ADD, MVT::v32i8, Custom);
1104 setOperationAction(ISD::SUB, MVT::v4i64, Custom);
1105 setOperationAction(ISD::SUB, MVT::v8i32, Custom);
1106 setOperationAction(ISD::SUB, MVT::v16i16, Custom);
1107 setOperationAction(ISD::SUB, MVT::v32i8, Custom);
1109 setOperationAction(ISD::MUL, MVT::v4i64, Custom);
1110 setOperationAction(ISD::MUL, MVT::v8i32, Custom);
1111 setOperationAction(ISD::MUL, MVT::v16i16, Custom);
1112 // Don't lower v32i8 because there is no 128-bit byte mul
1114 setOperationAction(ISD::SRL, MVT::v4i64, Custom);
1115 setOperationAction(ISD::SRL, MVT::v8i32, Custom);
1117 setOperationAction(ISD::SHL, MVT::v4i64, Custom);
1118 setOperationAction(ISD::SHL, MVT::v8i32, Custom);
1120 setOperationAction(ISD::SRA, MVT::v8i32, Custom);
1123 // Custom lower several nodes for 256-bit types.
1124 for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1125 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1126 MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1129 // Extract subvector is special because the value type
1130 // (result) is 128-bit but the source is 256-bit wide.
1131 if (VT.is128BitVector())
1132 setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1134 // Do not attempt to custom lower other non-256-bit vectors
1135 if (!VT.is256BitVector())
1138 setOperationAction(ISD::BUILD_VECTOR, SVT, Custom);
1139 setOperationAction(ISD::VECTOR_SHUFFLE, SVT, Custom);
1140 setOperationAction(ISD::INSERT_VECTOR_ELT, SVT, Custom);
1141 setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1142 setOperationAction(ISD::SCALAR_TO_VECTOR, SVT, Custom);
1143 setOperationAction(ISD::INSERT_SUBVECTOR, SVT, Custom);
1146 // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1147 for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
1148 MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1151 // Do not attempt to promote non-256-bit vectors
1152 if (!VT.is256BitVector())
1155 setOperationAction(ISD::AND, SVT, Promote);
1156 AddPromotedToType (ISD::AND, SVT, MVT::v4i64);
1157 setOperationAction(ISD::OR, SVT, Promote);
1158 AddPromotedToType (ISD::OR, SVT, MVT::v4i64);
1159 setOperationAction(ISD::XOR, SVT, Promote);
1160 AddPromotedToType (ISD::XOR, SVT, MVT::v4i64);
1161 setOperationAction(ISD::LOAD, SVT, Promote);
1162 AddPromotedToType (ISD::LOAD, SVT, MVT::v4i64);
1163 setOperationAction(ISD::SELECT, SVT, Promote);
1164 AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1168 // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1169 // of this type with custom code.
1170 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1171 VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
1172 setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1176 // We want to custom lower some of our intrinsics.
1177 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1180 // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1181 // handle type legalization for these operations here.
1183 // FIXME: We really should do custom legalization for addition and
1184 // subtraction on x86-32 once PR3203 is fixed. We really can't do much better
1185 // than generic legalization for 64-bit multiplication-with-overflow, though.
1186 for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1187 // Add/Sub/Mul with overflow operations are custom lowered.
1189 setOperationAction(ISD::SADDO, VT, Custom);
1190 setOperationAction(ISD::UADDO, VT, Custom);
1191 setOperationAction(ISD::SSUBO, VT, Custom);
1192 setOperationAction(ISD::USUBO, VT, Custom);
1193 setOperationAction(ISD::SMULO, VT, Custom);
1194 setOperationAction(ISD::UMULO, VT, Custom);
1197 // There are no 8-bit 3-address imul/mul instructions
1198 setOperationAction(ISD::SMULO, MVT::i8, Expand);
1199 setOperationAction(ISD::UMULO, MVT::i8, Expand);
1201 if (!Subtarget->is64Bit()) {
1202 // These libcalls are not available in 32-bit.
1203 setLibcallName(RTLIB::SHL_I128, 0);
1204 setLibcallName(RTLIB::SRL_I128, 0);
1205 setLibcallName(RTLIB::SRA_I128, 0);
1208 // We have target-specific dag combine patterns for the following nodes:
1209 setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1210 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1211 setTargetDAGCombine(ISD::VSELECT);
1212 setTargetDAGCombine(ISD::SELECT);
1213 setTargetDAGCombine(ISD::SHL);
1214 setTargetDAGCombine(ISD::SRA);
1215 setTargetDAGCombine(ISD::SRL);
1216 setTargetDAGCombine(ISD::OR);
1217 setTargetDAGCombine(ISD::AND);
1218 setTargetDAGCombine(ISD::ADD);
1219 setTargetDAGCombine(ISD::FADD);
1220 setTargetDAGCombine(ISD::FSUB);
1221 setTargetDAGCombine(ISD::SUB);
1222 setTargetDAGCombine(ISD::LOAD);
1223 setTargetDAGCombine(ISD::STORE);
1224 setTargetDAGCombine(ISD::ZERO_EXTEND);
1225 setTargetDAGCombine(ISD::SIGN_EXTEND);
1226 setTargetDAGCombine(ISD::TRUNCATE);
1227 setTargetDAGCombine(ISD::SINT_TO_FP);
1228 if (Subtarget->is64Bit())
1229 setTargetDAGCombine(ISD::MUL);
1230 if (Subtarget->hasBMI())
1231 setTargetDAGCombine(ISD::XOR);
1233 computeRegisterProperties();
1235 // On Darwin, -Os means optimize for size without hurting performance,
1236 // do not reduce the limit.
1237 maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1238 maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1239 maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1240 maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1241 maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1242 maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1243 setPrefLoopAlignment(4); // 2^4 bytes.
1244 benefitFromCodePlacementOpt = true;
1246 setPrefFunctionAlignment(4); // 2^4 bytes.
1250 EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1251 if (!VT.isVector()) return MVT::i8;
1252 return VT.changeVectorElementTypeToInteger();
1256 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1257 /// the desired ByVal argument alignment.
1258 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1261 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1262 if (VTy->getBitWidth() == 128)
1264 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1265 unsigned EltAlign = 0;
1266 getMaxByValAlign(ATy->getElementType(), EltAlign);
1267 if (EltAlign > MaxAlign)
1268 MaxAlign = EltAlign;
1269 } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1270 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1271 unsigned EltAlign = 0;
1272 getMaxByValAlign(STy->getElementType(i), EltAlign);
1273 if (EltAlign > MaxAlign)
1274 MaxAlign = EltAlign;
1282 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1283 /// function arguments in the caller parameter area. For X86, aggregates
1284 /// that contain SSE vectors are placed at 16-byte boundaries while the rest
1285 /// are at 4-byte boundaries.
1286 unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1287 if (Subtarget->is64Bit()) {
1288 // Max of 8 and alignment of type.
1289 unsigned TyAlign = TD->getABITypeAlignment(Ty);
1296 if (Subtarget->hasSSE1())
1297 getMaxByValAlign(Ty, Align);
1301 /// getOptimalMemOpType - Returns the target specific optimal type for load
1302 /// and store operations as a result of memset, memcpy, and memmove
1303 /// lowering. If DstAlign is zero that means it's safe to destination
1304 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1305 /// means there isn't a need to check it against alignment requirement,
1306 /// probably because the source does not need to be loaded. If
1307 /// 'IsZeroVal' is true, that means it's safe to return a
1308 /// non-scalar-integer type, e.g. empty string source, constant, or loaded
1309 /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1310 /// constant so it does not need to be loaded.
1311 /// It returns EVT::Other if the type should be determined using generic
1312 /// target-independent logic.
1314 X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1315 unsigned DstAlign, unsigned SrcAlign,
1318 MachineFunction &MF) const {
1319 // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1320 // linux. This is because the stack realignment code can't handle certain
1321 // cases like PR2962. This should be removed when PR2962 is fixed.
1322 const Function *F = MF.getFunction();
1324 !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1326 (Subtarget->isUnalignedMemAccessFast() ||
1327 ((DstAlign == 0 || DstAlign >= 16) &&
1328 (SrcAlign == 0 || SrcAlign >= 16))) &&
1329 Subtarget->getStackAlignment() >= 16) {
1330 if (Subtarget->getStackAlignment() >= 32) {
1331 if (Subtarget->hasAVX2())
1333 if (Subtarget->hasAVX())
1336 if (Subtarget->hasSSE2())
1338 if (Subtarget->hasSSE1())
1340 } else if (!MemcpyStrSrc && Size >= 8 &&
1341 !Subtarget->is64Bit() &&
1342 Subtarget->getStackAlignment() >= 8 &&
1343 Subtarget->hasSSE2()) {
1344 // Do not use f64 to lower memcpy if source is string constant. It's
1345 // better to use i32 to avoid the loads.
1349 if (Subtarget->is64Bit() && Size >= 8)
1354 /// getJumpTableEncoding - Return the entry encoding for a jump table in the
1355 /// current function. The returned value is a member of the
1356 /// MachineJumpTableInfo::JTEntryKind enum.
1357 unsigned X86TargetLowering::getJumpTableEncoding() const {
1358 // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1360 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1361 Subtarget->isPICStyleGOT())
1362 return MachineJumpTableInfo::EK_Custom32;
1364 // Otherwise, use the normal jump table encoding heuristics.
1365 return TargetLowering::getJumpTableEncoding();
1369 X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1370 const MachineBasicBlock *MBB,
1371 unsigned uid,MCContext &Ctx) const{
1372 assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1373 Subtarget->isPICStyleGOT());
1374 // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1376 return MCSymbolRefExpr::Create(MBB->getSymbol(),
1377 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1380 /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1382 SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1383 SelectionDAG &DAG) const {
1384 if (!Subtarget->is64Bit())
1385 // This doesn't have DebugLoc associated with it, but is not really the
1386 // same as a Register.
1387 return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1391 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1392 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1394 const MCExpr *X86TargetLowering::
1395 getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1396 MCContext &Ctx) const {
1397 // X86-64 uses RIP relative addressing based on the jump table label.
1398 if (Subtarget->isPICStyleRIPRel())
1399 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1401 // Otherwise, the reference is relative to the PIC base.
1402 return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1405 // FIXME: Why this routine is here? Move to RegInfo!
1406 std::pair<const TargetRegisterClass*, uint8_t>
1407 X86TargetLowering::findRepresentativeClass(EVT VT) const{
1408 const TargetRegisterClass *RRC = 0;
1410 switch (VT.getSimpleVT().SimpleTy) {
1412 return TargetLowering::findRepresentativeClass(VT);
1413 case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1414 RRC = (Subtarget->is64Bit()
1415 ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1418 RRC = X86::VR64RegisterClass;
1420 case MVT::f32: case MVT::f64:
1421 case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1422 case MVT::v4f32: case MVT::v2f64:
1423 case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1425 RRC = X86::VR128RegisterClass;
1428 return std::make_pair(RRC, Cost);
1431 bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1432 unsigned &Offset) const {
1433 if (!Subtarget->isTargetLinux())
1436 if (Subtarget->is64Bit()) {
1437 // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1439 if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1452 //===----------------------------------------------------------------------===//
1453 // Return Value Calling Convention Implementation
1454 //===----------------------------------------------------------------------===//
1456 #include "X86GenCallingConv.inc"
1459 X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1460 MachineFunction &MF, bool isVarArg,
1461 const SmallVectorImpl<ISD::OutputArg> &Outs,
1462 LLVMContext &Context) const {
1463 SmallVector<CCValAssign, 16> RVLocs;
1464 CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1466 return CCInfo.CheckReturn(Outs, RetCC_X86);
1470 X86TargetLowering::LowerReturn(SDValue Chain,
1471 CallingConv::ID CallConv, bool isVarArg,
1472 const SmallVectorImpl<ISD::OutputArg> &Outs,
1473 const SmallVectorImpl<SDValue> &OutVals,
1474 DebugLoc dl, SelectionDAG &DAG) const {
1475 MachineFunction &MF = DAG.getMachineFunction();
1476 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1478 SmallVector<CCValAssign, 16> RVLocs;
1479 CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1480 RVLocs, *DAG.getContext());
1481 CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1483 // Add the regs to the liveout set for the function.
1484 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1485 for (unsigned i = 0; i != RVLocs.size(); ++i)
1486 if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1487 MRI.addLiveOut(RVLocs[i].getLocReg());
1491 SmallVector<SDValue, 6> RetOps;
1492 RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1493 // Operand #1 = Bytes To Pop
1494 RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1497 // Copy the result values into the output registers.
1498 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1499 CCValAssign &VA = RVLocs[i];
1500 assert(VA.isRegLoc() && "Can only return in registers!");
1501 SDValue ValToCopy = OutVals[i];
1502 EVT ValVT = ValToCopy.getValueType();
1504 // If this is x86-64, and we disabled SSE, we can't return FP values,
1505 // or SSE or MMX vectors.
1506 if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1507 VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1508 (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1509 report_fatal_error("SSE register return with SSE disabled");
1511 // Likewise we can't return F64 values with SSE1 only. gcc does so, but
1512 // llvm-gcc has never done it right and no one has noticed, so this
1513 // should be OK for now.
1514 if (ValVT == MVT::f64 &&
1515 (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1516 report_fatal_error("SSE2 register return with SSE2 disabled");
1518 // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1519 // the RET instruction and handled by the FP Stackifier.
1520 if (VA.getLocReg() == X86::ST0 ||
1521 VA.getLocReg() == X86::ST1) {
1522 // If this is a copy from an xmm register to ST(0), use an FPExtend to
1523 // change the value to the FP stack register class.
1524 if (isScalarFPTypeInSSEReg(VA.getValVT()))
1525 ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1526 RetOps.push_back(ValToCopy);
1527 // Don't emit a copytoreg.
1531 // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1532 // which is returned in RAX / RDX.
1533 if (Subtarget->is64Bit()) {
1534 if (ValVT == MVT::x86mmx) {
1535 if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1536 ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1537 ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1539 // If we don't have SSE2 available, convert to v4f32 so the generated
1540 // register is legal.
1541 if (!Subtarget->hasSSE2())
1542 ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1547 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1548 Flag = Chain.getValue(1);
1551 // The x86-64 ABI for returning structs by value requires that we copy
1552 // the sret argument into %rax for the return. We saved the argument into
1553 // a virtual register in the entry block, so now we copy the value out
1555 if (Subtarget->is64Bit() &&
1556 DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1557 MachineFunction &MF = DAG.getMachineFunction();
1558 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1559 unsigned Reg = FuncInfo->getSRetReturnReg();
1561 "SRetReturnReg should have been set in LowerFormalArguments().");
1562 SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1564 Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1565 Flag = Chain.getValue(1);
1567 // RAX now acts like a return value.
1568 MRI.addLiveOut(X86::RAX);
1571 RetOps[0] = Chain; // Update chain.
1573 // Add the flag if we have it.
1575 RetOps.push_back(Flag);
1577 return DAG.getNode(X86ISD::RET_FLAG, dl,
1578 MVT::Other, &RetOps[0], RetOps.size());
1581 bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1582 if (N->getNumValues() != 1)
1584 if (!N->hasNUsesOfValue(1, 0))
1587 SDNode *Copy = *N->use_begin();
1588 if (Copy->getOpcode() == ISD::CopyToReg) {
1589 // If the copy has a glue operand, we conservatively assume it isn't safe to
1590 // perform a tail call.
1591 if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1593 } else if (Copy->getOpcode() != ISD::FP_EXTEND)
1596 bool HasRet = false;
1597 for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1599 if (UI->getOpcode() != X86ISD::RET_FLAG)
1608 X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1609 ISD::NodeType ExtendKind) const {
1611 // TODO: Is this also valid on 32-bit?
1612 if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1613 ReturnMVT = MVT::i8;
1615 ReturnMVT = MVT::i32;
1617 EVT MinVT = getRegisterType(Context, ReturnMVT);
1618 return VT.bitsLT(MinVT) ? MinVT : VT;
1621 /// LowerCallResult - Lower the result values of a call into the
1622 /// appropriate copies out of appropriate physical registers.
1625 X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1626 CallingConv::ID CallConv, bool isVarArg,
1627 const SmallVectorImpl<ISD::InputArg> &Ins,
1628 DebugLoc dl, SelectionDAG &DAG,
1629 SmallVectorImpl<SDValue> &InVals) const {
1631 // Assign locations to each value returned by this call.
1632 SmallVector<CCValAssign, 16> RVLocs;
1633 bool Is64Bit = Subtarget->is64Bit();
1634 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1635 getTargetMachine(), RVLocs, *DAG.getContext());
1636 CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1638 // Copy all of the result registers out of their specified physreg.
1639 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1640 CCValAssign &VA = RVLocs[i];
1641 EVT CopyVT = VA.getValVT();
1643 // If this is x86-64, and we disabled SSE, we can't return FP values
1644 if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1645 ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1646 report_fatal_error("SSE register return with SSE disabled");
1651 // If this is a call to a function that returns an fp value on the floating
1652 // point stack, we must guarantee the the value is popped from the stack, so
1653 // a CopyFromReg is not good enough - the copy instruction may be eliminated
1654 // if the return value is not used. We use the FpPOP_RETVAL instruction
1656 if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1657 // If we prefer to use the value in xmm registers, copy it out as f80 and
1658 // use a truncate to move it from fp stack reg to xmm reg.
1659 if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1660 SDValue Ops[] = { Chain, InFlag };
1661 Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1662 MVT::Other, MVT::Glue, Ops, 2), 1);
1663 Val = Chain.getValue(0);
1665 // Round the f80 to the right size, which also moves it to the appropriate
1667 if (CopyVT != VA.getValVT())
1668 Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1669 // This truncation won't change the value.
1670 DAG.getIntPtrConstant(1));
1672 Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1673 CopyVT, InFlag).getValue(1);
1674 Val = Chain.getValue(0);
1676 InFlag = Chain.getValue(2);
1677 InVals.push_back(Val);
1684 //===----------------------------------------------------------------------===//
1685 // C & StdCall & Fast Calling Convention implementation
1686 //===----------------------------------------------------------------------===//
1687 // StdCall calling convention seems to be standard for many Windows' API
1688 // routines and around. It differs from C calling convention just a little:
1689 // callee should clean up the stack, not caller. Symbols should be also
1690 // decorated in some fancy way :) It doesn't support any vector arguments.
1691 // For info on fast calling convention see Fast Calling Convention (tail call)
1692 // implementation LowerX86_32FastCCCallTo.
1694 /// CallIsStructReturn - Determines whether a call uses struct return
1696 static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1700 return Outs[0].Flags.isSRet();
1703 /// ArgsAreStructReturn - Determines whether a function uses struct
1704 /// return semantics.
1706 ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1710 return Ins[0].Flags.isSRet();
1713 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1714 /// by "Src" to address "Dst" with size and alignment information specified by
1715 /// the specific parameter attribute. The copy will be passed as a byval
1716 /// function parameter.
1718 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1719 ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1721 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1723 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1724 /*isVolatile*/false, /*AlwaysInline=*/true,
1725 MachinePointerInfo(), MachinePointerInfo());
1728 /// IsTailCallConvention - Return true if the calling convention is one that
1729 /// supports tail call optimization.
1730 static bool IsTailCallConvention(CallingConv::ID CC) {
1731 return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1734 bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1735 if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
1739 CallingConv::ID CalleeCC = CS.getCallingConv();
1740 if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1746 /// FuncIsMadeTailCallSafe - Return true if the function is being made into
1747 /// a tailcall target by changing its ABI.
1748 static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1749 bool GuaranteedTailCallOpt) {
1750 return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1754 X86TargetLowering::LowerMemArgument(SDValue Chain,
1755 CallingConv::ID CallConv,
1756 const SmallVectorImpl<ISD::InputArg> &Ins,
1757 DebugLoc dl, SelectionDAG &DAG,
1758 const CCValAssign &VA,
1759 MachineFrameInfo *MFI,
1761 // Create the nodes corresponding to a load from this parameter slot.
1762 ISD::ArgFlagsTy Flags = Ins[i].Flags;
1763 bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1764 getTargetMachine().Options.GuaranteedTailCallOpt);
1765 bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1768 // If value is passed by pointer we have address passed instead of the value
1770 if (VA.getLocInfo() == CCValAssign::Indirect)
1771 ValVT = VA.getLocVT();
1773 ValVT = VA.getValVT();
1775 // FIXME: For now, all byval parameter objects are marked mutable. This can be
1776 // changed with more analysis.
1777 // In case of tail call optimization mark all arguments mutable. Since they
1778 // could be overwritten by lowering of arguments in case of a tail call.
1779 if (Flags.isByVal()) {
1780 unsigned Bytes = Flags.getByValSize();
1781 if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1782 int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1783 return DAG.getFrameIndex(FI, getPointerTy());
1785 int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1786 VA.getLocMemOffset(), isImmutable);
1787 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1788 return DAG.getLoad(ValVT, dl, Chain, FIN,
1789 MachinePointerInfo::getFixedStack(FI),
1790 false, false, false, 0);
1795 X86TargetLowering::LowerFormalArguments(SDValue Chain,
1796 CallingConv::ID CallConv,
1798 const SmallVectorImpl<ISD::InputArg> &Ins,
1801 SmallVectorImpl<SDValue> &InVals)
1803 MachineFunction &MF = DAG.getMachineFunction();
1804 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1806 const Function* Fn = MF.getFunction();
1807 if (Fn->hasExternalLinkage() &&
1808 Subtarget->isTargetCygMing() &&
1809 Fn->getName() == "main")
1810 FuncInfo->setForceFramePointer(true);
1812 MachineFrameInfo *MFI = MF.getFrameInfo();
1813 bool Is64Bit = Subtarget->is64Bit();
1814 bool IsWindows = Subtarget->isTargetWindows();
1815 bool IsWin64 = Subtarget->isTargetWin64();
1817 assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1818 "Var args not supported with calling convention fastcc or ghc");
1820 // Assign locations to all of the incoming arguments.
1821 SmallVector<CCValAssign, 16> ArgLocs;
1822 CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1823 ArgLocs, *DAG.getContext());
1825 // Allocate shadow area for Win64
1827 CCInfo.AllocateStack(32, 8);
1830 CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1832 unsigned LastVal = ~0U;
1834 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1835 CCValAssign &VA = ArgLocs[i];
1836 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1838 assert(VA.getValNo() != LastVal &&
1839 "Don't support value assigned to multiple locs yet");
1841 LastVal = VA.getValNo();
1843 if (VA.isRegLoc()) {
1844 EVT RegVT = VA.getLocVT();
1845 const TargetRegisterClass *RC;
1846 if (RegVT == MVT::i32)
1847 RC = X86::GR32RegisterClass;
1848 else if (Is64Bit && RegVT == MVT::i64)
1849 RC = X86::GR64RegisterClass;
1850 else if (RegVT == MVT::f32)
1851 RC = X86::FR32RegisterClass;
1852 else if (RegVT == MVT::f64)
1853 RC = X86::FR64RegisterClass;
1854 else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1855 RC = X86::VR256RegisterClass;
1856 else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1857 RC = X86::VR128RegisterClass;
1858 else if (RegVT == MVT::x86mmx)
1859 RC = X86::VR64RegisterClass;
1861 llvm_unreachable("Unknown argument type!");
1863 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1864 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1866 // If this is an 8 or 16-bit value, it is really passed promoted to 32
1867 // bits. Insert an assert[sz]ext to capture this, then truncate to the
1869 if (VA.getLocInfo() == CCValAssign::SExt)
1870 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1871 DAG.getValueType(VA.getValVT()));
1872 else if (VA.getLocInfo() == CCValAssign::ZExt)
1873 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1874 DAG.getValueType(VA.getValVT()));
1875 else if (VA.getLocInfo() == CCValAssign::BCvt)
1876 ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1878 if (VA.isExtInLoc()) {
1879 // Handle MMX values passed in XMM regs.
1880 if (RegVT.isVector()) {
1881 ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1884 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1887 assert(VA.isMemLoc());
1888 ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1891 // If value is passed via pointer - do a load.
1892 if (VA.getLocInfo() == CCValAssign::Indirect)
1893 ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1894 MachinePointerInfo(), false, false, false, 0);
1896 InVals.push_back(ArgValue);
1899 // The x86-64 ABI for returning structs by value requires that we copy
1900 // the sret argument into %rax for the return. Save the argument into
1901 // a virtual register so that we can access it from the return points.
1902 if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1903 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1904 unsigned Reg = FuncInfo->getSRetReturnReg();
1906 Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1907 FuncInfo->setSRetReturnReg(Reg);
1909 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1910 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1913 unsigned StackSize = CCInfo.getNextStackOffset();
1914 // Align stack specially for tail calls.
1915 if (FuncIsMadeTailCallSafe(CallConv,
1916 MF.getTarget().Options.GuaranteedTailCallOpt))
1917 StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1919 // If the function takes variable number of arguments, make a frame index for
1920 // the start of the first vararg value... for expansion of llvm.va_start.
1922 if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1923 CallConv != CallingConv::X86_ThisCall)) {
1924 FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1927 unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1929 // FIXME: We should really autogenerate these arrays
1930 static const uint16_t GPR64ArgRegsWin64[] = {
1931 X86::RCX, X86::RDX, X86::R8, X86::R9
1933 static const uint16_t GPR64ArgRegs64Bit[] = {
1934 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1936 static const uint16_t XMMArgRegs64Bit[] = {
1937 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1938 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1940 const uint16_t *GPR64ArgRegs;
1941 unsigned NumXMMRegs = 0;
1944 // The XMM registers which might contain var arg parameters are shadowed
1945 // in their paired GPR. So we only need to save the GPR to their home
1947 TotalNumIntRegs = 4;
1948 GPR64ArgRegs = GPR64ArgRegsWin64;
1950 TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1951 GPR64ArgRegs = GPR64ArgRegs64Bit;
1953 NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
1956 unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1959 bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1960 assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1961 "SSE register cannot be used when SSE is disabled!");
1962 assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
1963 NoImplicitFloatOps) &&
1964 "SSE register cannot be used when SSE is disabled!");
1965 if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
1966 !Subtarget->hasSSE1())
1967 // Kernel mode asks for SSE to be disabled, so don't push them
1969 TotalNumXMMRegs = 0;
1972 const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1973 // Get to the caller-allocated home save location. Add 8 to account
1974 // for the return address.
1975 int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1976 FuncInfo->setRegSaveFrameIndex(
1977 MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1978 // Fixup to set vararg frame on shadow area (4 x i64).
1980 FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1982 // For X86-64, if there are vararg parameters that are passed via
1983 // registers, then we must store them to their spots on the stack so
1984 // they may be loaded by deferencing the result of va_next.
1985 FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1986 FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1987 FuncInfo->setRegSaveFrameIndex(
1988 MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1992 // Store the integer parameter registers.
1993 SmallVector<SDValue, 8> MemOps;
1994 SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1996 unsigned Offset = FuncInfo->getVarArgsGPOffset();
1997 for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1998 SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1999 DAG.getIntPtrConstant(Offset));
2000 unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
2001 X86::GR64RegisterClass);
2002 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2004 DAG.getStore(Val.getValue(1), dl, Val, FIN,
2005 MachinePointerInfo::getFixedStack(
2006 FuncInfo->getRegSaveFrameIndex(), Offset),
2008 MemOps.push_back(Store);
2012 if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2013 // Now store the XMM (fp + vector) parameter registers.
2014 SmallVector<SDValue, 11> SaveXMMOps;
2015 SaveXMMOps.push_back(Chain);
2017 unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
2018 SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2019 SaveXMMOps.push_back(ALVal);
2021 SaveXMMOps.push_back(DAG.getIntPtrConstant(
2022 FuncInfo->getRegSaveFrameIndex()));
2023 SaveXMMOps.push_back(DAG.getIntPtrConstant(
2024 FuncInfo->getVarArgsFPOffset()));
2026 for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2027 unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2028 X86::VR128RegisterClass);
2029 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2030 SaveXMMOps.push_back(Val);
2032 MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2034 &SaveXMMOps[0], SaveXMMOps.size()));
2037 if (!MemOps.empty())
2038 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2039 &MemOps[0], MemOps.size());
2043 // Some CCs need callee pop.
2044 if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2045 MF.getTarget().Options.GuaranteedTailCallOpt)) {
2046 FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2048 FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2049 // If this is an sret function, the return should pop the hidden pointer.
2050 if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2051 ArgsAreStructReturn(Ins))
2052 FuncInfo->setBytesToPopOnReturn(4);
2056 // RegSaveFrameIndex is X86-64 only.
2057 FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2058 if (CallConv == CallingConv::X86_FastCall ||
2059 CallConv == CallingConv::X86_ThisCall)
2060 // fastcc functions can't have varargs.
2061 FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2064 FuncInfo->setArgumentStackSize(StackSize);
2070 X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2071 SDValue StackPtr, SDValue Arg,
2072 DebugLoc dl, SelectionDAG &DAG,
2073 const CCValAssign &VA,
2074 ISD::ArgFlagsTy Flags) const {
2075 unsigned LocMemOffset = VA.getLocMemOffset();
2076 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2077 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2078 if (Flags.isByVal())
2079 return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2081 return DAG.getStore(Chain, dl, Arg, PtrOff,
2082 MachinePointerInfo::getStack(LocMemOffset),
2086 /// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2087 /// optimization is performed and it is required.
2089 X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2090 SDValue &OutRetAddr, SDValue Chain,
2091 bool IsTailCall, bool Is64Bit,
2092 int FPDiff, DebugLoc dl) const {
2093 // Adjust the Return address stack slot.
2094 EVT VT = getPointerTy();
2095 OutRetAddr = getReturnAddressFrameIndex(DAG);
2097 // Load the "old" Return address.
2098 OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2099 false, false, false, 0);
2100 return SDValue(OutRetAddr.getNode(), 1);
2103 /// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2104 /// optimization is performed and it is required (FPDiff!=0).
2106 EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2107 SDValue Chain, SDValue RetAddrFrIdx,
2108 bool Is64Bit, int FPDiff, DebugLoc dl) {
2109 // Store the return address to the appropriate stack slot.
2110 if (!FPDiff) return Chain;
2111 // Calculate the new stack slot for the return address.
2112 int SlotSize = Is64Bit ? 8 : 4;
2113 int NewReturnAddrFI =
2114 MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2115 EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2116 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2117 Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2118 MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2124 X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2125 CallingConv::ID CallConv, bool isVarArg,
2126 bool doesNotRet, bool &isTailCall,
2127 const SmallVectorImpl<ISD::OutputArg> &Outs,
2128 const SmallVectorImpl<SDValue> &OutVals,
2129 const SmallVectorImpl<ISD::InputArg> &Ins,
2130 DebugLoc dl, SelectionDAG &DAG,
2131 SmallVectorImpl<SDValue> &InVals) const {
2132 MachineFunction &MF = DAG.getMachineFunction();
2133 bool Is64Bit = Subtarget->is64Bit();
2134 bool IsWin64 = Subtarget->isTargetWin64();
2135 bool IsWindows = Subtarget->isTargetWindows();
2136 bool IsStructRet = CallIsStructReturn(Outs);
2137 bool IsSibcall = false;
2139 if (MF.getTarget().Options.DisableTailCalls)
2143 // Check if it's really possible to do a tail call.
2144 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2145 isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
2146 Outs, OutVals, Ins, DAG);
2148 // Sibcalls are automatically detected tailcalls which do not require
2150 if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2157 assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2158 "Var args not supported with calling convention fastcc or ghc");
2160 // Analyze operands of the call, assigning locations to each operand.
2161 SmallVector<CCValAssign, 16> ArgLocs;
2162 CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2163 ArgLocs, *DAG.getContext());
2165 // Allocate shadow area for Win64
2167 CCInfo.AllocateStack(32, 8);
2170 CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2172 // Get a count of how many bytes are to be pushed on the stack.
2173 unsigned NumBytes = CCInfo.getNextStackOffset();
2175 // This is a sibcall. The memory operands are available in caller's
2176 // own caller's stack.
2178 else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2179 IsTailCallConvention(CallConv))
2180 NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2183 if (isTailCall && !IsSibcall) {
2184 // Lower arguments at fp - stackoffset + fpdiff.
2185 unsigned NumBytesCallerPushed =
2186 MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2187 FPDiff = NumBytesCallerPushed - NumBytes;
2189 // Set the delta of movement of the returnaddr stackslot.
2190 // But only set if delta is greater than previous delta.
2191 if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2192 MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2196 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2198 SDValue RetAddrFrIdx;
2199 // Load return address for tail calls.
2200 if (isTailCall && FPDiff)
2201 Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2202 Is64Bit, FPDiff, dl);
2204 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2205 SmallVector<SDValue, 8> MemOpChains;
2208 // Walk the register/memloc assignments, inserting copies/loads. In the case
2209 // of tail call optimization arguments are handle later.
2210 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2211 CCValAssign &VA = ArgLocs[i];
2212 EVT RegVT = VA.getLocVT();
2213 SDValue Arg = OutVals[i];
2214 ISD::ArgFlagsTy Flags = Outs[i].Flags;
2215 bool isByVal = Flags.isByVal();
2217 // Promote the value if needed.
2218 switch (VA.getLocInfo()) {
2219 default: llvm_unreachable("Unknown loc info!");
2220 case CCValAssign::Full: break;
2221 case CCValAssign::SExt:
2222 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2224 case CCValAssign::ZExt:
2225 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2227 case CCValAssign::AExt:
2228 if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2229 // Special case: passing MMX values in XMM registers.
2230 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2231 Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2232 Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2234 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2236 case CCValAssign::BCvt:
2237 Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2239 case CCValAssign::Indirect: {
2240 // Store the argument.
2241 SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2242 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2243 Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2244 MachinePointerInfo::getFixedStack(FI),
2251 if (VA.isRegLoc()) {
2252 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2253 if (isVarArg && IsWin64) {
2254 // Win64 ABI requires argument XMM reg to be copied to the corresponding
2255 // shadow reg if callee is a varargs function.
2256 unsigned ShadowReg = 0;
2257 switch (VA.getLocReg()) {
2258 case X86::XMM0: ShadowReg = X86::RCX; break;
2259 case X86::XMM1: ShadowReg = X86::RDX; break;
2260 case X86::XMM2: ShadowReg = X86::R8; break;
2261 case X86::XMM3: ShadowReg = X86::R9; break;
2264 RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2266 } else if (!IsSibcall && (!isTailCall || isByVal)) {
2267 assert(VA.isMemLoc());
2268 if (StackPtr.getNode() == 0)
2269 StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2270 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2271 dl, DAG, VA, Flags));
2275 if (!MemOpChains.empty())
2276 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2277 &MemOpChains[0], MemOpChains.size());
2279 // Build a sequence of copy-to-reg nodes chained together with token chain
2280 // and flag operands which copy the outgoing args into registers.
2282 // Tail call byval lowering might overwrite argument registers so in case of
2283 // tail call optimization the copies to registers are lowered later.
2285 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2286 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2287 RegsToPass[i].second, InFlag);
2288 InFlag = Chain.getValue(1);
2291 if (Subtarget->isPICStyleGOT()) {
2292 // ELF / PIC requires GOT in the EBX register before function calls via PLT
2295 Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2296 DAG.getNode(X86ISD::GlobalBaseReg,
2297 DebugLoc(), getPointerTy()),
2299 InFlag = Chain.getValue(1);
2301 // If we are tail calling and generating PIC/GOT style code load the
2302 // address of the callee into ECX. The value in ecx is used as target of
2303 // the tail jump. This is done to circumvent the ebx/callee-saved problem
2304 // for tail calls on PIC/GOT architectures. Normally we would just put the
2305 // address of GOT into ebx and then call target@PLT. But for tail calls
2306 // ebx would be restored (since ebx is callee saved) before jumping to the
2309 // Note: The actual moving to ECX is done further down.
2310 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2311 if (G && !G->getGlobal()->hasHiddenVisibility() &&
2312 !G->getGlobal()->hasProtectedVisibility())
2313 Callee = LowerGlobalAddress(Callee, DAG);
2314 else if (isa<ExternalSymbolSDNode>(Callee))
2315 Callee = LowerExternalSymbol(Callee, DAG);
2319 if (Is64Bit && isVarArg && !IsWin64) {
2320 // From AMD64 ABI document:
2321 // For calls that may call functions that use varargs or stdargs
2322 // (prototype-less calls or calls to functions containing ellipsis (...) in
2323 // the declaration) %al is used as hidden argument to specify the number
2324 // of SSE registers used. The contents of %al do not need to match exactly
2325 // the number of registers, but must be an ubound on the number of SSE
2326 // registers used and is in the range 0 - 8 inclusive.
2328 // Count the number of XMM registers allocated.
2329 static const uint16_t XMMArgRegs[] = {
2330 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2331 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2333 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2334 assert((Subtarget->hasSSE1() || !NumXMMRegs)
2335 && "SSE registers cannot be used when SSE is disabled");
2337 Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2338 DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2339 InFlag = Chain.getValue(1);
2343 // For tail calls lower the arguments to the 'real' stack slot.
2345 // Force all the incoming stack arguments to be loaded from the stack
2346 // before any new outgoing arguments are stored to the stack, because the
2347 // outgoing stack slots may alias the incoming argument stack slots, and
2348 // the alias isn't otherwise explicit. This is slightly more conservative
2349 // than necessary, because it means that each store effectively depends
2350 // on every argument instead of just those arguments it would clobber.
2351 SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2353 SmallVector<SDValue, 8> MemOpChains2;
2356 // Do not flag preceding copytoreg stuff together with the following stuff.
2358 if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2359 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2360 CCValAssign &VA = ArgLocs[i];
2363 assert(VA.isMemLoc());
2364 SDValue Arg = OutVals[i];
2365 ISD::ArgFlagsTy Flags = Outs[i].Flags;
2366 // Create frame index.
2367 int32_t Offset = VA.getLocMemOffset()+FPDiff;
2368 uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2369 FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2370 FIN = DAG.getFrameIndex(FI, getPointerTy());
2372 if (Flags.isByVal()) {
2373 // Copy relative to framepointer.
2374 SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2375 if (StackPtr.getNode() == 0)
2376 StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2378 Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2380 MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2384 // Store relative to framepointer.
2385 MemOpChains2.push_back(
2386 DAG.getStore(ArgChain, dl, Arg, FIN,
2387 MachinePointerInfo::getFixedStack(FI),
2393 if (!MemOpChains2.empty())
2394 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2395 &MemOpChains2[0], MemOpChains2.size());
2397 // Copy arguments to their registers.
2398 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2399 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2400 RegsToPass[i].second, InFlag);
2401 InFlag = Chain.getValue(1);
2405 // Store the return address to the appropriate stack slot.
2406 Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2410 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2411 assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2412 // In the 64-bit large code model, we have to make all calls
2413 // through a register, since the call instruction's 32-bit
2414 // pc-relative offset may not be large enough to hold the whole
2416 } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2417 // If the callee is a GlobalAddress node (quite common, every direct call
2418 // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2421 // We should use extra load for direct calls to dllimported functions in
2423 const GlobalValue *GV = G->getGlobal();
2424 if (!GV->hasDLLImportLinkage()) {
2425 unsigned char OpFlags = 0;
2426 bool ExtraLoad = false;
2427 unsigned WrapperKind = ISD::DELETED_NODE;
2429 // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2430 // external symbols most go through the PLT in PIC mode. If the symbol
2431 // has hidden or protected visibility, or if it is static or local, then
2432 // we don't need to use the PLT - we can directly call it.
2433 if (Subtarget->isTargetELF() &&
2434 getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2435 GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2436 OpFlags = X86II::MO_PLT;
2437 } else if (Subtarget->isPICStyleStubAny() &&
2438 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2439 (!Subtarget->getTargetTriple().isMacOSX() ||
2440 Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2441 // PC-relative references to external symbols should go through $stub,
2442 // unless we're building with the leopard linker or later, which
2443 // automatically synthesizes these stubs.
2444 OpFlags = X86II::MO_DARWIN_STUB;
2445 } else if (Subtarget->isPICStyleRIPRel() &&
2446 isa<Function>(GV) &&
2447 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2448 // If the function is marked as non-lazy, generate an indirect call
2449 // which loads from the GOT directly. This avoids runtime overhead
2450 // at the cost of eager binding (and one extra byte of encoding).
2451 OpFlags = X86II::MO_GOTPCREL;
2452 WrapperKind = X86ISD::WrapperRIP;
2456 Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2457 G->getOffset(), OpFlags);
2459 // Add a wrapper if needed.
2460 if (WrapperKind != ISD::DELETED_NODE)
2461 Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2462 // Add extra indirection if needed.
2464 Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2465 MachinePointerInfo::getGOT(),
2466 false, false, false, 0);
2468 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2469 unsigned char OpFlags = 0;
2471 // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2472 // external symbols should go through the PLT.
2473 if (Subtarget->isTargetELF() &&
2474 getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2475 OpFlags = X86II::MO_PLT;
2476 } else if (Subtarget->isPICStyleStubAny() &&
2477 (!Subtarget->getTargetTriple().isMacOSX() ||
2478 Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2479 // PC-relative references to external symbols should go through $stub,
2480 // unless we're building with the leopard linker or later, which
2481 // automatically synthesizes these stubs.
2482 OpFlags = X86II::MO_DARWIN_STUB;
2485 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2489 // Returns a chain & a flag for retval copy to use.
2490 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2491 SmallVector<SDValue, 8> Ops;
2493 if (!IsSibcall && isTailCall) {
2494 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2495 DAG.getIntPtrConstant(0, true), InFlag);
2496 InFlag = Chain.getValue(1);
2499 Ops.push_back(Chain);
2500 Ops.push_back(Callee);
2503 Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2505 // Add argument registers to the end of the list so that they are known live
2507 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2508 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2509 RegsToPass[i].second.getValueType()));
2511 // Add an implicit use GOT pointer in EBX.
2512 if (!isTailCall && Subtarget->isPICStyleGOT())
2513 Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2515 // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2516 if (Is64Bit && isVarArg && !IsWin64)
2517 Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2519 // Add a register mask operand representing the call-preserved registers.
2520 const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2521 const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2522 assert(Mask && "Missing call preserved mask for calling convention");
2523 Ops.push_back(DAG.getRegisterMask(Mask));
2525 if (InFlag.getNode())
2526 Ops.push_back(InFlag);
2530 //// If this is the first return lowered for this function, add the regs
2531 //// to the liveout set for the function.
2532 // This isn't right, although it's probably harmless on x86; liveouts
2533 // should be computed from returns not tail calls. Consider a void
2534 // function making a tail call to a function returning int.
2535 return DAG.getNode(X86ISD::TC_RETURN, dl,
2536 NodeTys, &Ops[0], Ops.size());
2539 Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2540 InFlag = Chain.getValue(1);
2542 // Create the CALLSEQ_END node.
2543 unsigned NumBytesForCalleeToPush;
2544 if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2545 getTargetMachine().Options.GuaranteedTailCallOpt))
2546 NumBytesForCalleeToPush = NumBytes; // Callee pops everything
2547 else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2549 // If this is a call to a struct-return function, the callee
2550 // pops the hidden struct pointer, so we have to push it back.
2551 // This is common for Darwin/X86, Linux & Mingw32 targets.
2552 // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2553 NumBytesForCalleeToPush = 4;
2555 NumBytesForCalleeToPush = 0; // Callee pops nothing.
2557 // Returns a flag for retval copy to use.
2559 Chain = DAG.getCALLSEQ_END(Chain,
2560 DAG.getIntPtrConstant(NumBytes, true),
2561 DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2564 InFlag = Chain.getValue(1);
2567 // Handle result values, copying them out of physregs into vregs that we
2569 return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2570 Ins, dl, DAG, InVals);
2574 //===----------------------------------------------------------------------===//
2575 // Fast Calling Convention (tail call) implementation
2576 //===----------------------------------------------------------------------===//
2578 // Like std call, callee cleans arguments, convention except that ECX is
2579 // reserved for storing the tail called function address. Only 2 registers are
2580 // free for argument passing (inreg). Tail call optimization is performed
2582 // * tailcallopt is enabled
2583 // * caller/callee are fastcc
2584 // On X86_64 architecture with GOT-style position independent code only local
2585 // (within module) calls are supported at the moment.
2586 // To keep the stack aligned according to platform abi the function
2587 // GetAlignedArgumentStackSize ensures that argument delta is always multiples
2588 // of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2589 // If a tail called function callee has more arguments than the caller the
2590 // caller needs to make sure that there is room to move the RETADDR to. This is
2591 // achieved by reserving an area the size of the argument delta right after the
2592 // original REtADDR, but before the saved framepointer or the spilled registers
2593 // e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2605 /// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2606 /// for a 16 byte align requirement.
2608 X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2609 SelectionDAG& DAG) const {
2610 MachineFunction &MF = DAG.getMachineFunction();
2611 const TargetMachine &TM = MF.getTarget();
2612 const TargetFrameLowering &TFI = *TM.getFrameLowering();
2613 unsigned StackAlignment = TFI.getStackAlignment();
2614 uint64_t AlignMask = StackAlignment - 1;
2615 int64_t Offset = StackSize;
2616 uint64_t SlotSize = TD->getPointerSize();
2617 if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2618 // Number smaller than 12 so just add the difference.
2619 Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2621 // Mask out lower bits, add stackalignment once plus the 12 bytes.
2622 Offset = ((~AlignMask) & Offset) + StackAlignment +
2623 (StackAlignment-SlotSize);
2628 /// MatchingStackOffset - Return true if the given stack call argument is
2629 /// already available in the same position (relatively) of the caller's
2630 /// incoming argument stack.
2632 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2633 MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2634 const X86InstrInfo *TII) {
2635 unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2637 if (Arg.getOpcode() == ISD::CopyFromReg) {
2638 unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2639 if (!TargetRegisterInfo::isVirtualRegister(VR))
2641 MachineInstr *Def = MRI->getVRegDef(VR);
2644 if (!Flags.isByVal()) {
2645 if (!TII->isLoadFromStackSlot(Def, FI))
2648 unsigned Opcode = Def->getOpcode();
2649 if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2650 Def->getOperand(1).isFI()) {
2651 FI = Def->getOperand(1).getIndex();
2652 Bytes = Flags.getByValSize();
2656 } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2657 if (Flags.isByVal())
2658 // ByVal argument is passed in as a pointer but it's now being
2659 // dereferenced. e.g.
2660 // define @foo(%struct.X* %A) {
2661 // tail call @bar(%struct.X* byval %A)
2664 SDValue Ptr = Ld->getBasePtr();
2665 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2668 FI = FINode->getIndex();
2669 } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2670 FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2671 FI = FINode->getIndex();
2672 Bytes = Flags.getByValSize();
2676 assert(FI != INT_MAX);
2677 if (!MFI->isFixedObjectIndex(FI))
2679 return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2682 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2683 /// for tail call optimization. Targets which want to do tail call
2684 /// optimization should implement this function.
2686 X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2687 CallingConv::ID CalleeCC,
2689 bool isCalleeStructRet,
2690 bool isCallerStructRet,
2691 const SmallVectorImpl<ISD::OutputArg> &Outs,
2692 const SmallVectorImpl<SDValue> &OutVals,
2693 const SmallVectorImpl<ISD::InputArg> &Ins,
2694 SelectionDAG& DAG) const {
2695 if (!IsTailCallConvention(CalleeCC) &&
2696 CalleeCC != CallingConv::C)
2699 // If -tailcallopt is specified, make fastcc functions tail-callable.
2700 const MachineFunction &MF = DAG.getMachineFunction();
2701 const Function *CallerF = DAG.getMachineFunction().getFunction();
2702 CallingConv::ID CallerCC = CallerF->getCallingConv();
2703 bool CCMatch = CallerCC == CalleeCC;
2705 if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2706 if (IsTailCallConvention(CalleeCC) && CCMatch)
2711 // Look for obvious safe cases to perform tail call optimization that do not
2712 // require ABI changes. This is what gcc calls sibcall.
2714 // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2715 // emit a special epilogue.
2716 if (RegInfo->needsStackRealignment(MF))
2719 // Also avoid sibcall optimization if either caller or callee uses struct
2720 // return semantics.
2721 if (isCalleeStructRet || isCallerStructRet)
2724 // An stdcall caller is expected to clean up its arguments; the callee
2725 // isn't going to do that.
2726 if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2729 // Do not sibcall optimize vararg calls unless all arguments are passed via
2731 if (isVarArg && !Outs.empty()) {
2733 // Optimizing for varargs on Win64 is unlikely to be safe without
2734 // additional testing.
2735 if (Subtarget->isTargetWin64())
2738 SmallVector<CCValAssign, 16> ArgLocs;
2739 CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2740 getTargetMachine(), ArgLocs, *DAG.getContext());
2742 CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2743 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2744 if (!ArgLocs[i].isRegLoc())
2748 // If the call result is in ST0 / ST1, it needs to be popped off the x87
2749 // stack. Therefore, if it's not used by the call it is not safe to optimize
2750 // this into a sibcall.
2751 bool Unused = false;
2752 for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2759 SmallVector<CCValAssign, 16> RVLocs;
2760 CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2761 getTargetMachine(), RVLocs, *DAG.getContext());
2762 CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2763 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2764 CCValAssign &VA = RVLocs[i];
2765 if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2770 // If the calling conventions do not match, then we'd better make sure the
2771 // results are returned in the same way as what the caller expects.
2773 SmallVector<CCValAssign, 16> RVLocs1;
2774 CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2775 getTargetMachine(), RVLocs1, *DAG.getContext());
2776 CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2778 SmallVector<CCValAssign, 16> RVLocs2;
2779 CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2780 getTargetMachine(), RVLocs2, *DAG.getContext());
2781 CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2783 if (RVLocs1.size() != RVLocs2.size())
2785 for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2786 if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2788 if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2790 if (RVLocs1[i].isRegLoc()) {
2791 if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2794 if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2800 // If the callee takes no arguments then go on to check the results of the
2802 if (!Outs.empty()) {
2803 // Check if stack adjustment is needed. For now, do not do this if any
2804 // argument is passed on the stack.
2805 SmallVector<CCValAssign, 16> ArgLocs;
2806 CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2807 getTargetMachine(), ArgLocs, *DAG.getContext());
2809 // Allocate shadow area for Win64
2810 if (Subtarget->isTargetWin64()) {
2811 CCInfo.AllocateStack(32, 8);
2814 CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2815 if (CCInfo.getNextStackOffset()) {
2816 MachineFunction &MF = DAG.getMachineFunction();
2817 if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2820 // Check if the arguments are already laid out in the right way as
2821 // the caller's fixed stack objects.
2822 MachineFrameInfo *MFI = MF.getFrameInfo();
2823 const MachineRegisterInfo *MRI = &MF.getRegInfo();
2824 const X86InstrInfo *TII =
2825 ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2826 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2827 CCValAssign &VA = ArgLocs[i];
2828 SDValue Arg = OutVals[i];
2829 ISD::ArgFlagsTy Flags = Outs[i].Flags;
2830 if (VA.getLocInfo() == CCValAssign::Indirect)
2832 if (!VA.isRegLoc()) {
2833 if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2840 // If the tailcall address may be in a register, then make sure it's
2841 // possible to register allocate for it. In 32-bit, the call address can
2842 // only target EAX, EDX, or ECX since the tail call must be scheduled after
2843 // callee-saved registers are restored. These happen to be the same
2844 // registers used to pass 'inreg' arguments so watch out for those.
2845 if (!Subtarget->is64Bit() &&
2846 !isa<GlobalAddressSDNode>(Callee) &&
2847 !isa<ExternalSymbolSDNode>(Callee)) {
2848 unsigned NumInRegs = 0;
2849 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2850 CCValAssign &VA = ArgLocs[i];
2853 unsigned Reg = VA.getLocReg();
2856 case X86::EAX: case X86::EDX: case X86::ECX:
2857 if (++NumInRegs == 3)
2869 X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2870 return X86::createFastISel(funcInfo);
2874 //===----------------------------------------------------------------------===//
2875 // Other Lowering Hooks
2876 //===----------------------------------------------------------------------===//
2878 static bool MayFoldLoad(SDValue Op) {
2879 return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2882 static bool MayFoldIntoStore(SDValue Op) {
2883 return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2886 static bool isTargetShuffle(unsigned Opcode) {
2888 default: return false;
2889 case X86ISD::PSHUFD:
2890 case X86ISD::PSHUFHW:
2891 case X86ISD::PSHUFLW:
2893 case X86ISD::PALIGN:
2894 case X86ISD::MOVLHPS:
2895 case X86ISD::MOVLHPD:
2896 case X86ISD::MOVHLPS:
2897 case X86ISD::MOVLPS:
2898 case X86ISD::MOVLPD:
2899 case X86ISD::MOVSHDUP:
2900 case X86ISD::MOVSLDUP:
2901 case X86ISD::MOVDDUP:
2904 case X86ISD::UNPCKL:
2905 case X86ISD::UNPCKH:
2906 case X86ISD::VPERMILP:
2907 case X86ISD::VPERM2X128:
2912 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2913 SDValue V1, SelectionDAG &DAG) {
2915 default: llvm_unreachable("Unknown x86 shuffle node");
2916 case X86ISD::MOVSHDUP:
2917 case X86ISD::MOVSLDUP:
2918 case X86ISD::MOVDDUP:
2919 return DAG.getNode(Opc, dl, VT, V1);
2923 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2924 SDValue V1, unsigned TargetMask,
2925 SelectionDAG &DAG) {
2927 default: llvm_unreachable("Unknown x86 shuffle node");
2928 case X86ISD::PSHUFD:
2929 case X86ISD::PSHUFHW:
2930 case X86ISD::PSHUFLW:
2931 case X86ISD::VPERMILP:
2932 return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2936 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2937 SDValue V1, SDValue V2, unsigned TargetMask,
2938 SelectionDAG &DAG) {
2940 default: llvm_unreachable("Unknown x86 shuffle node");
2941 case X86ISD::PALIGN:
2943 case X86ISD::VPERM2X128:
2944 return DAG.getNode(Opc, dl, VT, V1, V2,
2945 DAG.getConstant(TargetMask, MVT::i8));
2949 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2950 SDValue V1, SDValue V2, SelectionDAG &DAG) {
2952 default: llvm_unreachable("Unknown x86 shuffle node");
2953 case X86ISD::MOVLHPS:
2954 case X86ISD::MOVLHPD:
2955 case X86ISD::MOVHLPS:
2956 case X86ISD::MOVLPS:
2957 case X86ISD::MOVLPD:
2960 case X86ISD::UNPCKL:
2961 case X86ISD::UNPCKH:
2962 return DAG.getNode(Opc, dl, VT, V1, V2);
2966 SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2967 MachineFunction &MF = DAG.getMachineFunction();
2968 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2969 int ReturnAddrIndex = FuncInfo->getRAIndex();
2971 if (ReturnAddrIndex == 0) {
2972 // Set up a frame object for the return address.
2973 uint64_t SlotSize = TD->getPointerSize();
2974 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2976 FuncInfo->setRAIndex(ReturnAddrIndex);
2979 return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2983 bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2984 bool hasSymbolicDisplacement) {
2985 // Offset should fit into 32 bit immediate field.
2986 if (!isInt<32>(Offset))
2989 // If we don't have a symbolic displacement - we don't have any extra
2991 if (!hasSymbolicDisplacement)
2994 // FIXME: Some tweaks might be needed for medium code model.
2995 if (M != CodeModel::Small && M != CodeModel::Kernel)
2998 // For small code model we assume that latest object is 16MB before end of 31
2999 // bits boundary. We may also accept pretty large negative constants knowing
3000 // that all objects are in the positive half of address space.
3001 if (M == CodeModel::Small && Offset < 16*1024*1024)
3004 // For kernel code model we know that all object resist in the negative half
3005 // of 32bits address space. We may not accept negative offsets, since they may
3006 // be just off and we may accept pretty large positive ones.
3007 if (M == CodeModel::Kernel && Offset > 0)
3013 /// isCalleePop - Determines whether the callee is required to pop its
3014 /// own arguments. Callee pop is necessary to support tail calls.
3015 bool X86::isCalleePop(CallingConv::ID CallingConv,
3016 bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3020 switch (CallingConv) {
3023 case CallingConv::X86_StdCall:
3025 case CallingConv::X86_FastCall:
3027 case CallingConv::X86_ThisCall:
3029 case CallingConv::Fast:
3031 case CallingConv::GHC:
3036 /// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3037 /// specific condition code, returning the condition code and the LHS/RHS of the
3038 /// comparison to make.
3039 static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3040 SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3042 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3043 if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3044 // X > -1 -> X == 0, jump !sign.
3045 RHS = DAG.getConstant(0, RHS.getValueType());
3046 return X86::COND_NS;
3047 } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3048 // X < 0 -> X == 0, jump on sign.
3050 } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3052 RHS = DAG.getConstant(0, RHS.getValueType());
3053 return X86::COND_LE;
3057 switch (SetCCOpcode) {
3058 default: llvm_unreachable("Invalid integer condition!");
3059 case ISD::SETEQ: return X86::COND_E;
3060 case ISD::SETGT: return X86::COND_G;
3061 case ISD::SETGE: return X86::COND_GE;
3062 case ISD::SETLT: return X86::COND_L;
3063 case ISD::SETLE: return X86::COND_LE;
3064 case ISD::SETNE: return X86::COND_NE;
3065 case ISD::SETULT: return X86::COND_B;
3066 case ISD::SETUGT: return X86::COND_A;
3067 case ISD::SETULE: return X86::COND_BE;
3068 case ISD::SETUGE: return X86::COND_AE;
3072 // First determine if it is required or is profitable to flip the operands.
3074 // If LHS is a foldable load, but RHS is not, flip the condition.
3075 if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3076 !ISD::isNON_EXTLoad(RHS.getNode())) {
3077 SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3078 std::swap(LHS, RHS);
3081 switch (SetCCOpcode) {
3087 std::swap(LHS, RHS);
3091 // On a floating point condition, the flags are set as follows:
3093 // 0 | 0 | 0 | X > Y
3094 // 0 | 0 | 1 | X < Y
3095 // 1 | 0 | 0 | X == Y
3096 // 1 | 1 | 1 | unordered
3097 switch (SetCCOpcode) {
3098 default: llvm_unreachable("Condcode should be pre-legalized away");
3100 case ISD::SETEQ: return X86::COND_E;
3101 case ISD::SETOLT: // flipped
3103 case ISD::SETGT: return X86::COND_A;
3104 case ISD::SETOLE: // flipped
3106 case ISD::SETGE: return X86::COND_AE;
3107 case ISD::SETUGT: // flipped
3109 case ISD::SETLT: return X86::COND_B;
3110 case ISD::SETUGE: // flipped
3112 case ISD::SETLE: return X86::COND_BE;
3114 case ISD::SETNE: return X86::COND_NE;
3115 case ISD::SETUO: return X86::COND_P;
3116 case ISD::SETO: return X86::COND_NP;
3118 case ISD::SETUNE: return X86::COND_INVALID;
3122 /// hasFPCMov - is there a floating point cmov for the specific X86 condition
3123 /// code. Current x86 isa includes the following FP cmov instructions:
3124 /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3125 static bool hasFPCMov(unsigned X86CC) {
3141 /// isFPImmLegal - Returns true if the target can instruction select the
3142 /// specified FP immediate natively. If false, the legalizer will
3143 /// materialize the FP immediate as a load from a constant pool.
3144 bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3145 for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3146 if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3152 /// isUndefOrInRange - Return true if Val is undef or if its value falls within
3153 /// the specified range (L, H].
3154 static bool isUndefOrInRange(int Val, int Low, int Hi) {
3155 return (Val < 0) || (Val >= Low && Val < Hi);
3158 /// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3159 /// specified value.
3160 static bool isUndefOrEqual(int Val, int CmpVal) {
3161 if (Val < 0 || Val == CmpVal)
3166 /// isSequentialOrUndefInRange - Return true if every element in Mask, begining
3167 /// from position Pos and ending in Pos+Size, falls within the specified
3168 /// sequential range (L, L+Pos]. or is undef.
3169 static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3170 int Pos, int Size, int Low) {
3171 for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3172 if (!isUndefOrEqual(Mask[i], Low))
3177 /// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3178 /// is suitable for input to PSHUFD or PSHUFW. That is, it doesn't reference
3179 /// the second operand.
3180 static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
3181 if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3182 return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3183 if (VT == MVT::v2f64 || VT == MVT::v2i64)
3184 return (Mask[0] < 2 && Mask[1] < 2);
3188 /// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3189 /// is suitable for input to PSHUFHW.
3190 static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT) {
3191 if (VT != MVT::v8i16)
3194 // Lower quadword copied in order or undef.
3195 if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3198 // Upper quadword shuffled.
3199 for (unsigned i = 4; i != 8; ++i)
3200 if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3206 /// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3207 /// is suitable for input to PSHUFLW.
3208 static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT) {
3209 if (VT != MVT::v8i16)
3212 // Upper quadword copied in order.
3213 if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3216 // Lower quadword shuffled.
3217 for (unsigned i = 0; i != 4; ++i)
3224 /// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3225 /// is suitable for input to PALIGNR.
3226 static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT,
3227 const X86Subtarget *Subtarget) {
3228 if ((VT.getSizeInBits() == 128 && !Subtarget->hasSSSE3()) ||
3229 (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2()))
3232 unsigned NumElts = VT.getVectorNumElements();
3233 unsigned NumLanes = VT.getSizeInBits()/128;
3234 unsigned NumLaneElts = NumElts/NumLanes;
3236 // Do not handle 64-bit element shuffles with palignr.
3237 if (NumLaneElts == 2)
3240 for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3242 for (i = 0; i != NumLaneElts; ++i) {
3247 // Lane is all undef, go to next lane
3248 if (i == NumLaneElts)
3251 int Start = Mask[i+l];
3253 // Make sure its in this lane in one of the sources
3254 if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3255 !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3258 // If not lane 0, then we must match lane 0
3259 if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3262 // Correct second source to be contiguous with first source
3263 if (Start >= (int)NumElts)
3264 Start -= NumElts - NumLaneElts;
3266 // Make sure we're shifting in the right direction.
3267 if (Start <= (int)(i+l))
3272 // Check the rest of the elements to see if they are consecutive.
3273 for (++i; i != NumLaneElts; ++i) {
3274 int Idx = Mask[i+l];
3276 // Make sure its in this lane
3277 if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3278 !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3281 // If not lane 0, then we must match lane 0
3282 if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3285 if (Idx >= (int)NumElts)
3286 Idx -= NumElts - NumLaneElts;
3288 if (!isUndefOrEqual(Idx, Start+i))
3297 /// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3298 /// the two vector operands have swapped position.
3299 static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3300 unsigned NumElems) {
3301 for (unsigned i = 0; i != NumElems; ++i) {
3305 else if (idx < (int)NumElems)
3306 Mask[i] = idx + NumElems;
3308 Mask[i] = idx - NumElems;
3312 /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3313 /// specifies a shuffle of elements that is suitable for input to 128/256-bit
3314 /// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3315 /// reverse of what x86 shuffles want.
3316 static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX,
3317 bool Commuted = false) {
3318 if (!HasAVX && VT.getSizeInBits() == 256)
3321 unsigned NumElems = VT.getVectorNumElements();
3322 unsigned NumLanes = VT.getSizeInBits()/128;
3323 unsigned NumLaneElems = NumElems/NumLanes;
3325 if (NumLaneElems != 2 && NumLaneElems != 4)
3328 // VSHUFPSY divides the resulting vector into 4 chunks.
3329 // The sources are also splitted into 4 chunks, and each destination
3330 // chunk must come from a different source chunk.
3332 // SRC1 => X7 X6 X5 X4 X3 X2 X1 X0
3333 // SRC2 => Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y9
3335 // DST => Y7..Y4, Y7..Y4, X7..X4, X7..X4,
3336 // Y3..Y0, Y3..Y0, X3..X0, X3..X0
3338 // VSHUFPDY divides the resulting vector into 4 chunks.
3339 // The sources are also splitted into 4 chunks, and each destination
3340 // chunk must come from a different source chunk.
3342 // SRC1 => X3 X2 X1 X0
3343 // SRC2 => Y3 Y2 Y1 Y0
3345 // DST => Y3..Y2, X3..X2, Y1..Y0, X1..X0
3347 unsigned HalfLaneElems = NumLaneElems/2;
3348 for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3349 for (unsigned i = 0; i != NumLaneElems; ++i) {
3350 int Idx = Mask[i+l];
3351 unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3352 if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3354 // For VSHUFPSY, the mask of the second half must be the same as the
3355 // first but with the appropriate offsets. This works in the same way as
3356 // VPERMILPS works with masks.
3357 if (NumElems != 8 || l == 0 || Mask[i] < 0)
3359 if (!isUndefOrEqual(Idx, Mask[i]+l))
3367 /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3368 /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3369 static bool isMOVHLPSMask(ArrayRef<int> Mask, EVT VT) {
3370 unsigned NumElems = VT.getVectorNumElements();
3372 if (VT.getSizeInBits() != 128)
3378 // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3379 return isUndefOrEqual(Mask[0], 6) &&
3380 isUndefOrEqual(Mask[1], 7) &&
3381 isUndefOrEqual(Mask[2], 2) &&
3382 isUndefOrEqual(Mask[3], 3);
3385 /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3386 /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3388 static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, EVT VT) {
3389 unsigned NumElems = VT.getVectorNumElements();
3391 if (VT.getSizeInBits() != 128)
3397 return isUndefOrEqual(Mask[0], 2) &&
3398 isUndefOrEqual(Mask[1], 3) &&
3399 isUndefOrEqual(Mask[2], 2) &&
3400 isUndefOrEqual(Mask[3], 3);
3403 /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3404 /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3405 static bool isMOVLPMask(ArrayRef<int> Mask, EVT VT) {
3406 if (VT.getSizeInBits() != 128)
3409 unsigned NumElems = VT.getVectorNumElements();
3411 if (NumElems != 2 && NumElems != 4)
3414 for (unsigned i = 0; i != NumElems/2; ++i)
3415 if (!isUndefOrEqual(Mask[i], i + NumElems))
3418 for (unsigned i = NumElems/2; i != NumElems; ++i)
3419 if (!isUndefOrEqual(Mask[i], i))
3425 /// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3426 /// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3427 static bool isMOVLHPSMask(ArrayRef<int> Mask, EVT VT) {
3428 unsigned NumElems = VT.getVectorNumElements();
3430 if ((NumElems != 2 && NumElems != 4)
3431 || VT.getSizeInBits() > 128)
3434 for (unsigned i = 0; i != NumElems/2; ++i)
3435 if (!isUndefOrEqual(Mask[i], i))
3438 for (unsigned i = 0; i != NumElems/2; ++i)
3439 if (!isUndefOrEqual(Mask[i + NumElems/2], i + NumElems))
3445 /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3446 /// specifies a shuffle of elements that is suitable for input to UNPCKL.
3447 static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
3448 bool HasAVX2, bool V2IsSplat = false) {
3449 unsigned NumElts = VT.getVectorNumElements();
3451 assert((VT.is128BitVector() || VT.is256BitVector()) &&
3452 "Unsupported vector type for unpckh");
3454 if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3455 (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3458 // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3459 // independently on 128-bit lanes.
3460 unsigned NumLanes = VT.getSizeInBits()/128;
3461 unsigned NumLaneElts = NumElts/NumLanes;
3463 for (unsigned l = 0; l != NumLanes; ++l) {
3464 for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3465 i != (l+1)*NumLaneElts;
3468 int BitI1 = Mask[i+1];
3469 if (!isUndefOrEqual(BitI, j))
3472 if (!isUndefOrEqual(BitI1, NumElts))
3475 if (!isUndefOrEqual(BitI1, j + NumElts))
3484 /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3485 /// specifies a shuffle of elements that is suitable for input to UNPCKH.
3486 static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
3487 bool HasAVX2, bool V2IsSplat = false) {
3488 unsigned NumElts = VT.getVectorNumElements();
3490 assert((VT.is128BitVector() || VT.is256BitVector()) &&
3491 "Unsupported vector type for unpckh");
3493 if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3494 (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3497 // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3498 // independently on 128-bit lanes.
3499 unsigned NumLanes = VT.getSizeInBits()/128;
3500 unsigned NumLaneElts = NumElts/NumLanes;
3502 for (unsigned l = 0; l != NumLanes; ++l) {
3503 for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3504 i != (l+1)*NumLaneElts; i += 2, ++j) {
3506 int BitI1 = Mask[i+1];
3507 if (!isUndefOrEqual(BitI, j))
3510 if (isUndefOrEqual(BitI1, NumElts))
3513 if (!isUndefOrEqual(BitI1, j+NumElts))
3521 /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3522 /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3524 static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT,
3526 unsigned NumElts = VT.getVectorNumElements();
3528 assert((VT.is128BitVector() || VT.is256BitVector()) &&
3529 "Unsupported vector type for unpckh");
3531 if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3532 (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3535 // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3536 // FIXME: Need a better way to get rid of this, there's no latency difference
3537 // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3538 // the former later. We should also remove the "_undef" special mask.
3539 if (NumElts == 4 && VT.getSizeInBits() == 256)
3542 // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3543 // independently on 128-bit lanes.
3544 unsigned NumLanes = VT.getSizeInBits()/128;
3545 unsigned NumLaneElts = NumElts/NumLanes;
3547 for (unsigned l = 0; l != NumLanes; ++l) {
3548 for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3549 i != (l+1)*NumLaneElts;
3552 int BitI1 = Mask[i+1];
3554 if (!isUndefOrEqual(BitI, j))
3556 if (!isUndefOrEqual(BitI1, j))
3564 /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3565 /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3567 static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3568 unsigned NumElts = VT.getVectorNumElements();
3570 assert((VT.is128BitVector() || VT.is256BitVector()) &&
3571 "Unsupported vector type for unpckh");
3573 if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3574 (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3577 // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3578 // independently on 128-bit lanes.
3579 unsigned NumLanes = VT.getSizeInBits()/128;
3580 unsigned NumLaneElts = NumElts/NumLanes;
3582 for (unsigned l = 0; l != NumLanes; ++l) {
3583 for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3584 i != (l+1)*NumLaneElts; i += 2, ++j) {
3586 int BitI1 = Mask[i+1];
3587 if (!isUndefOrEqual(BitI, j))
3589 if (!isUndefOrEqual(BitI1, j))
3596 /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3597 /// specifies a shuffle of elements that is suitable for input to MOVSS,
3598 /// MOVSD, and MOVD, i.e. setting the lowest element.
3599 static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
3600 if (VT.getVectorElementType().getSizeInBits() < 32)
3602 if (VT.getSizeInBits() == 256)
3605 unsigned NumElts = VT.getVectorNumElements();
3607 if (!isUndefOrEqual(Mask[0], NumElts))
3610 for (unsigned i = 1; i != NumElts; ++i)
3611 if (!isUndefOrEqual(Mask[i], i))
3617 /// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3618 /// as permutations between 128-bit chunks or halves. As an example: this
3620 /// vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3621 /// The first half comes from the second half of V1 and the second half from the
3622 /// the second half of V2.
3623 static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3624 if (!HasAVX || VT.getSizeInBits() != 256)
3627 // The shuffle result is divided into half A and half B. In total the two
3628 // sources have 4 halves, namely: C, D, E, F. The final values of A and
3629 // B must come from C, D, E or F.
3630 unsigned HalfSize = VT.getVectorNumElements()/2;
3631 bool MatchA = false, MatchB = false;
3633 // Check if A comes from one of C, D, E, F.
3634 for (unsigned Half = 0; Half != 4; ++Half) {
3635 if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3641 // Check if B comes from one of C, D, E, F.
3642 for (unsigned Half = 0; Half != 4; ++Half) {
3643 if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3649 return MatchA && MatchB;
3652 /// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3653 /// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3654 static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3655 EVT VT = SVOp->getValueType(0);
3657 unsigned HalfSize = VT.getVectorNumElements()/2;
3659 unsigned FstHalf = 0, SndHalf = 0;
3660 for (unsigned i = 0; i < HalfSize; ++i) {
3661 if (SVOp->getMaskElt(i) > 0) {
3662 FstHalf = SVOp->getMaskElt(i)/HalfSize;
3666 for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
3667 if (SVOp->getMaskElt(i) > 0) {
3668 SndHalf = SVOp->getMaskElt(i)/HalfSize;
3673 return (FstHalf | (SndHalf << 4));
3676 /// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3677 /// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3678 /// Note that VPERMIL mask matching is different depending whether theunderlying
3679 /// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3680 /// to the same elements of the low, but to the higher half of the source.
3681 /// In VPERMILPD the two lanes could be shuffled independently of each other
3682 /// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
3683 static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3687 unsigned NumElts = VT.getVectorNumElements();
3688 // Only match 256-bit with 32/64-bit types
3689 if (VT.getSizeInBits() != 256 || (NumElts != 4 && NumElts != 8))
3692 unsigned NumLanes = VT.getSizeInBits()/128;
3693 unsigned LaneSize = NumElts/NumLanes;
3694 for (unsigned l = 0; l != NumElts; l += LaneSize) {
3695 for (unsigned i = 0; i != LaneSize; ++i) {
3696 if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
3698 if (NumElts != 8 || l == 0)
3700 // VPERMILPS handling
3703 if (!isUndefOrEqual(Mask[i+l], Mask[i]+l))
3711 /// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
3712 /// of what x86 movss want. X86 movs requires the lowest element to be lowest
3713 /// element of vector 2 and the other elements to come from vector 1 in order.
3714 static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
3715 bool V2IsSplat = false, bool V2IsUndef = false) {
3716 unsigned NumOps = VT.getVectorNumElements();
3717 if (VT.getSizeInBits() == 256)
3719 if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3722 if (!isUndefOrEqual(Mask[0], 0))
3725 for (unsigned i = 1; i != NumOps; ++i)
3726 if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3727 (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3728 (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3734 /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3735 /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3736 /// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3737 static bool isMOVSHDUPMask(ArrayRef<int> Mask, EVT VT,
3738 const X86Subtarget *Subtarget) {
3739 if (!Subtarget->hasSSE3())
3742 unsigned NumElems = VT.getVectorNumElements();
3744 if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3745 (VT.getSizeInBits() == 256 && NumElems != 8))
3748 // "i+1" is the value the indexed mask element must have
3749 for (unsigned i = 0; i != NumElems; i += 2)
3750 if (!isUndefOrEqual(Mask[i], i+1) ||
3751 !isUndefOrEqual(Mask[i+1], i+1))
3757 /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3758 /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3759 /// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3760 static bool isMOVSLDUPMask(ArrayRef<int> Mask, EVT VT,
3761 const X86Subtarget *Subtarget) {
3762 if (!Subtarget->hasSSE3())
3765 unsigned NumElems = VT.getVectorNumElements();
3767 if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3768 (VT.getSizeInBits() == 256 && NumElems != 8))
3771 // "i" is the value the indexed mask element must have
3772 for (unsigned i = 0; i != NumElems; i += 2)
3773 if (!isUndefOrEqual(Mask[i], i) ||
3774 !isUndefOrEqual(Mask[i+1], i))
3780 /// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3781 /// specifies a shuffle of elements that is suitable for input to 256-bit
3782 /// version of MOVDDUP.
3783 static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3784 unsigned NumElts = VT.getVectorNumElements();
3786 if (!HasAVX || VT.getSizeInBits() != 256 || NumElts != 4)
3789 for (unsigned i = 0; i != NumElts/2; ++i)
3790 if (!isUndefOrEqual(Mask[i], 0))
3792 for (unsigned i = NumElts/2; i != NumElts; ++i)
3793 if (!isUndefOrEqual(Mask[i], NumElts/2))
3798 /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3799 /// specifies a shuffle of elements that is suitable for input to 128-bit
3800 /// version of MOVDDUP.
3801 static bool isMOVDDUPMask(ArrayRef<int> Mask, EVT VT) {
3802 if (VT.getSizeInBits() != 128)
3805 unsigned e = VT.getVectorNumElements() / 2;
3806 for (unsigned i = 0; i != e; ++i)
3807 if (!isUndefOrEqual(Mask[i], i))
3809 for (unsigned i = 0; i != e; ++i)
3810 if (!isUndefOrEqual(Mask[e+i], i))
3815 /// isVEXTRACTF128Index - Return true if the specified
3816 /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3817 /// suitable for input to VEXTRACTF128.
3818 bool X86::isVEXTRACTF128Index(SDNode *N) {
3819 if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3822 // The index should be aligned on a 128-bit boundary.
3824 cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3826 unsigned VL = N->getValueType(0).getVectorNumElements();
3827 unsigned VBits = N->getValueType(0).getSizeInBits();
3828 unsigned ElSize = VBits / VL;
3829 bool Result = (Index * ElSize) % 128 == 0;
3834 /// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3835 /// operand specifies a subvector insert that is suitable for input to
3837 bool X86::isVINSERTF128Index(SDNode *N) {
3838 if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3841 // The index should be aligned on a 128-bit boundary.
3843 cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3845 unsigned VL = N->getValueType(0).getVectorNumElements();
3846 unsigned VBits = N->getValueType(0).getSizeInBits();
3847 unsigned ElSize = VBits / VL;
3848 bool Result = (Index * ElSize) % 128 == 0;
3853 /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3854 /// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3855 /// Handles 128-bit and 256-bit.
3856 static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
3857 EVT VT = N->getValueType(0);
3859 assert((VT.is128BitVector() || VT.is256BitVector()) &&
3860 "Unsupported vector type for PSHUF/SHUFP");
3862 // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
3863 // independently on 128-bit lanes.
3864 unsigned NumElts = VT.getVectorNumElements();
3865 unsigned NumLanes = VT.getSizeInBits()/128;
3866 unsigned NumLaneElts = NumElts/NumLanes;
3868 assert((NumLaneElts == 2 || NumLaneElts == 4) &&
3869 "Only supports 2 or 4 elements per lane");
3871 unsigned Shift = (NumLaneElts == 4) ? 1 : 0;
3873 for (unsigned i = 0; i != NumElts; ++i) {
3874 int Elt = N->getMaskElt(i);
3875 if (Elt < 0) continue;
3877 unsigned ShAmt = i << Shift;
3878 if (ShAmt >= 8) ShAmt -= 8;
3879 Mask |= Elt << ShAmt;
3885 /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3886 /// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3887 static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
3889 // 8 nodes, but we only care about the last 4.
3890 for (unsigned i = 7; i >= 4; --i) {
3891 int Val = N->getMaskElt(i);
3900 /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3901 /// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3902 static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
3904 // 8 nodes, but we only care about the first 4.
3905 for (int i = 3; i >= 0; --i) {
3906 int Val = N->getMaskElt(i);
3915 /// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3916 /// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3917 static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
3918 EVT VT = SVOp->getValueType(0);
3919 unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
3921 unsigned NumElts = VT.getVectorNumElements();
3922 unsigned NumLanes = VT.getSizeInBits()/128;
3923 unsigned NumLaneElts = NumElts/NumLanes;
3927 for (i = 0; i != NumElts; ++i) {
3928 Val = SVOp->getMaskElt(i);
3932 if (Val >= (int)NumElts)
3933 Val -= NumElts - NumLaneElts;
3935 assert(Val - i > 0 && "PALIGNR imm should be positive");
3936 return (Val - i) * EltSize;
3939 /// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
3940 /// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
3942 unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
3943 if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3944 llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
3947 cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3949 EVT VecVT = N->getOperand(0).getValueType();
3950 EVT ElVT = VecVT.getVectorElementType();
3952 unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3953 return Index / NumElemsPerChunk;
3956 /// getInsertVINSERTF128Immediate - Return the appropriate immediate
3957 /// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
3959 unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
3960 if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3961 llvm_unreachable("Illegal insert subvector for VINSERTF128");
3964 cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3966 EVT VecVT = N->getValueType(0);
3967 EVT ElVT = VecVT.getVectorElementType();
3969 unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3970 return Index / NumElemsPerChunk;
3973 /// isZeroNode - Returns true if Elt is a constant zero or a floating point
3975 bool X86::isZeroNode(SDValue Elt) {
3976 return ((isa<ConstantSDNode>(Elt) &&
3977 cast<ConstantSDNode>(Elt)->isNullValue()) ||
3978 (isa<ConstantFPSDNode>(Elt) &&
3979 cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3982 /// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3983 /// their permute mask.
3984 static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3985 SelectionDAG &DAG) {
3986 EVT VT = SVOp->getValueType(0);
3987 unsigned NumElems = VT.getVectorNumElements();
3988 SmallVector<int, 8> MaskVec;
3990 for (unsigned i = 0; i != NumElems; ++i) {
3991 int idx = SVOp->getMaskElt(i);
3993 MaskVec.push_back(idx);
3994 else if (idx < (int)NumElems)
3995 MaskVec.push_back(idx + NumElems);
3997 MaskVec.push_back(idx - NumElems);
3999 return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4000 SVOp->getOperand(0), &MaskVec[0]);
4003 /// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4004 /// match movhlps. The lower half elements should come from upper half of
4005 /// V1 (and in order), and the upper half elements should come from the upper
4006 /// half of V2 (and in order).
4007 static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, EVT VT) {
4008 if (VT.getSizeInBits() != 128)
4010 if (VT.getVectorNumElements() != 4)
4012 for (unsigned i = 0, e = 2; i != e; ++i)
4013 if (!isUndefOrEqual(Mask[i], i+2))
4015 for (unsigned i = 2; i != 4; ++i)
4016 if (!isUndefOrEqual(Mask[i], i+4))
4021 /// isScalarLoadToVector - Returns true if the node is a scalar load that
4022 /// is promoted to a vector. It also returns the LoadSDNode by reference if
4024 static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4025 if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4027 N = N->getOperand(0).getNode();
4028 if (!ISD::isNON_EXTLoad(N))
4031 *LD = cast<LoadSDNode>(N);
4035 // Test whether the given value is a vector value which will be legalized
4037 static bool WillBeConstantPoolLoad(SDNode *N) {
4038 if (N->getOpcode() != ISD::BUILD_VECTOR)
4041 // Check for any non-constant elements.
4042 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4043 switch (N->getOperand(i).getNode()->getOpcode()) {
4045 case ISD::ConstantFP:
4052 // Vectors of all-zeros and all-ones are materialized with special
4053 // instructions rather than being loaded.
4054 return !ISD::isBuildVectorAllZeros(N) &&
4055 !ISD::isBuildVectorAllOnes(N);
4058 /// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4059 /// match movlp{s|d}. The lower half elements should come from lower half of
4060 /// V1 (and in order), and the upper half elements should come from the upper
4061 /// half of V2 (and in order). And since V1 will become the source of the
4062 /// MOVLP, it must be either a vector load or a scalar load to vector.
4063 static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4064 ArrayRef<int> Mask, EVT VT) {
4065 if (VT.getSizeInBits() != 128)
4068 if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4070 // Is V2 is a vector load, don't do this transformation. We will try to use
4071 // load folding shufps op.
4072 if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4075 unsigned NumElems = VT.getVectorNumElements();
4077 if (NumElems != 2 && NumElems != 4)
4079 for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4080 if (!isUndefOrEqual(Mask[i], i))
4082 for (unsigned i = NumElems/2; i != NumElems; ++i)
4083 if (!isUndefOrEqual(Mask[i], i+NumElems))
4088 /// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4090 static bool isSplatVector(SDNode *N) {
4091 if (N->getOpcode() != ISD::BUILD_VECTOR)
4094 SDValue SplatValue = N->getOperand(0);
4095 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4096 if (N->getOperand(i) != SplatValue)
4101 /// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4102 /// to an zero vector.
4103 /// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4104 static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4105 SDValue V1 = N->getOperand(0);
4106 SDValue V2 = N->getOperand(1);
4107 unsigned NumElems = N->getValueType(0).getVectorNumElements();
4108 for (unsigned i = 0; i != NumElems; ++i) {
4109 int Idx = N->getMaskElt(i);
4110 if (Idx >= (int)NumElems) {
4111 unsigned Opc = V2.getOpcode();
4112 if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4114 if (Opc != ISD::BUILD_VECTOR ||
4115 !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4117 } else if (Idx >= 0) {
4118 unsigned Opc = V1.getOpcode();
4119 if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4121 if (Opc != ISD::BUILD_VECTOR ||
4122 !X86::isZeroNode(V1.getOperand(Idx)))
4129 /// getZeroVector - Returns a vector of specified type with all zero elements.
4131 static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
4132 SelectionDAG &DAG, DebugLoc dl) {
4133 assert(VT.isVector() && "Expected a vector type");
4135 // Always build SSE zero vectors as <4 x i32> bitcasted
4136 // to their dest type. This ensures they get CSE'd.
4138 if (VT.getSizeInBits() == 128) { // SSE
4139 if (Subtarget->hasSSE2()) { // SSE2
4140 SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4141 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4143 SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4144 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4146 } else if (VT.getSizeInBits() == 256) { // AVX
4147 if (Subtarget->hasAVX2()) { // AVX2
4148 SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4149 SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4150 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4152 // 256-bit logic and arithmetic instructions in AVX are all
4153 // floating-point, no support for integer ops. Emit fp zeroed vectors.
4154 SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4155 SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4156 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4159 return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4162 /// getOnesVector - Returns a vector of specified type with all bits set.
4163 /// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4164 /// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4165 /// Then bitcast to their original type, ensuring they get CSE'd.
4166 static SDValue getOnesVector(EVT VT, bool HasAVX2, SelectionDAG &DAG,
4168 assert(VT.isVector() && "Expected a vector type");
4169 assert((VT.is128BitVector() || VT.is256BitVector())
4170 && "Expected a 128-bit or 256-bit vector type");
4172 SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4174 if (VT.getSizeInBits() == 256) {
4175 if (HasAVX2) { // AVX2
4176 SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4177 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4179 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4180 SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
4181 Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
4182 Vec = Insert128BitVector(InsV, Vec,
4183 DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
4186 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4189 return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4192 /// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4193 /// that point to V2 points to its first element.
4194 static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
4195 for (unsigned i = 0; i != NumElems; ++i) {
4196 if (Mask[i] > (int)NumElems) {
4202 /// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4203 /// operation of specified width.
4204 static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4206 unsigned NumElems = VT.getVectorNumElements();
4207 SmallVector<int, 8> Mask;
4208 Mask.push_back(NumElems);
4209 for (unsigned i = 1; i != NumElems; ++i)
4211 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4214 /// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4215 static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4217 unsigned NumElems = VT.getVectorNumElements();
4218 SmallVector<int, 8> Mask;
4219 for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4221 Mask.push_back(i + NumElems);
4223 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4226 /// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4227 static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4229 unsigned NumElems = VT.getVectorNumElements();
4230 unsigned Half = NumElems/2;
4231 SmallVector<int, 8> Mask;
4232 for (unsigned i = 0; i != Half; ++i) {
4233 Mask.push_back(i + Half);
4234 Mask.push_back(i + NumElems + Half);
4236 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4239 // PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4240 // a generic shuffle instruction because the target has no such instructions.
4241 // Generate shuffles which repeat i16 and i8 several times until they can be
4242 // represented by v4f32 and then be manipulated by target suported shuffles.
4243 static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4244 EVT VT = V.getValueType();
4245 int NumElems = VT.getVectorNumElements();
4246 DebugLoc dl = V.getDebugLoc();
4248 while (NumElems > 4) {
4249 if (EltNo < NumElems/2) {
4250 V = getUnpackl(DAG, dl, VT, V, V);
4252 V = getUnpackh(DAG, dl, VT, V, V);
4253 EltNo -= NumElems/2;
4260 /// getLegalSplat - Generate a legal splat with supported x86 shuffles
4261 static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4262 EVT VT = V.getValueType();
4263 DebugLoc dl = V.getDebugLoc();
4264 assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
4265 && "Vector size not supported");
4267 if (VT.getSizeInBits() == 128) {
4268 V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4269 int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4270 V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4273 // To use VPERMILPS to splat scalars, the second half of indicies must
4274 // refer to the higher part, which is a duplication of the lower one,
4275 // because VPERMILPS can only handle in-lane permutations.
4276 int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4277 EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4279 V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4280 V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4284 return DAG.getNode(ISD::BITCAST, dl, VT, V);
4287 /// PromoteSplat - Splat is promoted to target supported vector shuffles.
4288 static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4289 EVT SrcVT = SV->getValueType(0);
4290 SDValue V1 = SV->getOperand(0);
4291 DebugLoc dl = SV->getDebugLoc();
4293 int EltNo = SV->getSplatIndex();
4294 int NumElems = SrcVT.getVectorNumElements();
4295 unsigned Size = SrcVT.getSizeInBits();
4297 assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4298 "Unknown how to promote splat for type");
4300 // Extract the 128-bit part containing the splat element and update
4301 // the splat element index when it refers to the higher register.
4303 unsigned Idx = (EltNo >= NumElems/2) ? NumElems/2 : 0;
4304 V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
4306 EltNo -= NumElems/2;
4309 // All i16 and i8 vector types can't be used directly by a generic shuffle
4310 // instruction because the target has no such instruction. Generate shuffles
4311 // which repeat i16 and i8 several times until they fit in i32, and then can
4312 // be manipulated by target suported shuffles.
4313 EVT EltVT = SrcVT.getVectorElementType();
4314 if (EltVT == MVT::i8 || EltVT == MVT::i16)
4315 V1 = PromoteSplati8i16(V1, DAG, EltNo);
4317 // Recreate the 256-bit vector and place the same 128-bit vector
4318 // into the low and high part. This is necessary because we want
4319 // to use VPERM* to shuffle the vectors
4321 SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
4322 DAG.getConstant(0, MVT::i32), DAG, dl);
4323 V1 = Insert128BitVector(InsV, V1,
4324 DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4327 return getLegalSplat(DAG, V1, EltNo);
4330 /// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4331 /// vector of zero or undef vector. This produces a shuffle where the low
4332 /// element of V2 is swizzled into the zero/undef vector, landing at element
4333 /// Idx. This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3).
4334 static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4336 const X86Subtarget *Subtarget,
4337 SelectionDAG &DAG) {
4338 EVT VT = V2.getValueType();
4340 ? getZeroVector(VT, Subtarget, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4341 unsigned NumElems = VT.getVectorNumElements();
4342 SmallVector<int, 16> MaskVec;
4343 for (unsigned i = 0; i != NumElems; ++i)
4344 // If this is the insertion idx, put the low elt of V2 here.
4345 MaskVec.push_back(i == Idx ? NumElems : i);
4346 return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4349 /// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
4350 /// target specific opcode. Returns true if the Mask could be calculated.
4351 /// Sets IsUnary to true if only uses one source.
4352 static bool getTargetShuffleMask(SDNode *N, EVT VT,
4353 SmallVectorImpl<int> &Mask, bool &IsUnary) {
4354 unsigned NumElems = VT.getVectorNumElements();
4358 switch(N->getOpcode()) {
4360 ImmN = N->getOperand(N->getNumOperands()-1);
4361 DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4363 case X86ISD::UNPCKH:
4364 DecodeUNPCKHMask(VT, Mask);
4366 case X86ISD::UNPCKL:
4367 DecodeUNPCKLMask(VT, Mask);
4369 case X86ISD::MOVHLPS:
4370 DecodeMOVHLPSMask(NumElems, Mask);
4372 case X86ISD::MOVLHPS:
4373 DecodeMOVLHPSMask(NumElems, Mask);
4375 case X86ISD::PSHUFD:
4376 case X86ISD::VPERMILP:
4377 ImmN = N->getOperand(N->getNumOperands()-1);
4378 DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4381 case X86ISD::PSHUFHW:
4382 ImmN = N->getOperand(N->getNumOperands()-1);
4383 DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4386 case X86ISD::PSHUFLW:
4387 ImmN = N->getOperand(N->getNumOperands()-1);
4388 DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4392 case X86ISD::MOVSD: {
4393 // The index 0 always comes from the first element of the second source,
4394 // this is why MOVSS and MOVSD are used in the first place. The other
4395 // elements come from the other positions of the first source vector
4396 Mask.push_back(NumElems);
4397 for (unsigned i = 1; i != NumElems; ++i) {
4402 case X86ISD::VPERM2X128:
4403 ImmN = N->getOperand(N->getNumOperands()-1);
4404 DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4406 case X86ISD::MOVDDUP:
4407 case X86ISD::MOVLHPD:
4408 case X86ISD::MOVLPD:
4409 case X86ISD::MOVLPS:
4410 case X86ISD::MOVSHDUP:
4411 case X86ISD::MOVSLDUP:
4412 case X86ISD::PALIGN:
4413 // Not yet implemented
4415 default: llvm_unreachable("unknown target shuffle node");
4421 /// getShuffleScalarElt - Returns the scalar element that will make up the ith
4422 /// element of the result of the vector shuffle.
4423 static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
4426 return SDValue(); // Limit search depth.
4428 SDValue V = SDValue(N, 0);
4429 EVT VT = V.getValueType();
4430 unsigned Opcode = V.getOpcode();
4432 // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4433 if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4434 int Elt = SV->getMaskElt(Index);
4437 return DAG.getUNDEF(VT.getVectorElementType());
4439 unsigned NumElems = VT.getVectorNumElements();
4440 SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
4441 : SV->getOperand(1);
4442 return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
4445 // Recurse into target specific vector shuffles to find scalars.
4446 if (isTargetShuffle(Opcode)) {
4447 unsigned NumElems = VT.getVectorNumElements();
4448 SmallVector<int, 16> ShuffleMask;
4452 if (!getTargetShuffleMask(N, VT, ShuffleMask, IsUnary))
4455 int Elt = ShuffleMask[Index];
4457 return DAG.getUNDEF(VT.getVectorElementType());
4459 SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
4461 return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
4465 // Actual nodes that may contain scalar elements
4466 if (Opcode == ISD::BITCAST) {
4467 V = V.getOperand(0);
4468 EVT SrcVT = V.getValueType();
4469 unsigned NumElems = VT.getVectorNumElements();
4471 if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4475 if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4476 return (Index == 0) ? V.getOperand(0)
4477 : DAG.getUNDEF(VT.getVectorElementType());
4479 if (V.getOpcode() == ISD::BUILD_VECTOR)
4480 return V.getOperand(Index);
4485 /// getNumOfConsecutiveZeros - Return the number of elements of a vector
4486 /// shuffle operation which come from a consecutively from a zero. The
4487 /// search can start in two different directions, from left or right.
4489 unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, unsigned NumElems,
4490 bool ZerosFromLeft, SelectionDAG &DAG) {
4492 for (i = 0; i != NumElems; ++i) {
4493 unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4494 SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0);
4495 if (!(Elt.getNode() &&
4496 (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4503 /// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE)
4504 /// correspond consecutively to elements from one of the vector operands,
4505 /// starting from its index OpIdx. Also tell OpNum which source vector operand.
4507 bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp,
4508 unsigned MaskI, unsigned MaskE, unsigned OpIdx,
4509 unsigned NumElems, unsigned &OpNum) {
4510 bool SeenV1 = false;
4511 bool SeenV2 = false;
4513 for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) {
4514 int Idx = SVOp->getMaskElt(i);
4515 // Ignore undef indicies
4519 if (Idx < (int)NumElems)
4524 // Only accept consecutive elements from the same vector
4525 if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4529 OpNum = SeenV1 ? 0 : 1;
4533 /// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4534 /// logical left shift of a vector.
4535 static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4536 bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4537 unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4538 unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4539 false /* check zeros from right */, DAG);
4545 // Considering the elements in the mask that are not consecutive zeros,
4546 // check if they consecutively come from only one of the source vectors.
4548 // V1 = {X, A, B, C} 0
4550 // vector_shuffle V1, V2 <1, 2, 3, X>
4552 if (!isShuffleMaskConsecutive(SVOp,
4553 0, // Mask Start Index
4554 NumElems-NumZeros, // Mask End Index(exclusive)
4555 NumZeros, // Where to start looking in the src vector
4556 NumElems, // Number of elements in vector
4557 OpSrc)) // Which source operand ?
4562 ShVal = SVOp->getOperand(OpSrc);
4566 /// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4567 /// logical left shift of a vector.
4568 static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4569 bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4570 unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4571 unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4572 true /* check zeros from left */, DAG);
4578 // Considering the elements in the mask that are not consecutive zeros,
4579 // check if they consecutively come from only one of the source vectors.
4581 // 0 { A, B, X, X } = V2
4583 // vector_shuffle V1, V2 <X, X, 4, 5>
4585 if (!isShuffleMaskConsecutive(SVOp,
4586 NumZeros, // Mask Start Index
4587 NumElems, // Mask End Index(exclusive)
4588 0, // Where to start looking in the src vector
4589 NumElems, // Number of elements in vector
4590 OpSrc)) // Which source operand ?
4595 ShVal = SVOp->getOperand(OpSrc);
4599 /// isVectorShift - Returns true if the shuffle can be implemented as a
4600 /// logical left or right shift of a vector.
4601 static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4602 bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4603 // Although the logic below support any bitwidth size, there are no
4604 // shift instructions which handle more than 128-bit vectors.
4605 if (SVOp->getValueType(0).getSizeInBits() > 128)
4608 if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4609 isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4615 /// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4617 static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4618 unsigned NumNonZero, unsigned NumZero,
4620 const X86Subtarget* Subtarget,
4621 const TargetLowering &TLI) {
4625 DebugLoc dl = Op.getDebugLoc();
4628 for (unsigned i = 0; i < 16; ++i) {
4629 bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4630 if (ThisIsNonZero && First) {
4632 V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4634 V = DAG.getUNDEF(MVT::v8i16);
4639 SDValue ThisElt(0, 0), LastElt(0, 0);
4640 bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4641 if (LastIsNonZero) {
4642 LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4643 MVT::i16, Op.getOperand(i-1));
4645 if (ThisIsNonZero) {
4646 ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4647 ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4648 ThisElt, DAG.getConstant(8, MVT::i8));
4650 ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4654 if (ThisElt.getNode())
4655 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4656 DAG.getIntPtrConstant(i/2));
4660 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4663 /// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4665 static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4666 unsigned NumNonZero, unsigned NumZero,
4668 const X86Subtarget* Subtarget,
4669 const TargetLowering &TLI) {
4673 DebugLoc dl = Op.getDebugLoc();
4676 for (unsigned i = 0; i < 8; ++i) {
4677 bool isNonZero = (NonZeros & (1 << i)) != 0;
4681 V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4683 V = DAG.getUNDEF(MVT::v8i16);
4686 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4687 MVT::v8i16, V, Op.getOperand(i),
4688 DAG.getIntPtrConstant(i));
4695 /// getVShift - Return a vector logical shift node.
4697 static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4698 unsigned NumBits, SelectionDAG &DAG,
4699 const TargetLowering &TLI, DebugLoc dl) {
4700 assert(VT.getSizeInBits() == 128 && "Unknown type for VShift");
4701 EVT ShVT = MVT::v2i64;
4702 unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
4703 SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4704 return DAG.getNode(ISD::BITCAST, dl, VT,
4705 DAG.getNode(Opc, dl, ShVT, SrcOp,
4706 DAG.getConstant(NumBits,
4707 TLI.getShiftAmountTy(SrcOp.getValueType()))));
4711 X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4712 SelectionDAG &DAG) const {
4714 // Check if the scalar load can be widened into a vector load. And if
4715 // the address is "base + cst" see if the cst can be "absorbed" into
4716 // the shuffle mask.
4717 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4718 SDValue Ptr = LD->getBasePtr();
4719 if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4721 EVT PVT = LD->getValueType(0);
4722 if (PVT != MVT::i32 && PVT != MVT::f32)
4727 if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4728 FI = FINode->getIndex();
4730 } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4731 isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4732 FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4733 Offset = Ptr.getConstantOperandVal(1);
4734 Ptr = Ptr.getOperand(0);
4739 // FIXME: 256-bit vector instructions don't require a strict alignment,
4740 // improve this code to support it better.
4741 unsigned RequiredAlign = VT.getSizeInBits()/8;
4742 SDValue Chain = LD->getChain();
4743 // Make sure the stack object alignment is at least 16 or 32.
4744 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4745 if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4746 if (MFI->isFixedObjectIndex(FI)) {
4747 // Can't change the alignment. FIXME: It's possible to compute
4748 // the exact stack offset and reference FI + adjust offset instead.
4749 // If someone *really* cares about this. That's the way to implement it.
4752 MFI->setObjectAlignment(FI, RequiredAlign);
4756 // (Offset % 16 or 32) must be multiple of 4. Then address is then
4757 // Ptr + (Offset & ~15).
4760 if ((Offset % RequiredAlign) & 3)
4762 int64_t StartOffset = Offset & ~(RequiredAlign-1);
4764 Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4765 Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4767 int EltNo = (Offset - StartOffset) >> 2;
4768 int NumElems = VT.getVectorNumElements();
4770 EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4771 SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4772 LD->getPointerInfo().getWithOffset(StartOffset),
4773 false, false, false, 0);
4775 SmallVector<int, 8> Mask;
4776 for (int i = 0; i < NumElems; ++i)
4777 Mask.push_back(EltNo);
4779 return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
4785 /// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4786 /// vector of type 'VT', see if the elements can be replaced by a single large
4787 /// load which has the same value as a build_vector whose operands are 'elts'.
4789 /// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4791 /// FIXME: we'd also like to handle the case where the last elements are zero
4792 /// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4793 /// There's even a handy isZeroNode for that purpose.
4794 static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4795 DebugLoc &DL, SelectionDAG &DAG) {
4796 EVT EltVT = VT.getVectorElementType();
4797 unsigned NumElems = Elts.size();
4799 LoadSDNode *LDBase = NULL;
4800 unsigned LastLoadedElt = -1U;
4802 // For each element in the initializer, see if we've found a load or an undef.
4803 // If we don't find an initial load element, or later load elements are
4804 // non-consecutive, bail out.
4805 for (unsigned i = 0; i < NumElems; ++i) {
4806 SDValue Elt = Elts[i];
4808 if (!Elt.getNode() ||
4809 (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4812 if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4814 LDBase = cast<LoadSDNode>(Elt.getNode());
4818 if (Elt.getOpcode() == ISD::UNDEF)
4821 LoadSDNode *LD = cast<LoadSDNode>(Elt);
4822 if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4827 // If we have found an entire vector of loads and undefs, then return a large
4828 // load of the entire vector width starting at the base pointer. If we found
4829 // consecutive loads for the low half, generate a vzext_load node.
4830 if (LastLoadedElt == NumElems - 1) {
4831 if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4832 return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4833 LDBase->getPointerInfo(),
4834 LDBase->isVolatile(), LDBase->isNonTemporal(),
4835 LDBase->isInvariant(), 0);
4836 return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4837 LDBase->getPointerInfo(),
4838 LDBase->isVolatile(), LDBase->isNonTemporal(),
4839 LDBase->isInvariant(), LDBase->getAlignment());
4840 } else if (NumElems == 4 && LastLoadedElt == 1 &&
4841 DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
4842 SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4843 SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4845 DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
4846 LDBase->getPointerInfo(),
4847 LDBase->getAlignment(),
4848 false/*isVolatile*/, true/*ReadMem*/,
4850 return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4855 /// isVectorBroadcast - Check if the node chain is suitable to be xformed to
4856 /// a vbroadcast node. We support two patterns:
4857 /// 1. A splat BUILD_VECTOR which uses a single scalar load.
4858 /// 2. A splat shuffle which uses a scalar_to_vector node which comes from
4860 /// The scalar load node is returned when a pattern is found,
4861 /// or SDValue() otherwise.
4862 static SDValue isVectorBroadcast(SDValue &Op, const X86Subtarget *Subtarget) {
4863 if (!Subtarget->hasAVX())
4866 EVT VT = Op.getValueType();
4869 if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
4870 V = V.getOperand(0);
4872 //A suspected load to be broadcasted.
4875 switch (V.getOpcode()) {
4877 // Unknown pattern found.
4880 case ISD::BUILD_VECTOR: {
4881 // The BUILD_VECTOR node must be a splat.
4882 if (!isSplatVector(V.getNode()))
4885 Ld = V.getOperand(0);
4887 // The suspected load node has several users. Make sure that all
4888 // of its users are from the BUILD_VECTOR node.
4889 if (!Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
4894 case ISD::VECTOR_SHUFFLE: {
4895 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4897 // Shuffles must have a splat mask where the first element is
4899 if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
4902 SDValue Sc = Op.getOperand(0);
4903 if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR)
4906 Ld = Sc.getOperand(0);
4908 // The scalar_to_vector node and the suspected
4909 // load node must have exactly one user.
4910 if (!Sc.hasOneUse() || !Ld.hasOneUse())
4916 // The scalar source must be a normal load.
4917 if (!ISD::isNormalLoad(Ld.getNode()))
4920 // Reject loads that have uses of the chain result
4921 if (Ld->hasAnyUseOfValue(1))
4924 bool Is256 = VT.getSizeInBits() == 256;
4925 bool Is128 = VT.getSizeInBits() == 128;
4926 unsigned ScalarSize = Ld.getValueType().getSizeInBits();
4928 // VBroadcast to YMM
4929 if (Is256 && (ScalarSize == 32 || ScalarSize == 64))
4932 // VBroadcast to XMM
4933 if (Is128 && (ScalarSize == 32))
4936 // The integer check is needed for the 64-bit into 128-bit so it doesn't match
4937 // double since there is vbroadcastsd xmm
4938 if (Subtarget->hasAVX2() && Ld.getValueType().isInteger()) {
4939 // VBroadcast to YMM
4940 if (Is256 && (ScalarSize == 8 || ScalarSize == 16))
4943 // VBroadcast to XMM
4944 if (Is128 && (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64))
4948 // Unsupported broadcast.
4953 X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
4954 DebugLoc dl = Op.getDebugLoc();
4956 EVT VT = Op.getValueType();
4957 EVT ExtVT = VT.getVectorElementType();
4958 unsigned NumElems = Op.getNumOperands();
4960 // Vectors containing all zeros can be matched by pxor and xorps later
4961 if (ISD::isBuildVectorAllZeros(Op.getNode())) {
4962 // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
4963 // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
4964 if (VT == MVT::v4i32 || VT == MVT::v8i32)
4967 return getZeroVector(VT, Subtarget, DAG, dl);
4970 // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
4971 // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
4972 // vpcmpeqd on 256-bit vectors.
4973 if (ISD::isBuildVectorAllOnes(Op.getNode())) {
4974 if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasAVX2()))
4977 return getOnesVector(VT, Subtarget->hasAVX2(), DAG, dl);
4980 SDValue LD = isVectorBroadcast(Op, Subtarget);
4982 return DAG.getNode(X86ISD::VBROADCAST, dl, VT, LD);
4984 unsigned EVTBits = ExtVT.getSizeInBits();
4986 unsigned NumZero = 0;
4987 unsigned NumNonZero = 0;
4988 unsigned NonZeros = 0;
4989 bool IsAllConstants = true;
4990 SmallSet<SDValue, 8> Values;
4991 for (unsigned i = 0; i < NumElems; ++i) {
4992 SDValue Elt = Op.getOperand(i);
4993 if (Elt.getOpcode() == ISD::UNDEF)
4996 if (Elt.getOpcode() != ISD::Constant &&
4997 Elt.getOpcode() != ISD::ConstantFP)
4998 IsAllConstants = false;
4999 if (X86::isZeroNode(Elt))
5002 NonZeros |= (1 << i);
5007 // All undef vector. Return an UNDEF. All zero vectors were handled above.
5008 if (NumNonZero == 0)
5009 return DAG.getUNDEF(VT);
5011 // Special case for single non-zero, non-undef, element.
5012 if (NumNonZero == 1) {
5013 unsigned Idx = CountTrailingZeros_32(NonZeros);
5014 SDValue Item = Op.getOperand(Idx);
5016 // If this is an insertion of an i64 value on x86-32, and if the top bits of
5017 // the value are obviously zero, truncate the value to i32 and do the
5018 // insertion that way. Only do this if the value is non-constant or if the
5019 // value is a constant being inserted into element 0. It is cheaper to do
5020 // a constant pool load than it is to do a movd + shuffle.
5021 if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5022 (!IsAllConstants || Idx == 0)) {
5023 if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5025 assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5026 EVT VecVT = MVT::v4i32;
5027 unsigned VecElts = 4;
5029 // Truncate the value (which may itself be a constant) to i32, and
5030 // convert it to a vector with movd (S2V+shuffle to zero extend).
5031 Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5032 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5033 Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5035 // Now we have our 32-bit value zero extended in the low element of
5036 // a vector. If Idx != 0, swizzle it into place.
5038 SmallVector<int, 4> Mask;
5039 Mask.push_back(Idx);
5040 for (unsigned i = 1; i != VecElts; ++i)
5042 Item = DAG.getVectorShuffle(VecVT, dl, Item,
5043 DAG.getUNDEF(Item.getValueType()),
5046 return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5050 // If we have a constant or non-constant insertion into the low element of
5051 // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5052 // the rest of the elements. This will be matched as movd/movq/movss/movsd
5053 // depending on what the source datatype is.
5056 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5058 if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5059 (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5060 if (VT.getSizeInBits() == 256) {
5061 SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
5062 return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5063 Item, DAG.getIntPtrConstant(0));
5065 assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5066 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5067 // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5068 return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5071 if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5072 Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5073 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5074 if (VT.getSizeInBits() == 256) {
5075 SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
5076 Item = Insert128BitVector(ZeroVec, Item, DAG.getConstant(0, MVT::i32),
5079 assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5080 Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5082 return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5086 // Is it a vector logical left shift?
5087 if (NumElems == 2 && Idx == 1 &&
5088 X86::isZeroNode(Op.getOperand(0)) &&
5089 !X86::isZeroNode(Op.getOperand(1))) {
5090 unsigned NumBits = VT.getSizeInBits();
5091 return getVShift(true, VT,
5092 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5093 VT, Op.getOperand(1)),
5094 NumBits/2, DAG, *this, dl);
5097 if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5100 // Otherwise, if this is a vector with i32 or f32 elements, and the element
5101 // is a non-constant being inserted into an element other than the low one,
5102 // we can't use a constant pool load. Instead, use SCALAR_TO_VECTOR (aka
5103 // movd/movss) to move this into the low element, then shuffle it into
5105 if (EVTBits == 32) {
5106 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5108 // Turn it into a shuffle of zero and zero-extended scalar to vector.
5109 Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5110 SmallVector<int, 8> MaskVec;
5111 for (unsigned i = 0; i < NumElems; i++)
5112 MaskVec.push_back(i == Idx ? 0 : 1);
5113 return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5117 // Splat is obviously ok. Let legalizer expand it to a shuffle.
5118 if (Values.size() == 1) {
5119 if (EVTBits == 32) {
5120 // Instead of a shuffle like this:
5121 // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5122 // Check if it's possible to issue this instead.
5123 // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5124 unsigned Idx = CountTrailingZeros_32(NonZeros);
5125 SDValue Item = Op.getOperand(Idx);
5126 if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5127 return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5132 // A vector full of immediates; various special cases are already
5133 // handled, so this is best done with a single constant-pool load.
5137 // For AVX-length vectors, build the individual 128-bit pieces and use
5138 // shuffles to put them in place.
5139 if (VT.getSizeInBits() == 256) {
5140 SmallVector<SDValue, 32> V;
5141 for (unsigned i = 0; i != NumElems; ++i)
5142 V.push_back(Op.getOperand(i));
5144 EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5146 // Build both the lower and upper subvector.
5147 SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5148 SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5151 // Recreate the wider vector with the lower and upper part.
5152 SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Lower,
5153 DAG.getConstant(0, MVT::i32), DAG, dl);
5154 return Insert128BitVector(Vec, Upper, DAG.getConstant(NumElems/2, MVT::i32),
5158 // Let legalizer expand 2-wide build_vectors.
5159 if (EVTBits == 64) {
5160 if (NumNonZero == 1) {
5161 // One half is zero or undef.
5162 unsigned Idx = CountTrailingZeros_32(NonZeros);
5163 SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5164 Op.getOperand(Idx));
5165 return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5170 // If element VT is < 32 bits, convert it to inserts into a zero vector.
5171 if (EVTBits == 8 && NumElems == 16) {
5172 SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5174 if (V.getNode()) return V;
5177 if (EVTBits == 16 && NumElems == 8) {
5178 SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5180 if (V.getNode()) return V;
5183 // If element VT is == 32 bits, turn it into a number of shuffles.
5184 SmallVector<SDValue, 8> V(NumElems);
5185 if (NumElems == 4 && NumZero > 0) {
5186 for (unsigned i = 0; i < 4; ++i) {
5187 bool isZero = !(NonZeros & (1 << i));
5189 V[i] = getZeroVector(VT, Subtarget, DAG, dl);
5191 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5194 for (unsigned i = 0; i < 2; ++i) {
5195 switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5198 V[i] = V[i*2]; // Must be a zero vector.
5201 V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5204 V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5207 V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5212 bool Reverse1 = (NonZeros & 0x3) == 2;
5213 bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5217 static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
5218 static_cast<int>(Reverse2 ? NumElems : NumElems+1)
5220 return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5223 if (Values.size() > 1 && VT.getSizeInBits() == 128) {
5224 // Check for a build vector of consecutive loads.
5225 for (unsigned i = 0; i < NumElems; ++i)
5226 V[i] = Op.getOperand(i);
5228 // Check for elements which are consecutive loads.
5229 SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5233 // For SSE 4.1, use insertps to put the high elements into the low element.
5234 if (getSubtarget()->hasSSE41()) {
5236 if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5237 Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5239 Result = DAG.getUNDEF(VT);
5241 for (unsigned i = 1; i < NumElems; ++i) {
5242 if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5243 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5244 Op.getOperand(i), DAG.getIntPtrConstant(i));
5249 // Otherwise, expand into a number of unpckl*, start by extending each of
5250 // our (non-undef) elements to the full vector width with the element in the
5251 // bottom slot of the vector (which generates no code for SSE).
5252 for (unsigned i = 0; i < NumElems; ++i) {
5253 if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5254 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5256 V[i] = DAG.getUNDEF(VT);
5259 // Next, we iteratively mix elements, e.g. for v4f32:
5260 // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5261 // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5262 // Step 2: unpcklps X, Y ==> <3, 2, 1, 0>
5263 unsigned EltStride = NumElems >> 1;
5264 while (EltStride != 0) {
5265 for (unsigned i = 0; i < EltStride; ++i) {
5266 // If V[i+EltStride] is undef and this is the first round of mixing,
5267 // then it is safe to just drop this shuffle: V[i] is already in the
5268 // right place, the one element (since it's the first round) being
5269 // inserted as undef can be dropped. This isn't safe for successive
5270 // rounds because they will permute elements within both vectors.
5271 if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5272 EltStride == NumElems/2)
5275 V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5284 // LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5285 // them in a MMX register. This is better than doing a stack convert.
5286 static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5287 DebugLoc dl = Op.getDebugLoc();
5288 EVT ResVT = Op.getValueType();
5290 assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5291 ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5293 SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5294 SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5295 InVec = Op.getOperand(1);
5296 if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5297 unsigned NumElts = ResVT.getVectorNumElements();
5298 VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5299 VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5300 InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5302 InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5303 SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5304 Mask[0] = 0; Mask[1] = 2;
5305 VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5307 return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5310 // LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5311 // to create 256-bit vectors from two other 128-bit ones.
5312 static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5313 DebugLoc dl = Op.getDebugLoc();
5314 EVT ResVT = Op.getValueType();
5316 assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5318 SDValue V1 = Op.getOperand(0);
5319 SDValue V2 = Op.getOperand(1);
5320 unsigned NumElems = ResVT.getVectorNumElements();
5322 SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, ResVT), V1,
5323 DAG.getConstant(0, MVT::i32), DAG, dl);
5324 return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5329 X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5330 EVT ResVT = Op.getValueType();
5332 assert(Op.getNumOperands() == 2);
5333 assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5334 "Unsupported CONCAT_VECTORS for value type");
5336 // We support concatenate two MMX registers and place them in a MMX register.
5337 // This is better than doing a stack convert.
5338 if (ResVT.is128BitVector())
5339 return LowerMMXCONCAT_VECTORS(Op, DAG);
5341 // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5342 // from two other 128-bit ones.
5343 return LowerAVXCONCAT_VECTORS(Op, DAG);
5346 // v8i16 shuffles - Prefer shuffles in the following order:
5347 // 1. [all] pshuflw, pshufhw, optional move
5348 // 2. [ssse3] 1 x pshufb
5349 // 3. [ssse3] 2 x pshufb + 1 x por
5350 // 4. [all] mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5352 X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5353 SelectionDAG &DAG) const {
5354 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5355 SDValue V1 = SVOp->getOperand(0);
5356 SDValue V2 = SVOp->getOperand(1);
5357 DebugLoc dl = SVOp->getDebugLoc();
5358 SmallVector<int, 8> MaskVals;
5360 // Determine if more than 1 of the words in each of the low and high quadwords
5361 // of the result come from the same quadword of one of the two inputs. Undef
5362 // mask values count as coming from any quadword, for better codegen.
5363 unsigned LoQuad[] = { 0, 0, 0, 0 };
5364 unsigned HiQuad[] = { 0, 0, 0, 0 };
5365 std::bitset<4> InputQuads;
5366 for (unsigned i = 0; i < 8; ++i) {
5367 unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5368 int EltIdx = SVOp->getMaskElt(i);
5369 MaskVals.push_back(EltIdx);
5378 InputQuads.set(EltIdx / 4);
5381 int BestLoQuad = -1;
5382 unsigned MaxQuad = 1;
5383 for (unsigned i = 0; i < 4; ++i) {
5384 if (LoQuad[i] > MaxQuad) {
5386 MaxQuad = LoQuad[i];
5390 int BestHiQuad = -1;
5392 for (unsigned i = 0; i < 4; ++i) {
5393 if (HiQuad[i] > MaxQuad) {
5395 MaxQuad = HiQuad[i];
5399 // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5400 // of the two input vectors, shuffle them into one input vector so only a
5401 // single pshufb instruction is necessary. If There are more than 2 input
5402 // quads, disable the next transformation since it does not help SSSE3.
5403 bool V1Used = InputQuads[0] || InputQuads[1];
5404 bool V2Used = InputQuads[2] || InputQuads[3];
5405 if (Subtarget->hasSSSE3()) {
5406 if (InputQuads.count() == 2 && V1Used && V2Used) {
5407 BestLoQuad = InputQuads[0] ? 0 : 1;
5408 BestHiQuad = InputQuads[2] ? 2 : 3;
5410 if (InputQuads.count() > 2) {
5416 // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5417 // the shuffle mask. If a quad is scored as -1, that means that it contains
5418 // words from all 4 input quadwords.
5420 if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5422 BestLoQuad < 0 ? 0 : BestLoQuad,
5423 BestHiQuad < 0 ? 1 : BestHiQuad
5425 NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5426 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5427 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5428 NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5430 // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5431 // source words for the shuffle, to aid later transformations.
5432 bool AllWordsInNewV = true;
5433 bool InOrder[2] = { true, true };
5434 for (unsigned i = 0; i != 8; ++i) {
5435 int idx = MaskVals[i];
5437 InOrder[i/4] = false;
5438 if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5440 AllWordsInNewV = false;
5444 bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5445 if (AllWordsInNewV) {
5446 for (int i = 0; i != 8; ++i) {
5447 int idx = MaskVals[i];
5450 idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5451 if ((idx != i) && idx < 4)
5453 if ((idx != i) && idx > 3)
5462 // If we've eliminated the use of V2, and the new mask is a pshuflw or
5463 // pshufhw, that's as cheap as it gets. Return the new shuffle.
5464 if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5465 unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5466 unsigned TargetMask = 0;
5467 NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5468 DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5469 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5470 TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp):
5471 getShufflePSHUFLWImmediate(SVOp);
5472 V1 = NewV.getOperand(0);
5473 return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5477 // If we have SSSE3, and all words of the result are from 1 input vector,
5478 // case 2 is generated, otherwise case 3 is generated. If no SSSE3
5479 // is present, fall back to case 4.
5480 if (Subtarget->hasSSSE3()) {
5481 SmallVector<SDValue,16> pshufbMask;
5483 // If we have elements from both input vectors, set the high bit of the
5484 // shuffle mask element to zero out elements that come from V2 in the V1
5485 // mask, and elements that come from V1 in the V2 mask, so that the two
5486 // results can be OR'd together.
5487 bool TwoInputs = V1Used && V2Used;
5488 for (unsigned i = 0; i != 8; ++i) {
5489 int EltIdx = MaskVals[i] * 2;
5490 if (TwoInputs && (EltIdx >= 16)) {
5491 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5492 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5495 pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5496 pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5498 V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5499 V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5500 DAG.getNode(ISD::BUILD_VECTOR, dl,
5501 MVT::v16i8, &pshufbMask[0], 16));
5503 return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5505 // Calculate the shuffle mask for the second input, shuffle it, and
5506 // OR it with the first shuffled input.
5508 for (unsigned i = 0; i != 8; ++i) {
5509 int EltIdx = MaskVals[i] * 2;
5511 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5512 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5515 pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5516 pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5518 V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5519 V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5520 DAG.getNode(ISD::BUILD_VECTOR, dl,
5521 MVT::v16i8, &pshufbMask[0], 16));
5522 V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5523 return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5526 // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5527 // and update MaskVals with new element order.
5528 std::bitset<8> InOrder;
5529 if (BestLoQuad >= 0) {
5530 int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
5531 for (int i = 0; i != 4; ++i) {
5532 int idx = MaskVals[i];
5535 } else if ((idx / 4) == BestLoQuad) {
5540 NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5543 if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5544 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5545 NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5547 getShufflePSHUFLWImmediate(SVOp), DAG);
5551 // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5552 // and update MaskVals with the new element order.
5553 if (BestHiQuad >= 0) {
5554 int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
5555 for (unsigned i = 4; i != 8; ++i) {
5556 int idx = MaskVals[i];
5559 } else if ((idx / 4) == BestHiQuad) {
5560 MaskV[i] = (idx & 3) + 4;
5564 NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5567 if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5568 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5569 NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5571 getShufflePSHUFHWImmediate(SVOp), DAG);
5575 // In case BestHi & BestLo were both -1, which means each quadword has a word
5576 // from each of the four input quadwords, calculate the InOrder bitvector now
5577 // before falling through to the insert/extract cleanup.
5578 if (BestLoQuad == -1 && BestHiQuad == -1) {
5580 for (int i = 0; i != 8; ++i)
5581 if (MaskVals[i] < 0 || MaskVals[i] == i)
5585 // The other elements are put in the right place using pextrw and pinsrw.
5586 for (unsigned i = 0; i != 8; ++i) {
5589 int EltIdx = MaskVals[i];
5592 SDValue ExtOp = (EltIdx < 8)
5593 ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5594 DAG.getIntPtrConstant(EltIdx))
5595 : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5596 DAG.getIntPtrConstant(EltIdx - 8));
5597 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5598 DAG.getIntPtrConstant(i));
5603 // v16i8 shuffles - Prefer shuffles in the following order:
5604 // 1. [ssse3] 1 x pshufb
5605 // 2. [ssse3] 2 x pshufb + 1 x por
5606 // 3. [all] v8i16 shuffle + N x pextrw + rotate + pinsrw
5608 SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5610 const X86TargetLowering &TLI) {
5611 SDValue V1 = SVOp->getOperand(0);
5612 SDValue V2 = SVOp->getOperand(1);
5613 DebugLoc dl = SVOp->getDebugLoc();
5614 ArrayRef<int> MaskVals = SVOp->getMask();
5616 // If we have SSSE3, case 1 is generated when all result bytes come from
5617 // one of the inputs. Otherwise, case 2 is generated. If no SSSE3 is
5618 // present, fall back to case 3.
5619 // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5622 for (unsigned i = 0; i < 16; ++i) {
5623 int EltIdx = MaskVals[i];
5632 // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5633 if (TLI.getSubtarget()->hasSSSE3()) {
5634 SmallVector<SDValue,16> pshufbMask;
5636 // If all result elements are from one input vector, then only translate
5637 // undef mask values to 0x80 (zero out result) in the pshufb mask.
5639 // Otherwise, we have elements from both input vectors, and must zero out
5640 // elements that come from V2 in the first mask, and V1 in the second mask
5641 // so that we can OR them together.
5642 bool TwoInputs = !(V1Only || V2Only);
5643 for (unsigned i = 0; i != 16; ++i) {
5644 int EltIdx = MaskVals[i];
5645 if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5646 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5649 pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5651 // If all the elements are from V2, assign it to V1 and return after
5652 // building the first pshufb.
5655 V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5656 DAG.getNode(ISD::BUILD_VECTOR, dl,
5657 MVT::v16i8, &pshufbMask[0], 16));
5661 // Calculate the shuffle mask for the second input, shuffle it, and
5662 // OR it with the first shuffled input.
5664 for (unsigned i = 0; i != 16; ++i) {
5665 int EltIdx = MaskVals[i];
5667 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5670 pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5672 V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5673 DAG.getNode(ISD::BUILD_VECTOR, dl,
5674 MVT::v16i8, &pshufbMask[0], 16));
5675 return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5678 // No SSSE3 - Calculate in place words and then fix all out of place words
5679 // With 0-16 extracts & inserts. Worst case is 16 bytes out of order from
5680 // the 16 different words that comprise the two doublequadword input vectors.
5681 V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5682 V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5683 SDValue NewV = V2Only ? V2 : V1;
5684 for (int i = 0; i != 8; ++i) {
5685 int Elt0 = MaskVals[i*2];
5686 int Elt1 = MaskVals[i*2+1];
5688 // This word of the result is all undef, skip it.
5689 if (Elt0 < 0 && Elt1 < 0)
5692 // This word of the result is already in the correct place, skip it.
5693 if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5695 if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5698 SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5699 SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5702 // If Elt0 and Elt1 are defined, are consecutive, and can be load
5703 // using a single extract together, load it and store it.
5704 if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5705 InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5706 DAG.getIntPtrConstant(Elt1 / 2));
5707 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5708 DAG.getIntPtrConstant(i));
5712 // If Elt1 is defined, extract it from the appropriate source. If the
5713 // source byte is not also odd, shift the extracted word left 8 bits
5714 // otherwise clear the bottom 8 bits if we need to do an or.
5716 InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5717 DAG.getIntPtrConstant(Elt1 / 2));
5718 if ((Elt1 & 1) == 0)
5719 InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5721 TLI.getShiftAmountTy(InsElt.getValueType())));
5723 InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5724 DAG.getConstant(0xFF00, MVT::i16));
5726 // If Elt0 is defined, extract it from the appropriate source. If the
5727 // source byte is not also even, shift the extracted word right 8 bits. If
5728 // Elt1 was also defined, OR the extracted values together before
5729 // inserting them in the result.
5731 SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5732 Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5733 if ((Elt0 & 1) != 0)
5734 InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5736 TLI.getShiftAmountTy(InsElt0.getValueType())));
5738 InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5739 DAG.getConstant(0x00FF, MVT::i16));
5740 InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5743 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5744 DAG.getIntPtrConstant(i));
5746 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5749 /// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5750 /// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5751 /// done when every pair / quad of shuffle mask elements point to elements in
5752 /// the right sequence. e.g.
5753 /// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5755 SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5756 SelectionDAG &DAG, DebugLoc dl) {
5757 EVT VT = SVOp->getValueType(0);
5758 SDValue V1 = SVOp->getOperand(0);
5759 SDValue V2 = SVOp->getOperand(1);
5760 unsigned NumElems = VT.getVectorNumElements();
5761 unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5763 switch (VT.getSimpleVT().SimpleTy) {
5764 default: llvm_unreachable("Unexpected!");
5765 case MVT::v4f32: NewVT = MVT::v2f64; break;
5766 case MVT::v4i32: NewVT = MVT::v2i64; break;
5767 case MVT::v8i16: NewVT = MVT::v4i32; break;
5768 case MVT::v16i8: NewVT = MVT::v4i32; break;
5771 int Scale = NumElems / NewWidth;
5772 SmallVector<int, 8> MaskVec;
5773 for (unsigned i = 0; i < NumElems; i += Scale) {
5775 for (int j = 0; j < Scale; ++j) {
5776 int EltIdx = SVOp->getMaskElt(i+j);
5780 StartIdx = EltIdx - (EltIdx % Scale);
5781 if (EltIdx != StartIdx + j)
5785 MaskVec.push_back(-1);
5787 MaskVec.push_back(StartIdx / Scale);
5790 V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5791 V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5792 return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5795 /// getVZextMovL - Return a zero-extending vector move low node.
5797 static SDValue getVZextMovL(EVT VT, EVT OpVT,
5798 SDValue SrcOp, SelectionDAG &DAG,
5799 const X86Subtarget *Subtarget, DebugLoc dl) {
5800 if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5801 LoadSDNode *LD = NULL;
5802 if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5803 LD = dyn_cast<LoadSDNode>(SrcOp);
5805 // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5807 MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5808 if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5809 SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5810 SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5811 SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5813 OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5814 return DAG.getNode(ISD::BITCAST, dl, VT,
5815 DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5816 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5824 return DAG.getNode(ISD::BITCAST, dl, VT,
5825 DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5826 DAG.getNode(ISD::BITCAST, dl,
5830 /// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
5831 /// which could not be matched by any known target speficic shuffle
5833 LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5834 EVT VT = SVOp->getValueType(0);
5836 unsigned NumElems = VT.getVectorNumElements();
5837 unsigned NumLaneElems = NumElems / 2;
5839 DebugLoc dl = SVOp->getDebugLoc();
5840 MVT EltVT = VT.getVectorElementType().getSimpleVT();
5841 EVT NVT = MVT::getVectorVT(EltVT, NumLaneElems);
5844 SmallVector<int, 16> Mask;
5845 for (unsigned l = 0; l < 2; ++l) {
5846 // Build a shuffle mask for the output, discovering on the fly which
5847 // input vectors to use as shuffle operands (recorded in InputUsed).
5848 // If building a suitable shuffle vector proves too hard, then bail
5849 // out with useBuildVector set.
5850 int InputUsed[2] = { -1U, -1U }; // Not yet discovered.
5851 unsigned LaneStart = l * NumLaneElems;
5852 for (unsigned i = 0; i != NumLaneElems; ++i) {
5853 // The mask element. This indexes into the input.
5854 int Idx = SVOp->getMaskElt(i+LaneStart);
5856 // the mask element does not index into any input vector.
5861 // The input vector this mask element indexes into.
5862 int Input = Idx / NumLaneElems;
5864 // Turn the index into an offset from the start of the input vector.
5865 Idx -= Input * NumLaneElems;
5867 // Find or create a shuffle vector operand to hold this input.
5869 for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
5870 if (InputUsed[OpNo] == Input)
5871 // This input vector is already an operand.
5873 if (InputUsed[OpNo] < 0) {
5874 // Create a new operand for this input vector.
5875 InputUsed[OpNo] = Input;
5880 if (OpNo >= array_lengthof(InputUsed)) {
5881 // More than two input vectors used! Give up.
5885 // Add the mask index for the new shuffle vector.
5886 Mask.push_back(Idx + OpNo * NumLaneElems);
5889 if (InputUsed[0] < 0) {
5890 // No input vectors were used! The result is undefined.
5891 Shufs[l] = DAG.getUNDEF(NVT);
5893 SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2),
5894 DAG.getConstant((InputUsed[0] % 2) * NumLaneElems, MVT::i32),
5896 // If only one input was used, use an undefined vector for the other.
5897 SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) :
5898 Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2),
5899 DAG.getConstant((InputUsed[1] % 2) * NumLaneElems, MVT::i32),
5901 // At least one input vector was used. Create a new shuffle vector.
5902 Shufs[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]);
5908 // Concatenate the result back
5909 SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Shufs[0],
5910 DAG.getConstant(0, MVT::i32), DAG, dl);
5911 return Insert128BitVector(V, Shufs[1],DAG.getConstant(NumLaneElems, MVT::i32),
5915 /// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
5916 /// 4 elements, and match them with several different shuffle types.
5918 LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5919 SDValue V1 = SVOp->getOperand(0);
5920 SDValue V2 = SVOp->getOperand(1);
5921 DebugLoc dl = SVOp->getDebugLoc();
5922 EVT VT = SVOp->getValueType(0);
5924 assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
5926 std::pair<int, int> Locs[4];
5927 int Mask1[] = { -1, -1, -1, -1 };
5928 SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
5932 for (unsigned i = 0; i != 4; ++i) {
5933 int Idx = PermMask[i];
5935 Locs[i] = std::make_pair(-1, -1);
5937 assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
5939 Locs[i] = std::make_pair(0, NumLo);
5943 Locs[i] = std::make_pair(1, NumHi);
5945 Mask1[2+NumHi] = Idx;
5951 if (NumLo <= 2 && NumHi <= 2) {
5952 // If no more than two elements come from either vector. This can be
5953 // implemented with two shuffles. First shuffle gather the elements.
5954 // The second shuffle, which takes the first shuffle as both of its
5955 // vector operands, put the elements into the right order.
5956 V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5958 int Mask2[] = { -1, -1, -1, -1 };
5960 for (unsigned i = 0; i != 4; ++i)
5961 if (Locs[i].first != -1) {
5962 unsigned Idx = (i < 2) ? 0 : 4;
5963 Idx += Locs[i].first * 2 + Locs[i].second;
5967 return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
5968 } else if (NumLo == 3 || NumHi == 3) {
5969 // Otherwise, we must have three elements from one vector, call it X, and
5970 // one element from the other, call it Y. First, use a shufps to build an
5971 // intermediate vector with the one element from Y and the element from X
5972 // that will be in the same half in the final destination (the indexes don't
5973 // matter). Then, use a shufps to build the final vector, taking the half
5974 // containing the element from Y from the intermediate, and the other half
5977 // Normalize it so the 3 elements come from V1.
5978 CommuteVectorShuffleMask(PermMask, 4);
5982 // Find the element from V2.
5984 for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
5985 int Val = PermMask[HiIndex];
5992 Mask1[0] = PermMask[HiIndex];
5994 Mask1[2] = PermMask[HiIndex^1];
5996 V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5999 Mask1[0] = PermMask[0];
6000 Mask1[1] = PermMask[1];
6001 Mask1[2] = HiIndex & 1 ? 6 : 4;
6002 Mask1[3] = HiIndex & 1 ? 4 : 6;
6003 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6005 Mask1[0] = HiIndex & 1 ? 2 : 0;
6006 Mask1[1] = HiIndex & 1 ? 0 : 2;
6007 Mask1[2] = PermMask[2];
6008 Mask1[3] = PermMask[3];
6013 return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6017 // Break it into (shuffle shuffle_hi, shuffle_lo).
6018 int LoMask[] = { -1, -1, -1, -1 };
6019 int HiMask[] = { -1, -1, -1, -1 };
6021 int *MaskPtr = LoMask;
6022 unsigned MaskIdx = 0;
6025 for (unsigned i = 0; i != 4; ++i) {
6032 int Idx = PermMask[i];
6034 Locs[i] = std::make_pair(-1, -1);
6035 } else if (Idx < 4) {
6036 Locs[i] = std::make_pair(MaskIdx, LoIdx);
6037 MaskPtr[LoIdx] = Idx;
6040 Locs[i] = std::make_pair(MaskIdx, HiIdx);
6041 MaskPtr[HiIdx] = Idx;
6046 SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6047 SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6048 int MaskOps[] = { -1, -1, -1, -1 };
6049 for (unsigned i = 0; i != 4; ++i)
6050 if (Locs[i].first != -1)
6051 MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
6052 return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6055 static bool MayFoldVectorLoad(SDValue V) {
6056 if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6057 V = V.getOperand(0);
6058 if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6059 V = V.getOperand(0);
6060 if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6061 V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6062 // BUILD_VECTOR (load), undef
6063 V = V.getOperand(0);
6069 // FIXME: the version above should always be used. Since there's
6070 // a bug where several vector shuffles can't be folded because the
6071 // DAG is not updated during lowering and a node claims to have two
6072 // uses while it only has one, use this version, and let isel match
6073 // another instruction if the load really happens to have more than
6074 // one use. Remove this version after this bug get fixed.
6075 // rdar://8434668, PR8156
6076 static bool RelaxedMayFoldVectorLoad(SDValue V) {
6077 if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6078 V = V.getOperand(0);
6079 if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6080 V = V.getOperand(0);
6081 if (ISD::isNormalLoad(V.getNode()))
6087 SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6088 EVT VT = Op.getValueType();
6090 // Canonizalize to v2f64.
6091 V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6092 return DAG.getNode(ISD::BITCAST, dl, VT,
6093 getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6098 SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6100 SDValue V1 = Op.getOperand(0);
6101 SDValue V2 = Op.getOperand(1);
6102 EVT VT = Op.getValueType();
6104 assert(VT != MVT::v2i64 && "unsupported shuffle type");
6106 if (HasSSE2 && VT == MVT::v2f64)
6107 return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6109 // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6110 return DAG.getNode(ISD::BITCAST, dl, VT,
6111 getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6112 DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6113 DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6117 SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6118 SDValue V1 = Op.getOperand(0);
6119 SDValue V2 = Op.getOperand(1);
6120 EVT VT = Op.getValueType();
6122 assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6123 "unsupported shuffle type");
6125 if (V2.getOpcode() == ISD::UNDEF)
6129 return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6133 SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6134 SDValue V1 = Op.getOperand(0);
6135 SDValue V2 = Op.getOperand(1);
6136 EVT VT = Op.getValueType();
6137 unsigned NumElems = VT.getVectorNumElements();
6139 // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6140 // operand of these instructions is only memory, so check if there's a
6141 // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6143 bool CanFoldLoad = false;
6145 // Trivial case, when V2 comes from a load.
6146 if (MayFoldVectorLoad(V2))
6149 // When V1 is a load, it can be folded later into a store in isel, example:
6150 // (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6152 // (MOVLPSmr addr:$src1, VR128:$src2)
6153 // So, recognize this potential and also use MOVLPS or MOVLPD
6154 else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6157 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6159 if (HasSSE2 && NumElems == 2)
6160 return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6163 // If we don't care about the second element, procede to use movss.
6164 if (SVOp->getMaskElt(1) != -1)
6165 return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6168 // movl and movlp will both match v2i64, but v2i64 is never matched by
6169 // movl earlier because we make it strict to avoid messing with the movlp load
6170 // folding logic (see the code above getMOVLP call). Match it here then,
6171 // this is horrible, but will stay like this until we move all shuffle
6172 // matching to x86 specific nodes. Note that for the 1st condition all
6173 // types are matched with movsd.
6175 // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6176 // as to remove this logic from here, as much as possible
6177 if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
6178 return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6179 return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6182 assert(VT != MVT::v4i32 && "unsupported shuffle type");
6184 // Invert the operand order and use SHUFPS to match it.
6185 return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
6186 getShuffleSHUFImmediate(SVOp), DAG);
6190 SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
6191 const TargetLowering &TLI,
6192 const X86Subtarget *Subtarget) {
6193 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6194 EVT VT = Op.getValueType();
6195 DebugLoc dl = Op.getDebugLoc();
6196 SDValue V1 = Op.getOperand(0);
6197 SDValue V2 = Op.getOperand(1);
6199 if (isZeroShuffle(SVOp))
6200 return getZeroVector(VT, Subtarget, DAG, dl);
6202 // Handle splat operations
6203 if (SVOp->isSplat()) {
6204 unsigned NumElem = VT.getVectorNumElements();
6205 int Size = VT.getSizeInBits();
6207 // Use vbroadcast whenever the splat comes from a foldable load
6208 SDValue LD = isVectorBroadcast(Op, Subtarget);
6210 return DAG.getNode(X86ISD::VBROADCAST, dl, VT, LD);
6212 // Handle splats by matching through known shuffle masks
6213 if ((Size == 128 && NumElem <= 4) ||
6214 (Size == 256 && NumElem < 8))
6217 // All remaning splats are promoted to target supported vector shuffles.
6218 return PromoteSplat(SVOp, DAG);
6221 // If the shuffle can be profitably rewritten as a narrower shuffle, then
6223 if (VT == MVT::v8i16 || VT == MVT::v16i8) {
6224 SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6225 if (NewOp.getNode())
6226 return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6227 } else if ((VT == MVT::v4i32 ||
6228 (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6229 // FIXME: Figure out a cleaner way to do this.
6230 // Try to make use of movq to zero out the top part.
6231 if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6232 SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6233 if (NewOp.getNode()) {
6234 EVT NewVT = NewOp.getValueType();
6235 if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
6236 NewVT, true, false))
6237 return getVZextMovL(VT, NewVT, NewOp.getOperand(0),
6238 DAG, Subtarget, dl);
6240 } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6241 SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6242 if (NewOp.getNode()) {
6243 EVT NewVT = NewOp.getValueType();
6244 if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
6245 return getVZextMovL(VT, NewVT, NewOp.getOperand(1),
6246 DAG, Subtarget, dl);
6254 X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6255 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6256 SDValue V1 = Op.getOperand(0);
6257 SDValue V2 = Op.getOperand(1);
6258 EVT VT = Op.getValueType();
6259 DebugLoc dl = Op.getDebugLoc();
6260 unsigned NumElems = VT.getVectorNumElements();
6261 bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6262 bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6263 bool V1IsSplat = false;
6264 bool V2IsSplat = false;
6265 bool HasSSE2 = Subtarget->hasSSE2();
6266 bool HasAVX = Subtarget->hasAVX();
6267 bool HasAVX2 = Subtarget->hasAVX2();
6268 MachineFunction &MF = DAG.getMachineFunction();
6269 bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6271 assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6273 if (V1IsUndef && V2IsUndef)
6274 return DAG.getUNDEF(VT);
6276 assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
6278 // Vector shuffle lowering takes 3 steps:
6280 // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6281 // narrowing and commutation of operands should be handled.
6282 // 2) Matching of shuffles with known shuffle masks to x86 target specific
6284 // 3) Rewriting of unmatched masks into new generic shuffle operations,
6285 // so the shuffle can be broken into other shuffles and the legalizer can
6286 // try the lowering again.
6288 // The general idea is that no vector_shuffle operation should be left to
6289 // be matched during isel, all of them must be converted to a target specific
6292 // Normalize the input vectors. Here splats, zeroed vectors, profitable
6293 // narrowing and commutation of operands should be handled. The actual code
6294 // doesn't include all of those, work in progress...
6295 SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
6296 if (NewOp.getNode())
6299 SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
6301 // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6302 // unpckh_undef). Only use pshufd if speed is more important than size.
6303 if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6304 return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6305 if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6306 return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6308 if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() &&
6309 V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6310 return getMOVDDup(Op, dl, V1, DAG);
6312 if (isMOVHLPS_v_undef_Mask(M, VT))
6313 return getMOVHighToLow(Op, dl, DAG);
6315 // Use to match splats
6316 if (HasSSE2 && isUNPCKHMask(M, VT, HasAVX2) && V2IsUndef &&
6317 (VT == MVT::v2f64 || VT == MVT::v2i64))
6318 return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6320 if (isPSHUFDMask(M, VT)) {
6321 // The actual implementation will match the mask in the if above and then
6322 // during isel it can match several different instructions, not only pshufd
6323 // as its name says, sad but true, emulate the behavior for now...
6324 if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6325 return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6327 unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
6329 if (HasAVX && (VT == MVT::v4f32 || VT == MVT::v2f64))
6330 return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask, DAG);
6332 if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6333 return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6335 return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
6339 // Check if this can be converted into a logical shift.
6340 bool isLeft = false;
6343 bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6344 if (isShift && ShVal.hasOneUse()) {
6345 // If the shifted value has multiple uses, it may be cheaper to use
6346 // v_set0 + movlhps or movhlps, etc.
6347 EVT EltVT = VT.getVectorElementType();
6348 ShAmt *= EltVT.getSizeInBits();
6349 return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6352 if (isMOVLMask(M, VT)) {
6353 if (ISD::isBuildVectorAllZeros(V1.getNode()))
6354 return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6355 if (!isMOVLPMask(M, VT)) {
6356 if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6357 return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6359 if (VT == MVT::v4i32 || VT == MVT::v4f32)
6360 return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6364 // FIXME: fold these into legal mask.
6365 if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasAVX2))
6366 return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6368 if (isMOVHLPSMask(M, VT))
6369 return getMOVHighToLow(Op, dl, DAG);
6371 if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget))
6372 return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6374 if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget))
6375 return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6377 if (isMOVLPMask(M, VT))
6378 return getMOVLP(Op, dl, DAG, HasSSE2);
6380 if (ShouldXformToMOVHLPS(M, VT) ||
6381 ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT))
6382 return CommuteVectorShuffle(SVOp, DAG);
6385 // No better options. Use a vshldq / vsrldq.
6386 EVT EltVT = VT.getVectorElementType();
6387 ShAmt *= EltVT.getSizeInBits();
6388 return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6391 bool Commuted = false;
6392 // FIXME: This should also accept a bitcast of a splat? Be careful, not
6393 // 1,1,1,1 -> v8i16 though.
6394 V1IsSplat = isSplatVector(V1.getNode());
6395 V2IsSplat = isSplatVector(V2.getNode());
6397 // Canonicalize the splat or undef, if present, to be on the RHS.
6398 if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
6399 CommuteVectorShuffleMask(M, NumElems);
6401 std::swap(V1IsSplat, V2IsSplat);
6405 if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6406 // Shuffling low element of v1 into undef, just return v1.
6409 // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6410 // the instruction selector will not match, so get a canonical MOVL with
6411 // swapped operands to undo the commute.
6412 return getMOVL(DAG, dl, VT, V2, V1);
6415 if (isUNPCKLMask(M, VT, HasAVX2))
6416 return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6418 if (isUNPCKHMask(M, VT, HasAVX2))
6419 return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6422 // Normalize mask so all entries that point to V2 points to its first
6423 // element then try to match unpck{h|l} again. If match, return a
6424 // new vector_shuffle with the corrected mask.p
6425 SmallVector<int, 8> NewMask(M.begin(), M.end());
6426 NormalizeMask(NewMask, NumElems);
6427 if (isUNPCKLMask(NewMask, VT, HasAVX2, true)) {
6428 return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6429 } else if (isUNPCKHMask(NewMask, VT, HasAVX2, true)) {
6430 return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6435 // Commute is back and try unpck* again.
6436 // FIXME: this seems wrong.
6437 CommuteVectorShuffleMask(M, NumElems);
6439 std::swap(V1IsSplat, V2IsSplat);
6442 if (isUNPCKLMask(M, VT, HasAVX2))
6443 return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6445 if (isUNPCKHMask(M, VT, HasAVX2))
6446 return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6449 // Normalize the node to match x86 shuffle ops if needed
6450 if (!V2IsUndef && (isSHUFPMask(M, VT, HasAVX, /* Commuted */ true)))
6451 return CommuteVectorShuffle(SVOp, DAG);
6453 // The checks below are all present in isShuffleMaskLegal, but they are
6454 // inlined here right now to enable us to directly emit target specific
6455 // nodes, and remove one by one until they don't return Op anymore.
6457 if (isPALIGNRMask(M, VT, Subtarget))
6458 return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6459 getShufflePALIGNRImmediate(SVOp),
6462 if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6463 SVOp->getSplatIndex() == 0 && V2IsUndef) {
6464 if (VT == MVT::v2f64 || VT == MVT::v2i64)
6465 return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6468 if (isPSHUFHWMask(M, VT))
6469 return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6470 getShufflePSHUFHWImmediate(SVOp),
6473 if (isPSHUFLWMask(M, VT))
6474 return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6475 getShufflePSHUFLWImmediate(SVOp),
6478 if (isSHUFPMask(M, VT, HasAVX))
6479 return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
6480 getShuffleSHUFImmediate(SVOp), DAG);
6482 if (isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6483 return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6484 if (isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6485 return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6487 //===--------------------------------------------------------------------===//
6488 // Generate target specific nodes for 128 or 256-bit shuffles only
6489 // supported in the AVX instruction set.
6492 // Handle VMOVDDUPY permutations
6493 if (V2IsUndef && isMOVDDUPYMask(M, VT, HasAVX))
6494 return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6496 // Handle VPERMILPS/D* permutations
6497 if (isVPERMILPMask(M, VT, HasAVX)) {
6498 if (HasAVX2 && VT == MVT::v8i32)
6499 return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
6500 getShuffleSHUFImmediate(SVOp), DAG);
6501 return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
6502 getShuffleSHUFImmediate(SVOp), DAG);
6505 // Handle VPERM2F128/VPERM2I128 permutations
6506 if (isVPERM2X128Mask(M, VT, HasAVX))
6507 return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
6508 V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
6510 //===--------------------------------------------------------------------===//
6511 // Since no target specific shuffle was selected for this generic one,
6512 // lower it into other known shuffles. FIXME: this isn't true yet, but
6513 // this is the plan.
6516 // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6517 if (VT == MVT::v8i16) {
6518 SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6519 if (NewOp.getNode())
6523 if (VT == MVT::v16i8) {
6524 SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6525 if (NewOp.getNode())
6529 // Handle all 128-bit wide vectors with 4 elements, and match them with
6530 // several different shuffle types.
6531 if (NumElems == 4 && VT.getSizeInBits() == 128)
6532 return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6534 // Handle general 256-bit shuffles
6535 if (VT.is256BitVector())
6536 return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6542 X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6543 SelectionDAG &DAG) const {
6544 EVT VT = Op.getValueType();
6545 DebugLoc dl = Op.getDebugLoc();
6547 if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6550 if (VT.getSizeInBits() == 8) {
6551 SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6552 Op.getOperand(0), Op.getOperand(1));
6553 SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6554 DAG.getValueType(VT));
6555 return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6556 } else if (VT.getSizeInBits() == 16) {
6557 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6558 // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6560 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6561 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6562 DAG.getNode(ISD::BITCAST, dl,
6566 SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6567 Op.getOperand(0), Op.getOperand(1));
6568 SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6569 DAG.getValueType(VT));
6570 return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6571 } else if (VT == MVT::f32) {
6572 // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6573 // the result back to FR32 register. It's only worth matching if the
6574 // result has a single use which is a store or a bitcast to i32. And in
6575 // the case of a store, it's not worth it if the index is a constant 0,
6576 // because a MOVSSmr can be used instead, which is smaller and faster.
6577 if (!Op.hasOneUse())
6579 SDNode *User = *Op.getNode()->use_begin();
6580 if ((User->getOpcode() != ISD::STORE ||
6581 (isa<ConstantSDNode>(Op.getOperand(1)) &&
6582 cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6583 (User->getOpcode() != ISD::BITCAST ||
6584 User->getValueType(0) != MVT::i32))
6586 SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6587 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6590 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6591 } else if (VT == MVT::i32 || VT == MVT::i64) {
6592 // ExtractPS/pextrq works with constant index.
6593 if (isa<ConstantSDNode>(Op.getOperand(1)))
6601 X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6602 SelectionDAG &DAG) const {
6603 if (!isa<ConstantSDNode>(Op.getOperand(1)))
6606 SDValue Vec = Op.getOperand(0);
6607 EVT VecVT = Vec.getValueType();
6609 // If this is a 256-bit vector result, first extract the 128-bit vector and
6610 // then extract the element from the 128-bit vector.
6611 if (VecVT.getSizeInBits() == 256) {
6612 DebugLoc dl = Op.getNode()->getDebugLoc();
6613 unsigned NumElems = VecVT.getVectorNumElements();
6614 SDValue Idx = Op.getOperand(1);
6615 unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6617 // Get the 128-bit vector.
6618 bool Upper = IdxVal >= NumElems/2;
6619 Vec = Extract128BitVector(Vec,
6620 DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32), DAG, dl);
6622 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6623 Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : Idx);
6626 assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6628 if (Subtarget->hasSSE41()) {
6629 SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6634 EVT VT = Op.getValueType();
6635 DebugLoc dl = Op.getDebugLoc();
6636 // TODO: handle v16i8.
6637 if (VT.getSizeInBits() == 16) {
6638 SDValue Vec = Op.getOperand(0);
6639 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6641 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6642 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6643 DAG.getNode(ISD::BITCAST, dl,
6646 // Transform it so it match pextrw which produces a 32-bit result.
6647 EVT EltVT = MVT::i32;
6648 SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6649 Op.getOperand(0), Op.getOperand(1));
6650 SDValue Assert = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6651 DAG.getValueType(VT));
6652 return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6653 } else if (VT.getSizeInBits() == 32) {
6654 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6658 // SHUFPS the element to the lowest double word, then movss.
6659 int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6660 EVT VVT = Op.getOperand(0).getValueType();
6661 SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6662 DAG.getUNDEF(VVT), Mask);
6663 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6664 DAG.getIntPtrConstant(0));
6665 } else if (VT.getSizeInBits() == 64) {
6666 // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6667 // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6668 // to match extract_elt for f64.
6669 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6673 // UNPCKHPD the element to the lowest double word, then movsd.
6674 // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6675 // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6676 int Mask[2] = { 1, -1 };
6677 EVT VVT = Op.getOperand(0).getValueType();
6678 SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6679 DAG.getUNDEF(VVT), Mask);
6680 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6681 DAG.getIntPtrConstant(0));
6688 X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6689 SelectionDAG &DAG) const {
6690 EVT VT = Op.getValueType();
6691 EVT EltVT = VT.getVectorElementType();
6692 DebugLoc dl = Op.getDebugLoc();
6694 SDValue N0 = Op.getOperand(0);
6695 SDValue N1 = Op.getOperand(1);
6696 SDValue N2 = Op.getOperand(2);
6698 if (VT.getSizeInBits() == 256)
6701 if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6702 isa<ConstantSDNode>(N2)) {
6704 if (VT == MVT::v8i16)
6705 Opc = X86ISD::PINSRW;
6706 else if (VT == MVT::v16i8)
6707 Opc = X86ISD::PINSRB;
6709 Opc = X86ISD::PINSRB;
6711 // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6713 if (N1.getValueType() != MVT::i32)
6714 N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6715 if (N2.getValueType() != MVT::i32)
6716 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6717 return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6718 } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6719 // Bits [7:6] of the constant are the source select. This will always be
6720 // zero here. The DAG Combiner may combine an extract_elt index into these
6721 // bits. For example (insert (extract, 3), 2) could be matched by putting
6722 // the '3' into bits [7:6] of X86ISD::INSERTPS.
6723 // Bits [5:4] of the constant are the destination select. This is the
6724 // value of the incoming immediate.
6725 // Bits [3:0] of the constant are the zero mask. The DAG Combiner may
6726 // combine either bitwise AND or insert of float 0.0 to set these bits.
6727 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6728 // Create this as a scalar to vector..
6729 N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6730 return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
6731 } else if ((EltVT == MVT::i32 || EltVT == MVT::i64) &&
6732 isa<ConstantSDNode>(N2)) {
6733 // PINSR* works with constant index.
6740 X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
6741 EVT VT = Op.getValueType();
6742 EVT EltVT = VT.getVectorElementType();
6744 DebugLoc dl = Op.getDebugLoc();
6745 SDValue N0 = Op.getOperand(0);
6746 SDValue N1 = Op.getOperand(1);
6747 SDValue N2 = Op.getOperand(2);
6749 // If this is a 256-bit vector result, first extract the 128-bit vector,
6750 // insert the element into the extracted half and then place it back.
6751 if (VT.getSizeInBits() == 256) {
6752 if (!isa<ConstantSDNode>(N2))
6755 // Get the desired 128-bit vector half.
6756 unsigned NumElems = VT.getVectorNumElements();
6757 unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
6758 bool Upper = IdxVal >= NumElems/2;
6759 SDValue Ins128Idx = DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32);
6760 SDValue V = Extract128BitVector(N0, Ins128Idx, DAG, dl);
6762 // Insert the element into the desired half.
6763 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V,
6764 N1, Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : N2);
6766 // Insert the changed part back to the 256-bit vector
6767 return Insert128BitVector(N0, V, Ins128Idx, DAG, dl);
6770 if (Subtarget->hasSSE41())
6771 return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
6773 if (EltVT == MVT::i8)
6776 if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
6777 // Transform it so it match pinsrw which expects a 16-bit value in a GR32
6778 // as its second argument.
6779 if (N1.getValueType() != MVT::i32)
6780 N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6781 if (N2.getValueType() != MVT::i32)
6782 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6783 return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
6789 X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
6790 LLVMContext *Context = DAG.getContext();
6791 DebugLoc dl = Op.getDebugLoc();
6792 EVT OpVT = Op.getValueType();
6794 // If this is a 256-bit vector result, first insert into a 128-bit
6795 // vector and then insert into the 256-bit vector.
6796 if (OpVT.getSizeInBits() > 128) {
6797 // Insert into a 128-bit vector.
6798 EVT VT128 = EVT::getVectorVT(*Context,
6799 OpVT.getVectorElementType(),
6800 OpVT.getVectorNumElements() / 2);
6802 Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
6804 // Insert the 128-bit vector.
6805 return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
6806 DAG.getConstant(0, MVT::i32),
6810 if (Op.getValueType() == MVT::v1i64 &&
6811 Op.getOperand(0).getValueType() == MVT::i64)
6812 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
6814 SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
6815 assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
6816 "Expected an SSE type!");
6817 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
6818 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
6821 // Lower a node with an EXTRACT_SUBVECTOR opcode. This may result in
6822 // a simple subregister reference or explicit instructions to grab
6823 // upper bits of a vector.
6825 X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6826 if (Subtarget->hasAVX()) {
6827 DebugLoc dl = Op.getNode()->getDebugLoc();
6828 SDValue Vec = Op.getNode()->getOperand(0);
6829 SDValue Idx = Op.getNode()->getOperand(1);
6831 if (Op.getNode()->getValueType(0).getSizeInBits() == 128
6832 && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
6833 return Extract128BitVector(Vec, Idx, DAG, dl);
6839 // Lower a node with an INSERT_SUBVECTOR opcode. This may result in a
6840 // simple superregister reference or explicit instructions to insert
6841 // the upper bits of a vector.
6843 X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6844 if (Subtarget->hasAVX()) {
6845 DebugLoc dl = Op.getNode()->getDebugLoc();
6846 SDValue Vec = Op.getNode()->getOperand(0);
6847 SDValue SubVec = Op.getNode()->getOperand(1);
6848 SDValue Idx = Op.getNode()->getOperand(2);
6850 if (Op.getNode()->getValueType(0).getSizeInBits() == 256
6851 && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
6852 return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
6858 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
6859 // their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
6860 // one of the above mentioned nodes. It has to be wrapped because otherwise
6861 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
6862 // be used to form addressing mode. These wrapped nodes will be selected
6865 X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
6866 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
6868 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6870 unsigned char OpFlag = 0;
6871 unsigned WrapperKind = X86ISD::Wrapper;
6872 CodeModel::Model M = getTargetMachine().getCodeModel();
6874 if (Subtarget->isPICStyleRIPRel() &&
6875 (M == CodeModel::Small || M == CodeModel::Kernel))
6876 WrapperKind = X86ISD::WrapperRIP;
6877 else if (Subtarget->isPICStyleGOT())
6878 OpFlag = X86II::MO_GOTOFF;
6879 else if (Subtarget->isPICStyleStubPIC())
6880 OpFlag = X86II::MO_PIC_BASE_OFFSET;
6882 SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
6884 CP->getOffset(), OpFlag);
6885 DebugLoc DL = CP->getDebugLoc();
6886 Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6887 // With PIC, the address is actually $g + Offset.
6889 Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6890 DAG.getNode(X86ISD::GlobalBaseReg,
6891 DebugLoc(), getPointerTy()),
6898 SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
6899 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
6901 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6903 unsigned char OpFlag = 0;
6904 unsigned WrapperKind = X86ISD::Wrapper;
6905 CodeModel::Model M = getTargetMachine().getCodeModel();
6907 if (Subtarget->isPICStyleRIPRel() &&
6908 (M == CodeModel::Small || M == CodeModel::Kernel))
6909 WrapperKind = X86ISD::WrapperRIP;
6910 else if (Subtarget->isPICStyleGOT())
6911 OpFlag = X86II::MO_GOTOFF;
6912 else if (Subtarget->isPICStyleStubPIC())
6913 OpFlag = X86II::MO_PIC_BASE_OFFSET;
6915 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
6917 DebugLoc DL = JT->getDebugLoc();
6918 Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6920 // With PIC, the address is actually $g + Offset.
6922 Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6923 DAG.getNode(X86ISD::GlobalBaseReg,
6924 DebugLoc(), getPointerTy()),
6931 X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
6932 const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
6934 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6936 unsigned char OpFlag = 0;
6937 unsigned WrapperKind = X86ISD::Wrapper;
6938 CodeModel::Model M = getTargetMachine().getCodeModel();
6940 if (Subtarget->isPICStyleRIPRel() &&
6941 (M == CodeModel::Small || M == CodeModel::Kernel)) {
6942 if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
6943 OpFlag = X86II::MO_GOTPCREL;
6944 WrapperKind = X86ISD::WrapperRIP;
6945 } else if (Subtarget->isPICStyleGOT()) {
6946 OpFlag = X86II::MO_GOT;
6947 } else if (Subtarget->isPICStyleStubPIC()) {
6948 OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
6949 } else if (Subtarget->isPICStyleStubNoDynamic()) {
6950 OpFlag = X86II::MO_DARWIN_NONLAZY;
6953 SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
6955 DebugLoc DL = Op.getDebugLoc();
6956 Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6959 // With PIC, the address is actually $g + Offset.
6960 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
6961 !Subtarget->is64Bit()) {
6962 Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6963 DAG.getNode(X86ISD::GlobalBaseReg,
6964 DebugLoc(), getPointerTy()),
6968 // For symbols that require a load from a stub to get the address, emit the
6970 if (isGlobalStubReference(OpFlag))
6971 Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
6972 MachinePointerInfo::getGOT(), false, false, false, 0);
6978 X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
6979 // Create the TargetBlockAddressAddress node.
6980 unsigned char OpFlags =
6981 Subtarget->ClassifyBlockAddressReference();
6982 CodeModel::Model M = getTargetMachine().getCodeModel();
6983 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
6984 DebugLoc dl = Op.getDebugLoc();
6985 SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
6986 /*isTarget=*/true, OpFlags);
6988 if (Subtarget->isPICStyleRIPRel() &&
6989 (M == CodeModel::Small || M == CodeModel::Kernel))
6990 Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
6992 Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
6994 // With PIC, the address is actually $g + Offset.
6995 if (isGlobalRelativeToPICBase(OpFlags)) {
6996 Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6997 DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7005 X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7007 SelectionDAG &DAG) const {
7008 // Create the TargetGlobalAddress node, folding in the constant
7009 // offset if it is legal.
7010 unsigned char OpFlags =
7011 Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7012 CodeModel::Model M = getTargetMachine().getCodeModel();
7014 if (OpFlags == X86II::MO_NO_FLAG &&
7015 X86::isOffsetSuitableForCodeModel(Offset, M)) {
7016 // A direct static reference to a global.
7017 Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7020 Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7023 if (Subtarget->isPICStyleRIPRel() &&
7024 (M == CodeModel::Small || M == CodeModel::Kernel))
7025 Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7027 Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7029 // With PIC, the address is actually $g + Offset.
7030 if (isGlobalRelativeToPICBase(OpFlags)) {
7031 Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7032 DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7036 // For globals that require a load from a stub to get the address, emit the
7038 if (isGlobalStubReference(OpFlags))
7039 Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7040 MachinePointerInfo::getGOT(), false, false, false, 0);
7042 // If there was a non-zero offset that we didn't fold, create an explicit
7045 Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7046 DAG.getConstant(Offset, getPointerTy()));
7052 X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7053 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7054 int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7055 return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7059 GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7060 SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7061 unsigned char OperandFlags) {
7062 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7063 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7064 DebugLoc dl = GA->getDebugLoc();
7065 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7066 GA->getValueType(0),
7070 SDValue Ops[] = { Chain, TGA, *InFlag };
7071 Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
7073 SDValue Ops[] = { Chain, TGA };
7074 Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
7077 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7078 MFI->setAdjustsStack(true);
7080 SDValue Flag = Chain.getValue(1);
7081 return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7084 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7086 LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7089 DebugLoc dl = GA->getDebugLoc(); // ? function entry point might be better
7090 SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7091 DAG.getNode(X86ISD::GlobalBaseReg,
7092 DebugLoc(), PtrVT), InFlag);
7093 InFlag = Chain.getValue(1);
7095 return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7098 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7100 LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7102 return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7103 X86::RAX, X86II::MO_TLSGD);
7106 // Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
7107 // "local exec" model.
7108 static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7109 const EVT PtrVT, TLSModel::Model model,
7111 DebugLoc dl = GA->getDebugLoc();
7113 // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7114 Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7115 is64Bit ? 257 : 256));
7117 SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7118 DAG.getIntPtrConstant(0),
7119 MachinePointerInfo(Ptr),
7120 false, false, false, 0);
7122 unsigned char OperandFlags = 0;
7123 // Most TLS accesses are not RIP relative, even on x86-64. One exception is
7125 unsigned WrapperKind = X86ISD::Wrapper;
7126 if (model == TLSModel::LocalExec) {
7127 OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7128 } else if (is64Bit) {
7129 assert(model == TLSModel::InitialExec);
7130 OperandFlags = X86II::MO_GOTTPOFF;
7131 WrapperKind = X86ISD::WrapperRIP;
7133 assert(model == TLSModel::InitialExec);
7134 OperandFlags = X86II::MO_INDNTPOFF;
7137 // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
7139 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7140 GA->getValueType(0),
7141 GA->getOffset(), OperandFlags);
7142 SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7144 if (model == TLSModel::InitialExec)
7145 Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7146 MachinePointerInfo::getGOT(), false, false, false, 0);
7148 // The address of the thread local variable is the add of the thread
7149 // pointer with the offset of the variable.
7150 return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7154 X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7156 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7157 const GlobalValue *GV = GA->getGlobal();
7159 if (Subtarget->isTargetELF()) {
7160 // TODO: implement the "local dynamic" model
7161 // TODO: implement the "initial exec"model for pic executables
7163 // If GV is an alias then use the aliasee for determining
7164 // thread-localness.
7165 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7166 GV = GA->resolveAliasedGlobal(false);
7168 TLSModel::Model model
7169 = getTLSModel(GV, getTargetMachine().getRelocationModel());
7172 case TLSModel::GeneralDynamic:
7173 case TLSModel::LocalDynamic: // not implemented
7174 if (Subtarget->is64Bit())
7175 return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7176 return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7178 case TLSModel::InitialExec:
7179 case TLSModel::LocalExec:
7180 return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7181 Subtarget->is64Bit());
7183 } else if (Subtarget->isTargetDarwin()) {
7184 // Darwin only has one model of TLS. Lower to that.
7185 unsigned char OpFlag = 0;
7186 unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7187 X86ISD::WrapperRIP : X86ISD::Wrapper;
7189 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7191 bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7192 !Subtarget->is64Bit();
7194 OpFlag = X86II::MO_TLVP_PIC_BASE;
7196 OpFlag = X86II::MO_TLVP;
7197 DebugLoc DL = Op.getDebugLoc();
7198 SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7199 GA->getValueType(0),
7200 GA->getOffset(), OpFlag);
7201 SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7203 // With PIC32, the address is actually $g + Offset.
7205 Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7206 DAG.getNode(X86ISD::GlobalBaseReg,
7207 DebugLoc(), getPointerTy()),
7210 // Lowering the machine isd will make sure everything is in the right
7212 SDValue Chain = DAG.getEntryNode();
7213 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7214 SDValue Args[] = { Chain, Offset };
7215 Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7217 // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7218 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7219 MFI->setAdjustsStack(true);
7221 // And our return value (tls address) is in the standard call return value
7223 unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7224 return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7226 } else if (Subtarget->isTargetWindows()) {
7227 // Just use the implicit TLS architecture
7228 // Need to generate someting similar to:
7229 // mov rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
7231 // mov ecx, dword [rel _tls_index]: Load index (from C runtime)
7232 // mov rcx, qword [rdx+rcx*8]
7233 // mov eax, .tls$:tlsvar
7234 // [rax+rcx] contains the address
7235 // Windows 64bit: gs:0x58
7236 // Windows 32bit: fs:__tls_array
7238 // If GV is an alias then use the aliasee for determining
7239 // thread-localness.
7240 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7241 GV = GA->resolveAliasedGlobal(false);
7242 DebugLoc dl = GA->getDebugLoc();
7243 SDValue Chain = DAG.getEntryNode();
7245 // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
7246 // %gs:0x58 (64-bit).
7247 Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
7248 ? Type::getInt8PtrTy(*DAG.getContext(),
7250 : Type::getInt32PtrTy(*DAG.getContext(),
7253 SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain,
7254 Subtarget->is64Bit()
7255 ? DAG.getIntPtrConstant(0x58)
7256 : DAG.getExternalSymbol("_tls_array",
7258 MachinePointerInfo(Ptr),
7259 false, false, false, 0);
7261 // Load the _tls_index variable
7262 SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
7263 if (Subtarget->is64Bit())
7264 IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
7265 IDX, MachinePointerInfo(), MVT::i32,
7268 IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
7269 false, false, false, 0);
7271 SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
7273 IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
7275 SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
7276 res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
7277 false, false, false, 0);
7279 // Get the offset of start of .tls section
7280 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7281 GA->getValueType(0),
7282 GA->getOffset(), X86II::MO_SECREL);
7283 SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
7285 // The address of the thread local variable is the add of the thread
7286 // pointer with the offset of the variable.
7287 return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
7290 llvm_unreachable("TLS not implemented for this target.");
7294 /// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
7295 /// and take a 2 x i32 value to shift plus a shift amount.
7296 SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
7297 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7298 EVT VT = Op.getValueType();
7299 unsigned VTBits = VT.getSizeInBits();
7300 DebugLoc dl = Op.getDebugLoc();
7301 bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7302 SDValue ShOpLo = Op.getOperand(0);
7303 SDValue ShOpHi = Op.getOperand(1);
7304 SDValue ShAmt = Op.getOperand(2);
7305 SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7306 DAG.getConstant(VTBits - 1, MVT::i8))
7307 : DAG.getConstant(0, VT);
7310 if (Op.getOpcode() == ISD::SHL_PARTS) {
7311 Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7312 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7314 Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7315 Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7318 SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7319 DAG.getConstant(VTBits, MVT::i8));
7320 SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7321 AndNode, DAG.getConstant(0, MVT::i8));
7324 SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7325 SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7326 SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7328 if (Op.getOpcode() == ISD::SHL_PARTS) {
7329 Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7330 Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7332 Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7333 Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7336 SDValue Ops[2] = { Lo, Hi };
7337 return DAG.getMergeValues(Ops, 2, dl);
7340 SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7341 SelectionDAG &DAG) const {
7342 EVT SrcVT = Op.getOperand(0).getValueType();
7344 if (SrcVT.isVector())
7347 assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7348 "Unknown SINT_TO_FP to lower!");
7350 // These are really Legal; return the operand so the caller accepts it as
7352 if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7354 if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7355 Subtarget->is64Bit()) {
7359 DebugLoc dl = Op.getDebugLoc();
7360 unsigned Size = SrcVT.getSizeInBits()/8;
7361 MachineFunction &MF = DAG.getMachineFunction();
7362 int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7363 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7364 SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7366 MachinePointerInfo::getFixedStack(SSFI),
7368 return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7371 SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7373 SelectionDAG &DAG) const {
7375 DebugLoc DL = Op.getDebugLoc();
7377 bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7379 Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7381 Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7383 unsigned ByteSize = SrcVT.getSizeInBits()/8;
7385 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7386 MachineMemOperand *MMO;
7388 int SSFI = FI->getIndex();
7390 DAG.getMachineFunction()
7391 .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7392 MachineMemOperand::MOLoad, ByteSize, ByteSize);
7394 MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7395 StackSlot = StackSlot.getOperand(1);
7397 SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7398 SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7400 Tys, Ops, array_lengthof(Ops),
7404 Chain = Result.getValue(1);
7405 SDValue InFlag = Result.getValue(2);
7407 // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7408 // shouldn't be necessary except that RFP cannot be live across
7409 // multiple blocks. When stackifier is fixed, they can be uncoupled.
7410 MachineFunction &MF = DAG.getMachineFunction();
7411 unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7412 int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7413 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7414 Tys = DAG.getVTList(MVT::Other);
7416 Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7418 MachineMemOperand *MMO =
7419 DAG.getMachineFunction()
7420 .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7421 MachineMemOperand::MOStore, SSFISize, SSFISize);
7423 Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7424 Ops, array_lengthof(Ops),
7425 Op.getValueType(), MMO);
7426 Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7427 MachinePointerInfo::getFixedStack(SSFI),
7428 false, false, false, 0);
7434 // LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7435 SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7436 SelectionDAG &DAG) const {
7437 // This algorithm is not obvious. Here it is what we're trying to output:
7440 punpckldq (c0), %xmm0 // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
7441 subpd (c1), %xmm0 // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
7445 pshufd $0x4e, %xmm0, %xmm1
7450 DebugLoc dl = Op.getDebugLoc();
7451 LLVMContext *Context = DAG.getContext();
7453 // Build some magic constants.
7454 const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
7455 Constant *C0 = ConstantDataVector::get(*Context, CV0);
7456 SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7458 SmallVector<Constant*,2> CV1;
7460 ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7462 ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7463 Constant *C1 = ConstantVector::get(CV1);
7464 SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7466 // Load the 64-bit value into an XMM register.
7467 SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
7469 SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7470 MachinePointerInfo::getConstantPool(),
7471 false, false, false, 16);
7472 SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
7473 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
7476 SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7477 MachinePointerInfo::getConstantPool(),
7478 false, false, false, 16);
7479 SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
7480 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7483 if (Subtarget->hasSSE3()) {
7484 // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
7485 Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
7487 SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
7488 SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
7490 Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
7491 DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
7495 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
7496 DAG.getIntPtrConstant(0));
7499 // LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7500 SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7501 SelectionDAG &DAG) const {
7502 DebugLoc dl = Op.getDebugLoc();
7503 // FP constant to bias correct the final result.
7504 SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7507 // Load the 32-bit value into an XMM register.
7508 SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7511 // Zero out the upper parts of the register.
7512 Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
7514 Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7515 DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7516 DAG.getIntPtrConstant(0));
7518 // Or the load with the bias.
7519 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7520 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7521 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7523 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7524 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7525 MVT::v2f64, Bias)));
7526 Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7527 DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7528 DAG.getIntPtrConstant(0));
7530 // Subtract the bias.
7531 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7533 // Handle final rounding.
7534 EVT DestVT = Op.getValueType();
7536 if (DestVT.bitsLT(MVT::f64)) {
7537 return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7538 DAG.getIntPtrConstant(0));
7539 } else if (DestVT.bitsGT(MVT::f64)) {
7540 return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7543 // Handle final rounding.
7547 SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7548 SelectionDAG &DAG) const {
7549 SDValue N0 = Op.getOperand(0);
7550 DebugLoc dl = Op.getDebugLoc();
7552 // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7553 // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7554 // the optimization here.
7555 if (DAG.SignBitIsZero(N0))
7556 return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7558 EVT SrcVT = N0.getValueType();
7559 EVT DstVT = Op.getValueType();
7560 if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7561 return LowerUINT_TO_FP_i64(Op, DAG);
7562 else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7563 return LowerUINT_TO_FP_i32(Op, DAG);
7564 else if (Subtarget->is64Bit() &&
7565 SrcVT == MVT::i64 && DstVT == MVT::f32)
7568 // Make a 64-bit buffer, and use it to build an FILD.
7569 SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7570 if (SrcVT == MVT::i32) {
7571 SDValue WordOff = DAG.getConstant(4, getPointerTy());
7572 SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7573 getPointerTy(), StackSlot, WordOff);
7574 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7575 StackSlot, MachinePointerInfo(),
7577 SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7578 OffsetSlot, MachinePointerInfo(),
7580 SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7584 assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7585 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7586 StackSlot, MachinePointerInfo(),
7588 // For i64 source, we need to add the appropriate power of 2 if the input
7589 // was negative. This is the same as the optimization in
7590 // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7591 // we must be careful to do the computation in x87 extended precision, not
7592 // in SSE. (The generic code can't know it's OK to do this, or how to.)
7593 int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7594 MachineMemOperand *MMO =
7595 DAG.getMachineFunction()
7596 .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7597 MachineMemOperand::MOLoad, 8, 8);
7599 SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7600 SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7601 SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7604 APInt FF(32, 0x5F800000ULL);
7606 // Check whether the sign bit is set.
7607 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7608 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7611 // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7612 SDValue FudgePtr = DAG.getConstantPool(
7613 ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7616 // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7617 SDValue Zero = DAG.getIntPtrConstant(0);
7618 SDValue Four = DAG.getIntPtrConstant(4);
7619 SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7621 FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7623 // Load the value out, extending it from f32 to f80.
7624 // FIXME: Avoid the extend by constructing the right constant pool?
7625 SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7626 FudgePtr, MachinePointerInfo::getConstantPool(),
7627 MVT::f32, false, false, 4);
7628 // Extend everything to 80 bits to force it to be done on x87.
7629 SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7630 return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7633 std::pair<SDValue,SDValue> X86TargetLowering::
7634 FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned, bool IsReplace) const {
7635 DebugLoc DL = Op.getDebugLoc();
7637 EVT DstTy = Op.getValueType();
7639 if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
7640 assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7644 assert(DstTy.getSimpleVT() <= MVT::i64 &&
7645 DstTy.getSimpleVT() >= MVT::i16 &&
7646 "Unknown FP_TO_INT to lower!");
7648 // These are really Legal.
7649 if (DstTy == MVT::i32 &&
7650 isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7651 return std::make_pair(SDValue(), SDValue());
7652 if (Subtarget->is64Bit() &&
7653 DstTy == MVT::i64 &&
7654 isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7655 return std::make_pair(SDValue(), SDValue());
7657 // We lower FP->int64 either into FISTP64 followed by a load from a temporary
7658 // stack slot, or into the FTOL runtime function.
7659 MachineFunction &MF = DAG.getMachineFunction();
7660 unsigned MemSize = DstTy.getSizeInBits()/8;
7661 int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7662 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7665 if (!IsSigned && isIntegerTypeFTOL(DstTy))
7666 Opc = X86ISD::WIN_FTOL;
7668 switch (DstTy.getSimpleVT().SimpleTy) {
7669 default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7670 case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7671 case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7672 case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7675 SDValue Chain = DAG.getEntryNode();
7676 SDValue Value = Op.getOperand(0);
7677 EVT TheVT = Op.getOperand(0).getValueType();
7678 // FIXME This causes a redundant load/store if the SSE-class value is already
7679 // in memory, such as if it is on the callstack.
7680 if (isScalarFPTypeInSSEReg(TheVT)) {
7681 assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7682 Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7683 MachinePointerInfo::getFixedStack(SSFI),
7685 SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7687 Chain, StackSlot, DAG.getValueType(TheVT)
7690 MachineMemOperand *MMO =
7691 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7692 MachineMemOperand::MOLoad, MemSize, MemSize);
7693 Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7695 Chain = Value.getValue(1);
7696 SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7697 StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7700 MachineMemOperand *MMO =
7701 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7702 MachineMemOperand::MOStore, MemSize, MemSize);
7704 if (Opc != X86ISD::WIN_FTOL) {
7705 // Build the FP_TO_INT*_IN_MEM
7706 SDValue Ops[] = { Chain, Value, StackSlot };
7707 SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7708 Ops, 3, DstTy, MMO);
7709 return std::make_pair(FIST, StackSlot);
7711 SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
7712 DAG.getVTList(MVT::Other, MVT::Glue),
7714 SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
7715 MVT::i32, ftol.getValue(1));
7716 SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
7717 MVT::i32, eax.getValue(2));
7718 SDValue Ops[] = { eax, edx };
7719 SDValue pair = IsReplace
7720 ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops, 2)
7721 : DAG.getMergeValues(Ops, 2, DL);
7722 return std::make_pair(pair, SDValue());
7726 SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7727 SelectionDAG &DAG) const {
7728 if (Op.getValueType().isVector())
7731 std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
7732 /*IsSigned=*/ true, /*IsReplace=*/ false);
7733 SDValue FIST = Vals.first, StackSlot = Vals.second;
7734 // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7735 if (FIST.getNode() == 0) return Op;
7737 if (StackSlot.getNode())
7739 return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7740 FIST, StackSlot, MachinePointerInfo(),
7741 false, false, false, 0);
7743 // The node is the result.
7747 SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7748 SelectionDAG &DAG) const {
7749 std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
7750 /*IsSigned=*/ false, /*IsReplace=*/ false);
7751 SDValue FIST = Vals.first, StackSlot = Vals.second;
7752 assert(FIST.getNode() && "Unexpected failure");
7754 if (StackSlot.getNode())
7756 return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7757 FIST, StackSlot, MachinePointerInfo(),
7758 false, false, false, 0);
7760 // The node is the result.
7764 SDValue X86TargetLowering::LowerFABS(SDValue Op,
7765 SelectionDAG &DAG) const {
7766 LLVMContext *Context = DAG.getContext();
7767 DebugLoc dl = Op.getDebugLoc();
7768 EVT VT = Op.getValueType();
7771 EltVT = VT.getVectorElementType();
7773 if (EltVT == MVT::f64) {
7774 C = ConstantVector::getSplat(2,
7775 ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
7777 C = ConstantVector::getSplat(4,
7778 ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
7780 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7781 SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7782 MachinePointerInfo::getConstantPool(),
7783 false, false, false, 16);
7784 return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
7787 SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
7788 LLVMContext *Context = DAG.getContext();
7789 DebugLoc dl = Op.getDebugLoc();
7790 EVT VT = Op.getValueType();
7792 unsigned NumElts = VT == MVT::f64 ? 2 : 4;
7793 if (VT.isVector()) {
7794 EltVT = VT.getVectorElementType();
7795 NumElts = VT.getVectorNumElements();
7798 if (EltVT == MVT::f64)
7799 C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
7801 C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
7802 C = ConstantVector::getSplat(NumElts, C);
7803 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7804 SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7805 MachinePointerInfo::getConstantPool(),
7806 false, false, false, 16);
7807 if (VT.isVector()) {
7808 MVT XORVT = VT.getSizeInBits() == 128 ? MVT::v2i64 : MVT::v4i64;
7809 return DAG.getNode(ISD::BITCAST, dl, VT,
7810 DAG.getNode(ISD::XOR, dl, XORVT,
7811 DAG.getNode(ISD::BITCAST, dl, XORVT,
7813 DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
7815 return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
7819 SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
7820 LLVMContext *Context = DAG.getContext();
7821 SDValue Op0 = Op.getOperand(0);
7822 SDValue Op1 = Op.getOperand(1);
7823 DebugLoc dl = Op.getDebugLoc();
7824 EVT VT = Op.getValueType();
7825 EVT SrcVT = Op1.getValueType();
7827 // If second operand is smaller, extend it first.
7828 if (SrcVT.bitsLT(VT)) {
7829 Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
7832 // And if it is bigger, shrink it first.
7833 if (SrcVT.bitsGT(VT)) {
7834 Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
7838 // At this point the operands and the result should have the same
7839 // type, and that won't be f80 since that is not custom lowered.
7841 // First get the sign bit of second operand.
7842 SmallVector<Constant*,4> CV;
7843 if (SrcVT == MVT::f64) {
7844 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
7845 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7847 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
7848 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7849 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7850 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7852 Constant *C = ConstantVector::get(CV);
7853 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7854 SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
7855 MachinePointerInfo::getConstantPool(),
7856 false, false, false, 16);
7857 SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
7859 // Shift sign bit right or left if the two operands have different types.
7860 if (SrcVT.bitsGT(VT)) {
7861 // Op0 is MVT::f32, Op1 is MVT::f64.
7862 SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
7863 SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
7864 DAG.getConstant(32, MVT::i32));
7865 SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
7866 SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
7867 DAG.getIntPtrConstant(0));
7870 // Clear first operand sign bit.
7872 if (VT == MVT::f64) {
7873 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
7874 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7876 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
7877 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7878 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7879 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7881 C = ConstantVector::get(CV);
7882 CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7883 SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7884 MachinePointerInfo::getConstantPool(),
7885 false, false, false, 16);
7886 SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
7888 // Or the value with the sign bit.
7889 return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
7892 SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
7893 SDValue N0 = Op.getOperand(0);
7894 DebugLoc dl = Op.getDebugLoc();
7895 EVT VT = Op.getValueType();
7897 // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
7898 SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
7899 DAG.getConstant(1, VT));
7900 return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
7903 /// Emit nodes that will be selected as "test Op0,Op0", or something
7905 SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
7906 SelectionDAG &DAG) const {
7907 DebugLoc dl = Op.getDebugLoc();
7909 // CF and OF aren't always set the way we want. Determine which
7910 // of these we need.
7911 bool NeedCF = false;
7912 bool NeedOF = false;
7915 case X86::COND_A: case X86::COND_AE:
7916 case X86::COND_B: case X86::COND_BE:
7919 case X86::COND_G: case X86::COND_GE:
7920 case X86::COND_L: case X86::COND_LE:
7921 case X86::COND_O: case X86::COND_NO:
7926 // See if we can use the EFLAGS value from the operand instead of
7927 // doing a separate TEST. TEST always sets OF and CF to 0, so unless
7928 // we prove that the arithmetic won't overflow, we can't use OF or CF.
7929 if (Op.getResNo() != 0 || NeedOF || NeedCF)
7930 // Emit a CMP with 0, which is the TEST pattern.
7931 return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
7932 DAG.getConstant(0, Op.getValueType()));
7934 unsigned Opcode = 0;
7935 unsigned NumOperands = 0;
7936 switch (Op.getNode()->getOpcode()) {
7938 // Due to an isel shortcoming, be conservative if this add is likely to be
7939 // selected as part of a load-modify-store instruction. When the root node
7940 // in a match is a store, isel doesn't know how to remap non-chain non-flag
7941 // uses of other nodes in the match, such as the ADD in this case. This
7942 // leads to the ADD being left around and reselected, with the result being
7943 // two adds in the output. Alas, even if none our users are stores, that
7944 // doesn't prove we're O.K. Ergo, if we have any parents that aren't
7945 // CopyToReg or SETCC, eschew INC/DEC. A better fix seems to require
7946 // climbing the DAG back to the root, and it doesn't seem to be worth the
7948 for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
7949 UE = Op.getNode()->use_end(); UI != UE; ++UI)
7950 if (UI->getOpcode() != ISD::CopyToReg &&
7951 UI->getOpcode() != ISD::SETCC &&
7952 UI->getOpcode() != ISD::STORE)
7955 if (ConstantSDNode *C =
7956 dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
7957 // An add of one will be selected as an INC.
7958 if (C->getAPIntValue() == 1) {
7959 Opcode = X86ISD::INC;
7964 // An add of negative one (subtract of one) will be selected as a DEC.
7965 if (C->getAPIntValue().isAllOnesValue()) {
7966 Opcode = X86ISD::DEC;
7972 // Otherwise use a regular EFLAGS-setting add.
7973 Opcode = X86ISD::ADD;
7977 // If the primary and result isn't used, don't bother using X86ISD::AND,
7978 // because a TEST instruction will be better.
7979 bool NonFlagUse = false;
7980 for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
7981 UE = Op.getNode()->use_end(); UI != UE; ++UI) {
7983 unsigned UOpNo = UI.getOperandNo();
7984 if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
7985 // Look pass truncate.
7986 UOpNo = User->use_begin().getOperandNo();
7987 User = *User->use_begin();
7990 if (User->getOpcode() != ISD::BRCOND &&
7991 User->getOpcode() != ISD::SETCC &&
7992 (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
8005 // Due to the ISEL shortcoming noted above, be conservative if this op is
8006 // likely to be selected as part of a load-modify-store instruction.
8007 for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8008 UE = Op.getNode()->use_end(); UI != UE; ++UI)
8009 if (UI->getOpcode() == ISD::STORE)
8012 // Otherwise use a regular EFLAGS-setting instruction.
8013 switch (Op.getNode()->getOpcode()) {
8014 default: llvm_unreachable("unexpected operator!");
8015 case ISD::SUB: Opcode = X86ISD::SUB; break;
8016 case ISD::OR: Opcode = X86ISD::OR; break;
8017 case ISD::XOR: Opcode = X86ISD::XOR; break;
8018 case ISD::AND: Opcode = X86ISD::AND; break;
8030 return SDValue(Op.getNode(), 1);
8037 // Emit a CMP with 0, which is the TEST pattern.
8038 return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8039 DAG.getConstant(0, Op.getValueType()));
8041 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8042 SmallVector<SDValue, 4> Ops;
8043 for (unsigned i = 0; i != NumOperands; ++i)
8044 Ops.push_back(Op.getOperand(i));
8046 SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8047 DAG.ReplaceAllUsesWith(Op, New);
8048 return SDValue(New.getNode(), 1);
8051 /// Emit nodes that will be selected as "cmp Op0,Op1", or something
8053 SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8054 SelectionDAG &DAG) const {
8055 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8056 if (C->getAPIntValue() == 0)
8057 return EmitTest(Op0, X86CC, DAG);
8059 DebugLoc dl = Op0.getDebugLoc();
8060 return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8063 /// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8064 /// if it's possible.
8065 SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8066 DebugLoc dl, SelectionDAG &DAG) const {
8067 SDValue Op0 = And.getOperand(0);
8068 SDValue Op1 = And.getOperand(1);
8069 if (Op0.getOpcode() == ISD::TRUNCATE)
8070 Op0 = Op0.getOperand(0);
8071 if (Op1.getOpcode() == ISD::TRUNCATE)
8072 Op1 = Op1.getOperand(0);
8075 if (Op1.getOpcode() == ISD::SHL)
8076 std::swap(Op0, Op1);
8077 if (Op0.getOpcode() == ISD::SHL) {
8078 if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8079 if (And00C->getZExtValue() == 1) {
8080 // If we looked past a truncate, check that it's only truncating away
8082 unsigned BitWidth = Op0.getValueSizeInBits();
8083 unsigned AndBitWidth = And.getValueSizeInBits();
8084 if (BitWidth > AndBitWidth) {
8086 DAG.ComputeMaskedBits(Op0, Zeros, Ones);
8087 if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8091 RHS = Op0.getOperand(1);
8093 } else if (Op1.getOpcode() == ISD::Constant) {
8094 ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8095 uint64_t AndRHSVal = AndRHS->getZExtValue();
8096 SDValue AndLHS = Op0;
8098 if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
8099 LHS = AndLHS.getOperand(0);
8100 RHS = AndLHS.getOperand(1);
8103 // Use BT if the immediate can't be encoded in a TEST instruction.
8104 if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
8106 RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
8110 if (LHS.getNode()) {
8111 // If LHS is i8, promote it to i32 with any_extend. There is no i8 BT
8112 // instruction. Since the shift amount is in-range-or-undefined, we know
8113 // that doing a bittest on the i32 value is ok. We extend to i32 because
8114 // the encoding for the i16 version is larger than the i32 version.
8115 // Also promote i16 to i32 for performance / code size reason.
8116 if (LHS.getValueType() == MVT::i8 ||
8117 LHS.getValueType() == MVT::i16)
8118 LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8120 // If the operand types disagree, extend the shift amount to match. Since
8121 // BT ignores high bits (like shifts) we can use anyextend.
8122 if (LHS.getValueType() != RHS.getValueType())
8123 RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8125 SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8126 unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8127 return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8128 DAG.getConstant(Cond, MVT::i8), BT);
8134 SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8136 if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8138 assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8139 SDValue Op0 = Op.getOperand(0);
8140 SDValue Op1 = Op.getOperand(1);
8141 DebugLoc dl = Op.getDebugLoc();
8142 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8144 // Optimize to BT if possible.
8145 // Lower (X & (1 << N)) == 0 to BT(X, N).
8146 // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8147 // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8148 if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8149 Op1.getOpcode() == ISD::Constant &&
8150 cast<ConstantSDNode>(Op1)->isNullValue() &&
8151 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8152 SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8153 if (NewSetCC.getNode())
8157 // Look for X == 0, X == 1, X != 0, or X != 1. We can simplify some forms of
8159 if (Op1.getOpcode() == ISD::Constant &&
8160 (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8161 cast<ConstantSDNode>(Op1)->isNullValue()) &&
8162 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8164 // If the input is a setcc, then reuse the input setcc or use a new one with
8165 // the inverted condition.
8166 if (Op0.getOpcode() == X86ISD::SETCC) {
8167 X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8168 bool Invert = (CC == ISD::SETNE) ^
8169 cast<ConstantSDNode>(Op1)->isNullValue();
8170 if (!Invert) return Op0;
8172 CCode = X86::GetOppositeBranchCondition(CCode);
8173 return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8174 DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8178 bool isFP = Op1.getValueType().isFloatingPoint();
8179 unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8180 if (X86CC == X86::COND_INVALID)
8183 SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8184 return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8185 DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8188 // Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8189 // ones, and then concatenate the result back.
8190 static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8191 EVT VT = Op.getValueType();
8193 assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC &&
8194 "Unsupported value type for operation");
8196 int NumElems = VT.getVectorNumElements();
8197 DebugLoc dl = Op.getDebugLoc();
8198 SDValue CC = Op.getOperand(2);
8199 SDValue Idx0 = DAG.getConstant(0, MVT::i32);
8200 SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
8202 // Extract the LHS vectors
8203 SDValue LHS = Op.getOperand(0);
8204 SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
8205 SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
8207 // Extract the RHS vectors
8208 SDValue RHS = Op.getOperand(1);
8209 SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
8210 SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
8212 // Issue the operation on the smaller types and concatenate the result back
8213 MVT EltVT = VT.getVectorElementType().getSimpleVT();
8214 EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8215 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8216 DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8217 DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8221 SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8223 SDValue Op0 = Op.getOperand(0);
8224 SDValue Op1 = Op.getOperand(1);
8225 SDValue CC = Op.getOperand(2);
8226 EVT VT = Op.getValueType();
8227 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8228 bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8229 DebugLoc dl = Op.getDebugLoc();
8233 EVT EltVT = Op0.getValueType().getVectorElementType();
8234 assert(EltVT == MVT::f32 || EltVT == MVT::f64); (void)EltVT;
8238 // SSE Condition code mapping:
8247 switch (SetCCOpcode) {
8250 case ISD::SETEQ: SSECC = 0; break;
8252 case ISD::SETGT: Swap = true; // Fallthrough
8254 case ISD::SETOLT: SSECC = 1; break;
8256 case ISD::SETGE: Swap = true; // Fallthrough
8258 case ISD::SETOLE: SSECC = 2; break;
8259 case ISD::SETUO: SSECC = 3; break;
8261 case ISD::SETNE: SSECC = 4; break;
8262 case ISD::SETULE: Swap = true;
8263 case ISD::SETUGE: SSECC = 5; break;
8264 case ISD::SETULT: Swap = true;
8265 case ISD::SETUGT: SSECC = 6; break;
8266 case ISD::SETO: SSECC = 7; break;
8269 std::swap(Op0, Op1);
8271 // In the two special cases we can't handle, emit two comparisons.
8273 if (SetCCOpcode == ISD::SETUEQ) {
8275 UNORD = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8276 DAG.getConstant(3, MVT::i8));
8277 EQ = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8278 DAG.getConstant(0, MVT::i8));
8279 return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
8280 } else if (SetCCOpcode == ISD::SETONE) {
8282 ORD = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8283 DAG.getConstant(7, MVT::i8));
8284 NEQ = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8285 DAG.getConstant(4, MVT::i8));
8286 return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
8288 llvm_unreachable("Illegal FP comparison");
8290 // Handle all other FP comparisons here.
8291 return DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8292 DAG.getConstant(SSECC, MVT::i8));
8295 // Break 256-bit integer vector compare into smaller ones.
8296 if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
8297 return Lower256IntVSETCC(Op, DAG);
8299 // We are handling one of the integer comparisons here. Since SSE only has
8300 // GT and EQ comparisons for integer, swapping operands and multiple
8301 // operations may be required for some comparisons.
8303 bool Swap = false, Invert = false, FlipSigns = false;
8305 switch (SetCCOpcode) {
8307 case ISD::SETNE: Invert = true;
8308 case ISD::SETEQ: Opc = X86ISD::PCMPEQ; break;
8309 case ISD::SETLT: Swap = true;
8310 case ISD::SETGT: Opc = X86ISD::PCMPGT; break;
8311 case ISD::SETGE: Swap = true;
8312 case ISD::SETLE: Opc = X86ISD::PCMPGT; Invert = true; break;
8313 case ISD::SETULT: Swap = true;
8314 case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break;
8315 case ISD::SETUGE: Swap = true;
8316 case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break;
8319 std::swap(Op0, Op1);
8321 // Check that the operation in question is available (most are plain SSE2,
8322 // but PCMPGTQ and PCMPEQQ have different requirements).
8323 if (Opc == X86ISD::PCMPGT && VT == MVT::v2i64 && !Subtarget->hasSSE42())
8325 if (Opc == X86ISD::PCMPEQ && VT == MVT::v2i64 && !Subtarget->hasSSE41())
8328 // Since SSE has no unsigned integer comparisons, we need to flip the sign
8329 // bits of the inputs before performing those operations.
8331 EVT EltVT = VT.getVectorElementType();
8332 SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8334 std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8335 SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8337 Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8338 Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8341 SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8343 // If the logical-not of the result is required, perform that now.
8345 Result = DAG.getNOT(dl, Result, VT);
8350 // isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8351 static bool isX86LogicalCmp(SDValue Op) {
8352 unsigned Opc = Op.getNode()->getOpcode();
8353 if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
8355 if (Op.getResNo() == 1 &&
8356 (Opc == X86ISD::ADD ||
8357 Opc == X86ISD::SUB ||
8358 Opc == X86ISD::ADC ||
8359 Opc == X86ISD::SBB ||
8360 Opc == X86ISD::SMUL ||
8361 Opc == X86ISD::UMUL ||
8362 Opc == X86ISD::INC ||
8363 Opc == X86ISD::DEC ||
8364 Opc == X86ISD::OR ||
8365 Opc == X86ISD::XOR ||
8366 Opc == X86ISD::AND))
8369 if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8375 static bool isZero(SDValue V) {
8376 ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8377 return C && C->isNullValue();
8380 static bool isAllOnes(SDValue V) {
8381 ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8382 return C && C->isAllOnesValue();
8385 SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8386 bool addTest = true;
8387 SDValue Cond = Op.getOperand(0);
8388 SDValue Op1 = Op.getOperand(1);
8389 SDValue Op2 = Op.getOperand(2);
8390 DebugLoc DL = Op.getDebugLoc();
8393 if (Cond.getOpcode() == ISD::SETCC) {
8394 SDValue NewCond = LowerSETCC(Cond, DAG);
8395 if (NewCond.getNode())
8399 // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8400 // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8401 // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8402 // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8403 if (Cond.getOpcode() == X86ISD::SETCC &&
8404 Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8405 isZero(Cond.getOperand(1).getOperand(1))) {
8406 SDValue Cmp = Cond.getOperand(1);
8408 unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8410 if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8411 (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8412 SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8414 SDValue CmpOp0 = Cmp.getOperand(0);
8415 Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8416 CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8418 SDValue Res = // Res = 0 or -1.
8419 DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8420 DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8422 if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8423 Res = DAG.getNOT(DL, Res, Res.getValueType());
8425 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8426 if (N2C == 0 || !N2C->isNullValue())
8427 Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8432 // Look past (and (setcc_carry (cmp ...)), 1).
8433 if (Cond.getOpcode() == ISD::AND &&
8434 Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8435 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8436 if (C && C->getAPIntValue() == 1)
8437 Cond = Cond.getOperand(0);
8440 // If condition flag is set by a X86ISD::CMP, then use it as the condition
8441 // setting operand in place of the X86ISD::SETCC.
8442 unsigned CondOpcode = Cond.getOpcode();
8443 if (CondOpcode == X86ISD::SETCC ||
8444 CondOpcode == X86ISD::SETCC_CARRY) {
8445 CC = Cond.getOperand(0);
8447 SDValue Cmp = Cond.getOperand(1);
8448 unsigned Opc = Cmp.getOpcode();
8449 EVT VT = Op.getValueType();
8451 bool IllegalFPCMov = false;
8452 if (VT.isFloatingPoint() && !VT.isVector() &&
8453 !isScalarFPTypeInSSEReg(VT)) // FPStack?
8454 IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8456 if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8457 Opc == X86ISD::BT) { // FIXME
8461 } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8462 CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8463 ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8464 Cond.getOperand(0).getValueType() != MVT::i8)) {
8465 SDValue LHS = Cond.getOperand(0);
8466 SDValue RHS = Cond.getOperand(1);
8470 switch (CondOpcode) {
8471 case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8472 case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8473 case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8474 case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8475 case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8476 case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8477 default: llvm_unreachable("unexpected overflowing operator");
8479 if (CondOpcode == ISD::UMULO)
8480 VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8483 VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8485 SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
8487 if (CondOpcode == ISD::UMULO)
8488 Cond = X86Op.getValue(2);
8490 Cond = X86Op.getValue(1);
8492 CC = DAG.getConstant(X86Cond, MVT::i8);
8497 // Look pass the truncate.
8498 if (Cond.getOpcode() == ISD::TRUNCATE)
8499 Cond = Cond.getOperand(0);
8501 // We know the result of AND is compared against zero. Try to match
8503 if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8504 SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8505 if (NewSetCC.getNode()) {
8506 CC = NewSetCC.getOperand(0);
8507 Cond = NewSetCC.getOperand(1);
8514 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8515 Cond = EmitTest(Cond, X86::COND_NE, DAG);
8518 // a < b ? -1 : 0 -> RES = ~setcc_carry
8519 // a < b ? 0 : -1 -> RES = setcc_carry
8520 // a >= b ? -1 : 0 -> RES = setcc_carry
8521 // a >= b ? 0 : -1 -> RES = ~setcc_carry
8522 if (Cond.getOpcode() == X86ISD::CMP) {
8523 unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8525 if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8526 (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8527 SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8528 DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8529 if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8530 return DAG.getNOT(DL, Res, Res.getValueType());
8535 // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8536 // condition is true.
8537 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8538 SDValue Ops[] = { Op2, Op1, CC, Cond };
8539 return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8542 // isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8543 // ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8544 // from the AND / OR.
8545 static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8546 Opc = Op.getOpcode();
8547 if (Opc != ISD::OR && Opc != ISD::AND)
8549 return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8550 Op.getOperand(0).hasOneUse() &&
8551 Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8552 Op.getOperand(1).hasOneUse());
8555 // isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8556 // 1 and that the SETCC node has a single use.
8557 static bool isXor1OfSetCC(SDValue Op) {
8558 if (Op.getOpcode() != ISD::XOR)
8560 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8561 if (N1C && N1C->getAPIntValue() == 1) {
8562 return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8563 Op.getOperand(0).hasOneUse();
8568 SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8569 bool addTest = true;
8570 SDValue Chain = Op.getOperand(0);
8571 SDValue Cond = Op.getOperand(1);
8572 SDValue Dest = Op.getOperand(2);
8573 DebugLoc dl = Op.getDebugLoc();
8575 bool Inverted = false;
8577 if (Cond.getOpcode() == ISD::SETCC) {
8578 // Check for setcc([su]{add,sub,mul}o == 0).
8579 if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
8580 isa<ConstantSDNode>(Cond.getOperand(1)) &&
8581 cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
8582 Cond.getOperand(0).getResNo() == 1 &&
8583 (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
8584 Cond.getOperand(0).getOpcode() == ISD::UADDO ||
8585 Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
8586 Cond.getOperand(0).getOpcode() == ISD::USUBO ||
8587 Cond.getOperand(0).getOpcode() == ISD::SMULO ||
8588 Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
8590 Cond = Cond.getOperand(0);
8592 SDValue NewCond = LowerSETCC(Cond, DAG);
8593 if (NewCond.getNode())
8598 // FIXME: LowerXALUO doesn't handle these!!
8599 else if (Cond.getOpcode() == X86ISD::ADD ||
8600 Cond.getOpcode() == X86ISD::SUB ||
8601 Cond.getOpcode() == X86ISD::SMUL ||
8602 Cond.getOpcode() == X86ISD::UMUL)
8603 Cond = LowerXALUO(Cond, DAG);
8606 // Look pass (and (setcc_carry (cmp ...)), 1).
8607 if (Cond.getOpcode() == ISD::AND &&
8608 Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8609 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8610 if (C && C->getAPIntValue() == 1)
8611 Cond = Cond.getOperand(0);
8614 // If condition flag is set by a X86ISD::CMP, then use it as the condition
8615 // setting operand in place of the X86ISD::SETCC.
8616 unsigned CondOpcode = Cond.getOpcode();
8617 if (CondOpcode == X86ISD::SETCC ||
8618 CondOpcode == X86ISD::SETCC_CARRY) {
8619 CC = Cond.getOperand(0);
8621 SDValue Cmp = Cond.getOperand(1);
8622 unsigned Opc = Cmp.getOpcode();
8623 // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8624 if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8628 switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8632 // These can only come from an arithmetic instruction with overflow,
8633 // e.g. SADDO, UADDO.
8634 Cond = Cond.getNode()->getOperand(1);
8640 CondOpcode = Cond.getOpcode();
8641 if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8642 CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8643 ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8644 Cond.getOperand(0).getValueType() != MVT::i8)) {
8645 SDValue LHS = Cond.getOperand(0);
8646 SDValue RHS = Cond.getOperand(1);
8650 switch (CondOpcode) {
8651 case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8652 case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8653 case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8654 case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8655 case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8656 case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8657 default: llvm_unreachable("unexpected overflowing operator");
8660 X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
8661 if (CondOpcode == ISD::UMULO)
8662 VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8665 VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8667 SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
8669 if (CondOpcode == ISD::UMULO)
8670 Cond = X86Op.getValue(2);
8672 Cond = X86Op.getValue(1);
8674 CC = DAG.getConstant(X86Cond, MVT::i8);
8678 if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
8679 SDValue Cmp = Cond.getOperand(0).getOperand(1);
8680 if (CondOpc == ISD::OR) {
8681 // Also, recognize the pattern generated by an FCMP_UNE. We can emit
8682 // two branches instead of an explicit OR instruction with a
8684 if (Cmp == Cond.getOperand(1).getOperand(1) &&
8685 isX86LogicalCmp(Cmp)) {
8686 CC = Cond.getOperand(0).getOperand(0);
8687 Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8688 Chain, Dest, CC, Cmp);
8689 CC = Cond.getOperand(1).getOperand(0);
8693 } else { // ISD::AND
8694 // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
8695 // two branches instead of an explicit AND instruction with a
8696 // separate test. However, we only do this if this block doesn't
8697 // have a fall-through edge, because this requires an explicit
8698 // jmp when the condition is false.
8699 if (Cmp == Cond.getOperand(1).getOperand(1) &&
8700 isX86LogicalCmp(Cmp) &&
8701 Op.getNode()->hasOneUse()) {
8702 X86::CondCode CCode =
8703 (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8704 CCode = X86::GetOppositeBranchCondition(CCode);
8705 CC = DAG.getConstant(CCode, MVT::i8);
8706 SDNode *User = *Op.getNode()->use_begin();
8707 // Look for an unconditional branch following this conditional branch.
8708 // We need this because we need to reverse the successors in order
8709 // to implement FCMP_OEQ.
8710 if (User->getOpcode() == ISD::BR) {
8711 SDValue FalseBB = User->getOperand(1);
8713 DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8714 assert(NewBR == User);
8718 Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8719 Chain, Dest, CC, Cmp);
8720 X86::CondCode CCode =
8721 (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
8722 CCode = X86::GetOppositeBranchCondition(CCode);
8723 CC = DAG.getConstant(CCode, MVT::i8);
8729 } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
8730 // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
8731 // It should be transformed during dag combiner except when the condition
8732 // is set by a arithmetics with overflow node.
8733 X86::CondCode CCode =
8734 (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8735 CCode = X86::GetOppositeBranchCondition(CCode);
8736 CC = DAG.getConstant(CCode, MVT::i8);
8737 Cond = Cond.getOperand(0).getOperand(1);
8739 } else if (Cond.getOpcode() == ISD::SETCC &&
8740 cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
8741 // For FCMP_OEQ, we can emit
8742 // two branches instead of an explicit AND instruction with a
8743 // separate test. However, we only do this if this block doesn't
8744 // have a fall-through edge, because this requires an explicit
8745 // jmp when the condition is false.
8746 if (Op.getNode()->hasOneUse()) {
8747 SDNode *User = *Op.getNode()->use_begin();
8748 // Look for an unconditional branch following this conditional branch.
8749 // We need this because we need to reverse the successors in order
8750 // to implement FCMP_OEQ.
8751 if (User->getOpcode() == ISD::BR) {
8752 SDValue FalseBB = User->getOperand(1);
8754 DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8755 assert(NewBR == User);
8759 SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8760 Cond.getOperand(0), Cond.getOperand(1));
8761 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8762 Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8763 Chain, Dest, CC, Cmp);
8764 CC = DAG.getConstant(X86::COND_P, MVT::i8);
8769 } else if (Cond.getOpcode() == ISD::SETCC &&
8770 cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
8771 // For FCMP_UNE, we can emit
8772 // two branches instead of an explicit AND instruction with a
8773 // separate test. However, we only do this if this block doesn't
8774 // have a fall-through edge, because this requires an explicit
8775 // jmp when the condition is false.
8776 if (Op.getNode()->hasOneUse()) {
8777 SDNode *User = *Op.getNode()->use_begin();
8778 // Look for an unconditional branch following this conditional branch.
8779 // We need this because we need to reverse the successors in order
8780 // to implement FCMP_UNE.
8781 if (User->getOpcode() == ISD::BR) {
8782 SDValue FalseBB = User->getOperand(1);
8784 DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8785 assert(NewBR == User);
8788 SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8789 Cond.getOperand(0), Cond.getOperand(1));
8790 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8791 Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8792 Chain, Dest, CC, Cmp);
8793 CC = DAG.getConstant(X86::COND_NP, MVT::i8);
8803 // Look pass the truncate.
8804 if (Cond.getOpcode() == ISD::TRUNCATE)
8805 Cond = Cond.getOperand(0);
8807 // We know the result of AND is compared against zero. Try to match
8809 if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8810 SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
8811 if (NewSetCC.getNode()) {
8812 CC = NewSetCC.getOperand(0);
8813 Cond = NewSetCC.getOperand(1);
8820 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8821 Cond = EmitTest(Cond, X86::COND_NE, DAG);
8823 return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8824 Chain, Dest, CC, Cond);
8828 // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
8829 // Calls to _alloca is needed to probe the stack when allocating more than 4k
8830 // bytes in one go. Touching the stack at 4K increments is necessary to ensure
8831 // that the guard pages used by the OS virtual memory manager are allocated in
8832 // correct sequence.
8834 X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
8835 SelectionDAG &DAG) const {
8836 assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
8837 getTargetMachine().Options.EnableSegmentedStacks) &&
8838 "This should be used only on Windows targets or when segmented stacks "
8840 assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
8841 DebugLoc dl = Op.getDebugLoc();
8844 SDValue Chain = Op.getOperand(0);
8845 SDValue Size = Op.getOperand(1);
8846 // FIXME: Ensure alignment here
8848 bool Is64Bit = Subtarget->is64Bit();
8849 EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
8851 if (getTargetMachine().Options.EnableSegmentedStacks) {
8852 MachineFunction &MF = DAG.getMachineFunction();
8853 MachineRegisterInfo &MRI = MF.getRegInfo();
8856 // The 64 bit implementation of segmented stacks needs to clobber both r10
8857 // r11. This makes it impossible to use it along with nested parameters.
8858 const Function *F = MF.getFunction();
8860 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
8862 if (I->hasNestAttr())
8863 report_fatal_error("Cannot use segmented stacks with functions that "
8864 "have nested arguments.");
8867 const TargetRegisterClass *AddrRegClass =
8868 getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
8869 unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
8870 Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
8871 SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
8872 DAG.getRegister(Vreg, SPTy));
8873 SDValue Ops1[2] = { Value, Chain };
8874 return DAG.getMergeValues(Ops1, 2, dl);
8877 unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
8879 Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
8880 Flag = Chain.getValue(1);
8881 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8883 Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
8884 Flag = Chain.getValue(1);
8886 Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
8888 SDValue Ops1[2] = { Chain.getValue(0), Chain };
8889 return DAG.getMergeValues(Ops1, 2, dl);
8893 SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
8894 MachineFunction &MF = DAG.getMachineFunction();
8895 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
8897 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
8898 DebugLoc DL = Op.getDebugLoc();
8900 if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
8901 // vastart just stores the address of the VarArgsFrameIndex slot into the
8902 // memory location argument.
8903 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
8905 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
8906 MachinePointerInfo(SV), false, false, 0);
8910 // gp_offset (0 - 6 * 8)
8911 // fp_offset (48 - 48 + 8 * 16)
8912 // overflow_arg_area (point to parameters coming in memory).
8914 SmallVector<SDValue, 8> MemOps;
8915 SDValue FIN = Op.getOperand(1);
8917 SDValue Store = DAG.getStore(Op.getOperand(0), DL,
8918 DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
8920 FIN, MachinePointerInfo(SV), false, false, 0);
8921 MemOps.push_back(Store);
8924 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8925 FIN, DAG.getIntPtrConstant(4));
8926 Store = DAG.getStore(Op.getOperand(0), DL,
8927 DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
8929 FIN, MachinePointerInfo(SV, 4), false, false, 0);
8930 MemOps.push_back(Store);
8932 // Store ptr to overflow_arg_area
8933 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8934 FIN, DAG.getIntPtrConstant(4));
8935 SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
8937 Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
8938 MachinePointerInfo(SV, 8),
8940 MemOps.push_back(Store);
8942 // Store ptr to reg_save_area.
8943 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8944 FIN, DAG.getIntPtrConstant(8));
8945 SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
8947 Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
8948 MachinePointerInfo(SV, 16), false, false, 0);
8949 MemOps.push_back(Store);
8950 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
8951 &MemOps[0], MemOps.size());
8954 SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
8955 assert(Subtarget->is64Bit() &&
8956 "LowerVAARG only handles 64-bit va_arg!");
8957 assert((Subtarget->isTargetLinux() ||
8958 Subtarget->isTargetDarwin()) &&
8959 "Unhandled target in LowerVAARG");
8960 assert(Op.getNode()->getNumOperands() == 4);
8961 SDValue Chain = Op.getOperand(0);
8962 SDValue SrcPtr = Op.getOperand(1);
8963 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
8964 unsigned Align = Op.getConstantOperandVal(3);
8965 DebugLoc dl = Op.getDebugLoc();
8967 EVT ArgVT = Op.getNode()->getValueType(0);
8968 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
8969 uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
8972 // Decide which area this value should be read from.
8973 // TODO: Implement the AMD64 ABI in its entirety. This simple
8974 // selection mechanism works only for the basic types.
8975 if (ArgVT == MVT::f80) {
8976 llvm_unreachable("va_arg for f80 not yet implemented");
8977 } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
8978 ArgMode = 2; // Argument passed in XMM register. Use fp_offset.
8979 } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
8980 ArgMode = 1; // Argument passed in GPR64 register(s). Use gp_offset.
8982 llvm_unreachable("Unhandled argument type in LowerVAARG");
8986 // Sanity Check: Make sure using fp_offset makes sense.
8987 assert(!getTargetMachine().Options.UseSoftFloat &&
8988 !(DAG.getMachineFunction()
8989 .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
8990 Subtarget->hasSSE1());
8993 // Insert VAARG_64 node into the DAG
8994 // VAARG_64 returns two values: Variable Argument Address, Chain
8995 SmallVector<SDValue, 11> InstOps;
8996 InstOps.push_back(Chain);
8997 InstOps.push_back(SrcPtr);
8998 InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
8999 InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9000 InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9001 SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9002 SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9003 VTs, &InstOps[0], InstOps.size(),
9005 MachinePointerInfo(SV),
9010 Chain = VAARG.getValue(1);
9012 // Load the next argument and return it
9013 return DAG.getLoad(ArgVT, dl,
9016 MachinePointerInfo(),
9017 false, false, false, 0);
9020 SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
9021 // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9022 assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9023 SDValue Chain = Op.getOperand(0);
9024 SDValue DstPtr = Op.getOperand(1);
9025 SDValue SrcPtr = Op.getOperand(2);
9026 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9027 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9028 DebugLoc DL = Op.getDebugLoc();
9030 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9031 DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9033 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9036 // getTargetVShiftNOde - Handle vector element shifts where the shift amount
9037 // may or may not be a constant. Takes immediate version of shift as input.
9038 static SDValue getTargetVShiftNode(unsigned Opc, DebugLoc dl, EVT VT,
9039 SDValue SrcOp, SDValue ShAmt,
9040 SelectionDAG &DAG) {
9041 assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
9043 if (isa<ConstantSDNode>(ShAmt)) {
9045 default: llvm_unreachable("Unknown target vector shift node");
9049 return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9053 // Change opcode to non-immediate version
9055 default: llvm_unreachable("Unknown target vector shift node");
9056 case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
9057 case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
9058 case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
9061 // Need to build a vector containing shift amount
9062 // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
9065 ShOps[1] = DAG.getConstant(0, MVT::i32);
9066 ShOps[2] = DAG.getUNDEF(MVT::i32);
9067 ShOps[3] = DAG.getUNDEF(MVT::i32);
9068 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
9069 ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9070 return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9074 X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9075 DebugLoc dl = Op.getDebugLoc();
9076 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9078 default: return SDValue(); // Don't custom lower most intrinsics.
9079 // Comparison intrinsics.
9080 case Intrinsic::x86_sse_comieq_ss:
9081 case Intrinsic::x86_sse_comilt_ss:
9082 case Intrinsic::x86_sse_comile_ss:
9083 case Intrinsic::x86_sse_comigt_ss:
9084 case Intrinsic::x86_sse_comige_ss:
9085 case Intrinsic::x86_sse_comineq_ss:
9086 case Intrinsic::x86_sse_ucomieq_ss:
9087 case Intrinsic::x86_sse_ucomilt_ss:
9088 case Intrinsic::x86_sse_ucomile_ss:
9089 case Intrinsic::x86_sse_ucomigt_ss:
9090 case Intrinsic::x86_sse_ucomige_ss:
9091 case Intrinsic::x86_sse_ucomineq_ss:
9092 case Intrinsic::x86_sse2_comieq_sd:
9093 case Intrinsic::x86_sse2_comilt_sd:
9094 case Intrinsic::x86_sse2_comile_sd:
9095 case Intrinsic::x86_sse2_comigt_sd:
9096 case Intrinsic::x86_sse2_comige_sd:
9097 case Intrinsic::x86_sse2_comineq_sd:
9098 case Intrinsic::x86_sse2_ucomieq_sd:
9099 case Intrinsic::x86_sse2_ucomilt_sd:
9100 case Intrinsic::x86_sse2_ucomile_sd:
9101 case Intrinsic::x86_sse2_ucomigt_sd:
9102 case Intrinsic::x86_sse2_ucomige_sd:
9103 case Intrinsic::x86_sse2_ucomineq_sd: {
9105 ISD::CondCode CC = ISD::SETCC_INVALID;
9107 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
9108 case Intrinsic::x86_sse_comieq_ss:
9109 case Intrinsic::x86_sse2_comieq_sd:
9113 case Intrinsic::x86_sse_comilt_ss:
9114 case Intrinsic::x86_sse2_comilt_sd:
9118 case Intrinsic::x86_sse_comile_ss:
9119 case Intrinsic::x86_sse2_comile_sd:
9123 case Intrinsic::x86_sse_comigt_ss:
9124 case Intrinsic::x86_sse2_comigt_sd:
9128 case Intrinsic::x86_sse_comige_ss:
9129 case Intrinsic::x86_sse2_comige_sd:
9133 case Intrinsic::x86_sse_comineq_ss:
9134 case Intrinsic::x86_sse2_comineq_sd:
9138 case Intrinsic::x86_sse_ucomieq_ss:
9139 case Intrinsic::x86_sse2_ucomieq_sd:
9140 Opc = X86ISD::UCOMI;
9143 case Intrinsic::x86_sse_ucomilt_ss:
9144 case Intrinsic::x86_sse2_ucomilt_sd:
9145 Opc = X86ISD::UCOMI;
9148 case Intrinsic::x86_sse_ucomile_ss:
9149 case Intrinsic::x86_sse2_ucomile_sd:
9150 Opc = X86ISD::UCOMI;
9153 case Intrinsic::x86_sse_ucomigt_ss:
9154 case Intrinsic::x86_sse2_ucomigt_sd:
9155 Opc = X86ISD::UCOMI;
9158 case Intrinsic::x86_sse_ucomige_ss:
9159 case Intrinsic::x86_sse2_ucomige_sd:
9160 Opc = X86ISD::UCOMI;
9163 case Intrinsic::x86_sse_ucomineq_ss:
9164 case Intrinsic::x86_sse2_ucomineq_sd:
9165 Opc = X86ISD::UCOMI;
9170 SDValue LHS = Op.getOperand(1);
9171 SDValue RHS = Op.getOperand(2);
9172 unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9173 assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9174 SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9175 SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9176 DAG.getConstant(X86CC, MVT::i8), Cond);
9177 return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9179 // XOP comparison intrinsics
9180 case Intrinsic::x86_xop_vpcomltb:
9181 case Intrinsic::x86_xop_vpcomltw:
9182 case Intrinsic::x86_xop_vpcomltd:
9183 case Intrinsic::x86_xop_vpcomltq:
9184 case Intrinsic::x86_xop_vpcomltub:
9185 case Intrinsic::x86_xop_vpcomltuw:
9186 case Intrinsic::x86_xop_vpcomltud:
9187 case Intrinsic::x86_xop_vpcomltuq:
9188 case Intrinsic::x86_xop_vpcomleb:
9189 case Intrinsic::x86_xop_vpcomlew:
9190 case Intrinsic::x86_xop_vpcomled:
9191 case Intrinsic::x86_xop_vpcomleq:
9192 case Intrinsic::x86_xop_vpcomleub:
9193 case Intrinsic::x86_xop_vpcomleuw:
9194 case Intrinsic::x86_xop_vpcomleud:
9195 case Intrinsic::x86_xop_vpcomleuq:
9196 case Intrinsic::x86_xop_vpcomgtb:
9197 case Intrinsic::x86_xop_vpcomgtw:
9198 case Intrinsic::x86_xop_vpcomgtd:
9199 case Intrinsic::x86_xop_vpcomgtq:
9200 case Intrinsic::x86_xop_vpcomgtub:
9201 case Intrinsic::x86_xop_vpcomgtuw:
9202 case Intrinsic::x86_xop_vpcomgtud:
9203 case Intrinsic::x86_xop_vpcomgtuq:
9204 case Intrinsic::x86_xop_vpcomgeb:
9205 case Intrinsic::x86_xop_vpcomgew:
9206 case Intrinsic::x86_xop_vpcomged:
9207 case Intrinsic::x86_xop_vpcomgeq:
9208 case Intrinsic::x86_xop_vpcomgeub:
9209 case Intrinsic::x86_xop_vpcomgeuw:
9210 case Intrinsic::x86_xop_vpcomgeud:
9211 case Intrinsic::x86_xop_vpcomgeuq:
9212 case Intrinsic::x86_xop_vpcomeqb:
9213 case Intrinsic::x86_xop_vpcomeqw:
9214 case Intrinsic::x86_xop_vpcomeqd:
9215 case Intrinsic::x86_xop_vpcomeqq:
9216 case Intrinsic::x86_xop_vpcomequb:
9217 case Intrinsic::x86_xop_vpcomequw:
9218 case Intrinsic::x86_xop_vpcomequd:
9219 case Intrinsic::x86_xop_vpcomequq:
9220 case Intrinsic::x86_xop_vpcomneb:
9221 case Intrinsic::x86_xop_vpcomnew:
9222 case Intrinsic::x86_xop_vpcomned:
9223 case Intrinsic::x86_xop_vpcomneq:
9224 case Intrinsic::x86_xop_vpcomneub:
9225 case Intrinsic::x86_xop_vpcomneuw:
9226 case Intrinsic::x86_xop_vpcomneud:
9227 case Intrinsic::x86_xop_vpcomneuq:
9228 case Intrinsic::x86_xop_vpcomfalseb:
9229 case Intrinsic::x86_xop_vpcomfalsew:
9230 case Intrinsic::x86_xop_vpcomfalsed:
9231 case Intrinsic::x86_xop_vpcomfalseq:
9232 case Intrinsic::x86_xop_vpcomfalseub:
9233 case Intrinsic::x86_xop_vpcomfalseuw:
9234 case Intrinsic::x86_xop_vpcomfalseud:
9235 case Intrinsic::x86_xop_vpcomfalseuq:
9236 case Intrinsic::x86_xop_vpcomtrueb:
9237 case Intrinsic::x86_xop_vpcomtruew:
9238 case Intrinsic::x86_xop_vpcomtrued:
9239 case Intrinsic::x86_xop_vpcomtrueq:
9240 case Intrinsic::x86_xop_vpcomtrueub:
9241 case Intrinsic::x86_xop_vpcomtrueuw:
9242 case Intrinsic::x86_xop_vpcomtrueud:
9243 case Intrinsic::x86_xop_vpcomtrueuq: {
9248 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
9249 case Intrinsic::x86_xop_vpcomltb:
9250 case Intrinsic::x86_xop_vpcomltw:
9251 case Intrinsic::x86_xop_vpcomltd:
9252 case Intrinsic::x86_xop_vpcomltq:
9254 Opc = X86ISD::VPCOM;
9256 case Intrinsic::x86_xop_vpcomltub:
9257 case Intrinsic::x86_xop_vpcomltuw:
9258 case Intrinsic::x86_xop_vpcomltud:
9259 case Intrinsic::x86_xop_vpcomltuq:
9261 Opc = X86ISD::VPCOMU;
9263 case Intrinsic::x86_xop_vpcomleb:
9264 case Intrinsic::x86_xop_vpcomlew:
9265 case Intrinsic::x86_xop_vpcomled:
9266 case Intrinsic::x86_xop_vpcomleq:
9268 Opc = X86ISD::VPCOM;
9270 case Intrinsic::x86_xop_vpcomleub:
9271 case Intrinsic::x86_xop_vpcomleuw:
9272 case Intrinsic::x86_xop_vpcomleud:
9273 case Intrinsic::x86_xop_vpcomleuq:
9275 Opc = X86ISD::VPCOMU;
9277 case Intrinsic::x86_xop_vpcomgtb:
9278 case Intrinsic::x86_xop_vpcomgtw:
9279 case Intrinsic::x86_xop_vpcomgtd:
9280 case Intrinsic::x86_xop_vpcomgtq:
9282 Opc = X86ISD::VPCOM;
9284 case Intrinsic::x86_xop_vpcomgtub:
9285 case Intrinsic::x86_xop_vpcomgtuw:
9286 case Intrinsic::x86_xop_vpcomgtud:
9287 case Intrinsic::x86_xop_vpcomgtuq:
9289 Opc = X86ISD::VPCOMU;
9291 case Intrinsic::x86_xop_vpcomgeb:
9292 case Intrinsic::x86_xop_vpcomgew:
9293 case Intrinsic::x86_xop_vpcomged:
9294 case Intrinsic::x86_xop_vpcomgeq:
9296 Opc = X86ISD::VPCOM;
9298 case Intrinsic::x86_xop_vpcomgeub:
9299 case Intrinsic::x86_xop_vpcomgeuw:
9300 case Intrinsic::x86_xop_vpcomgeud:
9301 case Intrinsic::x86_xop_vpcomgeuq:
9303 Opc = X86ISD::VPCOMU;
9305 case Intrinsic::x86_xop_vpcomeqb:
9306 case Intrinsic::x86_xop_vpcomeqw:
9307 case Intrinsic::x86_xop_vpcomeqd:
9308 case Intrinsic::x86_xop_vpcomeqq:
9310 Opc = X86ISD::VPCOM;
9312 case Intrinsic::x86_xop_vpcomequb:
9313 case Intrinsic::x86_xop_vpcomequw:
9314 case Intrinsic::x86_xop_vpcomequd:
9315 case Intrinsic::x86_xop_vpcomequq:
9317 Opc = X86ISD::VPCOMU;
9319 case Intrinsic::x86_xop_vpcomneb:
9320 case Intrinsic::x86_xop_vpcomnew:
9321 case Intrinsic::x86_xop_vpcomned:
9322 case Intrinsic::x86_xop_vpcomneq:
9324 Opc = X86ISD::VPCOM;
9326 case Intrinsic::x86_xop_vpcomneub:
9327 case Intrinsic::x86_xop_vpcomneuw:
9328 case Intrinsic::x86_xop_vpcomneud:
9329 case Intrinsic::x86_xop_vpcomneuq:
9331 Opc = X86ISD::VPCOMU;
9333 case Intrinsic::x86_xop_vpcomfalseb:
9334 case Intrinsic::x86_xop_vpcomfalsew:
9335 case Intrinsic::x86_xop_vpcomfalsed:
9336 case Intrinsic::x86_xop_vpcomfalseq:
9338 Opc = X86ISD::VPCOM;
9340 case Intrinsic::x86_xop_vpcomfalseub:
9341 case Intrinsic::x86_xop_vpcomfalseuw:
9342 case Intrinsic::x86_xop_vpcomfalseud:
9343 case Intrinsic::x86_xop_vpcomfalseuq:
9345 Opc = X86ISD::VPCOMU;
9347 case Intrinsic::x86_xop_vpcomtrueb:
9348 case Intrinsic::x86_xop_vpcomtruew:
9349 case Intrinsic::x86_xop_vpcomtrued:
9350 case Intrinsic::x86_xop_vpcomtrueq:
9352 Opc = X86ISD::VPCOM;
9354 case Intrinsic::x86_xop_vpcomtrueub:
9355 case Intrinsic::x86_xop_vpcomtrueuw:
9356 case Intrinsic::x86_xop_vpcomtrueud:
9357 case Intrinsic::x86_xop_vpcomtrueuq:
9359 Opc = X86ISD::VPCOMU;
9363 SDValue LHS = Op.getOperand(1);
9364 SDValue RHS = Op.getOperand(2);
9365 return DAG.getNode(Opc, dl, Op.getValueType(), LHS, RHS,
9366 DAG.getConstant(CC, MVT::i8));
9369 // Arithmetic intrinsics.
9370 case Intrinsic::x86_sse2_pmulu_dq:
9371 case Intrinsic::x86_avx2_pmulu_dq:
9372 return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
9373 Op.getOperand(1), Op.getOperand(2));
9374 case Intrinsic::x86_sse3_hadd_ps:
9375 case Intrinsic::x86_sse3_hadd_pd:
9376 case Intrinsic::x86_avx_hadd_ps_256:
9377 case Intrinsic::x86_avx_hadd_pd_256:
9378 return DAG.getNode(X86ISD::FHADD, dl, Op.getValueType(),
9379 Op.getOperand(1), Op.getOperand(2));
9380 case Intrinsic::x86_sse3_hsub_ps:
9381 case Intrinsic::x86_sse3_hsub_pd:
9382 case Intrinsic::x86_avx_hsub_ps_256:
9383 case Intrinsic::x86_avx_hsub_pd_256:
9384 return DAG.getNode(X86ISD::FHSUB, dl, Op.getValueType(),
9385 Op.getOperand(1), Op.getOperand(2));
9386 case Intrinsic::x86_ssse3_phadd_w_128:
9387 case Intrinsic::x86_ssse3_phadd_d_128:
9388 case Intrinsic::x86_avx2_phadd_w:
9389 case Intrinsic::x86_avx2_phadd_d:
9390 return DAG.getNode(X86ISD::HADD, dl, Op.getValueType(),
9391 Op.getOperand(1), Op.getOperand(2));
9392 case Intrinsic::x86_ssse3_phsub_w_128:
9393 case Intrinsic::x86_ssse3_phsub_d_128:
9394 case Intrinsic::x86_avx2_phsub_w:
9395 case Intrinsic::x86_avx2_phsub_d:
9396 return DAG.getNode(X86ISD::HSUB, dl, Op.getValueType(),
9397 Op.getOperand(1), Op.getOperand(2));
9398 case Intrinsic::x86_avx2_psllv_d:
9399 case Intrinsic::x86_avx2_psllv_q:
9400 case Intrinsic::x86_avx2_psllv_d_256:
9401 case Intrinsic::x86_avx2_psllv_q_256:
9402 return DAG.getNode(ISD::SHL, dl, Op.getValueType(),
9403 Op.getOperand(1), Op.getOperand(2));
9404 case Intrinsic::x86_avx2_psrlv_d:
9405 case Intrinsic::x86_avx2_psrlv_q:
9406 case Intrinsic::x86_avx2_psrlv_d_256:
9407 case Intrinsic::x86_avx2_psrlv_q_256:
9408 return DAG.getNode(ISD::SRL, dl, Op.getValueType(),
9409 Op.getOperand(1), Op.getOperand(2));
9410 case Intrinsic::x86_avx2_psrav_d:
9411 case Intrinsic::x86_avx2_psrav_d_256:
9412 return DAG.getNode(ISD::SRA, dl, Op.getValueType(),
9413 Op.getOperand(1), Op.getOperand(2));
9414 case Intrinsic::x86_ssse3_pshuf_b_128:
9415 case Intrinsic::x86_avx2_pshuf_b:
9416 return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
9417 Op.getOperand(1), Op.getOperand(2));
9418 case Intrinsic::x86_ssse3_psign_b_128:
9419 case Intrinsic::x86_ssse3_psign_w_128:
9420 case Intrinsic::x86_ssse3_psign_d_128:
9421 case Intrinsic::x86_avx2_psign_b:
9422 case Intrinsic::x86_avx2_psign_w:
9423 case Intrinsic::x86_avx2_psign_d:
9424 return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
9425 Op.getOperand(1), Op.getOperand(2));
9426 case Intrinsic::x86_sse41_insertps:
9427 return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
9428 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9429 case Intrinsic::x86_avx_vperm2f128_ps_256:
9430 case Intrinsic::x86_avx_vperm2f128_pd_256:
9431 case Intrinsic::x86_avx_vperm2f128_si_256:
9432 case Intrinsic::x86_avx2_vperm2i128:
9433 return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
9434 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9435 case Intrinsic::x86_avx_vpermil_ps:
9436 case Intrinsic::x86_avx_vpermil_pd:
9437 case Intrinsic::x86_avx_vpermil_ps_256:
9438 case Intrinsic::x86_avx_vpermil_pd_256:
9439 return DAG.getNode(X86ISD::VPERMILP, dl, Op.getValueType(),
9440 Op.getOperand(1), Op.getOperand(2));
9442 // ptest and testp intrinsics. The intrinsic these come from are designed to
9443 // return an integer value, not just an instruction so lower it to the ptest
9444 // or testp pattern and a setcc for the result.
9445 case Intrinsic::x86_sse41_ptestz:
9446 case Intrinsic::x86_sse41_ptestc:
9447 case Intrinsic::x86_sse41_ptestnzc:
9448 case Intrinsic::x86_avx_ptestz_256:
9449 case Intrinsic::x86_avx_ptestc_256:
9450 case Intrinsic::x86_avx_ptestnzc_256:
9451 case Intrinsic::x86_avx_vtestz_ps:
9452 case Intrinsic::x86_avx_vtestc_ps:
9453 case Intrinsic::x86_avx_vtestnzc_ps:
9454 case Intrinsic::x86_avx_vtestz_pd:
9455 case Intrinsic::x86_avx_vtestc_pd:
9456 case Intrinsic::x86_avx_vtestnzc_pd:
9457 case Intrinsic::x86_avx_vtestz_ps_256:
9458 case Intrinsic::x86_avx_vtestc_ps_256:
9459 case Intrinsic::x86_avx_vtestnzc_ps_256:
9460 case Intrinsic::x86_avx_vtestz_pd_256:
9461 case Intrinsic::x86_avx_vtestc_pd_256:
9462 case Intrinsic::x86_avx_vtestnzc_pd_256: {
9463 bool IsTestPacked = false;
9466 default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9467 case Intrinsic::x86_avx_vtestz_ps:
9468 case Intrinsic::x86_avx_vtestz_pd:
9469 case Intrinsic::x86_avx_vtestz_ps_256:
9470 case Intrinsic::x86_avx_vtestz_pd_256:
9471 IsTestPacked = true; // Fallthrough
9472 case Intrinsic::x86_sse41_ptestz:
9473 case Intrinsic::x86_avx_ptestz_256:
9475 X86CC = X86::COND_E;
9477 case Intrinsic::x86_avx_vtestc_ps:
9478 case Intrinsic::x86_avx_vtestc_pd:
9479 case Intrinsic::x86_avx_vtestc_ps_256:
9480 case Intrinsic::x86_avx_vtestc_pd_256:
9481 IsTestPacked = true; // Fallthrough
9482 case Intrinsic::x86_sse41_ptestc:
9483 case Intrinsic::x86_avx_ptestc_256:
9485 X86CC = X86::COND_B;
9487 case Intrinsic::x86_avx_vtestnzc_ps:
9488 case Intrinsic::x86_avx_vtestnzc_pd:
9489 case Intrinsic::x86_avx_vtestnzc_ps_256:
9490 case Intrinsic::x86_avx_vtestnzc_pd_256:
9491 IsTestPacked = true; // Fallthrough
9492 case Intrinsic::x86_sse41_ptestnzc:
9493 case Intrinsic::x86_avx_ptestnzc_256:
9495 X86CC = X86::COND_A;
9499 SDValue LHS = Op.getOperand(1);
9500 SDValue RHS = Op.getOperand(2);
9501 unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9502 SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9503 SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9504 SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9505 return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9508 // SSE/AVX shift intrinsics
9509 case Intrinsic::x86_sse2_psll_w:
9510 case Intrinsic::x86_sse2_psll_d:
9511 case Intrinsic::x86_sse2_psll_q:
9512 case Intrinsic::x86_avx2_psll_w:
9513 case Intrinsic::x86_avx2_psll_d:
9514 case Intrinsic::x86_avx2_psll_q:
9515 return DAG.getNode(X86ISD::VSHL, dl, Op.getValueType(),
9516 Op.getOperand(1), Op.getOperand(2));
9517 case Intrinsic::x86_sse2_psrl_w:
9518 case Intrinsic::x86_sse2_psrl_d:
9519 case Intrinsic::x86_sse2_psrl_q:
9520 case Intrinsic::x86_avx2_psrl_w:
9521 case Intrinsic::x86_avx2_psrl_d:
9522 case Intrinsic::x86_avx2_psrl_q:
9523 return DAG.getNode(X86ISD::VSRL, dl, Op.getValueType(),
9524 Op.getOperand(1), Op.getOperand(2));
9525 case Intrinsic::x86_sse2_psra_w:
9526 case Intrinsic::x86_sse2_psra_d:
9527 case Intrinsic::x86_avx2_psra_w:
9528 case Intrinsic::x86_avx2_psra_d:
9529 return DAG.getNode(X86ISD::VSRA, dl, Op.getValueType(),
9530 Op.getOperand(1), Op.getOperand(2));
9531 case Intrinsic::x86_sse2_pslli_w:
9532 case Intrinsic::x86_sse2_pslli_d:
9533 case Intrinsic::x86_sse2_pslli_q:
9534 case Intrinsic::x86_avx2_pslli_w:
9535 case Intrinsic::x86_avx2_pslli_d:
9536 case Intrinsic::x86_avx2_pslli_q:
9537 return getTargetVShiftNode(X86ISD::VSHLI, dl, Op.getValueType(),
9538 Op.getOperand(1), Op.getOperand(2), DAG);
9539 case Intrinsic::x86_sse2_psrli_w:
9540 case Intrinsic::x86_sse2_psrli_d:
9541 case Intrinsic::x86_sse2_psrli_q:
9542 case Intrinsic::x86_avx2_psrli_w:
9543 case Intrinsic::x86_avx2_psrli_d:
9544 case Intrinsic::x86_avx2_psrli_q:
9545 return getTargetVShiftNode(X86ISD::VSRLI, dl, Op.getValueType(),
9546 Op.getOperand(1), Op.getOperand(2), DAG);
9547 case Intrinsic::x86_sse2_psrai_w:
9548 case Intrinsic::x86_sse2_psrai_d:
9549 case Intrinsic::x86_avx2_psrai_w:
9550 case Intrinsic::x86_avx2_psrai_d:
9551 return getTargetVShiftNode(X86ISD::VSRAI, dl, Op.getValueType(),
9552 Op.getOperand(1), Op.getOperand(2), DAG);
9553 // Fix vector shift instructions where the last operand is a non-immediate
9555 case Intrinsic::x86_mmx_pslli_w:
9556 case Intrinsic::x86_mmx_pslli_d:
9557 case Intrinsic::x86_mmx_pslli_q:
9558 case Intrinsic::x86_mmx_psrli_w:
9559 case Intrinsic::x86_mmx_psrli_d:
9560 case Intrinsic::x86_mmx_psrli_q:
9561 case Intrinsic::x86_mmx_psrai_w:
9562 case Intrinsic::x86_mmx_psrai_d: {
9563 SDValue ShAmt = Op.getOperand(2);
9564 if (isa<ConstantSDNode>(ShAmt))
9567 unsigned NewIntNo = 0;
9569 case Intrinsic::x86_mmx_pslli_w:
9570 NewIntNo = Intrinsic::x86_mmx_psll_w;
9572 case Intrinsic::x86_mmx_pslli_d:
9573 NewIntNo = Intrinsic::x86_mmx_psll_d;
9575 case Intrinsic::x86_mmx_pslli_q:
9576 NewIntNo = Intrinsic::x86_mmx_psll_q;
9578 case Intrinsic::x86_mmx_psrli_w:
9579 NewIntNo = Intrinsic::x86_mmx_psrl_w;
9581 case Intrinsic::x86_mmx_psrli_d:
9582 NewIntNo = Intrinsic::x86_mmx_psrl_d;
9584 case Intrinsic::x86_mmx_psrli_q:
9585 NewIntNo = Intrinsic::x86_mmx_psrl_q;
9587 case Intrinsic::x86_mmx_psrai_w:
9588 NewIntNo = Intrinsic::x86_mmx_psra_w;
9590 case Intrinsic::x86_mmx_psrai_d:
9591 NewIntNo = Intrinsic::x86_mmx_psra_d;
9593 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
9596 // The vector shift intrinsics with scalars uses 32b shift amounts but
9597 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
9599 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, ShAmt,
9600 DAG.getConstant(0, MVT::i32));
9601 // FIXME this must be lowered to get rid of the invalid type.
9603 EVT VT = Op.getValueType();
9604 ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9605 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9606 DAG.getConstant(NewIntNo, MVT::i32),
9607 Op.getOperand(1), ShAmt);
9612 SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
9613 SelectionDAG &DAG) const {
9614 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9615 MFI->setReturnAddressIsTaken(true);
9617 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9618 DebugLoc dl = Op.getDebugLoc();
9621 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
9623 DAG.getConstant(TD->getPointerSize(),
9624 Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9625 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9626 DAG.getNode(ISD::ADD, dl, getPointerTy(),
9628 MachinePointerInfo(), false, false, false, 0);
9631 // Just load the return address.
9632 SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
9633 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9634 RetAddrFI, MachinePointerInfo(), false, false, false, 0);
9637 SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
9638 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9639 MFI->setFrameAddressIsTaken(true);
9641 EVT VT = Op.getValueType();
9642 DebugLoc dl = Op.getDebugLoc(); // FIXME probably not meaningful
9643 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9644 unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
9645 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
9647 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
9648 MachinePointerInfo(),
9649 false, false, false, 0);
9653 SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
9654 SelectionDAG &DAG) const {
9655 return DAG.getIntPtrConstant(2*TD->getPointerSize());
9658 SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
9659 MachineFunction &MF = DAG.getMachineFunction();
9660 SDValue Chain = Op.getOperand(0);
9661 SDValue Offset = Op.getOperand(1);
9662 SDValue Handler = Op.getOperand(2);
9663 DebugLoc dl = Op.getDebugLoc();
9665 SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
9666 Subtarget->is64Bit() ? X86::RBP : X86::EBP,
9668 unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
9670 SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
9671 DAG.getIntPtrConstant(TD->getPointerSize()));
9672 StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
9673 Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
9675 Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
9676 MF.getRegInfo().addLiveOut(StoreAddrReg);
9678 return DAG.getNode(X86ISD::EH_RETURN, dl,
9680 Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
9683 SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
9684 SelectionDAG &DAG) const {
9685 return Op.getOperand(0);
9688 SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
9689 SelectionDAG &DAG) const {
9690 SDValue Root = Op.getOperand(0);
9691 SDValue Trmp = Op.getOperand(1); // trampoline
9692 SDValue FPtr = Op.getOperand(2); // nested function
9693 SDValue Nest = Op.getOperand(3); // 'nest' parameter value
9694 DebugLoc dl = Op.getDebugLoc();
9696 const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9698 if (Subtarget->is64Bit()) {
9699 SDValue OutChains[6];
9701 // Large code-model.
9702 const unsigned char JMP64r = 0xFF; // 64-bit jmp through register opcode.
9703 const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
9705 const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
9706 const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
9708 const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
9710 // Load the pointer to the nested function into R11.
9711 unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
9712 SDValue Addr = Trmp;
9713 OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9714 Addr, MachinePointerInfo(TrmpAddr),
9717 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9718 DAG.getConstant(2, MVT::i64));
9719 OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
9720 MachinePointerInfo(TrmpAddr, 2),
9723 // Load the 'nest' parameter value into R10.
9724 // R10 is specified in X86CallingConv.td
9725 OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
9726 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9727 DAG.getConstant(10, MVT::i64));
9728 OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9729 Addr, MachinePointerInfo(TrmpAddr, 10),
9732 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9733 DAG.getConstant(12, MVT::i64));
9734 OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
9735 MachinePointerInfo(TrmpAddr, 12),
9738 // Jump to the nested function.
9739 OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
9740 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9741 DAG.getConstant(20, MVT::i64));
9742 OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9743 Addr, MachinePointerInfo(TrmpAddr, 20),
9746 unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
9747 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9748 DAG.getConstant(22, MVT::i64));
9749 OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
9750 MachinePointerInfo(TrmpAddr, 22),
9753 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
9755 const Function *Func =
9756 cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
9757 CallingConv::ID CC = Func->getCallingConv();
9762 llvm_unreachable("Unsupported calling convention");
9763 case CallingConv::C:
9764 case CallingConv::X86_StdCall: {
9765 // Pass 'nest' parameter in ECX.
9766 // Must be kept in sync with X86CallingConv.td
9769 // Check that ECX wasn't needed by an 'inreg' parameter.
9770 FunctionType *FTy = Func->getFunctionType();
9771 const AttrListPtr &Attrs = Func->getAttributes();
9773 if (!Attrs.isEmpty() && !Func->isVarArg()) {
9774 unsigned InRegCount = 0;
9777 for (FunctionType::param_iterator I = FTy->param_begin(),
9778 E = FTy->param_end(); I != E; ++I, ++Idx)
9779 if (Attrs.paramHasAttr(Idx, Attribute::InReg))
9780 // FIXME: should only count parameters that are lowered to integers.
9781 InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
9783 if (InRegCount > 2) {
9784 report_fatal_error("Nest register in use - reduce number of inreg"
9790 case CallingConv::X86_FastCall:
9791 case CallingConv::X86_ThisCall:
9792 case CallingConv::Fast:
9793 // Pass 'nest' parameter in EAX.
9794 // Must be kept in sync with X86CallingConv.td
9799 SDValue OutChains[4];
9802 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9803 DAG.getConstant(10, MVT::i32));
9804 Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
9806 // This is storing the opcode for MOV32ri.
9807 const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
9808 const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
9809 OutChains[0] = DAG.getStore(Root, dl,
9810 DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
9811 Trmp, MachinePointerInfo(TrmpAddr),
9814 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9815 DAG.getConstant(1, MVT::i32));
9816 OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
9817 MachinePointerInfo(TrmpAddr, 1),
9820 const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
9821 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9822 DAG.getConstant(5, MVT::i32));
9823 OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
9824 MachinePointerInfo(TrmpAddr, 5),
9827 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9828 DAG.getConstant(6, MVT::i32));
9829 OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
9830 MachinePointerInfo(TrmpAddr, 6),
9833 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
9837 SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
9838 SelectionDAG &DAG) const {
9840 The rounding mode is in bits 11:10 of FPSR, and has the following
9847 FLT_ROUNDS, on the other hand, expects the following:
9854 To perform the conversion, we do:
9855 (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
9858 MachineFunction &MF = DAG.getMachineFunction();
9859 const TargetMachine &TM = MF.getTarget();
9860 const TargetFrameLowering &TFI = *TM.getFrameLowering();
9861 unsigned StackAlignment = TFI.getStackAlignment();
9862 EVT VT = Op.getValueType();
9863 DebugLoc DL = Op.getDebugLoc();
9865 // Save FP Control Word to stack slot
9866 int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
9867 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
9870 MachineMemOperand *MMO =
9871 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
9872 MachineMemOperand::MOStore, 2, 2);
9874 SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
9875 SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
9876 DAG.getVTList(MVT::Other),
9877 Ops, 2, MVT::i16, MMO);
9879 // Load FP Control Word from stack slot
9880 SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
9881 MachinePointerInfo(), false, false, false, 0);
9883 // Transform as necessary
9885 DAG.getNode(ISD::SRL, DL, MVT::i16,
9886 DAG.getNode(ISD::AND, DL, MVT::i16,
9887 CWD, DAG.getConstant(0x800, MVT::i16)),
9888 DAG.getConstant(11, MVT::i8));
9890 DAG.getNode(ISD::SRL, DL, MVT::i16,
9891 DAG.getNode(ISD::AND, DL, MVT::i16,
9892 CWD, DAG.getConstant(0x400, MVT::i16)),
9893 DAG.getConstant(9, MVT::i8));
9896 DAG.getNode(ISD::AND, DL, MVT::i16,
9897 DAG.getNode(ISD::ADD, DL, MVT::i16,
9898 DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
9899 DAG.getConstant(1, MVT::i16)),
9900 DAG.getConstant(3, MVT::i16));
9903 return DAG.getNode((VT.getSizeInBits() < 16 ?
9904 ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
9907 SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
9908 EVT VT = Op.getValueType();
9910 unsigned NumBits = VT.getSizeInBits();
9911 DebugLoc dl = Op.getDebugLoc();
9913 Op = Op.getOperand(0);
9914 if (VT == MVT::i8) {
9915 // Zero extend to i32 since there is not an i8 bsr.
9917 Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9920 // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
9921 SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9922 Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
9924 // If src is zero (i.e. bsr sets ZF), returns NumBits.
9927 DAG.getConstant(NumBits+NumBits-1, OpVT),
9928 DAG.getConstant(X86::COND_E, MVT::i8),
9931 Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9933 // Finally xor with NumBits-1.
9934 Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
9937 Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9941 SDValue X86TargetLowering::LowerCTLZ_ZERO_UNDEF(SDValue Op,
9942 SelectionDAG &DAG) const {
9943 EVT VT = Op.getValueType();
9945 unsigned NumBits = VT.getSizeInBits();
9946 DebugLoc dl = Op.getDebugLoc();
9948 Op = Op.getOperand(0);
9949 if (VT == MVT::i8) {
9950 // Zero extend to i32 since there is not an i8 bsr.
9952 Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9955 // Issue a bsr (scan bits in reverse).
9956 SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9957 Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
9959 // And xor with NumBits-1.
9960 Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
9963 Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9967 SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
9968 EVT VT = Op.getValueType();
9969 unsigned NumBits = VT.getSizeInBits();
9970 DebugLoc dl = Op.getDebugLoc();
9971 Op = Op.getOperand(0);
9973 // Issue a bsf (scan bits forward) which also sets EFLAGS.
9974 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
9975 Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
9977 // If src is zero (i.e. bsf sets ZF), returns NumBits.
9980 DAG.getConstant(NumBits, VT),
9981 DAG.getConstant(X86::COND_E, MVT::i8),
9984 return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
9987 // Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
9988 // ones, and then concatenate the result back.
9989 static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
9990 EVT VT = Op.getValueType();
9992 assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
9993 "Unsupported value type for operation");
9995 int NumElems = VT.getVectorNumElements();
9996 DebugLoc dl = Op.getDebugLoc();
9997 SDValue Idx0 = DAG.getConstant(0, MVT::i32);
9998 SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
10000 // Extract the LHS vectors
10001 SDValue LHS = Op.getOperand(0);
10002 SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
10003 SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
10005 // Extract the RHS vectors
10006 SDValue RHS = Op.getOperand(1);
10007 SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
10008 SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
10010 MVT EltVT = VT.getVectorElementType().getSimpleVT();
10011 EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10013 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
10014 DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
10015 DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
10018 SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
10019 assert(Op.getValueType().getSizeInBits() == 256 &&
10020 Op.getValueType().isInteger() &&
10021 "Only handle AVX 256-bit vector integer operation");
10022 return Lower256IntArith(Op, DAG);
10025 SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
10026 assert(Op.getValueType().getSizeInBits() == 256 &&
10027 Op.getValueType().isInteger() &&
10028 "Only handle AVX 256-bit vector integer operation");
10029 return Lower256IntArith(Op, DAG);
10032 SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10033 EVT VT = Op.getValueType();
10035 // Decompose 256-bit ops into smaller 128-bit ops.
10036 if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
10037 return Lower256IntArith(Op, DAG);
10039 assert((VT == MVT::v2i64 || VT == MVT::v4i64) &&
10040 "Only know how to lower V2I64/V4I64 multiply");
10042 DebugLoc dl = Op.getDebugLoc();
10044 // Ahi = psrlqi(a, 32);
10045 // Bhi = psrlqi(b, 32);
10047 // AloBlo = pmuludq(a, b);
10048 // AloBhi = pmuludq(a, Bhi);
10049 // AhiBlo = pmuludq(Ahi, b);
10051 // AloBhi = psllqi(AloBhi, 32);
10052 // AhiBlo = psllqi(AhiBlo, 32);
10053 // return AloBlo + AloBhi + AhiBlo;
10055 SDValue A = Op.getOperand(0);
10056 SDValue B = Op.getOperand(1);
10058 SDValue ShAmt = DAG.getConstant(32, MVT::i32);
10060 SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A, ShAmt);
10061 SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B, ShAmt);
10063 // Bit cast to 32-bit vectors for MULUDQ
10064 EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : MVT::v8i32;
10065 A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
10066 B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
10067 Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
10068 Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
10070 SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
10071 SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
10072 SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
10074 AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi, ShAmt);
10075 AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo, ShAmt);
10077 SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10078 return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10081 SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
10083 EVT VT = Op.getValueType();
10084 DebugLoc dl = Op.getDebugLoc();
10085 SDValue R = Op.getOperand(0);
10086 SDValue Amt = Op.getOperand(1);
10087 LLVMContext *Context = DAG.getContext();
10089 if (!Subtarget->hasSSE2())
10092 // Optimize shl/srl/sra with constant shift amount.
10093 if (isSplatVector(Amt.getNode())) {
10094 SDValue SclrAmt = Amt->getOperand(0);
10095 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
10096 uint64_t ShiftAmt = C->getZExtValue();
10098 if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10099 (Subtarget->hasAVX2() &&
10100 (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) {
10101 if (Op.getOpcode() == ISD::SHL)
10102 return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
10103 DAG.getConstant(ShiftAmt, MVT::i32));
10104 if (Op.getOpcode() == ISD::SRL)
10105 return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
10106 DAG.getConstant(ShiftAmt, MVT::i32));
10107 if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
10108 return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
10109 DAG.getConstant(ShiftAmt, MVT::i32));
10112 if (VT == MVT::v16i8) {
10113 if (Op.getOpcode() == ISD::SHL) {
10114 // Make a large shift.
10115 SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R,
10116 DAG.getConstant(ShiftAmt, MVT::i32));
10117 SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10118 // Zero out the rightmost bits.
10119 SmallVector<SDValue, 16> V(16,
10120 DAG.getConstant(uint8_t(-1U << ShiftAmt),
10122 return DAG.getNode(ISD::AND, dl, VT, SHL,
10123 DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10125 if (Op.getOpcode() == ISD::SRL) {
10126 // Make a large shift.
10127 SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R,
10128 DAG.getConstant(ShiftAmt, MVT::i32));
10129 SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10130 // Zero out the leftmost bits.
10131 SmallVector<SDValue, 16> V(16,
10132 DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10134 return DAG.getNode(ISD::AND, dl, VT, SRL,
10135 DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10137 if (Op.getOpcode() == ISD::SRA) {
10138 if (ShiftAmt == 7) {
10139 // R s>> 7 === R s< 0
10140 SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10141 return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10144 // R s>> a === ((R u>> a) ^ m) - m
10145 SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10146 SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
10148 SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
10149 Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10150 Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10155 if (Subtarget->hasAVX2() && VT == MVT::v32i8) {
10156 if (Op.getOpcode() == ISD::SHL) {
10157 // Make a large shift.
10158 SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R,
10159 DAG.getConstant(ShiftAmt, MVT::i32));
10160 SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10161 // Zero out the rightmost bits.
10162 SmallVector<SDValue, 32> V(32,
10163 DAG.getConstant(uint8_t(-1U << ShiftAmt),
10165 return DAG.getNode(ISD::AND, dl, VT, SHL,
10166 DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10168 if (Op.getOpcode() == ISD::SRL) {
10169 // Make a large shift.
10170 SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R,
10171 DAG.getConstant(ShiftAmt, MVT::i32));
10172 SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10173 // Zero out the leftmost bits.
10174 SmallVector<SDValue, 32> V(32,
10175 DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10177 return DAG.getNode(ISD::AND, dl, VT, SRL,
10178 DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10180 if (Op.getOpcode() == ISD::SRA) {
10181 if (ShiftAmt == 7) {
10182 // R s>> 7 === R s< 0
10183 SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10184 return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10187 // R s>> a === ((R u>> a) ^ m) - m
10188 SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10189 SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
10191 SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
10192 Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10193 Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10200 // Lower SHL with variable shift amount.
10201 if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
10202 Op = DAG.getNode(X86ISD::VSHLI, dl, VT, Op.getOperand(1),
10203 DAG.getConstant(23, MVT::i32));
10205 const uint32_t CV[] = { 0x3f800000U, 0x3f800000U, 0x3f800000U, 0x3f800000U};
10206 Constant *C = ConstantDataVector::get(*Context, CV);
10207 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10208 SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10209 MachinePointerInfo::getConstantPool(),
10210 false, false, false, 16);
10212 Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
10213 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
10214 Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
10215 return DAG.getNode(ISD::MUL, dl, VT, Op, R);
10217 if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
10218 assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
10221 Op = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, Op.getOperand(1),
10222 DAG.getConstant(5, MVT::i32));
10223 Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
10225 // Turn 'a' into a mask suitable for VSELECT
10226 SDValue VSelM = DAG.getConstant(0x80, VT);
10227 SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10228 OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10230 SDValue CM1 = DAG.getConstant(0x0f, VT);
10231 SDValue CM2 = DAG.getConstant(0x3f, VT);
10233 // r = VSELECT(r, psllw(r & (char16)15, 4), a);
10234 SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
10235 M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10236 DAG.getConstant(4, MVT::i32), DAG);
10237 M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10238 R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10241 Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10242 OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10243 OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10245 // r = VSELECT(r, psllw(r & (char16)63, 2), a);
10246 M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
10247 M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10248 DAG.getConstant(2, MVT::i32), DAG);
10249 M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10250 R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10253 Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10254 OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10255 OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10257 // return VSELECT(r, r+r, a);
10258 R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
10259 DAG.getNode(ISD::ADD, dl, VT, R, R), R);
10263 // Decompose 256-bit shifts into smaller 128-bit shifts.
10264 if (VT.getSizeInBits() == 256) {
10265 unsigned NumElems = VT.getVectorNumElements();
10266 MVT EltVT = VT.getVectorElementType().getSimpleVT();
10267 EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10269 // Extract the two vectors
10270 SDValue V1 = Extract128BitVector(R, DAG.getConstant(0, MVT::i32), DAG, dl);
10271 SDValue V2 = Extract128BitVector(R, DAG.getConstant(NumElems/2, MVT::i32),
10274 // Recreate the shift amount vectors
10275 SDValue Amt1, Amt2;
10276 if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
10277 // Constant shift amount
10278 SmallVector<SDValue, 4> Amt1Csts;
10279 SmallVector<SDValue, 4> Amt2Csts;
10280 for (unsigned i = 0; i != NumElems/2; ++i)
10281 Amt1Csts.push_back(Amt->getOperand(i));
10282 for (unsigned i = NumElems/2; i != NumElems; ++i)
10283 Amt2Csts.push_back(Amt->getOperand(i));
10285 Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10286 &Amt1Csts[0], NumElems/2);
10287 Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10288 &Amt2Csts[0], NumElems/2);
10290 // Variable shift amount
10291 Amt1 = Extract128BitVector(Amt, DAG.getConstant(0, MVT::i32), DAG, dl);
10292 Amt2 = Extract128BitVector(Amt, DAG.getConstant(NumElems/2, MVT::i32),
10296 // Issue new vector shifts for the smaller types
10297 V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
10298 V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
10300 // Concatenate the result back
10301 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
10307 SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
10308 // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
10309 // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
10310 // looks for this combo and may remove the "setcc" instruction if the "setcc"
10311 // has only one use.
10312 SDNode *N = Op.getNode();
10313 SDValue LHS = N->getOperand(0);
10314 SDValue RHS = N->getOperand(1);
10315 unsigned BaseOp = 0;
10317 DebugLoc DL = Op.getDebugLoc();
10318 switch (Op.getOpcode()) {
10319 default: llvm_unreachable("Unknown ovf instruction!");
10321 // A subtract of one will be selected as a INC. Note that INC doesn't
10322 // set CF, so we can't do this for UADDO.
10323 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10325 BaseOp = X86ISD::INC;
10326 Cond = X86::COND_O;
10329 BaseOp = X86ISD::ADD;
10330 Cond = X86::COND_O;
10333 BaseOp = X86ISD::ADD;
10334 Cond = X86::COND_B;
10337 // A subtract of one will be selected as a DEC. Note that DEC doesn't
10338 // set CF, so we can't do this for USUBO.
10339 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10341 BaseOp = X86ISD::DEC;
10342 Cond = X86::COND_O;
10345 BaseOp = X86ISD::SUB;
10346 Cond = X86::COND_O;
10349 BaseOp = X86ISD::SUB;
10350 Cond = X86::COND_B;
10353 BaseOp = X86ISD::SMUL;
10354 Cond = X86::COND_O;
10356 case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
10357 SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
10359 SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
10362 DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10363 DAG.getConstant(X86::COND_O, MVT::i32),
10364 SDValue(Sum.getNode(), 2));
10366 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10370 // Also sets EFLAGS.
10371 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
10372 SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
10375 DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
10376 DAG.getConstant(Cond, MVT::i32),
10377 SDValue(Sum.getNode(), 1));
10379 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10382 SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
10383 SelectionDAG &DAG) const {
10384 DebugLoc dl = Op.getDebugLoc();
10385 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
10386 EVT VT = Op.getValueType();
10388 if (!Subtarget->hasSSE2() || !VT.isVector())
10391 unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
10392 ExtraVT.getScalarType().getSizeInBits();
10393 SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
10395 switch (VT.getSimpleVT().SimpleTy) {
10396 default: return SDValue();
10399 if (!Subtarget->hasAVX())
10401 if (!Subtarget->hasAVX2()) {
10402 // needs to be split
10403 int NumElems = VT.getVectorNumElements();
10404 SDValue Idx0 = DAG.getConstant(0, MVT::i32);
10405 SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
10407 // Extract the LHS vectors
10408 SDValue LHS = Op.getOperand(0);
10409 SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
10410 SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
10412 MVT EltVT = VT.getVectorElementType().getSimpleVT();
10413 EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10415 EVT ExtraEltVT = ExtraVT.getVectorElementType();
10416 int ExtraNumElems = ExtraVT.getVectorNumElements();
10417 ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
10419 SDValue Extra = DAG.getValueType(ExtraVT);
10421 LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
10422 LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
10424 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);;
10429 SDValue Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT,
10430 Op.getOperand(0), ShAmt, DAG);
10431 return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG);
10437 SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
10438 DebugLoc dl = Op.getDebugLoc();
10440 // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10441 // There isn't any reason to disable it if the target processor supports it.
10442 if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
10443 SDValue Chain = Op.getOperand(0);
10444 SDValue Zero = DAG.getConstant(0, MVT::i32);
10446 DAG.getRegister(X86::ESP, MVT::i32), // Base
10447 DAG.getTargetConstant(1, MVT::i8), // Scale
10448 DAG.getRegister(0, MVT::i32), // Index
10449 DAG.getTargetConstant(0, MVT::i32), // Disp
10450 DAG.getRegister(0, MVT::i32), // Segment.
10455 DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10456 array_lengthof(Ops));
10457 return SDValue(Res, 0);
10460 unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10462 return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10464 unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10465 unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10466 unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10467 unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10469 // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10470 if (!Op1 && !Op2 && !Op3 && Op4)
10471 return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10473 // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10474 if (Op1 && !Op2 && !Op3 && !Op4)
10475 return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10477 // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10479 return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10482 SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10483 SelectionDAG &DAG) const {
10484 DebugLoc dl = Op.getDebugLoc();
10485 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10486 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10487 SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10488 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10490 // The only fence that needs an instruction is a sequentially-consistent
10491 // cross-thread fence.
10492 if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
10493 // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
10494 // no-sse2). There isn't any reason to disable it if the target processor
10496 if (Subtarget->hasSSE2() || Subtarget->is64Bit())
10497 return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10499 SDValue Chain = Op.getOperand(0);
10500 SDValue Zero = DAG.getConstant(0, MVT::i32);
10502 DAG.getRegister(X86::ESP, MVT::i32), // Base
10503 DAG.getTargetConstant(1, MVT::i8), // Scale
10504 DAG.getRegister(0, MVT::i32), // Index
10505 DAG.getTargetConstant(0, MVT::i32), // Disp
10506 DAG.getRegister(0, MVT::i32), // Segment.
10511 DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10512 array_lengthof(Ops));
10513 return SDValue(Res, 0);
10516 // MEMBARRIER is a compiler barrier; it codegens to a no-op.
10517 return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10521 SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10522 EVT T = Op.getValueType();
10523 DebugLoc DL = Op.getDebugLoc();
10526 switch(T.getSimpleVT().SimpleTy) {
10527 default: llvm_unreachable("Invalid value type!");
10528 case MVT::i8: Reg = X86::AL; size = 1; break;
10529 case MVT::i16: Reg = X86::AX; size = 2; break;
10530 case MVT::i32: Reg = X86::EAX; size = 4; break;
10532 assert(Subtarget->is64Bit() && "Node not type legal!");
10533 Reg = X86::RAX; size = 8;
10536 SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
10537 Op.getOperand(2), SDValue());
10538 SDValue Ops[] = { cpIn.getValue(0),
10541 DAG.getTargetConstant(size, MVT::i8),
10542 cpIn.getValue(1) };
10543 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10544 MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
10545 SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
10548 DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
10552 SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
10553 SelectionDAG &DAG) const {
10554 assert(Subtarget->is64Bit() && "Result not type legalized?");
10555 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10556 SDValue TheChain = Op.getOperand(0);
10557 DebugLoc dl = Op.getDebugLoc();
10558 SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10559 SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
10560 SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
10562 SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
10563 DAG.getConstant(32, MVT::i8));
10565 DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
10568 return DAG.getMergeValues(Ops, 2, dl);
10571 SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
10572 SelectionDAG &DAG) const {
10573 EVT SrcVT = Op.getOperand(0).getValueType();
10574 EVT DstVT = Op.getValueType();
10575 assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
10576 Subtarget->hasMMX() && "Unexpected custom BITCAST");
10577 assert((DstVT == MVT::i64 ||
10578 (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
10579 "Unexpected custom BITCAST");
10580 // i64 <=> MMX conversions are Legal.
10581 if (SrcVT==MVT::i64 && DstVT.isVector())
10583 if (DstVT==MVT::i64 && SrcVT.isVector())
10585 // MMX <=> MMX conversions are Legal.
10586 if (SrcVT.isVector() && DstVT.isVector())
10588 // All other conversions need to be expanded.
10592 SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
10593 SDNode *Node = Op.getNode();
10594 DebugLoc dl = Node->getDebugLoc();
10595 EVT T = Node->getValueType(0);
10596 SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
10597 DAG.getConstant(0, T), Node->getOperand(2));
10598 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
10599 cast<AtomicSDNode>(Node)->getMemoryVT(),
10600 Node->getOperand(0),
10601 Node->getOperand(1), negOp,
10602 cast<AtomicSDNode>(Node)->getSrcValue(),
10603 cast<AtomicSDNode>(Node)->getAlignment(),
10604 cast<AtomicSDNode>(Node)->getOrdering(),
10605 cast<AtomicSDNode>(Node)->getSynchScope());
10608 static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
10609 SDNode *Node = Op.getNode();
10610 DebugLoc dl = Node->getDebugLoc();
10611 EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10613 // Convert seq_cst store -> xchg
10614 // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
10615 // FIXME: On 32-bit, store -> fist or movq would be more efficient
10616 // (The only way to get a 16-byte store is cmpxchg16b)
10617 // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
10618 if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
10619 !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10620 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
10621 cast<AtomicSDNode>(Node)->getMemoryVT(),
10622 Node->getOperand(0),
10623 Node->getOperand(1), Node->getOperand(2),
10624 cast<AtomicSDNode>(Node)->getMemOperand(),
10625 cast<AtomicSDNode>(Node)->getOrdering(),
10626 cast<AtomicSDNode>(Node)->getSynchScope());
10627 return Swap.getValue(1);
10629 // Other atomic stores have a simple pattern.
10633 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
10634 EVT VT = Op.getNode()->getValueType(0);
10636 // Let legalize expand this if it isn't a legal type yet.
10637 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10640 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10643 bool ExtraOp = false;
10644 switch (Op.getOpcode()) {
10645 default: llvm_unreachable("Invalid code");
10646 case ISD::ADDC: Opc = X86ISD::ADD; break;
10647 case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
10648 case ISD::SUBC: Opc = X86ISD::SUB; break;
10649 case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
10653 return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10655 return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10656 Op.getOperand(1), Op.getOperand(2));
10659 /// LowerOperation - Provide custom lowering hooks for some operations.
10661 SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10662 switch (Op.getOpcode()) {
10663 default: llvm_unreachable("Should not custom lower this!");
10664 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op,DAG);
10665 case ISD::MEMBARRIER: return LowerMEMBARRIER(Op,DAG);
10666 case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op,DAG);
10667 case ISD::ATOMIC_CMP_SWAP: return LowerCMP_SWAP(Op,DAG);
10668 case ISD::ATOMIC_LOAD_SUB: return LowerLOAD_SUB(Op,DAG);
10669 case ISD::ATOMIC_STORE: return LowerATOMIC_STORE(Op,DAG);
10670 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
10671 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
10672 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
10673 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10674 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
10675 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
10676 case ISD::INSERT_SUBVECTOR: return LowerINSERT_SUBVECTOR(Op, DAG);
10677 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
10678 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
10679 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
10680 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
10681 case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
10682 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
10683 case ISD::SHL_PARTS:
10684 case ISD::SRA_PARTS:
10685 case ISD::SRL_PARTS: return LowerShiftParts(Op, DAG);
10686 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
10687 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
10688 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
10689 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
10690 case ISD::FABS: return LowerFABS(Op, DAG);
10691 case ISD::FNEG: return LowerFNEG(Op, DAG);
10692 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
10693 case ISD::FGETSIGN: return LowerFGETSIGN(Op, DAG);
10694 case ISD::SETCC: return LowerSETCC(Op, DAG);
10695 case ISD::SELECT: return LowerSELECT(Op, DAG);
10696 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
10697 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
10698 case ISD::VASTART: return LowerVASTART(Op, DAG);
10699 case ISD::VAARG: return LowerVAARG(Op, DAG);
10700 case ISD::VACOPY: return LowerVACOPY(Op, DAG);
10701 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10702 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
10703 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
10704 case ISD::FRAME_TO_ARGS_OFFSET:
10705 return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
10706 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10707 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
10708 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG);
10709 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG);
10710 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
10711 case ISD::CTLZ: return LowerCTLZ(Op, DAG);
10712 case ISD::CTLZ_ZERO_UNDEF: return LowerCTLZ_ZERO_UNDEF(Op, DAG);
10713 case ISD::CTTZ: return LowerCTTZ(Op, DAG);
10714 case ISD::MUL: return LowerMUL(Op, DAG);
10717 case ISD::SHL: return LowerShift(Op, DAG);
10723 case ISD::UMULO: return LowerXALUO(Op, DAG);
10724 case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, DAG);
10725 case ISD::BITCAST: return LowerBITCAST(Op, DAG);
10729 case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
10730 case ISD::ADD: return LowerADD(Op, DAG);
10731 case ISD::SUB: return LowerSUB(Op, DAG);
10735 static void ReplaceATOMIC_LOAD(SDNode *Node,
10736 SmallVectorImpl<SDValue> &Results,
10737 SelectionDAG &DAG) {
10738 DebugLoc dl = Node->getDebugLoc();
10739 EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10741 // Convert wide load -> cmpxchg8b/cmpxchg16b
10742 // FIXME: On 32-bit, load -> fild or movq would be more efficient
10743 // (The only way to get a 16-byte load is cmpxchg16b)
10744 // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
10745 SDValue Zero = DAG.getConstant(0, VT);
10746 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
10747 Node->getOperand(0),
10748 Node->getOperand(1), Zero, Zero,
10749 cast<AtomicSDNode>(Node)->getMemOperand(),
10750 cast<AtomicSDNode>(Node)->getOrdering(),
10751 cast<AtomicSDNode>(Node)->getSynchScope());
10752 Results.push_back(Swap.getValue(0));
10753 Results.push_back(Swap.getValue(1));
10756 void X86TargetLowering::
10757 ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
10758 SelectionDAG &DAG, unsigned NewOp) const {
10759 DebugLoc dl = Node->getDebugLoc();
10760 assert (Node->getValueType(0) == MVT::i64 &&
10761 "Only know how to expand i64 atomics");
10763 SDValue Chain = Node->getOperand(0);
10764 SDValue In1 = Node->getOperand(1);
10765 SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10766 Node->getOperand(2), DAG.getIntPtrConstant(0));
10767 SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10768 Node->getOperand(2), DAG.getIntPtrConstant(1));
10769 SDValue Ops[] = { Chain, In1, In2L, In2H };
10770 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10772 DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
10773 cast<MemSDNode>(Node)->getMemOperand());
10774 SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
10775 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
10776 Results.push_back(Result.getValue(2));
10779 /// ReplaceNodeResults - Replace a node with an illegal result type
10780 /// with a new node built out of custom code.
10781 void X86TargetLowering::ReplaceNodeResults(SDNode *N,
10782 SmallVectorImpl<SDValue>&Results,
10783 SelectionDAG &DAG) const {
10784 DebugLoc dl = N->getDebugLoc();
10785 switch (N->getOpcode()) {
10787 llvm_unreachable("Do not know how to custom type legalize this operation!");
10788 case ISD::SIGN_EXTEND_INREG:
10793 // We don't want to expand or promote these.
10795 case ISD::FP_TO_SINT:
10796 case ISD::FP_TO_UINT: {
10797 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
10799 if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
10802 std::pair<SDValue,SDValue> Vals =
10803 FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
10804 SDValue FIST = Vals.first, StackSlot = Vals.second;
10805 if (FIST.getNode() != 0) {
10806 EVT VT = N->getValueType(0);
10807 // Return a load from the stack slot.
10808 if (StackSlot.getNode() != 0)
10809 Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
10810 MachinePointerInfo(),
10811 false, false, false, 0));
10813 Results.push_back(FIST);
10817 case ISD::READCYCLECOUNTER: {
10818 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10819 SDValue TheChain = N->getOperand(0);
10820 SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10821 SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
10823 SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
10825 // Use a buildpair to merge the two 32-bit values into a 64-bit one.
10826 SDValue Ops[] = { eax, edx };
10827 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
10828 Results.push_back(edx.getValue(1));
10831 case ISD::ATOMIC_CMP_SWAP: {
10832 EVT T = N->getValueType(0);
10833 assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
10834 bool Regs64bit = T == MVT::i128;
10835 EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
10836 SDValue cpInL, cpInH;
10837 cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10838 DAG.getConstant(0, HalfT));
10839 cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10840 DAG.getConstant(1, HalfT));
10841 cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
10842 Regs64bit ? X86::RAX : X86::EAX,
10844 cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
10845 Regs64bit ? X86::RDX : X86::EDX,
10846 cpInH, cpInL.getValue(1));
10847 SDValue swapInL, swapInH;
10848 swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10849 DAG.getConstant(0, HalfT));
10850 swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10851 DAG.getConstant(1, HalfT));
10852 swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
10853 Regs64bit ? X86::RBX : X86::EBX,
10854 swapInL, cpInH.getValue(1));
10855 swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
10856 Regs64bit ? X86::RCX : X86::ECX,
10857 swapInH, swapInL.getValue(1));
10858 SDValue Ops[] = { swapInH.getValue(0),
10860 swapInH.getValue(1) };
10861 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10862 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
10863 unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
10864 X86ISD::LCMPXCHG8_DAG;
10865 SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
10867 SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
10868 Regs64bit ? X86::RAX : X86::EAX,
10869 HalfT, Result.getValue(1));
10870 SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
10871 Regs64bit ? X86::RDX : X86::EDX,
10872 HalfT, cpOutL.getValue(2));
10873 SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
10874 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
10875 Results.push_back(cpOutH.getValue(1));
10878 case ISD::ATOMIC_LOAD_ADD:
10879 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
10881 case ISD::ATOMIC_LOAD_AND:
10882 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
10884 case ISD::ATOMIC_LOAD_NAND:
10885 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
10887 case ISD::ATOMIC_LOAD_OR:
10888 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
10890 case ISD::ATOMIC_LOAD_SUB:
10891 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
10893 case ISD::ATOMIC_LOAD_XOR:
10894 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
10896 case ISD::ATOMIC_SWAP:
10897 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
10899 case ISD::ATOMIC_LOAD:
10900 ReplaceATOMIC_LOAD(N, Results, DAG);
10904 const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
10906 default: return NULL;
10907 case X86ISD::BSF: return "X86ISD::BSF";
10908 case X86ISD::BSR: return "X86ISD::BSR";
10909 case X86ISD::SHLD: return "X86ISD::SHLD";
10910 case X86ISD::SHRD: return "X86ISD::SHRD";
10911 case X86ISD::FAND: return "X86ISD::FAND";
10912 case X86ISD::FOR: return "X86ISD::FOR";
10913 case X86ISD::FXOR: return "X86ISD::FXOR";
10914 case X86ISD::FSRL: return "X86ISD::FSRL";
10915 case X86ISD::FILD: return "X86ISD::FILD";
10916 case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG";
10917 case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
10918 case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
10919 case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
10920 case X86ISD::FLD: return "X86ISD::FLD";
10921 case X86ISD::FST: return "X86ISD::FST";
10922 case X86ISD::CALL: return "X86ISD::CALL";
10923 case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG";
10924 case X86ISD::BT: return "X86ISD::BT";
10925 case X86ISD::CMP: return "X86ISD::CMP";
10926 case X86ISD::COMI: return "X86ISD::COMI";
10927 case X86ISD::UCOMI: return "X86ISD::UCOMI";
10928 case X86ISD::SETCC: return "X86ISD::SETCC";
10929 case X86ISD::SETCC_CARRY: return "X86ISD::SETCC_CARRY";
10930 case X86ISD::FSETCCsd: return "X86ISD::FSETCCsd";
10931 case X86ISD::FSETCCss: return "X86ISD::FSETCCss";
10932 case X86ISD::CMOV: return "X86ISD::CMOV";
10933 case X86ISD::BRCOND: return "X86ISD::BRCOND";
10934 case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG";
10935 case X86ISD::REP_STOS: return "X86ISD::REP_STOS";
10936 case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS";
10937 case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg";
10938 case X86ISD::Wrapper: return "X86ISD::Wrapper";
10939 case X86ISD::WrapperRIP: return "X86ISD::WrapperRIP";
10940 case X86ISD::PEXTRB: return "X86ISD::PEXTRB";
10941 case X86ISD::PEXTRW: return "X86ISD::PEXTRW";
10942 case X86ISD::INSERTPS: return "X86ISD::INSERTPS";
10943 case X86ISD::PINSRB: return "X86ISD::PINSRB";
10944 case X86ISD::PINSRW: return "X86ISD::PINSRW";
10945 case X86ISD::PSHUFB: return "X86ISD::PSHUFB";
10946 case X86ISD::ANDNP: return "X86ISD::ANDNP";
10947 case X86ISD::PSIGN: return "X86ISD::PSIGN";
10948 case X86ISD::BLENDV: return "X86ISD::BLENDV";
10949 case X86ISD::HADD: return "X86ISD::HADD";
10950 case X86ISD::HSUB: return "X86ISD::HSUB";
10951 case X86ISD::FHADD: return "X86ISD::FHADD";
10952 case X86ISD::FHSUB: return "X86ISD::FHSUB";
10953 case X86ISD::FMAX: return "X86ISD::FMAX";
10954 case X86ISD::FMIN: return "X86ISD::FMIN";
10955 case X86ISD::FRSQRT: return "X86ISD::FRSQRT";
10956 case X86ISD::FRCP: return "X86ISD::FRCP";
10957 case X86ISD::TLSADDR: return "X86ISD::TLSADDR";
10958 case X86ISD::TLSCALL: return "X86ISD::TLSCALL";
10959 case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN";
10960 case X86ISD::TC_RETURN: return "X86ISD::TC_RETURN";
10961 case X86ISD::FNSTCW16m: return "X86ISD::FNSTCW16m";
10962 case X86ISD::LCMPXCHG_DAG: return "X86ISD::LCMPXCHG_DAG";
10963 case X86ISD::LCMPXCHG8_DAG: return "X86ISD::LCMPXCHG8_DAG";
10964 case X86ISD::ATOMADD64_DAG: return "X86ISD::ATOMADD64_DAG";
10965 case X86ISD::ATOMSUB64_DAG: return "X86ISD::ATOMSUB64_DAG";
10966 case X86ISD::ATOMOR64_DAG: return "X86ISD::ATOMOR64_DAG";
10967 case X86ISD::ATOMXOR64_DAG: return "X86ISD::ATOMXOR64_DAG";
10968 case X86ISD::ATOMAND64_DAG: return "X86ISD::ATOMAND64_DAG";
10969 case X86ISD::ATOMNAND64_DAG: return "X86ISD::ATOMNAND64_DAG";
10970 case X86ISD::VZEXT_MOVL: return "X86ISD::VZEXT_MOVL";
10971 case X86ISD::VZEXT_LOAD: return "X86ISD::VZEXT_LOAD";
10972 case X86ISD::VSHLDQ: return "X86ISD::VSHLDQ";
10973 case X86ISD::VSRLDQ: return "X86ISD::VSRLDQ";
10974 case X86ISD::VSHL: return "X86ISD::VSHL";
10975 case X86ISD::VSRL: return "X86ISD::VSRL";
10976 case X86ISD::VSRA: return "X86ISD::VSRA";
10977 case X86ISD::VSHLI: return "X86ISD::VSHLI";
10978 case X86ISD::VSRLI: return "X86ISD::VSRLI";
10979 case X86ISD::VSRAI: return "X86ISD::VSRAI";
10980 case X86ISD::CMPP: return "X86ISD::CMPP";
10981 case X86ISD::PCMPEQ: return "X86ISD::PCMPEQ";
10982 case X86ISD::PCMPGT: return "X86ISD::PCMPGT";
10983 case X86ISD::ADD: return "X86ISD::ADD";
10984 case X86ISD::SUB: return "X86ISD::SUB";
10985 case X86ISD::ADC: return "X86ISD::ADC";
10986 case X86ISD::SBB: return "X86ISD::SBB";
10987 case X86ISD::SMUL: return "X86ISD::SMUL";
10988 case X86ISD::UMUL: return "X86ISD::UMUL";
10989 case X86ISD::INC: return "X86ISD::INC";
10990 case X86ISD::DEC: return "X86ISD::DEC";
10991 case X86ISD::OR: return "X86ISD::OR";
10992 case X86ISD::XOR: return "X86ISD::XOR";
10993 case X86ISD::AND: return "X86ISD::AND";
10994 case X86ISD::ANDN: return "X86ISD::ANDN";
10995 case X86ISD::BLSI: return "X86ISD::BLSI";
10996 case X86ISD::BLSMSK: return "X86ISD::BLSMSK";
10997 case X86ISD::BLSR: return "X86ISD::BLSR";
10998 case X86ISD::MUL_IMM: return "X86ISD::MUL_IMM";
10999 case X86ISD::PTEST: return "X86ISD::PTEST";
11000 case X86ISD::TESTP: return "X86ISD::TESTP";
11001 case X86ISD::PALIGN: return "X86ISD::PALIGN";
11002 case X86ISD::PSHUFD: return "X86ISD::PSHUFD";
11003 case X86ISD::PSHUFHW: return "X86ISD::PSHUFHW";
11004 case X86ISD::PSHUFLW: return "X86ISD::PSHUFLW";
11005 case X86ISD::SHUFP: return "X86ISD::SHUFP";
11006 case X86ISD::MOVLHPS: return "X86ISD::MOVLHPS";
11007 case X86ISD::MOVLHPD: return "X86ISD::MOVLHPD";
11008 case X86ISD::MOVHLPS: return "X86ISD::MOVHLPS";
11009 case X86ISD::MOVLPS: return "X86ISD::MOVLPS";
11010 case X86ISD::MOVLPD: return "X86ISD::MOVLPD";
11011 case X86ISD::MOVDDUP: return "X86ISD::MOVDDUP";
11012 case X86ISD::MOVSHDUP: return "X86ISD::MOVSHDUP";
11013 case X86ISD::MOVSLDUP: return "X86ISD::MOVSLDUP";
11014 case X86ISD::MOVSD: return "X86ISD::MOVSD";
11015 case X86ISD::MOVSS: return "X86ISD::MOVSS";
11016 case X86ISD::UNPCKL: return "X86ISD::UNPCKL";
11017 case X86ISD::UNPCKH: return "X86ISD::UNPCKH";
11018 case X86ISD::VBROADCAST: return "X86ISD::VBROADCAST";
11019 case X86ISD::VPERMILP: return "X86ISD::VPERMILP";
11020 case X86ISD::VPERM2X128: return "X86ISD::VPERM2X128";
11021 case X86ISD::PMULUDQ: return "X86ISD::PMULUDQ";
11022 case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
11023 case X86ISD::VAARG_64: return "X86ISD::VAARG_64";
11024 case X86ISD::WIN_ALLOCA: return "X86ISD::WIN_ALLOCA";
11025 case X86ISD::MEMBARRIER: return "X86ISD::MEMBARRIER";
11026 case X86ISD::SEG_ALLOCA: return "X86ISD::SEG_ALLOCA";
11027 case X86ISD::WIN_FTOL: return "X86ISD::WIN_FTOL";
11031 // isLegalAddressingMode - Return true if the addressing mode represented
11032 // by AM is legal for this target, for a load/store of the specified type.
11033 bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
11035 // X86 supports extremely general addressing modes.
11036 CodeModel::Model M = getTargetMachine().getCodeModel();
11037 Reloc::Model R = getTargetMachine().getRelocationModel();
11039 // X86 allows a sign-extended 32-bit immediate field as a displacement.
11040 if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
11045 Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
11047 // If a reference to this global requires an extra load, we can't fold it.
11048 if (isGlobalStubReference(GVFlags))
11051 // If BaseGV requires a register for the PIC base, we cannot also have a
11052 // BaseReg specified.
11053 if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
11056 // If lower 4G is not available, then we must use rip-relative addressing.
11057 if ((M != CodeModel::Small || R != Reloc::Static) &&
11058 Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
11062 switch (AM.Scale) {
11068 // These scales always work.
11073 // These scales are formed with basereg+scalereg. Only accept if there is
11078 default: // Other stuff never works.
11086 bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11087 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11089 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11090 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11091 if (NumBits1 <= NumBits2)
11096 bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11097 if (!VT1.isInteger() || !VT2.isInteger())
11099 unsigned NumBits1 = VT1.getSizeInBits();
11100 unsigned NumBits2 = VT2.getSizeInBits();
11101 if (NumBits1 <= NumBits2)
11106 bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
11107 // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11108 return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
11111 bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
11112 // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11113 return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
11116 bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
11117 // i16 instructions are longer (0x66 prefix) and potentially slower.
11118 return !(VT1 == MVT::i32 && VT2 == MVT::i16);
11121 /// isShuffleMaskLegal - Targets can use this to indicate that they only
11122 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
11123 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
11124 /// are assumed to be legal.
11126 X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
11128 // Very little shuffling can be done for 64-bit vectors right now.
11129 if (VT.getSizeInBits() == 64)
11132 // FIXME: pshufb, blends, shifts.
11133 return (VT.getVectorNumElements() == 2 ||
11134 ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
11135 isMOVLMask(M, VT) ||
11136 isSHUFPMask(M, VT, Subtarget->hasAVX()) ||
11137 isPSHUFDMask(M, VT) ||
11138 isPSHUFHWMask(M, VT) ||
11139 isPSHUFLWMask(M, VT) ||
11140 isPALIGNRMask(M, VT, Subtarget) ||
11141 isUNPCKLMask(M, VT, Subtarget->hasAVX2()) ||
11142 isUNPCKHMask(M, VT, Subtarget->hasAVX2()) ||
11143 isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasAVX2()) ||
11144 isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasAVX2()));
11148 X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
11150 unsigned NumElts = VT.getVectorNumElements();
11151 // FIXME: This collection of masks seems suspect.
11154 if (NumElts == 4 && VT.getSizeInBits() == 128) {
11155 return (isMOVLMask(Mask, VT) ||
11156 isCommutedMOVLMask(Mask, VT, true) ||
11157 isSHUFPMask(Mask, VT, Subtarget->hasAVX()) ||
11158 isSHUFPMask(Mask, VT, Subtarget->hasAVX(), /* Commuted */ true));
11163 //===----------------------------------------------------------------------===//
11164 // X86 Scheduler Hooks
11165 //===----------------------------------------------------------------------===//
11167 // private utility function
11168 MachineBasicBlock *
11169 X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
11170 MachineBasicBlock *MBB,
11177 const TargetRegisterClass *RC,
11178 bool invSrc) const {
11179 // For the atomic bitwise operator, we generate
11182 // ld t1 = [bitinstr.addr]
11183 // op t2 = t1, [bitinstr.val]
11185 // lcs dest = [bitinstr.addr], t2 [EAX is implicit]
11187 // fallthrough -->nextMBB
11188 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11189 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11190 MachineFunction::iterator MBBIter = MBB;
11193 /// First build the CFG
11194 MachineFunction *F = MBB->getParent();
11195 MachineBasicBlock *thisMBB = MBB;
11196 MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11197 MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11198 F->insert(MBBIter, newMBB);
11199 F->insert(MBBIter, nextMBB);
11201 // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11202 nextMBB->splice(nextMBB->begin(), thisMBB,
11203 llvm::next(MachineBasicBlock::iterator(bInstr)),
11205 nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11207 // Update thisMBB to fall through to newMBB
11208 thisMBB->addSuccessor(newMBB);
11210 // newMBB jumps to itself and fall through to nextMBB
11211 newMBB->addSuccessor(nextMBB);
11212 newMBB->addSuccessor(newMBB);
11214 // Insert instructions into newMBB based on incoming instruction
11215 assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11216 "unexpected number of operands");
11217 DebugLoc dl = bInstr->getDebugLoc();
11218 MachineOperand& destOper = bInstr->getOperand(0);
11219 MachineOperand* argOpers[2 + X86::AddrNumOperands];
11220 int numArgs = bInstr->getNumOperands() - 1;
11221 for (int i=0; i < numArgs; ++i)
11222 argOpers[i] = &bInstr->getOperand(i+1);
11224 // x86 address has 4 operands: base, index, scale, and displacement
11225 int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11226 int valArgIndx = lastAddrIndx + 1;
11228 unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11229 MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
11230 for (int i=0; i <= lastAddrIndx; ++i)
11231 (*MIB).addOperand(*argOpers[i]);
11233 unsigned tt = F->getRegInfo().createVirtualRegister(RC);
11235 MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
11240 unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11241 assert((argOpers[valArgIndx]->isReg() ||
11242 argOpers[valArgIndx]->isImm()) &&
11243 "invalid operand");
11244 if (argOpers[valArgIndx]->isReg())
11245 MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
11247 MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
11249 (*MIB).addOperand(*argOpers[valArgIndx]);
11251 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
11254 MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
11255 for (int i=0; i <= lastAddrIndx; ++i)
11256 (*MIB).addOperand(*argOpers[i]);
11258 assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11259 (*MIB).setMemRefs(bInstr->memoperands_begin(),
11260 bInstr->memoperands_end());
11262 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11263 MIB.addReg(EAXreg);
11266 BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11268 bInstr->eraseFromParent(); // The pseudo instruction is gone now.
11272 // private utility function: 64 bit atomics on 32 bit host.
11273 MachineBasicBlock *
11274 X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
11275 MachineBasicBlock *MBB,
11280 bool invSrc) const {
11281 // For the atomic bitwise operator, we generate
11282 // thisMBB (instructions are in pairs, except cmpxchg8b)
11283 // ld t1,t2 = [bitinstr.addr]
11285 // out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
11286 // op t5, t6 <- out1, out2, [bitinstr.val]
11287 // (for SWAP, substitute: mov t5, t6 <- [bitinstr.val])
11288 // mov ECX, EBX <- t5, t6
11289 // mov EAX, EDX <- t1, t2
11290 // cmpxchg8b [bitinstr.addr] [EAX, EDX, EBX, ECX implicit]
11291 // mov t3, t4 <- EAX, EDX
11293 // result in out1, out2
11294 // fallthrough -->nextMBB
11296 const TargetRegisterClass *RC = X86::GR32RegisterClass;
11297 const unsigned LoadOpc = X86::MOV32rm;
11298 const unsigned NotOpc = X86::NOT32r;
11299 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11300 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11301 MachineFunction::iterator MBBIter = MBB;
11304 /// First build the CFG
11305 MachineFunction *F = MBB->getParent();
11306 MachineBasicBlock *thisMBB = MBB;
11307 MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11308 MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11309 F->insert(MBBIter, newMBB);
11310 F->insert(MBBIter, nextMBB);
11312 // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11313 nextMBB->splice(nextMBB->begin(), thisMBB,
11314 llvm::next(MachineBasicBlock::iterator(bInstr)),
11316 nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11318 // Update thisMBB to fall through to newMBB
11319 thisMBB->addSuccessor(newMBB);
11321 // newMBB jumps to itself and fall through to nextMBB
11322 newMBB->addSuccessor(nextMBB);
11323 newMBB->addSuccessor(newMBB);
11325 DebugLoc dl = bInstr->getDebugLoc();
11326 // Insert instructions into newMBB based on incoming instruction
11327 // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
11328 assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
11329 "unexpected number of operands");
11330 MachineOperand& dest1Oper = bInstr->getOperand(0);
11331 MachineOperand& dest2Oper = bInstr->getOperand(1);
11332 MachineOperand* argOpers[2 + X86::AddrNumOperands];
11333 for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
11334 argOpers[i] = &bInstr->getOperand(i+2);
11336 // We use some of the operands multiple times, so conservatively just
11337 // clear any kill flags that might be present.
11338 if (argOpers[i]->isReg() && argOpers[i]->isUse())
11339 argOpers[i]->setIsKill(false);
11342 // x86 address has 5 operands: base, index, scale, displacement, and segment.
11343 int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11345 unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11346 MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
11347 for (int i=0; i <= lastAddrIndx; ++i)
11348 (*MIB).addOperand(*argOpers[i]);
11349 unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11350 MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
11351 // add 4 to displacement.
11352 for (int i=0; i <= lastAddrIndx-2; ++i)
11353 (*MIB).addOperand(*argOpers[i]);
11354 MachineOperand newOp3 = *(argOpers[3]);
11355 if (newOp3.isImm())
11356 newOp3.setImm(newOp3.getImm()+4);
11358 newOp3.setOffset(newOp3.getOffset()+4);
11359 (*MIB).addOperand(newOp3);
11360 (*MIB).addOperand(*argOpers[lastAddrIndx]);
11362 // t3/4 are defined later, at the bottom of the loop
11363 unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11364 unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
11365 BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
11366 .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
11367 BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
11368 .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
11370 // The subsequent operations should be using the destination registers of
11371 //the PHI instructions.
11373 t1 = F->getRegInfo().createVirtualRegister(RC);
11374 t2 = F->getRegInfo().createVirtualRegister(RC);
11375 MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
11376 MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
11378 t1 = dest1Oper.getReg();
11379 t2 = dest2Oper.getReg();
11382 int valArgIndx = lastAddrIndx + 1;
11383 assert((argOpers[valArgIndx]->isReg() ||
11384 argOpers[valArgIndx]->isImm()) &&
11385 "invalid operand");
11386 unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
11387 unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
11388 if (argOpers[valArgIndx]->isReg())
11389 MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
11391 MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
11392 if (regOpcL != X86::MOV32rr)
11394 (*MIB).addOperand(*argOpers[valArgIndx]);
11395 assert(argOpers[valArgIndx + 1]->isReg() ==
11396 argOpers[valArgIndx]->isReg());
11397 assert(argOpers[valArgIndx + 1]->isImm() ==
11398 argOpers[valArgIndx]->isImm());
11399 if (argOpers[valArgIndx + 1]->isReg())
11400 MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
11402 MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
11403 if (regOpcH != X86::MOV32rr)
11405 (*MIB).addOperand(*argOpers[valArgIndx + 1]);
11407 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11409 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
11412 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
11414 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
11417 MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
11418 for (int i=0; i <= lastAddrIndx; ++i)
11419 (*MIB).addOperand(*argOpers[i]);
11421 assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11422 (*MIB).setMemRefs(bInstr->memoperands_begin(),
11423 bInstr->memoperands_end());
11425 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
11426 MIB.addReg(X86::EAX);
11427 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
11428 MIB.addReg(X86::EDX);
11431 BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11433 bInstr->eraseFromParent(); // The pseudo instruction is gone now.
11437 // private utility function
11438 MachineBasicBlock *
11439 X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
11440 MachineBasicBlock *MBB,
11441 unsigned cmovOpc) const {
11442 // For the atomic min/max operator, we generate
11445 // ld t1 = [min/max.addr]
11446 // mov t2 = [min/max.val]
11448 // cmov[cond] t2 = t1
11450 // lcs dest = [bitinstr.addr], t2 [EAX is implicit]
11452 // fallthrough -->nextMBB
11454 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11455 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11456 MachineFunction::iterator MBBIter = MBB;
11459 /// First build the CFG
11460 MachineFunction *F = MBB->getParent();
11461 MachineBasicBlock *thisMBB = MBB;
11462 MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11463 MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11464 F->insert(MBBIter, newMBB);
11465 F->insert(MBBIter, nextMBB);
11467 // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11468 nextMBB->splice(nextMBB->begin(), thisMBB,
11469 llvm::next(MachineBasicBlock::iterator(mInstr)),
11471 nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11473 // Update thisMBB to fall through to newMBB
11474 thisMBB->addSuccessor(newMBB);
11476 // newMBB jumps to newMBB and fall through to nextMBB
11477 newMBB->addSuccessor(nextMBB);
11478 newMBB->addSuccessor(newMBB);
11480 DebugLoc dl = mInstr->getDebugLoc();
11481 // Insert instructions into newMBB based on incoming instruction
11482 assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11483 "unexpected number of operands");
11484 MachineOperand& destOper = mInstr->getOperand(0);
11485 MachineOperand* argOpers[2 + X86::AddrNumOperands];
11486 int numArgs = mInstr->getNumOperands() - 1;
11487 for (int i=0; i < numArgs; ++i)
11488 argOpers[i] = &mInstr->getOperand(i+1);
11490 // x86 address has 4 operands: base, index, scale, and displacement
11491 int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11492 int valArgIndx = lastAddrIndx + 1;
11494 unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11495 MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
11496 for (int i=0; i <= lastAddrIndx; ++i)
11497 (*MIB).addOperand(*argOpers[i]);
11499 // We only support register and immediate values
11500 assert((argOpers[valArgIndx]->isReg() ||
11501 argOpers[valArgIndx]->isImm()) &&
11502 "invalid operand");
11504 unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11505 if (argOpers[valArgIndx]->isReg())
11506 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
11508 MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
11509 (*MIB).addOperand(*argOpers[valArgIndx]);
11511 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11514 MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
11519 unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11520 MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
11524 // Cmp and exchange if none has modified the memory location
11525 MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
11526 for (int i=0; i <= lastAddrIndx; ++i)
11527 (*MIB).addOperand(*argOpers[i]);
11529 assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11530 (*MIB).setMemRefs(mInstr->memoperands_begin(),
11531 mInstr->memoperands_end());
11533 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11534 MIB.addReg(X86::EAX);
11537 BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11539 mInstr->eraseFromParent(); // The pseudo instruction is gone now.
11543 // FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
11544 // or XMM0_V32I8 in AVX all of this code can be replaced with that
11545 // in the .td file.
11546 MachineBasicBlock *
11547 X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
11548 unsigned numArgs, bool memArg) const {
11549 assert(Subtarget->hasSSE42() &&
11550 "Target must have SSE4.2 or AVX features enabled");
11552 DebugLoc dl = MI->getDebugLoc();
11553 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11555 if (!Subtarget->hasAVX()) {
11557 Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
11559 Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
11562 Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
11564 Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
11567 MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
11568 for (unsigned i = 0; i < numArgs; ++i) {
11569 MachineOperand &Op = MI->getOperand(i+1);
11570 if (!(Op.isReg() && Op.isImplicit()))
11571 MIB.addOperand(Op);
11573 BuildMI(*BB, MI, dl,
11574 TII->get(Subtarget->hasAVX() ? X86::VMOVAPSrr : X86::MOVAPSrr),
11575 MI->getOperand(0).getReg())
11576 .addReg(X86::XMM0);
11578 MI->eraseFromParent();
11582 MachineBasicBlock *
11583 X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
11584 DebugLoc dl = MI->getDebugLoc();
11585 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11587 // Address into RAX/EAX, other two args into ECX, EDX.
11588 unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
11589 unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11590 MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
11591 for (int i = 0; i < X86::AddrNumOperands; ++i)
11592 MIB.addOperand(MI->getOperand(i));
11594 unsigned ValOps = X86::AddrNumOperands;
11595 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11596 .addReg(MI->getOperand(ValOps).getReg());
11597 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
11598 .addReg(MI->getOperand(ValOps+1).getReg());
11600 // The instruction doesn't actually take any operands though.
11601 BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
11603 MI->eraseFromParent(); // The pseudo is gone now.
11607 MachineBasicBlock *
11608 X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
11609 DebugLoc dl = MI->getDebugLoc();
11610 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11612 // First arg in ECX, the second in EAX.
11613 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11614 .addReg(MI->getOperand(0).getReg());
11615 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
11616 .addReg(MI->getOperand(1).getReg());
11618 // The instruction doesn't actually take any operands though.
11619 BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
11621 MI->eraseFromParent(); // The pseudo is gone now.
11625 MachineBasicBlock *
11626 X86TargetLowering::EmitVAARG64WithCustomInserter(
11628 MachineBasicBlock *MBB) const {
11629 // Emit va_arg instruction on X86-64.
11631 // Operands to this pseudo-instruction:
11632 // 0 ) Output : destination address (reg)
11633 // 1-5) Input : va_list address (addr, i64mem)
11634 // 6 ) ArgSize : Size (in bytes) of vararg type
11635 // 7 ) ArgMode : 0=overflow only, 1=use gp_offset, 2=use fp_offset
11636 // 8 ) Align : Alignment of type
11637 // 9 ) EFLAGS (implicit-def)
11639 assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
11640 assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
11642 unsigned DestReg = MI->getOperand(0).getReg();
11643 MachineOperand &Base = MI->getOperand(1);
11644 MachineOperand &Scale = MI->getOperand(2);
11645 MachineOperand &Index = MI->getOperand(3);
11646 MachineOperand &Disp = MI->getOperand(4);
11647 MachineOperand &Segment = MI->getOperand(5);
11648 unsigned ArgSize = MI->getOperand(6).getImm();
11649 unsigned ArgMode = MI->getOperand(7).getImm();
11650 unsigned Align = MI->getOperand(8).getImm();
11652 // Memory Reference
11653 assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
11654 MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
11655 MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
11657 // Machine Information
11658 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11659 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11660 const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
11661 const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
11662 DebugLoc DL = MI->getDebugLoc();
11664 // struct va_list {
11667 // i64 overflow_area (address)
11668 // i64 reg_save_area (address)
11670 // sizeof(va_list) = 24
11671 // alignment(va_list) = 8
11673 unsigned TotalNumIntRegs = 6;
11674 unsigned TotalNumXMMRegs = 8;
11675 bool UseGPOffset = (ArgMode == 1);
11676 bool UseFPOffset = (ArgMode == 2);
11677 unsigned MaxOffset = TotalNumIntRegs * 8 +
11678 (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
11680 /* Align ArgSize to a multiple of 8 */
11681 unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
11682 bool NeedsAlign = (Align > 8);
11684 MachineBasicBlock *thisMBB = MBB;
11685 MachineBasicBlock *overflowMBB;
11686 MachineBasicBlock *offsetMBB;
11687 MachineBasicBlock *endMBB;
11689 unsigned OffsetDestReg = 0; // Argument address computed by offsetMBB
11690 unsigned OverflowDestReg = 0; // Argument address computed by overflowMBB
11691 unsigned OffsetReg = 0;
11693 if (!UseGPOffset && !UseFPOffset) {
11694 // If we only pull from the overflow region, we don't create a branch.
11695 // We don't need to alter control flow.
11696 OffsetDestReg = 0; // unused
11697 OverflowDestReg = DestReg;
11700 overflowMBB = thisMBB;
11703 // First emit code to check if gp_offset (or fp_offset) is below the bound.
11704 // If so, pull the argument from reg_save_area. (branch to offsetMBB)
11705 // If not, pull from overflow_area. (branch to overflowMBB)
11710 // offsetMBB overflowMBB
11715 // Registers for the PHI in endMBB
11716 OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
11717 OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
11719 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11720 MachineFunction *MF = MBB->getParent();
11721 overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11722 offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11723 endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11725 MachineFunction::iterator MBBIter = MBB;
11728 // Insert the new basic blocks
11729 MF->insert(MBBIter, offsetMBB);
11730 MF->insert(MBBIter, overflowMBB);
11731 MF->insert(MBBIter, endMBB);
11733 // Transfer the remainder of MBB and its successor edges to endMBB.
11734 endMBB->splice(endMBB->begin(), thisMBB,
11735 llvm::next(MachineBasicBlock::iterator(MI)),
11737 endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11739 // Make offsetMBB and overflowMBB successors of thisMBB
11740 thisMBB->addSuccessor(offsetMBB);
11741 thisMBB->addSuccessor(overflowMBB);
11743 // endMBB is a successor of both offsetMBB and overflowMBB
11744 offsetMBB->addSuccessor(endMBB);
11745 overflowMBB->addSuccessor(endMBB);
11747 // Load the offset value into a register
11748 OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11749 BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
11753 .addDisp(Disp, UseFPOffset ? 4 : 0)
11754 .addOperand(Segment)
11755 .setMemRefs(MMOBegin, MMOEnd);
11757 // Check if there is enough room left to pull this argument.
11758 BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
11760 .addImm(MaxOffset + 8 - ArgSizeA8);
11762 // Branch to "overflowMBB" if offset >= max
11763 // Fall through to "offsetMBB" otherwise
11764 BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
11765 .addMBB(overflowMBB);
11768 // In offsetMBB, emit code to use the reg_save_area.
11770 assert(OffsetReg != 0);
11772 // Read the reg_save_area address.
11773 unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
11774 BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
11779 .addOperand(Segment)
11780 .setMemRefs(MMOBegin, MMOEnd);
11782 // Zero-extend the offset
11783 unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
11784 BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
11787 .addImm(X86::sub_32bit);
11789 // Add the offset to the reg_save_area to get the final address.
11790 BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
11791 .addReg(OffsetReg64)
11792 .addReg(RegSaveReg);
11794 // Compute the offset for the next argument
11795 unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11796 BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
11798 .addImm(UseFPOffset ? 16 : 8);
11800 // Store it back into the va_list.
11801 BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
11805 .addDisp(Disp, UseFPOffset ? 4 : 0)
11806 .addOperand(Segment)
11807 .addReg(NextOffsetReg)
11808 .setMemRefs(MMOBegin, MMOEnd);
11811 BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
11816 // Emit code to use overflow area
11819 // Load the overflow_area address into a register.
11820 unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
11821 BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
11826 .addOperand(Segment)
11827 .setMemRefs(MMOBegin, MMOEnd);
11829 // If we need to align it, do so. Otherwise, just copy the address
11830 // to OverflowDestReg.
11832 // Align the overflow address
11833 assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
11834 unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
11836 // aligned_addr = (addr + (align-1)) & ~(align-1)
11837 BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
11838 .addReg(OverflowAddrReg)
11841 BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
11843 .addImm(~(uint64_t)(Align-1));
11845 BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
11846 .addReg(OverflowAddrReg);
11849 // Compute the next overflow address after this argument.
11850 // (the overflow address should be kept 8-byte aligned)
11851 unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
11852 BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
11853 .addReg(OverflowDestReg)
11854 .addImm(ArgSizeA8);
11856 // Store the new overflow address.
11857 BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
11862 .addOperand(Segment)
11863 .addReg(NextAddrReg)
11864 .setMemRefs(MMOBegin, MMOEnd);
11866 // If we branched, emit the PHI to the front of endMBB.
11868 BuildMI(*endMBB, endMBB->begin(), DL,
11869 TII->get(X86::PHI), DestReg)
11870 .addReg(OffsetDestReg).addMBB(offsetMBB)
11871 .addReg(OverflowDestReg).addMBB(overflowMBB);
11874 // Erase the pseudo instruction
11875 MI->eraseFromParent();
11880 MachineBasicBlock *
11881 X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
11883 MachineBasicBlock *MBB) const {
11884 // Emit code to save XMM registers to the stack. The ABI says that the
11885 // number of registers to save is given in %al, so it's theoretically
11886 // possible to do an indirect jump trick to avoid saving all of them,
11887 // however this code takes a simpler approach and just executes all
11888 // of the stores if %al is non-zero. It's less code, and it's probably
11889 // easier on the hardware branch predictor, and stores aren't all that
11890 // expensive anyway.
11892 // Create the new basic blocks. One block contains all the XMM stores,
11893 // and one block is the final destination regardless of whether any
11894 // stores were performed.
11895 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11896 MachineFunction *F = MBB->getParent();
11897 MachineFunction::iterator MBBIter = MBB;
11899 MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
11900 MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
11901 F->insert(MBBIter, XMMSaveMBB);
11902 F->insert(MBBIter, EndMBB);
11904 // Transfer the remainder of MBB and its successor edges to EndMBB.
11905 EndMBB->splice(EndMBB->begin(), MBB,
11906 llvm::next(MachineBasicBlock::iterator(MI)),
11908 EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
11910 // The original block will now fall through to the XMM save block.
11911 MBB->addSuccessor(XMMSaveMBB);
11912 // The XMMSaveMBB will fall through to the end block.
11913 XMMSaveMBB->addSuccessor(EndMBB);
11915 // Now add the instructions.
11916 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11917 DebugLoc DL = MI->getDebugLoc();
11919 unsigned CountReg = MI->getOperand(0).getReg();
11920 int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
11921 int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
11923 if (!Subtarget->isTargetWin64()) {
11924 // If %al is 0, branch around the XMM save block.
11925 BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
11926 BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
11927 MBB->addSuccessor(EndMBB);
11930 unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
11931 // In the XMM save block, save all the XMM argument registers.
11932 for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
11933 int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
11934 MachineMemOperand *MMO =
11935 F->getMachineMemOperand(
11936 MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
11937 MachineMemOperand::MOStore,
11938 /*Size=*/16, /*Align=*/16);
11939 BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
11940 .addFrameIndex(RegSaveFrameIndex)
11941 .addImm(/*Scale=*/1)
11942 .addReg(/*IndexReg=*/0)
11943 .addImm(/*Disp=*/Offset)
11944 .addReg(/*Segment=*/0)
11945 .addReg(MI->getOperand(i).getReg())
11946 .addMemOperand(MMO);
11949 MI->eraseFromParent(); // The pseudo instruction is gone now.
11954 // The EFLAGS operand of SelectItr might be missing a kill marker
11955 // because there were multiple uses of EFLAGS, and ISel didn't know
11956 // which to mark. Figure out whether SelectItr should have had a
11957 // kill marker, and set it if it should. Returns the correct kill
11959 static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
11960 MachineBasicBlock* BB,
11961 const TargetRegisterInfo* TRI) {
11962 // Scan forward through BB for a use/def of EFLAGS.
11963 MachineBasicBlock::iterator miI(llvm::next(SelectItr));
11964 for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
11965 const MachineInstr& mi = *miI;
11966 if (mi.readsRegister(X86::EFLAGS))
11968 if (mi.definesRegister(X86::EFLAGS))
11969 break; // Should have kill-flag - update below.
11972 // If we hit the end of the block, check whether EFLAGS is live into a
11974 if (miI == BB->end()) {
11975 for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
11976 sEnd = BB->succ_end();
11977 sItr != sEnd; ++sItr) {
11978 MachineBasicBlock* succ = *sItr;
11979 if (succ->isLiveIn(X86::EFLAGS))
11984 // We found a def, or hit the end of the basic block and EFLAGS wasn't live
11985 // out. SelectMI should have a kill flag on EFLAGS.
11986 SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
11990 MachineBasicBlock *
11991 X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
11992 MachineBasicBlock *BB) const {
11993 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11994 DebugLoc DL = MI->getDebugLoc();
11996 // To "insert" a SELECT_CC instruction, we actually have to insert the
11997 // diamond control-flow pattern. The incoming instruction knows the
11998 // destination vreg to set, the condition code register to branch on, the
11999 // true/false values to select between, and a branch opcode to use.
12000 const BasicBlock *LLVM_BB = BB->getBasicBlock();
12001 MachineFunction::iterator It = BB;
12007 // cmpTY ccX, r1, r2
12009 // fallthrough --> copy0MBB
12010 MachineBasicBlock *thisMBB = BB;
12011 MachineFunction *F = BB->getParent();
12012 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
12013 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12014 F->insert(It, copy0MBB);
12015 F->insert(It, sinkMBB);
12017 // If the EFLAGS register isn't dead in the terminator, then claim that it's
12018 // live into the sink and copy blocks.
12019 const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
12020 if (!MI->killsRegister(X86::EFLAGS) &&
12021 !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
12022 copy0MBB->addLiveIn(X86::EFLAGS);
12023 sinkMBB->addLiveIn(X86::EFLAGS);
12026 // Transfer the remainder of BB and its successor edges to sinkMBB.
12027 sinkMBB->splice(sinkMBB->begin(), BB,
12028 llvm::next(MachineBasicBlock::iterator(MI)),
12030 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12032 // Add the true and fallthrough blocks as its successors.
12033 BB->addSuccessor(copy0MBB);
12034 BB->addSuccessor(sinkMBB);
12036 // Create the conditional branch instruction.
12038 X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
12039 BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
12042 // %FalseValue = ...
12043 // # fallthrough to sinkMBB
12044 copy0MBB->addSuccessor(sinkMBB);
12047 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
12049 BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12050 TII->get(X86::PHI), MI->getOperand(0).getReg())
12051 .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
12052 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
12054 MI->eraseFromParent(); // The pseudo instruction is gone now.
12058 MachineBasicBlock *
12059 X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
12060 bool Is64Bit) const {
12061 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12062 DebugLoc DL = MI->getDebugLoc();
12063 MachineFunction *MF = BB->getParent();
12064 const BasicBlock *LLVM_BB = BB->getBasicBlock();
12066 assert(getTargetMachine().Options.EnableSegmentedStacks);
12068 unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
12069 unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
12072 // ... [Till the alloca]
12073 // If stacklet is not large enough, jump to mallocMBB
12076 // Allocate by subtracting from RSP
12077 // Jump to continueMBB
12080 // Allocate by call to runtime
12084 // [rest of original BB]
12087 MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12088 MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12089 MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12091 MachineRegisterInfo &MRI = MF->getRegInfo();
12092 const TargetRegisterClass *AddrRegClass =
12093 getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
12095 unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12096 bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12097 tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
12098 SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
12099 sizeVReg = MI->getOperand(1).getReg(),
12100 physSPReg = Is64Bit ? X86::RSP : X86::ESP;
12102 MachineFunction::iterator MBBIter = BB;
12105 MF->insert(MBBIter, bumpMBB);
12106 MF->insert(MBBIter, mallocMBB);
12107 MF->insert(MBBIter, continueMBB);
12109 continueMBB->splice(continueMBB->begin(), BB, llvm::next
12110 (MachineBasicBlock::iterator(MI)), BB->end());
12111 continueMBB->transferSuccessorsAndUpdatePHIs(BB);
12113 // Add code to the main basic block to check if the stack limit has been hit,
12114 // and if so, jump to mallocMBB otherwise to bumpMBB.
12115 BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
12116 BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
12117 .addReg(tmpSPVReg).addReg(sizeVReg);
12118 BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
12119 .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
12120 .addReg(SPLimitVReg);
12121 BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
12123 // bumpMBB simply decreases the stack pointer, since we know the current
12124 // stacklet has enough space.
12125 BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
12126 .addReg(SPLimitVReg);
12127 BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
12128 .addReg(SPLimitVReg);
12129 BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12131 // Calls into a routine in libgcc to allocate more space from the heap.
12132 const uint32_t *RegMask =
12133 getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
12135 BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
12137 BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
12138 .addExternalSymbol("__morestack_allocate_stack_space").addReg(X86::RDI)
12139 .addRegMask(RegMask)
12140 .addReg(X86::RAX, RegState::ImplicitDefine);
12142 BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
12144 BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
12145 BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
12146 .addExternalSymbol("__morestack_allocate_stack_space")
12147 .addRegMask(RegMask)
12148 .addReg(X86::EAX, RegState::ImplicitDefine);
12152 BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
12155 BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
12156 .addReg(Is64Bit ? X86::RAX : X86::EAX);
12157 BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12159 // Set up the CFG correctly.
12160 BB->addSuccessor(bumpMBB);
12161 BB->addSuccessor(mallocMBB);
12162 mallocMBB->addSuccessor(continueMBB);
12163 bumpMBB->addSuccessor(continueMBB);
12165 // Take care of the PHI nodes.
12166 BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
12167 MI->getOperand(0).getReg())
12168 .addReg(mallocPtrVReg).addMBB(mallocMBB)
12169 .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
12171 // Delete the original pseudo instruction.
12172 MI->eraseFromParent();
12175 return continueMBB;
12178 MachineBasicBlock *
12179 X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
12180 MachineBasicBlock *BB) const {
12181 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12182 DebugLoc DL = MI->getDebugLoc();
12184 assert(!Subtarget->isTargetEnvMacho());
12186 // The lowering is pretty easy: we're just emitting the call to _alloca. The
12187 // non-trivial part is impdef of ESP.
12189 if (Subtarget->isTargetWin64()) {
12190 if (Subtarget->isTargetCygMing()) {
12191 // ___chkstk(Mingw64):
12192 // Clobbers R10, R11, RAX and EFLAGS.
12194 BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12195 .addExternalSymbol("___chkstk")
12196 .addReg(X86::RAX, RegState::Implicit)
12197 .addReg(X86::RSP, RegState::Implicit)
12198 .addReg(X86::RAX, RegState::Define | RegState::Implicit)
12199 .addReg(X86::RSP, RegState::Define | RegState::Implicit)
12200 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12202 // __chkstk(MSVCRT): does not update stack pointer.
12203 // Clobbers R10, R11 and EFLAGS.
12204 // FIXME: RAX(allocated size) might be reused and not killed.
12205 BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12206 .addExternalSymbol("__chkstk")
12207 .addReg(X86::RAX, RegState::Implicit)
12208 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12209 // RAX has the offset to subtracted from RSP.
12210 BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
12215 const char *StackProbeSymbol =
12216 Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
12218 BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
12219 .addExternalSymbol(StackProbeSymbol)
12220 .addReg(X86::EAX, RegState::Implicit)
12221 .addReg(X86::ESP, RegState::Implicit)
12222 .addReg(X86::EAX, RegState::Define | RegState::Implicit)
12223 .addReg(X86::ESP, RegState::Define | RegState::Implicit)
12224 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12227 MI->eraseFromParent(); // The pseudo instruction is gone now.
12231 MachineBasicBlock *
12232 X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
12233 MachineBasicBlock *BB) const {
12234 // This is pretty easy. We're taking the value that we received from
12235 // our load from the relocation, sticking it in either RDI (x86-64)
12236 // or EAX and doing an indirect call. The return value will then
12237 // be in the normal return register.
12238 const X86InstrInfo *TII
12239 = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
12240 DebugLoc DL = MI->getDebugLoc();
12241 MachineFunction *F = BB->getParent();
12243 assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
12244 assert(MI->getOperand(3).isGlobal() && "This should be a global");
12246 // Get a register mask for the lowered call.
12247 // FIXME: The 32-bit calls have non-standard calling conventions. Use a
12248 // proper register mask.
12249 const uint32_t *RegMask =
12250 getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
12251 if (Subtarget->is64Bit()) {
12252 MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12253 TII->get(X86::MOV64rm), X86::RDI)
12255 .addImm(0).addReg(0)
12256 .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12257 MI->getOperand(3).getTargetFlags())
12259 MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
12260 addDirectMem(MIB, X86::RDI);
12261 MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
12262 } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
12263 MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12264 TII->get(X86::MOV32rm), X86::EAX)
12266 .addImm(0).addReg(0)
12267 .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12268 MI->getOperand(3).getTargetFlags())
12270 MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12271 addDirectMem(MIB, X86::EAX);
12272 MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
12274 MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12275 TII->get(X86::MOV32rm), X86::EAX)
12276 .addReg(TII->getGlobalBaseReg(F))
12277 .addImm(0).addReg(0)
12278 .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12279 MI->getOperand(3).getTargetFlags())
12281 MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12282 addDirectMem(MIB, X86::EAX);
12283 MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
12286 MI->eraseFromParent(); // The pseudo instruction is gone now.
12290 MachineBasicBlock *
12291 X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
12292 MachineBasicBlock *BB) const {
12293 switch (MI->getOpcode()) {
12294 default: llvm_unreachable("Unexpected instr type to insert");
12295 case X86::TAILJMPd64:
12296 case X86::TAILJMPr64:
12297 case X86::TAILJMPm64:
12298 llvm_unreachable("TAILJMP64 would not be touched here.");
12299 case X86::TCRETURNdi64:
12300 case X86::TCRETURNri64:
12301 case X86::TCRETURNmi64:
12303 case X86::WIN_ALLOCA:
12304 return EmitLoweredWinAlloca(MI, BB);
12305 case X86::SEG_ALLOCA_32:
12306 return EmitLoweredSegAlloca(MI, BB, false);
12307 case X86::SEG_ALLOCA_64:
12308 return EmitLoweredSegAlloca(MI, BB, true);
12309 case X86::TLSCall_32:
12310 case X86::TLSCall_64:
12311 return EmitLoweredTLSCall(MI, BB);
12312 case X86::CMOV_GR8:
12313 case X86::CMOV_FR32:
12314 case X86::CMOV_FR64:
12315 case X86::CMOV_V4F32:
12316 case X86::CMOV_V2F64:
12317 case X86::CMOV_V2I64:
12318 case X86::CMOV_V8F32:
12319 case X86::CMOV_V4F64:
12320 case X86::CMOV_V4I64:
12321 case X86::CMOV_GR16:
12322 case X86::CMOV_GR32:
12323 case X86::CMOV_RFP32:
12324 case X86::CMOV_RFP64:
12325 case X86::CMOV_RFP80:
12326 return EmitLoweredSelect(MI, BB);
12328 case X86::FP32_TO_INT16_IN_MEM:
12329 case X86::FP32_TO_INT32_IN_MEM:
12330 case X86::FP32_TO_INT64_IN_MEM:
12331 case X86::FP64_TO_INT16_IN_MEM:
12332 case X86::FP64_TO_INT32_IN_MEM:
12333 case X86::FP64_TO_INT64_IN_MEM:
12334 case X86::FP80_TO_INT16_IN_MEM:
12335 case X86::FP80_TO_INT32_IN_MEM:
12336 case X86::FP80_TO_INT64_IN_MEM: {
12337 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12338 DebugLoc DL = MI->getDebugLoc();
12340 // Change the floating point control register to use "round towards zero"
12341 // mode when truncating to an integer value.
12342 MachineFunction *F = BB->getParent();
12343 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
12344 addFrameReference(BuildMI(*BB, MI, DL,
12345 TII->get(X86::FNSTCW16m)), CWFrameIdx);
12347 // Load the old value of the high byte of the control word...
12349 F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
12350 addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
12353 // Set the high part to be round to zero...
12354 addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
12357 // Reload the modified control word now...
12358 addFrameReference(BuildMI(*BB, MI, DL,
12359 TII->get(X86::FLDCW16m)), CWFrameIdx);
12361 // Restore the memory image of control word to original value
12362 addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
12365 // Get the X86 opcode to use.
12367 switch (MI->getOpcode()) {
12368 default: llvm_unreachable("illegal opcode!");
12369 case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
12370 case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
12371 case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
12372 case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
12373 case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
12374 case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
12375 case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
12376 case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
12377 case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
12381 MachineOperand &Op = MI->getOperand(0);
12383 AM.BaseType = X86AddressMode::RegBase;
12384 AM.Base.Reg = Op.getReg();
12386 AM.BaseType = X86AddressMode::FrameIndexBase;
12387 AM.Base.FrameIndex = Op.getIndex();
12389 Op = MI->getOperand(1);
12391 AM.Scale = Op.getImm();
12392 Op = MI->getOperand(2);
12394 AM.IndexReg = Op.getImm();
12395 Op = MI->getOperand(3);
12396 if (Op.isGlobal()) {
12397 AM.GV = Op.getGlobal();
12399 AM.Disp = Op.getImm();
12401 addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
12402 .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
12404 // Reload the original control word now.
12405 addFrameReference(BuildMI(*BB, MI, DL,
12406 TII->get(X86::FLDCW16m)), CWFrameIdx);
12408 MI->eraseFromParent(); // The pseudo instruction is gone now.
12411 // String/text processing lowering.
12412 case X86::PCMPISTRM128REG:
12413 case X86::VPCMPISTRM128REG:
12414 return EmitPCMP(MI, BB, 3, false /* in-mem */);
12415 case X86::PCMPISTRM128MEM:
12416 case X86::VPCMPISTRM128MEM:
12417 return EmitPCMP(MI, BB, 3, true /* in-mem */);
12418 case X86::PCMPESTRM128REG:
12419 case X86::VPCMPESTRM128REG:
12420 return EmitPCMP(MI, BB, 5, false /* in mem */);
12421 case X86::PCMPESTRM128MEM:
12422 case X86::VPCMPESTRM128MEM:
12423 return EmitPCMP(MI, BB, 5, true /* in mem */);
12425 // Thread synchronization.
12427 return EmitMonitor(MI, BB);
12429 return EmitMwait(MI, BB);
12431 // Atomic Lowering.
12432 case X86::ATOMAND32:
12433 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12434 X86::AND32ri, X86::MOV32rm,
12436 X86::NOT32r, X86::EAX,
12437 X86::GR32RegisterClass);
12438 case X86::ATOMOR32:
12439 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
12440 X86::OR32ri, X86::MOV32rm,
12442 X86::NOT32r, X86::EAX,
12443 X86::GR32RegisterClass);
12444 case X86::ATOMXOR32:
12445 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
12446 X86::XOR32ri, X86::MOV32rm,
12448 X86::NOT32r, X86::EAX,
12449 X86::GR32RegisterClass);
12450 case X86::ATOMNAND32:
12451 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12452 X86::AND32ri, X86::MOV32rm,
12454 X86::NOT32r, X86::EAX,
12455 X86::GR32RegisterClass, true);
12456 case X86::ATOMMIN32:
12457 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
12458 case X86::ATOMMAX32:
12459 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
12460 case X86::ATOMUMIN32:
12461 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
12462 case X86::ATOMUMAX32:
12463 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
12465 case X86::ATOMAND16:
12466 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12467 X86::AND16ri, X86::MOV16rm,
12469 X86::NOT16r, X86::AX,
12470 X86::GR16RegisterClass);
12471 case X86::ATOMOR16:
12472 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
12473 X86::OR16ri, X86::MOV16rm,
12475 X86::NOT16r, X86::AX,
12476 X86::GR16RegisterClass);
12477 case X86::ATOMXOR16:
12478 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
12479 X86::XOR16ri, X86::MOV16rm,
12481 X86::NOT16r, X86::AX,
12482 X86::GR16RegisterClass);
12483 case X86::ATOMNAND16:
12484 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12485 X86::AND16ri, X86::MOV16rm,
12487 X86::NOT16r, X86::AX,
12488 X86::GR16RegisterClass, true);
12489 case X86::ATOMMIN16:
12490 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
12491 case X86::ATOMMAX16:
12492 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
12493 case X86::ATOMUMIN16:
12494 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
12495 case X86::ATOMUMAX16:
12496 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
12498 case X86::ATOMAND8:
12499 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12500 X86::AND8ri, X86::MOV8rm,
12502 X86::NOT8r, X86::AL,
12503 X86::GR8RegisterClass);
12505 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
12506 X86::OR8ri, X86::MOV8rm,
12508 X86::NOT8r, X86::AL,
12509 X86::GR8RegisterClass);
12510 case X86::ATOMXOR8:
12511 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
12512 X86::XOR8ri, X86::MOV8rm,
12514 X86::NOT8r, X86::AL,
12515 X86::GR8RegisterClass);
12516 case X86::ATOMNAND8:
12517 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12518 X86::AND8ri, X86::MOV8rm,
12520 X86::NOT8r, X86::AL,
12521 X86::GR8RegisterClass, true);
12522 // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
12523 // This group is for 64-bit host.
12524 case X86::ATOMAND64:
12525 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12526 X86::AND64ri32, X86::MOV64rm,
12528 X86::NOT64r, X86::RAX,
12529 X86::GR64RegisterClass);
12530 case X86::ATOMOR64:
12531 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
12532 X86::OR64ri32, X86::MOV64rm,
12534 X86::NOT64r, X86::RAX,
12535 X86::GR64RegisterClass);
12536 case X86::ATOMXOR64:
12537 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
12538 X86::XOR64ri32, X86::MOV64rm,
12540 X86::NOT64r, X86::RAX,
12541 X86::GR64RegisterClass);
12542 case X86::ATOMNAND64:
12543 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12544 X86::AND64ri32, X86::MOV64rm,
12546 X86::NOT64r, X86::RAX,
12547 X86::GR64RegisterClass, true);
12548 case X86::ATOMMIN64:
12549 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
12550 case X86::ATOMMAX64:
12551 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
12552 case X86::ATOMUMIN64:
12553 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
12554 case X86::ATOMUMAX64:
12555 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
12557 // This group does 64-bit operations on a 32-bit host.
12558 case X86::ATOMAND6432:
12559 return EmitAtomicBit6432WithCustomInserter(MI, BB,
12560 X86::AND32rr, X86::AND32rr,
12561 X86::AND32ri, X86::AND32ri,
12563 case X86::ATOMOR6432:
12564 return EmitAtomicBit6432WithCustomInserter(MI, BB,
12565 X86::OR32rr, X86::OR32rr,
12566 X86::OR32ri, X86::OR32ri,
12568 case X86::ATOMXOR6432:
12569 return EmitAtomicBit6432WithCustomInserter(MI, BB,
12570 X86::XOR32rr, X86::XOR32rr,
12571 X86::XOR32ri, X86::XOR32ri,
12573 case X86::ATOMNAND6432:
12574 return EmitAtomicBit6432WithCustomInserter(MI, BB,
12575 X86::AND32rr, X86::AND32rr,
12576 X86::AND32ri, X86::AND32ri,
12578 case X86::ATOMADD6432:
12579 return EmitAtomicBit6432WithCustomInserter(MI, BB,
12580 X86::ADD32rr, X86::ADC32rr,
12581 X86::ADD32ri, X86::ADC32ri,
12583 case X86::ATOMSUB6432:
12584 return EmitAtomicBit6432WithCustomInserter(MI, BB,
12585 X86::SUB32rr, X86::SBB32rr,
12586 X86::SUB32ri, X86::SBB32ri,
12588 case X86::ATOMSWAP6432:
12589 return EmitAtomicBit6432WithCustomInserter(MI, BB,
12590 X86::MOV32rr, X86::MOV32rr,
12591 X86::MOV32ri, X86::MOV32ri,
12593 case X86::VASTART_SAVE_XMM_REGS:
12594 return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
12596 case X86::VAARG_64:
12597 return EmitVAARG64WithCustomInserter(MI, BB);
12601 //===----------------------------------------------------------------------===//
12602 // X86 Optimization Hooks
12603 //===----------------------------------------------------------------------===//
12605 void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
12608 const SelectionDAG &DAG,
12609 unsigned Depth) const {
12610 unsigned BitWidth = KnownZero.getBitWidth();
12611 unsigned Opc = Op.getOpcode();
12612 assert((Opc >= ISD::BUILTIN_OP_END ||
12613 Opc == ISD::INTRINSIC_WO_CHAIN ||
12614 Opc == ISD::INTRINSIC_W_CHAIN ||
12615 Opc == ISD::INTRINSIC_VOID) &&
12616 "Should use MaskedValueIsZero if you don't know whether Op"
12617 " is a target node!");
12619 KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything.
12633 // These nodes' second result is a boolean.
12634 if (Op.getResNo() == 0)
12637 case X86ISD::SETCC:
12638 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
12640 case ISD::INTRINSIC_WO_CHAIN: {
12641 unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12642 unsigned NumLoBits = 0;
12645 case Intrinsic::x86_sse_movmsk_ps:
12646 case Intrinsic::x86_avx_movmsk_ps_256:
12647 case Intrinsic::x86_sse2_movmsk_pd:
12648 case Intrinsic::x86_avx_movmsk_pd_256:
12649 case Intrinsic::x86_mmx_pmovmskb:
12650 case Intrinsic::x86_sse2_pmovmskb_128:
12651 case Intrinsic::x86_avx2_pmovmskb: {
12652 // High bits of movmskp{s|d}, pmovmskb are known zero.
12654 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
12655 case Intrinsic::x86_sse_movmsk_ps: NumLoBits = 4; break;
12656 case Intrinsic::x86_avx_movmsk_ps_256: NumLoBits = 8; break;
12657 case Intrinsic::x86_sse2_movmsk_pd: NumLoBits = 2; break;
12658 case Intrinsic::x86_avx_movmsk_pd_256: NumLoBits = 4; break;
12659 case Intrinsic::x86_mmx_pmovmskb: NumLoBits = 8; break;
12660 case Intrinsic::x86_sse2_pmovmskb_128: NumLoBits = 16; break;
12661 case Intrinsic::x86_avx2_pmovmskb: NumLoBits = 32; break;
12663 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
12672 unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
12673 unsigned Depth) const {
12674 // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
12675 if (Op.getOpcode() == X86ISD::SETCC_CARRY)
12676 return Op.getValueType().getScalarType().getSizeInBits();
12682 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
12683 /// node is a GlobalAddress + offset.
12684 bool X86TargetLowering::isGAPlusOffset(SDNode *N,
12685 const GlobalValue* &GA,
12686 int64_t &Offset) const {
12687 if (N->getOpcode() == X86ISD::Wrapper) {
12688 if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
12689 GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
12690 Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
12694 return TargetLowering::isGAPlusOffset(N, GA, Offset);
12697 /// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
12698 /// same as extracting the high 128-bit part of 256-bit vector and then
12699 /// inserting the result into the low part of a new 256-bit vector
12700 static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
12701 EVT VT = SVOp->getValueType(0);
12702 int NumElems = VT.getVectorNumElements();
12704 // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12705 for (int i = 0, j = NumElems/2; i < NumElems/2; ++i, ++j)
12706 if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12707 SVOp->getMaskElt(j) >= 0)
12713 /// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
12714 /// same as extracting the low 128-bit part of 256-bit vector and then
12715 /// inserting the result into the high part of a new 256-bit vector
12716 static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
12717 EVT VT = SVOp->getValueType(0);
12718 int NumElems = VT.getVectorNumElements();
12720 // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12721 for (int i = NumElems/2, j = 0; i < NumElems; ++i, ++j)
12722 if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12723 SVOp->getMaskElt(j) >= 0)
12729 /// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
12730 static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
12731 TargetLowering::DAGCombinerInfo &DCI,
12732 const X86Subtarget* Subtarget) {
12733 DebugLoc dl = N->getDebugLoc();
12734 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
12735 SDValue V1 = SVOp->getOperand(0);
12736 SDValue V2 = SVOp->getOperand(1);
12737 EVT VT = SVOp->getValueType(0);
12738 int NumElems = VT.getVectorNumElements();
12740 if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
12741 V2.getOpcode() == ISD::CONCAT_VECTORS) {
12745 // V UNDEF BUILD_VECTOR UNDEF
12747 // CONCAT_VECTOR CONCAT_VECTOR
12750 // RESULT: V + zero extended
12752 if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
12753 V2.getOperand(1).getOpcode() != ISD::UNDEF ||
12754 V1.getOperand(1).getOpcode() != ISD::UNDEF)
12757 if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
12760 // To match the shuffle mask, the first half of the mask should
12761 // be exactly the first vector, and all the rest a splat with the
12762 // first element of the second one.
12763 for (int i = 0; i < NumElems/2; ++i)
12764 if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
12765 !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
12768 // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
12769 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
12770 SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
12771 SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
12773 DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2,
12775 Ld->getPointerInfo(),
12776 Ld->getAlignment(),
12777 false/*isVolatile*/, true/*ReadMem*/,
12778 false/*WriteMem*/);
12779 return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
12782 // Emit a zeroed vector and insert the desired subvector on its
12784 SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
12785 SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
12786 DAG.getConstant(0, MVT::i32), DAG, dl);
12787 return DCI.CombineTo(N, InsV);
12790 //===--------------------------------------------------------------------===//
12791 // Combine some shuffles into subvector extracts and inserts:
12794 // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12795 if (isShuffleHigh128VectorInsertLow(SVOp)) {
12796 SDValue V = Extract128BitVector(V1, DAG.getConstant(NumElems/2, MVT::i32),
12798 SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12799 V, DAG.getConstant(0, MVT::i32), DAG, dl);
12800 return DCI.CombineTo(N, InsV);
12803 // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12804 if (isShuffleLow128VectorInsertHigh(SVOp)) {
12805 SDValue V = Extract128BitVector(V1, DAG.getConstant(0, MVT::i32), DAG, dl);
12806 SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12807 V, DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
12808 return DCI.CombineTo(N, InsV);
12814 /// PerformShuffleCombine - Performs several different shuffle combines.
12815 static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
12816 TargetLowering::DAGCombinerInfo &DCI,
12817 const X86Subtarget *Subtarget) {
12818 DebugLoc dl = N->getDebugLoc();
12819 EVT VT = N->getValueType(0);
12821 // Don't create instructions with illegal types after legalize types has run.
12822 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12823 if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
12826 // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
12827 if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
12828 N->getOpcode() == ISD::VECTOR_SHUFFLE)
12829 return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
12831 // Only handle 128 wide vector from here on.
12832 if (VT.getSizeInBits() != 128)
12835 // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
12836 // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
12837 // consecutive, non-overlapping, and in the right order.
12838 SmallVector<SDValue, 16> Elts;
12839 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
12840 Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
12842 return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
12846 /// PerformTruncateCombine - Converts truncate operation to
12847 /// a sequence of vector shuffle operations.
12848 /// It is possible when we truncate 256-bit vector to 128-bit vector
12850 SDValue X86TargetLowering::PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
12851 DAGCombinerInfo &DCI) const {
12852 if (!DCI.isBeforeLegalizeOps())
12855 if (!Subtarget->hasAVX()) return SDValue();
12857 EVT VT = N->getValueType(0);
12858 SDValue Op = N->getOperand(0);
12859 EVT OpVT = Op.getValueType();
12860 DebugLoc dl = N->getDebugLoc();
12862 if ((VT == MVT::v4i32) && (OpVT == MVT::v4i64)) {
12864 SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
12865 DAG.getIntPtrConstant(0));
12867 SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
12868 DAG.getIntPtrConstant(2));
12870 OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
12871 OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
12874 int ShufMask1[] = {0, 2, 0, 0};
12876 OpLo = DAG.getVectorShuffle(VT, dl, OpLo, DAG.getUNDEF(VT),
12878 OpHi = DAG.getVectorShuffle(VT, dl, OpHi, DAG.getUNDEF(VT),
12882 int ShufMask2[] = {0, 1, 4, 5};
12884 return DAG.getVectorShuffle(VT, dl, OpLo, OpHi, ShufMask2);
12886 if ((VT == MVT::v8i16) && (OpVT == MVT::v8i32)) {
12888 SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
12889 DAG.getIntPtrConstant(0));
12891 SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
12892 DAG.getIntPtrConstant(4));
12894 OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLo);
12895 OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpHi);
12898 int ShufMask1[] = {0, 1, 4, 5, 8, 9, 12, 13,
12899 -1, -1, -1, -1, -1, -1, -1, -1};
12901 OpLo = DAG.getVectorShuffle(MVT::v16i8, dl, OpLo,
12902 DAG.getUNDEF(MVT::v16i8),
12904 OpHi = DAG.getVectorShuffle(MVT::v16i8, dl, OpHi,
12905 DAG.getUNDEF(MVT::v16i8),
12908 OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
12909 OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
12912 int ShufMask2[] = {0, 1, 4, 5};
12914 SDValue res = DAG.getVectorShuffle(MVT::v4i32, dl, OpLo, OpHi, ShufMask2);
12915 return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, res);
12921 /// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
12922 /// specific shuffle of a load can be folded into a single element load.
12923 /// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
12924 /// shuffles have been customed lowered so we need to handle those here.
12925 static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
12926 TargetLowering::DAGCombinerInfo &DCI) {
12927 if (DCI.isBeforeLegalizeOps())
12930 SDValue InVec = N->getOperand(0);
12931 SDValue EltNo = N->getOperand(1);
12933 if (!isa<ConstantSDNode>(EltNo))
12936 EVT VT = InVec.getValueType();
12938 bool HasShuffleIntoBitcast = false;
12939 if (InVec.getOpcode() == ISD::BITCAST) {
12940 // Don't duplicate a load with other uses.
12941 if (!InVec.hasOneUse())
12943 EVT BCVT = InVec.getOperand(0).getValueType();
12944 if (BCVT.getVectorNumElements() != VT.getVectorNumElements())
12946 InVec = InVec.getOperand(0);
12947 HasShuffleIntoBitcast = true;
12950 if (!isTargetShuffle(InVec.getOpcode()))
12953 // Don't duplicate a load with other uses.
12954 if (!InVec.hasOneUse())
12957 SmallVector<int, 16> ShuffleMask;
12959 if (!getTargetShuffleMask(InVec.getNode(), VT, ShuffleMask, UnaryShuffle))
12962 // Select the input vector, guarding against out of range extract vector.
12963 unsigned NumElems = VT.getVectorNumElements();
12964 int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
12965 int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
12966 SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
12967 : InVec.getOperand(1);
12969 // If inputs to shuffle are the same for both ops, then allow 2 uses
12970 unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
12972 if (LdNode.getOpcode() == ISD::BITCAST) {
12973 // Don't duplicate a load with other uses.
12974 if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
12977 AllowedUses = 1; // only allow 1 load use if we have a bitcast
12978 LdNode = LdNode.getOperand(0);
12981 if (!ISD::isNormalLoad(LdNode.getNode()))
12984 LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
12986 if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
12989 if (HasShuffleIntoBitcast) {
12990 // If there's a bitcast before the shuffle, check if the load type and
12991 // alignment is valid.
12992 unsigned Align = LN0->getAlignment();
12993 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12994 unsigned NewAlign = TLI.getTargetData()->
12995 getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
12997 if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
13001 // All checks match so transform back to vector_shuffle so that DAG combiner
13002 // can finish the job
13003 DebugLoc dl = N->getDebugLoc();
13005 // Create shuffle node taking into account the case that its a unary shuffle
13006 SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1);
13007 Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl,
13008 InVec.getOperand(0), Shuffle,
13010 Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
13011 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
13015 /// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
13016 /// generation and convert it from being a bunch of shuffles and extracts
13017 /// to a simple store and scalar loads to extract the elements.
13018 static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
13019 TargetLowering::DAGCombinerInfo &DCI) {
13020 SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
13021 if (NewOp.getNode())
13024 SDValue InputVector = N->getOperand(0);
13026 // Only operate on vectors of 4 elements, where the alternative shuffling
13027 // gets to be more expensive.
13028 if (InputVector.getValueType() != MVT::v4i32)
13031 // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
13032 // single use which is a sign-extend or zero-extend, and all elements are
13034 SmallVector<SDNode *, 4> Uses;
13035 unsigned ExtractedElements = 0;
13036 for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
13037 UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
13038 if (UI.getUse().getResNo() != InputVector.getResNo())
13041 SDNode *Extract = *UI;
13042 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13045 if (Extract->getValueType(0) != MVT::i32)
13047 if (!Extract->hasOneUse())
13049 if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
13050 Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
13052 if (!isa<ConstantSDNode>(Extract->getOperand(1)))
13055 // Record which element was extracted.
13056 ExtractedElements |=
13057 1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
13059 Uses.push_back(Extract);
13062 // If not all the elements were used, this may not be worthwhile.
13063 if (ExtractedElements != 15)
13066 // Ok, we've now decided to do the transformation.
13067 DebugLoc dl = InputVector.getDebugLoc();
13069 // Store the value to a temporary stack slot.
13070 SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
13071 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
13072 MachinePointerInfo(), false, false, 0);
13074 // Replace each use (extract) with a load of the appropriate element.
13075 for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
13076 UE = Uses.end(); UI != UE; ++UI) {
13077 SDNode *Extract = *UI;
13079 // cOMpute the element's address.
13080 SDValue Idx = Extract->getOperand(1);
13082 InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
13083 uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
13084 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13085 SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
13087 SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
13088 StackPtr, OffsetVal);
13090 // Load the scalar.
13091 SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
13092 ScalarAddr, MachinePointerInfo(),
13093 false, false, false, 0);
13095 // Replace the exact with the load.
13096 DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
13099 // The replacement was made in place; don't return anything.
13103 /// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
13105 static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
13106 TargetLowering::DAGCombinerInfo &DCI,
13107 const X86Subtarget *Subtarget) {
13110 DebugLoc DL = N->getDebugLoc();
13111 SDValue Cond = N->getOperand(0);
13112 // Get the LHS/RHS of the select.
13113 SDValue LHS = N->getOperand(1);
13114 SDValue RHS = N->getOperand(2);
13115 EVT VT = LHS.getValueType();
13117 // If we have SSE[12] support, try to form min/max nodes. SSE min/max
13118 // instructions match the semantics of the common C idiom x<y?x:y but not
13119 // x<=y?x:y, because of how they handle negative zero (which can be
13120 // ignored in unsafe-math mode).
13121 if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
13122 VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
13123 (Subtarget->hasSSE2() ||
13124 (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
13125 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13127 unsigned Opcode = 0;
13128 // Check for x CC y ? x : y.
13129 if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13130 DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13134 // Converting this to a min would handle NaNs incorrectly, and swapping
13135 // the operands would cause it to handle comparisons between positive
13136 // and negative zero incorrectly.
13137 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13138 if (!DAG.getTarget().Options.UnsafeFPMath &&
13139 !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13141 std::swap(LHS, RHS);
13143 Opcode = X86ISD::FMIN;
13146 // Converting this to a min would handle comparisons between positive
13147 // and negative zero incorrectly.
13148 if (!DAG.getTarget().Options.UnsafeFPMath &&
13149 !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13151 Opcode = X86ISD::FMIN;
13154 // Converting this to a min would handle both negative zeros and NaNs
13155 // incorrectly, but we can swap the operands to fix both.
13156 std::swap(LHS, RHS);
13160 Opcode = X86ISD::FMIN;
13164 // Converting this to a max would handle comparisons between positive
13165 // and negative zero incorrectly.
13166 if (!DAG.getTarget().Options.UnsafeFPMath &&
13167 !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13169 Opcode = X86ISD::FMAX;
13172 // Converting this to a max would handle NaNs incorrectly, and swapping
13173 // the operands would cause it to handle comparisons between positive
13174 // and negative zero incorrectly.
13175 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13176 if (!DAG.getTarget().Options.UnsafeFPMath &&
13177 !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13179 std::swap(LHS, RHS);
13181 Opcode = X86ISD::FMAX;
13184 // Converting this to a max would handle both negative zeros and NaNs
13185 // incorrectly, but we can swap the operands to fix both.
13186 std::swap(LHS, RHS);
13190 Opcode = X86ISD::FMAX;
13193 // Check for x CC y ? y : x -- a min/max with reversed arms.
13194 } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
13195 DAG.isEqualTo(RHS, Cond.getOperand(0))) {
13199 // Converting this to a min would handle comparisons between positive
13200 // and negative zero incorrectly, and swapping the operands would
13201 // cause it to handle NaNs incorrectly.
13202 if (!DAG.getTarget().Options.UnsafeFPMath &&
13203 !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
13204 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13206 std::swap(LHS, RHS);
13208 Opcode = X86ISD::FMIN;
13211 // Converting this to a min would handle NaNs incorrectly.
13212 if (!DAG.getTarget().Options.UnsafeFPMath &&
13213 (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
13215 Opcode = X86ISD::FMIN;
13218 // Converting this to a min would handle both negative zeros and NaNs
13219 // incorrectly, but we can swap the operands to fix both.
13220 std::swap(LHS, RHS);
13224 Opcode = X86ISD::FMIN;
13228 // Converting this to a max would handle NaNs incorrectly.
13229 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13231 Opcode = X86ISD::FMAX;
13234 // Converting this to a max would handle comparisons between positive
13235 // and negative zero incorrectly, and swapping the operands would
13236 // cause it to handle NaNs incorrectly.
13237 if (!DAG.getTarget().Options.UnsafeFPMath &&
13238 !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
13239 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13241 std::swap(LHS, RHS);
13243 Opcode = X86ISD::FMAX;
13246 // Converting this to a max would handle both negative zeros and NaNs
13247 // incorrectly, but we can swap the operands to fix both.
13248 std::swap(LHS, RHS);
13252 Opcode = X86ISD::FMAX;
13258 return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
13261 // If this is a select between two integer constants, try to do some
13263 if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
13264 if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
13265 // Don't do this for crazy integer types.
13266 if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
13267 // If this is efficiently invertible, canonicalize the LHSC/RHSC values
13268 // so that TrueC (the true value) is larger than FalseC.
13269 bool NeedsCondInvert = false;
13271 if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
13272 // Efficiently invertible.
13273 (Cond.getOpcode() == ISD::SETCC || // setcc -> invertible.
13274 (Cond.getOpcode() == ISD::XOR && // xor(X, C) -> invertible.
13275 isa<ConstantSDNode>(Cond.getOperand(1))))) {
13276 NeedsCondInvert = true;
13277 std::swap(TrueC, FalseC);
13280 // Optimize C ? 8 : 0 -> zext(C) << 3. Likewise for any pow2/0.
13281 if (FalseC->getAPIntValue() == 0 &&
13282 TrueC->getAPIntValue().isPowerOf2()) {
13283 if (NeedsCondInvert) // Invert the condition if needed.
13284 Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13285 DAG.getConstant(1, Cond.getValueType()));
13287 // Zero extend the condition if needed.
13288 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
13290 unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13291 return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
13292 DAG.getConstant(ShAmt, MVT::i8));
13295 // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
13296 if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13297 if (NeedsCondInvert) // Invert the condition if needed.
13298 Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13299 DAG.getConstant(1, Cond.getValueType()));
13301 // Zero extend the condition if needed.
13302 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13303 FalseC->getValueType(0), Cond);
13304 return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13305 SDValue(FalseC, 0));
13308 // Optimize cases that will turn into an LEA instruction. This requires
13309 // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13310 if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13311 uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13312 if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13314 bool isFastMultiplier = false;
13316 switch ((unsigned char)Diff) {
13318 case 1: // result = add base, cond
13319 case 2: // result = lea base( , cond*2)
13320 case 3: // result = lea base(cond, cond*2)
13321 case 4: // result = lea base( , cond*4)
13322 case 5: // result = lea base(cond, cond*4)
13323 case 8: // result = lea base( , cond*8)
13324 case 9: // result = lea base(cond, cond*8)
13325 isFastMultiplier = true;
13330 if (isFastMultiplier) {
13331 APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13332 if (NeedsCondInvert) // Invert the condition if needed.
13333 Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13334 DAG.getConstant(1, Cond.getValueType()));
13336 // Zero extend the condition if needed.
13337 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13339 // Scale the condition by the difference.
13341 Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13342 DAG.getConstant(Diff, Cond.getValueType()));
13344 // Add the base if non-zero.
13345 if (FalseC->getAPIntValue() != 0)
13346 Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13347 SDValue(FalseC, 0));
13354 // Canonicalize max and min:
13355 // (x > y) ? x : y -> (x >= y) ? x : y
13356 // (x < y) ? x : y -> (x <= y) ? x : y
13357 // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
13358 // the need for an extra compare
13359 // against zero. e.g.
13360 // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
13362 // testl %edi, %edi
13364 // cmovgl %edi, %eax
13368 // cmovsl %eax, %edi
13369 if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
13370 DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13371 DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13372 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13377 ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
13378 Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
13379 Cond.getOperand(0), Cond.getOperand(1), NewCC);
13380 return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
13385 // If we know that this node is legal then we know that it is going to be
13386 // matched by one of the SSE/AVX BLEND instructions. These instructions only
13387 // depend on the highest bit in each word. Try to use SimplifyDemandedBits
13388 // to simplify previous instructions.
13389 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13390 if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
13391 !DCI.isBeforeLegalize() &&
13392 TLI.isOperationLegal(ISD::VSELECT, VT)) {
13393 unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
13394 assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
13395 APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
13397 APInt KnownZero, KnownOne;
13398 TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
13399 DCI.isBeforeLegalizeOps());
13400 if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
13401 TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
13402 DCI.CommitTargetLoweringOpt(TLO);
13408 /// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
13409 static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
13410 TargetLowering::DAGCombinerInfo &DCI) {
13411 DebugLoc DL = N->getDebugLoc();
13413 // If the flag operand isn't dead, don't touch this CMOV.
13414 if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
13417 SDValue FalseOp = N->getOperand(0);
13418 SDValue TrueOp = N->getOperand(1);
13419 X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
13420 SDValue Cond = N->getOperand(3);
13421 if (CC == X86::COND_E || CC == X86::COND_NE) {
13422 switch (Cond.getOpcode()) {
13426 // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
13427 if (DAG.isKnownNeverZero(Cond.getOperand(0)))
13428 return (CC == X86::COND_E) ? FalseOp : TrueOp;
13432 // If this is a select between two integer constants, try to do some
13433 // optimizations. Note that the operands are ordered the opposite of SELECT
13435 if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
13436 if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
13437 // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
13438 // larger than FalseC (the false value).
13439 if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
13440 CC = X86::GetOppositeBranchCondition(CC);
13441 std::swap(TrueC, FalseC);
13444 // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3. Likewise for any pow2/0.
13445 // This is efficient for any integer data type (including i8/i16) and
13447 if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
13448 Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13449 DAG.getConstant(CC, MVT::i8), Cond);
13451 // Zero extend the condition if needed.
13452 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
13454 unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13455 Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
13456 DAG.getConstant(ShAmt, MVT::i8));
13457 if (N->getNumValues() == 2) // Dead flag value?
13458 return DCI.CombineTo(N, Cond, SDValue());
13462 // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. This is efficient
13463 // for any integer data type, including i8/i16.
13464 if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13465 Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13466 DAG.getConstant(CC, MVT::i8), Cond);
13468 // Zero extend the condition if needed.
13469 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13470 FalseC->getValueType(0), Cond);
13471 Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13472 SDValue(FalseC, 0));
13474 if (N->getNumValues() == 2) // Dead flag value?
13475 return DCI.CombineTo(N, Cond, SDValue());
13479 // Optimize cases that will turn into an LEA instruction. This requires
13480 // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13481 if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13482 uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13483 if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13485 bool isFastMultiplier = false;
13487 switch ((unsigned char)Diff) {
13489 case 1: // result = add base, cond
13490 case 2: // result = lea base( , cond*2)
13491 case 3: // result = lea base(cond, cond*2)
13492 case 4: // result = lea base( , cond*4)
13493 case 5: // result = lea base(cond, cond*4)
13494 case 8: // result = lea base( , cond*8)
13495 case 9: // result = lea base(cond, cond*8)
13496 isFastMultiplier = true;
13501 if (isFastMultiplier) {
13502 APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13503 Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13504 DAG.getConstant(CC, MVT::i8), Cond);
13505 // Zero extend the condition if needed.
13506 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13508 // Scale the condition by the difference.
13510 Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13511 DAG.getConstant(Diff, Cond.getValueType()));
13513 // Add the base if non-zero.
13514 if (FalseC->getAPIntValue() != 0)
13515 Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13516 SDValue(FalseC, 0));
13517 if (N->getNumValues() == 2) // Dead flag value?
13518 return DCI.CombineTo(N, Cond, SDValue());
13528 /// PerformMulCombine - Optimize a single multiply with constant into two
13529 /// in order to implement it with two cheaper instructions, e.g.
13530 /// LEA + SHL, LEA + LEA.
13531 static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
13532 TargetLowering::DAGCombinerInfo &DCI) {
13533 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
13536 EVT VT = N->getValueType(0);
13537 if (VT != MVT::i64)
13540 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
13543 uint64_t MulAmt = C->getZExtValue();
13544 if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
13547 uint64_t MulAmt1 = 0;
13548 uint64_t MulAmt2 = 0;
13549 if ((MulAmt % 9) == 0) {
13551 MulAmt2 = MulAmt / 9;
13552 } else if ((MulAmt % 5) == 0) {
13554 MulAmt2 = MulAmt / 5;
13555 } else if ((MulAmt % 3) == 0) {
13557 MulAmt2 = MulAmt / 3;
13560 (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
13561 DebugLoc DL = N->getDebugLoc();
13563 if (isPowerOf2_64(MulAmt2) &&
13564 !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
13565 // If second multiplifer is pow2, issue it first. We want the multiply by
13566 // 3, 5, or 9 to be folded into the addressing mode unless the lone use
13568 std::swap(MulAmt1, MulAmt2);
13571 if (isPowerOf2_64(MulAmt1))
13572 NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
13573 DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
13575 NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
13576 DAG.getConstant(MulAmt1, VT));
13578 if (isPowerOf2_64(MulAmt2))
13579 NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
13580 DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
13582 NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
13583 DAG.getConstant(MulAmt2, VT));
13585 // Do not add new nodes to DAG combiner worklist.
13586 DCI.CombineTo(N, NewMul, false);
13591 static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
13592 SDValue N0 = N->getOperand(0);
13593 SDValue N1 = N->getOperand(1);
13594 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
13595 EVT VT = N0.getValueType();
13597 // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
13598 // since the result of setcc_c is all zero's or all ones.
13599 if (VT.isInteger() && !VT.isVector() &&
13600 N1C && N0.getOpcode() == ISD::AND &&
13601 N0.getOperand(1).getOpcode() == ISD::Constant) {
13602 SDValue N00 = N0.getOperand(0);
13603 if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
13604 ((N00.getOpcode() == ISD::ANY_EXTEND ||
13605 N00.getOpcode() == ISD::ZERO_EXTEND) &&
13606 N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
13607 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
13608 APInt ShAmt = N1C->getAPIntValue();
13609 Mask = Mask.shl(ShAmt);
13611 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
13612 N00, DAG.getConstant(Mask, VT));
13617 // Hardware support for vector shifts is sparse which makes us scalarize the
13618 // vector operations in many cases. Also, on sandybridge ADD is faster than
13620 // (shl V, 1) -> add V,V
13621 if (isSplatVector(N1.getNode())) {
13622 assert(N0.getValueType().isVector() && "Invalid vector shift type");
13623 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
13624 // We shift all of the values by one. In many cases we do not have
13625 // hardware support for this operation. This is better expressed as an ADD
13627 if (N1C && (1 == N1C->getZExtValue())) {
13628 return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
13635 /// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
13637 static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
13638 TargetLowering::DAGCombinerInfo &DCI,
13639 const X86Subtarget *Subtarget) {
13640 EVT VT = N->getValueType(0);
13641 if (N->getOpcode() == ISD::SHL) {
13642 SDValue V = PerformSHLCombine(N, DAG);
13643 if (V.getNode()) return V;
13646 // On X86 with SSE2 support, we can transform this to a vector shift if
13647 // all elements are shifted by the same amount. We can't do this in legalize
13648 // because the a constant vector is typically transformed to a constant pool
13649 // so we have no knowledge of the shift amount.
13650 if (!Subtarget->hasSSE2())
13653 if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
13654 (!Subtarget->hasAVX2() ||
13655 (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
13658 SDValue ShAmtOp = N->getOperand(1);
13659 EVT EltVT = VT.getVectorElementType();
13660 DebugLoc DL = N->getDebugLoc();
13661 SDValue BaseShAmt = SDValue();
13662 if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
13663 unsigned NumElts = VT.getVectorNumElements();
13665 for (; i != NumElts; ++i) {
13666 SDValue Arg = ShAmtOp.getOperand(i);
13667 if (Arg.getOpcode() == ISD::UNDEF) continue;
13671 // Handle the case where the build_vector is all undef
13672 // FIXME: Should DAG allow this?
13676 for (; i != NumElts; ++i) {
13677 SDValue Arg = ShAmtOp.getOperand(i);
13678 if (Arg.getOpcode() == ISD::UNDEF) continue;
13679 if (Arg != BaseShAmt) {
13683 } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
13684 cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
13685 SDValue InVec = ShAmtOp.getOperand(0);
13686 if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
13687 unsigned NumElts = InVec.getValueType().getVectorNumElements();
13689 for (; i != NumElts; ++i) {
13690 SDValue Arg = InVec.getOperand(i);
13691 if (Arg.getOpcode() == ISD::UNDEF) continue;
13695 } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
13696 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
13697 unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
13698 if (C->getZExtValue() == SplatIdx)
13699 BaseShAmt = InVec.getOperand(1);
13702 if (BaseShAmt.getNode() == 0) {
13703 // Don't create instructions with illegal types after legalize
13705 if (!DAG.getTargetLoweringInfo().isTypeLegal(EltVT) &&
13706 !DCI.isBeforeLegalize())
13709 BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
13710 DAG.getIntPtrConstant(0));
13715 // The shift amount is an i32.
13716 if (EltVT.bitsGT(MVT::i32))
13717 BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
13718 else if (EltVT.bitsLT(MVT::i32))
13719 BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
13721 // The shift amount is identical so we can do a vector shift.
13722 SDValue ValOp = N->getOperand(0);
13723 switch (N->getOpcode()) {
13725 llvm_unreachable("Unknown shift opcode!");
13727 switch (VT.getSimpleVT().SimpleTy) {
13728 default: return SDValue();
13735 return getTargetVShiftNode(X86ISD::VSHLI, DL, VT, ValOp, BaseShAmt, DAG);
13738 switch (VT.getSimpleVT().SimpleTy) {
13739 default: return SDValue();
13744 return getTargetVShiftNode(X86ISD::VSRAI, DL, VT, ValOp, BaseShAmt, DAG);
13747 switch (VT.getSimpleVT().SimpleTy) {
13748 default: return SDValue();
13755 return getTargetVShiftNode(X86ISD::VSRLI, DL, VT, ValOp, BaseShAmt, DAG);
13761 // CMPEQCombine - Recognize the distinctive (AND (setcc ...) (setcc ..))
13762 // where both setccs reference the same FP CMP, and rewrite for CMPEQSS
13763 // and friends. Likewise for OR -> CMPNEQSS.
13764 static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
13765 TargetLowering::DAGCombinerInfo &DCI,
13766 const X86Subtarget *Subtarget) {
13769 // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
13770 // we're requiring SSE2 for both.
13771 if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
13772 SDValue N0 = N->getOperand(0);
13773 SDValue N1 = N->getOperand(1);
13774 SDValue CMP0 = N0->getOperand(1);
13775 SDValue CMP1 = N1->getOperand(1);
13776 DebugLoc DL = N->getDebugLoc();
13778 // The SETCCs should both refer to the same CMP.
13779 if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
13782 SDValue CMP00 = CMP0->getOperand(0);
13783 SDValue CMP01 = CMP0->getOperand(1);
13784 EVT VT = CMP00.getValueType();
13786 if (VT == MVT::f32 || VT == MVT::f64) {
13787 bool ExpectingFlags = false;
13788 // Check for any users that want flags:
13789 for (SDNode::use_iterator UI = N->use_begin(),
13791 !ExpectingFlags && UI != UE; ++UI)
13792 switch (UI->getOpcode()) {
13797 ExpectingFlags = true;
13799 case ISD::CopyToReg:
13800 case ISD::SIGN_EXTEND:
13801 case ISD::ZERO_EXTEND:
13802 case ISD::ANY_EXTEND:
13806 if (!ExpectingFlags) {
13807 enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
13808 enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
13810 if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
13811 X86::CondCode tmp = cc0;
13816 if ((cc0 == X86::COND_E && cc1 == X86::COND_NP) ||
13817 (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
13818 bool is64BitFP = (CMP00.getValueType() == MVT::f64);
13819 X86ISD::NodeType NTOperator = is64BitFP ?
13820 X86ISD::FSETCCsd : X86ISD::FSETCCss;
13821 // FIXME: need symbolic constants for these magic numbers.
13822 // See X86ATTInstPrinter.cpp:printSSECC().
13823 unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
13824 SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
13825 DAG.getConstant(x86cc, MVT::i8));
13826 SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
13828 SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
13829 DAG.getConstant(1, MVT::i32));
13830 SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
13831 return OneBitOfTruth;
13839 /// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
13840 /// so it can be folded inside ANDNP.
13841 static bool CanFoldXORWithAllOnes(const SDNode *N) {
13842 EVT VT = N->getValueType(0);
13844 // Match direct AllOnes for 128 and 256-bit vectors
13845 if (ISD::isBuildVectorAllOnes(N))
13848 // Look through a bit convert.
13849 if (N->getOpcode() == ISD::BITCAST)
13850 N = N->getOperand(0).getNode();
13852 // Sometimes the operand may come from a insert_subvector building a 256-bit
13854 if (VT.getSizeInBits() == 256 &&
13855 N->getOpcode() == ISD::INSERT_SUBVECTOR) {
13856 SDValue V1 = N->getOperand(0);
13857 SDValue V2 = N->getOperand(1);
13859 if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
13860 V1.getOperand(0).getOpcode() == ISD::UNDEF &&
13861 ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
13862 ISD::isBuildVectorAllOnes(V2.getNode()))
13869 static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
13870 TargetLowering::DAGCombinerInfo &DCI,
13871 const X86Subtarget *Subtarget) {
13872 if (DCI.isBeforeLegalizeOps())
13875 SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13879 EVT VT = N->getValueType(0);
13881 // Create ANDN, BLSI, and BLSR instructions
13882 // BLSI is X & (-X)
13883 // BLSR is X & (X-1)
13884 if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
13885 SDValue N0 = N->getOperand(0);
13886 SDValue N1 = N->getOperand(1);
13887 DebugLoc DL = N->getDebugLoc();
13889 // Check LHS for not
13890 if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
13891 return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
13892 // Check RHS for not
13893 if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
13894 return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
13896 // Check LHS for neg
13897 if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
13898 isZero(N0.getOperand(0)))
13899 return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
13901 // Check RHS for neg
13902 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
13903 isZero(N1.getOperand(0)))
13904 return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
13906 // Check LHS for X-1
13907 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
13908 isAllOnes(N0.getOperand(1)))
13909 return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
13911 // Check RHS for X-1
13912 if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
13913 isAllOnes(N1.getOperand(1)))
13914 return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
13919 // Want to form ANDNP nodes:
13920 // 1) In the hopes of then easily combining them with OR and AND nodes
13921 // to form PBLEND/PSIGN.
13922 // 2) To match ANDN packed intrinsics
13923 if (VT != MVT::v2i64 && VT != MVT::v4i64)
13926 SDValue N0 = N->getOperand(0);
13927 SDValue N1 = N->getOperand(1);
13928 DebugLoc DL = N->getDebugLoc();
13930 // Check LHS for vnot
13931 if (N0.getOpcode() == ISD::XOR &&
13932 //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
13933 CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
13934 return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
13936 // Check RHS for vnot
13937 if (N1.getOpcode() == ISD::XOR &&
13938 //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
13939 CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
13940 return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
13945 static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
13946 TargetLowering::DAGCombinerInfo &DCI,
13947 const X86Subtarget *Subtarget) {
13948 if (DCI.isBeforeLegalizeOps())
13951 SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13955 EVT VT = N->getValueType(0);
13957 SDValue N0 = N->getOperand(0);
13958 SDValue N1 = N->getOperand(1);
13960 // look for psign/blend
13961 if (VT == MVT::v2i64 || VT == MVT::v4i64) {
13962 if (!Subtarget->hasSSSE3() ||
13963 (VT == MVT::v4i64 && !Subtarget->hasAVX2()))
13966 // Canonicalize pandn to RHS
13967 if (N0.getOpcode() == X86ISD::ANDNP)
13969 // or (and (m, y), (pandn m, x))
13970 if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
13971 SDValue Mask = N1.getOperand(0);
13972 SDValue X = N1.getOperand(1);
13974 if (N0.getOperand(0) == Mask)
13975 Y = N0.getOperand(1);
13976 if (N0.getOperand(1) == Mask)
13977 Y = N0.getOperand(0);
13979 // Check to see if the mask appeared in both the AND and ANDNP and
13983 // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
13984 // Look through mask bitcast.
13985 if (Mask.getOpcode() == ISD::BITCAST)
13986 Mask = Mask.getOperand(0);
13987 if (X.getOpcode() == ISD::BITCAST)
13988 X = X.getOperand(0);
13989 if (Y.getOpcode() == ISD::BITCAST)
13990 Y = Y.getOperand(0);
13992 EVT MaskVT = Mask.getValueType();
13994 // Validate that the Mask operand is a vector sra node.
13995 // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
13996 // there is no psrai.b
13997 if (Mask.getOpcode() != X86ISD::VSRAI)
14000 // Check that the SRA is all signbits.
14001 SDValue SraC = Mask.getOperand(1);
14002 unsigned SraAmt = cast<ConstantSDNode>(SraC)->getZExtValue();
14003 unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
14004 if ((SraAmt + 1) != EltBits)
14007 DebugLoc DL = N->getDebugLoc();
14009 // Now we know we at least have a plendvb with the mask val. See if
14010 // we can form a psignb/w/d.
14011 // psign = x.type == y.type == mask.type && y = sub(0, x);
14012 if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
14013 ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
14014 X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
14015 assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
14016 "Unsupported VT for PSIGN");
14017 Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
14018 return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
14020 // PBLENDVB only available on SSE 4.1
14021 if (!Subtarget->hasSSE41())
14024 EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
14026 X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
14027 Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
14028 Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
14029 Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
14030 return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
14034 if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
14037 // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
14038 if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
14040 if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
14042 if (!N0.hasOneUse() || !N1.hasOneUse())
14045 SDValue ShAmt0 = N0.getOperand(1);
14046 if (ShAmt0.getValueType() != MVT::i8)
14048 SDValue ShAmt1 = N1.getOperand(1);
14049 if (ShAmt1.getValueType() != MVT::i8)
14051 if (ShAmt0.getOpcode() == ISD::TRUNCATE)
14052 ShAmt0 = ShAmt0.getOperand(0);
14053 if (ShAmt1.getOpcode() == ISD::TRUNCATE)
14054 ShAmt1 = ShAmt1.getOperand(0);
14056 DebugLoc DL = N->getDebugLoc();
14057 unsigned Opc = X86ISD::SHLD;
14058 SDValue Op0 = N0.getOperand(0);
14059 SDValue Op1 = N1.getOperand(0);
14060 if (ShAmt0.getOpcode() == ISD::SUB) {
14061 Opc = X86ISD::SHRD;
14062 std::swap(Op0, Op1);
14063 std::swap(ShAmt0, ShAmt1);
14066 unsigned Bits = VT.getSizeInBits();
14067 if (ShAmt1.getOpcode() == ISD::SUB) {
14068 SDValue Sum = ShAmt1.getOperand(0);
14069 if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
14070 SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
14071 if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
14072 ShAmt1Op1 = ShAmt1Op1.getOperand(0);
14073 if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
14074 return DAG.getNode(Opc, DL, VT,
14076 DAG.getNode(ISD::TRUNCATE, DL,
14079 } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
14080 ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
14082 ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
14083 return DAG.getNode(Opc, DL, VT,
14084 N0.getOperand(0), N1.getOperand(0),
14085 DAG.getNode(ISD::TRUNCATE, DL,
14092 // PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
14093 static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
14094 TargetLowering::DAGCombinerInfo &DCI,
14095 const X86Subtarget *Subtarget) {
14096 if (DCI.isBeforeLegalizeOps())
14099 EVT VT = N->getValueType(0);
14101 if (VT != MVT::i32 && VT != MVT::i64)
14104 assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
14106 // Create BLSMSK instructions by finding X ^ (X-1)
14107 SDValue N0 = N->getOperand(0);
14108 SDValue N1 = N->getOperand(1);
14109 DebugLoc DL = N->getDebugLoc();
14111 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
14112 isAllOnes(N0.getOperand(1)))
14113 return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
14115 if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
14116 isAllOnes(N1.getOperand(1)))
14117 return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
14122 /// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
14123 static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
14124 const X86Subtarget *Subtarget) {
14125 LoadSDNode *Ld = cast<LoadSDNode>(N);
14126 EVT RegVT = Ld->getValueType(0);
14127 EVT MemVT = Ld->getMemoryVT();
14128 DebugLoc dl = Ld->getDebugLoc();
14129 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14131 ISD::LoadExtType Ext = Ld->getExtensionType();
14133 // If this is a vector EXT Load then attempt to optimize it using a
14134 // shuffle. We need SSE4 for the shuffles.
14135 // TODO: It is possible to support ZExt by zeroing the undef values
14136 // during the shuffle phase or after the shuffle.
14137 if (RegVT.isVector() && RegVT.isInteger() &&
14138 Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
14139 assert(MemVT != RegVT && "Cannot extend to the same type");
14140 assert(MemVT.isVector() && "Must load a vector from memory");
14142 unsigned NumElems = RegVT.getVectorNumElements();
14143 unsigned RegSz = RegVT.getSizeInBits();
14144 unsigned MemSz = MemVT.getSizeInBits();
14145 assert(RegSz > MemSz && "Register size must be greater than the mem size");
14146 // All sizes must be a power of two
14147 if (!isPowerOf2_32(RegSz * MemSz * NumElems)) return SDValue();
14149 // Attempt to load the original value using a single load op.
14150 // Find a scalar type which is equal to the loaded word size.
14151 MVT SclrLoadTy = MVT::i8;
14152 for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14153 tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14154 MVT Tp = (MVT::SimpleValueType)tp;
14155 if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() == MemSz) {
14161 // Proceed if a load word is found.
14162 if (SclrLoadTy.getSizeInBits() != MemSz) return SDValue();
14164 EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
14165 RegSz/SclrLoadTy.getSizeInBits());
14167 EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
14168 RegSz/MemVT.getScalarType().getSizeInBits());
14169 // Can't shuffle using an illegal type.
14170 if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14172 // Perform a single load.
14173 SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
14175 Ld->getPointerInfo(), Ld->isVolatile(),
14176 Ld->isNonTemporal(), Ld->isInvariant(),
14177 Ld->getAlignment());
14179 // Insert the word loaded into a vector.
14180 SDValue ScalarInVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
14181 LoadUnitVecVT, ScalarLoad);
14183 // Bitcast the loaded value to a vector of the original element type, in
14184 // the size of the target vector type.
14185 SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT,
14187 unsigned SizeRatio = RegSz/MemSz;
14189 // Redistribute the loaded elements into the different locations.
14190 SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14191 for (unsigned i = 0; i < NumElems; i++) ShuffleVec[i*SizeRatio] = i;
14193 SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
14194 DAG.getUNDEF(SlicedVec.getValueType()),
14195 ShuffleVec.data());
14197 // Bitcast to the requested type.
14198 Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
14199 // Replace the original load with the new sequence
14200 // and return the new chain.
14201 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Shuff);
14202 return SDValue(ScalarLoad.getNode(), 1);
14208 /// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
14209 static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
14210 const X86Subtarget *Subtarget) {
14211 StoreSDNode *St = cast<StoreSDNode>(N);
14212 EVT VT = St->getValue().getValueType();
14213 EVT StVT = St->getMemoryVT();
14214 DebugLoc dl = St->getDebugLoc();
14215 SDValue StoredVal = St->getOperand(1);
14216 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14218 // If we are saving a concatenation of two XMM registers, perform two stores.
14219 // This is better in Sandy Bridge cause one 256-bit mem op is done via two
14220 // 128-bit ones. If in the future the cost becomes only one memory access the
14221 // first version would be better.
14222 if (VT.getSizeInBits() == 256 &&
14223 StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
14224 StoredVal.getNumOperands() == 2) {
14226 SDValue Value0 = StoredVal.getOperand(0);
14227 SDValue Value1 = StoredVal.getOperand(1);
14229 SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
14230 SDValue Ptr0 = St->getBasePtr();
14231 SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
14233 SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
14234 St->getPointerInfo(), St->isVolatile(),
14235 St->isNonTemporal(), St->getAlignment());
14236 SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
14237 St->getPointerInfo(), St->isVolatile(),
14238 St->isNonTemporal(), St->getAlignment());
14239 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
14242 // Optimize trunc store (of multiple scalars) to shuffle and store.
14243 // First, pack all of the elements in one place. Next, store to memory
14244 // in fewer chunks.
14245 if (St->isTruncatingStore() && VT.isVector()) {
14246 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14247 unsigned NumElems = VT.getVectorNumElements();
14248 assert(StVT != VT && "Cannot truncate to the same type");
14249 unsigned FromSz = VT.getVectorElementType().getSizeInBits();
14250 unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
14252 // From, To sizes and ElemCount must be pow of two
14253 if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
14254 // We are going to use the original vector elt for storing.
14255 // Accumulated smaller vector elements must be a multiple of the store size.
14256 if (0 != (NumElems * FromSz) % ToSz) return SDValue();
14258 unsigned SizeRatio = FromSz / ToSz;
14260 assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
14262 // Create a type on which we perform the shuffle
14263 EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
14264 StVT.getScalarType(), NumElems*SizeRatio);
14266 assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
14268 SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
14269 SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14270 for (unsigned i = 0; i < NumElems; i++ ) ShuffleVec[i] = i * SizeRatio;
14272 // Can't shuffle using an illegal type
14273 if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14275 SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
14276 DAG.getUNDEF(WideVec.getValueType()),
14277 ShuffleVec.data());
14278 // At this point all of the data is stored at the bottom of the
14279 // register. We now need to save it to mem.
14281 // Find the largest store unit
14282 MVT StoreType = MVT::i8;
14283 for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14284 tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14285 MVT Tp = (MVT::SimpleValueType)tp;
14286 if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
14290 // Bitcast the original vector into a vector of store-size units
14291 EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
14292 StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
14293 assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
14294 SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
14295 SmallVector<SDValue, 8> Chains;
14296 SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
14297 TLI.getPointerTy());
14298 SDValue Ptr = St->getBasePtr();
14300 // Perform one or more big stores into memory.
14301 for (unsigned i = 0; i < (ToSz*NumElems)/StoreType.getSizeInBits() ; i++) {
14302 SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
14303 StoreType, ShuffWide,
14304 DAG.getIntPtrConstant(i));
14305 SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
14306 St->getPointerInfo(), St->isVolatile(),
14307 St->isNonTemporal(), St->getAlignment());
14308 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14309 Chains.push_back(Ch);
14312 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
14317 // Turn load->store of MMX types into GPR load/stores. This avoids clobbering
14318 // the FP state in cases where an emms may be missing.
14319 // A preferable solution to the general problem is to figure out the right
14320 // places to insert EMMS. This qualifies as a quick hack.
14322 // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
14323 if (VT.getSizeInBits() != 64)
14326 const Function *F = DAG.getMachineFunction().getFunction();
14327 bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
14328 bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
14329 && Subtarget->hasSSE2();
14330 if ((VT.isVector() ||
14331 (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
14332 isa<LoadSDNode>(St->getValue()) &&
14333 !cast<LoadSDNode>(St->getValue())->isVolatile() &&
14334 St->getChain().hasOneUse() && !St->isVolatile()) {
14335 SDNode* LdVal = St->getValue().getNode();
14336 LoadSDNode *Ld = 0;
14337 int TokenFactorIndex = -1;
14338 SmallVector<SDValue, 8> Ops;
14339 SDNode* ChainVal = St->getChain().getNode();
14340 // Must be a store of a load. We currently handle two cases: the load
14341 // is a direct child, and it's under an intervening TokenFactor. It is
14342 // possible to dig deeper under nested TokenFactors.
14343 if (ChainVal == LdVal)
14344 Ld = cast<LoadSDNode>(St->getChain());
14345 else if (St->getValue().hasOneUse() &&
14346 ChainVal->getOpcode() == ISD::TokenFactor) {
14347 for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
14348 if (ChainVal->getOperand(i).getNode() == LdVal) {
14349 TokenFactorIndex = i;
14350 Ld = cast<LoadSDNode>(St->getValue());
14352 Ops.push_back(ChainVal->getOperand(i));
14356 if (!Ld || !ISD::isNormalLoad(Ld))
14359 // If this is not the MMX case, i.e. we are just turning i64 load/store
14360 // into f64 load/store, avoid the transformation if there are multiple
14361 // uses of the loaded value.
14362 if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
14365 DebugLoc LdDL = Ld->getDebugLoc();
14366 DebugLoc StDL = N->getDebugLoc();
14367 // If we are a 64-bit capable x86, lower to a single movq load/store pair.
14368 // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
14370 if (Subtarget->is64Bit() || F64IsLegal) {
14371 EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
14372 SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
14373 Ld->getPointerInfo(), Ld->isVolatile(),
14374 Ld->isNonTemporal(), Ld->isInvariant(),
14375 Ld->getAlignment());
14376 SDValue NewChain = NewLd.getValue(1);
14377 if (TokenFactorIndex != -1) {
14378 Ops.push_back(NewChain);
14379 NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14382 return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
14383 St->getPointerInfo(),
14384 St->isVolatile(), St->isNonTemporal(),
14385 St->getAlignment());
14388 // Otherwise, lower to two pairs of 32-bit loads / stores.
14389 SDValue LoAddr = Ld->getBasePtr();
14390 SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
14391 DAG.getConstant(4, MVT::i32));
14393 SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
14394 Ld->getPointerInfo(),
14395 Ld->isVolatile(), Ld->isNonTemporal(),
14396 Ld->isInvariant(), Ld->getAlignment());
14397 SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
14398 Ld->getPointerInfo().getWithOffset(4),
14399 Ld->isVolatile(), Ld->isNonTemporal(),
14401 MinAlign(Ld->getAlignment(), 4));
14403 SDValue NewChain = LoLd.getValue(1);
14404 if (TokenFactorIndex != -1) {
14405 Ops.push_back(LoLd);
14406 Ops.push_back(HiLd);
14407 NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14411 LoAddr = St->getBasePtr();
14412 HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
14413 DAG.getConstant(4, MVT::i32));
14415 SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
14416 St->getPointerInfo(),
14417 St->isVolatile(), St->isNonTemporal(),
14418 St->getAlignment());
14419 SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
14420 St->getPointerInfo().getWithOffset(4),
14422 St->isNonTemporal(),
14423 MinAlign(St->getAlignment(), 4));
14424 return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
14429 /// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
14430 /// and return the operands for the horizontal operation in LHS and RHS. A
14431 /// horizontal operation performs the binary operation on successive elements
14432 /// of its first operand, then on successive elements of its second operand,
14433 /// returning the resulting values in a vector. For example, if
14434 /// A = < float a0, float a1, float a2, float a3 >
14436 /// B = < float b0, float b1, float b2, float b3 >
14437 /// then the result of doing a horizontal operation on A and B is
14438 /// A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
14439 /// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
14440 /// A horizontal-op B, for some already available A and B, and if so then LHS is
14441 /// set to A, RHS to B, and the routine returns 'true'.
14442 /// Note that the binary operation should have the property that if one of the
14443 /// operands is UNDEF then the result is UNDEF.
14444 static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
14445 // Look for the following pattern: if
14446 // A = < float a0, float a1, float a2, float a3 >
14447 // B = < float b0, float b1, float b2, float b3 >
14449 // LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
14450 // RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
14451 // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
14452 // which is A horizontal-op B.
14454 // At least one of the operands should be a vector shuffle.
14455 if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14456 RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
14459 EVT VT = LHS.getValueType();
14461 assert((VT.is128BitVector() || VT.is256BitVector()) &&
14462 "Unsupported vector type for horizontal add/sub");
14464 // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
14465 // operate independently on 128-bit lanes.
14466 unsigned NumElts = VT.getVectorNumElements();
14467 unsigned NumLanes = VT.getSizeInBits()/128;
14468 unsigned NumLaneElts = NumElts / NumLanes;
14469 assert((NumLaneElts % 2 == 0) &&
14470 "Vector type should have an even number of elements in each lane");
14471 unsigned HalfLaneElts = NumLaneElts/2;
14473 // View LHS in the form
14474 // LHS = VECTOR_SHUFFLE A, B, LMask
14475 // If LHS is not a shuffle then pretend it is the shuffle
14476 // LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
14477 // NOTE: in what follows a default initialized SDValue represents an UNDEF of
14480 SmallVector<int, 16> LMask(NumElts);
14481 if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14482 if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
14483 A = LHS.getOperand(0);
14484 if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
14485 B = LHS.getOperand(1);
14486 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
14487 std::copy(Mask.begin(), Mask.end(), LMask.begin());
14489 if (LHS.getOpcode() != ISD::UNDEF)
14491 for (unsigned i = 0; i != NumElts; ++i)
14495 // Likewise, view RHS in the form
14496 // RHS = VECTOR_SHUFFLE C, D, RMask
14498 SmallVector<int, 16> RMask(NumElts);
14499 if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14500 if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
14501 C = RHS.getOperand(0);
14502 if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
14503 D = RHS.getOperand(1);
14504 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
14505 std::copy(Mask.begin(), Mask.end(), RMask.begin());
14507 if (RHS.getOpcode() != ISD::UNDEF)
14509 for (unsigned i = 0; i != NumElts; ++i)
14513 // Check that the shuffles are both shuffling the same vectors.
14514 if (!(A == C && B == D) && !(A == D && B == C))
14517 // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
14518 if (!A.getNode() && !B.getNode())
14521 // If A and B occur in reverse order in RHS, then "swap" them (which means
14522 // rewriting the mask).
14524 CommuteVectorShuffleMask(RMask, NumElts);
14526 // At this point LHS and RHS are equivalent to
14527 // LHS = VECTOR_SHUFFLE A, B, LMask
14528 // RHS = VECTOR_SHUFFLE A, B, RMask
14529 // Check that the masks correspond to performing a horizontal operation.
14530 for (unsigned i = 0; i != NumElts; ++i) {
14531 int LIdx = LMask[i], RIdx = RMask[i];
14533 // Ignore any UNDEF components.
14534 if (LIdx < 0 || RIdx < 0 ||
14535 (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
14536 (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
14539 // Check that successive elements are being operated on. If not, this is
14540 // not a horizontal operation.
14541 unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
14542 unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
14543 int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
14544 if (!(LIdx == Index && RIdx == Index + 1) &&
14545 !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
14549 LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
14550 RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
14554 /// PerformFADDCombine - Do target-specific dag combines on floating point adds.
14555 static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
14556 const X86Subtarget *Subtarget) {
14557 EVT VT = N->getValueType(0);
14558 SDValue LHS = N->getOperand(0);
14559 SDValue RHS = N->getOperand(1);
14561 // Try to synthesize horizontal adds from adds of shuffles.
14562 if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14563 (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14564 isHorizontalBinOp(LHS, RHS, true))
14565 return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
14569 /// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
14570 static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
14571 const X86Subtarget *Subtarget) {
14572 EVT VT = N->getValueType(0);
14573 SDValue LHS = N->getOperand(0);
14574 SDValue RHS = N->getOperand(1);
14576 // Try to synthesize horizontal subs from subs of shuffles.
14577 if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14578 (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14579 isHorizontalBinOp(LHS, RHS, false))
14580 return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
14584 /// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
14585 /// X86ISD::FXOR nodes.
14586 static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
14587 assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
14588 // F[X]OR(0.0, x) -> x
14589 // F[X]OR(x, 0.0) -> x
14590 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14591 if (C->getValueAPF().isPosZero())
14592 return N->getOperand(1);
14593 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14594 if (C->getValueAPF().isPosZero())
14595 return N->getOperand(0);
14599 /// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
14600 static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
14601 // FAND(0.0, x) -> 0.0
14602 // FAND(x, 0.0) -> 0.0
14603 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14604 if (C->getValueAPF().isPosZero())
14605 return N->getOperand(0);
14606 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14607 if (C->getValueAPF().isPosZero())
14608 return N->getOperand(1);
14612 static SDValue PerformBTCombine(SDNode *N,
14614 TargetLowering::DAGCombinerInfo &DCI) {
14615 // BT ignores high bits in the bit index operand.
14616 SDValue Op1 = N->getOperand(1);
14617 if (Op1.hasOneUse()) {
14618 unsigned BitWidth = Op1.getValueSizeInBits();
14619 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
14620 APInt KnownZero, KnownOne;
14621 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
14622 !DCI.isBeforeLegalizeOps());
14623 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14624 if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
14625 TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
14626 DCI.CommitTargetLoweringOpt(TLO);
14631 static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
14632 SDValue Op = N->getOperand(0);
14633 if (Op.getOpcode() == ISD::BITCAST)
14634 Op = Op.getOperand(0);
14635 EVT VT = N->getValueType(0), OpVT = Op.getValueType();
14636 if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
14637 VT.getVectorElementType().getSizeInBits() ==
14638 OpVT.getVectorElementType().getSizeInBits()) {
14639 return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
14644 static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
14645 TargetLowering::DAGCombinerInfo &DCI,
14646 const X86Subtarget *Subtarget) {
14647 if (!DCI.isBeforeLegalizeOps())
14650 if (!Subtarget->hasAVX())
14653 // Optimize vectors in AVX mode
14654 // Sign extend v8i16 to v8i32 and
14657 // Divide input vector into two parts
14658 // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
14659 // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
14660 // concat the vectors to original VT
14662 EVT VT = N->getValueType(0);
14663 SDValue Op = N->getOperand(0);
14664 EVT OpVT = Op.getValueType();
14665 DebugLoc dl = N->getDebugLoc();
14667 if ((VT == MVT::v4i64 && OpVT == MVT::v4i32) ||
14668 (VT == MVT::v8i32 && OpVT == MVT::v8i16)) {
14670 unsigned NumElems = OpVT.getVectorNumElements();
14671 SmallVector<int,8> ShufMask1(NumElems, -1);
14672 for (unsigned i = 0; i < NumElems/2; i++) ShufMask1[i] = i;
14674 SDValue OpLo = DAG.getVectorShuffle(OpVT, dl, Op, DAG.getUNDEF(OpVT),
14677 SmallVector<int,8> ShufMask2(NumElems, -1);
14678 for (unsigned i = 0; i < NumElems/2; i++) ShufMask2[i] = i + NumElems/2;
14680 SDValue OpHi = DAG.getVectorShuffle(OpVT, dl, Op, DAG.getUNDEF(OpVT),
14683 EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
14684 VT.getVectorNumElements()/2);
14686 OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo);
14687 OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi);
14689 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
14694 static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
14695 const X86Subtarget *Subtarget) {
14696 // (i32 zext (and (i8 x86isd::setcc_carry), 1)) ->
14697 // (and (i32 x86isd::setcc_carry), 1)
14698 // This eliminates the zext. This transformation is necessary because
14699 // ISD::SETCC is always legalized to i8.
14700 DebugLoc dl = N->getDebugLoc();
14701 SDValue N0 = N->getOperand(0);
14702 EVT VT = N->getValueType(0);
14703 EVT OpVT = N0.getValueType();
14705 if (N0.getOpcode() == ISD::AND &&
14707 N0.getOperand(0).hasOneUse()) {
14708 SDValue N00 = N0.getOperand(0);
14709 if (N00.getOpcode() != X86ISD::SETCC_CARRY)
14711 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
14712 if (!C || C->getZExtValue() != 1)
14714 return DAG.getNode(ISD::AND, dl, VT,
14715 DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
14716 N00.getOperand(0), N00.getOperand(1)),
14717 DAG.getConstant(1, VT));
14719 // Optimize vectors in AVX mode:
14722 // Use vpunpcklwd for 4 lower elements v8i16 -> v4i32.
14723 // Use vpunpckhwd for 4 upper elements v8i16 -> v4i32.
14724 // Concat upper and lower parts.
14727 // Use vpunpckldq for 4 lower elements v4i32 -> v2i64.
14728 // Use vpunpckhdq for 4 upper elements v4i32 -> v2i64.
14729 // Concat upper and lower parts.
14731 if (Subtarget->hasAVX()) {
14733 if (((VT == MVT::v8i32) && (OpVT == MVT::v8i16)) ||
14734 ((VT == MVT::v4i64) && (OpVT == MVT::v4i32))) {
14736 SDValue ZeroVec = getZeroVector(OpVT, Subtarget, DAG, dl);
14737 SDValue OpLo = getTargetShuffleNode(X86ISD::UNPCKL, dl, OpVT, N0, ZeroVec, DAG);
14738 SDValue OpHi = getTargetShuffleNode(X86ISD::UNPCKH, dl, OpVT, N0, ZeroVec, DAG);
14740 EVT HVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
14741 VT.getVectorNumElements()/2);
14743 OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
14744 OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
14746 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
14754 // Optimize RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
14755 static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
14756 unsigned X86CC = N->getConstantOperandVal(0);
14757 SDValue EFLAG = N->getOperand(1);
14758 DebugLoc DL = N->getDebugLoc();
14760 // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
14761 // a zext and produces an all-ones bit which is more useful than 0/1 in some
14763 if (X86CC == X86::COND_B)
14764 return DAG.getNode(ISD::AND, DL, MVT::i8,
14765 DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
14766 DAG.getConstant(X86CC, MVT::i8), EFLAG),
14767 DAG.getConstant(1, MVT::i8));
14772 static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
14773 const X86TargetLowering *XTLI) {
14774 SDValue Op0 = N->getOperand(0);
14775 // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
14776 // a 32-bit target where SSE doesn't support i64->FP operations.
14777 if (Op0.getOpcode() == ISD::LOAD) {
14778 LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
14779 EVT VT = Ld->getValueType(0);
14780 if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
14781 ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
14782 !XTLI->getSubtarget()->is64Bit() &&
14783 !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
14784 SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
14785 Ld->getChain(), Op0, DAG);
14786 DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
14793 // Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
14794 static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
14795 X86TargetLowering::DAGCombinerInfo &DCI) {
14796 // If the LHS and RHS of the ADC node are zero, then it can't overflow and
14797 // the result is either zero or one (depending on the input carry bit).
14798 // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
14799 if (X86::isZeroNode(N->getOperand(0)) &&
14800 X86::isZeroNode(N->getOperand(1)) &&
14801 // We don't have a good way to replace an EFLAGS use, so only do this when
14803 SDValue(N, 1).use_empty()) {
14804 DebugLoc DL = N->getDebugLoc();
14805 EVT VT = N->getValueType(0);
14806 SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
14807 SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
14808 DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
14809 DAG.getConstant(X86::COND_B,MVT::i8),
14811 DAG.getConstant(1, VT));
14812 return DCI.CombineTo(N, Res1, CarryOut);
14818 // fold (add Y, (sete X, 0)) -> adc 0, Y
14819 // (add Y, (setne X, 0)) -> sbb -1, Y
14820 // (sub (sete X, 0), Y) -> sbb 0, Y
14821 // (sub (setne X, 0), Y) -> adc -1, Y
14822 static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
14823 DebugLoc DL = N->getDebugLoc();
14825 // Look through ZExts.
14826 SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
14827 if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
14830 SDValue SetCC = Ext.getOperand(0);
14831 if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
14834 X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
14835 if (CC != X86::COND_E && CC != X86::COND_NE)
14838 SDValue Cmp = SetCC.getOperand(1);
14839 if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
14840 !X86::isZeroNode(Cmp.getOperand(1)) ||
14841 !Cmp.getOperand(0).getValueType().isInteger())
14844 SDValue CmpOp0 = Cmp.getOperand(0);
14845 SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
14846 DAG.getConstant(1, CmpOp0.getValueType()));
14848 SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
14849 if (CC == X86::COND_NE)
14850 return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
14851 DL, OtherVal.getValueType(), OtherVal,
14852 DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
14853 return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
14854 DL, OtherVal.getValueType(), OtherVal,
14855 DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
14858 /// PerformADDCombine - Do target-specific dag combines on integer adds.
14859 static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
14860 const X86Subtarget *Subtarget) {
14861 EVT VT = N->getValueType(0);
14862 SDValue Op0 = N->getOperand(0);
14863 SDValue Op1 = N->getOperand(1);
14865 // Try to synthesize horizontal adds from adds of shuffles.
14866 if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
14867 (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
14868 isHorizontalBinOp(Op0, Op1, true))
14869 return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
14871 return OptimizeConditionalInDecrement(N, DAG);
14874 static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
14875 const X86Subtarget *Subtarget) {
14876 SDValue Op0 = N->getOperand(0);
14877 SDValue Op1 = N->getOperand(1);
14879 // X86 can't encode an immediate LHS of a sub. See if we can push the
14880 // negation into a preceding instruction.
14881 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
14882 // If the RHS of the sub is a XOR with one use and a constant, invert the
14883 // immediate. Then add one to the LHS of the sub so we can turn
14884 // X-Y -> X+~Y+1, saving one register.
14885 if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
14886 isa<ConstantSDNode>(Op1.getOperand(1))) {
14887 APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
14888 EVT VT = Op0.getValueType();
14889 SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
14891 DAG.getConstant(~XorC, VT));
14892 return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
14893 DAG.getConstant(C->getAPIntValue()+1, VT));
14897 // Try to synthesize horizontal adds from adds of shuffles.
14898 EVT VT = N->getValueType(0);
14899 if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
14900 (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
14901 isHorizontalBinOp(Op0, Op1, true))
14902 return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
14904 return OptimizeConditionalInDecrement(N, DAG);
14907 SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
14908 DAGCombinerInfo &DCI) const {
14909 SelectionDAG &DAG = DCI.DAG;
14910 switch (N->getOpcode()) {
14912 case ISD::EXTRACT_VECTOR_ELT:
14913 return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
14915 case ISD::SELECT: return PerformSELECTCombine(N, DAG, DCI, Subtarget);
14916 case X86ISD::CMOV: return PerformCMOVCombine(N, DAG, DCI);
14917 case ISD::ADD: return PerformAddCombine(N, DAG, Subtarget);
14918 case ISD::SUB: return PerformSubCombine(N, DAG, Subtarget);
14919 case X86ISD::ADC: return PerformADCCombine(N, DAG, DCI);
14920 case ISD::MUL: return PerformMulCombine(N, DAG, DCI);
14923 case ISD::SRL: return PerformShiftCombine(N, DAG, DCI, Subtarget);
14924 case ISD::AND: return PerformAndCombine(N, DAG, DCI, Subtarget);
14925 case ISD::OR: return PerformOrCombine(N, DAG, DCI, Subtarget);
14926 case ISD::XOR: return PerformXorCombine(N, DAG, DCI, Subtarget);
14927 case ISD::LOAD: return PerformLOADCombine(N, DAG, Subtarget);
14928 case ISD::STORE: return PerformSTORECombine(N, DAG, Subtarget);
14929 case ISD::SINT_TO_FP: return PerformSINT_TO_FPCombine(N, DAG, this);
14930 case ISD::FADD: return PerformFADDCombine(N, DAG, Subtarget);
14931 case ISD::FSUB: return PerformFSUBCombine(N, DAG, Subtarget);
14933 case X86ISD::FOR: return PerformFORCombine(N, DAG);
14934 case X86ISD::FAND: return PerformFANDCombine(N, DAG);
14935 case X86ISD::BT: return PerformBTCombine(N, DAG, DCI);
14936 case X86ISD::VZEXT_MOVL: return PerformVZEXT_MOVLCombine(N, DAG);
14937 case ISD::ZERO_EXTEND: return PerformZExtCombine(N, DAG, Subtarget);
14938 case ISD::SIGN_EXTEND: return PerformSExtCombine(N, DAG, DCI, Subtarget);
14939 case ISD::TRUNCATE: return PerformTruncateCombine(N, DAG, DCI);
14940 case X86ISD::SETCC: return PerformSETCCCombine(N, DAG);
14941 case X86ISD::SHUFP: // Handle all target specific shuffles
14942 case X86ISD::PALIGN:
14943 case X86ISD::UNPCKH:
14944 case X86ISD::UNPCKL:
14945 case X86ISD::MOVHLPS:
14946 case X86ISD::MOVLHPS:
14947 case X86ISD::PSHUFD:
14948 case X86ISD::PSHUFHW:
14949 case X86ISD::PSHUFLW:
14950 case X86ISD::MOVSS:
14951 case X86ISD::MOVSD:
14952 case X86ISD::VPERMILP:
14953 case X86ISD::VPERM2X128:
14954 case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
14960 /// isTypeDesirableForOp - Return true if the target has native support for
14961 /// the specified value type and it is 'desirable' to use the type for the
14962 /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
14963 /// instruction encodings are longer and some i16 instructions are slow.
14964 bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
14965 if (!isTypeLegal(VT))
14967 if (VT != MVT::i16)
14974 case ISD::SIGN_EXTEND:
14975 case ISD::ZERO_EXTEND:
14976 case ISD::ANY_EXTEND:
14989 /// IsDesirableToPromoteOp - This method query the target whether it is
14990 /// beneficial for dag combiner to promote the specified node. If true, it
14991 /// should return the desired promotion type by reference.
14992 bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
14993 EVT VT = Op.getValueType();
14994 if (VT != MVT::i16)
14997 bool Promote = false;
14998 bool Commute = false;
14999 switch (Op.getOpcode()) {
15002 LoadSDNode *LD = cast<LoadSDNode>(Op);
15003 // If the non-extending load has a single use and it's not live out, then it
15004 // might be folded.
15005 if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
15006 Op.hasOneUse()*/) {
15007 for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
15008 UE = Op.getNode()->use_end(); UI != UE; ++UI) {
15009 // The only case where we'd want to promote LOAD (rather then it being
15010 // promoted as an operand is when it's only use is liveout.
15011 if (UI->getOpcode() != ISD::CopyToReg)
15018 case ISD::SIGN_EXTEND:
15019 case ISD::ZERO_EXTEND:
15020 case ISD::ANY_EXTEND:
15025 SDValue N0 = Op.getOperand(0);
15026 // Look out for (store (shl (load), x)).
15027 if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
15040 SDValue N0 = Op.getOperand(0);
15041 SDValue N1 = Op.getOperand(1);
15042 if (!Commute && MayFoldLoad(N1))
15044 // Avoid disabling potential load folding opportunities.
15045 if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
15047 if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
15057 //===----------------------------------------------------------------------===//
15058 // X86 Inline Assembly Support
15059 //===----------------------------------------------------------------------===//
15062 // Helper to match a string separated by whitespace.
15063 bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
15064 s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
15066 for (unsigned i = 0, e = args.size(); i != e; ++i) {
15067 StringRef piece(*args[i]);
15068 if (!s.startswith(piece)) // Check if the piece matches.
15071 s = s.substr(piece.size());
15072 StringRef::size_type pos = s.find_first_not_of(" \t");
15073 if (pos == 0) // We matched a prefix.
15081 const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
15084 bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
15085 InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
15087 std::string AsmStr = IA->getAsmString();
15089 IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
15090 if (!Ty || Ty->getBitWidth() % 16 != 0)
15093 // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
15094 SmallVector<StringRef, 4> AsmPieces;
15095 SplitString(AsmStr, AsmPieces, ";\n");
15097 switch (AsmPieces.size()) {
15098 default: return false;
15100 // FIXME: this should verify that we are targeting a 486 or better. If not,
15101 // we will turn this bswap into something that will be lowered to logical
15102 // ops instead of emitting the bswap asm. For now, we don't support 486 or
15103 // lower so don't worry about this.
15105 if (matchAsm(AsmPieces[0], "bswap", "$0") ||
15106 matchAsm(AsmPieces[0], "bswapl", "$0") ||
15107 matchAsm(AsmPieces[0], "bswapq", "$0") ||
15108 matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
15109 matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
15110 matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
15111 // No need to check constraints, nothing other than the equivalent of
15112 // "=r,0" would be valid here.
15113 return IntrinsicLowering::LowerToByteSwap(CI);
15116 // rorw $$8, ${0:w} --> llvm.bswap.i16
15117 if (CI->getType()->isIntegerTy(16) &&
15118 IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
15119 (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
15120 matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
15122 const std::string &ConstraintsStr = IA->getConstraintString();
15123 SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
15124 std::sort(AsmPieces.begin(), AsmPieces.end());
15125 if (AsmPieces.size() == 4 &&
15126 AsmPieces[0] == "~{cc}" &&
15127 AsmPieces[1] == "~{dirflag}" &&
15128 AsmPieces[2] == "~{flags}" &&
15129 AsmPieces[3] == "~{fpsr}")
15130 return IntrinsicLowering::LowerToByteSwap(CI);
15134 if (CI->getType()->isIntegerTy(32) &&
15135 IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
15136 matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
15137 matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
15138 matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
15140 const std::string &ConstraintsStr = IA->getConstraintString();
15141 SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
15142 std::sort(AsmPieces.begin(), AsmPieces.end());
15143 if (AsmPieces.size() == 4 &&
15144 AsmPieces[0] == "~{cc}" &&
15145 AsmPieces[1] == "~{dirflag}" &&
15146 AsmPieces[2] == "~{flags}" &&
15147 AsmPieces[3] == "~{fpsr}")
15148 return IntrinsicLowering::LowerToByteSwap(CI);
15151 if (CI->getType()->isIntegerTy(64)) {
15152 InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
15153 if (Constraints.size() >= 2 &&
15154 Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
15155 Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
15156 // bswap %eax / bswap %edx / xchgl %eax, %edx -> llvm.bswap.i64
15157 if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
15158 matchAsm(AsmPieces[1], "bswap", "%edx") &&
15159 matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
15160 return IntrinsicLowering::LowerToByteSwap(CI);
15170 /// getConstraintType - Given a constraint letter, return the type of
15171 /// constraint it is for this target.
15172 X86TargetLowering::ConstraintType
15173 X86TargetLowering::getConstraintType(const std::string &Constraint) const {
15174 if (Constraint.size() == 1) {
15175 switch (Constraint[0]) {
15186 return C_RegisterClass;
15210 return TargetLowering::getConstraintType(Constraint);
15213 /// Examine constraint type and operand type and determine a weight value.
15214 /// This object must already have been set up with the operand type
15215 /// and the current alternative constraint selected.
15216 TargetLowering::ConstraintWeight
15217 X86TargetLowering::getSingleConstraintMatchWeight(
15218 AsmOperandInfo &info, const char *constraint) const {
15219 ConstraintWeight weight = CW_Invalid;
15220 Value *CallOperandVal = info.CallOperandVal;
15221 // If we don't have a value, we can't do a match,
15222 // but allow it at the lowest weight.
15223 if (CallOperandVal == NULL)
15225 Type *type = CallOperandVal->getType();
15226 // Look at the constraint type.
15227 switch (*constraint) {
15229 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15240 if (CallOperandVal->getType()->isIntegerTy())
15241 weight = CW_SpecificReg;
15246 if (type->isFloatingPointTy())
15247 weight = CW_SpecificReg;
15250 if (type->isX86_MMXTy() && Subtarget->hasMMX())
15251 weight = CW_SpecificReg;
15255 if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
15256 ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasAVX()))
15257 weight = CW_Register;
15260 if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
15261 if (C->getZExtValue() <= 31)
15262 weight = CW_Constant;
15266 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15267 if (C->getZExtValue() <= 63)
15268 weight = CW_Constant;
15272 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15273 if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
15274 weight = CW_Constant;
15278 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15279 if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
15280 weight = CW_Constant;
15284 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15285 if (C->getZExtValue() <= 3)
15286 weight = CW_Constant;
15290 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15291 if (C->getZExtValue() <= 0xff)
15292 weight = CW_Constant;
15297 if (dyn_cast<ConstantFP>(CallOperandVal)) {
15298 weight = CW_Constant;
15302 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15303 if ((C->getSExtValue() >= -0x80000000LL) &&
15304 (C->getSExtValue() <= 0x7fffffffLL))
15305 weight = CW_Constant;
15309 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15310 if (C->getZExtValue() <= 0xffffffff)
15311 weight = CW_Constant;
15318 /// LowerXConstraint - try to replace an X constraint, which matches anything,
15319 /// with another that has more specific requirements based on the type of the
15320 /// corresponding operand.
15321 const char *X86TargetLowering::
15322 LowerXConstraint(EVT ConstraintVT) const {
15323 // FP X constraints get lowered to SSE1/2 registers if available, otherwise
15324 // 'f' like normal targets.
15325 if (ConstraintVT.isFloatingPoint()) {
15326 if (Subtarget->hasSSE2())
15328 if (Subtarget->hasSSE1())
15332 return TargetLowering::LowerXConstraint(ConstraintVT);
15335 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15336 /// vector. If it is invalid, don't add anything to Ops.
15337 void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15338 std::string &Constraint,
15339 std::vector<SDValue>&Ops,
15340 SelectionDAG &DAG) const {
15341 SDValue Result(0, 0);
15343 // Only support length 1 constraints for now.
15344 if (Constraint.length() > 1) return;
15346 char ConstraintLetter = Constraint[0];
15347 switch (ConstraintLetter) {
15350 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15351 if (C->getZExtValue() <= 31) {
15352 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15358 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15359 if (C->getZExtValue() <= 63) {
15360 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15366 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15367 if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
15368 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15374 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15375 if (C->getZExtValue() <= 255) {
15376 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15382 // 32-bit signed value
15383 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15384 if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15385 C->getSExtValue())) {
15386 // Widen to 64 bits here to get it sign extended.
15387 Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
15390 // FIXME gcc accepts some relocatable values here too, but only in certain
15391 // memory models; it's complicated.
15396 // 32-bit unsigned value
15397 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15398 if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15399 C->getZExtValue())) {
15400 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15404 // FIXME gcc accepts some relocatable values here too, but only in certain
15405 // memory models; it's complicated.
15409 // Literal immediates are always ok.
15410 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
15411 // Widen to 64 bits here to get it sign extended.
15412 Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
15416 // In any sort of PIC mode addresses need to be computed at runtime by
15417 // adding in a register or some sort of table lookup. These can't
15418 // be used as immediates.
15419 if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
15422 // If we are in non-pic codegen mode, we allow the address of a global (with
15423 // an optional displacement) to be used with 'i'.
15424 GlobalAddressSDNode *GA = 0;
15425 int64_t Offset = 0;
15427 // Match either (GA), (GA+C), (GA+C1+C2), etc.
15429 if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
15430 Offset += GA->getOffset();
15432 } else if (Op.getOpcode() == ISD::ADD) {
15433 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15434 Offset += C->getZExtValue();
15435 Op = Op.getOperand(0);
15438 } else if (Op.getOpcode() == ISD::SUB) {
15439 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15440 Offset += -C->getZExtValue();
15441 Op = Op.getOperand(0);
15446 // Otherwise, this isn't something we can handle, reject it.
15450 const GlobalValue *GV = GA->getGlobal();
15451 // If we require an extra load to get this address, as in PIC mode, we
15452 // can't accept it.
15453 if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
15454 getTargetMachine())))
15457 Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
15458 GA->getValueType(0), Offset);
15463 if (Result.getNode()) {
15464 Ops.push_back(Result);
15467 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15470 std::pair<unsigned, const TargetRegisterClass*>
15471 X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
15473 // First, see if this is a constraint that directly corresponds to an LLVM
15475 if (Constraint.size() == 1) {
15476 // GCC Constraint Letters
15477 switch (Constraint[0]) {
15479 // TODO: Slight differences here in allocation order and leaving
15480 // RIP in the class. Do they matter any more here than they do
15481 // in the normal allocation?
15482 case 'q': // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
15483 if (Subtarget->is64Bit()) {
15484 if (VT == MVT::i32 || VT == MVT::f32)
15485 return std::make_pair(0U, X86::GR32RegisterClass);
15486 else if (VT == MVT::i16)
15487 return std::make_pair(0U, X86::GR16RegisterClass);
15488 else if (VT == MVT::i8 || VT == MVT::i1)
15489 return std::make_pair(0U, X86::GR8RegisterClass);
15490 else if (VT == MVT::i64 || VT == MVT::f64)
15491 return std::make_pair(0U, X86::GR64RegisterClass);
15494 // 32-bit fallthrough
15495 case 'Q': // Q_REGS
15496 if (VT == MVT::i32 || VT == MVT::f32)
15497 return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
15498 else if (VT == MVT::i16)
15499 return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
15500 else if (VT == MVT::i8 || VT == MVT::i1)
15501 return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
15502 else if (VT == MVT::i64)
15503 return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
15505 case 'r': // GENERAL_REGS
15506 case 'l': // INDEX_REGS
15507 if (VT == MVT::i8 || VT == MVT::i1)
15508 return std::make_pair(0U, X86::GR8RegisterClass);
15509 if (VT == MVT::i16)
15510 return std::make_pair(0U, X86::GR16RegisterClass);
15511 if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
15512 return std::make_pair(0U, X86::GR32RegisterClass);
15513 return std::make_pair(0U, X86::GR64RegisterClass);
15514 case 'R': // LEGACY_REGS
15515 if (VT == MVT::i8 || VT == MVT::i1)
15516 return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
15517 if (VT == MVT::i16)
15518 return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
15519 if (VT == MVT::i32 || !Subtarget->is64Bit())
15520 return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
15521 return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
15522 case 'f': // FP Stack registers.
15523 // If SSE is enabled for this VT, use f80 to ensure the isel moves the
15524 // value to the correct fpstack register class.
15525 if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
15526 return std::make_pair(0U, X86::RFP32RegisterClass);
15527 if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
15528 return std::make_pair(0U, X86::RFP64RegisterClass);
15529 return std::make_pair(0U, X86::RFP80RegisterClass);
15530 case 'y': // MMX_REGS if MMX allowed.
15531 if (!Subtarget->hasMMX()) break;
15532 return std::make_pair(0U, X86::VR64RegisterClass);
15533 case 'Y': // SSE_REGS if SSE2 allowed
15534 if (!Subtarget->hasSSE2()) break;
15536 case 'x': // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
15537 if (!Subtarget->hasSSE1()) break;
15539 switch (VT.getSimpleVT().SimpleTy) {
15541 // Scalar SSE types.
15544 return std::make_pair(0U, X86::FR32RegisterClass);
15547 return std::make_pair(0U, X86::FR64RegisterClass);
15555 return std::make_pair(0U, X86::VR128RegisterClass);
15563 return std::make_pair(0U, X86::VR256RegisterClass);
15570 // Use the default implementation in TargetLowering to convert the register
15571 // constraint into a member of a register class.
15572 std::pair<unsigned, const TargetRegisterClass*> Res;
15573 Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
15575 // Not found as a standard register?
15576 if (Res.second == 0) {
15577 // Map st(0) -> st(7) -> ST0
15578 if (Constraint.size() == 7 && Constraint[0] == '{' &&
15579 tolower(Constraint[1]) == 's' &&
15580 tolower(Constraint[2]) == 't' &&
15581 Constraint[3] == '(' &&
15582 (Constraint[4] >= '0' && Constraint[4] <= '7') &&
15583 Constraint[5] == ')' &&
15584 Constraint[6] == '}') {
15586 Res.first = X86::ST0+Constraint[4]-'0';
15587 Res.second = X86::RFP80RegisterClass;
15591 // GCC allows "st(0)" to be called just plain "st".
15592 if (StringRef("{st}").equals_lower(Constraint)) {
15593 Res.first = X86::ST0;
15594 Res.second = X86::RFP80RegisterClass;
15599 if (StringRef("{flags}").equals_lower(Constraint)) {
15600 Res.first = X86::EFLAGS;
15601 Res.second = X86::CCRRegisterClass;
15605 // 'A' means EAX + EDX.
15606 if (Constraint == "A") {
15607 Res.first = X86::EAX;
15608 Res.second = X86::GR32_ADRegisterClass;
15614 // Otherwise, check to see if this is a register class of the wrong value
15615 // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to
15616 // turn into {ax},{dx}.
15617 if (Res.second->hasType(VT))
15618 return Res; // Correct type already, nothing to do.
15620 // All of the single-register GCC register classes map their values onto
15621 // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we
15622 // really want an 8-bit or 32-bit register, map to the appropriate register
15623 // class and return the appropriate register.
15624 if (Res.second == X86::GR16RegisterClass) {
15625 if (VT == MVT::i8) {
15626 unsigned DestReg = 0;
15627 switch (Res.first) {
15629 case X86::AX: DestReg = X86::AL; break;
15630 case X86::DX: DestReg = X86::DL; break;
15631 case X86::CX: DestReg = X86::CL; break;
15632 case X86::BX: DestReg = X86::BL; break;
15635 Res.first = DestReg;
15636 Res.second = X86::GR8RegisterClass;
15638 } else if (VT == MVT::i32) {
15639 unsigned DestReg = 0;
15640 switch (Res.first) {
15642 case X86::AX: DestReg = X86::EAX; break;
15643 case X86::DX: DestReg = X86::EDX; break;
15644 case X86::CX: DestReg = X86::ECX; break;
15645 case X86::BX: DestReg = X86::EBX; break;
15646 case X86::SI: DestReg = X86::ESI; break;
15647 case X86::DI: DestReg = X86::EDI; break;
15648 case X86::BP: DestReg = X86::EBP; break;
15649 case X86::SP: DestReg = X86::ESP; break;
15652 Res.first = DestReg;
15653 Res.second = X86::GR32RegisterClass;
15655 } else if (VT == MVT::i64) {
15656 unsigned DestReg = 0;
15657 switch (Res.first) {
15659 case X86::AX: DestReg = X86::RAX; break;
15660 case X86::DX: DestReg = X86::RDX; break;
15661 case X86::CX: DestReg = X86::RCX; break;
15662 case X86::BX: DestReg = X86::RBX; break;
15663 case X86::SI: DestReg = X86::RSI; break;
15664 case X86::DI: DestReg = X86::RDI; break;
15665 case X86::BP: DestReg = X86::RBP; break;
15666 case X86::SP: DestReg = X86::RSP; break;
15669 Res.first = DestReg;
15670 Res.second = X86::GR64RegisterClass;
15673 } else if (Res.second == X86::FR32RegisterClass ||
15674 Res.second == X86::FR64RegisterClass ||
15675 Res.second == X86::VR128RegisterClass) {
15676 // Handle references to XMM physical registers that got mapped into the
15677 // wrong class. This can happen with constraints like {xmm0} where the
15678 // target independent register mapper will just pick the first match it can
15679 // find, ignoring the required type.
15680 if (VT == MVT::f32)
15681 Res.second = X86::FR32RegisterClass;
15682 else if (VT == MVT::f64)
15683 Res.second = X86::FR64RegisterClass;
15684 else if (X86::VR128RegisterClass->hasType(VT))
15685 Res.second = X86::VR128RegisterClass;