1 //===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the interfaces that X86 uses to lower LLVM code into a
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "x86-isel"
17 #include "X86InstrBuilder.h"
18 #include "X86ISelLowering.h"
19 #include "X86TargetMachine.h"
20 #include "X86TargetObjectFile.h"
21 #include "Utils/X86ShuffleDecode.h"
22 #include "llvm/CallingConv.h"
23 #include "llvm/Constants.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/GlobalAlias.h"
26 #include "llvm/GlobalVariable.h"
27 #include "llvm/Function.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/Intrinsics.h"
30 #include "llvm/LLVMContext.h"
31 #include "llvm/CodeGen/IntrinsicLowering.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineJumpTableInfo.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/MC/MCAsmInfo.h"
39 #include "llvm/MC/MCContext.h"
40 #include "llvm/MC/MCExpr.h"
41 #include "llvm/MC/MCSymbol.h"
42 #include "llvm/ADT/BitVector.h"
43 #include "llvm/ADT/SmallSet.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/ADT/StringExtras.h"
46 #include "llvm/ADT/VariadicFunction.h"
47 #include "llvm/ADT/VectorExtras.h"
48 #include "llvm/Support/CallSite.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/Dwarf.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/MathExtras.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Target/TargetOptions.h"
56 using namespace dwarf;
58 STATISTIC(NumTailCalls, "Number of tail calls");
60 // Forward declarations.
61 static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
64 static SDValue Insert128BitVector(SDValue Result,
70 static SDValue Extract128BitVector(SDValue Vec,
75 /// Generate a DAG to grab 128-bits from a vector > 128 bits. This
76 /// sets things up to match to an AVX VEXTRACTF128 instruction or a
77 /// simple subregister reference. Idx is an index in the 128 bits we
78 /// want. It need not be aligned to a 128-bit bounday. That makes
79 /// lowering EXTRACT_VECTOR_ELT operations easier.
80 static SDValue Extract128BitVector(SDValue Vec,
84 EVT VT = Vec.getValueType();
85 assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
86 EVT ElVT = VT.getVectorElementType();
87 int Factor = VT.getSizeInBits()/128;
88 EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
89 VT.getVectorNumElements()/Factor);
91 // Extract from UNDEF is UNDEF.
92 if (Vec.getOpcode() == ISD::UNDEF)
93 return DAG.getNode(ISD::UNDEF, dl, ResultVT);
95 if (isa<ConstantSDNode>(Idx)) {
96 unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
98 // Extract the relevant 128 bits. Generate an EXTRACT_SUBVECTOR
99 // we can match to VEXTRACTF128.
100 unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
102 // This is the index of the first element of the 128-bit chunk
104 unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
107 SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
108 SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
117 /// Generate a DAG to put 128-bits into a vector > 128 bits. This
118 /// sets things up to match to an AVX VINSERTF128 instruction or a
119 /// simple superregister reference. Idx is an index in the 128 bits
120 /// we want. It need not be aligned to a 128-bit bounday. That makes
121 /// lowering INSERT_VECTOR_ELT operations easier.
122 static SDValue Insert128BitVector(SDValue Result,
127 if (isa<ConstantSDNode>(Idx)) {
128 EVT VT = Vec.getValueType();
129 assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
131 EVT ElVT = VT.getVectorElementType();
132 unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
133 EVT ResultVT = Result.getValueType();
135 // Insert the relevant 128 bits.
136 unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
138 // This is the index of the first element of the 128-bit chunk
140 unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
143 SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
144 Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
152 static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
153 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
154 bool is64Bit = Subtarget->is64Bit();
156 if (Subtarget->isTargetEnvMacho()) {
158 return new X8664_MachoTargetObjectFile();
159 return new TargetLoweringObjectFileMachO();
162 if (Subtarget->isTargetELF())
163 return new TargetLoweringObjectFileELF();
164 if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
165 return new TargetLoweringObjectFileCOFF();
166 llvm_unreachable("unknown subtarget type");
169 X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
170 : TargetLowering(TM, createTLOF(TM)) {
171 Subtarget = &TM.getSubtarget<X86Subtarget>();
172 X86ScalarSSEf64 = Subtarget->hasXMMInt();
173 X86ScalarSSEf32 = Subtarget->hasXMM();
174 X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
176 RegInfo = TM.getRegisterInfo();
177 TD = getTargetData();
179 // Set up the TargetLowering object.
180 static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
182 // X86 is weird, it always uses i8 for shift amounts and setcc results.
183 setBooleanContents(ZeroOrOneBooleanContent);
184 // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
185 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
187 // For 64-bit since we have so many registers use the ILP scheduler, for
188 // 32-bit code use the register pressure specific scheduling.
189 if (Subtarget->is64Bit())
190 setSchedulingPreference(Sched::ILP);
192 setSchedulingPreference(Sched::RegPressure);
193 setStackPointerRegisterToSaveRestore(X86StackPtr);
195 if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
196 // Setup Windows compiler runtime calls.
197 setLibcallName(RTLIB::SDIV_I64, "_alldiv");
198 setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
199 setLibcallName(RTLIB::SREM_I64, "_allrem");
200 setLibcallName(RTLIB::UREM_I64, "_aullrem");
201 setLibcallName(RTLIB::MUL_I64, "_allmul");
202 setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
203 setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
204 setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
205 setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
206 setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
207 setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
208 setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
209 setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
210 setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
213 if (Subtarget->isTargetDarwin()) {
214 // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
215 setUseUnderscoreSetJmp(false);
216 setUseUnderscoreLongJmp(false);
217 } else if (Subtarget->isTargetMingw()) {
218 // MS runtime is weird: it exports _setjmp, but longjmp!
219 setUseUnderscoreSetJmp(true);
220 setUseUnderscoreLongJmp(false);
222 setUseUnderscoreSetJmp(true);
223 setUseUnderscoreLongJmp(true);
226 // Set up the register classes.
227 addRegisterClass(MVT::i8, X86::GR8RegisterClass);
228 addRegisterClass(MVT::i16, X86::GR16RegisterClass);
229 addRegisterClass(MVT::i32, X86::GR32RegisterClass);
230 if (Subtarget->is64Bit())
231 addRegisterClass(MVT::i64, X86::GR64RegisterClass);
233 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
235 // We don't accept any truncstore of integer registers.
236 setTruncStoreAction(MVT::i64, MVT::i32, Expand);
237 setTruncStoreAction(MVT::i64, MVT::i16, Expand);
238 setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
239 setTruncStoreAction(MVT::i32, MVT::i16, Expand);
240 setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
241 setTruncStoreAction(MVT::i16, MVT::i8, Expand);
243 // SETOEQ and SETUNE require checking two conditions.
244 setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
245 setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
246 setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
247 setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
248 setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
249 setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
251 // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
253 setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote);
254 setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote);
255 setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote);
257 if (Subtarget->is64Bit()) {
258 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
259 setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Expand);
260 } else if (!TM.Options.UseSoftFloat) {
261 // We have an algorithm for SSE2->double, and we turn this into a
262 // 64-bit FILD followed by conditional FADD for other targets.
263 setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom);
264 // We have an algorithm for SSE2, and we turn this into a 64-bit
265 // FILD for other targets.
266 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Custom);
269 // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
271 setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote);
272 setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote);
274 if (!TM.Options.UseSoftFloat) {
275 // SSE has no i16 to fp conversion, only i32
276 if (X86ScalarSSEf32) {
277 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
278 // f32 and f64 cases are Legal, f80 case is not
279 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
281 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom);
282 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
285 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
286 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Promote);
289 // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64
290 // are Legal, f80 is custom lowered.
291 setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom);
292 setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom);
294 // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
296 setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote);
297 setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote);
299 if (X86ScalarSSEf32) {
300 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote);
301 // f32 and f64 cases are Legal, f80 case is not
302 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
304 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom);
305 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
308 // Handle FP_TO_UINT by promoting the destination to a larger signed
310 setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote);
311 setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote);
312 setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote);
314 if (Subtarget->is64Bit()) {
315 setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand);
316 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
317 } else if (!TM.Options.UseSoftFloat) {
318 // Since AVX is a superset of SSE3, only check for SSE here.
319 if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
320 // Expand FP_TO_UINT into a select.
321 // FIXME: We would like to use a Custom expander here eventually to do
322 // the optimal thing for SSE vs. the default expansion in the legalizer.
323 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand);
325 // With SSE3 we can use fisttpll to convert to a signed i64; without
326 // SSE, we're stuck with a fistpll.
327 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Custom);
330 // TODO: when we have SSE, these could be more efficient, by using movd/movq.
331 if (!X86ScalarSSEf64) {
332 setOperationAction(ISD::BITCAST , MVT::f32 , Expand);
333 setOperationAction(ISD::BITCAST , MVT::i32 , Expand);
334 if (Subtarget->is64Bit()) {
335 setOperationAction(ISD::BITCAST , MVT::f64 , Expand);
336 // Without SSE, i64->f64 goes through memory.
337 setOperationAction(ISD::BITCAST , MVT::i64 , Expand);
341 // Scalar integer divide and remainder are lowered to use operations that
342 // produce two results, to match the available instructions. This exposes
343 // the two-result form to trivial CSE, which is able to combine x/y and x%y
344 // into a single instruction.
346 // Scalar integer multiply-high is also lowered to use two-result
347 // operations, to match the available instructions. However, plain multiply
348 // (low) operations are left as Legal, as there are single-result
349 // instructions for this in x86. Using the two-result multiply instructions
350 // when both high and low results are needed must be arranged by dagcombine.
351 for (unsigned i = 0, e = 4; i != e; ++i) {
353 setOperationAction(ISD::MULHS, VT, Expand);
354 setOperationAction(ISD::MULHU, VT, Expand);
355 setOperationAction(ISD::SDIV, VT, Expand);
356 setOperationAction(ISD::UDIV, VT, Expand);
357 setOperationAction(ISD::SREM, VT, Expand);
358 setOperationAction(ISD::UREM, VT, Expand);
360 // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
361 setOperationAction(ISD::ADDC, VT, Custom);
362 setOperationAction(ISD::ADDE, VT, Custom);
363 setOperationAction(ISD::SUBC, VT, Custom);
364 setOperationAction(ISD::SUBE, VT, Custom);
367 setOperationAction(ISD::BR_JT , MVT::Other, Expand);
368 setOperationAction(ISD::BRCOND , MVT::Other, Custom);
369 setOperationAction(ISD::BR_CC , MVT::Other, Expand);
370 setOperationAction(ISD::SELECT_CC , MVT::Other, Expand);
371 if (Subtarget->is64Bit())
372 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
373 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal);
374 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
375 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
376 setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand);
377 setOperationAction(ISD::FREM , MVT::f32 , Expand);
378 setOperationAction(ISD::FREM , MVT::f64 , Expand);
379 setOperationAction(ISD::FREM , MVT::f80 , Expand);
380 setOperationAction(ISD::FLT_ROUNDS_ , MVT::i32 , Custom);
382 // Promote the i8 variants and force them on up to i32 which has a shorter
384 setOperationAction(ISD::CTTZ , MVT::i8 , Promote);
385 AddPromotedToType (ISD::CTTZ , MVT::i8 , MVT::i32);
386 setOperationAction(ISD::CTTZ_ZERO_UNDEF , MVT::i8 , Promote);
387 AddPromotedToType (ISD::CTTZ_ZERO_UNDEF , MVT::i8 , MVT::i32);
388 if (Subtarget->hasBMI()) {
389 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16 , Expand);
390 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32 , Expand);
391 if (Subtarget->is64Bit())
392 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
394 setOperationAction(ISD::CTTZ , MVT::i16 , Custom);
395 setOperationAction(ISD::CTTZ , MVT::i32 , Custom);
396 if (Subtarget->is64Bit())
397 setOperationAction(ISD::CTTZ , MVT::i64 , Custom);
400 if (Subtarget->hasLZCNT()) {
401 // When promoting the i8 variants, force them to i32 for a shorter
403 setOperationAction(ISD::CTLZ , MVT::i8 , Promote);
404 AddPromotedToType (ISD::CTLZ , MVT::i8 , MVT::i32);
405 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8 , Promote);
406 AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8 , MVT::i32);
407 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16 , Expand);
408 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32 , Expand);
409 if (Subtarget->is64Bit())
410 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
412 setOperationAction(ISD::CTLZ , MVT::i8 , Custom);
413 setOperationAction(ISD::CTLZ , MVT::i16 , Custom);
414 setOperationAction(ISD::CTLZ , MVT::i32 , Custom);
415 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8 , Custom);
416 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16 , Custom);
417 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32 , Custom);
418 if (Subtarget->is64Bit()) {
419 setOperationAction(ISD::CTLZ , MVT::i64 , Custom);
420 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
424 if (Subtarget->hasPOPCNT()) {
425 setOperationAction(ISD::CTPOP , MVT::i8 , Promote);
427 setOperationAction(ISD::CTPOP , MVT::i8 , Expand);
428 setOperationAction(ISD::CTPOP , MVT::i16 , Expand);
429 setOperationAction(ISD::CTPOP , MVT::i32 , Expand);
430 if (Subtarget->is64Bit())
431 setOperationAction(ISD::CTPOP , MVT::i64 , Expand);
434 setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom);
435 setOperationAction(ISD::BSWAP , MVT::i16 , Expand);
437 // These should be promoted to a larger select which is supported.
438 setOperationAction(ISD::SELECT , MVT::i1 , Promote);
439 // X86 wants to expand cmov itself.
440 setOperationAction(ISD::SELECT , MVT::i8 , Custom);
441 setOperationAction(ISD::SELECT , MVT::i16 , Custom);
442 setOperationAction(ISD::SELECT , MVT::i32 , Custom);
443 setOperationAction(ISD::SELECT , MVT::f32 , Custom);
444 setOperationAction(ISD::SELECT , MVT::f64 , Custom);
445 setOperationAction(ISD::SELECT , MVT::f80 , Custom);
446 setOperationAction(ISD::SETCC , MVT::i8 , Custom);
447 setOperationAction(ISD::SETCC , MVT::i16 , Custom);
448 setOperationAction(ISD::SETCC , MVT::i32 , Custom);
449 setOperationAction(ISD::SETCC , MVT::f32 , Custom);
450 setOperationAction(ISD::SETCC , MVT::f64 , Custom);
451 setOperationAction(ISD::SETCC , MVT::f80 , Custom);
452 if (Subtarget->is64Bit()) {
453 setOperationAction(ISD::SELECT , MVT::i64 , Custom);
454 setOperationAction(ISD::SETCC , MVT::i64 , Custom);
456 setOperationAction(ISD::EH_RETURN , MVT::Other, Custom);
459 setOperationAction(ISD::ConstantPool , MVT::i32 , Custom);
460 setOperationAction(ISD::JumpTable , MVT::i32 , Custom);
461 setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom);
462 setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom);
463 if (Subtarget->is64Bit())
464 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
465 setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom);
466 setOperationAction(ISD::BlockAddress , MVT::i32 , Custom);
467 if (Subtarget->is64Bit()) {
468 setOperationAction(ISD::ConstantPool , MVT::i64 , Custom);
469 setOperationAction(ISD::JumpTable , MVT::i64 , Custom);
470 setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom);
471 setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom);
472 setOperationAction(ISD::BlockAddress , MVT::i64 , Custom);
474 // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
475 setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom);
476 setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom);
477 setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom);
478 if (Subtarget->is64Bit()) {
479 setOperationAction(ISD::SHL_PARTS , MVT::i64 , Custom);
480 setOperationAction(ISD::SRA_PARTS , MVT::i64 , Custom);
481 setOperationAction(ISD::SRL_PARTS , MVT::i64 , Custom);
484 if (Subtarget->hasXMM())
485 setOperationAction(ISD::PREFETCH , MVT::Other, Legal);
487 setOperationAction(ISD::MEMBARRIER , MVT::Other, Custom);
488 setOperationAction(ISD::ATOMIC_FENCE , MVT::Other, Custom);
490 // On X86 and X86-64, atomic operations are lowered to locked instructions.
491 // Locked instructions, in turn, have implicit fence semantics (all memory
492 // operations are flushed before issuing the locked instruction, and they
493 // are not buffered), so we can fold away the common pattern of
494 // fence-atomic-fence.
495 setShouldFoldAtomicFences(true);
497 // Expand certain atomics
498 for (unsigned i = 0, e = 4; i != e; ++i) {
500 setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
501 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
502 setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
505 if (!Subtarget->is64Bit()) {
506 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
507 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
508 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
509 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
510 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
511 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
512 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
513 setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
516 if (Subtarget->hasCmpxchg16b()) {
517 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
520 // FIXME - use subtarget debug flags
521 if (!Subtarget->isTargetDarwin() &&
522 !Subtarget->isTargetELF() &&
523 !Subtarget->isTargetCygMing()) {
524 setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
527 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
528 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
529 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
530 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
531 if (Subtarget->is64Bit()) {
532 setExceptionPointerRegister(X86::RAX);
533 setExceptionSelectorRegister(X86::RDX);
535 setExceptionPointerRegister(X86::EAX);
536 setExceptionSelectorRegister(X86::EDX);
538 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
539 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
541 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
542 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
544 setOperationAction(ISD::TRAP, MVT::Other, Legal);
546 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
547 setOperationAction(ISD::VASTART , MVT::Other, Custom);
548 setOperationAction(ISD::VAEND , MVT::Other, Expand);
549 if (Subtarget->is64Bit()) {
550 setOperationAction(ISD::VAARG , MVT::Other, Custom);
551 setOperationAction(ISD::VACOPY , MVT::Other, Custom);
553 setOperationAction(ISD::VAARG , MVT::Other, Expand);
554 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
557 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
558 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
560 if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
561 setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
562 MVT::i64 : MVT::i32, Custom);
563 else if (TM.Options.EnableSegmentedStacks)
564 setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
565 MVT::i64 : MVT::i32, Custom);
567 setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
568 MVT::i64 : MVT::i32, Expand);
570 if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
571 // f32 and f64 use SSE.
572 // Set up the FP register classes.
573 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
574 addRegisterClass(MVT::f64, X86::FR64RegisterClass);
576 // Use ANDPD to simulate FABS.
577 setOperationAction(ISD::FABS , MVT::f64, Custom);
578 setOperationAction(ISD::FABS , MVT::f32, Custom);
580 // Use XORP to simulate FNEG.
581 setOperationAction(ISD::FNEG , MVT::f64, Custom);
582 setOperationAction(ISD::FNEG , MVT::f32, Custom);
584 // Use ANDPD and ORPD to simulate FCOPYSIGN.
585 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
586 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
588 // Lower this to FGETSIGNx86 plus an AND.
589 setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
590 setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
592 // We don't support sin/cos/fmod
593 setOperationAction(ISD::FSIN , MVT::f64, Expand);
594 setOperationAction(ISD::FCOS , MVT::f64, Expand);
595 setOperationAction(ISD::FSIN , MVT::f32, Expand);
596 setOperationAction(ISD::FCOS , MVT::f32, Expand);
598 // Expand FP immediates into loads from the stack, except for the special
600 addLegalFPImmediate(APFloat(+0.0)); // xorpd
601 addLegalFPImmediate(APFloat(+0.0f)); // xorps
602 } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
603 // Use SSE for f32, x87 for f64.
604 // Set up the FP register classes.
605 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
606 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
608 // Use ANDPS to simulate FABS.
609 setOperationAction(ISD::FABS , MVT::f32, Custom);
611 // Use XORP to simulate FNEG.
612 setOperationAction(ISD::FNEG , MVT::f32, Custom);
614 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
616 // Use ANDPS and ORPS to simulate FCOPYSIGN.
617 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
618 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
620 // We don't support sin/cos/fmod
621 setOperationAction(ISD::FSIN , MVT::f32, Expand);
622 setOperationAction(ISD::FCOS , MVT::f32, Expand);
624 // Special cases we handle for FP constants.
625 addLegalFPImmediate(APFloat(+0.0f)); // xorps
626 addLegalFPImmediate(APFloat(+0.0)); // FLD0
627 addLegalFPImmediate(APFloat(+1.0)); // FLD1
628 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
629 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
631 if (!TM.Options.UnsafeFPMath) {
632 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
633 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
635 } else if (!TM.Options.UseSoftFloat) {
636 // f32 and f64 in x87.
637 // Set up the FP register classes.
638 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
639 addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
641 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
642 setOperationAction(ISD::UNDEF, MVT::f32, Expand);
643 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
644 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
646 if (!TM.Options.UnsafeFPMath) {
647 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
648 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
650 addLegalFPImmediate(APFloat(+0.0)); // FLD0
651 addLegalFPImmediate(APFloat(+1.0)); // FLD1
652 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
653 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
654 addLegalFPImmediate(APFloat(+0.0f)); // FLD0
655 addLegalFPImmediate(APFloat(+1.0f)); // FLD1
656 addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
657 addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
660 // We don't support FMA.
661 setOperationAction(ISD::FMA, MVT::f64, Expand);
662 setOperationAction(ISD::FMA, MVT::f32, Expand);
664 // Long double always uses X87.
665 if (!TM.Options.UseSoftFloat) {
666 addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
667 setOperationAction(ISD::UNDEF, MVT::f80, Expand);
668 setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
670 APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
671 addLegalFPImmediate(TmpFlt); // FLD0
673 addLegalFPImmediate(TmpFlt); // FLD0/FCHS
676 APFloat TmpFlt2(+1.0);
677 TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
679 addLegalFPImmediate(TmpFlt2); // FLD1
680 TmpFlt2.changeSign();
681 addLegalFPImmediate(TmpFlt2); // FLD1/FCHS
684 if (!TM.Options.UnsafeFPMath) {
685 setOperationAction(ISD::FSIN , MVT::f80 , Expand);
686 setOperationAction(ISD::FCOS , MVT::f80 , Expand);
689 setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
690 setOperationAction(ISD::FCEIL, MVT::f80, Expand);
691 setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
692 setOperationAction(ISD::FRINT, MVT::f80, Expand);
693 setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
694 setOperationAction(ISD::FMA, MVT::f80, Expand);
697 // Always use a library call for pow.
698 setOperationAction(ISD::FPOW , MVT::f32 , Expand);
699 setOperationAction(ISD::FPOW , MVT::f64 , Expand);
700 setOperationAction(ISD::FPOW , MVT::f80 , Expand);
702 setOperationAction(ISD::FLOG, MVT::f80, Expand);
703 setOperationAction(ISD::FLOG2, MVT::f80, Expand);
704 setOperationAction(ISD::FLOG10, MVT::f80, Expand);
705 setOperationAction(ISD::FEXP, MVT::f80, Expand);
706 setOperationAction(ISD::FEXP2, MVT::f80, Expand);
708 // First set operation action for all vector types to either promote
709 // (for widening) or expand (for scalarization). Then we will selectively
710 // turn on ones that can be effectively codegen'd.
711 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
712 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
713 setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
714 setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
715 setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
716 setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
717 setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
718 setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
719 setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
720 setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
721 setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
722 setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
723 setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
724 setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
725 setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
726 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
727 setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
728 setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
729 setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
730 setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
731 setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
732 setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
733 setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
734 setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
735 setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
736 setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
737 setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
738 setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
739 setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
740 setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
741 setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
742 setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
743 setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
744 setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
745 setOperationAction(ISD::CTTZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
746 setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
747 setOperationAction(ISD::CTLZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
748 setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
749 setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
750 setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
751 setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
752 setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
753 setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
754 setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
755 setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
756 setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
757 setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
758 setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
759 setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
760 setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
761 setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
762 setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
763 setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
764 setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
765 setOperationAction(ISD::TRUNCATE, (MVT::SimpleValueType)VT, Expand);
766 setOperationAction(ISD::SIGN_EXTEND, (MVT::SimpleValueType)VT, Expand);
767 setOperationAction(ISD::ZERO_EXTEND, (MVT::SimpleValueType)VT, Expand);
768 setOperationAction(ISD::ANY_EXTEND, (MVT::SimpleValueType)VT, Expand);
769 setOperationAction(ISD::VSELECT, (MVT::SimpleValueType)VT, Expand);
770 for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
771 InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
772 setTruncStoreAction((MVT::SimpleValueType)VT,
773 (MVT::SimpleValueType)InnerVT, Expand);
774 setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
775 setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
776 setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
779 // FIXME: In order to prevent SSE instructions being expanded to MMX ones
780 // with -msoft-float, disable use of MMX as well.
781 if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
782 addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
783 // No operations on x86mmx supported, everything uses intrinsics.
786 // MMX-sized vectors (other than x86mmx) are expected to be expanded
787 // into smaller operations.
788 setOperationAction(ISD::MULHS, MVT::v8i8, Expand);
789 setOperationAction(ISD::MULHS, MVT::v4i16, Expand);
790 setOperationAction(ISD::MULHS, MVT::v2i32, Expand);
791 setOperationAction(ISD::MULHS, MVT::v1i64, Expand);
792 setOperationAction(ISD::AND, MVT::v8i8, Expand);
793 setOperationAction(ISD::AND, MVT::v4i16, Expand);
794 setOperationAction(ISD::AND, MVT::v2i32, Expand);
795 setOperationAction(ISD::AND, MVT::v1i64, Expand);
796 setOperationAction(ISD::OR, MVT::v8i8, Expand);
797 setOperationAction(ISD::OR, MVT::v4i16, Expand);
798 setOperationAction(ISD::OR, MVT::v2i32, Expand);
799 setOperationAction(ISD::OR, MVT::v1i64, Expand);
800 setOperationAction(ISD::XOR, MVT::v8i8, Expand);
801 setOperationAction(ISD::XOR, MVT::v4i16, Expand);
802 setOperationAction(ISD::XOR, MVT::v2i32, Expand);
803 setOperationAction(ISD::XOR, MVT::v1i64, Expand);
804 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Expand);
805 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Expand);
806 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i32, Expand);
807 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Expand);
808 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v1i64, Expand);
809 setOperationAction(ISD::SELECT, MVT::v8i8, Expand);
810 setOperationAction(ISD::SELECT, MVT::v4i16, Expand);
811 setOperationAction(ISD::SELECT, MVT::v2i32, Expand);
812 setOperationAction(ISD::SELECT, MVT::v1i64, Expand);
813 setOperationAction(ISD::BITCAST, MVT::v8i8, Expand);
814 setOperationAction(ISD::BITCAST, MVT::v4i16, Expand);
815 setOperationAction(ISD::BITCAST, MVT::v2i32, Expand);
816 setOperationAction(ISD::BITCAST, MVT::v1i64, Expand);
818 if (!TM.Options.UseSoftFloat && Subtarget->hasXMM()) {
819 addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
821 setOperationAction(ISD::FADD, MVT::v4f32, Legal);
822 setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
823 setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
824 setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
825 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
826 setOperationAction(ISD::FNEG, MVT::v4f32, Custom);
827 setOperationAction(ISD::LOAD, MVT::v4f32, Legal);
828 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
829 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
830 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
831 setOperationAction(ISD::SELECT, MVT::v4f32, Custom);
832 setOperationAction(ISD::SETCC, MVT::v4f32, Custom);
835 if (!TM.Options.UseSoftFloat && Subtarget->hasXMMInt()) {
836 addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
838 // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
839 // registers cannot be used even for integer operations.
840 addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
841 addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
842 addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
843 addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
845 setOperationAction(ISD::ADD, MVT::v16i8, Legal);
846 setOperationAction(ISD::ADD, MVT::v8i16, Legal);
847 setOperationAction(ISD::ADD, MVT::v4i32, Legal);
848 setOperationAction(ISD::ADD, MVT::v2i64, Legal);
849 setOperationAction(ISD::MUL, MVT::v2i64, Custom);
850 setOperationAction(ISD::SUB, MVT::v16i8, Legal);
851 setOperationAction(ISD::SUB, MVT::v8i16, Legal);
852 setOperationAction(ISD::SUB, MVT::v4i32, Legal);
853 setOperationAction(ISD::SUB, MVT::v2i64, Legal);
854 setOperationAction(ISD::MUL, MVT::v8i16, Legal);
855 setOperationAction(ISD::FADD, MVT::v2f64, Legal);
856 setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
857 setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
858 setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
859 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
860 setOperationAction(ISD::FNEG, MVT::v2f64, Custom);
862 setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
863 setOperationAction(ISD::SETCC, MVT::v16i8, Custom);
864 setOperationAction(ISD::SETCC, MVT::v8i16, Custom);
865 setOperationAction(ISD::SETCC, MVT::v4i32, Custom);
867 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom);
868 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom);
869 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
870 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
871 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
873 setOperationAction(ISD::CONCAT_VECTORS, MVT::v2f64, Custom);
874 setOperationAction(ISD::CONCAT_VECTORS, MVT::v2i64, Custom);
875 setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i8, Custom);
876 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i16, Custom);
877 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
879 // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
880 for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
881 EVT VT = (MVT::SimpleValueType)i;
882 // Do not attempt to custom lower non-power-of-2 vectors
883 if (!isPowerOf2_32(VT.getVectorNumElements()))
885 // Do not attempt to custom lower non-128-bit vectors
886 if (!VT.is128BitVector())
888 setOperationAction(ISD::BUILD_VECTOR,
889 VT.getSimpleVT().SimpleTy, Custom);
890 setOperationAction(ISD::VECTOR_SHUFFLE,
891 VT.getSimpleVT().SimpleTy, Custom);
892 setOperationAction(ISD::EXTRACT_VECTOR_ELT,
893 VT.getSimpleVT().SimpleTy, Custom);
896 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
897 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
898 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
899 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
900 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
901 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
903 if (Subtarget->is64Bit()) {
904 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom);
905 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
908 // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
909 for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
910 MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
913 // Do not attempt to promote non-128-bit vectors
914 if (!VT.is128BitVector())
917 setOperationAction(ISD::AND, SVT, Promote);
918 AddPromotedToType (ISD::AND, SVT, MVT::v2i64);
919 setOperationAction(ISD::OR, SVT, Promote);
920 AddPromotedToType (ISD::OR, SVT, MVT::v2i64);
921 setOperationAction(ISD::XOR, SVT, Promote);
922 AddPromotedToType (ISD::XOR, SVT, MVT::v2i64);
923 setOperationAction(ISD::LOAD, SVT, Promote);
924 AddPromotedToType (ISD::LOAD, SVT, MVT::v2i64);
925 setOperationAction(ISD::SELECT, SVT, Promote);
926 AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
929 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
931 // Custom lower v2i64 and v2f64 selects.
932 setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
933 setOperationAction(ISD::LOAD, MVT::v2i64, Legal);
934 setOperationAction(ISD::SELECT, MVT::v2f64, Custom);
935 setOperationAction(ISD::SELECT, MVT::v2i64, Custom);
937 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
938 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
941 if (Subtarget->hasSSE41orAVX()) {
942 setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
943 setOperationAction(ISD::FCEIL, MVT::f32, Legal);
944 setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
945 setOperationAction(ISD::FRINT, MVT::f32, Legal);
946 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
947 setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
948 setOperationAction(ISD::FCEIL, MVT::f64, Legal);
949 setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
950 setOperationAction(ISD::FRINT, MVT::f64, Legal);
951 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
953 // FIXME: Do we need to handle scalar-to-vector here?
954 setOperationAction(ISD::MUL, MVT::v4i32, Legal);
956 setOperationAction(ISD::VSELECT, MVT::v2f64, Legal);
957 setOperationAction(ISD::VSELECT, MVT::v2i64, Legal);
958 setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
959 setOperationAction(ISD::VSELECT, MVT::v4i32, Legal);
960 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
962 // i8 and i16 vectors are custom , because the source register and source
963 // source memory operand types are not the same width. f32 vectors are
964 // custom since the immediate controlling the insert encodes additional
966 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
967 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
968 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
969 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
971 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
972 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
973 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
974 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
976 // FIXME: these should be Legal but thats only for the case where
977 // the index is constant. For now custom expand to deal with that.
978 if (Subtarget->is64Bit()) {
979 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom);
980 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
984 if (Subtarget->hasXMMInt()) {
985 setOperationAction(ISD::SRL, MVT::v8i16, Custom);
986 setOperationAction(ISD::SRL, MVT::v16i8, Custom);
988 setOperationAction(ISD::SHL, MVT::v8i16, Custom);
989 setOperationAction(ISD::SHL, MVT::v16i8, Custom);
991 setOperationAction(ISD::SRA, MVT::v8i16, Custom);
992 setOperationAction(ISD::SRA, MVT::v16i8, Custom);
994 if (Subtarget->hasAVX2()) {
995 setOperationAction(ISD::SRL, MVT::v2i64, Legal);
996 setOperationAction(ISD::SRL, MVT::v4i32, Legal);
998 setOperationAction(ISD::SHL, MVT::v2i64, Legal);
999 setOperationAction(ISD::SHL, MVT::v4i32, Legal);
1001 setOperationAction(ISD::SRA, MVT::v4i32, Legal);
1003 setOperationAction(ISD::SRL, MVT::v2i64, Custom);
1004 setOperationAction(ISD::SRL, MVT::v4i32, Custom);
1006 setOperationAction(ISD::SHL, MVT::v2i64, Custom);
1007 setOperationAction(ISD::SHL, MVT::v4i32, Custom);
1009 setOperationAction(ISD::SRA, MVT::v4i32, Custom);
1013 if (Subtarget->hasSSE42orAVX())
1014 setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
1016 if (!TM.Options.UseSoftFloat && Subtarget->hasAVX()) {
1017 addRegisterClass(MVT::v32i8, X86::VR256RegisterClass);
1018 addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
1019 addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
1020 addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
1021 addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
1022 addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
1024 setOperationAction(ISD::LOAD, MVT::v8f32, Legal);
1025 setOperationAction(ISD::LOAD, MVT::v4f64, Legal);
1026 setOperationAction(ISD::LOAD, MVT::v4i64, Legal);
1028 setOperationAction(ISD::FADD, MVT::v8f32, Legal);
1029 setOperationAction(ISD::FSUB, MVT::v8f32, Legal);
1030 setOperationAction(ISD::FMUL, MVT::v8f32, Legal);
1031 setOperationAction(ISD::FDIV, MVT::v8f32, Legal);
1032 setOperationAction(ISD::FSQRT, MVT::v8f32, Legal);
1033 setOperationAction(ISD::FNEG, MVT::v8f32, Custom);
1035 setOperationAction(ISD::FADD, MVT::v4f64, Legal);
1036 setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
1037 setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
1038 setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
1039 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
1040 setOperationAction(ISD::FNEG, MVT::v4f64, Custom);
1042 setOperationAction(ISD::FP_TO_SINT, MVT::v8i32, Legal);
1043 setOperationAction(ISD::SINT_TO_FP, MVT::v8i32, Legal);
1044 setOperationAction(ISD::FP_ROUND, MVT::v4f32, Legal);
1046 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f64, Custom);
1047 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i64, Custom);
1048 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
1049 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
1050 setOperationAction(ISD::CONCAT_VECTORS, MVT::v32i8, Custom);
1051 setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i16, Custom);
1053 setOperationAction(ISD::SRL, MVT::v16i16, Custom);
1054 setOperationAction(ISD::SRL, MVT::v32i8, Custom);
1056 setOperationAction(ISD::SHL, MVT::v16i16, Custom);
1057 setOperationAction(ISD::SHL, MVT::v32i8, Custom);
1059 setOperationAction(ISD::SRA, MVT::v16i16, Custom);
1060 setOperationAction(ISD::SRA, MVT::v32i8, Custom);
1062 setOperationAction(ISD::SETCC, MVT::v32i8, Custom);
1063 setOperationAction(ISD::SETCC, MVT::v16i16, Custom);
1064 setOperationAction(ISD::SETCC, MVT::v8i32, Custom);
1065 setOperationAction(ISD::SETCC, MVT::v4i64, Custom);
1067 setOperationAction(ISD::SELECT, MVT::v4f64, Custom);
1068 setOperationAction(ISD::SELECT, MVT::v4i64, Custom);
1069 setOperationAction(ISD::SELECT, MVT::v8f32, Custom);
1071 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
1072 setOperationAction(ISD::VSELECT, MVT::v4i64, Legal);
1073 setOperationAction(ISD::VSELECT, MVT::v8i32, Legal);
1074 setOperationAction(ISD::VSELECT, MVT::v8f32, Legal);
1076 if (Subtarget->hasAVX2()) {
1077 setOperationAction(ISD::ADD, MVT::v4i64, Legal);
1078 setOperationAction(ISD::ADD, MVT::v8i32, Legal);
1079 setOperationAction(ISD::ADD, MVT::v16i16, Legal);
1080 setOperationAction(ISD::ADD, MVT::v32i8, Legal);
1082 setOperationAction(ISD::SUB, MVT::v4i64, Legal);
1083 setOperationAction(ISD::SUB, MVT::v8i32, Legal);
1084 setOperationAction(ISD::SUB, MVT::v16i16, Legal);
1085 setOperationAction(ISD::SUB, MVT::v32i8, Legal);
1087 setOperationAction(ISD::MUL, MVT::v4i64, Custom);
1088 setOperationAction(ISD::MUL, MVT::v8i32, Legal);
1089 setOperationAction(ISD::MUL, MVT::v16i16, Legal);
1090 // Don't lower v32i8 because there is no 128-bit byte mul
1092 setOperationAction(ISD::VSELECT, MVT::v32i8, Legal);
1094 setOperationAction(ISD::SRL, MVT::v4i64, Legal);
1095 setOperationAction(ISD::SRL, MVT::v8i32, Legal);
1097 setOperationAction(ISD::SHL, MVT::v4i64, Legal);
1098 setOperationAction(ISD::SHL, MVT::v8i32, Legal);
1100 setOperationAction(ISD::SRA, MVT::v8i32, Legal);
1102 setOperationAction(ISD::ADD, MVT::v4i64, Custom);
1103 setOperationAction(ISD::ADD, MVT::v8i32, Custom);
1104 setOperationAction(ISD::ADD, MVT::v16i16, Custom);
1105 setOperationAction(ISD::ADD, MVT::v32i8, Custom);
1107 setOperationAction(ISD::SUB, MVT::v4i64, Custom);
1108 setOperationAction(ISD::SUB, MVT::v8i32, Custom);
1109 setOperationAction(ISD::SUB, MVT::v16i16, Custom);
1110 setOperationAction(ISD::SUB, MVT::v32i8, Custom);
1112 setOperationAction(ISD::MUL, MVT::v4i64, Custom);
1113 setOperationAction(ISD::MUL, MVT::v8i32, Custom);
1114 setOperationAction(ISD::MUL, MVT::v16i16, Custom);
1115 // Don't lower v32i8 because there is no 128-bit byte mul
1117 setOperationAction(ISD::SRL, MVT::v4i64, Custom);
1118 setOperationAction(ISD::SRL, MVT::v8i32, Custom);
1120 setOperationAction(ISD::SHL, MVT::v4i64, Custom);
1121 setOperationAction(ISD::SHL, MVT::v8i32, Custom);
1123 setOperationAction(ISD::SRA, MVT::v8i32, Custom);
1126 // Custom lower several nodes for 256-bit types.
1127 for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1128 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1129 MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1132 // Extract subvector is special because the value type
1133 // (result) is 128-bit but the source is 256-bit wide.
1134 if (VT.is128BitVector())
1135 setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1137 // Do not attempt to custom lower other non-256-bit vectors
1138 if (!VT.is256BitVector())
1141 setOperationAction(ISD::BUILD_VECTOR, SVT, Custom);
1142 setOperationAction(ISD::VECTOR_SHUFFLE, SVT, Custom);
1143 setOperationAction(ISD::INSERT_VECTOR_ELT, SVT, Custom);
1144 setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1145 setOperationAction(ISD::SCALAR_TO_VECTOR, SVT, Custom);
1146 setOperationAction(ISD::INSERT_SUBVECTOR, SVT, Custom);
1149 // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1150 for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
1151 MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1154 // Do not attempt to promote non-256-bit vectors
1155 if (!VT.is256BitVector())
1158 setOperationAction(ISD::AND, SVT, Promote);
1159 AddPromotedToType (ISD::AND, SVT, MVT::v4i64);
1160 setOperationAction(ISD::OR, SVT, Promote);
1161 AddPromotedToType (ISD::OR, SVT, MVT::v4i64);
1162 setOperationAction(ISD::XOR, SVT, Promote);
1163 AddPromotedToType (ISD::XOR, SVT, MVT::v4i64);
1164 setOperationAction(ISD::LOAD, SVT, Promote);
1165 AddPromotedToType (ISD::LOAD, SVT, MVT::v4i64);
1166 setOperationAction(ISD::SELECT, SVT, Promote);
1167 AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1171 // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1172 // of this type with custom code.
1173 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1174 VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
1175 setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1179 // We want to custom lower some of our intrinsics.
1180 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1183 // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1184 // handle type legalization for these operations here.
1186 // FIXME: We really should do custom legalization for addition and
1187 // subtraction on x86-32 once PR3203 is fixed. We really can't do much better
1188 // than generic legalization for 64-bit multiplication-with-overflow, though.
1189 for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1190 // Add/Sub/Mul with overflow operations are custom lowered.
1192 setOperationAction(ISD::SADDO, VT, Custom);
1193 setOperationAction(ISD::UADDO, VT, Custom);
1194 setOperationAction(ISD::SSUBO, VT, Custom);
1195 setOperationAction(ISD::USUBO, VT, Custom);
1196 setOperationAction(ISD::SMULO, VT, Custom);
1197 setOperationAction(ISD::UMULO, VT, Custom);
1200 // There are no 8-bit 3-address imul/mul instructions
1201 setOperationAction(ISD::SMULO, MVT::i8, Expand);
1202 setOperationAction(ISD::UMULO, MVT::i8, Expand);
1204 if (!Subtarget->is64Bit()) {
1205 // These libcalls are not available in 32-bit.
1206 setLibcallName(RTLIB::SHL_I128, 0);
1207 setLibcallName(RTLIB::SRL_I128, 0);
1208 setLibcallName(RTLIB::SRA_I128, 0);
1211 // We have target-specific dag combine patterns for the following nodes:
1212 setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1213 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1214 setTargetDAGCombine(ISD::VSELECT);
1215 setTargetDAGCombine(ISD::SELECT);
1216 setTargetDAGCombine(ISD::SHL);
1217 setTargetDAGCombine(ISD::SRA);
1218 setTargetDAGCombine(ISD::SRL);
1219 setTargetDAGCombine(ISD::OR);
1220 setTargetDAGCombine(ISD::AND);
1221 setTargetDAGCombine(ISD::ADD);
1222 setTargetDAGCombine(ISD::FADD);
1223 setTargetDAGCombine(ISD::FSUB);
1224 setTargetDAGCombine(ISD::SUB);
1225 setTargetDAGCombine(ISD::LOAD);
1226 setTargetDAGCombine(ISD::STORE);
1227 setTargetDAGCombine(ISD::ZERO_EXTEND);
1228 setTargetDAGCombine(ISD::SINT_TO_FP);
1229 if (Subtarget->is64Bit())
1230 setTargetDAGCombine(ISD::MUL);
1231 if (Subtarget->hasBMI())
1232 setTargetDAGCombine(ISD::XOR);
1234 computeRegisterProperties();
1236 // On Darwin, -Os means optimize for size without hurting performance,
1237 // do not reduce the limit.
1238 maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1239 maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1240 maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1241 maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1242 maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1243 maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1244 setPrefLoopAlignment(4); // 2^4 bytes.
1245 benefitFromCodePlacementOpt = true;
1247 setPrefFunctionAlignment(4); // 2^4 bytes.
1251 EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1252 if (!VT.isVector()) return MVT::i8;
1253 return VT.changeVectorElementTypeToInteger();
1257 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1258 /// the desired ByVal argument alignment.
1259 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1262 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1263 if (VTy->getBitWidth() == 128)
1265 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1266 unsigned EltAlign = 0;
1267 getMaxByValAlign(ATy->getElementType(), EltAlign);
1268 if (EltAlign > MaxAlign)
1269 MaxAlign = EltAlign;
1270 } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1271 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1272 unsigned EltAlign = 0;
1273 getMaxByValAlign(STy->getElementType(i), EltAlign);
1274 if (EltAlign > MaxAlign)
1275 MaxAlign = EltAlign;
1283 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1284 /// function arguments in the caller parameter area. For X86, aggregates
1285 /// that contain SSE vectors are placed at 16-byte boundaries while the rest
1286 /// are at 4-byte boundaries.
1287 unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1288 if (Subtarget->is64Bit()) {
1289 // Max of 8 and alignment of type.
1290 unsigned TyAlign = TD->getABITypeAlignment(Ty);
1297 if (Subtarget->hasXMM())
1298 getMaxByValAlign(Ty, Align);
1302 /// getOptimalMemOpType - Returns the target specific optimal type for load
1303 /// and store operations as a result of memset, memcpy, and memmove
1304 /// lowering. If DstAlign is zero that means it's safe to destination
1305 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1306 /// means there isn't a need to check it against alignment requirement,
1307 /// probably because the source does not need to be loaded. If
1308 /// 'IsZeroVal' is true, that means it's safe to return a
1309 /// non-scalar-integer type, e.g. empty string source, constant, or loaded
1310 /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1311 /// constant so it does not need to be loaded.
1312 /// It returns EVT::Other if the type should be determined using generic
1313 /// target-independent logic.
1315 X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1316 unsigned DstAlign, unsigned SrcAlign,
1319 MachineFunction &MF) const {
1320 // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1321 // linux. This is because the stack realignment code can't handle certain
1322 // cases like PR2962. This should be removed when PR2962 is fixed.
1323 const Function *F = MF.getFunction();
1325 !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1327 (Subtarget->isUnalignedMemAccessFast() ||
1328 ((DstAlign == 0 || DstAlign >= 16) &&
1329 (SrcAlign == 0 || SrcAlign >= 16))) &&
1330 Subtarget->getStackAlignment() >= 16) {
1331 if (Subtarget->hasAVX() &&
1332 Subtarget->getStackAlignment() >= 32)
1334 if (Subtarget->hasXMMInt())
1336 if (Subtarget->hasXMM())
1338 } else if (!MemcpyStrSrc && Size >= 8 &&
1339 !Subtarget->is64Bit() &&
1340 Subtarget->getStackAlignment() >= 8 &&
1341 Subtarget->hasXMMInt()) {
1342 // Do not use f64 to lower memcpy if source is string constant. It's
1343 // better to use i32 to avoid the loads.
1347 if (Subtarget->is64Bit() && Size >= 8)
1352 /// getJumpTableEncoding - Return the entry encoding for a jump table in the
1353 /// current function. The returned value is a member of the
1354 /// MachineJumpTableInfo::JTEntryKind enum.
1355 unsigned X86TargetLowering::getJumpTableEncoding() const {
1356 // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1358 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1359 Subtarget->isPICStyleGOT())
1360 return MachineJumpTableInfo::EK_Custom32;
1362 // Otherwise, use the normal jump table encoding heuristics.
1363 return TargetLowering::getJumpTableEncoding();
1367 X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1368 const MachineBasicBlock *MBB,
1369 unsigned uid,MCContext &Ctx) const{
1370 assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1371 Subtarget->isPICStyleGOT());
1372 // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1374 return MCSymbolRefExpr::Create(MBB->getSymbol(),
1375 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1378 /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1380 SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1381 SelectionDAG &DAG) const {
1382 if (!Subtarget->is64Bit())
1383 // This doesn't have DebugLoc associated with it, but is not really the
1384 // same as a Register.
1385 return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1389 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1390 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1392 const MCExpr *X86TargetLowering::
1393 getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1394 MCContext &Ctx) const {
1395 // X86-64 uses RIP relative addressing based on the jump table label.
1396 if (Subtarget->isPICStyleRIPRel())
1397 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1399 // Otherwise, the reference is relative to the PIC base.
1400 return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1403 // FIXME: Why this routine is here? Move to RegInfo!
1404 std::pair<const TargetRegisterClass*, uint8_t>
1405 X86TargetLowering::findRepresentativeClass(EVT VT) const{
1406 const TargetRegisterClass *RRC = 0;
1408 switch (VT.getSimpleVT().SimpleTy) {
1410 return TargetLowering::findRepresentativeClass(VT);
1411 case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1412 RRC = (Subtarget->is64Bit()
1413 ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1416 RRC = X86::VR64RegisterClass;
1418 case MVT::f32: case MVT::f64:
1419 case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1420 case MVT::v4f32: case MVT::v2f64:
1421 case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1423 RRC = X86::VR128RegisterClass;
1426 return std::make_pair(RRC, Cost);
1429 bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1430 unsigned &Offset) const {
1431 if (!Subtarget->isTargetLinux())
1434 if (Subtarget->is64Bit()) {
1435 // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1437 if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1450 //===----------------------------------------------------------------------===//
1451 // Return Value Calling Convention Implementation
1452 //===----------------------------------------------------------------------===//
1454 #include "X86GenCallingConv.inc"
1457 X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1458 MachineFunction &MF, bool isVarArg,
1459 const SmallVectorImpl<ISD::OutputArg> &Outs,
1460 LLVMContext &Context) const {
1461 SmallVector<CCValAssign, 16> RVLocs;
1462 CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1464 return CCInfo.CheckReturn(Outs, RetCC_X86);
1468 X86TargetLowering::LowerReturn(SDValue Chain,
1469 CallingConv::ID CallConv, bool isVarArg,
1470 const SmallVectorImpl<ISD::OutputArg> &Outs,
1471 const SmallVectorImpl<SDValue> &OutVals,
1472 DebugLoc dl, SelectionDAG &DAG) const {
1473 MachineFunction &MF = DAG.getMachineFunction();
1474 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1476 SmallVector<CCValAssign, 16> RVLocs;
1477 CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1478 RVLocs, *DAG.getContext());
1479 CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1481 // Add the regs to the liveout set for the function.
1482 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1483 for (unsigned i = 0; i != RVLocs.size(); ++i)
1484 if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1485 MRI.addLiveOut(RVLocs[i].getLocReg());
1489 SmallVector<SDValue, 6> RetOps;
1490 RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1491 // Operand #1 = Bytes To Pop
1492 RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1495 // Copy the result values into the output registers.
1496 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1497 CCValAssign &VA = RVLocs[i];
1498 assert(VA.isRegLoc() && "Can only return in registers!");
1499 SDValue ValToCopy = OutVals[i];
1500 EVT ValVT = ValToCopy.getValueType();
1502 // If this is x86-64, and we disabled SSE, we can't return FP values,
1503 // or SSE or MMX vectors.
1504 if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1505 VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1506 (Subtarget->is64Bit() && !Subtarget->hasXMM())) {
1507 report_fatal_error("SSE register return with SSE disabled");
1509 // Likewise we can't return F64 values with SSE1 only. gcc does so, but
1510 // llvm-gcc has never done it right and no one has noticed, so this
1511 // should be OK for now.
1512 if (ValVT == MVT::f64 &&
1513 (Subtarget->is64Bit() && !Subtarget->hasXMMInt()))
1514 report_fatal_error("SSE2 register return with SSE2 disabled");
1516 // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1517 // the RET instruction and handled by the FP Stackifier.
1518 if (VA.getLocReg() == X86::ST0 ||
1519 VA.getLocReg() == X86::ST1) {
1520 // If this is a copy from an xmm register to ST(0), use an FPExtend to
1521 // change the value to the FP stack register class.
1522 if (isScalarFPTypeInSSEReg(VA.getValVT()))
1523 ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1524 RetOps.push_back(ValToCopy);
1525 // Don't emit a copytoreg.
1529 // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1530 // which is returned in RAX / RDX.
1531 if (Subtarget->is64Bit()) {
1532 if (ValVT == MVT::x86mmx) {
1533 if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1534 ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1535 ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1537 // If we don't have SSE2 available, convert to v4f32 so the generated
1538 // register is legal.
1539 if (!Subtarget->hasXMMInt())
1540 ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1545 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1546 Flag = Chain.getValue(1);
1549 // The x86-64 ABI for returning structs by value requires that we copy
1550 // the sret argument into %rax for the return. We saved the argument into
1551 // a virtual register in the entry block, so now we copy the value out
1553 if (Subtarget->is64Bit() &&
1554 DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1555 MachineFunction &MF = DAG.getMachineFunction();
1556 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1557 unsigned Reg = FuncInfo->getSRetReturnReg();
1559 "SRetReturnReg should have been set in LowerFormalArguments().");
1560 SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1562 Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1563 Flag = Chain.getValue(1);
1565 // RAX now acts like a return value.
1566 MRI.addLiveOut(X86::RAX);
1569 RetOps[0] = Chain; // Update chain.
1571 // Add the flag if we have it.
1573 RetOps.push_back(Flag);
1575 return DAG.getNode(X86ISD::RET_FLAG, dl,
1576 MVT::Other, &RetOps[0], RetOps.size());
1579 bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1580 if (N->getNumValues() != 1)
1582 if (!N->hasNUsesOfValue(1, 0))
1585 SDNode *Copy = *N->use_begin();
1586 if (Copy->getOpcode() != ISD::CopyToReg &&
1587 Copy->getOpcode() != ISD::FP_EXTEND)
1590 bool HasRet = false;
1591 for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1593 if (UI->getOpcode() != X86ISD::RET_FLAG)
1602 X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1603 ISD::NodeType ExtendKind) const {
1605 // TODO: Is this also valid on 32-bit?
1606 if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1607 ReturnMVT = MVT::i8;
1609 ReturnMVT = MVT::i32;
1611 EVT MinVT = getRegisterType(Context, ReturnMVT);
1612 return VT.bitsLT(MinVT) ? MinVT : VT;
1615 /// LowerCallResult - Lower the result values of a call into the
1616 /// appropriate copies out of appropriate physical registers.
1619 X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1620 CallingConv::ID CallConv, bool isVarArg,
1621 const SmallVectorImpl<ISD::InputArg> &Ins,
1622 DebugLoc dl, SelectionDAG &DAG,
1623 SmallVectorImpl<SDValue> &InVals) const {
1625 // Assign locations to each value returned by this call.
1626 SmallVector<CCValAssign, 16> RVLocs;
1627 bool Is64Bit = Subtarget->is64Bit();
1628 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1629 getTargetMachine(), RVLocs, *DAG.getContext());
1630 CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1632 // Copy all of the result registers out of their specified physreg.
1633 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1634 CCValAssign &VA = RVLocs[i];
1635 EVT CopyVT = VA.getValVT();
1637 // If this is x86-64, and we disabled SSE, we can't return FP values
1638 if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1639 ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasXMM())) {
1640 report_fatal_error("SSE register return with SSE disabled");
1645 // If this is a call to a function that returns an fp value on the floating
1646 // point stack, we must guarantee the the value is popped from the stack, so
1647 // a CopyFromReg is not good enough - the copy instruction may be eliminated
1648 // if the return value is not used. We use the FpPOP_RETVAL instruction
1650 if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1651 // If we prefer to use the value in xmm registers, copy it out as f80 and
1652 // use a truncate to move it from fp stack reg to xmm reg.
1653 if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1654 SDValue Ops[] = { Chain, InFlag };
1655 Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1656 MVT::Other, MVT::Glue, Ops, 2), 1);
1657 Val = Chain.getValue(0);
1659 // Round the f80 to the right size, which also moves it to the appropriate
1661 if (CopyVT != VA.getValVT())
1662 Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1663 // This truncation won't change the value.
1664 DAG.getIntPtrConstant(1));
1666 Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1667 CopyVT, InFlag).getValue(1);
1668 Val = Chain.getValue(0);
1670 InFlag = Chain.getValue(2);
1671 InVals.push_back(Val);
1678 //===----------------------------------------------------------------------===//
1679 // C & StdCall & Fast Calling Convention implementation
1680 //===----------------------------------------------------------------------===//
1681 // StdCall calling convention seems to be standard for many Windows' API
1682 // routines and around. It differs from C calling convention just a little:
1683 // callee should clean up the stack, not caller. Symbols should be also
1684 // decorated in some fancy way :) It doesn't support any vector arguments.
1685 // For info on fast calling convention see Fast Calling Convention (tail call)
1686 // implementation LowerX86_32FastCCCallTo.
1688 /// CallIsStructReturn - Determines whether a call uses struct return
1690 static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1694 return Outs[0].Flags.isSRet();
1697 /// ArgsAreStructReturn - Determines whether a function uses struct
1698 /// return semantics.
1700 ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1704 return Ins[0].Flags.isSRet();
1707 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1708 /// by "Src" to address "Dst" with size and alignment information specified by
1709 /// the specific parameter attribute. The copy will be passed as a byval
1710 /// function parameter.
1712 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1713 ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1715 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1717 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1718 /*isVolatile*/false, /*AlwaysInline=*/true,
1719 MachinePointerInfo(), MachinePointerInfo());
1722 /// IsTailCallConvention - Return true if the calling convention is one that
1723 /// supports tail call optimization.
1724 static bool IsTailCallConvention(CallingConv::ID CC) {
1725 return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1728 bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1729 if (!CI->isTailCall())
1733 CallingConv::ID CalleeCC = CS.getCallingConv();
1734 if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1740 /// FuncIsMadeTailCallSafe - Return true if the function is being made into
1741 /// a tailcall target by changing its ABI.
1742 static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1743 bool GuaranteedTailCallOpt) {
1744 return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1748 X86TargetLowering::LowerMemArgument(SDValue Chain,
1749 CallingConv::ID CallConv,
1750 const SmallVectorImpl<ISD::InputArg> &Ins,
1751 DebugLoc dl, SelectionDAG &DAG,
1752 const CCValAssign &VA,
1753 MachineFrameInfo *MFI,
1755 // Create the nodes corresponding to a load from this parameter slot.
1756 ISD::ArgFlagsTy Flags = Ins[i].Flags;
1757 bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1758 getTargetMachine().Options.GuaranteedTailCallOpt);
1759 bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1762 // If value is passed by pointer we have address passed instead of the value
1764 if (VA.getLocInfo() == CCValAssign::Indirect)
1765 ValVT = VA.getLocVT();
1767 ValVT = VA.getValVT();
1769 // FIXME: For now, all byval parameter objects are marked mutable. This can be
1770 // changed with more analysis.
1771 // In case of tail call optimization mark all arguments mutable. Since they
1772 // could be overwritten by lowering of arguments in case of a tail call.
1773 if (Flags.isByVal()) {
1774 unsigned Bytes = Flags.getByValSize();
1775 if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1776 int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1777 return DAG.getFrameIndex(FI, getPointerTy());
1779 int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1780 VA.getLocMemOffset(), isImmutable);
1781 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1782 return DAG.getLoad(ValVT, dl, Chain, FIN,
1783 MachinePointerInfo::getFixedStack(FI),
1784 false, false, false, 0);
1789 X86TargetLowering::LowerFormalArguments(SDValue Chain,
1790 CallingConv::ID CallConv,
1792 const SmallVectorImpl<ISD::InputArg> &Ins,
1795 SmallVectorImpl<SDValue> &InVals)
1797 MachineFunction &MF = DAG.getMachineFunction();
1798 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1800 const Function* Fn = MF.getFunction();
1801 if (Fn->hasExternalLinkage() &&
1802 Subtarget->isTargetCygMing() &&
1803 Fn->getName() == "main")
1804 FuncInfo->setForceFramePointer(true);
1806 MachineFrameInfo *MFI = MF.getFrameInfo();
1807 bool Is64Bit = Subtarget->is64Bit();
1808 bool IsWin64 = Subtarget->isTargetWin64();
1810 assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1811 "Var args not supported with calling convention fastcc or ghc");
1813 // Assign locations to all of the incoming arguments.
1814 SmallVector<CCValAssign, 16> ArgLocs;
1815 CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1816 ArgLocs, *DAG.getContext());
1818 // Allocate shadow area for Win64
1820 CCInfo.AllocateStack(32, 8);
1823 CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1825 unsigned LastVal = ~0U;
1827 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1828 CCValAssign &VA = ArgLocs[i];
1829 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1831 assert(VA.getValNo() != LastVal &&
1832 "Don't support value assigned to multiple locs yet");
1834 LastVal = VA.getValNo();
1836 if (VA.isRegLoc()) {
1837 EVT RegVT = VA.getLocVT();
1838 TargetRegisterClass *RC = NULL;
1839 if (RegVT == MVT::i32)
1840 RC = X86::GR32RegisterClass;
1841 else if (Is64Bit && RegVT == MVT::i64)
1842 RC = X86::GR64RegisterClass;
1843 else if (RegVT == MVT::f32)
1844 RC = X86::FR32RegisterClass;
1845 else if (RegVT == MVT::f64)
1846 RC = X86::FR64RegisterClass;
1847 else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1848 RC = X86::VR256RegisterClass;
1849 else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1850 RC = X86::VR128RegisterClass;
1851 else if (RegVT == MVT::x86mmx)
1852 RC = X86::VR64RegisterClass;
1854 llvm_unreachable("Unknown argument type!");
1856 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1857 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1859 // If this is an 8 or 16-bit value, it is really passed promoted to 32
1860 // bits. Insert an assert[sz]ext to capture this, then truncate to the
1862 if (VA.getLocInfo() == CCValAssign::SExt)
1863 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1864 DAG.getValueType(VA.getValVT()));
1865 else if (VA.getLocInfo() == CCValAssign::ZExt)
1866 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1867 DAG.getValueType(VA.getValVT()));
1868 else if (VA.getLocInfo() == CCValAssign::BCvt)
1869 ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1871 if (VA.isExtInLoc()) {
1872 // Handle MMX values passed in XMM regs.
1873 if (RegVT.isVector()) {
1874 ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1877 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1880 assert(VA.isMemLoc());
1881 ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1884 // If value is passed via pointer - do a load.
1885 if (VA.getLocInfo() == CCValAssign::Indirect)
1886 ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1887 MachinePointerInfo(), false, false, false, 0);
1889 InVals.push_back(ArgValue);
1892 // The x86-64 ABI for returning structs by value requires that we copy
1893 // the sret argument into %rax for the return. Save the argument into
1894 // a virtual register so that we can access it from the return points.
1895 if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1896 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1897 unsigned Reg = FuncInfo->getSRetReturnReg();
1899 Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1900 FuncInfo->setSRetReturnReg(Reg);
1902 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1903 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1906 unsigned StackSize = CCInfo.getNextStackOffset();
1907 // Align stack specially for tail calls.
1908 if (FuncIsMadeTailCallSafe(CallConv,
1909 MF.getTarget().Options.GuaranteedTailCallOpt))
1910 StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1912 // If the function takes variable number of arguments, make a frame index for
1913 // the start of the first vararg value... for expansion of llvm.va_start.
1915 if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1916 CallConv != CallingConv::X86_ThisCall)) {
1917 FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1920 unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1922 // FIXME: We should really autogenerate these arrays
1923 static const unsigned GPR64ArgRegsWin64[] = {
1924 X86::RCX, X86::RDX, X86::R8, X86::R9
1926 static const unsigned GPR64ArgRegs64Bit[] = {
1927 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1929 static const unsigned XMMArgRegs64Bit[] = {
1930 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1931 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1933 const unsigned *GPR64ArgRegs;
1934 unsigned NumXMMRegs = 0;
1937 // The XMM registers which might contain var arg parameters are shadowed
1938 // in their paired GPR. So we only need to save the GPR to their home
1940 TotalNumIntRegs = 4;
1941 GPR64ArgRegs = GPR64ArgRegsWin64;
1943 TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1944 GPR64ArgRegs = GPR64ArgRegs64Bit;
1946 NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
1949 unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1952 bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1953 assert(!(NumXMMRegs && !Subtarget->hasXMM()) &&
1954 "SSE register cannot be used when SSE is disabled!");
1955 assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
1956 NoImplicitFloatOps) &&
1957 "SSE register cannot be used when SSE is disabled!");
1958 if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
1959 !Subtarget->hasXMM())
1960 // Kernel mode asks for SSE to be disabled, so don't push them
1962 TotalNumXMMRegs = 0;
1965 const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1966 // Get to the caller-allocated home save location. Add 8 to account
1967 // for the return address.
1968 int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1969 FuncInfo->setRegSaveFrameIndex(
1970 MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1971 // Fixup to set vararg frame on shadow area (4 x i64).
1973 FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1975 // For X86-64, if there are vararg parameters that are passed via
1976 // registers, then we must store them to their spots on the stack so
1977 // they may be loaded by deferencing the result of va_next.
1978 FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1979 FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1980 FuncInfo->setRegSaveFrameIndex(
1981 MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1985 // Store the integer parameter registers.
1986 SmallVector<SDValue, 8> MemOps;
1987 SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1989 unsigned Offset = FuncInfo->getVarArgsGPOffset();
1990 for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1991 SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1992 DAG.getIntPtrConstant(Offset));
1993 unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1994 X86::GR64RegisterClass);
1995 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1997 DAG.getStore(Val.getValue(1), dl, Val, FIN,
1998 MachinePointerInfo::getFixedStack(
1999 FuncInfo->getRegSaveFrameIndex(), Offset),
2001 MemOps.push_back(Store);
2005 if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2006 // Now store the XMM (fp + vector) parameter registers.
2007 SmallVector<SDValue, 11> SaveXMMOps;
2008 SaveXMMOps.push_back(Chain);
2010 unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
2011 SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2012 SaveXMMOps.push_back(ALVal);
2014 SaveXMMOps.push_back(DAG.getIntPtrConstant(
2015 FuncInfo->getRegSaveFrameIndex()));
2016 SaveXMMOps.push_back(DAG.getIntPtrConstant(
2017 FuncInfo->getVarArgsFPOffset()));
2019 for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2020 unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2021 X86::VR128RegisterClass);
2022 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2023 SaveXMMOps.push_back(Val);
2025 MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2027 &SaveXMMOps[0], SaveXMMOps.size()));
2030 if (!MemOps.empty())
2031 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2032 &MemOps[0], MemOps.size());
2036 // Some CCs need callee pop.
2037 if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2038 MF.getTarget().Options.GuaranteedTailCallOpt)) {
2039 FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2041 FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2042 // If this is an sret function, the return should pop the hidden pointer.
2043 if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
2044 FuncInfo->setBytesToPopOnReturn(4);
2048 // RegSaveFrameIndex is X86-64 only.
2049 FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2050 if (CallConv == CallingConv::X86_FastCall ||
2051 CallConv == CallingConv::X86_ThisCall)
2052 // fastcc functions can't have varargs.
2053 FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2056 FuncInfo->setArgumentStackSize(StackSize);
2062 X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2063 SDValue StackPtr, SDValue Arg,
2064 DebugLoc dl, SelectionDAG &DAG,
2065 const CCValAssign &VA,
2066 ISD::ArgFlagsTy Flags) const {
2067 unsigned LocMemOffset = VA.getLocMemOffset();
2068 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2069 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2070 if (Flags.isByVal())
2071 return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2073 return DAG.getStore(Chain, dl, Arg, PtrOff,
2074 MachinePointerInfo::getStack(LocMemOffset),
2078 /// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2079 /// optimization is performed and it is required.
2081 X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2082 SDValue &OutRetAddr, SDValue Chain,
2083 bool IsTailCall, bool Is64Bit,
2084 int FPDiff, DebugLoc dl) const {
2085 // Adjust the Return address stack slot.
2086 EVT VT = getPointerTy();
2087 OutRetAddr = getReturnAddressFrameIndex(DAG);
2089 // Load the "old" Return address.
2090 OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2091 false, false, false, 0);
2092 return SDValue(OutRetAddr.getNode(), 1);
2095 /// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2096 /// optimization is performed and it is required (FPDiff!=0).
2098 EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2099 SDValue Chain, SDValue RetAddrFrIdx,
2100 bool Is64Bit, int FPDiff, DebugLoc dl) {
2101 // Store the return address to the appropriate stack slot.
2102 if (!FPDiff) return Chain;
2103 // Calculate the new stack slot for the return address.
2104 int SlotSize = Is64Bit ? 8 : 4;
2105 int NewReturnAddrFI =
2106 MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2107 EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2108 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2109 Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2110 MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2116 X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2117 CallingConv::ID CallConv, bool isVarArg,
2119 const SmallVectorImpl<ISD::OutputArg> &Outs,
2120 const SmallVectorImpl<SDValue> &OutVals,
2121 const SmallVectorImpl<ISD::InputArg> &Ins,
2122 DebugLoc dl, SelectionDAG &DAG,
2123 SmallVectorImpl<SDValue> &InVals) const {
2124 MachineFunction &MF = DAG.getMachineFunction();
2125 bool Is64Bit = Subtarget->is64Bit();
2126 bool IsWin64 = Subtarget->isTargetWin64();
2127 bool IsStructRet = CallIsStructReturn(Outs);
2128 bool IsSibcall = false;
2131 // Check if it's really possible to do a tail call.
2132 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2133 isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
2134 Outs, OutVals, Ins, DAG);
2136 // Sibcalls are automatically detected tailcalls which do not require
2138 if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2145 assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2146 "Var args not supported with calling convention fastcc or ghc");
2148 // Analyze operands of the call, assigning locations to each operand.
2149 SmallVector<CCValAssign, 16> ArgLocs;
2150 CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2151 ArgLocs, *DAG.getContext());
2153 // Allocate shadow area for Win64
2155 CCInfo.AllocateStack(32, 8);
2158 CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2160 // Get a count of how many bytes are to be pushed on the stack.
2161 unsigned NumBytes = CCInfo.getNextStackOffset();
2163 // This is a sibcall. The memory operands are available in caller's
2164 // own caller's stack.
2166 else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2167 IsTailCallConvention(CallConv))
2168 NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2171 if (isTailCall && !IsSibcall) {
2172 // Lower arguments at fp - stackoffset + fpdiff.
2173 unsigned NumBytesCallerPushed =
2174 MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2175 FPDiff = NumBytesCallerPushed - NumBytes;
2177 // Set the delta of movement of the returnaddr stackslot.
2178 // But only set if delta is greater than previous delta.
2179 if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2180 MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2184 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2186 SDValue RetAddrFrIdx;
2187 // Load return address for tail calls.
2188 if (isTailCall && FPDiff)
2189 Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2190 Is64Bit, FPDiff, dl);
2192 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2193 SmallVector<SDValue, 8> MemOpChains;
2196 // Walk the register/memloc assignments, inserting copies/loads. In the case
2197 // of tail call optimization arguments are handle later.
2198 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2199 CCValAssign &VA = ArgLocs[i];
2200 EVT RegVT = VA.getLocVT();
2201 SDValue Arg = OutVals[i];
2202 ISD::ArgFlagsTy Flags = Outs[i].Flags;
2203 bool isByVal = Flags.isByVal();
2205 // Promote the value if needed.
2206 switch (VA.getLocInfo()) {
2207 default: llvm_unreachable("Unknown loc info!");
2208 case CCValAssign::Full: break;
2209 case CCValAssign::SExt:
2210 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2212 case CCValAssign::ZExt:
2213 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2215 case CCValAssign::AExt:
2216 if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2217 // Special case: passing MMX values in XMM registers.
2218 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2219 Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2220 Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2222 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2224 case CCValAssign::BCvt:
2225 Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2227 case CCValAssign::Indirect: {
2228 // Store the argument.
2229 SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2230 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2231 Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2232 MachinePointerInfo::getFixedStack(FI),
2239 if (VA.isRegLoc()) {
2240 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2241 if (isVarArg && IsWin64) {
2242 // Win64 ABI requires argument XMM reg to be copied to the corresponding
2243 // shadow reg if callee is a varargs function.
2244 unsigned ShadowReg = 0;
2245 switch (VA.getLocReg()) {
2246 case X86::XMM0: ShadowReg = X86::RCX; break;
2247 case X86::XMM1: ShadowReg = X86::RDX; break;
2248 case X86::XMM2: ShadowReg = X86::R8; break;
2249 case X86::XMM3: ShadowReg = X86::R9; break;
2252 RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2254 } else if (!IsSibcall && (!isTailCall || isByVal)) {
2255 assert(VA.isMemLoc());
2256 if (StackPtr.getNode() == 0)
2257 StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2258 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2259 dl, DAG, VA, Flags));
2263 if (!MemOpChains.empty())
2264 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2265 &MemOpChains[0], MemOpChains.size());
2267 // Build a sequence of copy-to-reg nodes chained together with token chain
2268 // and flag operands which copy the outgoing args into registers.
2270 // Tail call byval lowering might overwrite argument registers so in case of
2271 // tail call optimization the copies to registers are lowered later.
2273 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2274 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2275 RegsToPass[i].second, InFlag);
2276 InFlag = Chain.getValue(1);
2279 if (Subtarget->isPICStyleGOT()) {
2280 // ELF / PIC requires GOT in the EBX register before function calls via PLT
2283 Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2284 DAG.getNode(X86ISD::GlobalBaseReg,
2285 DebugLoc(), getPointerTy()),
2287 InFlag = Chain.getValue(1);
2289 // If we are tail calling and generating PIC/GOT style code load the
2290 // address of the callee into ECX. The value in ecx is used as target of
2291 // the tail jump. This is done to circumvent the ebx/callee-saved problem
2292 // for tail calls on PIC/GOT architectures. Normally we would just put the
2293 // address of GOT into ebx and then call target@PLT. But for tail calls
2294 // ebx would be restored (since ebx is callee saved) before jumping to the
2297 // Note: The actual moving to ECX is done further down.
2298 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2299 if (G && !G->getGlobal()->hasHiddenVisibility() &&
2300 !G->getGlobal()->hasProtectedVisibility())
2301 Callee = LowerGlobalAddress(Callee, DAG);
2302 else if (isa<ExternalSymbolSDNode>(Callee))
2303 Callee = LowerExternalSymbol(Callee, DAG);
2307 if (Is64Bit && isVarArg && !IsWin64) {
2308 // From AMD64 ABI document:
2309 // For calls that may call functions that use varargs or stdargs
2310 // (prototype-less calls or calls to functions containing ellipsis (...) in
2311 // the declaration) %al is used as hidden argument to specify the number
2312 // of SSE registers used. The contents of %al do not need to match exactly
2313 // the number of registers, but must be an ubound on the number of SSE
2314 // registers used and is in the range 0 - 8 inclusive.
2316 // Count the number of XMM registers allocated.
2317 static const unsigned XMMArgRegs[] = {
2318 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2319 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2321 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2322 assert((Subtarget->hasXMM() || !NumXMMRegs)
2323 && "SSE registers cannot be used when SSE is disabled");
2325 Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2326 DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2327 InFlag = Chain.getValue(1);
2331 // For tail calls lower the arguments to the 'real' stack slot.
2333 // Force all the incoming stack arguments to be loaded from the stack
2334 // before any new outgoing arguments are stored to the stack, because the
2335 // outgoing stack slots may alias the incoming argument stack slots, and
2336 // the alias isn't otherwise explicit. This is slightly more conservative
2337 // than necessary, because it means that each store effectively depends
2338 // on every argument instead of just those arguments it would clobber.
2339 SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2341 SmallVector<SDValue, 8> MemOpChains2;
2344 // Do not flag preceding copytoreg stuff together with the following stuff.
2346 if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2347 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2348 CCValAssign &VA = ArgLocs[i];
2351 assert(VA.isMemLoc());
2352 SDValue Arg = OutVals[i];
2353 ISD::ArgFlagsTy Flags = Outs[i].Flags;
2354 // Create frame index.
2355 int32_t Offset = VA.getLocMemOffset()+FPDiff;
2356 uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2357 FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2358 FIN = DAG.getFrameIndex(FI, getPointerTy());
2360 if (Flags.isByVal()) {
2361 // Copy relative to framepointer.
2362 SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2363 if (StackPtr.getNode() == 0)
2364 StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2366 Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2368 MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2372 // Store relative to framepointer.
2373 MemOpChains2.push_back(
2374 DAG.getStore(ArgChain, dl, Arg, FIN,
2375 MachinePointerInfo::getFixedStack(FI),
2381 if (!MemOpChains2.empty())
2382 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2383 &MemOpChains2[0], MemOpChains2.size());
2385 // Copy arguments to their registers.
2386 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2387 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2388 RegsToPass[i].second, InFlag);
2389 InFlag = Chain.getValue(1);
2393 // Store the return address to the appropriate stack slot.
2394 Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2398 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2399 assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2400 // In the 64-bit large code model, we have to make all calls
2401 // through a register, since the call instruction's 32-bit
2402 // pc-relative offset may not be large enough to hold the whole
2404 } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2405 // If the callee is a GlobalAddress node (quite common, every direct call
2406 // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2409 // We should use extra load for direct calls to dllimported functions in
2411 const GlobalValue *GV = G->getGlobal();
2412 if (!GV->hasDLLImportLinkage()) {
2413 unsigned char OpFlags = 0;
2414 bool ExtraLoad = false;
2415 unsigned WrapperKind = ISD::DELETED_NODE;
2417 // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2418 // external symbols most go through the PLT in PIC mode. If the symbol
2419 // has hidden or protected visibility, or if it is static or local, then
2420 // we don't need to use the PLT - we can directly call it.
2421 if (Subtarget->isTargetELF() &&
2422 getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2423 GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2424 OpFlags = X86II::MO_PLT;
2425 } else if (Subtarget->isPICStyleStubAny() &&
2426 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2427 (!Subtarget->getTargetTriple().isMacOSX() ||
2428 Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2429 // PC-relative references to external symbols should go through $stub,
2430 // unless we're building with the leopard linker or later, which
2431 // automatically synthesizes these stubs.
2432 OpFlags = X86II::MO_DARWIN_STUB;
2433 } else if (Subtarget->isPICStyleRIPRel() &&
2434 isa<Function>(GV) &&
2435 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2436 // If the function is marked as non-lazy, generate an indirect call
2437 // which loads from the GOT directly. This avoids runtime overhead
2438 // at the cost of eager binding (and one extra byte of encoding).
2439 OpFlags = X86II::MO_GOTPCREL;
2440 WrapperKind = X86ISD::WrapperRIP;
2444 Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2445 G->getOffset(), OpFlags);
2447 // Add a wrapper if needed.
2448 if (WrapperKind != ISD::DELETED_NODE)
2449 Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2450 // Add extra indirection if needed.
2452 Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2453 MachinePointerInfo::getGOT(),
2454 false, false, false, 0);
2456 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2457 unsigned char OpFlags = 0;
2459 // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2460 // external symbols should go through the PLT.
2461 if (Subtarget->isTargetELF() &&
2462 getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2463 OpFlags = X86II::MO_PLT;
2464 } else if (Subtarget->isPICStyleStubAny() &&
2465 (!Subtarget->getTargetTriple().isMacOSX() ||
2466 Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2467 // PC-relative references to external symbols should go through $stub,
2468 // unless we're building with the leopard linker or later, which
2469 // automatically synthesizes these stubs.
2470 OpFlags = X86II::MO_DARWIN_STUB;
2473 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2477 // Returns a chain & a flag for retval copy to use.
2478 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2479 SmallVector<SDValue, 8> Ops;
2481 if (!IsSibcall && isTailCall) {
2482 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2483 DAG.getIntPtrConstant(0, true), InFlag);
2484 InFlag = Chain.getValue(1);
2487 Ops.push_back(Chain);
2488 Ops.push_back(Callee);
2491 Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2493 // Add argument registers to the end of the list so that they are known live
2495 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2496 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2497 RegsToPass[i].second.getValueType()));
2499 // Add an implicit use GOT pointer in EBX.
2500 if (!isTailCall && Subtarget->isPICStyleGOT())
2501 Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2503 // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2504 if (Is64Bit && isVarArg && !IsWin64)
2505 Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2507 if (InFlag.getNode())
2508 Ops.push_back(InFlag);
2512 //// If this is the first return lowered for this function, add the regs
2513 //// to the liveout set for the function.
2514 // This isn't right, although it's probably harmless on x86; liveouts
2515 // should be computed from returns not tail calls. Consider a void
2516 // function making a tail call to a function returning int.
2517 return DAG.getNode(X86ISD::TC_RETURN, dl,
2518 NodeTys, &Ops[0], Ops.size());
2521 Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2522 InFlag = Chain.getValue(1);
2524 // Create the CALLSEQ_END node.
2525 unsigned NumBytesForCalleeToPush;
2526 if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2527 getTargetMachine().Options.GuaranteedTailCallOpt))
2528 NumBytesForCalleeToPush = NumBytes; // Callee pops everything
2529 else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2530 // If this is a call to a struct-return function, the callee
2531 // pops the hidden struct pointer, so we have to push it back.
2532 // This is common for Darwin/X86, Linux & Mingw32 targets.
2533 NumBytesForCalleeToPush = 4;
2535 NumBytesForCalleeToPush = 0; // Callee pops nothing.
2537 // Returns a flag for retval copy to use.
2539 Chain = DAG.getCALLSEQ_END(Chain,
2540 DAG.getIntPtrConstant(NumBytes, true),
2541 DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2544 InFlag = Chain.getValue(1);
2547 // Handle result values, copying them out of physregs into vregs that we
2549 return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2550 Ins, dl, DAG, InVals);
2554 //===----------------------------------------------------------------------===//
2555 // Fast Calling Convention (tail call) implementation
2556 //===----------------------------------------------------------------------===//
2558 // Like std call, callee cleans arguments, convention except that ECX is
2559 // reserved for storing the tail called function address. Only 2 registers are
2560 // free for argument passing (inreg). Tail call optimization is performed
2562 // * tailcallopt is enabled
2563 // * caller/callee are fastcc
2564 // On X86_64 architecture with GOT-style position independent code only local
2565 // (within module) calls are supported at the moment.
2566 // To keep the stack aligned according to platform abi the function
2567 // GetAlignedArgumentStackSize ensures that argument delta is always multiples
2568 // of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2569 // If a tail called function callee has more arguments than the caller the
2570 // caller needs to make sure that there is room to move the RETADDR to. This is
2571 // achieved by reserving an area the size of the argument delta right after the
2572 // original REtADDR, but before the saved framepointer or the spilled registers
2573 // e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2585 /// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2586 /// for a 16 byte align requirement.
2588 X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2589 SelectionDAG& DAG) const {
2590 MachineFunction &MF = DAG.getMachineFunction();
2591 const TargetMachine &TM = MF.getTarget();
2592 const TargetFrameLowering &TFI = *TM.getFrameLowering();
2593 unsigned StackAlignment = TFI.getStackAlignment();
2594 uint64_t AlignMask = StackAlignment - 1;
2595 int64_t Offset = StackSize;
2596 uint64_t SlotSize = TD->getPointerSize();
2597 if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2598 // Number smaller than 12 so just add the difference.
2599 Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2601 // Mask out lower bits, add stackalignment once plus the 12 bytes.
2602 Offset = ((~AlignMask) & Offset) + StackAlignment +
2603 (StackAlignment-SlotSize);
2608 /// MatchingStackOffset - Return true if the given stack call argument is
2609 /// already available in the same position (relatively) of the caller's
2610 /// incoming argument stack.
2612 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2613 MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2614 const X86InstrInfo *TII) {
2615 unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2617 if (Arg.getOpcode() == ISD::CopyFromReg) {
2618 unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2619 if (!TargetRegisterInfo::isVirtualRegister(VR))
2621 MachineInstr *Def = MRI->getVRegDef(VR);
2624 if (!Flags.isByVal()) {
2625 if (!TII->isLoadFromStackSlot(Def, FI))
2628 unsigned Opcode = Def->getOpcode();
2629 if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2630 Def->getOperand(1).isFI()) {
2631 FI = Def->getOperand(1).getIndex();
2632 Bytes = Flags.getByValSize();
2636 } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2637 if (Flags.isByVal())
2638 // ByVal argument is passed in as a pointer but it's now being
2639 // dereferenced. e.g.
2640 // define @foo(%struct.X* %A) {
2641 // tail call @bar(%struct.X* byval %A)
2644 SDValue Ptr = Ld->getBasePtr();
2645 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2648 FI = FINode->getIndex();
2649 } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2650 FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2651 FI = FINode->getIndex();
2652 Bytes = Flags.getByValSize();
2656 assert(FI != INT_MAX);
2657 if (!MFI->isFixedObjectIndex(FI))
2659 return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2662 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2663 /// for tail call optimization. Targets which want to do tail call
2664 /// optimization should implement this function.
2666 X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2667 CallingConv::ID CalleeCC,
2669 bool isCalleeStructRet,
2670 bool isCallerStructRet,
2671 const SmallVectorImpl<ISD::OutputArg> &Outs,
2672 const SmallVectorImpl<SDValue> &OutVals,
2673 const SmallVectorImpl<ISD::InputArg> &Ins,
2674 SelectionDAG& DAG) const {
2675 if (!IsTailCallConvention(CalleeCC) &&
2676 CalleeCC != CallingConv::C)
2679 // If -tailcallopt is specified, make fastcc functions tail-callable.
2680 const MachineFunction &MF = DAG.getMachineFunction();
2681 const Function *CallerF = DAG.getMachineFunction().getFunction();
2682 CallingConv::ID CallerCC = CallerF->getCallingConv();
2683 bool CCMatch = CallerCC == CalleeCC;
2685 if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2686 if (IsTailCallConvention(CalleeCC) && CCMatch)
2691 // Look for obvious safe cases to perform tail call optimization that do not
2692 // require ABI changes. This is what gcc calls sibcall.
2694 // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2695 // emit a special epilogue.
2696 if (RegInfo->needsStackRealignment(MF))
2699 // Also avoid sibcall optimization if either caller or callee uses struct
2700 // return semantics.
2701 if (isCalleeStructRet || isCallerStructRet)
2704 // An stdcall caller is expected to clean up its arguments; the callee
2705 // isn't going to do that.
2706 if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2709 // Do not sibcall optimize vararg calls unless all arguments are passed via
2711 if (isVarArg && !Outs.empty()) {
2713 // Optimizing for varargs on Win64 is unlikely to be safe without
2714 // additional testing.
2715 if (Subtarget->isTargetWin64())
2718 SmallVector<CCValAssign, 16> ArgLocs;
2719 CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2720 getTargetMachine(), ArgLocs, *DAG.getContext());
2722 CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2723 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2724 if (!ArgLocs[i].isRegLoc())
2728 // If the call result is in ST0 / ST1, it needs to be popped off the x87
2729 // stack. Therefore, if it's not used by the call it is not safe to optimize
2730 // this into a sibcall.
2731 bool Unused = false;
2732 for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2739 SmallVector<CCValAssign, 16> RVLocs;
2740 CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2741 getTargetMachine(), RVLocs, *DAG.getContext());
2742 CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2743 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2744 CCValAssign &VA = RVLocs[i];
2745 if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2750 // If the calling conventions do not match, then we'd better make sure the
2751 // results are returned in the same way as what the caller expects.
2753 SmallVector<CCValAssign, 16> RVLocs1;
2754 CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2755 getTargetMachine(), RVLocs1, *DAG.getContext());
2756 CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2758 SmallVector<CCValAssign, 16> RVLocs2;
2759 CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2760 getTargetMachine(), RVLocs2, *DAG.getContext());
2761 CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2763 if (RVLocs1.size() != RVLocs2.size())
2765 for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2766 if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2768 if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2770 if (RVLocs1[i].isRegLoc()) {
2771 if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2774 if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2780 // If the callee takes no arguments then go on to check the results of the
2782 if (!Outs.empty()) {
2783 // Check if stack adjustment is needed. For now, do not do this if any
2784 // argument is passed on the stack.
2785 SmallVector<CCValAssign, 16> ArgLocs;
2786 CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2787 getTargetMachine(), ArgLocs, *DAG.getContext());
2789 // Allocate shadow area for Win64
2790 if (Subtarget->isTargetWin64()) {
2791 CCInfo.AllocateStack(32, 8);
2794 CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2795 if (CCInfo.getNextStackOffset()) {
2796 MachineFunction &MF = DAG.getMachineFunction();
2797 if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2800 // Check if the arguments are already laid out in the right way as
2801 // the caller's fixed stack objects.
2802 MachineFrameInfo *MFI = MF.getFrameInfo();
2803 const MachineRegisterInfo *MRI = &MF.getRegInfo();
2804 const X86InstrInfo *TII =
2805 ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2806 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2807 CCValAssign &VA = ArgLocs[i];
2808 SDValue Arg = OutVals[i];
2809 ISD::ArgFlagsTy Flags = Outs[i].Flags;
2810 if (VA.getLocInfo() == CCValAssign::Indirect)
2812 if (!VA.isRegLoc()) {
2813 if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2820 // If the tailcall address may be in a register, then make sure it's
2821 // possible to register allocate for it. In 32-bit, the call address can
2822 // only target EAX, EDX, or ECX since the tail call must be scheduled after
2823 // callee-saved registers are restored. These happen to be the same
2824 // registers used to pass 'inreg' arguments so watch out for those.
2825 if (!Subtarget->is64Bit() &&
2826 !isa<GlobalAddressSDNode>(Callee) &&
2827 !isa<ExternalSymbolSDNode>(Callee)) {
2828 unsigned NumInRegs = 0;
2829 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2830 CCValAssign &VA = ArgLocs[i];
2833 unsigned Reg = VA.getLocReg();
2836 case X86::EAX: case X86::EDX: case X86::ECX:
2837 if (++NumInRegs == 3)
2849 X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2850 return X86::createFastISel(funcInfo);
2854 //===----------------------------------------------------------------------===//
2855 // Other Lowering Hooks
2856 //===----------------------------------------------------------------------===//
2858 static bool MayFoldLoad(SDValue Op) {
2859 return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2862 static bool MayFoldIntoStore(SDValue Op) {
2863 return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2866 static bool isTargetShuffle(unsigned Opcode) {
2868 default: return false;
2869 case X86ISD::PSHUFD:
2870 case X86ISD::PSHUFHW:
2871 case X86ISD::PSHUFLW:
2872 case X86ISD::SHUFPD:
2873 case X86ISD::PALIGN:
2874 case X86ISD::SHUFPS:
2875 case X86ISD::MOVLHPS:
2876 case X86ISD::MOVLHPD:
2877 case X86ISD::MOVHLPS:
2878 case X86ISD::MOVLPS:
2879 case X86ISD::MOVLPD:
2880 case X86ISD::MOVSHDUP:
2881 case X86ISD::MOVSLDUP:
2882 case X86ISD::MOVDDUP:
2885 case X86ISD::UNPCKL:
2886 case X86ISD::UNPCKH:
2887 case X86ISD::VPERMILP:
2888 case X86ISD::VPERM2X128:
2894 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2895 SDValue V1, SelectionDAG &DAG) {
2897 default: llvm_unreachable("Unknown x86 shuffle node");
2898 case X86ISD::MOVSHDUP:
2899 case X86ISD::MOVSLDUP:
2900 case X86ISD::MOVDDUP:
2901 return DAG.getNode(Opc, dl, VT, V1);
2907 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2908 SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2910 default: llvm_unreachable("Unknown x86 shuffle node");
2911 case X86ISD::PSHUFD:
2912 case X86ISD::PSHUFHW:
2913 case X86ISD::PSHUFLW:
2914 case X86ISD::VPERMILP:
2915 return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2921 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2922 SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2924 default: llvm_unreachable("Unknown x86 shuffle node");
2925 case X86ISD::PALIGN:
2926 case X86ISD::SHUFPD:
2927 case X86ISD::SHUFPS:
2928 case X86ISD::VPERM2X128:
2929 return DAG.getNode(Opc, dl, VT, V1, V2,
2930 DAG.getConstant(TargetMask, MVT::i8));
2935 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2936 SDValue V1, SDValue V2, SelectionDAG &DAG) {
2938 default: llvm_unreachable("Unknown x86 shuffle node");
2939 case X86ISD::MOVLHPS:
2940 case X86ISD::MOVLHPD:
2941 case X86ISD::MOVHLPS:
2942 case X86ISD::MOVLPS:
2943 case X86ISD::MOVLPD:
2946 case X86ISD::UNPCKL:
2947 case X86ISD::UNPCKH:
2948 return DAG.getNode(Opc, dl, VT, V1, V2);
2953 SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2954 MachineFunction &MF = DAG.getMachineFunction();
2955 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2956 int ReturnAddrIndex = FuncInfo->getRAIndex();
2958 if (ReturnAddrIndex == 0) {
2959 // Set up a frame object for the return address.
2960 uint64_t SlotSize = TD->getPointerSize();
2961 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2963 FuncInfo->setRAIndex(ReturnAddrIndex);
2966 return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2970 bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2971 bool hasSymbolicDisplacement) {
2972 // Offset should fit into 32 bit immediate field.
2973 if (!isInt<32>(Offset))
2976 // If we don't have a symbolic displacement - we don't have any extra
2978 if (!hasSymbolicDisplacement)
2981 // FIXME: Some tweaks might be needed for medium code model.
2982 if (M != CodeModel::Small && M != CodeModel::Kernel)
2985 // For small code model we assume that latest object is 16MB before end of 31
2986 // bits boundary. We may also accept pretty large negative constants knowing
2987 // that all objects are in the positive half of address space.
2988 if (M == CodeModel::Small && Offset < 16*1024*1024)
2991 // For kernel code model we know that all object resist in the negative half
2992 // of 32bits address space. We may not accept negative offsets, since they may
2993 // be just off and we may accept pretty large positive ones.
2994 if (M == CodeModel::Kernel && Offset > 0)
3000 /// isCalleePop - Determines whether the callee is required to pop its
3001 /// own arguments. Callee pop is necessary to support tail calls.
3002 bool X86::isCalleePop(CallingConv::ID CallingConv,
3003 bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3007 switch (CallingConv) {
3010 case CallingConv::X86_StdCall:
3012 case CallingConv::X86_FastCall:
3014 case CallingConv::X86_ThisCall:
3016 case CallingConv::Fast:
3018 case CallingConv::GHC:
3023 /// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3024 /// specific condition code, returning the condition code and the LHS/RHS of the
3025 /// comparison to make.
3026 static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3027 SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3029 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3030 if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3031 // X > -1 -> X == 0, jump !sign.
3032 RHS = DAG.getConstant(0, RHS.getValueType());
3033 return X86::COND_NS;
3034 } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3035 // X < 0 -> X == 0, jump on sign.
3037 } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3039 RHS = DAG.getConstant(0, RHS.getValueType());
3040 return X86::COND_LE;
3044 switch (SetCCOpcode) {
3045 default: llvm_unreachable("Invalid integer condition!");
3046 case ISD::SETEQ: return X86::COND_E;
3047 case ISD::SETGT: return X86::COND_G;
3048 case ISD::SETGE: return X86::COND_GE;
3049 case ISD::SETLT: return X86::COND_L;
3050 case ISD::SETLE: return X86::COND_LE;
3051 case ISD::SETNE: return X86::COND_NE;
3052 case ISD::SETULT: return X86::COND_B;
3053 case ISD::SETUGT: return X86::COND_A;
3054 case ISD::SETULE: return X86::COND_BE;
3055 case ISD::SETUGE: return X86::COND_AE;
3059 // First determine if it is required or is profitable to flip the operands.
3061 // If LHS is a foldable load, but RHS is not, flip the condition.
3062 if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3063 !ISD::isNON_EXTLoad(RHS.getNode())) {
3064 SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3065 std::swap(LHS, RHS);
3068 switch (SetCCOpcode) {
3074 std::swap(LHS, RHS);
3078 // On a floating point condition, the flags are set as follows:
3080 // 0 | 0 | 0 | X > Y
3081 // 0 | 0 | 1 | X < Y
3082 // 1 | 0 | 0 | X == Y
3083 // 1 | 1 | 1 | unordered
3084 switch (SetCCOpcode) {
3085 default: llvm_unreachable("Condcode should be pre-legalized away");
3087 case ISD::SETEQ: return X86::COND_E;
3088 case ISD::SETOLT: // flipped
3090 case ISD::SETGT: return X86::COND_A;
3091 case ISD::SETOLE: // flipped
3093 case ISD::SETGE: return X86::COND_AE;
3094 case ISD::SETUGT: // flipped
3096 case ISD::SETLT: return X86::COND_B;
3097 case ISD::SETUGE: // flipped
3099 case ISD::SETLE: return X86::COND_BE;
3101 case ISD::SETNE: return X86::COND_NE;
3102 case ISD::SETUO: return X86::COND_P;
3103 case ISD::SETO: return X86::COND_NP;
3105 case ISD::SETUNE: return X86::COND_INVALID;
3109 /// hasFPCMov - is there a floating point cmov for the specific X86 condition
3110 /// code. Current x86 isa includes the following FP cmov instructions:
3111 /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3112 static bool hasFPCMov(unsigned X86CC) {
3128 /// isFPImmLegal - Returns true if the target can instruction select the
3129 /// specified FP immediate natively. If false, the legalizer will
3130 /// materialize the FP immediate as a load from a constant pool.
3131 bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3132 for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3133 if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3139 /// isUndefOrInRange - Return true if Val is undef or if its value falls within
3140 /// the specified range (L, H].
3141 static bool isUndefOrInRange(int Val, int Low, int Hi) {
3142 return (Val < 0) || (Val >= Low && Val < Hi);
3145 /// isUndefOrInRange - Return true if every element in Mask, begining
3146 /// from position Pos and ending in Pos+Size, falls within the specified
3147 /// range (L, L+Pos]. or is undef.
3148 static bool isUndefOrInRange(const SmallVectorImpl<int> &Mask,
3149 int Pos, int Size, int Low, int Hi) {
3150 for (int i = Pos, e = Pos+Size; i != e; ++i)
3151 if (!isUndefOrInRange(Mask[i], Low, Hi))
3156 /// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3157 /// specified value.
3158 static bool isUndefOrEqual(int Val, int CmpVal) {
3159 if (Val < 0 || Val == CmpVal)
3164 /// isSequentialOrUndefInRange - Return true if every element in Mask, begining
3165 /// from position Pos and ending in Pos+Size, falls within the specified
3166 /// sequential range (L, L+Pos]. or is undef.
3167 static bool isSequentialOrUndefInRange(const SmallVectorImpl<int> &Mask,
3168 int Pos, int Size, int Low) {
3169 for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3170 if (!isUndefOrEqual(Mask[i], Low))
3175 /// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3176 /// is suitable for input to PSHUFD or PSHUFW. That is, it doesn't reference
3177 /// the second operand.
3178 static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3179 if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3180 return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3181 if (VT == MVT::v2f64 || VT == MVT::v2i64)
3182 return (Mask[0] < 2 && Mask[1] < 2);
3186 bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
3187 SmallVector<int, 8> M;
3189 return ::isPSHUFDMask(M, N->getValueType(0));
3192 /// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3193 /// is suitable for input to PSHUFHW.
3194 static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3195 if (VT != MVT::v8i16)
3198 // Lower quadword copied in order or undef.
3199 for (int i = 0; i != 4; ++i)
3200 if (Mask[i] >= 0 && Mask[i] != i)
3203 // Upper quadword shuffled.
3204 for (int i = 4; i != 8; ++i)
3205 if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3211 bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
3212 SmallVector<int, 8> M;
3214 return ::isPSHUFHWMask(M, N->getValueType(0));
3217 /// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3218 /// is suitable for input to PSHUFLW.
3219 static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3220 if (VT != MVT::v8i16)
3223 // Upper quadword copied in order.
3224 for (int i = 4; i != 8; ++i)
3225 if (Mask[i] >= 0 && Mask[i] != i)
3228 // Lower quadword shuffled.
3229 for (int i = 0; i != 4; ++i)
3236 bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
3237 SmallVector<int, 8> M;
3239 return ::isPSHUFLWMask(M, N->getValueType(0));
3242 /// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3243 /// is suitable for input to PALIGNR.
3244 static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
3245 bool hasSSSE3OrAVX) {
3246 int i, e = VT.getVectorNumElements();
3247 if (VT.getSizeInBits() != 128)
3250 // Do not handle v2i64 / v2f64 shuffles with palignr.
3251 if (e < 4 || !hasSSSE3OrAVX)
3254 for (i = 0; i != e; ++i)
3258 // All undef, not a palignr.
3262 // Make sure we're shifting in the right direction.
3266 int s = Mask[i] - i;
3268 // Check the rest of the elements to see if they are consecutive.
3269 for (++i; i != e; ++i) {
3271 if (m >= 0 && m != s+i)
3277 /// isVSHUFPYMask - Return true if the specified VECTOR_SHUFFLE operand
3278 /// specifies a shuffle of elements that is suitable for input to 256-bit
3280 static bool isVSHUFPYMask(const SmallVectorImpl<int> &Mask, EVT VT,
3281 bool HasAVX, bool Commuted = false) {
3282 int NumElems = VT.getVectorNumElements();
3284 if (!HasAVX || VT.getSizeInBits() != 256)
3287 if (NumElems != 4 && NumElems != 8)
3290 // VSHUFPSY divides the resulting vector into 4 chunks.
3291 // The sources are also splitted into 4 chunks, and each destination
3292 // chunk must come from a different source chunk.
3294 // SRC1 => X7 X6 X5 X4 X3 X2 X1 X0
3295 // SRC2 => Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y9
3297 // DST => Y7..Y4, Y7..Y4, X7..X4, X7..X4,
3298 // Y3..Y0, Y3..Y0, X3..X0, X3..X0
3300 // VSHUFPDY divides the resulting vector into 4 chunks.
3301 // The sources are also splitted into 4 chunks, and each destination
3302 // chunk must come from a different source chunk.
3304 // SRC1 => X3 X2 X1 X0
3305 // SRC2 => Y3 Y2 Y1 Y0
3307 // DST => Y3..Y2, X3..X2, Y1..Y0, X1..X0
3309 unsigned QuarterSize = NumElems/4;
3310 unsigned HalfSize = QuarterSize*2;
3311 for (unsigned l = 0; l != 2; ++l) {
3312 unsigned LaneStart = l*HalfSize;
3313 for (unsigned s = 0; s != 2; ++s) {
3314 unsigned QuarterStart = s*QuarterSize;
3315 unsigned Src = (Commuted) ? (1-s) : s;
3316 unsigned SrcStart = Src*NumElems + LaneStart;
3317 for (unsigned i = 0; i != QuarterSize; ++i) {
3318 int Idx = Mask[i+QuarterStart+LaneStart];
3319 if (!isUndefOrInRange(Idx, SrcStart, SrcStart+HalfSize))
3321 // For VSHUFPSY, the mask of the second half must be the same as the
3322 // first but with the appropriate offsets. This works in the same way as
3323 // VPERMILPS works with masks.
3324 if (NumElems == 4 || l == 0 || Mask[i+QuarterStart] < 0)
3326 if (!isUndefOrEqual(Idx, Mask[i+QuarterStart]+HalfSize))
3335 /// getShuffleVSHUFPYImmediate - Return the appropriate immediate to shuffle
3336 /// the specified VECTOR_MASK mask with VSHUFPSY/VSHUFPDY instructions.
3337 static unsigned getShuffleVSHUFPYImmediate(SDNode *N) {
3338 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3339 EVT VT = SVOp->getValueType(0);
3340 int NumElems = VT.getVectorNumElements();
3342 assert(VT.getSizeInBits() == 256 && "Only supports 256-bit types");
3343 assert((NumElems == 4 || NumElems == 8) && "Only supports v4 and v8 types");
3345 int HalfSize = NumElems/2;
3346 unsigned Mul = (NumElems == 8) ? 2 : 1;
3348 for (int i = 0; i != NumElems; ++i) {
3349 int Elt = SVOp->getMaskElt(i);
3354 // For VSHUFPSY, the mask of the first half must be equal to the second one.
3355 if (NumElems == 8) Shamt %= HalfSize;
3356 Mask |= Elt << (Shamt*Mul);
3362 /// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3363 /// the two vector operands have swapped position.
3364 static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3365 unsigned NumElems) {
3366 for (unsigned i = 0; i != NumElems; ++i) {
3370 else if (idx < (int)NumElems)
3371 Mask[i] = idx + NumElems;
3373 Mask[i] = idx - NumElems;
3377 /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3378 /// specifies a shuffle of elements that is suitable for input to 128-bit
3379 /// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3380 /// reverse of what x86 shuffles want.
3381 static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT,
3382 bool Commuted = false) {
3383 unsigned NumElems = VT.getVectorNumElements();
3385 if (VT.getSizeInBits() != 128)
3388 if (NumElems != 2 && NumElems != 4)
3391 unsigned Half = NumElems / 2;
3392 unsigned SrcStart = Commuted ? NumElems : 0;
3393 for (unsigned i = 0; i != Half; ++i)
3394 if (!isUndefOrInRange(Mask[i], SrcStart, SrcStart+NumElems))
3396 SrcStart = Commuted ? 0 : NumElems;
3397 for (unsigned i = Half; i != NumElems; ++i)
3398 if (!isUndefOrInRange(Mask[i], SrcStart, SrcStart+NumElems))
3404 bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
3405 SmallVector<int, 8> M;
3407 return ::isSHUFPMask(M, N->getValueType(0));
3410 /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3411 /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3412 bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3413 EVT VT = N->getValueType(0);
3414 unsigned NumElems = VT.getVectorNumElements();
3416 if (VT.getSizeInBits() != 128)
3422 // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3423 return isUndefOrEqual(N->getMaskElt(0), 6) &&
3424 isUndefOrEqual(N->getMaskElt(1), 7) &&
3425 isUndefOrEqual(N->getMaskElt(2), 2) &&
3426 isUndefOrEqual(N->getMaskElt(3), 3);
3429 /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3430 /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3432 bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3433 EVT VT = N->getValueType(0);
3434 unsigned NumElems = VT.getVectorNumElements();
3436 if (VT.getSizeInBits() != 128)
3442 return isUndefOrEqual(N->getMaskElt(0), 2) &&
3443 isUndefOrEqual(N->getMaskElt(1), 3) &&
3444 isUndefOrEqual(N->getMaskElt(2), 2) &&
3445 isUndefOrEqual(N->getMaskElt(3), 3);
3448 /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3449 /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3450 bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3451 EVT VT = N->getValueType(0);
3453 if (VT.getSizeInBits() != 128)
3456 unsigned NumElems = N->getValueType(0).getVectorNumElements();
3458 if (NumElems != 2 && NumElems != 4)
3461 for (unsigned i = 0; i < NumElems/2; ++i)
3462 if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3465 for (unsigned i = NumElems/2; i < NumElems; ++i)
3466 if (!isUndefOrEqual(N->getMaskElt(i), i))
3472 /// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3473 /// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3474 bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3475 unsigned NumElems = N->getValueType(0).getVectorNumElements();
3477 if ((NumElems != 2 && NumElems != 4)
3478 || N->getValueType(0).getSizeInBits() > 128)
3481 for (unsigned i = 0; i < NumElems/2; ++i)
3482 if (!isUndefOrEqual(N->getMaskElt(i), i))
3485 for (unsigned i = 0; i < NumElems/2; ++i)
3486 if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3492 /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3493 /// specifies a shuffle of elements that is suitable for input to UNPCKL.
3494 static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3495 bool HasAVX2, bool V2IsSplat = false) {
3496 unsigned NumElts = VT.getVectorNumElements();
3498 assert((VT.is128BitVector() || VT.is256BitVector()) &&
3499 "Unsupported vector type for unpckh");
3501 if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3502 (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3505 // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3506 // independently on 128-bit lanes.
3507 unsigned NumLanes = VT.getSizeInBits()/128;
3508 unsigned NumLaneElts = NumElts/NumLanes;
3510 for (unsigned l = 0; l != NumLanes; ++l) {
3511 for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3512 i != (l+1)*NumLaneElts;
3515 int BitI1 = Mask[i+1];
3516 if (!isUndefOrEqual(BitI, j))
3519 if (!isUndefOrEqual(BitI1, NumElts))
3522 if (!isUndefOrEqual(BitI1, j + NumElts))
3531 bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool HasAVX2, bool V2IsSplat) {
3532 SmallVector<int, 8> M;
3534 return ::isUNPCKLMask(M, N->getValueType(0), HasAVX2, V2IsSplat);
3537 /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3538 /// specifies a shuffle of elements that is suitable for input to UNPCKH.
3539 static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3540 bool HasAVX2, bool V2IsSplat = false) {
3541 unsigned NumElts = VT.getVectorNumElements();
3543 assert((VT.is128BitVector() || VT.is256BitVector()) &&
3544 "Unsupported vector type for unpckh");
3546 if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3547 (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3550 // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3551 // independently on 128-bit lanes.
3552 unsigned NumLanes = VT.getSizeInBits()/128;
3553 unsigned NumLaneElts = NumElts/NumLanes;
3555 for (unsigned l = 0; l != NumLanes; ++l) {
3556 for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3557 i != (l+1)*NumLaneElts; i += 2, ++j) {
3559 int BitI1 = Mask[i+1];
3560 if (!isUndefOrEqual(BitI, j))
3563 if (isUndefOrEqual(BitI1, NumElts))
3566 if (!isUndefOrEqual(BitI1, j+NumElts))
3574 bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool HasAVX2, bool V2IsSplat) {
3575 SmallVector<int, 8> M;
3577 return ::isUNPCKHMask(M, N->getValueType(0), HasAVX2, V2IsSplat);
3580 /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3581 /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3583 static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT,
3585 unsigned NumElts = VT.getVectorNumElements();
3587 assert((VT.is128BitVector() || VT.is256BitVector()) &&
3588 "Unsupported vector type for unpckh");
3590 if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3591 (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3594 // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3595 // FIXME: Need a better way to get rid of this, there's no latency difference
3596 // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3597 // the former later. We should also remove the "_undef" special mask.
3598 if (NumElts == 4 && VT.getSizeInBits() == 256)
3601 // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3602 // independently on 128-bit lanes.
3603 unsigned NumLanes = VT.getSizeInBits()/128;
3604 unsigned NumLaneElts = NumElts/NumLanes;
3606 for (unsigned l = 0; l != NumLanes; ++l) {
3607 for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3608 i != (l+1)*NumLaneElts;
3611 int BitI1 = Mask[i+1];
3613 if (!isUndefOrEqual(BitI, j))
3615 if (!isUndefOrEqual(BitI1, j))
3623 bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N, bool HasAVX2) {
3624 SmallVector<int, 8> M;
3626 return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0), HasAVX2);
3629 /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3630 /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3632 static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT,
3634 unsigned NumElts = VT.getVectorNumElements();
3636 assert((VT.is128BitVector() || VT.is256BitVector()) &&
3637 "Unsupported vector type for unpckh");
3639 if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3640 (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3643 // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3644 // independently on 128-bit lanes.
3645 unsigned NumLanes = VT.getSizeInBits()/128;
3646 unsigned NumLaneElts = NumElts/NumLanes;
3648 for (unsigned l = 0; l != NumLanes; ++l) {
3649 for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3650 i != (l+1)*NumLaneElts; i += 2, ++j) {
3652 int BitI1 = Mask[i+1];
3653 if (!isUndefOrEqual(BitI, j))
3655 if (!isUndefOrEqual(BitI1, j))
3662 bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N, bool HasAVX2) {
3663 SmallVector<int, 8> M;
3665 return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0), HasAVX2);
3668 /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3669 /// specifies a shuffle of elements that is suitable for input to MOVSS,
3670 /// MOVSD, and MOVD, i.e. setting the lowest element.
3671 static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3672 if (VT.getVectorElementType().getSizeInBits() < 32)
3674 if (VT.getSizeInBits() == 256)
3677 int NumElts = VT.getVectorNumElements();
3679 if (!isUndefOrEqual(Mask[0], NumElts))
3682 for (int i = 1; i < NumElts; ++i)
3683 if (!isUndefOrEqual(Mask[i], i))
3689 bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3690 SmallVector<int, 8> M;
3692 return ::isMOVLMask(M, N->getValueType(0));
3695 /// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3696 /// as permutations between 128-bit chunks or halves. As an example: this
3698 /// vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3699 /// The first half comes from the second half of V1 and the second half from the
3700 /// the second half of V2.
3701 static bool isVPERM2X128Mask(const SmallVectorImpl<int> &Mask, EVT VT,
3703 if (!HasAVX || VT.getSizeInBits() != 256)
3706 // The shuffle result is divided into half A and half B. In total the two
3707 // sources have 4 halves, namely: C, D, E, F. The final values of A and
3708 // B must come from C, D, E or F.
3709 int HalfSize = VT.getVectorNumElements()/2;
3710 bool MatchA = false, MatchB = false;
3712 // Check if A comes from one of C, D, E, F.
3713 for (int Half = 0; Half < 4; ++Half) {
3714 if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3720 // Check if B comes from one of C, D, E, F.
3721 for (int Half = 0; Half < 4; ++Half) {
3722 if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3728 return MatchA && MatchB;
3731 /// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3732 /// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3733 static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3734 EVT VT = SVOp->getValueType(0);
3736 int HalfSize = VT.getVectorNumElements()/2;
3738 int FstHalf = 0, SndHalf = 0;
3739 for (int i = 0; i < HalfSize; ++i) {
3740 if (SVOp->getMaskElt(i) > 0) {
3741 FstHalf = SVOp->getMaskElt(i)/HalfSize;
3745 for (int i = HalfSize; i < HalfSize*2; ++i) {
3746 if (SVOp->getMaskElt(i) > 0) {
3747 SndHalf = SVOp->getMaskElt(i)/HalfSize;
3752 return (FstHalf | (SndHalf << 4));
3755 /// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3756 /// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3757 /// Note that VPERMIL mask matching is different depending whether theunderlying
3758 /// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3759 /// to the same elements of the low, but to the higher half of the source.
3760 /// In VPERMILPD the two lanes could be shuffled independently of each other
3761 /// with the same restriction that lanes can't be crossed.
3762 static bool isVPERMILPMask(const SmallVectorImpl<int> &Mask, EVT VT,
3764 int NumElts = VT.getVectorNumElements();
3765 int NumLanes = VT.getSizeInBits()/128;
3770 // Only match 256-bit with 32/64-bit types
3771 if (VT.getSizeInBits() != 256 || (NumElts != 4 && NumElts != 8))
3774 int LaneSize = NumElts/NumLanes;
3775 for (int l = 0; l != NumLanes; ++l) {
3776 int LaneStart = l*LaneSize;
3777 for (int i = 0; i != LaneSize; ++i) {
3778 if (!isUndefOrInRange(Mask[i+LaneStart], LaneStart, LaneStart+LaneSize))
3780 if (NumElts == 4 || l == 0)
3782 // VPERMILPS handling
3785 if (!isUndefOrEqual(Mask[i+LaneStart], Mask[i]+LaneSize))
3793 /// getShuffleVPERMILPImmediate - Return the appropriate immediate to shuffle
3794 /// the specified VECTOR_MASK mask with VPERMILPS/D* instructions.
3795 static unsigned getShuffleVPERMILPImmediate(ShuffleVectorSDNode *SVOp) {
3796 EVT VT = SVOp->getValueType(0);
3798 int NumElts = VT.getVectorNumElements();
3799 int NumLanes = VT.getSizeInBits()/128;
3800 int LaneSize = NumElts/NumLanes;
3802 // Although the mask is equal for both lanes do it twice to get the cases
3803 // where a mask will match because the same mask element is undef on the
3804 // first half but valid on the second. This would get pathological cases
3805 // such as: shuffle <u, 0, 1, 2, 4, 4, 5, 6>, which is completely valid.
3806 unsigned Shift = (LaneSize == 4) ? 2 : 1;
3808 for (int i = 0; i != NumElts; ++i) {
3809 int MaskElt = SVOp->getMaskElt(i);
3812 MaskElt %= LaneSize;
3814 // VPERMILPSY, the mask of the first half must be equal to the second one
3815 if (NumElts == 8) Shamt %= LaneSize;
3816 Mask |= MaskElt << (Shamt*Shift);
3822 /// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3823 /// of what x86 movss want. X86 movs requires the lowest element to be lowest
3824 /// element of vector 2 and the other elements to come from vector 1 in order.
3825 static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3826 bool V2IsSplat = false, bool V2IsUndef = false) {
3827 int NumOps = VT.getVectorNumElements();
3828 if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3831 if (!isUndefOrEqual(Mask[0], 0))
3834 for (int i = 1; i < NumOps; ++i)
3835 if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3836 (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3837 (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3843 static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3844 bool V2IsUndef = false) {
3845 SmallVector<int, 8> M;
3847 return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3850 /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3851 /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3852 /// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3853 bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N,
3854 const X86Subtarget *Subtarget) {
3855 if (!Subtarget->hasSSE3orAVX())
3858 // The second vector must be undef
3859 if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3862 EVT VT = N->getValueType(0);
3863 unsigned NumElems = VT.getVectorNumElements();
3865 if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3866 (VT.getSizeInBits() == 256 && NumElems != 8))
3869 // "i+1" is the value the indexed mask element must have
3870 for (unsigned i = 0; i < NumElems; i += 2)
3871 if (!isUndefOrEqual(N->getMaskElt(i), i+1) ||
3872 !isUndefOrEqual(N->getMaskElt(i+1), i+1))
3878 /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3879 /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3880 /// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3881 bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N,
3882 const X86Subtarget *Subtarget) {
3883 if (!Subtarget->hasSSE3orAVX())
3886 // The second vector must be undef
3887 if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3890 EVT VT = N->getValueType(0);
3891 unsigned NumElems = VT.getVectorNumElements();
3893 if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3894 (VT.getSizeInBits() == 256 && NumElems != 8))
3897 // "i" is the value the indexed mask element must have
3898 for (unsigned i = 0; i < NumElems; i += 2)
3899 if (!isUndefOrEqual(N->getMaskElt(i), i) ||
3900 !isUndefOrEqual(N->getMaskElt(i+1), i))
3906 /// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3907 /// specifies a shuffle of elements that is suitable for input to 256-bit
3908 /// version of MOVDDUP.
3909 static bool isMOVDDUPYMask(const SmallVectorImpl<int> &Mask, EVT VT,
3911 int NumElts = VT.getVectorNumElements();
3913 if (!HasAVX || VT.getSizeInBits() != 256 || NumElts != 4)
3916 for (int i = 0; i != NumElts/2; ++i)
3917 if (!isUndefOrEqual(Mask[i], 0))
3919 for (int i = NumElts/2; i != NumElts; ++i)
3920 if (!isUndefOrEqual(Mask[i], NumElts/2))
3925 /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3926 /// specifies a shuffle of elements that is suitable for input to 128-bit
3927 /// version of MOVDDUP.
3928 bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3929 EVT VT = N->getValueType(0);
3931 if (VT.getSizeInBits() != 128)
3934 int e = VT.getVectorNumElements() / 2;
3935 for (int i = 0; i < e; ++i)
3936 if (!isUndefOrEqual(N->getMaskElt(i), i))
3938 for (int i = 0; i < e; ++i)
3939 if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3944 /// isVEXTRACTF128Index - Return true if the specified
3945 /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3946 /// suitable for input to VEXTRACTF128.
3947 bool X86::isVEXTRACTF128Index(SDNode *N) {
3948 if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3951 // The index should be aligned on a 128-bit boundary.
3953 cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3955 unsigned VL = N->getValueType(0).getVectorNumElements();
3956 unsigned VBits = N->getValueType(0).getSizeInBits();
3957 unsigned ElSize = VBits / VL;
3958 bool Result = (Index * ElSize) % 128 == 0;
3963 /// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3964 /// operand specifies a subvector insert that is suitable for input to
3966 bool X86::isVINSERTF128Index(SDNode *N) {
3967 if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3970 // The index should be aligned on a 128-bit boundary.
3972 cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3974 unsigned VL = N->getValueType(0).getVectorNumElements();
3975 unsigned VBits = N->getValueType(0).getSizeInBits();
3976 unsigned ElSize = VBits / VL;
3977 bool Result = (Index * ElSize) % 128 == 0;
3982 /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3983 /// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3984 unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3985 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3986 int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3988 unsigned Shift = (NumOperands == 4) ? 2 : 1;
3990 for (int i = 0; i < NumOperands; ++i) {
3991 int Val = SVOp->getMaskElt(NumOperands-i-1);
3992 if (Val < 0) Val = 0;
3993 if (Val >= NumOperands) Val -= NumOperands;
3995 if (i != NumOperands - 1)
4001 /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
4002 /// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
4003 unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
4004 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4006 // 8 nodes, but we only care about the last 4.
4007 for (unsigned i = 7; i >= 4; --i) {
4008 int Val = SVOp->getMaskElt(i);
4017 /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
4018 /// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
4019 unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
4020 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4022 // 8 nodes, but we only care about the first 4.
4023 for (int i = 3; i >= 0; --i) {
4024 int Val = SVOp->getMaskElt(i);
4033 /// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4034 /// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4035 static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
4036 EVT VT = SVOp->getValueType(0);
4037 unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
4041 for (i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
4042 Val = SVOp->getMaskElt(i);
4046 assert(Val - i > 0 && "PALIGNR imm should be positive");
4047 return (Val - i) * EltSize;
4050 /// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4051 /// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4053 unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4054 if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4055 llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4058 cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4060 EVT VecVT = N->getOperand(0).getValueType();
4061 EVT ElVT = VecVT.getVectorElementType();
4063 unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4064 return Index / NumElemsPerChunk;
4067 /// getInsertVINSERTF128Immediate - Return the appropriate immediate
4068 /// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4070 unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4071 if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4072 llvm_unreachable("Illegal insert subvector for VINSERTF128");
4075 cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4077 EVT VecVT = N->getValueType(0);
4078 EVT ElVT = VecVT.getVectorElementType();
4080 unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4081 return Index / NumElemsPerChunk;
4084 /// isZeroNode - Returns true if Elt is a constant zero or a floating point
4086 bool X86::isZeroNode(SDValue Elt) {
4087 return ((isa<ConstantSDNode>(Elt) &&
4088 cast<ConstantSDNode>(Elt)->isNullValue()) ||
4089 (isa<ConstantFPSDNode>(Elt) &&
4090 cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4093 /// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4094 /// their permute mask.
4095 static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4096 SelectionDAG &DAG) {
4097 EVT VT = SVOp->getValueType(0);
4098 unsigned NumElems = VT.getVectorNumElements();
4099 SmallVector<int, 8> MaskVec;
4101 for (unsigned i = 0; i != NumElems; ++i) {
4102 int idx = SVOp->getMaskElt(i);
4104 MaskVec.push_back(idx);
4105 else if (idx < (int)NumElems)
4106 MaskVec.push_back(idx + NumElems);
4108 MaskVec.push_back(idx - NumElems);
4110 return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4111 SVOp->getOperand(0), &MaskVec[0]);
4114 /// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4115 /// match movhlps. The lower half elements should come from upper half of
4116 /// V1 (and in order), and the upper half elements should come from the upper
4117 /// half of V2 (and in order).
4118 static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
4119 EVT VT = Op->getValueType(0);
4120 if (VT.getSizeInBits() != 128)
4122 if (VT.getVectorNumElements() != 4)
4124 for (unsigned i = 0, e = 2; i != e; ++i)
4125 if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
4127 for (unsigned i = 2; i != 4; ++i)
4128 if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
4133 /// isScalarLoadToVector - Returns true if the node is a scalar load that
4134 /// is promoted to a vector. It also returns the LoadSDNode by reference if
4136 static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4137 if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4139 N = N->getOperand(0).getNode();
4140 if (!ISD::isNON_EXTLoad(N))
4143 *LD = cast<LoadSDNode>(N);
4147 // Test whether the given value is a vector value which will be legalized
4149 static bool WillBeConstantPoolLoad(SDNode *N) {
4150 if (N->getOpcode() != ISD::BUILD_VECTOR)
4153 // Check for any non-constant elements.
4154 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4155 switch (N->getOperand(i).getNode()->getOpcode()) {
4157 case ISD::ConstantFP:
4164 // Vectors of all-zeros and all-ones are materialized with special
4165 // instructions rather than being loaded.
4166 return !ISD::isBuildVectorAllZeros(N) &&
4167 !ISD::isBuildVectorAllOnes(N);
4170 /// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4171 /// match movlp{s|d}. The lower half elements should come from lower half of
4172 /// V1 (and in order), and the upper half elements should come from the upper
4173 /// half of V2 (and in order). And since V1 will become the source of the
4174 /// MOVLP, it must be either a vector load or a scalar load to vector.
4175 static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4176 ShuffleVectorSDNode *Op) {
4177 EVT VT = Op->getValueType(0);
4178 if (VT.getSizeInBits() != 128)
4181 if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4183 // Is V2 is a vector load, don't do this transformation. We will try to use
4184 // load folding shufps op.
4185 if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4188 unsigned NumElems = VT.getVectorNumElements();
4190 if (NumElems != 2 && NumElems != 4)
4192 for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4193 if (!isUndefOrEqual(Op->getMaskElt(i), i))
4195 for (unsigned i = NumElems/2; i != NumElems; ++i)
4196 if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
4201 /// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4203 static bool isSplatVector(SDNode *N) {
4204 if (N->getOpcode() != ISD::BUILD_VECTOR)
4207 SDValue SplatValue = N->getOperand(0);
4208 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4209 if (N->getOperand(i) != SplatValue)
4214 /// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4215 /// to an zero vector.
4216 /// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4217 static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4218 SDValue V1 = N->getOperand(0);
4219 SDValue V2 = N->getOperand(1);
4220 unsigned NumElems = N->getValueType(0).getVectorNumElements();
4221 for (unsigned i = 0; i != NumElems; ++i) {
4222 int Idx = N->getMaskElt(i);
4223 if (Idx >= (int)NumElems) {
4224 unsigned Opc = V2.getOpcode();
4225 if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4227 if (Opc != ISD::BUILD_VECTOR ||
4228 !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4230 } else if (Idx >= 0) {
4231 unsigned Opc = V1.getOpcode();
4232 if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4234 if (Opc != ISD::BUILD_VECTOR ||
4235 !X86::isZeroNode(V1.getOperand(Idx)))
4242 /// getZeroVector - Returns a vector of specified type with all zero elements.
4244 static SDValue getZeroVector(EVT VT, bool HasXMMInt, SelectionDAG &DAG,
4246 assert(VT.isVector() && "Expected a vector type");
4248 // Always build SSE zero vectors as <4 x i32> bitcasted
4249 // to their dest type. This ensures they get CSE'd.
4251 if (VT.getSizeInBits() == 128) { // SSE
4252 if (HasXMMInt) { // SSE2
4253 SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4254 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4256 SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4257 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4259 } else if (VT.getSizeInBits() == 256) { // AVX
4260 // 256-bit logic and arithmetic instructions in AVX are
4261 // all floating-point, no support for integer ops. Default
4262 // to emitting fp zeroed vectors then.
4263 SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4264 SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4265 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4267 return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4270 /// getOnesVector - Returns a vector of specified type with all bits set.
4271 /// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4272 /// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4273 /// Then bitcast to their original type, ensuring they get CSE'd.
4274 static SDValue getOnesVector(EVT VT, bool HasAVX2, SelectionDAG &DAG,
4276 assert(VT.isVector() && "Expected a vector type");
4277 assert((VT.is128BitVector() || VT.is256BitVector())
4278 && "Expected a 128-bit or 256-bit vector type");
4280 SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4282 if (VT.getSizeInBits() == 256) {
4283 if (HasAVX2) { // AVX2
4284 SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4285 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4287 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4288 SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
4289 Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
4290 Vec = Insert128BitVector(InsV, Vec,
4291 DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
4294 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4297 return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4300 /// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4301 /// that point to V2 points to its first element.
4302 static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4303 EVT VT = SVOp->getValueType(0);
4304 unsigned NumElems = VT.getVectorNumElements();
4306 bool Changed = false;
4307 SmallVector<int, 8> MaskVec;
4308 SVOp->getMask(MaskVec);
4310 for (unsigned i = 0; i != NumElems; ++i) {
4311 if (MaskVec[i] > (int)NumElems) {
4312 MaskVec[i] = NumElems;
4317 return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
4318 SVOp->getOperand(1), &MaskVec[0]);
4319 return SDValue(SVOp, 0);
4322 /// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4323 /// operation of specified width.
4324 static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4326 unsigned NumElems = VT.getVectorNumElements();
4327 SmallVector<int, 8> Mask;
4328 Mask.push_back(NumElems);
4329 for (unsigned i = 1; i != NumElems; ++i)
4331 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4334 /// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4335 static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4337 unsigned NumElems = VT.getVectorNumElements();
4338 SmallVector<int, 8> Mask;
4339 for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4341 Mask.push_back(i + NumElems);
4343 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4346 /// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4347 static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4349 unsigned NumElems = VT.getVectorNumElements();
4350 unsigned Half = NumElems/2;
4351 SmallVector<int, 8> Mask;
4352 for (unsigned i = 0; i != Half; ++i) {
4353 Mask.push_back(i + Half);
4354 Mask.push_back(i + NumElems + Half);
4356 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4359 // PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4360 // a generic shuffle instruction because the target has no such instructions.
4361 // Generate shuffles which repeat i16 and i8 several times until they can be
4362 // represented by v4f32 and then be manipulated by target suported shuffles.
4363 static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4364 EVT VT = V.getValueType();
4365 int NumElems = VT.getVectorNumElements();
4366 DebugLoc dl = V.getDebugLoc();
4368 while (NumElems > 4) {
4369 if (EltNo < NumElems/2) {
4370 V = getUnpackl(DAG, dl, VT, V, V);
4372 V = getUnpackh(DAG, dl, VT, V, V);
4373 EltNo -= NumElems/2;
4380 /// getLegalSplat - Generate a legal splat with supported x86 shuffles
4381 static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4382 EVT VT = V.getValueType();
4383 DebugLoc dl = V.getDebugLoc();
4384 assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
4385 && "Vector size not supported");
4387 if (VT.getSizeInBits() == 128) {
4388 V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4389 int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4390 V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4393 // To use VPERMILPS to splat scalars, the second half of indicies must
4394 // refer to the higher part, which is a duplication of the lower one,
4395 // because VPERMILPS can only handle in-lane permutations.
4396 int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4397 EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4399 V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4400 V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4404 return DAG.getNode(ISD::BITCAST, dl, VT, V);
4407 /// PromoteSplat - Splat is promoted to target supported vector shuffles.
4408 static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4409 EVT SrcVT = SV->getValueType(0);
4410 SDValue V1 = SV->getOperand(0);
4411 DebugLoc dl = SV->getDebugLoc();
4413 int EltNo = SV->getSplatIndex();
4414 int NumElems = SrcVT.getVectorNumElements();
4415 unsigned Size = SrcVT.getSizeInBits();
4417 assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4418 "Unknown how to promote splat for type");
4420 // Extract the 128-bit part containing the splat element and update
4421 // the splat element index when it refers to the higher register.
4423 unsigned Idx = (EltNo > NumElems/2) ? NumElems/2 : 0;
4424 V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
4426 EltNo -= NumElems/2;
4429 // All i16 and i8 vector types can't be used directly by a generic shuffle
4430 // instruction because the target has no such instruction. Generate shuffles
4431 // which repeat i16 and i8 several times until they fit in i32, and then can
4432 // be manipulated by target suported shuffles.
4433 EVT EltVT = SrcVT.getVectorElementType();
4434 if (EltVT == MVT::i8 || EltVT == MVT::i16)
4435 V1 = PromoteSplati8i16(V1, DAG, EltNo);
4437 // Recreate the 256-bit vector and place the same 128-bit vector
4438 // into the low and high part. This is necessary because we want
4439 // to use VPERM* to shuffle the vectors
4441 SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
4442 DAG.getConstant(0, MVT::i32), DAG, dl);
4443 V1 = Insert128BitVector(InsV, V1,
4444 DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4447 return getLegalSplat(DAG, V1, EltNo);
4450 /// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4451 /// vector of zero or undef vector. This produces a shuffle where the low
4452 /// element of V2 is swizzled into the zero/undef vector, landing at element
4453 /// Idx. This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3).
4454 static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4455 bool isZero, bool HasXMMInt,
4456 SelectionDAG &DAG) {
4457 EVT VT = V2.getValueType();
4459 ? getZeroVector(VT, HasXMMInt, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4460 unsigned NumElems = VT.getVectorNumElements();
4461 SmallVector<int, 16> MaskVec;
4462 for (unsigned i = 0; i != NumElems; ++i)
4463 // If this is the insertion idx, put the low elt of V2 here.
4464 MaskVec.push_back(i == Idx ? NumElems : i);
4465 return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4468 /// getShuffleScalarElt - Returns the scalar element that will make up the ith
4469 /// element of the result of the vector shuffle.
4470 static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
4473 return SDValue(); // Limit search depth.
4475 SDValue V = SDValue(N, 0);
4476 EVT VT = V.getValueType();
4477 unsigned Opcode = V.getOpcode();
4479 // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4480 if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4481 Index = SV->getMaskElt(Index);
4484 return DAG.getUNDEF(VT.getVectorElementType());
4486 int NumElems = VT.getVectorNumElements();
4487 SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
4488 return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
4491 // Recurse into target specific vector shuffles to find scalars.
4492 if (isTargetShuffle(Opcode)) {
4493 int NumElems = VT.getVectorNumElements();
4494 SmallVector<unsigned, 16> ShuffleMask;
4498 case X86ISD::SHUFPS:
4499 case X86ISD::SHUFPD:
4500 ImmN = N->getOperand(N->getNumOperands()-1);
4501 DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4504 case X86ISD::UNPCKH:
4505 DecodeUNPCKHMask(VT, ShuffleMask);
4507 case X86ISD::UNPCKL:
4508 DecodeUNPCKLMask(VT, ShuffleMask);
4510 case X86ISD::MOVHLPS:
4511 DecodeMOVHLPSMask(NumElems, ShuffleMask);
4513 case X86ISD::MOVLHPS:
4514 DecodeMOVLHPSMask(NumElems, ShuffleMask);
4516 case X86ISD::PSHUFD:
4517 ImmN = N->getOperand(N->getNumOperands()-1);
4518 DecodePSHUFMask(NumElems,
4519 cast<ConstantSDNode>(ImmN)->getZExtValue(),
4522 case X86ISD::PSHUFHW:
4523 ImmN = N->getOperand(N->getNumOperands()-1);
4524 DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4527 case X86ISD::PSHUFLW:
4528 ImmN = N->getOperand(N->getNumOperands()-1);
4529 DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4533 case X86ISD::MOVSD: {
4534 // The index 0 always comes from the first element of the second source,
4535 // this is why MOVSS and MOVSD are used in the first place. The other
4536 // elements come from the other positions of the first source vector.
4537 unsigned OpNum = (Index == 0) ? 1 : 0;
4538 return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
4541 case X86ISD::VPERMILP:
4542 ImmN = N->getOperand(N->getNumOperands()-1);
4543 DecodeVPERMILPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4546 case X86ISD::VPERM2X128:
4547 ImmN = N->getOperand(N->getNumOperands()-1);
4548 DecodeVPERM2F128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4551 case X86ISD::MOVDDUP:
4552 case X86ISD::MOVLHPD:
4553 case X86ISD::MOVLPD:
4554 case X86ISD::MOVLPS:
4555 case X86ISD::MOVSHDUP:
4556 case X86ISD::MOVSLDUP:
4557 case X86ISD::PALIGN:
4558 return SDValue(); // Not yet implemented.
4560 assert(0 && "unknown target shuffle node");
4564 Index = ShuffleMask[Index];
4566 return DAG.getUNDEF(VT.getVectorElementType());
4568 SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
4569 return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
4573 // Actual nodes that may contain scalar elements
4574 if (Opcode == ISD::BITCAST) {
4575 V = V.getOperand(0);
4576 EVT SrcVT = V.getValueType();
4577 unsigned NumElems = VT.getVectorNumElements();
4579 if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4583 if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4584 return (Index == 0) ? V.getOperand(0)
4585 : DAG.getUNDEF(VT.getVectorElementType());
4587 if (V.getOpcode() == ISD::BUILD_VECTOR)
4588 return V.getOperand(Index);
4593 /// getNumOfConsecutiveZeros - Return the number of elements of a vector
4594 /// shuffle operation which come from a consecutively from a zero. The
4595 /// search can start in two different directions, from left or right.
4597 unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
4598 bool ZerosFromLeft, SelectionDAG &DAG) {
4601 while (i < NumElems) {
4602 unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4603 SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
4604 if (!(Elt.getNode() &&
4605 (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4613 /// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
4614 /// MaskE correspond consecutively to elements from one of the vector operands,
4615 /// starting from its index OpIdx. Also tell OpNum which source vector operand.
4617 bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
4618 int OpIdx, int NumElems, unsigned &OpNum) {
4619 bool SeenV1 = false;
4620 bool SeenV2 = false;
4622 for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
4623 int Idx = SVOp->getMaskElt(i);
4624 // Ignore undef indicies
4633 // Only accept consecutive elements from the same vector
4634 if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4638 OpNum = SeenV1 ? 0 : 1;
4642 /// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4643 /// logical left shift of a vector.
4644 static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4645 bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4646 unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4647 unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4648 false /* check zeros from right */, DAG);
4654 // Considering the elements in the mask that are not consecutive zeros,
4655 // check if they consecutively come from only one of the source vectors.
4657 // V1 = {X, A, B, C} 0
4659 // vector_shuffle V1, V2 <1, 2, 3, X>
4661 if (!isShuffleMaskConsecutive(SVOp,
4662 0, // Mask Start Index
4663 NumElems-NumZeros-1, // Mask End Index
4664 NumZeros, // Where to start looking in the src vector
4665 NumElems, // Number of elements in vector
4666 OpSrc)) // Which source operand ?
4671 ShVal = SVOp->getOperand(OpSrc);
4675 /// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4676 /// logical left shift of a vector.
4677 static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4678 bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4679 unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4680 unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4681 true /* check zeros from left */, DAG);
4687 // Considering the elements in the mask that are not consecutive zeros,
4688 // check if they consecutively come from only one of the source vectors.
4690 // 0 { A, B, X, X } = V2
4692 // vector_shuffle V1, V2 <X, X, 4, 5>
4694 if (!isShuffleMaskConsecutive(SVOp,
4695 NumZeros, // Mask Start Index
4696 NumElems-1, // Mask End Index
4697 0, // Where to start looking in the src vector
4698 NumElems, // Number of elements in vector
4699 OpSrc)) // Which source operand ?
4704 ShVal = SVOp->getOperand(OpSrc);
4708 /// isVectorShift - Returns true if the shuffle can be implemented as a
4709 /// logical left or right shift of a vector.
4710 static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4711 bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4712 // Although the logic below support any bitwidth size, there are no
4713 // shift instructions which handle more than 128-bit vectors.
4714 if (SVOp->getValueType(0).getSizeInBits() > 128)
4717 if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4718 isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4724 /// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4726 static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4727 unsigned NumNonZero, unsigned NumZero,
4729 const TargetLowering &TLI) {
4733 DebugLoc dl = Op.getDebugLoc();
4736 for (unsigned i = 0; i < 16; ++i) {
4737 bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4738 if (ThisIsNonZero && First) {
4740 V = getZeroVector(MVT::v8i16, true, DAG, dl);
4742 V = DAG.getUNDEF(MVT::v8i16);
4747 SDValue ThisElt(0, 0), LastElt(0, 0);
4748 bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4749 if (LastIsNonZero) {
4750 LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4751 MVT::i16, Op.getOperand(i-1));
4753 if (ThisIsNonZero) {
4754 ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4755 ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4756 ThisElt, DAG.getConstant(8, MVT::i8));
4758 ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4762 if (ThisElt.getNode())
4763 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4764 DAG.getIntPtrConstant(i/2));
4768 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4771 /// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4773 static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4774 unsigned NumNonZero, unsigned NumZero,
4776 const TargetLowering &TLI) {
4780 DebugLoc dl = Op.getDebugLoc();
4783 for (unsigned i = 0; i < 8; ++i) {
4784 bool isNonZero = (NonZeros & (1 << i)) != 0;
4788 V = getZeroVector(MVT::v8i16, true, DAG, dl);
4790 V = DAG.getUNDEF(MVT::v8i16);
4793 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4794 MVT::v8i16, V, Op.getOperand(i),
4795 DAG.getIntPtrConstant(i));
4802 /// getVShift - Return a vector logical shift node.
4804 static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4805 unsigned NumBits, SelectionDAG &DAG,
4806 const TargetLowering &TLI, DebugLoc dl) {
4807 assert(VT.getSizeInBits() == 128 && "Unknown type for VShift");
4808 EVT ShVT = MVT::v2i64;
4809 unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
4810 SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4811 return DAG.getNode(ISD::BITCAST, dl, VT,
4812 DAG.getNode(Opc, dl, ShVT, SrcOp,
4813 DAG.getConstant(NumBits,
4814 TLI.getShiftAmountTy(SrcOp.getValueType()))));
4818 X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4819 SelectionDAG &DAG) const {
4821 // Check if the scalar load can be widened into a vector load. And if
4822 // the address is "base + cst" see if the cst can be "absorbed" into
4823 // the shuffle mask.
4824 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4825 SDValue Ptr = LD->getBasePtr();
4826 if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4828 EVT PVT = LD->getValueType(0);
4829 if (PVT != MVT::i32 && PVT != MVT::f32)
4834 if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4835 FI = FINode->getIndex();
4837 } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4838 isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4839 FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4840 Offset = Ptr.getConstantOperandVal(1);
4841 Ptr = Ptr.getOperand(0);
4846 // FIXME: 256-bit vector instructions don't require a strict alignment,
4847 // improve this code to support it better.
4848 unsigned RequiredAlign = VT.getSizeInBits()/8;
4849 SDValue Chain = LD->getChain();
4850 // Make sure the stack object alignment is at least 16 or 32.
4851 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4852 if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4853 if (MFI->isFixedObjectIndex(FI)) {
4854 // Can't change the alignment. FIXME: It's possible to compute
4855 // the exact stack offset and reference FI + adjust offset instead.
4856 // If someone *really* cares about this. That's the way to implement it.
4859 MFI->setObjectAlignment(FI, RequiredAlign);
4863 // (Offset % 16 or 32) must be multiple of 4. Then address is then
4864 // Ptr + (Offset & ~15).
4867 if ((Offset % RequiredAlign) & 3)
4869 int64_t StartOffset = Offset & ~(RequiredAlign-1);
4871 Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4872 Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4874 int EltNo = (Offset - StartOffset) >> 2;
4875 int NumElems = VT.getVectorNumElements();
4877 EVT CanonVT = VT.getSizeInBits() == 128 ? MVT::v4i32 : MVT::v8i32;
4878 EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4879 SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4880 LD->getPointerInfo().getWithOffset(StartOffset),
4881 false, false, false, 0);
4883 // Canonicalize it to a v4i32 or v8i32 shuffle.
4884 SmallVector<int, 8> Mask;
4885 for (int i = 0; i < NumElems; ++i)
4886 Mask.push_back(EltNo);
4888 V1 = DAG.getNode(ISD::BITCAST, dl, CanonVT, V1);
4889 return DAG.getNode(ISD::BITCAST, dl, NVT,
4890 DAG.getVectorShuffle(CanonVT, dl, V1,
4891 DAG.getUNDEF(CanonVT),&Mask[0]));
4897 /// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4898 /// vector of type 'VT', see if the elements can be replaced by a single large
4899 /// load which has the same value as a build_vector whose operands are 'elts'.
4901 /// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4903 /// FIXME: we'd also like to handle the case where the last elements are zero
4904 /// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4905 /// There's even a handy isZeroNode for that purpose.
4906 static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4907 DebugLoc &DL, SelectionDAG &DAG) {
4908 EVT EltVT = VT.getVectorElementType();
4909 unsigned NumElems = Elts.size();
4911 LoadSDNode *LDBase = NULL;
4912 unsigned LastLoadedElt = -1U;
4914 // For each element in the initializer, see if we've found a load or an undef.
4915 // If we don't find an initial load element, or later load elements are
4916 // non-consecutive, bail out.
4917 for (unsigned i = 0; i < NumElems; ++i) {
4918 SDValue Elt = Elts[i];
4920 if (!Elt.getNode() ||
4921 (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4924 if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4926 LDBase = cast<LoadSDNode>(Elt.getNode());
4930 if (Elt.getOpcode() == ISD::UNDEF)
4933 LoadSDNode *LD = cast<LoadSDNode>(Elt);
4934 if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4939 // If we have found an entire vector of loads and undefs, then return a large
4940 // load of the entire vector width starting at the base pointer. If we found
4941 // consecutive loads for the low half, generate a vzext_load node.
4942 if (LastLoadedElt == NumElems - 1) {
4943 if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4944 return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4945 LDBase->getPointerInfo(),
4946 LDBase->isVolatile(), LDBase->isNonTemporal(),
4947 LDBase->isInvariant(), 0);
4948 return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4949 LDBase->getPointerInfo(),
4950 LDBase->isVolatile(), LDBase->isNonTemporal(),
4951 LDBase->isInvariant(), LDBase->getAlignment());
4952 } else if (NumElems == 4 && LastLoadedElt == 1 &&
4953 DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
4954 SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4955 SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4957 DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
4958 LDBase->getPointerInfo(),
4959 LDBase->getAlignment(),
4960 false/*isVolatile*/, true/*ReadMem*/,
4962 return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4967 /// isVectorBroadcast - Check if the node chain is suitable to be xformed to
4968 /// a vbroadcast node. We support two patterns:
4969 /// 1. A splat BUILD_VECTOR which uses a single scalar load.
4970 /// 2. A splat shuffle which uses a scalar_to_vector node which comes from
4972 /// The scalar load node is returned when a pattern is found,
4973 /// or SDValue() otherwise.
4974 static SDValue isVectorBroadcast(SDValue &Op, bool hasAVX2) {
4975 EVT VT = Op.getValueType();
4978 if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
4979 V = V.getOperand(0);
4981 //A suspected load to be broadcasted.
4984 switch (V.getOpcode()) {
4986 // Unknown pattern found.
4989 case ISD::BUILD_VECTOR: {
4990 // The BUILD_VECTOR node must be a splat.
4991 if (!isSplatVector(V.getNode()))
4994 Ld = V.getOperand(0);
4996 // The suspected load node has several users. Make sure that all
4997 // of its users are from the BUILD_VECTOR node.
4998 if (!Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
5003 case ISD::VECTOR_SHUFFLE: {
5004 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5006 // Shuffles must have a splat mask where the first element is
5008 if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
5011 SDValue Sc = Op.getOperand(0);
5012 if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR)
5015 Ld = Sc.getOperand(0);
5017 // The scalar_to_vector node and the suspected
5018 // load node must have exactly one user.
5019 if (!Sc.hasOneUse() || !Ld.hasOneUse())
5025 // The scalar source must be a normal load.
5026 if (!ISD::isNormalLoad(Ld.getNode()))
5029 bool Is256 = VT.getSizeInBits() == 256;
5030 bool Is128 = VT.getSizeInBits() == 128;
5031 unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5034 // VBroadcast to YMM
5035 if (Is256 && (ScalarSize == 8 || ScalarSize == 16 ||
5036 ScalarSize == 32 || ScalarSize == 64 ))
5039 // VBroadcast to XMM
5040 if (Is128 && (ScalarSize == 8 || ScalarSize == 32 ||
5041 ScalarSize == 16 || ScalarSize == 64 ))
5045 // VBroadcast to YMM
5046 if (Is256 && (ScalarSize == 32 || ScalarSize == 64))
5049 // VBroadcast to XMM
5050 if (Is128 && (ScalarSize == 32))
5054 // Unsupported broadcast.
5059 X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5060 DebugLoc dl = Op.getDebugLoc();
5062 EVT VT = Op.getValueType();
5063 EVT ExtVT = VT.getVectorElementType();
5064 unsigned NumElems = Op.getNumOperands();
5066 // Vectors containing all zeros can be matched by pxor and xorps later
5067 if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5068 // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5069 // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5070 if (Op.getValueType() == MVT::v4i32 ||
5071 Op.getValueType() == MVT::v8i32)
5074 return getZeroVector(Op.getValueType(), Subtarget->hasXMMInt(), DAG, dl);
5077 // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5078 // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5079 // vpcmpeqd on 256-bit vectors.
5080 if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5081 if (Op.getValueType() == MVT::v4i32 ||
5082 (Op.getValueType() == MVT::v8i32 && Subtarget->hasAVX2()))
5085 return getOnesVector(Op.getValueType(), Subtarget->hasAVX2(), DAG, dl);
5088 SDValue LD = isVectorBroadcast(Op, Subtarget->hasAVX2());
5089 if (Subtarget->hasAVX() && LD.getNode())
5090 return DAG.getNode(X86ISD::VBROADCAST, dl, VT, LD);
5092 unsigned EVTBits = ExtVT.getSizeInBits();
5094 unsigned NumZero = 0;
5095 unsigned NumNonZero = 0;
5096 unsigned NonZeros = 0;
5097 bool IsAllConstants = true;
5098 SmallSet<SDValue, 8> Values;
5099 for (unsigned i = 0; i < NumElems; ++i) {
5100 SDValue Elt = Op.getOperand(i);
5101 if (Elt.getOpcode() == ISD::UNDEF)
5104 if (Elt.getOpcode() != ISD::Constant &&
5105 Elt.getOpcode() != ISD::ConstantFP)
5106 IsAllConstants = false;
5107 if (X86::isZeroNode(Elt))
5110 NonZeros |= (1 << i);
5115 // All undef vector. Return an UNDEF. All zero vectors were handled above.
5116 if (NumNonZero == 0)
5117 return DAG.getUNDEF(VT);
5119 // Special case for single non-zero, non-undef, element.
5120 if (NumNonZero == 1) {
5121 unsigned Idx = CountTrailingZeros_32(NonZeros);
5122 SDValue Item = Op.getOperand(Idx);
5124 // If this is an insertion of an i64 value on x86-32, and if the top bits of
5125 // the value are obviously zero, truncate the value to i32 and do the
5126 // insertion that way. Only do this if the value is non-constant or if the
5127 // value is a constant being inserted into element 0. It is cheaper to do
5128 // a constant pool load than it is to do a movd + shuffle.
5129 if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5130 (!IsAllConstants || Idx == 0)) {
5131 if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5133 assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5134 EVT VecVT = MVT::v4i32;
5135 unsigned VecElts = 4;
5137 // Truncate the value (which may itself be a constant) to i32, and
5138 // convert it to a vector with movd (S2V+shuffle to zero extend).
5139 Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5140 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5141 Item = getShuffleVectorZeroOrUndef(Item, 0, true,
5142 Subtarget->hasXMMInt(), DAG);
5144 // Now we have our 32-bit value zero extended in the low element of
5145 // a vector. If Idx != 0, swizzle it into place.
5147 SmallVector<int, 4> Mask;
5148 Mask.push_back(Idx);
5149 for (unsigned i = 1; i != VecElts; ++i)
5151 Item = DAG.getVectorShuffle(VecVT, dl, Item,
5152 DAG.getUNDEF(Item.getValueType()),
5155 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item);
5159 // If we have a constant or non-constant insertion into the low element of
5160 // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5161 // the rest of the elements. This will be matched as movd/movq/movss/movsd
5162 // depending on what the source datatype is.
5165 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5166 } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5167 (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5168 if (VT.getSizeInBits() == 256) {
5170 EVT VT128 = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems / 2);
5171 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Item);
5172 SDValue ZeroVec = getZeroVector(VT, true, DAG, dl);
5173 return Insert128BitVector(ZeroVec, Item, DAG.getConstant(0, MVT::i32),
5176 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5177 // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5178 return getShuffleVectorZeroOrUndef(Item, 0, true,Subtarget->hasXMMInt(),
5180 } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5181 Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5182 if (VT.getSizeInBits() == 256) {
5184 EVT VT128 = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems / 2);
5185 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Item);
5186 SDValue ZeroVec = getZeroVector(VT, true, DAG, dl);
5187 return Insert128BitVector(ZeroVec, Item, DAG.getConstant(0, MVT::i32),
5190 assert (VT.getSizeInBits() == 128 || "Expected an SSE value type!");
5191 EVT MiddleVT = MVT::v4i32;
5192 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
5193 Item = getShuffleVectorZeroOrUndef(Item, 0, true,
5194 Subtarget->hasXMMInt(), DAG);
5195 return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5199 // Is it a vector logical left shift?
5200 if (NumElems == 2 && Idx == 1 &&
5201 X86::isZeroNode(Op.getOperand(0)) &&
5202 !X86::isZeroNode(Op.getOperand(1))) {
5203 unsigned NumBits = VT.getSizeInBits();
5204 return getVShift(true, VT,
5205 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5206 VT, Op.getOperand(1)),
5207 NumBits/2, DAG, *this, dl);
5210 if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5213 // Otherwise, if this is a vector with i32 or f32 elements, and the element
5214 // is a non-constant being inserted into an element other than the low one,
5215 // we can't use a constant pool load. Instead, use SCALAR_TO_VECTOR (aka
5216 // movd/movss) to move this into the low element, then shuffle it into
5218 if (EVTBits == 32) {
5219 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5221 // Turn it into a shuffle of zero and zero-extended scalar to vector.
5222 Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
5223 Subtarget->hasXMMInt(), DAG);
5224 SmallVector<int, 8> MaskVec;
5225 for (unsigned i = 0; i < NumElems; i++)
5226 MaskVec.push_back(i == Idx ? 0 : 1);
5227 return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5231 // Splat is obviously ok. Let legalizer expand it to a shuffle.
5232 if (Values.size() == 1) {
5233 if (EVTBits == 32) {
5234 // Instead of a shuffle like this:
5235 // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5236 // Check if it's possible to issue this instead.
5237 // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5238 unsigned Idx = CountTrailingZeros_32(NonZeros);
5239 SDValue Item = Op.getOperand(Idx);
5240 if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5241 return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5246 // A vector full of immediates; various special cases are already
5247 // handled, so this is best done with a single constant-pool load.
5251 // For AVX-length vectors, build the individual 128-bit pieces and use
5252 // shuffles to put them in place.
5253 if (VT.getSizeInBits() == 256 && !ISD::isBuildVectorAllZeros(Op.getNode())) {
5254 SmallVector<SDValue, 32> V;
5255 for (unsigned i = 0; i < NumElems; ++i)
5256 V.push_back(Op.getOperand(i));
5258 EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5260 // Build both the lower and upper subvector.
5261 SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5262 SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5265 // Recreate the wider vector with the lower and upper part.
5266 SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Lower,
5267 DAG.getConstant(0, MVT::i32), DAG, dl);
5268 return Insert128BitVector(Vec, Upper, DAG.getConstant(NumElems/2, MVT::i32),
5272 // Let legalizer expand 2-wide build_vectors.
5273 if (EVTBits == 64) {
5274 if (NumNonZero == 1) {
5275 // One half is zero or undef.
5276 unsigned Idx = CountTrailingZeros_32(NonZeros);
5277 SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5278 Op.getOperand(Idx));
5279 return getShuffleVectorZeroOrUndef(V2, Idx, true,
5280 Subtarget->hasXMMInt(), DAG);
5285 // If element VT is < 32 bits, convert it to inserts into a zero vector.
5286 if (EVTBits == 8 && NumElems == 16) {
5287 SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5289 if (V.getNode()) return V;
5292 if (EVTBits == 16 && NumElems == 8) {
5293 SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5295 if (V.getNode()) return V;
5298 // If element VT is == 32 bits, turn it into a number of shuffles.
5299 SmallVector<SDValue, 8> V;
5301 if (NumElems == 4 && NumZero > 0) {
5302 for (unsigned i = 0; i < 4; ++i) {
5303 bool isZero = !(NonZeros & (1 << i));
5305 V[i] = getZeroVector(VT, Subtarget->hasXMMInt(), DAG, dl);
5307 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5310 for (unsigned i = 0; i < 2; ++i) {
5311 switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5314 V[i] = V[i*2]; // Must be a zero vector.
5317 V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5320 V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5323 V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5328 SmallVector<int, 8> MaskVec;
5329 bool Reverse = (NonZeros & 0x3) == 2;
5330 for (unsigned i = 0; i < 2; ++i)
5331 MaskVec.push_back(Reverse ? 1-i : i);
5332 Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5333 for (unsigned i = 0; i < 2; ++i)
5334 MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
5335 return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5338 if (Values.size() > 1 && VT.getSizeInBits() == 128) {
5339 // Check for a build vector of consecutive loads.
5340 for (unsigned i = 0; i < NumElems; ++i)
5341 V[i] = Op.getOperand(i);
5343 // Check for elements which are consecutive loads.
5344 SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5348 // For SSE 4.1, use insertps to put the high elements into the low element.
5349 if (getSubtarget()->hasSSE41orAVX()) {
5351 if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5352 Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5354 Result = DAG.getUNDEF(VT);
5356 for (unsigned i = 1; i < NumElems; ++i) {
5357 if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5358 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5359 Op.getOperand(i), DAG.getIntPtrConstant(i));
5364 // Otherwise, expand into a number of unpckl*, start by extending each of
5365 // our (non-undef) elements to the full vector width with the element in the
5366 // bottom slot of the vector (which generates no code for SSE).
5367 for (unsigned i = 0; i < NumElems; ++i) {
5368 if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5369 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5371 V[i] = DAG.getUNDEF(VT);
5374 // Next, we iteratively mix elements, e.g. for v4f32:
5375 // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5376 // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5377 // Step 2: unpcklps X, Y ==> <3, 2, 1, 0>
5378 unsigned EltStride = NumElems >> 1;
5379 while (EltStride != 0) {
5380 for (unsigned i = 0; i < EltStride; ++i) {
5381 // If V[i+EltStride] is undef and this is the first round of mixing,
5382 // then it is safe to just drop this shuffle: V[i] is already in the
5383 // right place, the one element (since it's the first round) being
5384 // inserted as undef can be dropped. This isn't safe for successive
5385 // rounds because they will permute elements within both vectors.
5386 if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5387 EltStride == NumElems/2)
5390 V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5399 // LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5400 // them in a MMX register. This is better than doing a stack convert.
5401 static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5402 DebugLoc dl = Op.getDebugLoc();
5403 EVT ResVT = Op.getValueType();
5405 assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5406 ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5408 SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5409 SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5410 InVec = Op.getOperand(1);
5411 if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5412 unsigned NumElts = ResVT.getVectorNumElements();
5413 VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5414 VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5415 InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5417 InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5418 SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5419 Mask[0] = 0; Mask[1] = 2;
5420 VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5422 return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5425 // LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5426 // to create 256-bit vectors from two other 128-bit ones.
5427 static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5428 DebugLoc dl = Op.getDebugLoc();
5429 EVT ResVT = Op.getValueType();
5431 assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5433 SDValue V1 = Op.getOperand(0);
5434 SDValue V2 = Op.getOperand(1);
5435 unsigned NumElems = ResVT.getVectorNumElements();
5437 SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, ResVT), V1,
5438 DAG.getConstant(0, MVT::i32), DAG, dl);
5439 return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5444 X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5445 EVT ResVT = Op.getValueType();
5447 assert(Op.getNumOperands() == 2);
5448 assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5449 "Unsupported CONCAT_VECTORS for value type");
5451 // We support concatenate two MMX registers and place them in a MMX register.
5452 // This is better than doing a stack convert.
5453 if (ResVT.is128BitVector())
5454 return LowerMMXCONCAT_VECTORS(Op, DAG);
5456 // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5457 // from two other 128-bit ones.
5458 return LowerAVXCONCAT_VECTORS(Op, DAG);
5461 // v8i16 shuffles - Prefer shuffles in the following order:
5462 // 1. [all] pshuflw, pshufhw, optional move
5463 // 2. [ssse3] 1 x pshufb
5464 // 3. [ssse3] 2 x pshufb + 1 x por
5465 // 4. [all] mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5467 X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5468 SelectionDAG &DAG) const {
5469 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5470 SDValue V1 = SVOp->getOperand(0);
5471 SDValue V2 = SVOp->getOperand(1);
5472 DebugLoc dl = SVOp->getDebugLoc();
5473 SmallVector<int, 8> MaskVals;
5475 // Determine if more than 1 of the words in each of the low and high quadwords
5476 // of the result come from the same quadword of one of the two inputs. Undef
5477 // mask values count as coming from any quadword, for better codegen.
5478 unsigned LoQuad[] = { 0, 0, 0, 0 };
5479 unsigned HiQuad[] = { 0, 0, 0, 0 };
5480 BitVector InputQuads(4);
5481 for (unsigned i = 0; i < 8; ++i) {
5482 unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5483 int EltIdx = SVOp->getMaskElt(i);
5484 MaskVals.push_back(EltIdx);
5493 InputQuads.set(EltIdx / 4);
5496 int BestLoQuad = -1;
5497 unsigned MaxQuad = 1;
5498 for (unsigned i = 0; i < 4; ++i) {
5499 if (LoQuad[i] > MaxQuad) {
5501 MaxQuad = LoQuad[i];
5505 int BestHiQuad = -1;
5507 for (unsigned i = 0; i < 4; ++i) {
5508 if (HiQuad[i] > MaxQuad) {
5510 MaxQuad = HiQuad[i];
5514 // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5515 // of the two input vectors, shuffle them into one input vector so only a
5516 // single pshufb instruction is necessary. If There are more than 2 input
5517 // quads, disable the next transformation since it does not help SSSE3.
5518 bool V1Used = InputQuads[0] || InputQuads[1];
5519 bool V2Used = InputQuads[2] || InputQuads[3];
5520 if (Subtarget->hasSSSE3orAVX()) {
5521 if (InputQuads.count() == 2 && V1Used && V2Used) {
5522 BestLoQuad = InputQuads.find_first();
5523 BestHiQuad = InputQuads.find_next(BestLoQuad);
5525 if (InputQuads.count() > 2) {
5531 // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5532 // the shuffle mask. If a quad is scored as -1, that means that it contains
5533 // words from all 4 input quadwords.
5535 if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5536 SmallVector<int, 8> MaskV;
5537 MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
5538 MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
5539 NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5540 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5541 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5542 NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5544 // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5545 // source words for the shuffle, to aid later transformations.
5546 bool AllWordsInNewV = true;
5547 bool InOrder[2] = { true, true };
5548 for (unsigned i = 0; i != 8; ++i) {
5549 int idx = MaskVals[i];
5551 InOrder[i/4] = false;
5552 if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5554 AllWordsInNewV = false;
5558 bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5559 if (AllWordsInNewV) {
5560 for (int i = 0; i != 8; ++i) {
5561 int idx = MaskVals[i];
5564 idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5565 if ((idx != i) && idx < 4)
5567 if ((idx != i) && idx > 3)
5576 // If we've eliminated the use of V2, and the new mask is a pshuflw or
5577 // pshufhw, that's as cheap as it gets. Return the new shuffle.
5578 if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5579 unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5580 unsigned TargetMask = 0;
5581 NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5582 DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5583 TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
5584 X86::getShufflePSHUFLWImmediate(NewV.getNode());
5585 V1 = NewV.getOperand(0);
5586 return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5590 // If we have SSSE3, and all words of the result are from 1 input vector,
5591 // case 2 is generated, otherwise case 3 is generated. If no SSSE3
5592 // is present, fall back to case 4.
5593 if (Subtarget->hasSSSE3orAVX()) {
5594 SmallVector<SDValue,16> pshufbMask;
5596 // If we have elements from both input vectors, set the high bit of the
5597 // shuffle mask element to zero out elements that come from V2 in the V1
5598 // mask, and elements that come from V1 in the V2 mask, so that the two
5599 // results can be OR'd together.
5600 bool TwoInputs = V1Used && V2Used;
5601 for (unsigned i = 0; i != 8; ++i) {
5602 int EltIdx = MaskVals[i] * 2;
5603 if (TwoInputs && (EltIdx >= 16)) {
5604 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5605 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5608 pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5609 pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5611 V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5612 V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5613 DAG.getNode(ISD::BUILD_VECTOR, dl,
5614 MVT::v16i8, &pshufbMask[0], 16));
5616 return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5618 // Calculate the shuffle mask for the second input, shuffle it, and
5619 // OR it with the first shuffled input.
5621 for (unsigned i = 0; i != 8; ++i) {
5622 int EltIdx = MaskVals[i] * 2;
5624 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5625 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5628 pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5629 pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5631 V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5632 V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5633 DAG.getNode(ISD::BUILD_VECTOR, dl,
5634 MVT::v16i8, &pshufbMask[0], 16));
5635 V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5636 return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5639 // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5640 // and update MaskVals with new element order.
5641 BitVector InOrder(8);
5642 if (BestLoQuad >= 0) {
5643 SmallVector<int, 8> MaskV;
5644 for (int i = 0; i != 4; ++i) {
5645 int idx = MaskVals[i];
5647 MaskV.push_back(-1);
5649 } else if ((idx / 4) == BestLoQuad) {
5650 MaskV.push_back(idx & 3);
5653 MaskV.push_back(-1);
5656 for (unsigned i = 4; i != 8; ++i)
5658 NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5661 if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3orAVX())
5662 NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5664 X86::getShufflePSHUFLWImmediate(NewV.getNode()),
5668 // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5669 // and update MaskVals with the new element order.
5670 if (BestHiQuad >= 0) {
5671 SmallVector<int, 8> MaskV;
5672 for (unsigned i = 0; i != 4; ++i)
5674 for (unsigned i = 4; i != 8; ++i) {
5675 int idx = MaskVals[i];
5677 MaskV.push_back(-1);
5679 } else if ((idx / 4) == BestHiQuad) {
5680 MaskV.push_back((idx & 3) + 4);
5683 MaskV.push_back(-1);
5686 NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5689 if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3orAVX())
5690 NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5692 X86::getShufflePSHUFHWImmediate(NewV.getNode()),
5696 // In case BestHi & BestLo were both -1, which means each quadword has a word
5697 // from each of the four input quadwords, calculate the InOrder bitvector now
5698 // before falling through to the insert/extract cleanup.
5699 if (BestLoQuad == -1 && BestHiQuad == -1) {
5701 for (int i = 0; i != 8; ++i)
5702 if (MaskVals[i] < 0 || MaskVals[i] == i)
5706 // The other elements are put in the right place using pextrw and pinsrw.
5707 for (unsigned i = 0; i != 8; ++i) {
5710 int EltIdx = MaskVals[i];
5713 SDValue ExtOp = (EltIdx < 8)
5714 ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5715 DAG.getIntPtrConstant(EltIdx))
5716 : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5717 DAG.getIntPtrConstant(EltIdx - 8));
5718 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5719 DAG.getIntPtrConstant(i));
5724 // v16i8 shuffles - Prefer shuffles in the following order:
5725 // 1. [ssse3] 1 x pshufb
5726 // 2. [ssse3] 2 x pshufb + 1 x por
5727 // 3. [all] v8i16 shuffle + N x pextrw + rotate + pinsrw
5729 SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5731 const X86TargetLowering &TLI) {
5732 SDValue V1 = SVOp->getOperand(0);
5733 SDValue V2 = SVOp->getOperand(1);
5734 DebugLoc dl = SVOp->getDebugLoc();
5735 SmallVector<int, 16> MaskVals;
5736 SVOp->getMask(MaskVals);
5738 // If we have SSSE3, case 1 is generated when all result bytes come from
5739 // one of the inputs. Otherwise, case 2 is generated. If no SSSE3 is
5740 // present, fall back to case 3.
5741 // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5744 for (unsigned i = 0; i < 16; ++i) {
5745 int EltIdx = MaskVals[i];
5754 // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5755 if (TLI.getSubtarget()->hasSSSE3orAVX()) {
5756 SmallVector<SDValue,16> pshufbMask;
5758 // If all result elements are from one input vector, then only translate
5759 // undef mask values to 0x80 (zero out result) in the pshufb mask.
5761 // Otherwise, we have elements from both input vectors, and must zero out
5762 // elements that come from V2 in the first mask, and V1 in the second mask
5763 // so that we can OR them together.
5764 bool TwoInputs = !(V1Only || V2Only);
5765 for (unsigned i = 0; i != 16; ++i) {
5766 int EltIdx = MaskVals[i];
5767 if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5768 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5771 pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5773 // If all the elements are from V2, assign it to V1 and return after
5774 // building the first pshufb.
5777 V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5778 DAG.getNode(ISD::BUILD_VECTOR, dl,
5779 MVT::v16i8, &pshufbMask[0], 16));
5783 // Calculate the shuffle mask for the second input, shuffle it, and
5784 // OR it with the first shuffled input.
5786 for (unsigned i = 0; i != 16; ++i) {
5787 int EltIdx = MaskVals[i];
5789 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5792 pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5794 V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5795 DAG.getNode(ISD::BUILD_VECTOR, dl,
5796 MVT::v16i8, &pshufbMask[0], 16));
5797 return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5800 // No SSSE3 - Calculate in place words and then fix all out of place words
5801 // With 0-16 extracts & inserts. Worst case is 16 bytes out of order from
5802 // the 16 different words that comprise the two doublequadword input vectors.
5803 V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5804 V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5805 SDValue NewV = V2Only ? V2 : V1;
5806 for (int i = 0; i != 8; ++i) {
5807 int Elt0 = MaskVals[i*2];
5808 int Elt1 = MaskVals[i*2+1];
5810 // This word of the result is all undef, skip it.
5811 if (Elt0 < 0 && Elt1 < 0)
5814 // This word of the result is already in the correct place, skip it.
5815 if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5817 if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5820 SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5821 SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5824 // If Elt0 and Elt1 are defined, are consecutive, and can be load
5825 // using a single extract together, load it and store it.
5826 if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5827 InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5828 DAG.getIntPtrConstant(Elt1 / 2));
5829 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5830 DAG.getIntPtrConstant(i));
5834 // If Elt1 is defined, extract it from the appropriate source. If the
5835 // source byte is not also odd, shift the extracted word left 8 bits
5836 // otherwise clear the bottom 8 bits if we need to do an or.
5838 InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5839 DAG.getIntPtrConstant(Elt1 / 2));
5840 if ((Elt1 & 1) == 0)
5841 InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5843 TLI.getShiftAmountTy(InsElt.getValueType())));
5845 InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5846 DAG.getConstant(0xFF00, MVT::i16));
5848 // If Elt0 is defined, extract it from the appropriate source. If the
5849 // source byte is not also even, shift the extracted word right 8 bits. If
5850 // Elt1 was also defined, OR the extracted values together before
5851 // inserting them in the result.
5853 SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5854 Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5855 if ((Elt0 & 1) != 0)
5856 InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5858 TLI.getShiftAmountTy(InsElt0.getValueType())));
5860 InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5861 DAG.getConstant(0x00FF, MVT::i16));
5862 InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5865 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5866 DAG.getIntPtrConstant(i));
5868 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5871 /// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5872 /// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5873 /// done when every pair / quad of shuffle mask elements point to elements in
5874 /// the right sequence. e.g.
5875 /// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5877 SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5878 SelectionDAG &DAG, DebugLoc dl) {
5879 EVT VT = SVOp->getValueType(0);
5880 SDValue V1 = SVOp->getOperand(0);
5881 SDValue V2 = SVOp->getOperand(1);
5882 unsigned NumElems = VT.getVectorNumElements();
5883 unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5885 switch (VT.getSimpleVT().SimpleTy) {
5886 default: assert(false && "Unexpected!");
5887 case MVT::v4f32: NewVT = MVT::v2f64; break;
5888 case MVT::v4i32: NewVT = MVT::v2i64; break;
5889 case MVT::v8i16: NewVT = MVT::v4i32; break;
5890 case MVT::v16i8: NewVT = MVT::v4i32; break;
5893 int Scale = NumElems / NewWidth;
5894 SmallVector<int, 8> MaskVec;
5895 for (unsigned i = 0; i < NumElems; i += Scale) {
5897 for (int j = 0; j < Scale; ++j) {
5898 int EltIdx = SVOp->getMaskElt(i+j);
5902 StartIdx = EltIdx - (EltIdx % Scale);
5903 if (EltIdx != StartIdx + j)
5907 MaskVec.push_back(-1);
5909 MaskVec.push_back(StartIdx / Scale);
5912 V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5913 V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5914 return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5917 /// getVZextMovL - Return a zero-extending vector move low node.
5919 static SDValue getVZextMovL(EVT VT, EVT OpVT,
5920 SDValue SrcOp, SelectionDAG &DAG,
5921 const X86Subtarget *Subtarget, DebugLoc dl) {
5922 if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5923 LoadSDNode *LD = NULL;
5924 if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5925 LD = dyn_cast<LoadSDNode>(SrcOp);
5927 // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5929 MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5930 if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5931 SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5932 SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5933 SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5935 OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5936 return DAG.getNode(ISD::BITCAST, dl, VT,
5937 DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5938 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5946 return DAG.getNode(ISD::BITCAST, dl, VT,
5947 DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5948 DAG.getNode(ISD::BITCAST, dl,
5952 /// areShuffleHalvesWithinDisjointLanes - Check whether each half of a vector
5953 /// shuffle node referes to only one lane in the sources.
5954 static bool areShuffleHalvesWithinDisjointLanes(ShuffleVectorSDNode *SVOp) {
5955 EVT VT = SVOp->getValueType(0);
5956 int NumElems = VT.getVectorNumElements();
5957 int HalfSize = NumElems/2;
5958 SmallVector<int, 16> M;
5960 bool MatchA = false, MatchB = false;
5962 for (int l = 0; l < NumElems*2; l += HalfSize) {
5963 if (isUndefOrInRange(M, 0, HalfSize, l, l+HalfSize)) {
5969 for (int l = 0; l < NumElems*2; l += HalfSize) {
5970 if (isUndefOrInRange(M, HalfSize, HalfSize, l, l+HalfSize)) {
5976 return MatchA && MatchB;
5979 /// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
5980 /// which could not be matched by any known target speficic shuffle
5982 LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5983 if (areShuffleHalvesWithinDisjointLanes(SVOp)) {
5984 // If each half of a vector shuffle node referes to only one lane in the
5985 // source vectors, extract each used 128-bit lane and shuffle them using
5986 // 128-bit shuffles. Then, concatenate the results. Otherwise leave
5987 // the work to the legalizer.
5988 DebugLoc dl = SVOp->getDebugLoc();
5989 EVT VT = SVOp->getValueType(0);
5990 int NumElems = VT.getVectorNumElements();
5991 int HalfSize = NumElems/2;
5993 // Extract the reference for each half
5994 int FstVecExtractIdx = 0, SndVecExtractIdx = 0;
5995 int FstVecOpNum = 0, SndVecOpNum = 0;
5996 for (int i = 0; i < HalfSize; ++i) {
5997 int Elt = SVOp->getMaskElt(i);
5998 if (SVOp->getMaskElt(i) < 0)
6000 FstVecOpNum = Elt/NumElems;
6001 FstVecExtractIdx = Elt % NumElems < HalfSize ? 0 : HalfSize;
6004 for (int i = HalfSize; i < NumElems; ++i) {
6005 int Elt = SVOp->getMaskElt(i);
6006 if (SVOp->getMaskElt(i) < 0)
6008 SndVecOpNum = Elt/NumElems;
6009 SndVecExtractIdx = Elt % NumElems < HalfSize ? 0 : HalfSize;
6013 // Extract the subvectors
6014 SDValue V1 = Extract128BitVector(SVOp->getOperand(FstVecOpNum),
6015 DAG.getConstant(FstVecExtractIdx, MVT::i32), DAG, dl);
6016 SDValue V2 = Extract128BitVector(SVOp->getOperand(SndVecOpNum),
6017 DAG.getConstant(SndVecExtractIdx, MVT::i32), DAG, dl);
6019 // Generate 128-bit shuffles
6020 SmallVector<int, 16> MaskV1, MaskV2;
6021 for (int i = 0; i < HalfSize; ++i) {
6022 int Elt = SVOp->getMaskElt(i);
6023 MaskV1.push_back(Elt < 0 ? Elt : Elt % HalfSize);
6025 for (int i = HalfSize; i < NumElems; ++i) {
6026 int Elt = SVOp->getMaskElt(i);
6027 MaskV2.push_back(Elt < 0 ? Elt : Elt % HalfSize);
6030 EVT NVT = V1.getValueType();
6031 V1 = DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &MaskV1[0]);
6032 V2 = DAG.getVectorShuffle(NVT, dl, V2, DAG.getUNDEF(NVT), &MaskV2[0]);
6034 // Concatenate the result back
6035 SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), V1,
6036 DAG.getConstant(0, MVT::i32), DAG, dl);
6037 return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
6044 /// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6045 /// 4 elements, and match them with several different shuffle types.
6047 LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6048 SDValue V1 = SVOp->getOperand(0);
6049 SDValue V2 = SVOp->getOperand(1);
6050 DebugLoc dl = SVOp->getDebugLoc();
6051 EVT VT = SVOp->getValueType(0);
6053 assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
6055 SmallVector<std::pair<int, int>, 8> Locs;
6057 SmallVector<int, 8> Mask1(4U, -1);
6058 SmallVector<int, 8> PermMask;
6059 SVOp->getMask(PermMask);
6063 for (unsigned i = 0; i != 4; ++i) {
6064 int Idx = PermMask[i];
6066 Locs[i] = std::make_pair(-1, -1);
6068 assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6070 Locs[i] = std::make_pair(0, NumLo);
6074 Locs[i] = std::make_pair(1, NumHi);
6076 Mask1[2+NumHi] = Idx;
6082 if (NumLo <= 2 && NumHi <= 2) {
6083 // If no more than two elements come from either vector. This can be
6084 // implemented with two shuffles. First shuffle gather the elements.
6085 // The second shuffle, which takes the first shuffle as both of its
6086 // vector operands, put the elements into the right order.
6087 V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6089 SmallVector<int, 8> Mask2(4U, -1);
6091 for (unsigned i = 0; i != 4; ++i) {
6092 if (Locs[i].first == -1)
6095 unsigned Idx = (i < 2) ? 0 : 4;
6096 Idx += Locs[i].first * 2 + Locs[i].second;
6101 return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6102 } else if (NumLo == 3 || NumHi == 3) {
6103 // Otherwise, we must have three elements from one vector, call it X, and
6104 // one element from the other, call it Y. First, use a shufps to build an
6105 // intermediate vector with the one element from Y and the element from X
6106 // that will be in the same half in the final destination (the indexes don't
6107 // matter). Then, use a shufps to build the final vector, taking the half
6108 // containing the element from Y from the intermediate, and the other half
6111 // Normalize it so the 3 elements come from V1.
6112 CommuteVectorShuffleMask(PermMask, 4);
6116 // Find the element from V2.
6118 for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6119 int Val = PermMask[HiIndex];
6126 Mask1[0] = PermMask[HiIndex];
6128 Mask1[2] = PermMask[HiIndex^1];
6130 V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6133 Mask1[0] = PermMask[0];
6134 Mask1[1] = PermMask[1];
6135 Mask1[2] = HiIndex & 1 ? 6 : 4;
6136 Mask1[3] = HiIndex & 1 ? 4 : 6;
6137 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6139 Mask1[0] = HiIndex & 1 ? 2 : 0;
6140 Mask1[1] = HiIndex & 1 ? 0 : 2;
6141 Mask1[2] = PermMask[2];
6142 Mask1[3] = PermMask[3];
6147 return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6151 // Break it into (shuffle shuffle_hi, shuffle_lo).
6154 SmallVector<int,8> LoMask(4U, -1);
6155 SmallVector<int,8> HiMask(4U, -1);
6157 SmallVector<int,8> *MaskPtr = &LoMask;
6158 unsigned MaskIdx = 0;
6161 for (unsigned i = 0; i != 4; ++i) {
6168 int Idx = PermMask[i];
6170 Locs[i] = std::make_pair(-1, -1);
6171 } else if (Idx < 4) {
6172 Locs[i] = std::make_pair(MaskIdx, LoIdx);
6173 (*MaskPtr)[LoIdx] = Idx;
6176 Locs[i] = std::make_pair(MaskIdx, HiIdx);
6177 (*MaskPtr)[HiIdx] = Idx;
6182 SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6183 SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6184 SmallVector<int, 8> MaskOps;
6185 for (unsigned i = 0; i != 4; ++i) {
6186 if (Locs[i].first == -1) {
6187 MaskOps.push_back(-1);
6189 unsigned Idx = Locs[i].first * 4 + Locs[i].second;
6190 MaskOps.push_back(Idx);
6193 return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6196 static bool MayFoldVectorLoad(SDValue V) {
6197 if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6198 V = V.getOperand(0);
6199 if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6200 V = V.getOperand(0);
6201 if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6202 V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6203 // BUILD_VECTOR (load), undef
6204 V = V.getOperand(0);
6210 // FIXME: the version above should always be used. Since there's
6211 // a bug where several vector shuffles can't be folded because the
6212 // DAG is not updated during lowering and a node claims to have two
6213 // uses while it only has one, use this version, and let isel match
6214 // another instruction if the load really happens to have more than
6215 // one use. Remove this version after this bug get fixed.
6216 // rdar://8434668, PR8156
6217 static bool RelaxedMayFoldVectorLoad(SDValue V) {
6218 if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6219 V = V.getOperand(0);
6220 if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6221 V = V.getOperand(0);
6222 if (ISD::isNormalLoad(V.getNode()))
6227 /// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
6228 /// a vector extract, and if both can be later optimized into a single load.
6229 /// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
6230 /// here because otherwise a target specific shuffle node is going to be
6231 /// emitted for this shuffle, and the optimization not done.
6232 /// FIXME: This is probably not the best approach, but fix the problem
6233 /// until the right path is decided.
6235 bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
6236 const TargetLowering &TLI) {
6237 EVT VT = V.getValueType();
6238 ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
6240 // Be sure that the vector shuffle is present in a pattern like this:
6241 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
6245 SDNode *N = *V.getNode()->use_begin();
6246 if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6249 SDValue EltNo = N->getOperand(1);
6250 if (!isa<ConstantSDNode>(EltNo))
6253 // If the bit convert changed the number of elements, it is unsafe
6254 // to examine the mask.
6255 bool HasShuffleIntoBitcast = false;
6256 if (V.getOpcode() == ISD::BITCAST) {
6257 EVT SrcVT = V.getOperand(0).getValueType();
6258 if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
6260 V = V.getOperand(0);
6261 HasShuffleIntoBitcast = true;
6264 // Select the input vector, guarding against out of range extract vector.
6265 unsigned NumElems = VT.getVectorNumElements();
6266 unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
6267 int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
6268 V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
6270 // Skip one more bit_convert if necessary
6271 if (V.getOpcode() == ISD::BITCAST)
6272 V = V.getOperand(0);
6274 if (ISD::isNormalLoad(V.getNode())) {
6275 // Is the original load suitable?
6276 LoadSDNode *LN0 = cast<LoadSDNode>(V);
6278 // FIXME: avoid the multi-use bug that is preventing lots of
6279 // of foldings to be detected, this is still wrong of course, but
6280 // give the temporary desired behavior, and if it happens that
6281 // the load has real more uses, during isel it will not fold, and
6282 // will generate poor code.
6283 if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse()
6286 if (!HasShuffleIntoBitcast)
6289 // If there's a bitcast before the shuffle, check if the load type and
6290 // alignment is valid.
6291 unsigned Align = LN0->getAlignment();
6293 TLI.getTargetData()->getABITypeAlignment(
6294 VT.getTypeForEVT(*DAG.getContext()));
6296 if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
6304 SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6305 EVT VT = Op.getValueType();
6307 // Canonizalize to v2f64.
6308 V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6309 return DAG.getNode(ISD::BITCAST, dl, VT,
6310 getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6315 SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6317 SDValue V1 = Op.getOperand(0);
6318 SDValue V2 = Op.getOperand(1);
6319 EVT VT = Op.getValueType();
6321 assert(VT != MVT::v2i64 && "unsupported shuffle type");
6323 if (HasXMMInt && VT == MVT::v2f64)
6324 return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6326 // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6327 return DAG.getNode(ISD::BITCAST, dl, VT,
6328 getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6329 DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6330 DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6334 SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6335 SDValue V1 = Op.getOperand(0);
6336 SDValue V2 = Op.getOperand(1);
6337 EVT VT = Op.getValueType();
6339 assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6340 "unsupported shuffle type");
6342 if (V2.getOpcode() == ISD::UNDEF)
6346 return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6349 static inline unsigned getSHUFPOpcode(EVT VT) {
6350 switch(VT.getSimpleVT().SimpleTy) {
6351 case MVT::v8i32: // Use fp unit for int unpack.
6353 case MVT::v4i32: // Use fp unit for int unpack.
6354 case MVT::v4f32: return X86ISD::SHUFPS;
6355 case MVT::v4i64: // Use fp unit for int unpack.
6357 case MVT::v2i64: // Use fp unit for int unpack.
6358 case MVT::v2f64: return X86ISD::SHUFPD;
6360 llvm_unreachable("Unknown type for shufp*");
6366 SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasXMMInt) {
6367 SDValue V1 = Op.getOperand(0);
6368 SDValue V2 = Op.getOperand(1);
6369 EVT VT = Op.getValueType();
6370 unsigned NumElems = VT.getVectorNumElements();
6372 // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6373 // operand of these instructions is only memory, so check if there's a
6374 // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6376 bool CanFoldLoad = false;
6378 // Trivial case, when V2 comes from a load.
6379 if (MayFoldVectorLoad(V2))
6382 // When V1 is a load, it can be folded later into a store in isel, example:
6383 // (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6385 // (MOVLPSmr addr:$src1, VR128:$src2)
6386 // So, recognize this potential and also use MOVLPS or MOVLPD
6387 else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6390 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6392 if (HasXMMInt && NumElems == 2)
6393 return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6396 // If we don't care about the second element, procede to use movss.
6397 if (SVOp->getMaskElt(1) != -1)
6398 return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6401 // movl and movlp will both match v2i64, but v2i64 is never matched by
6402 // movl earlier because we make it strict to avoid messing with the movlp load
6403 // folding logic (see the code above getMOVLP call). Match it here then,
6404 // this is horrible, but will stay like this until we move all shuffle
6405 // matching to x86 specific nodes. Note that for the 1st condition all
6406 // types are matched with movsd.
6408 // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6409 // as to remove this logic from here, as much as possible
6410 if (NumElems == 2 || !X86::isMOVLMask(SVOp))
6411 return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6412 return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6415 assert(VT != MVT::v4i32 && "unsupported shuffle type");
6417 // Invert the operand order and use SHUFPS to match it.
6418 return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V2, V1,
6419 X86::getShuffleSHUFImmediate(SVOp), DAG);
6423 SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
6424 const TargetLowering &TLI,
6425 const X86Subtarget *Subtarget) {
6426 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6427 EVT VT = Op.getValueType();
6428 DebugLoc dl = Op.getDebugLoc();
6429 SDValue V1 = Op.getOperand(0);
6430 SDValue V2 = Op.getOperand(1);
6432 if (isZeroShuffle(SVOp))
6433 return getZeroVector(VT, Subtarget->hasXMMInt(), DAG, dl);
6435 // Handle splat operations
6436 if (SVOp->isSplat()) {
6437 unsigned NumElem = VT.getVectorNumElements();
6438 int Size = VT.getSizeInBits();
6439 // Special case, this is the only place now where it's allowed to return
6440 // a vector_shuffle operation without using a target specific node, because
6441 // *hopefully* it will be optimized away by the dag combiner. FIXME: should
6442 // this be moved to DAGCombine instead?
6443 if (NumElem <= 4 && CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
6446 // Use vbroadcast whenever the splat comes from a foldable load
6447 SDValue LD = isVectorBroadcast(Op, Subtarget->hasAVX2());
6448 if (Subtarget->hasAVX() && LD.getNode())
6449 return DAG.getNode(X86ISD::VBROADCAST, dl, VT, LD);
6451 // Handle splats by matching through known shuffle masks
6452 if ((Size == 128 && NumElem <= 4) ||
6453 (Size == 256 && NumElem < 8))
6456 // All remaning splats are promoted to target supported vector shuffles.
6457 return PromoteSplat(SVOp, DAG);
6460 // If the shuffle can be profitably rewritten as a narrower shuffle, then
6462 if (VT == MVT::v8i16 || VT == MVT::v16i8) {
6463 SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6464 if (NewOp.getNode())
6465 return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6466 } else if ((VT == MVT::v4i32 ||
6467 (VT == MVT::v4f32 && Subtarget->hasXMMInt()))) {
6468 // FIXME: Figure out a cleaner way to do this.
6469 // Try to make use of movq to zero out the top part.
6470 if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6471 SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6472 if (NewOp.getNode()) {
6473 if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
6474 return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
6475 DAG, Subtarget, dl);
6477 } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6478 SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6479 if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
6480 return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
6481 DAG, Subtarget, dl);
6488 X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6489 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6490 SDValue V1 = Op.getOperand(0);
6491 SDValue V2 = Op.getOperand(1);
6492 EVT VT = Op.getValueType();
6493 DebugLoc dl = Op.getDebugLoc();
6494 unsigned NumElems = VT.getVectorNumElements();
6495 bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6496 bool V1IsSplat = false;
6497 bool V2IsSplat = false;
6498 bool HasXMMInt = Subtarget->hasXMMInt();
6499 bool HasAVX = Subtarget->hasAVX();
6500 bool HasAVX2 = Subtarget->hasAVX2();
6501 MachineFunction &MF = DAG.getMachineFunction();
6502 bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6504 assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6506 assert(V1.getOpcode() != ISD::UNDEF && "Op 1 of shuffle should not be undef");
6508 // Vector shuffle lowering takes 3 steps:
6510 // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6511 // narrowing and commutation of operands should be handled.
6512 // 2) Matching of shuffles with known shuffle masks to x86 target specific
6514 // 3) Rewriting of unmatched masks into new generic shuffle operations,
6515 // so the shuffle can be broken into other shuffles and the legalizer can
6516 // try the lowering again.
6518 // The general idea is that no vector_shuffle operation should be left to
6519 // be matched during isel, all of them must be converted to a target specific
6522 // Normalize the input vectors. Here splats, zeroed vectors, profitable
6523 // narrowing and commutation of operands should be handled. The actual code
6524 // doesn't include all of those, work in progress...
6525 SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
6526 if (NewOp.getNode())
6529 // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6530 // unpckh_undef). Only use pshufd if speed is more important than size.
6531 if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp, HasAVX2))
6532 return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6533 if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp, HasAVX2))
6534 return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6536 if (X86::isMOVDDUPMask(SVOp) && Subtarget->hasSSE3orAVX() &&
6537 V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6538 return getMOVDDup(Op, dl, V1, DAG);
6540 if (X86::isMOVHLPS_v_undef_Mask(SVOp))
6541 return getMOVHighToLow(Op, dl, DAG);
6543 // Use to match splats
6544 if (HasXMMInt && X86::isUNPCKHMask(SVOp, HasAVX2) && V2IsUndef &&
6545 (VT == MVT::v2f64 || VT == MVT::v2i64))
6546 return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6548 if (X86::isPSHUFDMask(SVOp)) {
6549 // The actual implementation will match the mask in the if above and then
6550 // during isel it can match several different instructions, not only pshufd
6551 // as its name says, sad but true, emulate the behavior for now...
6552 if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6553 return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6555 unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
6557 if (HasXMMInt && (VT == MVT::v4f32 || VT == MVT::v4i32))
6558 return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6560 return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V1,
6564 // Check if this can be converted into a logical shift.
6565 bool isLeft = false;
6568 bool isShift = HasXMMInt && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6569 if (isShift && ShVal.hasOneUse()) {
6570 // If the shifted value has multiple uses, it may be cheaper to use
6571 // v_set0 + movlhps or movhlps, etc.
6572 EVT EltVT = VT.getVectorElementType();
6573 ShAmt *= EltVT.getSizeInBits();
6574 return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6577 if (X86::isMOVLMask(SVOp)) {
6578 if (ISD::isBuildVectorAllZeros(V1.getNode()))
6579 return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6580 if (!X86::isMOVLPMask(SVOp)) {
6581 if (HasXMMInt && (VT == MVT::v2i64 || VT == MVT::v2f64))
6582 return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6584 if (VT == MVT::v4i32 || VT == MVT::v4f32)
6585 return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6589 // FIXME: fold these into legal mask.
6590 if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp, HasAVX2))
6591 return getMOVLowToHigh(Op, dl, DAG, HasXMMInt);
6593 if (X86::isMOVHLPSMask(SVOp))
6594 return getMOVHighToLow(Op, dl, DAG);
6596 if (X86::isMOVSHDUPMask(SVOp, Subtarget))
6597 return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6599 if (X86::isMOVSLDUPMask(SVOp, Subtarget))
6600 return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6602 if (X86::isMOVLPMask(SVOp))
6603 return getMOVLP(Op, dl, DAG, HasXMMInt);
6605 if (ShouldXformToMOVHLPS(SVOp) ||
6606 ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
6607 return CommuteVectorShuffle(SVOp, DAG);
6610 // No better options. Use a vshl / vsrl.
6611 EVT EltVT = VT.getVectorElementType();
6612 ShAmt *= EltVT.getSizeInBits();
6613 return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6616 bool Commuted = false;
6617 // FIXME: This should also accept a bitcast of a splat? Be careful, not
6618 // 1,1,1,1 -> v8i16 though.
6619 V1IsSplat = isSplatVector(V1.getNode());
6620 V2IsSplat = isSplatVector(V2.getNode());
6622 // Canonicalize the splat or undef, if present, to be on the RHS.
6623 if (V1IsSplat && !V2IsSplat) {
6624 Op = CommuteVectorShuffle(SVOp, DAG);
6625 SVOp = cast<ShuffleVectorSDNode>(Op);
6626 V1 = SVOp->getOperand(0);
6627 V2 = SVOp->getOperand(1);
6628 std::swap(V1IsSplat, V2IsSplat);
6632 SmallVector<int, 32> M;
6635 if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6636 // Shuffling low element of v1 into undef, just return v1.
6639 // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6640 // the instruction selector will not match, so get a canonical MOVL with
6641 // swapped operands to undo the commute.
6642 return getMOVL(DAG, dl, VT, V2, V1);
6645 if (isUNPCKLMask(M, VT, HasAVX2))
6646 return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6648 if (isUNPCKHMask(M, VT, HasAVX2))
6649 return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6652 // Normalize mask so all entries that point to V2 points to its first
6653 // element then try to match unpck{h|l} again. If match, return a
6654 // new vector_shuffle with the corrected mask.
6655 SDValue NewMask = NormalizeMask(SVOp, DAG);
6656 ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
6657 if (NSVOp != SVOp) {
6658 if (X86::isUNPCKLMask(NSVOp, HasAVX2, true)) {
6660 } else if (X86::isUNPCKHMask(NSVOp, HasAVX2, true)) {
6667 // Commute is back and try unpck* again.
6668 // FIXME: this seems wrong.
6669 SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
6670 ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
6672 if (X86::isUNPCKLMask(NewSVOp, HasAVX2))
6673 return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V2, V1, DAG);
6675 if (X86::isUNPCKHMask(NewSVOp, HasAVX2))
6676 return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V2, V1, DAG);
6679 // Normalize the node to match x86 shuffle ops if needed
6680 if (!V2IsUndef && (isSHUFPMask(M, VT, /* Commuted */ true) ||
6681 isVSHUFPYMask(M, VT, HasAVX, /* Commuted */ true)))
6682 return CommuteVectorShuffle(SVOp, DAG);
6684 // The checks below are all present in isShuffleMaskLegal, but they are
6685 // inlined here right now to enable us to directly emit target specific
6686 // nodes, and remove one by one until they don't return Op anymore.
6688 if (isPALIGNRMask(M, VT, Subtarget->hasSSSE3orAVX()))
6689 return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6690 getShufflePALIGNRImmediate(SVOp),
6693 if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6694 SVOp->getSplatIndex() == 0 && V2IsUndef) {
6695 if (VT == MVT::v2f64 || VT == MVT::v2i64)
6696 return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6699 if (isPSHUFHWMask(M, VT))
6700 return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6701 X86::getShufflePSHUFHWImmediate(SVOp),
6704 if (isPSHUFLWMask(M, VT))
6705 return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6706 X86::getShufflePSHUFLWImmediate(SVOp),
6709 if (isSHUFPMask(M, VT))
6710 return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6711 X86::getShuffleSHUFImmediate(SVOp), DAG);
6713 if (isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6714 return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6715 if (isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6716 return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6718 //===--------------------------------------------------------------------===//
6719 // Generate target specific nodes for 128 or 256-bit shuffles only
6720 // supported in the AVX instruction set.
6723 // Handle VMOVDDUPY permutations
6724 if (V2IsUndef && isMOVDDUPYMask(M, VT, HasAVX))
6725 return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6727 // Handle VPERMILPS/D* permutations
6728 if (isVPERMILPMask(M, VT, HasAVX))
6729 return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
6730 getShuffleVPERMILPImmediate(SVOp), DAG);
6732 // Handle VPERM2F128/VPERM2I128 permutations
6733 if (isVPERM2X128Mask(M, VT, HasAVX))
6734 return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
6735 V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
6737 // Handle VSHUFPS/DY permutations
6738 if (isVSHUFPYMask(M, VT, HasAVX))
6739 return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6740 getShuffleVSHUFPYImmediate(SVOp), DAG);
6742 //===--------------------------------------------------------------------===//
6743 // Since no target specific shuffle was selected for this generic one,
6744 // lower it into other known shuffles. FIXME: this isn't true yet, but
6745 // this is the plan.
6748 // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6749 if (VT == MVT::v8i16) {
6750 SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6751 if (NewOp.getNode())
6755 if (VT == MVT::v16i8) {
6756 SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6757 if (NewOp.getNode())
6761 // Handle all 128-bit wide vectors with 4 elements, and match them with
6762 // several different shuffle types.
6763 if (NumElems == 4 && VT.getSizeInBits() == 128)
6764 return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6766 // Handle general 256-bit shuffles
6767 if (VT.is256BitVector())
6768 return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6774 X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6775 SelectionDAG &DAG) const {
6776 EVT VT = Op.getValueType();
6777 DebugLoc dl = Op.getDebugLoc();
6779 if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6782 if (VT.getSizeInBits() == 8) {
6783 SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6784 Op.getOperand(0), Op.getOperand(1));
6785 SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6786 DAG.getValueType(VT));
6787 return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6788 } else if (VT.getSizeInBits() == 16) {
6789 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6790 // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6792 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6793 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6794 DAG.getNode(ISD::BITCAST, dl,
6798 SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6799 Op.getOperand(0), Op.getOperand(1));
6800 SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6801 DAG.getValueType(VT));
6802 return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6803 } else if (VT == MVT::f32) {
6804 // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6805 // the result back to FR32 register. It's only worth matching if the
6806 // result has a single use which is a store or a bitcast to i32. And in
6807 // the case of a store, it's not worth it if the index is a constant 0,
6808 // because a MOVSSmr can be used instead, which is smaller and faster.
6809 if (!Op.hasOneUse())
6811 SDNode *User = *Op.getNode()->use_begin();
6812 if ((User->getOpcode() != ISD::STORE ||
6813 (isa<ConstantSDNode>(Op.getOperand(1)) &&
6814 cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6815 (User->getOpcode() != ISD::BITCAST ||
6816 User->getValueType(0) != MVT::i32))
6818 SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6819 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6822 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6823 } else if (VT == MVT::i32 || VT == MVT::i64) {
6824 // ExtractPS/pextrq works with constant index.
6825 if (isa<ConstantSDNode>(Op.getOperand(1)))
6833 X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6834 SelectionDAG &DAG) const {
6835 if (!isa<ConstantSDNode>(Op.getOperand(1)))
6838 SDValue Vec = Op.getOperand(0);
6839 EVT VecVT = Vec.getValueType();
6841 // If this is a 256-bit vector result, first extract the 128-bit vector and
6842 // then extract the element from the 128-bit vector.
6843 if (VecVT.getSizeInBits() == 256) {
6844 DebugLoc dl = Op.getNode()->getDebugLoc();
6845 unsigned NumElems = VecVT.getVectorNumElements();
6846 SDValue Idx = Op.getOperand(1);
6847 unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6849 // Get the 128-bit vector.
6850 bool Upper = IdxVal >= NumElems/2;
6851 Vec = Extract128BitVector(Vec,
6852 DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32), DAG, dl);
6854 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6855 Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : Idx);
6858 assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6860 if (Subtarget->hasSSE41orAVX()) {
6861 SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6866 EVT VT = Op.getValueType();
6867 DebugLoc dl = Op.getDebugLoc();
6868 // TODO: handle v16i8.
6869 if (VT.getSizeInBits() == 16) {
6870 SDValue Vec = Op.getOperand(0);
6871 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6873 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6874 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6875 DAG.getNode(ISD::BITCAST, dl,
6878 // Transform it so it match pextrw which produces a 32-bit result.
6879 EVT EltVT = MVT::i32;
6880 SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6881 Op.getOperand(0), Op.getOperand(1));
6882 SDValue Assert = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6883 DAG.getValueType(VT));
6884 return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6885 } else if (VT.getSizeInBits() == 32) {
6886 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6890 // SHUFPS the element to the lowest double word, then movss.
6891 int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6892 EVT VVT = Op.getOperand(0).getValueType();
6893 SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6894 DAG.getUNDEF(VVT), Mask);
6895 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6896 DAG.getIntPtrConstant(0));
6897 } else if (VT.getSizeInBits() == 64) {
6898 // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6899 // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6900 // to match extract_elt for f64.
6901 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6905 // UNPCKHPD the element to the lowest double word, then movsd.
6906 // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6907 // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6908 int Mask[2] = { 1, -1 };
6909 EVT VVT = Op.getOperand(0).getValueType();
6910 SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6911 DAG.getUNDEF(VVT), Mask);
6912 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6913 DAG.getIntPtrConstant(0));
6920 X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6921 SelectionDAG &DAG) const {
6922 EVT VT = Op.getValueType();
6923 EVT EltVT = VT.getVectorElementType();
6924 DebugLoc dl = Op.getDebugLoc();
6926 SDValue N0 = Op.getOperand(0);
6927 SDValue N1 = Op.getOperand(1);
6928 SDValue N2 = Op.getOperand(2);
6930 if (VT.getSizeInBits() == 256)
6933 if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6934 isa<ConstantSDNode>(N2)) {
6936 if (VT == MVT::v8i16)
6937 Opc = X86ISD::PINSRW;
6938 else if (VT == MVT::v16i8)
6939 Opc = X86ISD::PINSRB;
6941 Opc = X86ISD::PINSRB;
6943 // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6945 if (N1.getValueType() != MVT::i32)
6946 N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6947 if (N2.getValueType() != MVT::i32)
6948 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6949 return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6950 } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6951 // Bits [7:6] of the constant are the source select. This will always be
6952 // zero here. The DAG Combiner may combine an extract_elt index into these
6953 // bits. For example (insert (extract, 3), 2) could be matched by putting
6954 // the '3' into bits [7:6] of X86ISD::INSERTPS.
6955 // Bits [5:4] of the constant are the destination select. This is the
6956 // value of the incoming immediate.
6957 // Bits [3:0] of the constant are the zero mask. The DAG Combiner may
6958 // combine either bitwise AND or insert of float 0.0 to set these bits.
6959 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6960 // Create this as a scalar to vector..
6961 N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6962 return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
6963 } else if ((EltVT == MVT::i32 || EltVT == MVT::i64) &&
6964 isa<ConstantSDNode>(N2)) {
6965 // PINSR* works with constant index.
6972 X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
6973 EVT VT = Op.getValueType();
6974 EVT EltVT = VT.getVectorElementType();
6976 DebugLoc dl = Op.getDebugLoc();
6977 SDValue N0 = Op.getOperand(0);
6978 SDValue N1 = Op.getOperand(1);
6979 SDValue N2 = Op.getOperand(2);
6981 // If this is a 256-bit vector result, first extract the 128-bit vector,
6982 // insert the element into the extracted half and then place it back.
6983 if (VT.getSizeInBits() == 256) {
6984 if (!isa<ConstantSDNode>(N2))
6987 // Get the desired 128-bit vector half.
6988 unsigned NumElems = VT.getVectorNumElements();
6989 unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
6990 bool Upper = IdxVal >= NumElems/2;
6991 SDValue Ins128Idx = DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32);
6992 SDValue V = Extract128BitVector(N0, Ins128Idx, DAG, dl);
6994 // Insert the element into the desired half.
6995 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V,
6996 N1, Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : N2);
6998 // Insert the changed part back to the 256-bit vector
6999 return Insert128BitVector(N0, V, Ins128Idx, DAG, dl);
7002 if (Subtarget->hasSSE41orAVX())
7003 return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
7005 if (EltVT == MVT::i8)
7008 if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
7009 // Transform it so it match pinsrw which expects a 16-bit value in a GR32
7010 // as its second argument.
7011 if (N1.getValueType() != MVT::i32)
7012 N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7013 if (N2.getValueType() != MVT::i32)
7014 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7015 return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
7021 X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
7022 LLVMContext *Context = DAG.getContext();
7023 DebugLoc dl = Op.getDebugLoc();
7024 EVT OpVT = Op.getValueType();
7026 // If this is a 256-bit vector result, first insert into a 128-bit
7027 // vector and then insert into the 256-bit vector.
7028 if (OpVT.getSizeInBits() > 128) {
7029 // Insert into a 128-bit vector.
7030 EVT VT128 = EVT::getVectorVT(*Context,
7031 OpVT.getVectorElementType(),
7032 OpVT.getVectorNumElements() / 2);
7034 Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7036 // Insert the 128-bit vector.
7037 return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
7038 DAG.getConstant(0, MVT::i32),
7042 if (Op.getValueType() == MVT::v1i64 &&
7043 Op.getOperand(0).getValueType() == MVT::i64)
7044 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7046 SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7047 assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
7048 "Expected an SSE type!");
7049 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
7050 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7053 // Lower a node with an EXTRACT_SUBVECTOR opcode. This may result in
7054 // a simple subregister reference or explicit instructions to grab
7055 // upper bits of a vector.
7057 X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7058 if (Subtarget->hasAVX()) {
7059 DebugLoc dl = Op.getNode()->getDebugLoc();
7060 SDValue Vec = Op.getNode()->getOperand(0);
7061 SDValue Idx = Op.getNode()->getOperand(1);
7063 if (Op.getNode()->getValueType(0).getSizeInBits() == 128
7064 && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
7065 return Extract128BitVector(Vec, Idx, DAG, dl);
7071 // Lower a node with an INSERT_SUBVECTOR opcode. This may result in a
7072 // simple superregister reference or explicit instructions to insert
7073 // the upper bits of a vector.
7075 X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7076 if (Subtarget->hasAVX()) {
7077 DebugLoc dl = Op.getNode()->getDebugLoc();
7078 SDValue Vec = Op.getNode()->getOperand(0);
7079 SDValue SubVec = Op.getNode()->getOperand(1);
7080 SDValue Idx = Op.getNode()->getOperand(2);
7082 if (Op.getNode()->getValueType(0).getSizeInBits() == 256
7083 && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
7084 return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
7090 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7091 // their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7092 // one of the above mentioned nodes. It has to be wrapped because otherwise
7093 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7094 // be used to form addressing mode. These wrapped nodes will be selected
7097 X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7098 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7100 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7102 unsigned char OpFlag = 0;
7103 unsigned WrapperKind = X86ISD::Wrapper;
7104 CodeModel::Model M = getTargetMachine().getCodeModel();
7106 if (Subtarget->isPICStyleRIPRel() &&
7107 (M == CodeModel::Small || M == CodeModel::Kernel))
7108 WrapperKind = X86ISD::WrapperRIP;
7109 else if (Subtarget->isPICStyleGOT())
7110 OpFlag = X86II::MO_GOTOFF;
7111 else if (Subtarget->isPICStyleStubPIC())
7112 OpFlag = X86II::MO_PIC_BASE_OFFSET;
7114 SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7116 CP->getOffset(), OpFlag);
7117 DebugLoc DL = CP->getDebugLoc();
7118 Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7119 // With PIC, the address is actually $g + Offset.
7121 Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7122 DAG.getNode(X86ISD::GlobalBaseReg,
7123 DebugLoc(), getPointerTy()),
7130 SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7131 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7133 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7135 unsigned char OpFlag = 0;
7136 unsigned WrapperKind = X86ISD::Wrapper;
7137 CodeModel::Model M = getTargetMachine().getCodeModel();
7139 if (Subtarget->isPICStyleRIPRel() &&
7140 (M == CodeModel::Small || M == CodeModel::Kernel))
7141 WrapperKind = X86ISD::WrapperRIP;
7142 else if (Subtarget->isPICStyleGOT())
7143 OpFlag = X86II::MO_GOTOFF;
7144 else if (Subtarget->isPICStyleStubPIC())
7145 OpFlag = X86II::MO_PIC_BASE_OFFSET;
7147 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7149 DebugLoc DL = JT->getDebugLoc();
7150 Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7152 // With PIC, the address is actually $g + Offset.
7154 Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7155 DAG.getNode(X86ISD::GlobalBaseReg,
7156 DebugLoc(), getPointerTy()),
7163 X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7164 const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7166 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7168 unsigned char OpFlag = 0;
7169 unsigned WrapperKind = X86ISD::Wrapper;
7170 CodeModel::Model M = getTargetMachine().getCodeModel();
7172 if (Subtarget->isPICStyleRIPRel() &&
7173 (M == CodeModel::Small || M == CodeModel::Kernel)) {
7174 if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7175 OpFlag = X86II::MO_GOTPCREL;
7176 WrapperKind = X86ISD::WrapperRIP;
7177 } else if (Subtarget->isPICStyleGOT()) {
7178 OpFlag = X86II::MO_GOT;
7179 } else if (Subtarget->isPICStyleStubPIC()) {
7180 OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7181 } else if (Subtarget->isPICStyleStubNoDynamic()) {
7182 OpFlag = X86II::MO_DARWIN_NONLAZY;
7185 SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7187 DebugLoc DL = Op.getDebugLoc();
7188 Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7191 // With PIC, the address is actually $g + Offset.
7192 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7193 !Subtarget->is64Bit()) {
7194 Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7195 DAG.getNode(X86ISD::GlobalBaseReg,
7196 DebugLoc(), getPointerTy()),
7200 // For symbols that require a load from a stub to get the address, emit the
7202 if (isGlobalStubReference(OpFlag))
7203 Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7204 MachinePointerInfo::getGOT(), false, false, false, 0);
7210 X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7211 // Create the TargetBlockAddressAddress node.
7212 unsigned char OpFlags =
7213 Subtarget->ClassifyBlockAddressReference();
7214 CodeModel::Model M = getTargetMachine().getCodeModel();
7215 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7216 DebugLoc dl = Op.getDebugLoc();
7217 SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
7218 /*isTarget=*/true, OpFlags);
7220 if (Subtarget->isPICStyleRIPRel() &&
7221 (M == CodeModel::Small || M == CodeModel::Kernel))
7222 Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7224 Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7226 // With PIC, the address is actually $g + Offset.
7227 if (isGlobalRelativeToPICBase(OpFlags)) {
7228 Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7229 DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7237 X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7239 SelectionDAG &DAG) const {
7240 // Create the TargetGlobalAddress node, folding in the constant
7241 // offset if it is legal.
7242 unsigned char OpFlags =
7243 Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7244 CodeModel::Model M = getTargetMachine().getCodeModel();
7246 if (OpFlags == X86II::MO_NO_FLAG &&
7247 X86::isOffsetSuitableForCodeModel(Offset, M)) {
7248 // A direct static reference to a global.
7249 Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7252 Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7255 if (Subtarget->isPICStyleRIPRel() &&
7256 (M == CodeModel::Small || M == CodeModel::Kernel))
7257 Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7259 Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7261 // With PIC, the address is actually $g + Offset.
7262 if (isGlobalRelativeToPICBase(OpFlags)) {
7263 Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7264 DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7268 // For globals that require a load from a stub to get the address, emit the
7270 if (isGlobalStubReference(OpFlags))
7271 Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7272 MachinePointerInfo::getGOT(), false, false, false, 0);
7274 // If there was a non-zero offset that we didn't fold, create an explicit
7277 Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7278 DAG.getConstant(Offset, getPointerTy()));
7284 X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7285 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7286 int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7287 return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7291 GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7292 SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7293 unsigned char OperandFlags) {
7294 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7295 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7296 DebugLoc dl = GA->getDebugLoc();
7297 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7298 GA->getValueType(0),
7302 SDValue Ops[] = { Chain, TGA, *InFlag };
7303 Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
7305 SDValue Ops[] = { Chain, TGA };
7306 Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
7309 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7310 MFI->setAdjustsStack(true);
7312 SDValue Flag = Chain.getValue(1);
7313 return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7316 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7318 LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7321 DebugLoc dl = GA->getDebugLoc(); // ? function entry point might be better
7322 SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7323 DAG.getNode(X86ISD::GlobalBaseReg,
7324 DebugLoc(), PtrVT), InFlag);
7325 InFlag = Chain.getValue(1);
7327 return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7330 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7332 LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7334 return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7335 X86::RAX, X86II::MO_TLSGD);
7338 // Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
7339 // "local exec" model.
7340 static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7341 const EVT PtrVT, TLSModel::Model model,
7343 DebugLoc dl = GA->getDebugLoc();
7345 // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7346 Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7347 is64Bit ? 257 : 256));
7349 SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7350 DAG.getIntPtrConstant(0),
7351 MachinePointerInfo(Ptr),
7352 false, false, false, 0);
7354 unsigned char OperandFlags = 0;
7355 // Most TLS accesses are not RIP relative, even on x86-64. One exception is
7357 unsigned WrapperKind = X86ISD::Wrapper;
7358 if (model == TLSModel::LocalExec) {
7359 OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7360 } else if (is64Bit) {
7361 assert(model == TLSModel::InitialExec);
7362 OperandFlags = X86II::MO_GOTTPOFF;
7363 WrapperKind = X86ISD::WrapperRIP;
7365 assert(model == TLSModel::InitialExec);
7366 OperandFlags = X86II::MO_INDNTPOFF;
7369 // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
7371 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7372 GA->getValueType(0),
7373 GA->getOffset(), OperandFlags);
7374 SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7376 if (model == TLSModel::InitialExec)
7377 Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7378 MachinePointerInfo::getGOT(), false, false, false, 0);
7380 // The address of the thread local variable is the add of the thread
7381 // pointer with the offset of the variable.
7382 return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7386 X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7388 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7389 const GlobalValue *GV = GA->getGlobal();
7391 if (Subtarget->isTargetELF()) {
7392 // TODO: implement the "local dynamic" model
7393 // TODO: implement the "initial exec"model for pic executables
7395 // If GV is an alias then use the aliasee for determining
7396 // thread-localness.
7397 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7398 GV = GA->resolveAliasedGlobal(false);
7400 TLSModel::Model model
7401 = getTLSModel(GV, getTargetMachine().getRelocationModel());
7404 case TLSModel::GeneralDynamic:
7405 case TLSModel::LocalDynamic: // not implemented
7406 if (Subtarget->is64Bit())
7407 return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7408 return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7410 case TLSModel::InitialExec:
7411 case TLSModel::LocalExec:
7412 return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7413 Subtarget->is64Bit());
7415 } else if (Subtarget->isTargetDarwin()) {
7416 // Darwin only has one model of TLS. Lower to that.
7417 unsigned char OpFlag = 0;
7418 unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7419 X86ISD::WrapperRIP : X86ISD::Wrapper;
7421 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7423 bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7424 !Subtarget->is64Bit();
7426 OpFlag = X86II::MO_TLVP_PIC_BASE;
7428 OpFlag = X86II::MO_TLVP;
7429 DebugLoc DL = Op.getDebugLoc();
7430 SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7431 GA->getValueType(0),
7432 GA->getOffset(), OpFlag);
7433 SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7435 // With PIC32, the address is actually $g + Offset.
7437 Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7438 DAG.getNode(X86ISD::GlobalBaseReg,
7439 DebugLoc(), getPointerTy()),
7442 // Lowering the machine isd will make sure everything is in the right
7444 SDValue Chain = DAG.getEntryNode();
7445 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7446 SDValue Args[] = { Chain, Offset };
7447 Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7449 // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7450 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7451 MFI->setAdjustsStack(true);
7453 // And our return value (tls address) is in the standard call return value
7455 unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7456 return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7461 "TLS not implemented for this target.");
7463 llvm_unreachable("Unreachable");
7468 /// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values and
7469 /// take a 2 x i32 value to shift plus a shift amount.
7470 SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const {
7471 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7472 EVT VT = Op.getValueType();
7473 unsigned VTBits = VT.getSizeInBits();
7474 DebugLoc dl = Op.getDebugLoc();
7475 bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7476 SDValue ShOpLo = Op.getOperand(0);
7477 SDValue ShOpHi = Op.getOperand(1);
7478 SDValue ShAmt = Op.getOperand(2);
7479 SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7480 DAG.getConstant(VTBits - 1, MVT::i8))
7481 : DAG.getConstant(0, VT);
7484 if (Op.getOpcode() == ISD::SHL_PARTS) {
7485 Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7486 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7488 Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7489 Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7492 SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7493 DAG.getConstant(VTBits, MVT::i8));
7494 SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7495 AndNode, DAG.getConstant(0, MVT::i8));
7498 SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7499 SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7500 SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7502 if (Op.getOpcode() == ISD::SHL_PARTS) {
7503 Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7504 Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7506 Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7507 Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7510 SDValue Ops[2] = { Lo, Hi };
7511 return DAG.getMergeValues(Ops, 2, dl);
7514 SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7515 SelectionDAG &DAG) const {
7516 EVT SrcVT = Op.getOperand(0).getValueType();
7518 if (SrcVT.isVector())
7521 assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7522 "Unknown SINT_TO_FP to lower!");
7524 // These are really Legal; return the operand so the caller accepts it as
7526 if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7528 if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7529 Subtarget->is64Bit()) {
7533 DebugLoc dl = Op.getDebugLoc();
7534 unsigned Size = SrcVT.getSizeInBits()/8;
7535 MachineFunction &MF = DAG.getMachineFunction();
7536 int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7537 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7538 SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7540 MachinePointerInfo::getFixedStack(SSFI),
7542 return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7545 SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7547 SelectionDAG &DAG) const {
7549 DebugLoc DL = Op.getDebugLoc();
7551 bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7553 Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7555 Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7557 unsigned ByteSize = SrcVT.getSizeInBits()/8;
7559 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7560 MachineMemOperand *MMO;
7562 int SSFI = FI->getIndex();
7564 DAG.getMachineFunction()
7565 .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7566 MachineMemOperand::MOLoad, ByteSize, ByteSize);
7568 MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7569 StackSlot = StackSlot.getOperand(1);
7571 SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7572 SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7574 Tys, Ops, array_lengthof(Ops),
7578 Chain = Result.getValue(1);
7579 SDValue InFlag = Result.getValue(2);
7581 // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7582 // shouldn't be necessary except that RFP cannot be live across
7583 // multiple blocks. When stackifier is fixed, they can be uncoupled.
7584 MachineFunction &MF = DAG.getMachineFunction();
7585 unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7586 int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7587 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7588 Tys = DAG.getVTList(MVT::Other);
7590 Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7592 MachineMemOperand *MMO =
7593 DAG.getMachineFunction()
7594 .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7595 MachineMemOperand::MOStore, SSFISize, SSFISize);
7597 Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7598 Ops, array_lengthof(Ops),
7599 Op.getValueType(), MMO);
7600 Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7601 MachinePointerInfo::getFixedStack(SSFI),
7602 false, false, false, 0);
7608 // LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7609 SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7610 SelectionDAG &DAG) const {
7611 // This algorithm is not obvious. Here it is in C code, more or less:
7613 double uint64_to_double( uint32_t hi, uint32_t lo ) {
7614 static const __m128i exp = { 0x4330000045300000ULL, 0 };
7615 static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
7617 // Copy ints to xmm registers.
7618 __m128i xh = _mm_cvtsi32_si128( hi );
7619 __m128i xl = _mm_cvtsi32_si128( lo );
7621 // Combine into low half of a single xmm register.
7622 __m128i x = _mm_unpacklo_epi32( xh, xl );
7626 // Merge in appropriate exponents to give the integer bits the right
7628 x = _mm_unpacklo_epi32( x, exp );
7630 // Subtract away the biases to deal with the IEEE-754 double precision
7632 d = _mm_sub_pd( (__m128d) x, bias );
7634 // All conversions up to here are exact. The correctly rounded result is
7635 // calculated using the current rounding mode using the following
7637 d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
7638 _mm_store_sd( &sd, d ); // Because we are returning doubles in XMM, this
7639 // store doesn't really need to be here (except
7640 // maybe to zero the other double)
7645 DebugLoc dl = Op.getDebugLoc();
7646 LLVMContext *Context = DAG.getContext();
7648 // Build some magic constants.
7649 SmallVector<Constant*,4> CV0;
7650 CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
7651 CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
7652 CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7653 CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7654 Constant *C0 = ConstantVector::get(CV0);
7655 SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7657 SmallVector<Constant*,2> CV1;
7659 ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7661 ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7662 Constant *C1 = ConstantVector::get(CV1);
7663 SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7665 SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7666 DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7668 DAG.getIntPtrConstant(1)));
7669 SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7670 DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7672 DAG.getIntPtrConstant(0)));
7673 SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
7674 SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7675 MachinePointerInfo::getConstantPool(),
7676 false, false, false, 16);
7677 SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
7678 SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck2);
7679 SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7680 MachinePointerInfo::getConstantPool(),
7681 false, false, false, 16);
7682 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7684 // Add the halves; easiest way is to swap them into another reg first.
7685 int ShufMask[2] = { 1, -1 };
7686 SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
7687 DAG.getUNDEF(MVT::v2f64), ShufMask);
7688 SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
7689 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
7690 DAG.getIntPtrConstant(0));
7693 // LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7694 SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7695 SelectionDAG &DAG) const {
7696 DebugLoc dl = Op.getDebugLoc();
7697 // FP constant to bias correct the final result.
7698 SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7701 // Load the 32-bit value into an XMM register.
7702 SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7705 // Zero out the upper parts of the register.
7706 Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget->hasXMMInt(),
7709 Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7710 DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7711 DAG.getIntPtrConstant(0));
7713 // Or the load with the bias.
7714 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7715 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7716 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7718 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7719 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7720 MVT::v2f64, Bias)));
7721 Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7722 DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7723 DAG.getIntPtrConstant(0));
7725 // Subtract the bias.
7726 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7728 // Handle final rounding.
7729 EVT DestVT = Op.getValueType();
7731 if (DestVT.bitsLT(MVT::f64)) {
7732 return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7733 DAG.getIntPtrConstant(0));
7734 } else if (DestVT.bitsGT(MVT::f64)) {
7735 return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7738 // Handle final rounding.
7742 SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7743 SelectionDAG &DAG) const {
7744 SDValue N0 = Op.getOperand(0);
7745 DebugLoc dl = Op.getDebugLoc();
7747 // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7748 // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7749 // the optimization here.
7750 if (DAG.SignBitIsZero(N0))
7751 return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7753 EVT SrcVT = N0.getValueType();
7754 EVT DstVT = Op.getValueType();
7755 if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7756 return LowerUINT_TO_FP_i64(Op, DAG);
7757 else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7758 return LowerUINT_TO_FP_i32(Op, DAG);
7760 // Make a 64-bit buffer, and use it to build an FILD.
7761 SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7762 if (SrcVT == MVT::i32) {
7763 SDValue WordOff = DAG.getConstant(4, getPointerTy());
7764 SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7765 getPointerTy(), StackSlot, WordOff);
7766 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7767 StackSlot, MachinePointerInfo(),
7769 SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7770 OffsetSlot, MachinePointerInfo(),
7772 SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7776 assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7777 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7778 StackSlot, MachinePointerInfo(),
7780 // For i64 source, we need to add the appropriate power of 2 if the input
7781 // was negative. This is the same as the optimization in
7782 // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7783 // we must be careful to do the computation in x87 extended precision, not
7784 // in SSE. (The generic code can't know it's OK to do this, or how to.)
7785 int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7786 MachineMemOperand *MMO =
7787 DAG.getMachineFunction()
7788 .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7789 MachineMemOperand::MOLoad, 8, 8);
7791 SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7792 SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7793 SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7796 APInt FF(32, 0x5F800000ULL);
7798 // Check whether the sign bit is set.
7799 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7800 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7803 // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7804 SDValue FudgePtr = DAG.getConstantPool(
7805 ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7808 // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7809 SDValue Zero = DAG.getIntPtrConstant(0);
7810 SDValue Four = DAG.getIntPtrConstant(4);
7811 SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7813 FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7815 // Load the value out, extending it from f32 to f80.
7816 // FIXME: Avoid the extend by constructing the right constant pool?
7817 SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7818 FudgePtr, MachinePointerInfo::getConstantPool(),
7819 MVT::f32, false, false, 4);
7820 // Extend everything to 80 bits to force it to be done on x87.
7821 SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7822 return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7825 std::pair<SDValue,SDValue> X86TargetLowering::
7826 FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
7827 DebugLoc DL = Op.getDebugLoc();
7829 EVT DstTy = Op.getValueType();
7832 assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7836 assert(DstTy.getSimpleVT() <= MVT::i64 &&
7837 DstTy.getSimpleVT() >= MVT::i16 &&
7838 "Unknown FP_TO_SINT to lower!");
7840 // These are really Legal.
7841 if (DstTy == MVT::i32 &&
7842 isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7843 return std::make_pair(SDValue(), SDValue());
7844 if (Subtarget->is64Bit() &&
7845 DstTy == MVT::i64 &&
7846 isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7847 return std::make_pair(SDValue(), SDValue());
7849 // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
7851 MachineFunction &MF = DAG.getMachineFunction();
7852 unsigned MemSize = DstTy.getSizeInBits()/8;
7853 int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7854 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7859 switch (DstTy.getSimpleVT().SimpleTy) {
7860 default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7861 case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7862 case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7863 case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7866 SDValue Chain = DAG.getEntryNode();
7867 SDValue Value = Op.getOperand(0);
7868 EVT TheVT = Op.getOperand(0).getValueType();
7869 if (isScalarFPTypeInSSEReg(TheVT)) {
7870 assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7871 Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7872 MachinePointerInfo::getFixedStack(SSFI),
7874 SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7876 Chain, StackSlot, DAG.getValueType(TheVT)
7879 MachineMemOperand *MMO =
7880 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7881 MachineMemOperand::MOLoad, MemSize, MemSize);
7882 Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7884 Chain = Value.getValue(1);
7885 SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7886 StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7889 MachineMemOperand *MMO =
7890 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7891 MachineMemOperand::MOStore, MemSize, MemSize);
7893 // Build the FP_TO_INT*_IN_MEM
7894 SDValue Ops[] = { Chain, Value, StackSlot };
7895 SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7896 Ops, 3, DstTy, MMO);
7898 return std::make_pair(FIST, StackSlot);
7901 SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7902 SelectionDAG &DAG) const {
7903 if (Op.getValueType().isVector())
7906 std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
7907 SDValue FIST = Vals.first, StackSlot = Vals.second;
7908 // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7909 if (FIST.getNode() == 0) return Op;
7912 return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7913 FIST, StackSlot, MachinePointerInfo(),
7914 false, false, false, 0);
7917 SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7918 SelectionDAG &DAG) const {
7919 std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
7920 SDValue FIST = Vals.first, StackSlot = Vals.second;
7921 assert(FIST.getNode() && "Unexpected failure");
7924 return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7925 FIST, StackSlot, MachinePointerInfo(),
7926 false, false, false, 0);
7929 SDValue X86TargetLowering::LowerFABS(SDValue Op,
7930 SelectionDAG &DAG) const {
7931 LLVMContext *Context = DAG.getContext();
7932 DebugLoc dl = Op.getDebugLoc();
7933 EVT VT = Op.getValueType();
7936 EltVT = VT.getVectorElementType();
7937 SmallVector<Constant*,4> CV;
7938 if (EltVT == MVT::f64) {
7939 Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
7942 Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
7945 Constant *C = ConstantVector::get(CV);
7946 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7947 SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7948 MachinePointerInfo::getConstantPool(),
7949 false, false, false, 16);
7950 return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
7953 SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
7954 LLVMContext *Context = DAG.getContext();
7955 DebugLoc dl = Op.getDebugLoc();
7956 EVT VT = Op.getValueType();
7958 unsigned NumElts = VT == MVT::f64 ? 2 : 4;
7959 if (VT.isVector()) {
7960 EltVT = VT.getVectorElementType();
7961 NumElts = VT.getVectorNumElements();
7963 SmallVector<Constant*,8> CV;
7964 if (EltVT == MVT::f64) {
7965 Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
7966 CV.assign(NumElts, C);
7968 Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
7969 CV.assign(NumElts, C);
7971 Constant *C = ConstantVector::get(CV);
7972 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7973 SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7974 MachinePointerInfo::getConstantPool(),
7975 false, false, false, 16);
7976 if (VT.isVector()) {
7977 MVT XORVT = VT.getSizeInBits() == 128 ? MVT::v2i64 : MVT::v4i64;
7978 return DAG.getNode(ISD::BITCAST, dl, VT,
7979 DAG.getNode(ISD::XOR, dl, XORVT,
7980 DAG.getNode(ISD::BITCAST, dl, XORVT,
7982 DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
7984 return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
7988 SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
7989 LLVMContext *Context = DAG.getContext();
7990 SDValue Op0 = Op.getOperand(0);
7991 SDValue Op1 = Op.getOperand(1);
7992 DebugLoc dl = Op.getDebugLoc();
7993 EVT VT = Op.getValueType();
7994 EVT SrcVT = Op1.getValueType();
7996 // If second operand is smaller, extend it first.
7997 if (SrcVT.bitsLT(VT)) {
7998 Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
8001 // And if it is bigger, shrink it first.
8002 if (SrcVT.bitsGT(VT)) {
8003 Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
8007 // At this point the operands and the result should have the same
8008 // type, and that won't be f80 since that is not custom lowered.
8010 // First get the sign bit of second operand.
8011 SmallVector<Constant*,4> CV;
8012 if (SrcVT == MVT::f64) {
8013 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
8014 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8016 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
8017 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8018 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8019 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8021 Constant *C = ConstantVector::get(CV);
8022 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8023 SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
8024 MachinePointerInfo::getConstantPool(),
8025 false, false, false, 16);
8026 SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
8028 // Shift sign bit right or left if the two operands have different types.
8029 if (SrcVT.bitsGT(VT)) {
8030 // Op0 is MVT::f32, Op1 is MVT::f64.
8031 SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
8032 SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
8033 DAG.getConstant(32, MVT::i32));
8034 SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
8035 SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
8036 DAG.getIntPtrConstant(0));
8039 // Clear first operand sign bit.
8041 if (VT == MVT::f64) {
8042 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8043 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8045 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8046 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8047 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8048 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8050 C = ConstantVector::get(CV);
8051 CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8052 SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8053 MachinePointerInfo::getConstantPool(),
8054 false, false, false, 16);
8055 SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8057 // Or the value with the sign bit.
8058 return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8061 SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
8062 SDValue N0 = Op.getOperand(0);
8063 DebugLoc dl = Op.getDebugLoc();
8064 EVT VT = Op.getValueType();
8066 // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8067 SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8068 DAG.getConstant(1, VT));
8069 return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8072 /// Emit nodes that will be selected as "test Op0,Op0", or something
8074 SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8075 SelectionDAG &DAG) const {
8076 DebugLoc dl = Op.getDebugLoc();
8078 // CF and OF aren't always set the way we want. Determine which
8079 // of these we need.
8080 bool NeedCF = false;
8081 bool NeedOF = false;
8084 case X86::COND_A: case X86::COND_AE:
8085 case X86::COND_B: case X86::COND_BE:
8088 case X86::COND_G: case X86::COND_GE:
8089 case X86::COND_L: case X86::COND_LE:
8090 case X86::COND_O: case X86::COND_NO:
8095 // See if we can use the EFLAGS value from the operand instead of
8096 // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8097 // we prove that the arithmetic won't overflow, we can't use OF or CF.
8098 if (Op.getResNo() != 0 || NeedOF || NeedCF)
8099 // Emit a CMP with 0, which is the TEST pattern.
8100 return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8101 DAG.getConstant(0, Op.getValueType()));
8103 unsigned Opcode = 0;
8104 unsigned NumOperands = 0;
8105 switch (Op.getNode()->getOpcode()) {
8107 // Due to an isel shortcoming, be conservative if this add is likely to be
8108 // selected as part of a load-modify-store instruction. When the root node
8109 // in a match is a store, isel doesn't know how to remap non-chain non-flag
8110 // uses of other nodes in the match, such as the ADD in this case. This
8111 // leads to the ADD being left around and reselected, with the result being
8112 // two adds in the output. Alas, even if none our users are stores, that
8113 // doesn't prove we're O.K. Ergo, if we have any parents that aren't
8114 // CopyToReg or SETCC, eschew INC/DEC. A better fix seems to require
8115 // climbing the DAG back to the root, and it doesn't seem to be worth the
8117 for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8118 UE = Op.getNode()->use_end(); UI != UE; ++UI)
8119 if (UI->getOpcode() != ISD::CopyToReg &&
8120 UI->getOpcode() != ISD::SETCC &&
8121 UI->getOpcode() != ISD::STORE)
8124 if (ConstantSDNode *C =
8125 dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
8126 // An add of one will be selected as an INC.
8127 if (C->getAPIntValue() == 1) {
8128 Opcode = X86ISD::INC;
8133 // An add of negative one (subtract of one) will be selected as a DEC.
8134 if (C->getAPIntValue().isAllOnesValue()) {
8135 Opcode = X86ISD::DEC;
8141 // Otherwise use a regular EFLAGS-setting add.
8142 Opcode = X86ISD::ADD;
8146 // If the primary and result isn't used, don't bother using X86ISD::AND,
8147 // because a TEST instruction will be better.
8148 bool NonFlagUse = false;
8149 for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8150 UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8152 unsigned UOpNo = UI.getOperandNo();
8153 if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8154 // Look pass truncate.
8155 UOpNo = User->use_begin().getOperandNo();
8156 User = *User->use_begin();
8159 if (User->getOpcode() != ISD::BRCOND &&
8160 User->getOpcode() != ISD::SETCC &&
8161 (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
8174 // Due to the ISEL shortcoming noted above, be conservative if this op is
8175 // likely to be selected as part of a load-modify-store instruction.
8176 for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8177 UE = Op.getNode()->use_end(); UI != UE; ++UI)
8178 if (UI->getOpcode() == ISD::STORE)
8181 // Otherwise use a regular EFLAGS-setting instruction.
8182 switch (Op.getNode()->getOpcode()) {
8183 default: llvm_unreachable("unexpected operator!");
8184 case ISD::SUB: Opcode = X86ISD::SUB; break;
8185 case ISD::OR: Opcode = X86ISD::OR; break;
8186 case ISD::XOR: Opcode = X86ISD::XOR; break;
8187 case ISD::AND: Opcode = X86ISD::AND; break;
8199 return SDValue(Op.getNode(), 1);
8206 // Emit a CMP with 0, which is the TEST pattern.
8207 return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8208 DAG.getConstant(0, Op.getValueType()));
8210 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8211 SmallVector<SDValue, 4> Ops;
8212 for (unsigned i = 0; i != NumOperands; ++i)
8213 Ops.push_back(Op.getOperand(i));
8215 SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8216 DAG.ReplaceAllUsesWith(Op, New);
8217 return SDValue(New.getNode(), 1);
8220 /// Emit nodes that will be selected as "cmp Op0,Op1", or something
8222 SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8223 SelectionDAG &DAG) const {
8224 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8225 if (C->getAPIntValue() == 0)
8226 return EmitTest(Op0, X86CC, DAG);
8228 DebugLoc dl = Op0.getDebugLoc();
8229 return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8232 /// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8233 /// if it's possible.
8234 SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8235 DebugLoc dl, SelectionDAG &DAG) const {
8236 SDValue Op0 = And.getOperand(0);
8237 SDValue Op1 = And.getOperand(1);
8238 if (Op0.getOpcode() == ISD::TRUNCATE)
8239 Op0 = Op0.getOperand(0);
8240 if (Op1.getOpcode() == ISD::TRUNCATE)
8241 Op1 = Op1.getOperand(0);
8244 if (Op1.getOpcode() == ISD::SHL)
8245 std::swap(Op0, Op1);
8246 if (Op0.getOpcode() == ISD::SHL) {
8247 if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8248 if (And00C->getZExtValue() == 1) {
8249 // If we looked past a truncate, check that it's only truncating away
8251 unsigned BitWidth = Op0.getValueSizeInBits();
8252 unsigned AndBitWidth = And.getValueSizeInBits();
8253 if (BitWidth > AndBitWidth) {
8254 APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
8255 DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
8256 if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8260 RHS = Op0.getOperand(1);
8262 } else if (Op1.getOpcode() == ISD::Constant) {
8263 ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8264 uint64_t AndRHSVal = AndRHS->getZExtValue();
8265 SDValue AndLHS = Op0;
8267 if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
8268 LHS = AndLHS.getOperand(0);
8269 RHS = AndLHS.getOperand(1);
8272 // Use BT if the immediate can't be encoded in a TEST instruction.
8273 if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
8275 RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
8279 if (LHS.getNode()) {
8280 // If LHS is i8, promote it to i32 with any_extend. There is no i8 BT
8281 // instruction. Since the shift amount is in-range-or-undefined, we know
8282 // that doing a bittest on the i32 value is ok. We extend to i32 because
8283 // the encoding for the i16 version is larger than the i32 version.
8284 // Also promote i16 to i32 for performance / code size reason.
8285 if (LHS.getValueType() == MVT::i8 ||
8286 LHS.getValueType() == MVT::i16)
8287 LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8289 // If the operand types disagree, extend the shift amount to match. Since
8290 // BT ignores high bits (like shifts) we can use anyextend.
8291 if (LHS.getValueType() != RHS.getValueType())
8292 RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8294 SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8295 unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8296 return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8297 DAG.getConstant(Cond, MVT::i8), BT);
8303 SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8305 if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8307 assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8308 SDValue Op0 = Op.getOperand(0);
8309 SDValue Op1 = Op.getOperand(1);
8310 DebugLoc dl = Op.getDebugLoc();
8311 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8313 // Optimize to BT if possible.
8314 // Lower (X & (1 << N)) == 0 to BT(X, N).
8315 // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8316 // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8317 if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8318 Op1.getOpcode() == ISD::Constant &&
8319 cast<ConstantSDNode>(Op1)->isNullValue() &&
8320 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8321 SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8322 if (NewSetCC.getNode())
8326 // Look for X == 0, X == 1, X != 0, or X != 1. We can simplify some forms of
8328 if (Op1.getOpcode() == ISD::Constant &&
8329 (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8330 cast<ConstantSDNode>(Op1)->isNullValue()) &&
8331 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8333 // If the input is a setcc, then reuse the input setcc or use a new one with
8334 // the inverted condition.
8335 if (Op0.getOpcode() == X86ISD::SETCC) {
8336 X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8337 bool Invert = (CC == ISD::SETNE) ^
8338 cast<ConstantSDNode>(Op1)->isNullValue();
8339 if (!Invert) return Op0;
8341 CCode = X86::GetOppositeBranchCondition(CCode);
8342 return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8343 DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8347 bool isFP = Op1.getValueType().isFloatingPoint();
8348 unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8349 if (X86CC == X86::COND_INVALID)
8352 SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8353 return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8354 DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8357 // Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8358 // ones, and then concatenate the result back.
8359 static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8360 EVT VT = Op.getValueType();
8362 assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC &&
8363 "Unsupported value type for operation");
8365 int NumElems = VT.getVectorNumElements();
8366 DebugLoc dl = Op.getDebugLoc();
8367 SDValue CC = Op.getOperand(2);
8368 SDValue Idx0 = DAG.getConstant(0, MVT::i32);
8369 SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
8371 // Extract the LHS vectors
8372 SDValue LHS = Op.getOperand(0);
8373 SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
8374 SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
8376 // Extract the RHS vectors
8377 SDValue RHS = Op.getOperand(1);
8378 SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
8379 SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
8381 // Issue the operation on the smaller types and concatenate the result back
8382 MVT EltVT = VT.getVectorElementType().getSimpleVT();
8383 EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8384 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8385 DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8386 DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8390 SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8392 SDValue Op0 = Op.getOperand(0);
8393 SDValue Op1 = Op.getOperand(1);
8394 SDValue CC = Op.getOperand(2);
8395 EVT VT = Op.getValueType();
8396 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8397 bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8398 DebugLoc dl = Op.getDebugLoc();
8402 EVT EltVT = Op0.getValueType().getVectorElementType();
8403 assert(EltVT == MVT::f32 || EltVT == MVT::f64);
8405 unsigned Opc = EltVT == MVT::f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
8408 // SSE Condition code mapping:
8417 switch (SetCCOpcode) {
8420 case ISD::SETEQ: SSECC = 0; break;
8422 case ISD::SETGT: Swap = true; // Fallthrough
8424 case ISD::SETOLT: SSECC = 1; break;
8426 case ISD::SETGE: Swap = true; // Fallthrough
8428 case ISD::SETOLE: SSECC = 2; break;
8429 case ISD::SETUO: SSECC = 3; break;
8431 case ISD::SETNE: SSECC = 4; break;
8432 case ISD::SETULE: Swap = true;
8433 case ISD::SETUGE: SSECC = 5; break;
8434 case ISD::SETULT: Swap = true;
8435 case ISD::SETUGT: SSECC = 6; break;
8436 case ISD::SETO: SSECC = 7; break;
8439 std::swap(Op0, Op1);
8441 // In the two special cases we can't handle, emit two comparisons.
8443 if (SetCCOpcode == ISD::SETUEQ) {
8445 UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
8446 EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
8447 return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
8448 } else if (SetCCOpcode == ISD::SETONE) {
8450 ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
8451 NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
8452 return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
8454 llvm_unreachable("Illegal FP comparison");
8456 // Handle all other FP comparisons here.
8457 return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
8460 // Break 256-bit integer vector compare into smaller ones.
8461 if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
8462 return Lower256IntVSETCC(Op, DAG);
8464 // We are handling one of the integer comparisons here. Since SSE only has
8465 // GT and EQ comparisons for integer, swapping operands and multiple
8466 // operations may be required for some comparisons.
8467 unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
8468 bool Swap = false, Invert = false, FlipSigns = false;
8470 switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
8472 case MVT::i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
8473 case MVT::i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
8474 case MVT::i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
8475 case MVT::i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
8478 switch (SetCCOpcode) {
8480 case ISD::SETNE: Invert = true;
8481 case ISD::SETEQ: Opc = EQOpc; break;
8482 case ISD::SETLT: Swap = true;
8483 case ISD::SETGT: Opc = GTOpc; break;
8484 case ISD::SETGE: Swap = true;
8485 case ISD::SETLE: Opc = GTOpc; Invert = true; break;
8486 case ISD::SETULT: Swap = true;
8487 case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
8488 case ISD::SETUGE: Swap = true;
8489 case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
8492 std::swap(Op0, Op1);
8494 // Check that the operation in question is available (most are plain SSE2,
8495 // but PCMPGTQ and PCMPEQQ have different requirements).
8496 if (Opc == X86ISD::PCMPGTQ && !Subtarget->hasSSE42orAVX())
8498 if (Opc == X86ISD::PCMPEQQ && !Subtarget->hasSSE41orAVX())
8501 // Since SSE has no unsigned integer comparisons, we need to flip the sign
8502 // bits of the inputs before performing those operations.
8504 EVT EltVT = VT.getVectorElementType();
8505 SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8507 std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8508 SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8510 Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8511 Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8514 SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8516 // If the logical-not of the result is required, perform that now.
8518 Result = DAG.getNOT(dl, Result, VT);
8523 // isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8524 static bool isX86LogicalCmp(SDValue Op) {
8525 unsigned Opc = Op.getNode()->getOpcode();
8526 if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
8528 if (Op.getResNo() == 1 &&
8529 (Opc == X86ISD::ADD ||
8530 Opc == X86ISD::SUB ||
8531 Opc == X86ISD::ADC ||
8532 Opc == X86ISD::SBB ||
8533 Opc == X86ISD::SMUL ||
8534 Opc == X86ISD::UMUL ||
8535 Opc == X86ISD::INC ||
8536 Opc == X86ISD::DEC ||
8537 Opc == X86ISD::OR ||
8538 Opc == X86ISD::XOR ||
8539 Opc == X86ISD::AND))
8542 if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8548 static bool isZero(SDValue V) {
8549 ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8550 return C && C->isNullValue();
8553 static bool isAllOnes(SDValue V) {
8554 ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8555 return C && C->isAllOnesValue();
8558 SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8559 bool addTest = true;
8560 SDValue Cond = Op.getOperand(0);
8561 SDValue Op1 = Op.getOperand(1);
8562 SDValue Op2 = Op.getOperand(2);
8563 DebugLoc DL = Op.getDebugLoc();
8566 if (Cond.getOpcode() == ISD::SETCC) {
8567 SDValue NewCond = LowerSETCC(Cond, DAG);
8568 if (NewCond.getNode())
8572 // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8573 // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8574 // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8575 // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8576 if (Cond.getOpcode() == X86ISD::SETCC &&
8577 Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8578 isZero(Cond.getOperand(1).getOperand(1))) {
8579 SDValue Cmp = Cond.getOperand(1);
8581 unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8583 if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8584 (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8585 SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8587 SDValue CmpOp0 = Cmp.getOperand(0);
8588 Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8589 CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8591 SDValue Res = // Res = 0 or -1.
8592 DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8593 DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8595 if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8596 Res = DAG.getNOT(DL, Res, Res.getValueType());
8598 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8599 if (N2C == 0 || !N2C->isNullValue())
8600 Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8605 // Look past (and (setcc_carry (cmp ...)), 1).
8606 if (Cond.getOpcode() == ISD::AND &&
8607 Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8608 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8609 if (C && C->getAPIntValue() == 1)
8610 Cond = Cond.getOperand(0);
8613 // If condition flag is set by a X86ISD::CMP, then use it as the condition
8614 // setting operand in place of the X86ISD::SETCC.
8615 unsigned CondOpcode = Cond.getOpcode();
8616 if (CondOpcode == X86ISD::SETCC ||
8617 CondOpcode == X86ISD::SETCC_CARRY) {
8618 CC = Cond.getOperand(0);
8620 SDValue Cmp = Cond.getOperand(1);
8621 unsigned Opc = Cmp.getOpcode();
8622 EVT VT = Op.getValueType();
8624 bool IllegalFPCMov = false;
8625 if (VT.isFloatingPoint() && !VT.isVector() &&
8626 !isScalarFPTypeInSSEReg(VT)) // FPStack?
8627 IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8629 if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8630 Opc == X86ISD::BT) { // FIXME
8634 } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8635 CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8636 ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8637 Cond.getOperand(0).getValueType() != MVT::i8)) {
8638 SDValue LHS = Cond.getOperand(0);
8639 SDValue RHS = Cond.getOperand(1);
8643 switch (CondOpcode) {
8644 case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8645 case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8646 case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8647 case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8648 case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8649 case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8650 default: llvm_unreachable("unexpected overflowing operator");
8652 if (CondOpcode == ISD::UMULO)
8653 VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8656 VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8658 SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
8660 if (CondOpcode == ISD::UMULO)
8661 Cond = X86Op.getValue(2);
8663 Cond = X86Op.getValue(1);
8665 CC = DAG.getConstant(X86Cond, MVT::i8);
8670 // Look pass the truncate.
8671 if (Cond.getOpcode() == ISD::TRUNCATE)
8672 Cond = Cond.getOperand(0);
8674 // We know the result of AND is compared against zero. Try to match
8676 if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8677 SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8678 if (NewSetCC.getNode()) {
8679 CC = NewSetCC.getOperand(0);
8680 Cond = NewSetCC.getOperand(1);
8687 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8688 Cond = EmitTest(Cond, X86::COND_NE, DAG);
8691 // a < b ? -1 : 0 -> RES = ~setcc_carry
8692 // a < b ? 0 : -1 -> RES = setcc_carry
8693 // a >= b ? -1 : 0 -> RES = setcc_carry
8694 // a >= b ? 0 : -1 -> RES = ~setcc_carry
8695 if (Cond.getOpcode() == X86ISD::CMP) {
8696 unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8698 if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8699 (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8700 SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8701 DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8702 if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8703 return DAG.getNOT(DL, Res, Res.getValueType());
8708 // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8709 // condition is true.
8710 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8711 SDValue Ops[] = { Op2, Op1, CC, Cond };
8712 return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8715 // isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8716 // ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8717 // from the AND / OR.
8718 static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8719 Opc = Op.getOpcode();
8720 if (Opc != ISD::OR && Opc != ISD::AND)
8722 return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8723 Op.getOperand(0).hasOneUse() &&
8724 Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8725 Op.getOperand(1).hasOneUse());
8728 // isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8729 // 1 and that the SETCC node has a single use.
8730 static bool isXor1OfSetCC(SDValue Op) {
8731 if (Op.getOpcode() != ISD::XOR)
8733 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8734 if (N1C && N1C->getAPIntValue() == 1) {
8735 return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8736 Op.getOperand(0).hasOneUse();
8741 SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8742 bool addTest = true;
8743 SDValue Chain = Op.getOperand(0);
8744 SDValue Cond = Op.getOperand(1);
8745 SDValue Dest = Op.getOperand(2);
8746 DebugLoc dl = Op.getDebugLoc();
8748 bool Inverted = false;
8750 if (Cond.getOpcode() == ISD::SETCC) {
8751 // Check for setcc([su]{add,sub,mul}o == 0).
8752 if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
8753 isa<ConstantSDNode>(Cond.getOperand(1)) &&
8754 cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
8755 Cond.getOperand(0).getResNo() == 1 &&
8756 (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
8757 Cond.getOperand(0).getOpcode() == ISD::UADDO ||
8758 Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
8759 Cond.getOperand(0).getOpcode() == ISD::USUBO ||
8760 Cond.getOperand(0).getOpcode() == ISD::SMULO ||
8761 Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
8763 Cond = Cond.getOperand(0);
8765 SDValue NewCond = LowerSETCC(Cond, DAG);
8766 if (NewCond.getNode())
8771 // FIXME: LowerXALUO doesn't handle these!!
8772 else if (Cond.getOpcode() == X86ISD::ADD ||
8773 Cond.getOpcode() == X86ISD::SUB ||
8774 Cond.getOpcode() == X86ISD::SMUL ||
8775 Cond.getOpcode() == X86ISD::UMUL)
8776 Cond = LowerXALUO(Cond, DAG);
8779 // Look pass (and (setcc_carry (cmp ...)), 1).
8780 if (Cond.getOpcode() == ISD::AND &&
8781 Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8782 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8783 if (C && C->getAPIntValue() == 1)
8784 Cond = Cond.getOperand(0);
8787 // If condition flag is set by a X86ISD::CMP, then use it as the condition
8788 // setting operand in place of the X86ISD::SETCC.
8789 unsigned CondOpcode = Cond.getOpcode();
8790 if (CondOpcode == X86ISD::SETCC ||
8791 CondOpcode == X86ISD::SETCC_CARRY) {
8792 CC = Cond.getOperand(0);
8794 SDValue Cmp = Cond.getOperand(1);
8795 unsigned Opc = Cmp.getOpcode();
8796 // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8797 if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8801 switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8805 // These can only come from an arithmetic instruction with overflow,
8806 // e.g. SADDO, UADDO.
8807 Cond = Cond.getNode()->getOperand(1);
8813 CondOpcode = Cond.getOpcode();
8814 if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8815 CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8816 ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8817 Cond.getOperand(0).getValueType() != MVT::i8)) {
8818 SDValue LHS = Cond.getOperand(0);
8819 SDValue RHS = Cond.getOperand(1);
8823 switch (CondOpcode) {
8824 case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8825 case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8826 case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8827 case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8828 case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8829 case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8830 default: llvm_unreachable("unexpected overflowing operator");
8833 X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
8834 if (CondOpcode == ISD::UMULO)
8835 VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8838 VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8840 SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
8842 if (CondOpcode == ISD::UMULO)
8843 Cond = X86Op.getValue(2);
8845 Cond = X86Op.getValue(1);
8847 CC = DAG.getConstant(X86Cond, MVT::i8);
8851 if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
8852 SDValue Cmp = Cond.getOperand(0).getOperand(1);
8853 if (CondOpc == ISD::OR) {
8854 // Also, recognize the pattern generated by an FCMP_UNE. We can emit
8855 // two branches instead of an explicit OR instruction with a
8857 if (Cmp == Cond.getOperand(1).getOperand(1) &&
8858 isX86LogicalCmp(Cmp)) {
8859 CC = Cond.getOperand(0).getOperand(0);
8860 Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8861 Chain, Dest, CC, Cmp);
8862 CC = Cond.getOperand(1).getOperand(0);
8866 } else { // ISD::AND
8867 // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
8868 // two branches instead of an explicit AND instruction with a
8869 // separate test. However, we only do this if this block doesn't
8870 // have a fall-through edge, because this requires an explicit
8871 // jmp when the condition is false.
8872 if (Cmp == Cond.getOperand(1).getOperand(1) &&
8873 isX86LogicalCmp(Cmp) &&
8874 Op.getNode()->hasOneUse()) {
8875 X86::CondCode CCode =
8876 (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8877 CCode = X86::GetOppositeBranchCondition(CCode);
8878 CC = DAG.getConstant(CCode, MVT::i8);
8879 SDNode *User = *Op.getNode()->use_begin();
8880 // Look for an unconditional branch following this conditional branch.
8881 // We need this because we need to reverse the successors in order
8882 // to implement FCMP_OEQ.
8883 if (User->getOpcode() == ISD::BR) {
8884 SDValue FalseBB = User->getOperand(1);
8886 DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8887 assert(NewBR == User);
8891 Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8892 Chain, Dest, CC, Cmp);
8893 X86::CondCode CCode =
8894 (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
8895 CCode = X86::GetOppositeBranchCondition(CCode);
8896 CC = DAG.getConstant(CCode, MVT::i8);
8902 } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
8903 // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
8904 // It should be transformed during dag combiner except when the condition
8905 // is set by a arithmetics with overflow node.
8906 X86::CondCode CCode =
8907 (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8908 CCode = X86::GetOppositeBranchCondition(CCode);
8909 CC = DAG.getConstant(CCode, MVT::i8);
8910 Cond = Cond.getOperand(0).getOperand(1);
8912 } else if (Cond.getOpcode() == ISD::SETCC &&
8913 cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
8914 // For FCMP_OEQ, we can emit
8915 // two branches instead of an explicit AND instruction with a
8916 // separate test. However, we only do this if this block doesn't
8917 // have a fall-through edge, because this requires an explicit
8918 // jmp when the condition is false.
8919 if (Op.getNode()->hasOneUse()) {
8920 SDNode *User = *Op.getNode()->use_begin();
8921 // Look for an unconditional branch following this conditional branch.
8922 // We need this because we need to reverse the successors in order
8923 // to implement FCMP_OEQ.
8924 if (User->getOpcode() == ISD::BR) {
8925 SDValue FalseBB = User->getOperand(1);
8927 DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8928 assert(NewBR == User);
8932 SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8933 Cond.getOperand(0), Cond.getOperand(1));
8934 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8935 Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8936 Chain, Dest, CC, Cmp);
8937 CC = DAG.getConstant(X86::COND_P, MVT::i8);
8942 } else if (Cond.getOpcode() == ISD::SETCC &&
8943 cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
8944 // For FCMP_UNE, we can emit
8945 // two branches instead of an explicit AND instruction with a
8946 // separate test. However, we only do this if this block doesn't
8947 // have a fall-through edge, because this requires an explicit
8948 // jmp when the condition is false.
8949 if (Op.getNode()->hasOneUse()) {
8950 SDNode *User = *Op.getNode()->use_begin();
8951 // Look for an unconditional branch following this conditional branch.
8952 // We need this because we need to reverse the successors in order
8953 // to implement FCMP_UNE.
8954 if (User->getOpcode() == ISD::BR) {
8955 SDValue FalseBB = User->getOperand(1);
8957 DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8958 assert(NewBR == User);
8961 SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8962 Cond.getOperand(0), Cond.getOperand(1));
8963 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8964 Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8965 Chain, Dest, CC, Cmp);
8966 CC = DAG.getConstant(X86::COND_NP, MVT::i8);
8976 // Look pass the truncate.
8977 if (Cond.getOpcode() == ISD::TRUNCATE)
8978 Cond = Cond.getOperand(0);
8980 // We know the result of AND is compared against zero. Try to match
8982 if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8983 SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
8984 if (NewSetCC.getNode()) {
8985 CC = NewSetCC.getOperand(0);
8986 Cond = NewSetCC.getOperand(1);
8993 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8994 Cond = EmitTest(Cond, X86::COND_NE, DAG);
8996 return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8997 Chain, Dest, CC, Cond);
9001 // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
9002 // Calls to _alloca is needed to probe the stack when allocating more than 4k
9003 // bytes in one go. Touching the stack at 4K increments is necessary to ensure
9004 // that the guard pages used by the OS virtual memory manager are allocated in
9005 // correct sequence.
9007 X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
9008 SelectionDAG &DAG) const {
9009 assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
9010 getTargetMachine().Options.EnableSegmentedStacks) &&
9011 "This should be used only on Windows targets or when segmented stacks "
9013 assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
9014 DebugLoc dl = Op.getDebugLoc();
9017 SDValue Chain = Op.getOperand(0);
9018 SDValue Size = Op.getOperand(1);
9019 // FIXME: Ensure alignment here
9021 bool Is64Bit = Subtarget->is64Bit();
9022 EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
9024 if (getTargetMachine().Options.EnableSegmentedStacks) {
9025 MachineFunction &MF = DAG.getMachineFunction();
9026 MachineRegisterInfo &MRI = MF.getRegInfo();
9029 // The 64 bit implementation of segmented stacks needs to clobber both r10
9030 // r11. This makes it impossible to use it along with nested parameters.
9031 const Function *F = MF.getFunction();
9033 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
9035 if (I->hasNestAttr())
9036 report_fatal_error("Cannot use segmented stacks with functions that "
9037 "have nested arguments.");
9040 const TargetRegisterClass *AddrRegClass =
9041 getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
9042 unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
9043 Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
9044 SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
9045 DAG.getRegister(Vreg, SPTy));
9046 SDValue Ops1[2] = { Value, Chain };
9047 return DAG.getMergeValues(Ops1, 2, dl);
9050 unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
9052 Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
9053 Flag = Chain.getValue(1);
9054 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9056 Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
9057 Flag = Chain.getValue(1);
9059 Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
9061 SDValue Ops1[2] = { Chain.getValue(0), Chain };
9062 return DAG.getMergeValues(Ops1, 2, dl);
9066 SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
9067 MachineFunction &MF = DAG.getMachineFunction();
9068 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
9070 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9071 DebugLoc DL = Op.getDebugLoc();
9073 if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
9074 // vastart just stores the address of the VarArgsFrameIndex slot into the
9075 // memory location argument.
9076 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9078 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
9079 MachinePointerInfo(SV), false, false, 0);
9083 // gp_offset (0 - 6 * 8)
9084 // fp_offset (48 - 48 + 8 * 16)
9085 // overflow_arg_area (point to parameters coming in memory).
9087 SmallVector<SDValue, 8> MemOps;
9088 SDValue FIN = Op.getOperand(1);
9090 SDValue Store = DAG.getStore(Op.getOperand(0), DL,
9091 DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
9093 FIN, MachinePointerInfo(SV), false, false, 0);
9094 MemOps.push_back(Store);
9097 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9098 FIN, DAG.getIntPtrConstant(4));
9099 Store = DAG.getStore(Op.getOperand(0), DL,
9100 DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
9102 FIN, MachinePointerInfo(SV, 4), false, false, 0);
9103 MemOps.push_back(Store);
9105 // Store ptr to overflow_arg_area
9106 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9107 FIN, DAG.getIntPtrConstant(4));
9108 SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9110 Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9111 MachinePointerInfo(SV, 8),
9113 MemOps.push_back(Store);
9115 // Store ptr to reg_save_area.
9116 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9117 FIN, DAG.getIntPtrConstant(8));
9118 SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9120 Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9121 MachinePointerInfo(SV, 16), false, false, 0);
9122 MemOps.push_back(Store);
9123 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9124 &MemOps[0], MemOps.size());
9127 SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9128 assert(Subtarget->is64Bit() &&
9129 "LowerVAARG only handles 64-bit va_arg!");
9130 assert((Subtarget->isTargetLinux() ||
9131 Subtarget->isTargetDarwin()) &&
9132 "Unhandled target in LowerVAARG");
9133 assert(Op.getNode()->getNumOperands() == 4);
9134 SDValue Chain = Op.getOperand(0);
9135 SDValue SrcPtr = Op.getOperand(1);
9136 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9137 unsigned Align = Op.getConstantOperandVal(3);
9138 DebugLoc dl = Op.getDebugLoc();
9140 EVT ArgVT = Op.getNode()->getValueType(0);
9141 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9142 uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
9145 // Decide which area this value should be read from.
9146 // TODO: Implement the AMD64 ABI in its entirety. This simple
9147 // selection mechanism works only for the basic types.
9148 if (ArgVT == MVT::f80) {
9149 llvm_unreachable("va_arg for f80 not yet implemented");
9150 } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9151 ArgMode = 2; // Argument passed in XMM register. Use fp_offset.
9152 } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9153 ArgMode = 1; // Argument passed in GPR64 register(s). Use gp_offset.
9155 llvm_unreachable("Unhandled argument type in LowerVAARG");
9159 // Sanity Check: Make sure using fp_offset makes sense.
9160 assert(!getTargetMachine().Options.UseSoftFloat &&
9161 !(DAG.getMachineFunction()
9162 .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
9163 Subtarget->hasXMM());
9166 // Insert VAARG_64 node into the DAG
9167 // VAARG_64 returns two values: Variable Argument Address, Chain
9168 SmallVector<SDValue, 11> InstOps;
9169 InstOps.push_back(Chain);
9170 InstOps.push_back(SrcPtr);
9171 InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9172 InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9173 InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9174 SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9175 SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9176 VTs, &InstOps[0], InstOps.size(),
9178 MachinePointerInfo(SV),
9183 Chain = VAARG.getValue(1);
9185 // Load the next argument and return it
9186 return DAG.getLoad(ArgVT, dl,
9189 MachinePointerInfo(),
9190 false, false, false, 0);
9193 SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
9194 // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9195 assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9196 SDValue Chain = Op.getOperand(0);
9197 SDValue DstPtr = Op.getOperand(1);
9198 SDValue SrcPtr = Op.getOperand(2);
9199 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9200 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9201 DebugLoc DL = Op.getDebugLoc();
9203 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9204 DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9206 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9210 X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9211 DebugLoc dl = Op.getDebugLoc();
9212 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9214 default: return SDValue(); // Don't custom lower most intrinsics.
9215 // Comparison intrinsics.
9216 case Intrinsic::x86_sse_comieq_ss:
9217 case Intrinsic::x86_sse_comilt_ss:
9218 case Intrinsic::x86_sse_comile_ss:
9219 case Intrinsic::x86_sse_comigt_ss:
9220 case Intrinsic::x86_sse_comige_ss:
9221 case Intrinsic::x86_sse_comineq_ss:
9222 case Intrinsic::x86_sse_ucomieq_ss:
9223 case Intrinsic::x86_sse_ucomilt_ss:
9224 case Intrinsic::x86_sse_ucomile_ss:
9225 case Intrinsic::x86_sse_ucomigt_ss:
9226 case Intrinsic::x86_sse_ucomige_ss:
9227 case Intrinsic::x86_sse_ucomineq_ss:
9228 case Intrinsic::x86_sse2_comieq_sd:
9229 case Intrinsic::x86_sse2_comilt_sd:
9230 case Intrinsic::x86_sse2_comile_sd:
9231 case Intrinsic::x86_sse2_comigt_sd:
9232 case Intrinsic::x86_sse2_comige_sd:
9233 case Intrinsic::x86_sse2_comineq_sd:
9234 case Intrinsic::x86_sse2_ucomieq_sd:
9235 case Intrinsic::x86_sse2_ucomilt_sd:
9236 case Intrinsic::x86_sse2_ucomile_sd:
9237 case Intrinsic::x86_sse2_ucomigt_sd:
9238 case Intrinsic::x86_sse2_ucomige_sd:
9239 case Intrinsic::x86_sse2_ucomineq_sd: {
9241 ISD::CondCode CC = ISD::SETCC_INVALID;
9244 case Intrinsic::x86_sse_comieq_ss:
9245 case Intrinsic::x86_sse2_comieq_sd:
9249 case Intrinsic::x86_sse_comilt_ss:
9250 case Intrinsic::x86_sse2_comilt_sd:
9254 case Intrinsic::x86_sse_comile_ss:
9255 case Intrinsic::x86_sse2_comile_sd:
9259 case Intrinsic::x86_sse_comigt_ss:
9260 case Intrinsic::x86_sse2_comigt_sd:
9264 case Intrinsic::x86_sse_comige_ss:
9265 case Intrinsic::x86_sse2_comige_sd:
9269 case Intrinsic::x86_sse_comineq_ss:
9270 case Intrinsic::x86_sse2_comineq_sd:
9274 case Intrinsic::x86_sse_ucomieq_ss:
9275 case Intrinsic::x86_sse2_ucomieq_sd:
9276 Opc = X86ISD::UCOMI;
9279 case Intrinsic::x86_sse_ucomilt_ss:
9280 case Intrinsic::x86_sse2_ucomilt_sd:
9281 Opc = X86ISD::UCOMI;
9284 case Intrinsic::x86_sse_ucomile_ss:
9285 case Intrinsic::x86_sse2_ucomile_sd:
9286 Opc = X86ISD::UCOMI;
9289 case Intrinsic::x86_sse_ucomigt_ss:
9290 case Intrinsic::x86_sse2_ucomigt_sd:
9291 Opc = X86ISD::UCOMI;
9294 case Intrinsic::x86_sse_ucomige_ss:
9295 case Intrinsic::x86_sse2_ucomige_sd:
9296 Opc = X86ISD::UCOMI;
9299 case Intrinsic::x86_sse_ucomineq_ss:
9300 case Intrinsic::x86_sse2_ucomineq_sd:
9301 Opc = X86ISD::UCOMI;
9306 SDValue LHS = Op.getOperand(1);
9307 SDValue RHS = Op.getOperand(2);
9308 unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9309 assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9310 SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9311 SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9312 DAG.getConstant(X86CC, MVT::i8), Cond);
9313 return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9315 // Arithmetic intrinsics.
9316 case Intrinsic::x86_sse3_hadd_ps:
9317 case Intrinsic::x86_sse3_hadd_pd:
9318 case Intrinsic::x86_avx_hadd_ps_256:
9319 case Intrinsic::x86_avx_hadd_pd_256:
9320 return DAG.getNode(X86ISD::FHADD, dl, Op.getValueType(),
9321 Op.getOperand(1), Op.getOperand(2));
9322 case Intrinsic::x86_sse3_hsub_ps:
9323 case Intrinsic::x86_sse3_hsub_pd:
9324 case Intrinsic::x86_avx_hsub_ps_256:
9325 case Intrinsic::x86_avx_hsub_pd_256:
9326 return DAG.getNode(X86ISD::FHSUB, dl, Op.getValueType(),
9327 Op.getOperand(1), Op.getOperand(2));
9328 case Intrinsic::x86_avx2_psllv_d:
9329 case Intrinsic::x86_avx2_psllv_q:
9330 case Intrinsic::x86_avx2_psllv_d_256:
9331 case Intrinsic::x86_avx2_psllv_q_256:
9332 return DAG.getNode(ISD::SHL, dl, Op.getValueType(),
9333 Op.getOperand(1), Op.getOperand(2));
9334 case Intrinsic::x86_avx2_psrlv_d:
9335 case Intrinsic::x86_avx2_psrlv_q:
9336 case Intrinsic::x86_avx2_psrlv_d_256:
9337 case Intrinsic::x86_avx2_psrlv_q_256:
9338 return DAG.getNode(ISD::SRL, dl, Op.getValueType(),
9339 Op.getOperand(1), Op.getOperand(2));
9340 case Intrinsic::x86_avx2_psrav_d:
9341 case Intrinsic::x86_avx2_psrav_d_256:
9342 return DAG.getNode(ISD::SRA, dl, Op.getValueType(),
9343 Op.getOperand(1), Op.getOperand(2));
9345 // ptest and testp intrinsics. The intrinsic these come from are designed to
9346 // return an integer value, not just an instruction so lower it to the ptest
9347 // or testp pattern and a setcc for the result.
9348 case Intrinsic::x86_sse41_ptestz:
9349 case Intrinsic::x86_sse41_ptestc:
9350 case Intrinsic::x86_sse41_ptestnzc:
9351 case Intrinsic::x86_avx_ptestz_256:
9352 case Intrinsic::x86_avx_ptestc_256:
9353 case Intrinsic::x86_avx_ptestnzc_256:
9354 case Intrinsic::x86_avx_vtestz_ps:
9355 case Intrinsic::x86_avx_vtestc_ps:
9356 case Intrinsic::x86_avx_vtestnzc_ps:
9357 case Intrinsic::x86_avx_vtestz_pd:
9358 case Intrinsic::x86_avx_vtestc_pd:
9359 case Intrinsic::x86_avx_vtestnzc_pd:
9360 case Intrinsic::x86_avx_vtestz_ps_256:
9361 case Intrinsic::x86_avx_vtestc_ps_256:
9362 case Intrinsic::x86_avx_vtestnzc_ps_256:
9363 case Intrinsic::x86_avx_vtestz_pd_256:
9364 case Intrinsic::x86_avx_vtestc_pd_256:
9365 case Intrinsic::x86_avx_vtestnzc_pd_256: {
9366 bool IsTestPacked = false;
9369 default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9370 case Intrinsic::x86_avx_vtestz_ps:
9371 case Intrinsic::x86_avx_vtestz_pd:
9372 case Intrinsic::x86_avx_vtestz_ps_256:
9373 case Intrinsic::x86_avx_vtestz_pd_256:
9374 IsTestPacked = true; // Fallthrough
9375 case Intrinsic::x86_sse41_ptestz:
9376 case Intrinsic::x86_avx_ptestz_256:
9378 X86CC = X86::COND_E;
9380 case Intrinsic::x86_avx_vtestc_ps:
9381 case Intrinsic::x86_avx_vtestc_pd:
9382 case Intrinsic::x86_avx_vtestc_ps_256:
9383 case Intrinsic::x86_avx_vtestc_pd_256:
9384 IsTestPacked = true; // Fallthrough
9385 case Intrinsic::x86_sse41_ptestc:
9386 case Intrinsic::x86_avx_ptestc_256:
9388 X86CC = X86::COND_B;
9390 case Intrinsic::x86_avx_vtestnzc_ps:
9391 case Intrinsic::x86_avx_vtestnzc_pd:
9392 case Intrinsic::x86_avx_vtestnzc_ps_256:
9393 case Intrinsic::x86_avx_vtestnzc_pd_256:
9394 IsTestPacked = true; // Fallthrough
9395 case Intrinsic::x86_sse41_ptestnzc:
9396 case Intrinsic::x86_avx_ptestnzc_256:
9398 X86CC = X86::COND_A;
9402 SDValue LHS = Op.getOperand(1);
9403 SDValue RHS = Op.getOperand(2);
9404 unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9405 SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9406 SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9407 SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9408 return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9411 // Fix vector shift instructions where the last operand is a non-immediate
9413 case Intrinsic::x86_avx2_pslli_w:
9414 case Intrinsic::x86_avx2_pslli_d:
9415 case Intrinsic::x86_avx2_pslli_q:
9416 case Intrinsic::x86_avx2_psrli_w:
9417 case Intrinsic::x86_avx2_psrli_d:
9418 case Intrinsic::x86_avx2_psrli_q:
9419 case Intrinsic::x86_avx2_psrai_w:
9420 case Intrinsic::x86_avx2_psrai_d:
9421 case Intrinsic::x86_sse2_pslli_w:
9422 case Intrinsic::x86_sse2_pslli_d:
9423 case Intrinsic::x86_sse2_pslli_q:
9424 case Intrinsic::x86_sse2_psrli_w:
9425 case Intrinsic::x86_sse2_psrli_d:
9426 case Intrinsic::x86_sse2_psrli_q:
9427 case Intrinsic::x86_sse2_psrai_w:
9428 case Intrinsic::x86_sse2_psrai_d:
9429 case Intrinsic::x86_mmx_pslli_w:
9430 case Intrinsic::x86_mmx_pslli_d:
9431 case Intrinsic::x86_mmx_pslli_q:
9432 case Intrinsic::x86_mmx_psrli_w:
9433 case Intrinsic::x86_mmx_psrli_d:
9434 case Intrinsic::x86_mmx_psrli_q:
9435 case Intrinsic::x86_mmx_psrai_w:
9436 case Intrinsic::x86_mmx_psrai_d: {
9437 SDValue ShAmt = Op.getOperand(2);
9438 if (isa<ConstantSDNode>(ShAmt))
9441 unsigned NewIntNo = 0;
9442 EVT ShAmtVT = MVT::v4i32;
9444 case Intrinsic::x86_sse2_pslli_w:
9445 NewIntNo = Intrinsic::x86_sse2_psll_w;
9447 case Intrinsic::x86_sse2_pslli_d:
9448 NewIntNo = Intrinsic::x86_sse2_psll_d;
9450 case Intrinsic::x86_sse2_pslli_q:
9451 NewIntNo = Intrinsic::x86_sse2_psll_q;
9453 case Intrinsic::x86_sse2_psrli_w:
9454 NewIntNo = Intrinsic::x86_sse2_psrl_w;
9456 case Intrinsic::x86_sse2_psrli_d:
9457 NewIntNo = Intrinsic::x86_sse2_psrl_d;
9459 case Intrinsic::x86_sse2_psrli_q:
9460 NewIntNo = Intrinsic::x86_sse2_psrl_q;
9462 case Intrinsic::x86_sse2_psrai_w:
9463 NewIntNo = Intrinsic::x86_sse2_psra_w;
9465 case Intrinsic::x86_sse2_psrai_d:
9466 NewIntNo = Intrinsic::x86_sse2_psra_d;
9468 case Intrinsic::x86_avx2_pslli_w:
9469 NewIntNo = Intrinsic::x86_avx2_psll_w;
9471 case Intrinsic::x86_avx2_pslli_d:
9472 NewIntNo = Intrinsic::x86_avx2_psll_d;
9474 case Intrinsic::x86_avx2_pslli_q:
9475 NewIntNo = Intrinsic::x86_avx2_psll_q;
9477 case Intrinsic::x86_avx2_psrli_w:
9478 NewIntNo = Intrinsic::x86_avx2_psrl_w;
9480 case Intrinsic::x86_avx2_psrli_d:
9481 NewIntNo = Intrinsic::x86_avx2_psrl_d;
9483 case Intrinsic::x86_avx2_psrli_q:
9484 NewIntNo = Intrinsic::x86_avx2_psrl_q;
9486 case Intrinsic::x86_avx2_psrai_w:
9487 NewIntNo = Intrinsic::x86_avx2_psra_w;
9489 case Intrinsic::x86_avx2_psrai_d:
9490 NewIntNo = Intrinsic::x86_avx2_psra_d;
9493 ShAmtVT = MVT::v2i32;
9495 case Intrinsic::x86_mmx_pslli_w:
9496 NewIntNo = Intrinsic::x86_mmx_psll_w;
9498 case Intrinsic::x86_mmx_pslli_d:
9499 NewIntNo = Intrinsic::x86_mmx_psll_d;
9501 case Intrinsic::x86_mmx_pslli_q:
9502 NewIntNo = Intrinsic::x86_mmx_psll_q;
9504 case Intrinsic::x86_mmx_psrli_w:
9505 NewIntNo = Intrinsic::x86_mmx_psrl_w;
9507 case Intrinsic::x86_mmx_psrli_d:
9508 NewIntNo = Intrinsic::x86_mmx_psrl_d;
9510 case Intrinsic::x86_mmx_psrli_q:
9511 NewIntNo = Intrinsic::x86_mmx_psrl_q;
9513 case Intrinsic::x86_mmx_psrai_w:
9514 NewIntNo = Intrinsic::x86_mmx_psra_w;
9516 case Intrinsic::x86_mmx_psrai_d:
9517 NewIntNo = Intrinsic::x86_mmx_psra_d;
9519 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
9525 // The vector shift intrinsics with scalars uses 32b shift amounts but
9526 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
9530 ShOps[1] = DAG.getConstant(0, MVT::i32);
9531 if (ShAmtVT == MVT::v4i32) {
9532 ShOps[2] = DAG.getUNDEF(MVT::i32);
9533 ShOps[3] = DAG.getUNDEF(MVT::i32);
9534 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
9536 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
9537 // FIXME this must be lowered to get rid of the invalid type.
9540 EVT VT = Op.getValueType();
9541 ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9542 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9543 DAG.getConstant(NewIntNo, MVT::i32),
9544 Op.getOperand(1), ShAmt);
9549 SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
9550 SelectionDAG &DAG) const {
9551 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9552 MFI->setReturnAddressIsTaken(true);
9554 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9555 DebugLoc dl = Op.getDebugLoc();
9558 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
9560 DAG.getConstant(TD->getPointerSize(),
9561 Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9562 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9563 DAG.getNode(ISD::ADD, dl, getPointerTy(),
9565 MachinePointerInfo(), false, false, false, 0);
9568 // Just load the return address.
9569 SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
9570 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9571 RetAddrFI, MachinePointerInfo(), false, false, false, 0);
9574 SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
9575 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9576 MFI->setFrameAddressIsTaken(true);
9578 EVT VT = Op.getValueType();
9579 DebugLoc dl = Op.getDebugLoc(); // FIXME probably not meaningful
9580 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9581 unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
9582 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
9584 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
9585 MachinePointerInfo(),
9586 false, false, false, 0);
9590 SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
9591 SelectionDAG &DAG) const {
9592 return DAG.getIntPtrConstant(2*TD->getPointerSize());
9595 SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
9596 MachineFunction &MF = DAG.getMachineFunction();
9597 SDValue Chain = Op.getOperand(0);
9598 SDValue Offset = Op.getOperand(1);
9599 SDValue Handler = Op.getOperand(2);
9600 DebugLoc dl = Op.getDebugLoc();
9602 SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
9603 Subtarget->is64Bit() ? X86::RBP : X86::EBP,
9605 unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
9607 SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
9608 DAG.getIntPtrConstant(TD->getPointerSize()));
9609 StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
9610 Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
9612 Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
9613 MF.getRegInfo().addLiveOut(StoreAddrReg);
9615 return DAG.getNode(X86ISD::EH_RETURN, dl,
9617 Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
9620 SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
9621 SelectionDAG &DAG) const {
9622 return Op.getOperand(0);
9625 SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
9626 SelectionDAG &DAG) const {
9627 SDValue Root = Op.getOperand(0);
9628 SDValue Trmp = Op.getOperand(1); // trampoline
9629 SDValue FPtr = Op.getOperand(2); // nested function
9630 SDValue Nest = Op.getOperand(3); // 'nest' parameter value
9631 DebugLoc dl = Op.getDebugLoc();
9633 const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9635 if (Subtarget->is64Bit()) {
9636 SDValue OutChains[6];
9638 // Large code-model.
9639 const unsigned char JMP64r = 0xFF; // 64-bit jmp through register opcode.
9640 const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
9642 const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
9643 const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
9645 const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
9647 // Load the pointer to the nested function into R11.
9648 unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
9649 SDValue Addr = Trmp;
9650 OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9651 Addr, MachinePointerInfo(TrmpAddr),
9654 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9655 DAG.getConstant(2, MVT::i64));
9656 OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
9657 MachinePointerInfo(TrmpAddr, 2),
9660 // Load the 'nest' parameter value into R10.
9661 // R10 is specified in X86CallingConv.td
9662 OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
9663 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9664 DAG.getConstant(10, MVT::i64));
9665 OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9666 Addr, MachinePointerInfo(TrmpAddr, 10),
9669 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9670 DAG.getConstant(12, MVT::i64));
9671 OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
9672 MachinePointerInfo(TrmpAddr, 12),
9675 // Jump to the nested function.
9676 OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
9677 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9678 DAG.getConstant(20, MVT::i64));
9679 OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9680 Addr, MachinePointerInfo(TrmpAddr, 20),
9683 unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
9684 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9685 DAG.getConstant(22, MVT::i64));
9686 OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
9687 MachinePointerInfo(TrmpAddr, 22),
9690 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
9692 const Function *Func =
9693 cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
9694 CallingConv::ID CC = Func->getCallingConv();
9699 llvm_unreachable("Unsupported calling convention");
9700 case CallingConv::C:
9701 case CallingConv::X86_StdCall: {
9702 // Pass 'nest' parameter in ECX.
9703 // Must be kept in sync with X86CallingConv.td
9706 // Check that ECX wasn't needed by an 'inreg' parameter.
9707 FunctionType *FTy = Func->getFunctionType();
9708 const AttrListPtr &Attrs = Func->getAttributes();
9710 if (!Attrs.isEmpty() && !Func->isVarArg()) {
9711 unsigned InRegCount = 0;
9714 for (FunctionType::param_iterator I = FTy->param_begin(),
9715 E = FTy->param_end(); I != E; ++I, ++Idx)
9716 if (Attrs.paramHasAttr(Idx, Attribute::InReg))
9717 // FIXME: should only count parameters that are lowered to integers.
9718 InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
9720 if (InRegCount > 2) {
9721 report_fatal_error("Nest register in use - reduce number of inreg"
9727 case CallingConv::X86_FastCall:
9728 case CallingConv::X86_ThisCall:
9729 case CallingConv::Fast:
9730 // Pass 'nest' parameter in EAX.
9731 // Must be kept in sync with X86CallingConv.td
9736 SDValue OutChains[4];
9739 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9740 DAG.getConstant(10, MVT::i32));
9741 Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
9743 // This is storing the opcode for MOV32ri.
9744 const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
9745 const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
9746 OutChains[0] = DAG.getStore(Root, dl,
9747 DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
9748 Trmp, MachinePointerInfo(TrmpAddr),
9751 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9752 DAG.getConstant(1, MVT::i32));
9753 OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
9754 MachinePointerInfo(TrmpAddr, 1),
9757 const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
9758 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9759 DAG.getConstant(5, MVT::i32));
9760 OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
9761 MachinePointerInfo(TrmpAddr, 5),
9764 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9765 DAG.getConstant(6, MVT::i32));
9766 OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
9767 MachinePointerInfo(TrmpAddr, 6),
9770 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
9774 SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
9775 SelectionDAG &DAG) const {
9777 The rounding mode is in bits 11:10 of FPSR, and has the following
9784 FLT_ROUNDS, on the other hand, expects the following:
9791 To perform the conversion, we do:
9792 (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
9795 MachineFunction &MF = DAG.getMachineFunction();
9796 const TargetMachine &TM = MF.getTarget();
9797 const TargetFrameLowering &TFI = *TM.getFrameLowering();
9798 unsigned StackAlignment = TFI.getStackAlignment();
9799 EVT VT = Op.getValueType();
9800 DebugLoc DL = Op.getDebugLoc();
9802 // Save FP Control Word to stack slot
9803 int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
9804 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
9807 MachineMemOperand *MMO =
9808 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
9809 MachineMemOperand::MOStore, 2, 2);
9811 SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
9812 SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
9813 DAG.getVTList(MVT::Other),
9814 Ops, 2, MVT::i16, MMO);
9816 // Load FP Control Word from stack slot
9817 SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
9818 MachinePointerInfo(), false, false, false, 0);
9820 // Transform as necessary
9822 DAG.getNode(ISD::SRL, DL, MVT::i16,
9823 DAG.getNode(ISD::AND, DL, MVT::i16,
9824 CWD, DAG.getConstant(0x800, MVT::i16)),
9825 DAG.getConstant(11, MVT::i8));
9827 DAG.getNode(ISD::SRL, DL, MVT::i16,
9828 DAG.getNode(ISD::AND, DL, MVT::i16,
9829 CWD, DAG.getConstant(0x400, MVT::i16)),
9830 DAG.getConstant(9, MVT::i8));
9833 DAG.getNode(ISD::AND, DL, MVT::i16,
9834 DAG.getNode(ISD::ADD, DL, MVT::i16,
9835 DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
9836 DAG.getConstant(1, MVT::i16)),
9837 DAG.getConstant(3, MVT::i16));
9840 return DAG.getNode((VT.getSizeInBits() < 16 ?
9841 ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
9844 SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
9845 EVT VT = Op.getValueType();
9847 unsigned NumBits = VT.getSizeInBits();
9848 DebugLoc dl = Op.getDebugLoc();
9850 Op = Op.getOperand(0);
9851 if (VT == MVT::i8) {
9852 // Zero extend to i32 since there is not an i8 bsr.
9854 Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9857 // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
9858 SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9859 Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
9861 // If src is zero (i.e. bsr sets ZF), returns NumBits.
9864 DAG.getConstant(NumBits+NumBits-1, OpVT),
9865 DAG.getConstant(X86::COND_E, MVT::i8),
9868 Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9870 // Finally xor with NumBits-1.
9871 Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
9874 Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9878 SDValue X86TargetLowering::LowerCTLZ_ZERO_UNDEF(SDValue Op,
9879 SelectionDAG &DAG) const {
9880 EVT VT = Op.getValueType();
9882 unsigned NumBits = VT.getSizeInBits();
9883 DebugLoc dl = Op.getDebugLoc();
9885 Op = Op.getOperand(0);
9886 if (VT == MVT::i8) {
9887 // Zero extend to i32 since there is not an i8 bsr.
9889 Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9892 // Issue a bsr (scan bits in reverse).
9893 SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9894 Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
9896 // And xor with NumBits-1.
9897 Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
9900 Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9904 SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
9905 EVT VT = Op.getValueType();
9906 unsigned NumBits = VT.getSizeInBits();
9907 DebugLoc dl = Op.getDebugLoc();
9908 Op = Op.getOperand(0);
9910 // Issue a bsf (scan bits forward) which also sets EFLAGS.
9911 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
9912 Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
9914 // If src is zero (i.e. bsf sets ZF), returns NumBits.
9917 DAG.getConstant(NumBits, VT),
9918 DAG.getConstant(X86::COND_E, MVT::i8),
9921 return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
9924 // Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
9925 // ones, and then concatenate the result back.
9926 static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
9927 EVT VT = Op.getValueType();
9929 assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
9930 "Unsupported value type for operation");
9932 int NumElems = VT.getVectorNumElements();
9933 DebugLoc dl = Op.getDebugLoc();
9934 SDValue Idx0 = DAG.getConstant(0, MVT::i32);
9935 SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
9937 // Extract the LHS vectors
9938 SDValue LHS = Op.getOperand(0);
9939 SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
9940 SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
9942 // Extract the RHS vectors
9943 SDValue RHS = Op.getOperand(1);
9944 SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
9945 SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
9947 MVT EltVT = VT.getVectorElementType().getSimpleVT();
9948 EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9950 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9951 DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
9952 DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
9955 SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
9956 assert(Op.getValueType().getSizeInBits() == 256 &&
9957 Op.getValueType().isInteger() &&
9958 "Only handle AVX 256-bit vector integer operation");
9959 return Lower256IntArith(Op, DAG);
9962 SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
9963 assert(Op.getValueType().getSizeInBits() == 256 &&
9964 Op.getValueType().isInteger() &&
9965 "Only handle AVX 256-bit vector integer operation");
9966 return Lower256IntArith(Op, DAG);
9969 SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
9970 EVT VT = Op.getValueType();
9972 // Decompose 256-bit ops into smaller 128-bit ops.
9973 if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
9974 return Lower256IntArith(Op, DAG);
9976 DebugLoc dl = Op.getDebugLoc();
9978 SDValue A = Op.getOperand(0);
9979 SDValue B = Op.getOperand(1);
9981 if (VT == MVT::v4i64) {
9982 assert(Subtarget->hasAVX2() && "Lowering v4i64 multiply requires AVX2");
9984 // ulong2 Ahi = __builtin_ia32_psrlqi256( a, 32);
9985 // ulong2 Bhi = __builtin_ia32_psrlqi256( b, 32);
9986 // ulong2 AloBlo = __builtin_ia32_pmuludq256( a, b );
9987 // ulong2 AloBhi = __builtin_ia32_pmuludq256( a, Bhi );
9988 // ulong2 AhiBlo = __builtin_ia32_pmuludq256( Ahi, b );
9990 // AloBhi = __builtin_ia32_psllqi256( AloBhi, 32 );
9991 // AhiBlo = __builtin_ia32_psllqi256( AhiBlo, 32 );
9992 // return AloBlo + AloBhi + AhiBlo;
9994 SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9995 DAG.getConstant(Intrinsic::x86_avx2_psrli_q, MVT::i32),
9996 A, DAG.getConstant(32, MVT::i32));
9997 SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9998 DAG.getConstant(Intrinsic::x86_avx2_psrli_q, MVT::i32),
9999 B, DAG.getConstant(32, MVT::i32));
10000 SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10001 DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
10003 SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10004 DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
10006 SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10007 DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
10009 AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10010 DAG.getConstant(Intrinsic::x86_avx2_pslli_q, MVT::i32),
10011 AloBhi, DAG.getConstant(32, MVT::i32));
10012 AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10013 DAG.getConstant(Intrinsic::x86_avx2_pslli_q, MVT::i32),
10014 AhiBlo, DAG.getConstant(32, MVT::i32));
10015 SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10016 Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10020 assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
10022 // ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
10023 // ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
10024 // ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
10025 // ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
10026 // ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
10028 // AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
10029 // AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
10030 // return AloBlo + AloBhi + AhiBlo;
10032 SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10033 DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
10034 A, DAG.getConstant(32, MVT::i32));
10035 SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10036 DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
10037 B, DAG.getConstant(32, MVT::i32));
10038 SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10039 DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
10041 SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10042 DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
10044 SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10045 DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
10047 AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10048 DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
10049 AloBhi, DAG.getConstant(32, MVT::i32));
10050 AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10051 DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
10052 AhiBlo, DAG.getConstant(32, MVT::i32));
10053 SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10054 Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10058 SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
10060 EVT VT = Op.getValueType();
10061 DebugLoc dl = Op.getDebugLoc();
10062 SDValue R = Op.getOperand(0);
10063 SDValue Amt = Op.getOperand(1);
10064 LLVMContext *Context = DAG.getContext();
10066 if (!Subtarget->hasXMMInt())
10069 // Optimize shl/srl/sra with constant shift amount.
10070 if (isSplatVector(Amt.getNode())) {
10071 SDValue SclrAmt = Amt->getOperand(0);
10072 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
10073 uint64_t ShiftAmt = C->getZExtValue();
10075 if (VT == MVT::v16i8 && Op.getOpcode() == ISD::SHL) {
10076 // Make a large shift.
10078 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10079 DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10080 R, DAG.getConstant(ShiftAmt, MVT::i32));
10081 // Zero out the rightmost bits.
10082 SmallVector<SDValue, 16> V(16, DAG.getConstant(uint8_t(-1U << ShiftAmt),
10084 return DAG.getNode(ISD::AND, dl, VT, SHL,
10085 DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10088 if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SHL)
10089 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10090 DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
10091 R, DAG.getConstant(ShiftAmt, MVT::i32));
10093 if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SHL)
10094 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10095 DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
10096 R, DAG.getConstant(ShiftAmt, MVT::i32));
10098 if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SHL)
10099 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10100 DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10101 R, DAG.getConstant(ShiftAmt, MVT::i32));
10103 if (VT == MVT::v16i8 && Op.getOpcode() == ISD::SRL) {
10104 // Make a large shift.
10106 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10107 DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
10108 R, DAG.getConstant(ShiftAmt, MVT::i32));
10109 // Zero out the leftmost bits.
10110 SmallVector<SDValue, 16> V(16, DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10112 return DAG.getNode(ISD::AND, dl, VT, SRL,
10113 DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10116 if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SRL)
10117 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10118 DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
10119 R, DAG.getConstant(ShiftAmt, MVT::i32));
10121 if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRL)
10122 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10123 DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
10124 R, DAG.getConstant(ShiftAmt, MVT::i32));
10126 if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRL)
10127 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10128 DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
10129 R, DAG.getConstant(ShiftAmt, MVT::i32));
10131 if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRA)
10132 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10133 DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
10134 R, DAG.getConstant(ShiftAmt, MVT::i32));
10136 if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRA)
10137 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10138 DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
10139 R, DAG.getConstant(ShiftAmt, MVT::i32));
10141 if (VT == MVT::v16i8 && Op.getOpcode() == ISD::SRA) {
10142 if (ShiftAmt == 7) {
10143 // R s>> 7 === R s< 0
10144 SDValue Zeros = getZeroVector(VT, true /* HasXMMInt */, DAG, dl);
10145 return DAG.getNode(X86ISD::PCMPGTB, dl, VT, Zeros, R);
10148 // R s>> a === ((R u>> a) ^ m) - m
10149 SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10150 SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
10152 SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
10153 Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10154 Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10158 if (Subtarget->hasAVX2() && VT == MVT::v32i8) {
10159 if (Op.getOpcode() == ISD::SHL) {
10160 // Make a large shift.
10162 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10163 DAG.getConstant(Intrinsic::x86_avx2_pslli_w, MVT::i32),
10164 R, DAG.getConstant(ShiftAmt, MVT::i32));
10165 // Zero out the rightmost bits.
10166 SmallVector<SDValue, 32> V(32, DAG.getConstant(uint8_t(-1U << ShiftAmt),
10168 return DAG.getNode(ISD::AND, dl, VT, SHL,
10169 DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10171 if (Op.getOpcode() == ISD::SRL) {
10172 // Make a large shift.
10174 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10175 DAG.getConstant(Intrinsic::x86_avx2_psrli_w, MVT::i32),
10176 R, DAG.getConstant(ShiftAmt, MVT::i32));
10177 // Zero out the leftmost bits.
10178 SmallVector<SDValue, 32> V(32, DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10180 return DAG.getNode(ISD::AND, dl, VT, SRL,
10181 DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10183 if (Op.getOpcode() == ISD::SRA) {
10184 if (ShiftAmt == 7) {
10185 // R s>> 7 === R s< 0
10186 SDValue Zeros = getZeroVector(VT, true /* HasXMMInt */, DAG, dl);
10187 return DAG.getNode(X86ISD::PCMPGTB, dl, VT, Zeros, R);
10190 // R s>> a === ((R u>> a) ^ m) - m
10191 SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10192 SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
10194 SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
10195 Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10196 Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10203 // Lower SHL with variable shift amount.
10204 if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
10205 Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10206 DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
10207 Op.getOperand(1), DAG.getConstant(23, MVT::i32));
10209 ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
10211 std::vector<Constant*> CV(4, CI);
10212 Constant *C = ConstantVector::get(CV);
10213 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10214 SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10215 MachinePointerInfo::getConstantPool(),
10216 false, false, false, 16);
10218 Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
10219 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
10220 Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
10221 return DAG.getNode(ISD::MUL, dl, VT, Op, R);
10223 if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
10224 assert((Subtarget->hasSSE2() || Subtarget->hasAVX()) &&
10225 "Need SSE2 for pslli/pcmpeq.");
10228 Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10229 DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10230 Op.getOperand(1), DAG.getConstant(5, MVT::i32));
10232 // Turn 'a' into a mask suitable for VSELECT
10233 SDValue VSelM = DAG.getConstant(0x80, VT);
10234 SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10235 OpVSel = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10236 DAG.getConstant(Intrinsic::x86_sse2_pcmpeq_b, MVT::i32),
10239 SDValue CM1 = DAG.getConstant(0x0f, VT);
10240 SDValue CM2 = DAG.getConstant(0x3f, VT);
10242 // r = VSELECT(r, psllw(r & (char16)15, 4), a);
10243 SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
10244 M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10245 DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
10246 DAG.getConstant(4, MVT::i32));
10247 R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10250 Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10251 OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10252 OpVSel = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10253 DAG.getConstant(Intrinsic::x86_sse2_pcmpeq_b, MVT::i32),
10256 // r = VSELECT(r, psllw(r & (char16)63, 2), a);
10257 M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
10258 M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10259 DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
10260 DAG.getConstant(2, MVT::i32));
10261 R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10264 Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10265 OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10266 OpVSel = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10267 DAG.getConstant(Intrinsic::x86_sse2_pcmpeq_b, MVT::i32),
10270 // return VSELECT(r, r+r, a);
10271 R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
10272 DAG.getNode(ISD::ADD, dl, VT, R, R), R);
10276 // Decompose 256-bit shifts into smaller 128-bit shifts.
10277 if (VT.getSizeInBits() == 256) {
10278 int NumElems = VT.getVectorNumElements();
10279 MVT EltVT = VT.getVectorElementType().getSimpleVT();
10280 EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10282 // Extract the two vectors
10283 SDValue V1 = Extract128BitVector(R, DAG.getConstant(0, MVT::i32), DAG, dl);
10284 SDValue V2 = Extract128BitVector(R, DAG.getConstant(NumElems/2, MVT::i32),
10287 // Recreate the shift amount vectors
10288 SDValue Amt1, Amt2;
10289 if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
10290 // Constant shift amount
10291 SmallVector<SDValue, 4> Amt1Csts;
10292 SmallVector<SDValue, 4> Amt2Csts;
10293 for (int i = 0; i < NumElems/2; ++i)
10294 Amt1Csts.push_back(Amt->getOperand(i));
10295 for (int i = NumElems/2; i < NumElems; ++i)
10296 Amt2Csts.push_back(Amt->getOperand(i));
10298 Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10299 &Amt1Csts[0], NumElems/2);
10300 Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10301 &Amt2Csts[0], NumElems/2);
10303 // Variable shift amount
10304 Amt1 = Extract128BitVector(Amt, DAG.getConstant(0, MVT::i32), DAG, dl);
10305 Amt2 = Extract128BitVector(Amt, DAG.getConstant(NumElems/2, MVT::i32),
10309 // Issue new vector shifts for the smaller types
10310 V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
10311 V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
10313 // Concatenate the result back
10314 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
10320 SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
10321 // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
10322 // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
10323 // looks for this combo and may remove the "setcc" instruction if the "setcc"
10324 // has only one use.
10325 SDNode *N = Op.getNode();
10326 SDValue LHS = N->getOperand(0);
10327 SDValue RHS = N->getOperand(1);
10328 unsigned BaseOp = 0;
10330 DebugLoc DL = Op.getDebugLoc();
10331 switch (Op.getOpcode()) {
10332 default: llvm_unreachable("Unknown ovf instruction!");
10334 // A subtract of one will be selected as a INC. Note that INC doesn't
10335 // set CF, so we can't do this for UADDO.
10336 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10338 BaseOp = X86ISD::INC;
10339 Cond = X86::COND_O;
10342 BaseOp = X86ISD::ADD;
10343 Cond = X86::COND_O;
10346 BaseOp = X86ISD::ADD;
10347 Cond = X86::COND_B;
10350 // A subtract of one will be selected as a DEC. Note that DEC doesn't
10351 // set CF, so we can't do this for USUBO.
10352 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10354 BaseOp = X86ISD::DEC;
10355 Cond = X86::COND_O;
10358 BaseOp = X86ISD::SUB;
10359 Cond = X86::COND_O;
10362 BaseOp = X86ISD::SUB;
10363 Cond = X86::COND_B;
10366 BaseOp = X86ISD::SMUL;
10367 Cond = X86::COND_O;
10369 case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
10370 SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
10372 SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
10375 DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10376 DAG.getConstant(X86::COND_O, MVT::i32),
10377 SDValue(Sum.getNode(), 2));
10379 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10383 // Also sets EFLAGS.
10384 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
10385 SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
10388 DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
10389 DAG.getConstant(Cond, MVT::i32),
10390 SDValue(Sum.getNode(), 1));
10392 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10395 SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
10396 SelectionDAG &DAG) const {
10397 DebugLoc dl = Op.getDebugLoc();
10398 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
10399 EVT VT = Op.getValueType();
10401 if (Subtarget->hasXMMInt() && VT.isVector()) {
10402 unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
10403 ExtraVT.getScalarType().getSizeInBits();
10404 SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
10406 unsigned SHLIntrinsicsID = 0;
10407 unsigned SRAIntrinsicsID = 0;
10408 switch (VT.getSimpleVT().SimpleTy) {
10412 SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_d;
10413 SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_d;
10416 SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_w;
10417 SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_w;
10421 if (!Subtarget->hasAVX())
10423 if (!Subtarget->hasAVX2()) {
10424 // needs to be split
10425 int NumElems = VT.getVectorNumElements();
10426 SDValue Idx0 = DAG.getConstant(0, MVT::i32);
10427 SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
10429 // Extract the LHS vectors
10430 SDValue LHS = Op.getOperand(0);
10431 SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
10432 SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
10434 MVT EltVT = VT.getVectorElementType().getSimpleVT();
10435 EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10437 EVT ExtraEltVT = ExtraVT.getVectorElementType();
10438 int ExtraNumElems = ExtraVT.getVectorNumElements();
10439 ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
10441 SDValue Extra = DAG.getValueType(ExtraVT);
10443 LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
10444 LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
10446 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);;
10448 if (VT == MVT::v8i32) {
10449 SHLIntrinsicsID = Intrinsic::x86_avx2_pslli_d;
10450 SRAIntrinsicsID = Intrinsic::x86_avx2_psrai_d;
10452 SHLIntrinsicsID = Intrinsic::x86_avx2_pslli_w;
10453 SRAIntrinsicsID = Intrinsic::x86_avx2_psrai_w;
10457 SDValue Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10458 DAG.getConstant(SHLIntrinsicsID, MVT::i32),
10459 Op.getOperand(0), ShAmt);
10461 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10462 DAG.getConstant(SRAIntrinsicsID, MVT::i32),
10470 SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
10471 DebugLoc dl = Op.getDebugLoc();
10473 // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10474 // There isn't any reason to disable it if the target processor supports it.
10475 if (!Subtarget->hasXMMInt() && !Subtarget->is64Bit()) {
10476 SDValue Chain = Op.getOperand(0);
10477 SDValue Zero = DAG.getConstant(0, MVT::i32);
10479 DAG.getRegister(X86::ESP, MVT::i32), // Base
10480 DAG.getTargetConstant(1, MVT::i8), // Scale
10481 DAG.getRegister(0, MVT::i32), // Index
10482 DAG.getTargetConstant(0, MVT::i32), // Disp
10483 DAG.getRegister(0, MVT::i32), // Segment.
10488 DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10489 array_lengthof(Ops));
10490 return SDValue(Res, 0);
10493 unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10495 return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10497 unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10498 unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10499 unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10500 unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10502 // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10503 if (!Op1 && !Op2 && !Op3 && Op4)
10504 return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10506 // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10507 if (Op1 && !Op2 && !Op3 && !Op4)
10508 return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10510 // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10512 return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10515 SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10516 SelectionDAG &DAG) const {
10517 DebugLoc dl = Op.getDebugLoc();
10518 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10519 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10520 SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10521 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10523 // The only fence that needs an instruction is a sequentially-consistent
10524 // cross-thread fence.
10525 if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
10526 // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
10527 // no-sse2). There isn't any reason to disable it if the target processor
10529 if (Subtarget->hasXMMInt() || Subtarget->is64Bit())
10530 return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10532 SDValue Chain = Op.getOperand(0);
10533 SDValue Zero = DAG.getConstant(0, MVT::i32);
10535 DAG.getRegister(X86::ESP, MVT::i32), // Base
10536 DAG.getTargetConstant(1, MVT::i8), // Scale
10537 DAG.getRegister(0, MVT::i32), // Index
10538 DAG.getTargetConstant(0, MVT::i32), // Disp
10539 DAG.getRegister(0, MVT::i32), // Segment.
10544 DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10545 array_lengthof(Ops));
10546 return SDValue(Res, 0);
10549 // MEMBARRIER is a compiler barrier; it codegens to a no-op.
10550 return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10554 SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10555 EVT T = Op.getValueType();
10556 DebugLoc DL = Op.getDebugLoc();
10559 switch(T.getSimpleVT().SimpleTy) {
10561 assert(false && "Invalid value type!");
10562 case MVT::i8: Reg = X86::AL; size = 1; break;
10563 case MVT::i16: Reg = X86::AX; size = 2; break;
10564 case MVT::i32: Reg = X86::EAX; size = 4; break;
10566 assert(Subtarget->is64Bit() && "Node not type legal!");
10567 Reg = X86::RAX; size = 8;
10570 SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
10571 Op.getOperand(2), SDValue());
10572 SDValue Ops[] = { cpIn.getValue(0),
10575 DAG.getTargetConstant(size, MVT::i8),
10576 cpIn.getValue(1) };
10577 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10578 MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
10579 SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
10582 DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
10586 SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
10587 SelectionDAG &DAG) const {
10588 assert(Subtarget->is64Bit() && "Result not type legalized?");
10589 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10590 SDValue TheChain = Op.getOperand(0);
10591 DebugLoc dl = Op.getDebugLoc();
10592 SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10593 SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
10594 SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
10596 SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
10597 DAG.getConstant(32, MVT::i8));
10599 DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
10602 return DAG.getMergeValues(Ops, 2, dl);
10605 SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
10606 SelectionDAG &DAG) const {
10607 EVT SrcVT = Op.getOperand(0).getValueType();
10608 EVT DstVT = Op.getValueType();
10609 assert(Subtarget->is64Bit() && !Subtarget->hasXMMInt() &&
10610 Subtarget->hasMMX() && "Unexpected custom BITCAST");
10611 assert((DstVT == MVT::i64 ||
10612 (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
10613 "Unexpected custom BITCAST");
10614 // i64 <=> MMX conversions are Legal.
10615 if (SrcVT==MVT::i64 && DstVT.isVector())
10617 if (DstVT==MVT::i64 && SrcVT.isVector())
10619 // MMX <=> MMX conversions are Legal.
10620 if (SrcVT.isVector() && DstVT.isVector())
10622 // All other conversions need to be expanded.
10626 SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
10627 SDNode *Node = Op.getNode();
10628 DebugLoc dl = Node->getDebugLoc();
10629 EVT T = Node->getValueType(0);
10630 SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
10631 DAG.getConstant(0, T), Node->getOperand(2));
10632 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
10633 cast<AtomicSDNode>(Node)->getMemoryVT(),
10634 Node->getOperand(0),
10635 Node->getOperand(1), negOp,
10636 cast<AtomicSDNode>(Node)->getSrcValue(),
10637 cast<AtomicSDNode>(Node)->getAlignment(),
10638 cast<AtomicSDNode>(Node)->getOrdering(),
10639 cast<AtomicSDNode>(Node)->getSynchScope());
10642 static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
10643 SDNode *Node = Op.getNode();
10644 DebugLoc dl = Node->getDebugLoc();
10645 EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10647 // Convert seq_cst store -> xchg
10648 // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
10649 // FIXME: On 32-bit, store -> fist or movq would be more efficient
10650 // (The only way to get a 16-byte store is cmpxchg16b)
10651 // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
10652 if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
10653 !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10654 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
10655 cast<AtomicSDNode>(Node)->getMemoryVT(),
10656 Node->getOperand(0),
10657 Node->getOperand(1), Node->getOperand(2),
10658 cast<AtomicSDNode>(Node)->getMemOperand(),
10659 cast<AtomicSDNode>(Node)->getOrdering(),
10660 cast<AtomicSDNode>(Node)->getSynchScope());
10661 return Swap.getValue(1);
10663 // Other atomic stores have a simple pattern.
10667 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
10668 EVT VT = Op.getNode()->getValueType(0);
10670 // Let legalize expand this if it isn't a legal type yet.
10671 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10674 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10677 bool ExtraOp = false;
10678 switch (Op.getOpcode()) {
10679 default: assert(0 && "Invalid code");
10680 case ISD::ADDC: Opc = X86ISD::ADD; break;
10681 case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
10682 case ISD::SUBC: Opc = X86ISD::SUB; break;
10683 case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
10687 return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10689 return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10690 Op.getOperand(1), Op.getOperand(2));
10693 /// LowerOperation - Provide custom lowering hooks for some operations.
10695 SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10696 switch (Op.getOpcode()) {
10697 default: llvm_unreachable("Should not custom lower this!");
10698 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op,DAG);
10699 case ISD::MEMBARRIER: return LowerMEMBARRIER(Op,DAG);
10700 case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op,DAG);
10701 case ISD::ATOMIC_CMP_SWAP: return LowerCMP_SWAP(Op,DAG);
10702 case ISD::ATOMIC_LOAD_SUB: return LowerLOAD_SUB(Op,DAG);
10703 case ISD::ATOMIC_STORE: return LowerATOMIC_STORE(Op,DAG);
10704 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
10705 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
10706 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
10707 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10708 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
10709 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
10710 case ISD::INSERT_SUBVECTOR: return LowerINSERT_SUBVECTOR(Op, DAG);
10711 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
10712 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
10713 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
10714 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
10715 case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
10716 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
10717 case ISD::SHL_PARTS:
10718 case ISD::SRA_PARTS:
10719 case ISD::SRL_PARTS: return LowerShiftParts(Op, DAG);
10720 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
10721 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
10722 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
10723 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
10724 case ISD::FABS: return LowerFABS(Op, DAG);
10725 case ISD::FNEG: return LowerFNEG(Op, DAG);
10726 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
10727 case ISD::FGETSIGN: return LowerFGETSIGN(Op, DAG);
10728 case ISD::SETCC: return LowerSETCC(Op, DAG);
10729 case ISD::SELECT: return LowerSELECT(Op, DAG);
10730 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
10731 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
10732 case ISD::VASTART: return LowerVASTART(Op, DAG);
10733 case ISD::VAARG: return LowerVAARG(Op, DAG);
10734 case ISD::VACOPY: return LowerVACOPY(Op, DAG);
10735 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10736 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
10737 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
10738 case ISD::FRAME_TO_ARGS_OFFSET:
10739 return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
10740 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10741 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
10742 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG);
10743 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG);
10744 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
10745 case ISD::CTLZ: return LowerCTLZ(Op, DAG);
10746 case ISD::CTLZ_ZERO_UNDEF: return LowerCTLZ_ZERO_UNDEF(Op, DAG);
10747 case ISD::CTTZ: return LowerCTTZ(Op, DAG);
10748 case ISD::MUL: return LowerMUL(Op, DAG);
10751 case ISD::SHL: return LowerShift(Op, DAG);
10757 case ISD::UMULO: return LowerXALUO(Op, DAG);
10758 case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, DAG);
10759 case ISD::BITCAST: return LowerBITCAST(Op, DAG);
10763 case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
10764 case ISD::ADD: return LowerADD(Op, DAG);
10765 case ISD::SUB: return LowerSUB(Op, DAG);
10769 static void ReplaceATOMIC_LOAD(SDNode *Node,
10770 SmallVectorImpl<SDValue> &Results,
10771 SelectionDAG &DAG) {
10772 DebugLoc dl = Node->getDebugLoc();
10773 EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10775 // Convert wide load -> cmpxchg8b/cmpxchg16b
10776 // FIXME: On 32-bit, load -> fild or movq would be more efficient
10777 // (The only way to get a 16-byte load is cmpxchg16b)
10778 // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
10779 SDValue Zero = DAG.getConstant(0, VT);
10780 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
10781 Node->getOperand(0),
10782 Node->getOperand(1), Zero, Zero,
10783 cast<AtomicSDNode>(Node)->getMemOperand(),
10784 cast<AtomicSDNode>(Node)->getOrdering(),
10785 cast<AtomicSDNode>(Node)->getSynchScope());
10786 Results.push_back(Swap.getValue(0));
10787 Results.push_back(Swap.getValue(1));
10790 void X86TargetLowering::
10791 ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
10792 SelectionDAG &DAG, unsigned NewOp) const {
10793 DebugLoc dl = Node->getDebugLoc();
10794 assert (Node->getValueType(0) == MVT::i64 &&
10795 "Only know how to expand i64 atomics");
10797 SDValue Chain = Node->getOperand(0);
10798 SDValue In1 = Node->getOperand(1);
10799 SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10800 Node->getOperand(2), DAG.getIntPtrConstant(0));
10801 SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10802 Node->getOperand(2), DAG.getIntPtrConstant(1));
10803 SDValue Ops[] = { Chain, In1, In2L, In2H };
10804 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10806 DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
10807 cast<MemSDNode>(Node)->getMemOperand());
10808 SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
10809 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
10810 Results.push_back(Result.getValue(2));
10813 /// ReplaceNodeResults - Replace a node with an illegal result type
10814 /// with a new node built out of custom code.
10815 void X86TargetLowering::ReplaceNodeResults(SDNode *N,
10816 SmallVectorImpl<SDValue>&Results,
10817 SelectionDAG &DAG) const {
10818 DebugLoc dl = N->getDebugLoc();
10819 switch (N->getOpcode()) {
10821 assert(false && "Do not know how to custom type legalize this operation!");
10823 case ISD::SIGN_EXTEND_INREG:
10828 // We don't want to expand or promote these.
10830 case ISD::FP_TO_SINT: {
10831 std::pair<SDValue,SDValue> Vals =
10832 FP_TO_INTHelper(SDValue(N, 0), DAG, true);
10833 SDValue FIST = Vals.first, StackSlot = Vals.second;
10834 if (FIST.getNode() != 0) {
10835 EVT VT = N->getValueType(0);
10836 // Return a load from the stack slot.
10837 Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
10838 MachinePointerInfo(),
10839 false, false, false, 0));
10843 case ISD::READCYCLECOUNTER: {
10844 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10845 SDValue TheChain = N->getOperand(0);
10846 SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10847 SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
10849 SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
10851 // Use a buildpair to merge the two 32-bit values into a 64-bit one.
10852 SDValue Ops[] = { eax, edx };
10853 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
10854 Results.push_back(edx.getValue(1));
10857 case ISD::ATOMIC_CMP_SWAP: {
10858 EVT T = N->getValueType(0);
10859 assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
10860 bool Regs64bit = T == MVT::i128;
10861 EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
10862 SDValue cpInL, cpInH;
10863 cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10864 DAG.getConstant(0, HalfT));
10865 cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10866 DAG.getConstant(1, HalfT));
10867 cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
10868 Regs64bit ? X86::RAX : X86::EAX,
10870 cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
10871 Regs64bit ? X86::RDX : X86::EDX,
10872 cpInH, cpInL.getValue(1));
10873 SDValue swapInL, swapInH;
10874 swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10875 DAG.getConstant(0, HalfT));
10876 swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10877 DAG.getConstant(1, HalfT));
10878 swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
10879 Regs64bit ? X86::RBX : X86::EBX,
10880 swapInL, cpInH.getValue(1));
10881 swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
10882 Regs64bit ? X86::RCX : X86::ECX,
10883 swapInH, swapInL.getValue(1));
10884 SDValue Ops[] = { swapInH.getValue(0),
10886 swapInH.getValue(1) };
10887 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10888 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
10889 unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
10890 X86ISD::LCMPXCHG8_DAG;
10891 SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
10893 SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
10894 Regs64bit ? X86::RAX : X86::EAX,
10895 HalfT, Result.getValue(1));
10896 SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
10897 Regs64bit ? X86::RDX : X86::EDX,
10898 HalfT, cpOutL.getValue(2));
10899 SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
10900 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
10901 Results.push_back(cpOutH.getValue(1));
10904 case ISD::ATOMIC_LOAD_ADD:
10905 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
10907 case ISD::ATOMIC_LOAD_AND:
10908 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
10910 case ISD::ATOMIC_LOAD_NAND:
10911 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
10913 case ISD::ATOMIC_LOAD_OR:
10914 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
10916 case ISD::ATOMIC_LOAD_SUB:
10917 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
10919 case ISD::ATOMIC_LOAD_XOR:
10920 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
10922 case ISD::ATOMIC_SWAP:
10923 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
10925 case ISD::ATOMIC_LOAD:
10926 ReplaceATOMIC_LOAD(N, Results, DAG);
10930 const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
10932 default: return NULL;
10933 case X86ISD::BSF: return "X86ISD::BSF";
10934 case X86ISD::BSR: return "X86ISD::BSR";
10935 case X86ISD::SHLD: return "X86ISD::SHLD";
10936 case X86ISD::SHRD: return "X86ISD::SHRD";
10937 case X86ISD::FAND: return "X86ISD::FAND";
10938 case X86ISD::FOR: return "X86ISD::FOR";
10939 case X86ISD::FXOR: return "X86ISD::FXOR";
10940 case X86ISD::FSRL: return "X86ISD::FSRL";
10941 case X86ISD::FILD: return "X86ISD::FILD";
10942 case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG";
10943 case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
10944 case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
10945 case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
10946 case X86ISD::FLD: return "X86ISD::FLD";
10947 case X86ISD::FST: return "X86ISD::FST";
10948 case X86ISD::CALL: return "X86ISD::CALL";
10949 case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG";
10950 case X86ISD::BT: return "X86ISD::BT";
10951 case X86ISD::CMP: return "X86ISD::CMP";
10952 case X86ISD::COMI: return "X86ISD::COMI";
10953 case X86ISD::UCOMI: return "X86ISD::UCOMI";
10954 case X86ISD::SETCC: return "X86ISD::SETCC";
10955 case X86ISD::SETCC_CARRY: return "X86ISD::SETCC_CARRY";
10956 case X86ISD::FSETCCsd: return "X86ISD::FSETCCsd";
10957 case X86ISD::FSETCCss: return "X86ISD::FSETCCss";
10958 case X86ISD::CMOV: return "X86ISD::CMOV";
10959 case X86ISD::BRCOND: return "X86ISD::BRCOND";
10960 case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG";
10961 case X86ISD::REP_STOS: return "X86ISD::REP_STOS";
10962 case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS";
10963 case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg";
10964 case X86ISD::Wrapper: return "X86ISD::Wrapper";
10965 case X86ISD::WrapperRIP: return "X86ISD::WrapperRIP";
10966 case X86ISD::PEXTRB: return "X86ISD::PEXTRB";
10967 case X86ISD::PEXTRW: return "X86ISD::PEXTRW";
10968 case X86ISD::INSERTPS: return "X86ISD::INSERTPS";
10969 case X86ISD::PINSRB: return "X86ISD::PINSRB";
10970 case X86ISD::PINSRW: return "X86ISD::PINSRW";
10971 case X86ISD::PSHUFB: return "X86ISD::PSHUFB";
10972 case X86ISD::ANDNP: return "X86ISD::ANDNP";
10973 case X86ISD::PSIGN: return "X86ISD::PSIGN";
10974 case X86ISD::BLENDV: return "X86ISD::BLENDV";
10975 case X86ISD::HADD: return "X86ISD::HADD";
10976 case X86ISD::HSUB: return "X86ISD::HSUB";
10977 case X86ISD::FHADD: return "X86ISD::FHADD";
10978 case X86ISD::FHSUB: return "X86ISD::FHSUB";
10979 case X86ISD::FMAX: return "X86ISD::FMAX";
10980 case X86ISD::FMIN: return "X86ISD::FMIN";
10981 case X86ISD::FRSQRT: return "X86ISD::FRSQRT";
10982 case X86ISD::FRCP: return "X86ISD::FRCP";
10983 case X86ISD::TLSADDR: return "X86ISD::TLSADDR";
10984 case X86ISD::TLSCALL: return "X86ISD::TLSCALL";
10985 case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN";
10986 case X86ISD::TC_RETURN: return "X86ISD::TC_RETURN";
10987 case X86ISD::FNSTCW16m: return "X86ISD::FNSTCW16m";
10988 case X86ISD::LCMPXCHG_DAG: return "X86ISD::LCMPXCHG_DAG";
10989 case X86ISD::LCMPXCHG8_DAG: return "X86ISD::LCMPXCHG8_DAG";
10990 case X86ISD::ATOMADD64_DAG: return "X86ISD::ATOMADD64_DAG";
10991 case X86ISD::ATOMSUB64_DAG: return "X86ISD::ATOMSUB64_DAG";
10992 case X86ISD::ATOMOR64_DAG: return "X86ISD::ATOMOR64_DAG";
10993 case X86ISD::ATOMXOR64_DAG: return "X86ISD::ATOMXOR64_DAG";
10994 case X86ISD::ATOMAND64_DAG: return "X86ISD::ATOMAND64_DAG";
10995 case X86ISD::ATOMNAND64_DAG: return "X86ISD::ATOMNAND64_DAG";
10996 case X86ISD::VZEXT_MOVL: return "X86ISD::VZEXT_MOVL";
10997 case X86ISD::VZEXT_LOAD: return "X86ISD::VZEXT_LOAD";
10998 case X86ISD::VSHL: return "X86ISD::VSHL";
10999 case X86ISD::VSRL: return "X86ISD::VSRL";
11000 case X86ISD::CMPPD: return "X86ISD::CMPPD";
11001 case X86ISD::CMPPS: return "X86ISD::CMPPS";
11002 case X86ISD::PCMPEQB: return "X86ISD::PCMPEQB";
11003 case X86ISD::PCMPEQW: return "X86ISD::PCMPEQW";
11004 case X86ISD::PCMPEQD: return "X86ISD::PCMPEQD";
11005 case X86ISD::PCMPEQQ: return "X86ISD::PCMPEQQ";
11006 case X86ISD::PCMPGTB: return "X86ISD::PCMPGTB";
11007 case X86ISD::PCMPGTW: return "X86ISD::PCMPGTW";
11008 case X86ISD::PCMPGTD: return "X86ISD::PCMPGTD";
11009 case X86ISD::PCMPGTQ: return "X86ISD::PCMPGTQ";
11010 case X86ISD::ADD: return "X86ISD::ADD";
11011 case X86ISD::SUB: return "X86ISD::SUB";
11012 case X86ISD::ADC: return "X86ISD::ADC";
11013 case X86ISD::SBB: return "X86ISD::SBB";
11014 case X86ISD::SMUL: return "X86ISD::SMUL";
11015 case X86ISD::UMUL: return "X86ISD::UMUL";
11016 case X86ISD::INC: return "X86ISD::INC";
11017 case X86ISD::DEC: return "X86ISD::DEC";
11018 case X86ISD::OR: return "X86ISD::OR";
11019 case X86ISD::XOR: return "X86ISD::XOR";
11020 case X86ISD::AND: return "X86ISD::AND";
11021 case X86ISD::ANDN: return "X86ISD::ANDN";
11022 case X86ISD::BLSI: return "X86ISD::BLSI";
11023 case X86ISD::BLSMSK: return "X86ISD::BLSMSK";
11024 case X86ISD::BLSR: return "X86ISD::BLSR";
11025 case X86ISD::MUL_IMM: return "X86ISD::MUL_IMM";
11026 case X86ISD::PTEST: return "X86ISD::PTEST";
11027 case X86ISD::TESTP: return "X86ISD::TESTP";
11028 case X86ISD::PALIGN: return "X86ISD::PALIGN";
11029 case X86ISD::PSHUFD: return "X86ISD::PSHUFD";
11030 case X86ISD::PSHUFHW: return "X86ISD::PSHUFHW";
11031 case X86ISD::PSHUFHW_LD: return "X86ISD::PSHUFHW_LD";
11032 case X86ISD::PSHUFLW: return "X86ISD::PSHUFLW";
11033 case X86ISD::PSHUFLW_LD: return "X86ISD::PSHUFLW_LD";
11034 case X86ISD::SHUFPS: return "X86ISD::SHUFPS";
11035 case X86ISD::SHUFPD: return "X86ISD::SHUFPD";
11036 case X86ISD::MOVLHPS: return "X86ISD::MOVLHPS";
11037 case X86ISD::MOVLHPD: return "X86ISD::MOVLHPD";
11038 case X86ISD::MOVHLPS: return "X86ISD::MOVHLPS";
11039 case X86ISD::MOVLPS: return "X86ISD::MOVLPS";
11040 case X86ISD::MOVLPD: return "X86ISD::MOVLPD";
11041 case X86ISD::MOVDDUP: return "X86ISD::MOVDDUP";
11042 case X86ISD::MOVSHDUP: return "X86ISD::MOVSHDUP";
11043 case X86ISD::MOVSLDUP: return "X86ISD::MOVSLDUP";
11044 case X86ISD::MOVSHDUP_LD: return "X86ISD::MOVSHDUP_LD";
11045 case X86ISD::MOVSLDUP_LD: return "X86ISD::MOVSLDUP_LD";
11046 case X86ISD::MOVSD: return "X86ISD::MOVSD";
11047 case X86ISD::MOVSS: return "X86ISD::MOVSS";
11048 case X86ISD::UNPCKL: return "X86ISD::UNPCKL";
11049 case X86ISD::UNPCKH: return "X86ISD::UNPCKH";
11050 case X86ISD::VBROADCAST: return "X86ISD::VBROADCAST";
11051 case X86ISD::VPERMILP: return "X86ISD::VPERMILP";
11052 case X86ISD::VPERM2X128: return "X86ISD::VPERM2X128";
11053 case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
11054 case X86ISD::VAARG_64: return "X86ISD::VAARG_64";
11055 case X86ISD::WIN_ALLOCA: return "X86ISD::WIN_ALLOCA";
11056 case X86ISD::MEMBARRIER: return "X86ISD::MEMBARRIER";
11057 case X86ISD::SEG_ALLOCA: return "X86ISD::SEG_ALLOCA";
11061 // isLegalAddressingMode - Return true if the addressing mode represented
11062 // by AM is legal for this target, for a load/store of the specified type.
11063 bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
11065 // X86 supports extremely general addressing modes.
11066 CodeModel::Model M = getTargetMachine().getCodeModel();
11067 Reloc::Model R = getTargetMachine().getRelocationModel();
11069 // X86 allows a sign-extended 32-bit immediate field as a displacement.
11070 if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
11075 Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
11077 // If a reference to this global requires an extra load, we can't fold it.
11078 if (isGlobalStubReference(GVFlags))
11081 // If BaseGV requires a register for the PIC base, we cannot also have a
11082 // BaseReg specified.
11083 if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
11086 // If lower 4G is not available, then we must use rip-relative addressing.
11087 if ((M != CodeModel::Small || R != Reloc::Static) &&
11088 Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
11092 switch (AM.Scale) {
11098 // These scales always work.
11103 // These scales are formed with basereg+scalereg. Only accept if there is
11108 default: // Other stuff never works.
11116 bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11117 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11119 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11120 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11121 if (NumBits1 <= NumBits2)
11126 bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11127 if (!VT1.isInteger() || !VT2.isInteger())
11129 unsigned NumBits1 = VT1.getSizeInBits();
11130 unsigned NumBits2 = VT2.getSizeInBits();
11131 if (NumBits1 <= NumBits2)
11136 bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
11137 // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11138 return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
11141 bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
11142 // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11143 return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
11146 bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
11147 // i16 instructions are longer (0x66 prefix) and potentially slower.
11148 return !(VT1 == MVT::i32 && VT2 == MVT::i16);
11151 /// isShuffleMaskLegal - Targets can use this to indicate that they only
11152 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
11153 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
11154 /// are assumed to be legal.
11156 X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
11158 // Very little shuffling can be done for 64-bit vectors right now.
11159 if (VT.getSizeInBits() == 64)
11162 // FIXME: pshufb, blends, shifts.
11163 return (VT.getVectorNumElements() == 2 ||
11164 ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
11165 isMOVLMask(M, VT) ||
11166 isSHUFPMask(M, VT) ||
11167 isPSHUFDMask(M, VT) ||
11168 isPSHUFHWMask(M, VT) ||
11169 isPSHUFLWMask(M, VT) ||
11170 isPALIGNRMask(M, VT, Subtarget->hasSSSE3orAVX()) ||
11171 isUNPCKLMask(M, VT, Subtarget->hasAVX2()) ||
11172 isUNPCKHMask(M, VT, Subtarget->hasAVX2()) ||
11173 isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasAVX2()) ||
11174 isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasAVX2()));
11178 X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
11180 unsigned NumElts = VT.getVectorNumElements();
11181 // FIXME: This collection of masks seems suspect.
11184 if (NumElts == 4 && VT.getSizeInBits() == 128) {
11185 return (isMOVLMask(Mask, VT) ||
11186 isCommutedMOVLMask(Mask, VT, true) ||
11187 isSHUFPMask(Mask, VT) ||
11188 isSHUFPMask(Mask, VT, /* Commuted */ true));
11193 //===----------------------------------------------------------------------===//
11194 // X86 Scheduler Hooks
11195 //===----------------------------------------------------------------------===//
11197 // private utility function
11198 MachineBasicBlock *
11199 X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
11200 MachineBasicBlock *MBB,
11207 TargetRegisterClass *RC,
11208 bool invSrc) const {
11209 // For the atomic bitwise operator, we generate
11212 // ld t1 = [bitinstr.addr]
11213 // op t2 = t1, [bitinstr.val]
11215 // lcs dest = [bitinstr.addr], t2 [EAX is implicit]
11217 // fallthrough -->nextMBB
11218 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11219 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11220 MachineFunction::iterator MBBIter = MBB;
11223 /// First build the CFG
11224 MachineFunction *F = MBB->getParent();
11225 MachineBasicBlock *thisMBB = MBB;
11226 MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11227 MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11228 F->insert(MBBIter, newMBB);
11229 F->insert(MBBIter, nextMBB);
11231 // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11232 nextMBB->splice(nextMBB->begin(), thisMBB,
11233 llvm::next(MachineBasicBlock::iterator(bInstr)),
11235 nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11237 // Update thisMBB to fall through to newMBB
11238 thisMBB->addSuccessor(newMBB);
11240 // newMBB jumps to itself and fall through to nextMBB
11241 newMBB->addSuccessor(nextMBB);
11242 newMBB->addSuccessor(newMBB);
11244 // Insert instructions into newMBB based on incoming instruction
11245 assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11246 "unexpected number of operands");
11247 DebugLoc dl = bInstr->getDebugLoc();
11248 MachineOperand& destOper = bInstr->getOperand(0);
11249 MachineOperand* argOpers[2 + X86::AddrNumOperands];
11250 int numArgs = bInstr->getNumOperands() - 1;
11251 for (int i=0; i < numArgs; ++i)
11252 argOpers[i] = &bInstr->getOperand(i+1);
11254 // x86 address has 4 operands: base, index, scale, and displacement
11255 int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11256 int valArgIndx = lastAddrIndx + 1;
11258 unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11259 MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
11260 for (int i=0; i <= lastAddrIndx; ++i)
11261 (*MIB).addOperand(*argOpers[i]);
11263 unsigned tt = F->getRegInfo().createVirtualRegister(RC);
11265 MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
11270 unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11271 assert((argOpers[valArgIndx]->isReg() ||
11272 argOpers[valArgIndx]->isImm()) &&
11273 "invalid operand");
11274 if (argOpers[valArgIndx]->isReg())
11275 MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
11277 MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
11279 (*MIB).addOperand(*argOpers[valArgIndx]);
11281 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
11284 MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
11285 for (int i=0; i <= lastAddrIndx; ++i)
11286 (*MIB).addOperand(*argOpers[i]);
11288 assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11289 (*MIB).setMemRefs(bInstr->memoperands_begin(),
11290 bInstr->memoperands_end());
11292 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11293 MIB.addReg(EAXreg);
11296 BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11298 bInstr->eraseFromParent(); // The pseudo instruction is gone now.
11302 // private utility function: 64 bit atomics on 32 bit host.
11303 MachineBasicBlock *
11304 X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
11305 MachineBasicBlock *MBB,
11310 bool invSrc) const {
11311 // For the atomic bitwise operator, we generate
11312 // thisMBB (instructions are in pairs, except cmpxchg8b)
11313 // ld t1,t2 = [bitinstr.addr]
11315 // out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
11316 // op t5, t6 <- out1, out2, [bitinstr.val]
11317 // (for SWAP, substitute: mov t5, t6 <- [bitinstr.val])
11318 // mov ECX, EBX <- t5, t6
11319 // mov EAX, EDX <- t1, t2
11320 // cmpxchg8b [bitinstr.addr] [EAX, EDX, EBX, ECX implicit]
11321 // mov t3, t4 <- EAX, EDX
11323 // result in out1, out2
11324 // fallthrough -->nextMBB
11326 const TargetRegisterClass *RC = X86::GR32RegisterClass;
11327 const unsigned LoadOpc = X86::MOV32rm;
11328 const unsigned NotOpc = X86::NOT32r;
11329 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11330 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11331 MachineFunction::iterator MBBIter = MBB;
11334 /// First build the CFG
11335 MachineFunction *F = MBB->getParent();
11336 MachineBasicBlock *thisMBB = MBB;
11337 MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11338 MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11339 F->insert(MBBIter, newMBB);
11340 F->insert(MBBIter, nextMBB);
11342 // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11343 nextMBB->splice(nextMBB->begin(), thisMBB,
11344 llvm::next(MachineBasicBlock::iterator(bInstr)),
11346 nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11348 // Update thisMBB to fall through to newMBB
11349 thisMBB->addSuccessor(newMBB);
11351 // newMBB jumps to itself and fall through to nextMBB
11352 newMBB->addSuccessor(nextMBB);
11353 newMBB->addSuccessor(newMBB);
11355 DebugLoc dl = bInstr->getDebugLoc();
11356 // Insert instructions into newMBB based on incoming instruction
11357 // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
11358 assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
11359 "unexpected number of operands");
11360 MachineOperand& dest1Oper = bInstr->getOperand(0);
11361 MachineOperand& dest2Oper = bInstr->getOperand(1);
11362 MachineOperand* argOpers[2 + X86::AddrNumOperands];
11363 for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
11364 argOpers[i] = &bInstr->getOperand(i+2);
11366 // We use some of the operands multiple times, so conservatively just
11367 // clear any kill flags that might be present.
11368 if (argOpers[i]->isReg() && argOpers[i]->isUse())
11369 argOpers[i]->setIsKill(false);
11372 // x86 address has 5 operands: base, index, scale, displacement, and segment.
11373 int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11375 unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11376 MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
11377 for (int i=0; i <= lastAddrIndx; ++i)
11378 (*MIB).addOperand(*argOpers[i]);
11379 unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11380 MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
11381 // add 4 to displacement.
11382 for (int i=0; i <= lastAddrIndx-2; ++i)
11383 (*MIB).addOperand(*argOpers[i]);
11384 MachineOperand newOp3 = *(argOpers[3]);
11385 if (newOp3.isImm())
11386 newOp3.setImm(newOp3.getImm()+4);
11388 newOp3.setOffset(newOp3.getOffset()+4);
11389 (*MIB).addOperand(newOp3);
11390 (*MIB).addOperand(*argOpers[lastAddrIndx]);
11392 // t3/4 are defined later, at the bottom of the loop
11393 unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11394 unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
11395 BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
11396 .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
11397 BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
11398 .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
11400 // The subsequent operations should be using the destination registers of
11401 //the PHI instructions.
11403 t1 = F->getRegInfo().createVirtualRegister(RC);
11404 t2 = F->getRegInfo().createVirtualRegister(RC);
11405 MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
11406 MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
11408 t1 = dest1Oper.getReg();
11409 t2 = dest2Oper.getReg();
11412 int valArgIndx = lastAddrIndx + 1;
11413 assert((argOpers[valArgIndx]->isReg() ||
11414 argOpers[valArgIndx]->isImm()) &&
11415 "invalid operand");
11416 unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
11417 unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
11418 if (argOpers[valArgIndx]->isReg())
11419 MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
11421 MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
11422 if (regOpcL != X86::MOV32rr)
11424 (*MIB).addOperand(*argOpers[valArgIndx]);
11425 assert(argOpers[valArgIndx + 1]->isReg() ==
11426 argOpers[valArgIndx]->isReg());
11427 assert(argOpers[valArgIndx + 1]->isImm() ==
11428 argOpers[valArgIndx]->isImm());
11429 if (argOpers[valArgIndx + 1]->isReg())
11430 MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
11432 MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
11433 if (regOpcH != X86::MOV32rr)
11435 (*MIB).addOperand(*argOpers[valArgIndx + 1]);
11437 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11439 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
11442 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
11444 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
11447 MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
11448 for (int i=0; i <= lastAddrIndx; ++i)
11449 (*MIB).addOperand(*argOpers[i]);
11451 assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11452 (*MIB).setMemRefs(bInstr->memoperands_begin(),
11453 bInstr->memoperands_end());
11455 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
11456 MIB.addReg(X86::EAX);
11457 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
11458 MIB.addReg(X86::EDX);
11461 BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11463 bInstr->eraseFromParent(); // The pseudo instruction is gone now.
11467 // private utility function
11468 MachineBasicBlock *
11469 X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
11470 MachineBasicBlock *MBB,
11471 unsigned cmovOpc) const {
11472 // For the atomic min/max operator, we generate
11475 // ld t1 = [min/max.addr]
11476 // mov t2 = [min/max.val]
11478 // cmov[cond] t2 = t1
11480 // lcs dest = [bitinstr.addr], t2 [EAX is implicit]
11482 // fallthrough -->nextMBB
11484 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11485 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11486 MachineFunction::iterator MBBIter = MBB;
11489 /// First build the CFG
11490 MachineFunction *F = MBB->getParent();
11491 MachineBasicBlock *thisMBB = MBB;
11492 MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11493 MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11494 F->insert(MBBIter, newMBB);
11495 F->insert(MBBIter, nextMBB);
11497 // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11498 nextMBB->splice(nextMBB->begin(), thisMBB,
11499 llvm::next(MachineBasicBlock::iterator(mInstr)),
11501 nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11503 // Update thisMBB to fall through to newMBB
11504 thisMBB->addSuccessor(newMBB);
11506 // newMBB jumps to newMBB and fall through to nextMBB
11507 newMBB->addSuccessor(nextMBB);
11508 newMBB->addSuccessor(newMBB);
11510 DebugLoc dl = mInstr->getDebugLoc();
11511 // Insert instructions into newMBB based on incoming instruction
11512 assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11513 "unexpected number of operands");
11514 MachineOperand& destOper = mInstr->getOperand(0);
11515 MachineOperand* argOpers[2 + X86::AddrNumOperands];
11516 int numArgs = mInstr->getNumOperands() - 1;
11517 for (int i=0; i < numArgs; ++i)
11518 argOpers[i] = &mInstr->getOperand(i+1);
11520 // x86 address has 4 operands: base, index, scale, and displacement
11521 int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11522 int valArgIndx = lastAddrIndx + 1;
11524 unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11525 MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
11526 for (int i=0; i <= lastAddrIndx; ++i)
11527 (*MIB).addOperand(*argOpers[i]);
11529 // We only support register and immediate values
11530 assert((argOpers[valArgIndx]->isReg() ||
11531 argOpers[valArgIndx]->isImm()) &&
11532 "invalid operand");
11534 unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11535 if (argOpers[valArgIndx]->isReg())
11536 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
11538 MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
11539 (*MIB).addOperand(*argOpers[valArgIndx]);
11541 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11544 MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
11549 unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11550 MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
11554 // Cmp and exchange if none has modified the memory location
11555 MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
11556 for (int i=0; i <= lastAddrIndx; ++i)
11557 (*MIB).addOperand(*argOpers[i]);
11559 assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11560 (*MIB).setMemRefs(mInstr->memoperands_begin(),
11561 mInstr->memoperands_end());
11563 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11564 MIB.addReg(X86::EAX);
11567 BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11569 mInstr->eraseFromParent(); // The pseudo instruction is gone now.
11573 // FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
11574 // or XMM0_V32I8 in AVX all of this code can be replaced with that
11575 // in the .td file.
11576 MachineBasicBlock *
11577 X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
11578 unsigned numArgs, bool memArg) const {
11579 assert(Subtarget->hasSSE42orAVX() &&
11580 "Target must have SSE4.2 or AVX features enabled");
11582 DebugLoc dl = MI->getDebugLoc();
11583 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11585 if (!Subtarget->hasAVX()) {
11587 Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
11589 Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
11592 Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
11594 Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
11597 MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
11598 for (unsigned i = 0; i < numArgs; ++i) {
11599 MachineOperand &Op = MI->getOperand(i+1);
11600 if (!(Op.isReg() && Op.isImplicit()))
11601 MIB.addOperand(Op);
11603 BuildMI(*BB, MI, dl,
11604 TII->get(Subtarget->hasAVX() ? X86::VMOVAPSrr : X86::MOVAPSrr),
11605 MI->getOperand(0).getReg())
11606 .addReg(X86::XMM0);
11608 MI->eraseFromParent();
11612 MachineBasicBlock *
11613 X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
11614 DebugLoc dl = MI->getDebugLoc();
11615 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11617 // Address into RAX/EAX, other two args into ECX, EDX.
11618 unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
11619 unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11620 MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
11621 for (int i = 0; i < X86::AddrNumOperands; ++i)
11622 MIB.addOperand(MI->getOperand(i));
11624 unsigned ValOps = X86::AddrNumOperands;
11625 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11626 .addReg(MI->getOperand(ValOps).getReg());
11627 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
11628 .addReg(MI->getOperand(ValOps+1).getReg());
11630 // The instruction doesn't actually take any operands though.
11631 BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
11633 MI->eraseFromParent(); // The pseudo is gone now.
11637 MachineBasicBlock *
11638 X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
11639 DebugLoc dl = MI->getDebugLoc();
11640 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11642 // First arg in ECX, the second in EAX.
11643 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11644 .addReg(MI->getOperand(0).getReg());
11645 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
11646 .addReg(MI->getOperand(1).getReg());
11648 // The instruction doesn't actually take any operands though.
11649 BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
11651 MI->eraseFromParent(); // The pseudo is gone now.
11655 MachineBasicBlock *
11656 X86TargetLowering::EmitVAARG64WithCustomInserter(
11658 MachineBasicBlock *MBB) const {
11659 // Emit va_arg instruction on X86-64.
11661 // Operands to this pseudo-instruction:
11662 // 0 ) Output : destination address (reg)
11663 // 1-5) Input : va_list address (addr, i64mem)
11664 // 6 ) ArgSize : Size (in bytes) of vararg type
11665 // 7 ) ArgMode : 0=overflow only, 1=use gp_offset, 2=use fp_offset
11666 // 8 ) Align : Alignment of type
11667 // 9 ) EFLAGS (implicit-def)
11669 assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
11670 assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
11672 unsigned DestReg = MI->getOperand(0).getReg();
11673 MachineOperand &Base = MI->getOperand(1);
11674 MachineOperand &Scale = MI->getOperand(2);
11675 MachineOperand &Index = MI->getOperand(3);
11676 MachineOperand &Disp = MI->getOperand(4);
11677 MachineOperand &Segment = MI->getOperand(5);
11678 unsigned ArgSize = MI->getOperand(6).getImm();
11679 unsigned ArgMode = MI->getOperand(7).getImm();
11680 unsigned Align = MI->getOperand(8).getImm();
11682 // Memory Reference
11683 assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
11684 MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
11685 MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
11687 // Machine Information
11688 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11689 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11690 const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
11691 const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
11692 DebugLoc DL = MI->getDebugLoc();
11694 // struct va_list {
11697 // i64 overflow_area (address)
11698 // i64 reg_save_area (address)
11700 // sizeof(va_list) = 24
11701 // alignment(va_list) = 8
11703 unsigned TotalNumIntRegs = 6;
11704 unsigned TotalNumXMMRegs = 8;
11705 bool UseGPOffset = (ArgMode == 1);
11706 bool UseFPOffset = (ArgMode == 2);
11707 unsigned MaxOffset = TotalNumIntRegs * 8 +
11708 (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
11710 /* Align ArgSize to a multiple of 8 */
11711 unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
11712 bool NeedsAlign = (Align > 8);
11714 MachineBasicBlock *thisMBB = MBB;
11715 MachineBasicBlock *overflowMBB;
11716 MachineBasicBlock *offsetMBB;
11717 MachineBasicBlock *endMBB;
11719 unsigned OffsetDestReg = 0; // Argument address computed by offsetMBB
11720 unsigned OverflowDestReg = 0; // Argument address computed by overflowMBB
11721 unsigned OffsetReg = 0;
11723 if (!UseGPOffset && !UseFPOffset) {
11724 // If we only pull from the overflow region, we don't create a branch.
11725 // We don't need to alter control flow.
11726 OffsetDestReg = 0; // unused
11727 OverflowDestReg = DestReg;
11730 overflowMBB = thisMBB;
11733 // First emit code to check if gp_offset (or fp_offset) is below the bound.
11734 // If so, pull the argument from reg_save_area. (branch to offsetMBB)
11735 // If not, pull from overflow_area. (branch to overflowMBB)
11740 // offsetMBB overflowMBB
11745 // Registers for the PHI in endMBB
11746 OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
11747 OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
11749 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11750 MachineFunction *MF = MBB->getParent();
11751 overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11752 offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11753 endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11755 MachineFunction::iterator MBBIter = MBB;
11758 // Insert the new basic blocks
11759 MF->insert(MBBIter, offsetMBB);
11760 MF->insert(MBBIter, overflowMBB);
11761 MF->insert(MBBIter, endMBB);
11763 // Transfer the remainder of MBB and its successor edges to endMBB.
11764 endMBB->splice(endMBB->begin(), thisMBB,
11765 llvm::next(MachineBasicBlock::iterator(MI)),
11767 endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11769 // Make offsetMBB and overflowMBB successors of thisMBB
11770 thisMBB->addSuccessor(offsetMBB);
11771 thisMBB->addSuccessor(overflowMBB);
11773 // endMBB is a successor of both offsetMBB and overflowMBB
11774 offsetMBB->addSuccessor(endMBB);
11775 overflowMBB->addSuccessor(endMBB);
11777 // Load the offset value into a register
11778 OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11779 BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
11783 .addDisp(Disp, UseFPOffset ? 4 : 0)
11784 .addOperand(Segment)
11785 .setMemRefs(MMOBegin, MMOEnd);
11787 // Check if there is enough room left to pull this argument.
11788 BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
11790 .addImm(MaxOffset + 8 - ArgSizeA8);
11792 // Branch to "overflowMBB" if offset >= max
11793 // Fall through to "offsetMBB" otherwise
11794 BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
11795 .addMBB(overflowMBB);
11798 // In offsetMBB, emit code to use the reg_save_area.
11800 assert(OffsetReg != 0);
11802 // Read the reg_save_area address.
11803 unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
11804 BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
11809 .addOperand(Segment)
11810 .setMemRefs(MMOBegin, MMOEnd);
11812 // Zero-extend the offset
11813 unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
11814 BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
11817 .addImm(X86::sub_32bit);
11819 // Add the offset to the reg_save_area to get the final address.
11820 BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
11821 .addReg(OffsetReg64)
11822 .addReg(RegSaveReg);
11824 // Compute the offset for the next argument
11825 unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11826 BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
11828 .addImm(UseFPOffset ? 16 : 8);
11830 // Store it back into the va_list.
11831 BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
11835 .addDisp(Disp, UseFPOffset ? 4 : 0)
11836 .addOperand(Segment)
11837 .addReg(NextOffsetReg)
11838 .setMemRefs(MMOBegin, MMOEnd);
11841 BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
11846 // Emit code to use overflow area
11849 // Load the overflow_area address into a register.
11850 unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
11851 BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
11856 .addOperand(Segment)
11857 .setMemRefs(MMOBegin, MMOEnd);
11859 // If we need to align it, do so. Otherwise, just copy the address
11860 // to OverflowDestReg.
11862 // Align the overflow address
11863 assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
11864 unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
11866 // aligned_addr = (addr + (align-1)) & ~(align-1)
11867 BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
11868 .addReg(OverflowAddrReg)
11871 BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
11873 .addImm(~(uint64_t)(Align-1));
11875 BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
11876 .addReg(OverflowAddrReg);
11879 // Compute the next overflow address after this argument.
11880 // (the overflow address should be kept 8-byte aligned)
11881 unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
11882 BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
11883 .addReg(OverflowDestReg)
11884 .addImm(ArgSizeA8);
11886 // Store the new overflow address.
11887 BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
11892 .addOperand(Segment)
11893 .addReg(NextAddrReg)
11894 .setMemRefs(MMOBegin, MMOEnd);
11896 // If we branched, emit the PHI to the front of endMBB.
11898 BuildMI(*endMBB, endMBB->begin(), DL,
11899 TII->get(X86::PHI), DestReg)
11900 .addReg(OffsetDestReg).addMBB(offsetMBB)
11901 .addReg(OverflowDestReg).addMBB(overflowMBB);
11904 // Erase the pseudo instruction
11905 MI->eraseFromParent();
11910 MachineBasicBlock *
11911 X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
11913 MachineBasicBlock *MBB) const {
11914 // Emit code to save XMM registers to the stack. The ABI says that the
11915 // number of registers to save is given in %al, so it's theoretically
11916 // possible to do an indirect jump trick to avoid saving all of them,
11917 // however this code takes a simpler approach and just executes all
11918 // of the stores if %al is non-zero. It's less code, and it's probably
11919 // easier on the hardware branch predictor, and stores aren't all that
11920 // expensive anyway.
11922 // Create the new basic blocks. One block contains all the XMM stores,
11923 // and one block is the final destination regardless of whether any
11924 // stores were performed.
11925 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11926 MachineFunction *F = MBB->getParent();
11927 MachineFunction::iterator MBBIter = MBB;
11929 MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
11930 MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
11931 F->insert(MBBIter, XMMSaveMBB);
11932 F->insert(MBBIter, EndMBB);
11934 // Transfer the remainder of MBB and its successor edges to EndMBB.
11935 EndMBB->splice(EndMBB->begin(), MBB,
11936 llvm::next(MachineBasicBlock::iterator(MI)),
11938 EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
11940 // The original block will now fall through to the XMM save block.
11941 MBB->addSuccessor(XMMSaveMBB);
11942 // The XMMSaveMBB will fall through to the end block.
11943 XMMSaveMBB->addSuccessor(EndMBB);
11945 // Now add the instructions.
11946 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11947 DebugLoc DL = MI->getDebugLoc();
11949 unsigned CountReg = MI->getOperand(0).getReg();
11950 int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
11951 int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
11953 if (!Subtarget->isTargetWin64()) {
11954 // If %al is 0, branch around the XMM save block.
11955 BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
11956 BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
11957 MBB->addSuccessor(EndMBB);
11960 unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
11961 // In the XMM save block, save all the XMM argument registers.
11962 for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
11963 int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
11964 MachineMemOperand *MMO =
11965 F->getMachineMemOperand(
11966 MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
11967 MachineMemOperand::MOStore,
11968 /*Size=*/16, /*Align=*/16);
11969 BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
11970 .addFrameIndex(RegSaveFrameIndex)
11971 .addImm(/*Scale=*/1)
11972 .addReg(/*IndexReg=*/0)
11973 .addImm(/*Disp=*/Offset)
11974 .addReg(/*Segment=*/0)
11975 .addReg(MI->getOperand(i).getReg())
11976 .addMemOperand(MMO);
11979 MI->eraseFromParent(); // The pseudo instruction is gone now.
11984 MachineBasicBlock *
11985 X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
11986 MachineBasicBlock *BB) const {
11987 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11988 DebugLoc DL = MI->getDebugLoc();
11990 // To "insert" a SELECT_CC instruction, we actually have to insert the
11991 // diamond control-flow pattern. The incoming instruction knows the
11992 // destination vreg to set, the condition code register to branch on, the
11993 // true/false values to select between, and a branch opcode to use.
11994 const BasicBlock *LLVM_BB = BB->getBasicBlock();
11995 MachineFunction::iterator It = BB;
12001 // cmpTY ccX, r1, r2
12003 // fallthrough --> copy0MBB
12004 MachineBasicBlock *thisMBB = BB;
12005 MachineFunction *F = BB->getParent();
12006 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
12007 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12008 F->insert(It, copy0MBB);
12009 F->insert(It, sinkMBB);
12011 // If the EFLAGS register isn't dead in the terminator, then claim that it's
12012 // live into the sink and copy blocks.
12013 if (!MI->killsRegister(X86::EFLAGS)) {
12014 copy0MBB->addLiveIn(X86::EFLAGS);
12015 sinkMBB->addLiveIn(X86::EFLAGS);
12018 // Transfer the remainder of BB and its successor edges to sinkMBB.
12019 sinkMBB->splice(sinkMBB->begin(), BB,
12020 llvm::next(MachineBasicBlock::iterator(MI)),
12022 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12024 // Add the true and fallthrough blocks as its successors.
12025 BB->addSuccessor(copy0MBB);
12026 BB->addSuccessor(sinkMBB);
12028 // Create the conditional branch instruction.
12030 X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
12031 BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
12034 // %FalseValue = ...
12035 // # fallthrough to sinkMBB
12036 copy0MBB->addSuccessor(sinkMBB);
12039 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
12041 BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12042 TII->get(X86::PHI), MI->getOperand(0).getReg())
12043 .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
12044 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
12046 MI->eraseFromParent(); // The pseudo instruction is gone now.
12050 MachineBasicBlock *
12051 X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
12052 bool Is64Bit) const {
12053 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12054 DebugLoc DL = MI->getDebugLoc();
12055 MachineFunction *MF = BB->getParent();
12056 const BasicBlock *LLVM_BB = BB->getBasicBlock();
12058 assert(getTargetMachine().Options.EnableSegmentedStacks);
12060 unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
12061 unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
12064 // ... [Till the alloca]
12065 // If stacklet is not large enough, jump to mallocMBB
12068 // Allocate by subtracting from RSP
12069 // Jump to continueMBB
12072 // Allocate by call to runtime
12076 // [rest of original BB]
12079 MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12080 MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12081 MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12083 MachineRegisterInfo &MRI = MF->getRegInfo();
12084 const TargetRegisterClass *AddrRegClass =
12085 getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
12087 unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12088 bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12089 tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
12090 SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
12091 sizeVReg = MI->getOperand(1).getReg(),
12092 physSPReg = Is64Bit ? X86::RSP : X86::ESP;
12094 MachineFunction::iterator MBBIter = BB;
12097 MF->insert(MBBIter, bumpMBB);
12098 MF->insert(MBBIter, mallocMBB);
12099 MF->insert(MBBIter, continueMBB);
12101 continueMBB->splice(continueMBB->begin(), BB, llvm::next
12102 (MachineBasicBlock::iterator(MI)), BB->end());
12103 continueMBB->transferSuccessorsAndUpdatePHIs(BB);
12105 // Add code to the main basic block to check if the stack limit has been hit,
12106 // and if so, jump to mallocMBB otherwise to bumpMBB.
12107 BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
12108 BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
12109 .addReg(tmpSPVReg).addReg(sizeVReg);
12110 BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
12111 .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg)
12112 .addReg(SPLimitVReg);
12113 BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
12115 // bumpMBB simply decreases the stack pointer, since we know the current
12116 // stacklet has enough space.
12117 BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
12118 .addReg(SPLimitVReg);
12119 BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
12120 .addReg(SPLimitVReg);
12121 BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12123 // Calls into a routine in libgcc to allocate more space from the heap.
12125 BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
12127 BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
12128 .addExternalSymbol("__morestack_allocate_stack_space").addReg(X86::RDI);
12130 BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
12132 BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
12133 BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
12134 .addExternalSymbol("__morestack_allocate_stack_space");
12138 BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
12141 BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
12142 .addReg(Is64Bit ? X86::RAX : X86::EAX);
12143 BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12145 // Set up the CFG correctly.
12146 BB->addSuccessor(bumpMBB);
12147 BB->addSuccessor(mallocMBB);
12148 mallocMBB->addSuccessor(continueMBB);
12149 bumpMBB->addSuccessor(continueMBB);
12151 // Take care of the PHI nodes.
12152 BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
12153 MI->getOperand(0).getReg())
12154 .addReg(mallocPtrVReg).addMBB(mallocMBB)
12155 .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
12157 // Delete the original pseudo instruction.
12158 MI->eraseFromParent();
12161 return continueMBB;
12164 MachineBasicBlock *
12165 X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
12166 MachineBasicBlock *BB) const {
12167 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12168 DebugLoc DL = MI->getDebugLoc();
12170 assert(!Subtarget->isTargetEnvMacho());
12172 // The lowering is pretty easy: we're just emitting the call to _alloca. The
12173 // non-trivial part is impdef of ESP.
12175 if (Subtarget->isTargetWin64()) {
12176 if (Subtarget->isTargetCygMing()) {
12177 // ___chkstk(Mingw64):
12178 // Clobbers R10, R11, RAX and EFLAGS.
12180 BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12181 .addExternalSymbol("___chkstk")
12182 .addReg(X86::RAX, RegState::Implicit)
12183 .addReg(X86::RSP, RegState::Implicit)
12184 .addReg(X86::RAX, RegState::Define | RegState::Implicit)
12185 .addReg(X86::RSP, RegState::Define | RegState::Implicit)
12186 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12188 // __chkstk(MSVCRT): does not update stack pointer.
12189 // Clobbers R10, R11 and EFLAGS.
12190 // FIXME: RAX(allocated size) might be reused and not killed.
12191 BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12192 .addExternalSymbol("__chkstk")
12193 .addReg(X86::RAX, RegState::Implicit)
12194 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12195 // RAX has the offset to subtracted from RSP.
12196 BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
12201 const char *StackProbeSymbol =
12202 Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
12204 BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
12205 .addExternalSymbol(StackProbeSymbol)
12206 .addReg(X86::EAX, RegState::Implicit)
12207 .addReg(X86::ESP, RegState::Implicit)
12208 .addReg(X86::EAX, RegState::Define | RegState::Implicit)
12209 .addReg(X86::ESP, RegState::Define | RegState::Implicit)
12210 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12213 MI->eraseFromParent(); // The pseudo instruction is gone now.
12217 MachineBasicBlock *
12218 X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
12219 MachineBasicBlock *BB) const {
12220 // This is pretty easy. We're taking the value that we received from
12221 // our load from the relocation, sticking it in either RDI (x86-64)
12222 // or EAX and doing an indirect call. The return value will then
12223 // be in the normal return register.
12224 const X86InstrInfo *TII
12225 = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
12226 DebugLoc DL = MI->getDebugLoc();
12227 MachineFunction *F = BB->getParent();
12229 assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
12230 assert(MI->getOperand(3).isGlobal() && "This should be a global");
12232 if (Subtarget->is64Bit()) {
12233 MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12234 TII->get(X86::MOV64rm), X86::RDI)
12236 .addImm(0).addReg(0)
12237 .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12238 MI->getOperand(3).getTargetFlags())
12240 MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
12241 addDirectMem(MIB, X86::RDI);
12242 } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
12243 MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12244 TII->get(X86::MOV32rm), X86::EAX)
12246 .addImm(0).addReg(0)
12247 .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12248 MI->getOperand(3).getTargetFlags())
12250 MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12251 addDirectMem(MIB, X86::EAX);
12253 MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12254 TII->get(X86::MOV32rm), X86::EAX)
12255 .addReg(TII->getGlobalBaseReg(F))
12256 .addImm(0).addReg(0)
12257 .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12258 MI->getOperand(3).getTargetFlags())
12260 MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12261 addDirectMem(MIB, X86::EAX);
12264 MI->eraseFromParent(); // The pseudo instruction is gone now.
12268 MachineBasicBlock *
12269 X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
12270 MachineBasicBlock *BB) const {
12271 switch (MI->getOpcode()) {
12272 default: assert(0 && "Unexpected instr type to insert");
12273 case X86::TAILJMPd64:
12274 case X86::TAILJMPr64:
12275 case X86::TAILJMPm64:
12276 assert(0 && "TAILJMP64 would not be touched here.");
12277 case X86::TCRETURNdi64:
12278 case X86::TCRETURNri64:
12279 case X86::TCRETURNmi64:
12280 // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
12281 // On AMD64, additional defs should be added before register allocation.
12282 if (!Subtarget->isTargetWin64()) {
12283 MI->addRegisterDefined(X86::RSI);
12284 MI->addRegisterDefined(X86::RDI);
12285 MI->addRegisterDefined(X86::XMM6);
12286 MI->addRegisterDefined(X86::XMM7);
12287 MI->addRegisterDefined(X86::XMM8);
12288 MI->addRegisterDefined(X86::XMM9);
12289 MI->addRegisterDefined(X86::XMM10);
12290 MI->addRegisterDefined(X86::XMM11);
12291 MI->addRegisterDefined(X86::XMM12);
12292 MI->addRegisterDefined(X86::XMM13);
12293 MI->addRegisterDefined(X86::XMM14);
12294 MI->addRegisterDefined(X86::XMM15);
12297 case X86::WIN_ALLOCA:
12298 return EmitLoweredWinAlloca(MI, BB);
12299 case X86::SEG_ALLOCA_32:
12300 return EmitLoweredSegAlloca(MI, BB, false);
12301 case X86::SEG_ALLOCA_64:
12302 return EmitLoweredSegAlloca(MI, BB, true);
12303 case X86::TLSCall_32:
12304 case X86::TLSCall_64:
12305 return EmitLoweredTLSCall(MI, BB);
12306 case X86::CMOV_GR8:
12307 case X86::CMOV_FR32:
12308 case X86::CMOV_FR64:
12309 case X86::CMOV_V4F32:
12310 case X86::CMOV_V2F64:
12311 case X86::CMOV_V2I64:
12312 case X86::CMOV_V8F32:
12313 case X86::CMOV_V4F64:
12314 case X86::CMOV_V4I64:
12315 case X86::CMOV_GR16:
12316 case X86::CMOV_GR32:
12317 case X86::CMOV_RFP32:
12318 case X86::CMOV_RFP64:
12319 case X86::CMOV_RFP80:
12320 return EmitLoweredSelect(MI, BB);
12322 case X86::FP32_TO_INT16_IN_MEM:
12323 case X86::FP32_TO_INT32_IN_MEM:
12324 case X86::FP32_TO_INT64_IN_MEM:
12325 case X86::FP64_TO_INT16_IN_MEM:
12326 case X86::FP64_TO_INT32_IN_MEM:
12327 case X86::FP64_TO_INT64_IN_MEM:
12328 case X86::FP80_TO_INT16_IN_MEM:
12329 case X86::FP80_TO_INT32_IN_MEM:
12330 case X86::FP80_TO_INT64_IN_MEM: {
12331 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12332 DebugLoc DL = MI->getDebugLoc();
12334 // Change the floating point control register to use "round towards zero"
12335 // mode when truncating to an integer value.
12336 MachineFunction *F = BB->getParent();
12337 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
12338 addFrameReference(BuildMI(*BB, MI, DL,
12339 TII->get(X86::FNSTCW16m)), CWFrameIdx);
12341 // Load the old value of the high byte of the control word...
12343 F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
12344 addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
12347 // Set the high part to be round to zero...
12348 addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
12351 // Reload the modified control word now...
12352 addFrameReference(BuildMI(*BB, MI, DL,
12353 TII->get(X86::FLDCW16m)), CWFrameIdx);
12355 // Restore the memory image of control word to original value
12356 addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
12359 // Get the X86 opcode to use.
12361 switch (MI->getOpcode()) {
12362 default: llvm_unreachable("illegal opcode!");
12363 case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
12364 case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
12365 case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
12366 case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
12367 case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
12368 case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
12369 case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
12370 case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
12371 case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
12375 MachineOperand &Op = MI->getOperand(0);
12377 AM.BaseType = X86AddressMode::RegBase;
12378 AM.Base.Reg = Op.getReg();
12380 AM.BaseType = X86AddressMode::FrameIndexBase;
12381 AM.Base.FrameIndex = Op.getIndex();
12383 Op = MI->getOperand(1);
12385 AM.Scale = Op.getImm();
12386 Op = MI->getOperand(2);
12388 AM.IndexReg = Op.getImm();
12389 Op = MI->getOperand(3);
12390 if (Op.isGlobal()) {
12391 AM.GV = Op.getGlobal();
12393 AM.Disp = Op.getImm();
12395 addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
12396 .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
12398 // Reload the original control word now.
12399 addFrameReference(BuildMI(*BB, MI, DL,
12400 TII->get(X86::FLDCW16m)), CWFrameIdx);
12402 MI->eraseFromParent(); // The pseudo instruction is gone now.
12405 // String/text processing lowering.
12406 case X86::PCMPISTRM128REG:
12407 case X86::VPCMPISTRM128REG:
12408 return EmitPCMP(MI, BB, 3, false /* in-mem */);
12409 case X86::PCMPISTRM128MEM:
12410 case X86::VPCMPISTRM128MEM:
12411 return EmitPCMP(MI, BB, 3, true /* in-mem */);
12412 case X86::PCMPESTRM128REG:
12413 case X86::VPCMPESTRM128REG:
12414 return EmitPCMP(MI, BB, 5, false /* in mem */);
12415 case X86::PCMPESTRM128MEM:
12416 case X86::VPCMPESTRM128MEM:
12417 return EmitPCMP(MI, BB, 5, true /* in mem */);
12419 // Thread synchronization.
12421 return EmitMonitor(MI, BB);
12423 return EmitMwait(MI, BB);
12425 // Atomic Lowering.
12426 case X86::ATOMAND32:
12427 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12428 X86::AND32ri, X86::MOV32rm,
12430 X86::NOT32r, X86::EAX,
12431 X86::GR32RegisterClass);
12432 case X86::ATOMOR32:
12433 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
12434 X86::OR32ri, X86::MOV32rm,
12436 X86::NOT32r, X86::EAX,
12437 X86::GR32RegisterClass);
12438 case X86::ATOMXOR32:
12439 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
12440 X86::XOR32ri, X86::MOV32rm,
12442 X86::NOT32r, X86::EAX,
12443 X86::GR32RegisterClass);
12444 case X86::ATOMNAND32:
12445 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12446 X86::AND32ri, X86::MOV32rm,
12448 X86::NOT32r, X86::EAX,
12449 X86::GR32RegisterClass, true);
12450 case X86::ATOMMIN32:
12451 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
12452 case X86::ATOMMAX32:
12453 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
12454 case X86::ATOMUMIN32:
12455 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
12456 case X86::ATOMUMAX32:
12457 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
12459 case X86::ATOMAND16:
12460 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12461 X86::AND16ri, X86::MOV16rm,
12463 X86::NOT16r, X86::AX,
12464 X86::GR16RegisterClass);
12465 case X86::ATOMOR16:
12466 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
12467 X86::OR16ri, X86::MOV16rm,
12469 X86::NOT16r, X86::AX,
12470 X86::GR16RegisterClass);
12471 case X86::ATOMXOR16:
12472 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
12473 X86::XOR16ri, X86::MOV16rm,
12475 X86::NOT16r, X86::AX,
12476 X86::GR16RegisterClass);
12477 case X86::ATOMNAND16:
12478 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12479 X86::AND16ri, X86::MOV16rm,
12481 X86::NOT16r, X86::AX,
12482 X86::GR16RegisterClass, true);
12483 case X86::ATOMMIN16:
12484 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
12485 case X86::ATOMMAX16:
12486 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
12487 case X86::ATOMUMIN16:
12488 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
12489 case X86::ATOMUMAX16:
12490 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
12492 case X86::ATOMAND8:
12493 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12494 X86::AND8ri, X86::MOV8rm,
12496 X86::NOT8r, X86::AL,
12497 X86::GR8RegisterClass);
12499 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
12500 X86::OR8ri, X86::MOV8rm,
12502 X86::NOT8r, X86::AL,
12503 X86::GR8RegisterClass);
12504 case X86::ATOMXOR8:
12505 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
12506 X86::XOR8ri, X86::MOV8rm,
12508 X86::NOT8r, X86::AL,
12509 X86::GR8RegisterClass);
12510 case X86::ATOMNAND8:
12511 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12512 X86::AND8ri, X86::MOV8rm,
12514 X86::NOT8r, X86::AL,
12515 X86::GR8RegisterClass, true);
12516 // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
12517 // This group is for 64-bit host.
12518 case X86::ATOMAND64:
12519 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12520 X86::AND64ri32, X86::MOV64rm,
12522 X86::NOT64r, X86::RAX,
12523 X86::GR64RegisterClass);
12524 case X86::ATOMOR64:
12525 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
12526 X86::OR64ri32, X86::MOV64rm,
12528 X86::NOT64r, X86::RAX,
12529 X86::GR64RegisterClass);
12530 case X86::ATOMXOR64:
12531 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
12532 X86::XOR64ri32, X86::MOV64rm,
12534 X86::NOT64r, X86::RAX,
12535 X86::GR64RegisterClass);
12536 case X86::ATOMNAND64:
12537 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12538 X86::AND64ri32, X86::MOV64rm,
12540 X86::NOT64r, X86::RAX,
12541 X86::GR64RegisterClass, true);
12542 case X86::ATOMMIN64:
12543 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
12544 case X86::ATOMMAX64:
12545 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
12546 case X86::ATOMUMIN64:
12547 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
12548 case X86::ATOMUMAX64:
12549 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
12551 // This group does 64-bit operations on a 32-bit host.
12552 case X86::ATOMAND6432:
12553 return EmitAtomicBit6432WithCustomInserter(MI, BB,
12554 X86::AND32rr, X86::AND32rr,
12555 X86::AND32ri, X86::AND32ri,
12557 case X86::ATOMOR6432:
12558 return EmitAtomicBit6432WithCustomInserter(MI, BB,
12559 X86::OR32rr, X86::OR32rr,
12560 X86::OR32ri, X86::OR32ri,
12562 case X86::ATOMXOR6432:
12563 return EmitAtomicBit6432WithCustomInserter(MI, BB,
12564 X86::XOR32rr, X86::XOR32rr,
12565 X86::XOR32ri, X86::XOR32ri,
12567 case X86::ATOMNAND6432:
12568 return EmitAtomicBit6432WithCustomInserter(MI, BB,
12569 X86::AND32rr, X86::AND32rr,
12570 X86::AND32ri, X86::AND32ri,
12572 case X86::ATOMADD6432:
12573 return EmitAtomicBit6432WithCustomInserter(MI, BB,
12574 X86::ADD32rr, X86::ADC32rr,
12575 X86::ADD32ri, X86::ADC32ri,
12577 case X86::ATOMSUB6432:
12578 return EmitAtomicBit6432WithCustomInserter(MI, BB,
12579 X86::SUB32rr, X86::SBB32rr,
12580 X86::SUB32ri, X86::SBB32ri,
12582 case X86::ATOMSWAP6432:
12583 return EmitAtomicBit6432WithCustomInserter(MI, BB,
12584 X86::MOV32rr, X86::MOV32rr,
12585 X86::MOV32ri, X86::MOV32ri,
12587 case X86::VASTART_SAVE_XMM_REGS:
12588 return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
12590 case X86::VAARG_64:
12591 return EmitVAARG64WithCustomInserter(MI, BB);
12595 //===----------------------------------------------------------------------===//
12596 // X86 Optimization Hooks
12597 //===----------------------------------------------------------------------===//
12599 void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
12603 const SelectionDAG &DAG,
12604 unsigned Depth) const {
12605 unsigned Opc = Op.getOpcode();
12606 assert((Opc >= ISD::BUILTIN_OP_END ||
12607 Opc == ISD::INTRINSIC_WO_CHAIN ||
12608 Opc == ISD::INTRINSIC_W_CHAIN ||
12609 Opc == ISD::INTRINSIC_VOID) &&
12610 "Should use MaskedValueIsZero if you don't know whether Op"
12611 " is a target node!");
12613 KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0); // Don't know anything.
12627 // These nodes' second result is a boolean.
12628 if (Op.getResNo() == 0)
12631 case X86ISD::SETCC:
12632 KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
12633 Mask.getBitWidth() - 1);
12635 case ISD::INTRINSIC_WO_CHAIN: {
12636 unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12637 unsigned NumLoBits = 0;
12640 case Intrinsic::x86_sse_movmsk_ps:
12641 case Intrinsic::x86_avx_movmsk_ps_256:
12642 case Intrinsic::x86_sse2_movmsk_pd:
12643 case Intrinsic::x86_avx_movmsk_pd_256:
12644 case Intrinsic::x86_mmx_pmovmskb:
12645 case Intrinsic::x86_sse2_pmovmskb_128:
12646 case Intrinsic::x86_avx2_pmovmskb: {
12647 // High bits of movmskp{s|d}, pmovmskb are known zero.
12649 case Intrinsic::x86_sse_movmsk_ps: NumLoBits = 4; break;
12650 case Intrinsic::x86_avx_movmsk_ps_256: NumLoBits = 8; break;
12651 case Intrinsic::x86_sse2_movmsk_pd: NumLoBits = 2; break;
12652 case Intrinsic::x86_avx_movmsk_pd_256: NumLoBits = 4; break;
12653 case Intrinsic::x86_mmx_pmovmskb: NumLoBits = 8; break;
12654 case Intrinsic::x86_sse2_pmovmskb_128: NumLoBits = 16; break;
12655 case Intrinsic::x86_avx2_pmovmskb: NumLoBits = 32; break;
12657 KnownZero = APInt::getHighBitsSet(Mask.getBitWidth(),
12658 Mask.getBitWidth() - NumLoBits);
12667 unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
12668 unsigned Depth) const {
12669 // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
12670 if (Op.getOpcode() == X86ISD::SETCC_CARRY)
12671 return Op.getValueType().getScalarType().getSizeInBits();
12677 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
12678 /// node is a GlobalAddress + offset.
12679 bool X86TargetLowering::isGAPlusOffset(SDNode *N,
12680 const GlobalValue* &GA,
12681 int64_t &Offset) const {
12682 if (N->getOpcode() == X86ISD::Wrapper) {
12683 if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
12684 GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
12685 Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
12689 return TargetLowering::isGAPlusOffset(N, GA, Offset);
12692 /// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
12693 /// same as extracting the high 128-bit part of 256-bit vector and then
12694 /// inserting the result into the low part of a new 256-bit vector
12695 static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
12696 EVT VT = SVOp->getValueType(0);
12697 int NumElems = VT.getVectorNumElements();
12699 // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12700 for (int i = 0, j = NumElems/2; i < NumElems/2; ++i, ++j)
12701 if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12702 SVOp->getMaskElt(j) >= 0)
12708 /// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
12709 /// same as extracting the low 128-bit part of 256-bit vector and then
12710 /// inserting the result into the high part of a new 256-bit vector
12711 static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
12712 EVT VT = SVOp->getValueType(0);
12713 int NumElems = VT.getVectorNumElements();
12715 // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12716 for (int i = NumElems/2, j = 0; i < NumElems; ++i, ++j)
12717 if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12718 SVOp->getMaskElt(j) >= 0)
12724 /// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
12725 static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
12726 TargetLowering::DAGCombinerInfo &DCI) {
12727 DebugLoc dl = N->getDebugLoc();
12728 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
12729 SDValue V1 = SVOp->getOperand(0);
12730 SDValue V2 = SVOp->getOperand(1);
12731 EVT VT = SVOp->getValueType(0);
12732 int NumElems = VT.getVectorNumElements();
12734 if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
12735 V2.getOpcode() == ISD::CONCAT_VECTORS) {
12739 // V UNDEF BUILD_VECTOR UNDEF
12741 // CONCAT_VECTOR CONCAT_VECTOR
12744 // RESULT: V + zero extended
12746 if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
12747 V2.getOperand(1).getOpcode() != ISD::UNDEF ||
12748 V1.getOperand(1).getOpcode() != ISD::UNDEF)
12751 if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
12754 // To match the shuffle mask, the first half of the mask should
12755 // be exactly the first vector, and all the rest a splat with the
12756 // first element of the second one.
12757 for (int i = 0; i < NumElems/2; ++i)
12758 if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
12759 !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
12762 // Emit a zeroed vector and insert the desired subvector on its
12764 SDValue Zeros = getZeroVector(VT, true /* HasXMMInt */, DAG, dl);
12765 SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
12766 DAG.getConstant(0, MVT::i32), DAG, dl);
12767 return DCI.CombineTo(N, InsV);
12770 //===--------------------------------------------------------------------===//
12771 // Combine some shuffles into subvector extracts and inserts:
12774 // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12775 if (isShuffleHigh128VectorInsertLow(SVOp)) {
12776 SDValue V = Extract128BitVector(V1, DAG.getConstant(NumElems/2, MVT::i32),
12778 SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12779 V, DAG.getConstant(0, MVT::i32), DAG, dl);
12780 return DCI.CombineTo(N, InsV);
12783 // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12784 if (isShuffleLow128VectorInsertHigh(SVOp)) {
12785 SDValue V = Extract128BitVector(V1, DAG.getConstant(0, MVT::i32), DAG, dl);
12786 SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12787 V, DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
12788 return DCI.CombineTo(N, InsV);
12794 /// PerformShuffleCombine - Performs several different shuffle combines.
12795 static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
12796 TargetLowering::DAGCombinerInfo &DCI,
12797 const X86Subtarget *Subtarget) {
12798 DebugLoc dl = N->getDebugLoc();
12799 EVT VT = N->getValueType(0);
12801 // Don't create instructions with illegal types after legalize types has run.
12802 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12803 if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
12806 // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
12807 if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
12808 N->getOpcode() == ISD::VECTOR_SHUFFLE)
12809 return PerformShuffleCombine256(N, DAG, DCI);
12811 // Only handle 128 wide vector from here on.
12812 if (VT.getSizeInBits() != 128)
12815 // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
12816 // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
12817 // consecutive, non-overlapping, and in the right order.
12818 SmallVector<SDValue, 16> Elts;
12819 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
12820 Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
12822 return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
12825 /// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
12826 /// generation and convert it from being a bunch of shuffles and extracts
12827 /// to a simple store and scalar loads to extract the elements.
12828 static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
12829 const TargetLowering &TLI) {
12830 SDValue InputVector = N->getOperand(0);
12832 // Only operate on vectors of 4 elements, where the alternative shuffling
12833 // gets to be more expensive.
12834 if (InputVector.getValueType() != MVT::v4i32)
12837 // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
12838 // single use which is a sign-extend or zero-extend, and all elements are
12840 SmallVector<SDNode *, 4> Uses;
12841 unsigned ExtractedElements = 0;
12842 for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
12843 UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
12844 if (UI.getUse().getResNo() != InputVector.getResNo())
12847 SDNode *Extract = *UI;
12848 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12851 if (Extract->getValueType(0) != MVT::i32)
12853 if (!Extract->hasOneUse())
12855 if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
12856 Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
12858 if (!isa<ConstantSDNode>(Extract->getOperand(1)))
12861 // Record which element was extracted.
12862 ExtractedElements |=
12863 1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
12865 Uses.push_back(Extract);
12868 // If not all the elements were used, this may not be worthwhile.
12869 if (ExtractedElements != 15)
12872 // Ok, we've now decided to do the transformation.
12873 DebugLoc dl = InputVector.getDebugLoc();
12875 // Store the value to a temporary stack slot.
12876 SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
12877 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
12878 MachinePointerInfo(), false, false, 0);
12880 // Replace each use (extract) with a load of the appropriate element.
12881 for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
12882 UE = Uses.end(); UI != UE; ++UI) {
12883 SDNode *Extract = *UI;
12885 // cOMpute the element's address.
12886 SDValue Idx = Extract->getOperand(1);
12888 InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
12889 uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
12890 SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
12892 SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
12893 StackPtr, OffsetVal);
12895 // Load the scalar.
12896 SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
12897 ScalarAddr, MachinePointerInfo(),
12898 false, false, false, 0);
12900 // Replace the exact with the load.
12901 DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
12904 // The replacement was made in place; don't return anything.
12908 /// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
12910 static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
12911 const X86Subtarget *Subtarget) {
12912 DebugLoc DL = N->getDebugLoc();
12913 SDValue Cond = N->getOperand(0);
12914 // Get the LHS/RHS of the select.
12915 SDValue LHS = N->getOperand(1);
12916 SDValue RHS = N->getOperand(2);
12917 EVT VT = LHS.getValueType();
12919 // If we have SSE[12] support, try to form min/max nodes. SSE min/max
12920 // instructions match the semantics of the common C idiom x<y?x:y but not
12921 // x<=y?x:y, because of how they handle negative zero (which can be
12922 // ignored in unsafe-math mode).
12923 if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
12924 VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
12925 (Subtarget->hasXMMInt() ||
12926 (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
12927 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
12929 unsigned Opcode = 0;
12930 // Check for x CC y ? x : y.
12931 if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
12932 DAG.isEqualTo(RHS, Cond.getOperand(1))) {
12936 // Converting this to a min would handle NaNs incorrectly, and swapping
12937 // the operands would cause it to handle comparisons between positive
12938 // and negative zero incorrectly.
12939 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
12940 if (!DAG.getTarget().Options.UnsafeFPMath &&
12941 !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
12943 std::swap(LHS, RHS);
12945 Opcode = X86ISD::FMIN;
12948 // Converting this to a min would handle comparisons between positive
12949 // and negative zero incorrectly.
12950 if (!DAG.getTarget().Options.UnsafeFPMath &&
12951 !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
12953 Opcode = X86ISD::FMIN;
12956 // Converting this to a min would handle both negative zeros and NaNs
12957 // incorrectly, but we can swap the operands to fix both.
12958 std::swap(LHS, RHS);
12962 Opcode = X86ISD::FMIN;
12966 // Converting this to a max would handle comparisons between positive
12967 // and negative zero incorrectly.
12968 if (!DAG.getTarget().Options.UnsafeFPMath &&
12969 !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
12971 Opcode = X86ISD::FMAX;
12974 // Converting this to a max would handle NaNs incorrectly, and swapping
12975 // the operands would cause it to handle comparisons between positive
12976 // and negative zero incorrectly.
12977 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
12978 if (!DAG.getTarget().Options.UnsafeFPMath &&
12979 !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
12981 std::swap(LHS, RHS);
12983 Opcode = X86ISD::FMAX;
12986 // Converting this to a max would handle both negative zeros and NaNs
12987 // incorrectly, but we can swap the operands to fix both.
12988 std::swap(LHS, RHS);
12992 Opcode = X86ISD::FMAX;
12995 // Check for x CC y ? y : x -- a min/max with reversed arms.
12996 } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
12997 DAG.isEqualTo(RHS, Cond.getOperand(0))) {
13001 // Converting this to a min would handle comparisons between positive
13002 // and negative zero incorrectly, and swapping the operands would
13003 // cause it to handle NaNs incorrectly.
13004 if (!DAG.getTarget().Options.UnsafeFPMath &&
13005 !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
13006 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13008 std::swap(LHS, RHS);
13010 Opcode = X86ISD::FMIN;
13013 // Converting this to a min would handle NaNs incorrectly.
13014 if (!DAG.getTarget().Options.UnsafeFPMath &&
13015 (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
13017 Opcode = X86ISD::FMIN;
13020 // Converting this to a min would handle both negative zeros and NaNs
13021 // incorrectly, but we can swap the operands to fix both.
13022 std::swap(LHS, RHS);
13026 Opcode = X86ISD::FMIN;
13030 // Converting this to a max would handle NaNs incorrectly.
13031 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13033 Opcode = X86ISD::FMAX;
13036 // Converting this to a max would handle comparisons between positive
13037 // and negative zero incorrectly, and swapping the operands would
13038 // cause it to handle NaNs incorrectly.
13039 if (!DAG.getTarget().Options.UnsafeFPMath &&
13040 !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
13041 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13043 std::swap(LHS, RHS);
13045 Opcode = X86ISD::FMAX;
13048 // Converting this to a max would handle both negative zeros and NaNs
13049 // incorrectly, but we can swap the operands to fix both.
13050 std::swap(LHS, RHS);
13054 Opcode = X86ISD::FMAX;
13060 return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
13063 // If this is a select between two integer constants, try to do some
13065 if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
13066 if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
13067 // Don't do this for crazy integer types.
13068 if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
13069 // If this is efficiently invertible, canonicalize the LHSC/RHSC values
13070 // so that TrueC (the true value) is larger than FalseC.
13071 bool NeedsCondInvert = false;
13073 if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
13074 // Efficiently invertible.
13075 (Cond.getOpcode() == ISD::SETCC || // setcc -> invertible.
13076 (Cond.getOpcode() == ISD::XOR && // xor(X, C) -> invertible.
13077 isa<ConstantSDNode>(Cond.getOperand(1))))) {
13078 NeedsCondInvert = true;
13079 std::swap(TrueC, FalseC);
13082 // Optimize C ? 8 : 0 -> zext(C) << 3. Likewise for any pow2/0.
13083 if (FalseC->getAPIntValue() == 0 &&
13084 TrueC->getAPIntValue().isPowerOf2()) {
13085 if (NeedsCondInvert) // Invert the condition if needed.
13086 Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13087 DAG.getConstant(1, Cond.getValueType()));
13089 // Zero extend the condition if needed.
13090 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
13092 unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13093 return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
13094 DAG.getConstant(ShAmt, MVT::i8));
13097 // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
13098 if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13099 if (NeedsCondInvert) // Invert the condition if needed.
13100 Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13101 DAG.getConstant(1, Cond.getValueType()));
13103 // Zero extend the condition if needed.
13104 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13105 FalseC->getValueType(0), Cond);
13106 return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13107 SDValue(FalseC, 0));
13110 // Optimize cases that will turn into an LEA instruction. This requires
13111 // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13112 if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13113 uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13114 if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13116 bool isFastMultiplier = false;
13118 switch ((unsigned char)Diff) {
13120 case 1: // result = add base, cond
13121 case 2: // result = lea base( , cond*2)
13122 case 3: // result = lea base(cond, cond*2)
13123 case 4: // result = lea base( , cond*4)
13124 case 5: // result = lea base(cond, cond*4)
13125 case 8: // result = lea base( , cond*8)
13126 case 9: // result = lea base(cond, cond*8)
13127 isFastMultiplier = true;
13132 if (isFastMultiplier) {
13133 APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13134 if (NeedsCondInvert) // Invert the condition if needed.
13135 Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13136 DAG.getConstant(1, Cond.getValueType()));
13138 // Zero extend the condition if needed.
13139 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13141 // Scale the condition by the difference.
13143 Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13144 DAG.getConstant(Diff, Cond.getValueType()));
13146 // Add the base if non-zero.
13147 if (FalseC->getAPIntValue() != 0)
13148 Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13149 SDValue(FalseC, 0));
13159 /// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
13160 static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
13161 TargetLowering::DAGCombinerInfo &DCI) {
13162 DebugLoc DL = N->getDebugLoc();
13164 // If the flag operand isn't dead, don't touch this CMOV.
13165 if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
13168 SDValue FalseOp = N->getOperand(0);
13169 SDValue TrueOp = N->getOperand(1);
13170 X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
13171 SDValue Cond = N->getOperand(3);
13172 if (CC == X86::COND_E || CC == X86::COND_NE) {
13173 switch (Cond.getOpcode()) {
13177 // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
13178 if (DAG.isKnownNeverZero(Cond.getOperand(0)))
13179 return (CC == X86::COND_E) ? FalseOp : TrueOp;
13183 // If this is a select between two integer constants, try to do some
13184 // optimizations. Note that the operands are ordered the opposite of SELECT
13186 if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
13187 if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
13188 // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
13189 // larger than FalseC (the false value).
13190 if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
13191 CC = X86::GetOppositeBranchCondition(CC);
13192 std::swap(TrueC, FalseC);
13195 // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3. Likewise for any pow2/0.
13196 // This is efficient for any integer data type (including i8/i16) and
13198 if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
13199 Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13200 DAG.getConstant(CC, MVT::i8), Cond);
13202 // Zero extend the condition if needed.
13203 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
13205 unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13206 Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
13207 DAG.getConstant(ShAmt, MVT::i8));
13208 if (N->getNumValues() == 2) // Dead flag value?
13209 return DCI.CombineTo(N, Cond, SDValue());
13213 // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. This is efficient
13214 // for any integer data type, including i8/i16.
13215 if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13216 Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13217 DAG.getConstant(CC, MVT::i8), Cond);
13219 // Zero extend the condition if needed.
13220 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13221 FalseC->getValueType(0), Cond);
13222 Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13223 SDValue(FalseC, 0));
13225 if (N->getNumValues() == 2) // Dead flag value?
13226 return DCI.CombineTo(N, Cond, SDValue());
13230 // Optimize cases that will turn into an LEA instruction. This requires
13231 // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13232 if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13233 uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13234 if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13236 bool isFastMultiplier = false;
13238 switch ((unsigned char)Diff) {
13240 case 1: // result = add base, cond
13241 case 2: // result = lea base( , cond*2)
13242 case 3: // result = lea base(cond, cond*2)
13243 case 4: // result = lea base( , cond*4)
13244 case 5: // result = lea base(cond, cond*4)
13245 case 8: // result = lea base( , cond*8)
13246 case 9: // result = lea base(cond, cond*8)
13247 isFastMultiplier = true;
13252 if (isFastMultiplier) {
13253 APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13254 Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13255 DAG.getConstant(CC, MVT::i8), Cond);
13256 // Zero extend the condition if needed.
13257 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13259 // Scale the condition by the difference.
13261 Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13262 DAG.getConstant(Diff, Cond.getValueType()));
13264 // Add the base if non-zero.
13265 if (FalseC->getAPIntValue() != 0)
13266 Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13267 SDValue(FalseC, 0));
13268 if (N->getNumValues() == 2) // Dead flag value?
13269 return DCI.CombineTo(N, Cond, SDValue());
13279 /// PerformMulCombine - Optimize a single multiply with constant into two
13280 /// in order to implement it with two cheaper instructions, e.g.
13281 /// LEA + SHL, LEA + LEA.
13282 static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
13283 TargetLowering::DAGCombinerInfo &DCI) {
13284 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
13287 EVT VT = N->getValueType(0);
13288 if (VT != MVT::i64)
13291 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
13294 uint64_t MulAmt = C->getZExtValue();
13295 if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
13298 uint64_t MulAmt1 = 0;
13299 uint64_t MulAmt2 = 0;
13300 if ((MulAmt % 9) == 0) {
13302 MulAmt2 = MulAmt / 9;
13303 } else if ((MulAmt % 5) == 0) {
13305 MulAmt2 = MulAmt / 5;
13306 } else if ((MulAmt % 3) == 0) {
13308 MulAmt2 = MulAmt / 3;
13311 (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
13312 DebugLoc DL = N->getDebugLoc();
13314 if (isPowerOf2_64(MulAmt2) &&
13315 !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
13316 // If second multiplifer is pow2, issue it first. We want the multiply by
13317 // 3, 5, or 9 to be folded into the addressing mode unless the lone use
13319 std::swap(MulAmt1, MulAmt2);
13322 if (isPowerOf2_64(MulAmt1))
13323 NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
13324 DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
13326 NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
13327 DAG.getConstant(MulAmt1, VT));
13329 if (isPowerOf2_64(MulAmt2))
13330 NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
13331 DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
13333 NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
13334 DAG.getConstant(MulAmt2, VT));
13336 // Do not add new nodes to DAG combiner worklist.
13337 DCI.CombineTo(N, NewMul, false);
13342 static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
13343 SDValue N0 = N->getOperand(0);
13344 SDValue N1 = N->getOperand(1);
13345 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
13346 EVT VT = N0.getValueType();
13348 // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
13349 // since the result of setcc_c is all zero's or all ones.
13350 if (VT.isInteger() && !VT.isVector() &&
13351 N1C && N0.getOpcode() == ISD::AND &&
13352 N0.getOperand(1).getOpcode() == ISD::Constant) {
13353 SDValue N00 = N0.getOperand(0);
13354 if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
13355 ((N00.getOpcode() == ISD::ANY_EXTEND ||
13356 N00.getOpcode() == ISD::ZERO_EXTEND) &&
13357 N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
13358 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
13359 APInt ShAmt = N1C->getAPIntValue();
13360 Mask = Mask.shl(ShAmt);
13362 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
13363 N00, DAG.getConstant(Mask, VT));
13368 // Hardware support for vector shifts is sparse which makes us scalarize the
13369 // vector operations in many cases. Also, on sandybridge ADD is faster than
13371 // (shl V, 1) -> add V,V
13372 if (isSplatVector(N1.getNode())) {
13373 assert(N0.getValueType().isVector() && "Invalid vector shift type");
13374 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
13375 // We shift all of the values by one. In many cases we do not have
13376 // hardware support for this operation. This is better expressed as an ADD
13378 if (N1C && (1 == N1C->getZExtValue())) {
13379 return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
13386 /// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
13388 static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
13389 const X86Subtarget *Subtarget) {
13390 EVT VT = N->getValueType(0);
13391 if (N->getOpcode() == ISD::SHL) {
13392 SDValue V = PerformSHLCombine(N, DAG);
13393 if (V.getNode()) return V;
13396 // On X86 with SSE2 support, we can transform this to a vector shift if
13397 // all elements are shifted by the same amount. We can't do this in legalize
13398 // because the a constant vector is typically transformed to a constant pool
13399 // so we have no knowledge of the shift amount.
13400 if (!Subtarget->hasXMMInt())
13403 if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
13404 (!Subtarget->hasAVX2() ||
13405 (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
13408 SDValue ShAmtOp = N->getOperand(1);
13409 EVT EltVT = VT.getVectorElementType();
13410 DebugLoc DL = N->getDebugLoc();
13411 SDValue BaseShAmt = SDValue();
13412 if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
13413 unsigned NumElts = VT.getVectorNumElements();
13415 for (; i != NumElts; ++i) {
13416 SDValue Arg = ShAmtOp.getOperand(i);
13417 if (Arg.getOpcode() == ISD::UNDEF) continue;
13421 for (; i != NumElts; ++i) {
13422 SDValue Arg = ShAmtOp.getOperand(i);
13423 if (Arg.getOpcode() == ISD::UNDEF) continue;
13424 if (Arg != BaseShAmt) {
13428 } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
13429 cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
13430 SDValue InVec = ShAmtOp.getOperand(0);
13431 if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
13432 unsigned NumElts = InVec.getValueType().getVectorNumElements();
13434 for (; i != NumElts; ++i) {
13435 SDValue Arg = InVec.getOperand(i);
13436 if (Arg.getOpcode() == ISD::UNDEF) continue;
13440 } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
13441 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
13442 unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
13443 if (C->getZExtValue() == SplatIdx)
13444 BaseShAmt = InVec.getOperand(1);
13447 if (BaseShAmt.getNode() == 0)
13448 BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
13449 DAG.getIntPtrConstant(0));
13453 // The shift amount is an i32.
13454 if (EltVT.bitsGT(MVT::i32))
13455 BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
13456 else if (EltVT.bitsLT(MVT::i32))
13457 BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
13459 // The shift amount is identical so we can do a vector shift.
13460 SDValue ValOp = N->getOperand(0);
13461 switch (N->getOpcode()) {
13463 llvm_unreachable("Unknown shift opcode!");
13466 if (VT == MVT::v2i64)
13467 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13468 DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
13470 if (VT == MVT::v4i32)
13471 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13472 DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
13474 if (VT == MVT::v8i16)
13475 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13476 DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
13478 if (VT == MVT::v4i64)
13479 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13480 DAG.getConstant(Intrinsic::x86_avx2_pslli_q, MVT::i32),
13482 if (VT == MVT::v8i32)
13483 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13484 DAG.getConstant(Intrinsic::x86_avx2_pslli_d, MVT::i32),
13486 if (VT == MVT::v16i16)
13487 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13488 DAG.getConstant(Intrinsic::x86_avx2_pslli_w, MVT::i32),
13492 if (VT == MVT::v4i32)
13493 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13494 DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
13496 if (VT == MVT::v8i16)
13497 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13498 DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
13500 if (VT == MVT::v8i32)
13501 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13502 DAG.getConstant(Intrinsic::x86_avx2_psrai_d, MVT::i32),
13504 if (VT == MVT::v16i16)
13505 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13506 DAG.getConstant(Intrinsic::x86_avx2_psrai_w, MVT::i32),
13510 if (VT == MVT::v2i64)
13511 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13512 DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
13514 if (VT == MVT::v4i32)
13515 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13516 DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
13518 if (VT == MVT::v8i16)
13519 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13520 DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
13522 if (VT == MVT::v4i64)
13523 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13524 DAG.getConstant(Intrinsic::x86_avx2_psrli_q, MVT::i32),
13526 if (VT == MVT::v8i32)
13527 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13528 DAG.getConstant(Intrinsic::x86_avx2_psrli_d, MVT::i32),
13530 if (VT == MVT::v16i16)
13531 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13532 DAG.getConstant(Intrinsic::x86_avx2_psrli_w, MVT::i32),
13540 // CMPEQCombine - Recognize the distinctive (AND (setcc ...) (setcc ..))
13541 // where both setccs reference the same FP CMP, and rewrite for CMPEQSS
13542 // and friends. Likewise for OR -> CMPNEQSS.
13543 static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
13544 TargetLowering::DAGCombinerInfo &DCI,
13545 const X86Subtarget *Subtarget) {
13548 // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
13549 // we're requiring SSE2 for both.
13550 if (Subtarget->hasXMMInt() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
13551 SDValue N0 = N->getOperand(0);
13552 SDValue N1 = N->getOperand(1);
13553 SDValue CMP0 = N0->getOperand(1);
13554 SDValue CMP1 = N1->getOperand(1);
13555 DebugLoc DL = N->getDebugLoc();
13557 // The SETCCs should both refer to the same CMP.
13558 if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
13561 SDValue CMP00 = CMP0->getOperand(0);
13562 SDValue CMP01 = CMP0->getOperand(1);
13563 EVT VT = CMP00.getValueType();
13565 if (VT == MVT::f32 || VT == MVT::f64) {
13566 bool ExpectingFlags = false;
13567 // Check for any users that want flags:
13568 for (SDNode::use_iterator UI = N->use_begin(),
13570 !ExpectingFlags && UI != UE; ++UI)
13571 switch (UI->getOpcode()) {
13576 ExpectingFlags = true;
13578 case ISD::CopyToReg:
13579 case ISD::SIGN_EXTEND:
13580 case ISD::ZERO_EXTEND:
13581 case ISD::ANY_EXTEND:
13585 if (!ExpectingFlags) {
13586 enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
13587 enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
13589 if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
13590 X86::CondCode tmp = cc0;
13595 if ((cc0 == X86::COND_E && cc1 == X86::COND_NP) ||
13596 (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
13597 bool is64BitFP = (CMP00.getValueType() == MVT::f64);
13598 X86ISD::NodeType NTOperator = is64BitFP ?
13599 X86ISD::FSETCCsd : X86ISD::FSETCCss;
13600 // FIXME: need symbolic constants for these magic numbers.
13601 // See X86ATTInstPrinter.cpp:printSSECC().
13602 unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
13603 SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
13604 DAG.getConstant(x86cc, MVT::i8));
13605 SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
13607 SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
13608 DAG.getConstant(1, MVT::i32));
13609 SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
13610 return OneBitOfTruth;
13618 /// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
13619 /// so it can be folded inside ANDNP.
13620 static bool CanFoldXORWithAllOnes(const SDNode *N) {
13621 EVT VT = N->getValueType(0);
13623 // Match direct AllOnes for 128 and 256-bit vectors
13624 if (ISD::isBuildVectorAllOnes(N))
13627 // Look through a bit convert.
13628 if (N->getOpcode() == ISD::BITCAST)
13629 N = N->getOperand(0).getNode();
13631 // Sometimes the operand may come from a insert_subvector building a 256-bit
13633 if (VT.getSizeInBits() == 256 &&
13634 N->getOpcode() == ISD::INSERT_SUBVECTOR) {
13635 SDValue V1 = N->getOperand(0);
13636 SDValue V2 = N->getOperand(1);
13638 if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
13639 V1.getOperand(0).getOpcode() == ISD::UNDEF &&
13640 ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
13641 ISD::isBuildVectorAllOnes(V2.getNode()))
13648 static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
13649 TargetLowering::DAGCombinerInfo &DCI,
13650 const X86Subtarget *Subtarget) {
13651 if (DCI.isBeforeLegalizeOps())
13654 SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13658 EVT VT = N->getValueType(0);
13660 // Create ANDN, BLSI, and BLSR instructions
13661 // BLSI is X & (-X)
13662 // BLSR is X & (X-1)
13663 if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
13664 SDValue N0 = N->getOperand(0);
13665 SDValue N1 = N->getOperand(1);
13666 DebugLoc DL = N->getDebugLoc();
13668 // Check LHS for not
13669 if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
13670 return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
13671 // Check RHS for not
13672 if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
13673 return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
13675 // Check LHS for neg
13676 if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
13677 isZero(N0.getOperand(0)))
13678 return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
13680 // Check RHS for neg
13681 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
13682 isZero(N1.getOperand(0)))
13683 return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
13685 // Check LHS for X-1
13686 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
13687 isAllOnes(N0.getOperand(1)))
13688 return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
13690 // Check RHS for X-1
13691 if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
13692 isAllOnes(N1.getOperand(1)))
13693 return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
13698 // Want to form ANDNP nodes:
13699 // 1) In the hopes of then easily combining them with OR and AND nodes
13700 // to form PBLEND/PSIGN.
13701 // 2) To match ANDN packed intrinsics
13702 if (VT != MVT::v2i64 && VT != MVT::v4i64)
13705 SDValue N0 = N->getOperand(0);
13706 SDValue N1 = N->getOperand(1);
13707 DebugLoc DL = N->getDebugLoc();
13709 // Check LHS for vnot
13710 if (N0.getOpcode() == ISD::XOR &&
13711 //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
13712 CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
13713 return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
13715 // Check RHS for vnot
13716 if (N1.getOpcode() == ISD::XOR &&
13717 //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
13718 CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
13719 return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
13724 static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
13725 TargetLowering::DAGCombinerInfo &DCI,
13726 const X86Subtarget *Subtarget) {
13727 if (DCI.isBeforeLegalizeOps())
13730 SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13734 EVT VT = N->getValueType(0);
13736 SDValue N0 = N->getOperand(0);
13737 SDValue N1 = N->getOperand(1);
13739 // look for psign/blend
13740 if (VT == MVT::v2i64 || VT == MVT::v4i64) {
13741 if (!Subtarget->hasSSSE3orAVX() ||
13742 (VT == MVT::v4i64 && !Subtarget->hasAVX2()))
13745 // Canonicalize pandn to RHS
13746 if (N0.getOpcode() == X86ISD::ANDNP)
13748 // or (and (m, x), (pandn m, y))
13749 if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
13750 SDValue Mask = N1.getOperand(0);
13751 SDValue X = N1.getOperand(1);
13753 if (N0.getOperand(0) == Mask)
13754 Y = N0.getOperand(1);
13755 if (N0.getOperand(1) == Mask)
13756 Y = N0.getOperand(0);
13758 // Check to see if the mask appeared in both the AND and ANDNP and
13762 // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
13763 if (Mask.getOpcode() != ISD::BITCAST ||
13764 X.getOpcode() != ISD::BITCAST ||
13765 Y.getOpcode() != ISD::BITCAST)
13768 // Look through mask bitcast.
13769 Mask = Mask.getOperand(0);
13770 EVT MaskVT = Mask.getValueType();
13772 // Validate that the Mask operand is a vector sra node. The sra node
13773 // will be an intrinsic.
13774 if (Mask.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
13777 // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
13778 // there is no psrai.b
13779 switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) {
13780 case Intrinsic::x86_sse2_psrai_w:
13781 case Intrinsic::x86_sse2_psrai_d:
13782 case Intrinsic::x86_avx2_psrai_w:
13783 case Intrinsic::x86_avx2_psrai_d:
13785 default: return SDValue();
13788 // Check that the SRA is all signbits.
13789 SDValue SraC = Mask.getOperand(2);
13790 unsigned SraAmt = cast<ConstantSDNode>(SraC)->getZExtValue();
13791 unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
13792 if ((SraAmt + 1) != EltBits)
13795 DebugLoc DL = N->getDebugLoc();
13797 // Now we know we at least have a plendvb with the mask val. See if
13798 // we can form a psignb/w/d.
13799 // psign = x.type == y.type == mask.type && y = sub(0, x);
13800 X = X.getOperand(0);
13801 Y = Y.getOperand(0);
13802 if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
13803 ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
13804 X.getValueType() == MaskVT && X.getValueType() == Y.getValueType() &&
13805 (EltBits == 8 || EltBits == 16 || EltBits == 32)) {
13806 SDValue Sign = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X,
13807 Mask.getOperand(1));
13808 return DAG.getNode(ISD::BITCAST, DL, VT, Sign);
13810 // PBLENDVB only available on SSE 4.1
13811 if (!Subtarget->hasSSE41orAVX())
13814 EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
13816 X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
13817 Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
13818 Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
13819 Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
13820 return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
13824 if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
13827 // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
13828 if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
13830 if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
13832 if (!N0.hasOneUse() || !N1.hasOneUse())
13835 SDValue ShAmt0 = N0.getOperand(1);
13836 if (ShAmt0.getValueType() != MVT::i8)
13838 SDValue ShAmt1 = N1.getOperand(1);
13839 if (ShAmt1.getValueType() != MVT::i8)
13841 if (ShAmt0.getOpcode() == ISD::TRUNCATE)
13842 ShAmt0 = ShAmt0.getOperand(0);
13843 if (ShAmt1.getOpcode() == ISD::TRUNCATE)
13844 ShAmt1 = ShAmt1.getOperand(0);
13846 DebugLoc DL = N->getDebugLoc();
13847 unsigned Opc = X86ISD::SHLD;
13848 SDValue Op0 = N0.getOperand(0);
13849 SDValue Op1 = N1.getOperand(0);
13850 if (ShAmt0.getOpcode() == ISD::SUB) {
13851 Opc = X86ISD::SHRD;
13852 std::swap(Op0, Op1);
13853 std::swap(ShAmt0, ShAmt1);
13856 unsigned Bits = VT.getSizeInBits();
13857 if (ShAmt1.getOpcode() == ISD::SUB) {
13858 SDValue Sum = ShAmt1.getOperand(0);
13859 if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
13860 SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
13861 if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
13862 ShAmt1Op1 = ShAmt1Op1.getOperand(0);
13863 if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
13864 return DAG.getNode(Opc, DL, VT,
13866 DAG.getNode(ISD::TRUNCATE, DL,
13869 } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
13870 ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
13872 ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
13873 return DAG.getNode(Opc, DL, VT,
13874 N0.getOperand(0), N1.getOperand(0),
13875 DAG.getNode(ISD::TRUNCATE, DL,
13882 // PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
13883 static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
13884 TargetLowering::DAGCombinerInfo &DCI,
13885 const X86Subtarget *Subtarget) {
13886 if (DCI.isBeforeLegalizeOps())
13889 EVT VT = N->getValueType(0);
13891 if (VT != MVT::i32 && VT != MVT::i64)
13894 assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
13896 // Create BLSMSK instructions by finding X ^ (X-1)
13897 SDValue N0 = N->getOperand(0);
13898 SDValue N1 = N->getOperand(1);
13899 DebugLoc DL = N->getDebugLoc();
13901 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
13902 isAllOnes(N0.getOperand(1)))
13903 return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
13905 if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
13906 isAllOnes(N1.getOperand(1)))
13907 return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
13912 /// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
13913 static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
13914 const X86Subtarget *Subtarget) {
13915 LoadSDNode *Ld = cast<LoadSDNode>(N);
13916 EVT RegVT = Ld->getValueType(0);
13917 EVT MemVT = Ld->getMemoryVT();
13918 DebugLoc dl = Ld->getDebugLoc();
13919 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13921 ISD::LoadExtType Ext = Ld->getExtensionType();
13923 // If this is a vector EXT Load then attempt to optimize it using a
13924 // shuffle. We need SSE4 for the shuffles.
13925 // TODO: It is possible to support ZExt by zeroing the undef values
13926 // during the shuffle phase or after the shuffle.
13927 if (RegVT.isVector() && RegVT.isInteger() &&
13928 Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
13929 assert(MemVT != RegVT && "Cannot extend to the same type");
13930 assert(MemVT.isVector() && "Must load a vector from memory");
13932 unsigned NumElems = RegVT.getVectorNumElements();
13933 unsigned RegSz = RegVT.getSizeInBits();
13934 unsigned MemSz = MemVT.getSizeInBits();
13935 assert(RegSz > MemSz && "Register size must be greater than the mem size");
13936 // All sizes must be a power of two
13937 if (!isPowerOf2_32(RegSz * MemSz * NumElems)) return SDValue();
13939 // Attempt to load the original value using a single load op.
13940 // Find a scalar type which is equal to the loaded word size.
13941 MVT SclrLoadTy = MVT::i8;
13942 for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
13943 tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
13944 MVT Tp = (MVT::SimpleValueType)tp;
13945 if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() == MemSz) {
13951 // Proceed if a load word is found.
13952 if (SclrLoadTy.getSizeInBits() != MemSz) return SDValue();
13954 EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
13955 RegSz/SclrLoadTy.getSizeInBits());
13957 EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
13958 RegSz/MemVT.getScalarType().getSizeInBits());
13959 // Can't shuffle using an illegal type.
13960 if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
13962 // Perform a single load.
13963 SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
13965 Ld->getPointerInfo(), Ld->isVolatile(),
13966 Ld->isNonTemporal(), Ld->isInvariant(),
13967 Ld->getAlignment());
13969 // Insert the word loaded into a vector.
13970 SDValue ScalarInVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
13971 LoadUnitVecVT, ScalarLoad);
13973 // Bitcast the loaded value to a vector of the original element type, in
13974 // the size of the target vector type.
13975 SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, ScalarInVector);
13976 unsigned SizeRatio = RegSz/MemSz;
13978 // Redistribute the loaded elements into the different locations.
13979 SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
13980 for (unsigned i = 0; i < NumElems; i++) ShuffleVec[i*SizeRatio] = i;
13982 SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
13983 DAG.getUNDEF(SlicedVec.getValueType()),
13984 ShuffleVec.data());
13986 // Bitcast to the requested type.
13987 Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
13988 // Replace the original load with the new sequence
13989 // and return the new chain.
13990 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Shuff);
13991 return SDValue(ScalarLoad.getNode(), 1);
13997 /// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
13998 static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
13999 const X86Subtarget *Subtarget) {
14000 StoreSDNode *St = cast<StoreSDNode>(N);
14001 EVT VT = St->getValue().getValueType();
14002 EVT StVT = St->getMemoryVT();
14003 DebugLoc dl = St->getDebugLoc();
14004 SDValue StoredVal = St->getOperand(1);
14005 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14007 // If we are saving a concatenation of two XMM registers, perform two stores.
14008 // This is better in Sandy Bridge cause one 256-bit mem op is done via two
14009 // 128-bit ones. If in the future the cost becomes only one memory access the
14010 // first version would be better.
14011 if (VT.getSizeInBits() == 256 &&
14012 StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
14013 StoredVal.getNumOperands() == 2) {
14015 SDValue Value0 = StoredVal.getOperand(0);
14016 SDValue Value1 = StoredVal.getOperand(1);
14018 SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
14019 SDValue Ptr0 = St->getBasePtr();
14020 SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
14022 SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
14023 St->getPointerInfo(), St->isVolatile(),
14024 St->isNonTemporal(), St->getAlignment());
14025 SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
14026 St->getPointerInfo(), St->isVolatile(),
14027 St->isNonTemporal(), St->getAlignment());
14028 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
14031 // Optimize trunc store (of multiple scalars) to shuffle and store.
14032 // First, pack all of the elements in one place. Next, store to memory
14033 // in fewer chunks.
14034 if (St->isTruncatingStore() && VT.isVector()) {
14035 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14036 unsigned NumElems = VT.getVectorNumElements();
14037 assert(StVT != VT && "Cannot truncate to the same type");
14038 unsigned FromSz = VT.getVectorElementType().getSizeInBits();
14039 unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
14041 // From, To sizes and ElemCount must be pow of two
14042 if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
14043 // We are going to use the original vector elt for storing.
14044 // Accumulated smaller vector elements must be a multiple of the store size.
14045 if (0 != (NumElems * FromSz) % ToSz) return SDValue();
14047 unsigned SizeRatio = FromSz / ToSz;
14049 assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
14051 // Create a type on which we perform the shuffle
14052 EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
14053 StVT.getScalarType(), NumElems*SizeRatio);
14055 assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
14057 SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
14058 SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14059 for (unsigned i = 0; i < NumElems; i++ ) ShuffleVec[i] = i * SizeRatio;
14061 // Can't shuffle using an illegal type
14062 if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14064 SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
14065 DAG.getUNDEF(WideVec.getValueType()),
14066 ShuffleVec.data());
14067 // At this point all of the data is stored at the bottom of the
14068 // register. We now need to save it to mem.
14070 // Find the largest store unit
14071 MVT StoreType = MVT::i8;
14072 for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14073 tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14074 MVT Tp = (MVT::SimpleValueType)tp;
14075 if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
14079 // Bitcast the original vector into a vector of store-size units
14080 EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
14081 StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
14082 assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
14083 SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
14084 SmallVector<SDValue, 8> Chains;
14085 SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
14086 TLI.getPointerTy());
14087 SDValue Ptr = St->getBasePtr();
14089 // Perform one or more big stores into memory.
14090 for (unsigned i = 0; i < (ToSz*NumElems)/StoreType.getSizeInBits() ; i++) {
14091 SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
14092 StoreType, ShuffWide,
14093 DAG.getIntPtrConstant(i));
14094 SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
14095 St->getPointerInfo(), St->isVolatile(),
14096 St->isNonTemporal(), St->getAlignment());
14097 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14098 Chains.push_back(Ch);
14101 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
14106 // Turn load->store of MMX types into GPR load/stores. This avoids clobbering
14107 // the FP state in cases where an emms may be missing.
14108 // A preferable solution to the general problem is to figure out the right
14109 // places to insert EMMS. This qualifies as a quick hack.
14111 // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
14112 if (VT.getSizeInBits() != 64)
14115 const Function *F = DAG.getMachineFunction().getFunction();
14116 bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
14117 bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
14118 && Subtarget->hasXMMInt();
14119 if ((VT.isVector() ||
14120 (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
14121 isa<LoadSDNode>(St->getValue()) &&
14122 !cast<LoadSDNode>(St->getValue())->isVolatile() &&
14123 St->getChain().hasOneUse() && !St->isVolatile()) {
14124 SDNode* LdVal = St->getValue().getNode();
14125 LoadSDNode *Ld = 0;
14126 int TokenFactorIndex = -1;
14127 SmallVector<SDValue, 8> Ops;
14128 SDNode* ChainVal = St->getChain().getNode();
14129 // Must be a store of a load. We currently handle two cases: the load
14130 // is a direct child, and it's under an intervening TokenFactor. It is
14131 // possible to dig deeper under nested TokenFactors.
14132 if (ChainVal == LdVal)
14133 Ld = cast<LoadSDNode>(St->getChain());
14134 else if (St->getValue().hasOneUse() &&
14135 ChainVal->getOpcode() == ISD::TokenFactor) {
14136 for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
14137 if (ChainVal->getOperand(i).getNode() == LdVal) {
14138 TokenFactorIndex = i;
14139 Ld = cast<LoadSDNode>(St->getValue());
14141 Ops.push_back(ChainVal->getOperand(i));
14145 if (!Ld || !ISD::isNormalLoad(Ld))
14148 // If this is not the MMX case, i.e. we are just turning i64 load/store
14149 // into f64 load/store, avoid the transformation if there are multiple
14150 // uses of the loaded value.
14151 if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
14154 DebugLoc LdDL = Ld->getDebugLoc();
14155 DebugLoc StDL = N->getDebugLoc();
14156 // If we are a 64-bit capable x86, lower to a single movq load/store pair.
14157 // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
14159 if (Subtarget->is64Bit() || F64IsLegal) {
14160 EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
14161 SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
14162 Ld->getPointerInfo(), Ld->isVolatile(),
14163 Ld->isNonTemporal(), Ld->isInvariant(),
14164 Ld->getAlignment());
14165 SDValue NewChain = NewLd.getValue(1);
14166 if (TokenFactorIndex != -1) {
14167 Ops.push_back(NewChain);
14168 NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14171 return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
14172 St->getPointerInfo(),
14173 St->isVolatile(), St->isNonTemporal(),
14174 St->getAlignment());
14177 // Otherwise, lower to two pairs of 32-bit loads / stores.
14178 SDValue LoAddr = Ld->getBasePtr();
14179 SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
14180 DAG.getConstant(4, MVT::i32));
14182 SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
14183 Ld->getPointerInfo(),
14184 Ld->isVolatile(), Ld->isNonTemporal(),
14185 Ld->isInvariant(), Ld->getAlignment());
14186 SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
14187 Ld->getPointerInfo().getWithOffset(4),
14188 Ld->isVolatile(), Ld->isNonTemporal(),
14190 MinAlign(Ld->getAlignment(), 4));
14192 SDValue NewChain = LoLd.getValue(1);
14193 if (TokenFactorIndex != -1) {
14194 Ops.push_back(LoLd);
14195 Ops.push_back(HiLd);
14196 NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14200 LoAddr = St->getBasePtr();
14201 HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
14202 DAG.getConstant(4, MVT::i32));
14204 SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
14205 St->getPointerInfo(),
14206 St->isVolatile(), St->isNonTemporal(),
14207 St->getAlignment());
14208 SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
14209 St->getPointerInfo().getWithOffset(4),
14211 St->isNonTemporal(),
14212 MinAlign(St->getAlignment(), 4));
14213 return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
14218 /// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
14219 /// and return the operands for the horizontal operation in LHS and RHS. A
14220 /// horizontal operation performs the binary operation on successive elements
14221 /// of its first operand, then on successive elements of its second operand,
14222 /// returning the resulting values in a vector. For example, if
14223 /// A = < float a0, float a1, float a2, float a3 >
14225 /// B = < float b0, float b1, float b2, float b3 >
14226 /// then the result of doing a horizontal operation on A and B is
14227 /// A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
14228 /// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
14229 /// A horizontal-op B, for some already available A and B, and if so then LHS is
14230 /// set to A, RHS to B, and the routine returns 'true'.
14231 /// Note that the binary operation should have the property that if one of the
14232 /// operands is UNDEF then the result is UNDEF.
14233 static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
14234 // Look for the following pattern: if
14235 // A = < float a0, float a1, float a2, float a3 >
14236 // B = < float b0, float b1, float b2, float b3 >
14238 // LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
14239 // RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
14240 // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
14241 // which is A horizontal-op B.
14243 // At least one of the operands should be a vector shuffle.
14244 if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14245 RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
14248 EVT VT = LHS.getValueType();
14250 assert((VT.is128BitVector() || VT.is256BitVector()) &&
14251 "Unsupported vector type for horizontal add/sub");
14253 // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
14254 // operate independently on 128-bit lanes.
14255 unsigned NumElts = VT.getVectorNumElements();
14256 unsigned NumLanes = VT.getSizeInBits()/128;
14257 unsigned NumLaneElts = NumElts / NumLanes;
14258 assert((NumLaneElts % 2 == 0) &&
14259 "Vector type should have an even number of elements in each lane");
14260 unsigned HalfLaneElts = NumLaneElts/2;
14262 // View LHS in the form
14263 // LHS = VECTOR_SHUFFLE A, B, LMask
14264 // If LHS is not a shuffle then pretend it is the shuffle
14265 // LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
14266 // NOTE: in what follows a default initialized SDValue represents an UNDEF of
14269 SmallVector<int, 16> LMask(NumElts);
14270 if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14271 if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
14272 A = LHS.getOperand(0);
14273 if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
14274 B = LHS.getOperand(1);
14275 cast<ShuffleVectorSDNode>(LHS.getNode())->getMask(LMask);
14277 if (LHS.getOpcode() != ISD::UNDEF)
14279 for (unsigned i = 0; i != NumElts; ++i)
14283 // Likewise, view RHS in the form
14284 // RHS = VECTOR_SHUFFLE C, D, RMask
14286 SmallVector<int, 16> RMask(NumElts);
14287 if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14288 if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
14289 C = RHS.getOperand(0);
14290 if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
14291 D = RHS.getOperand(1);
14292 cast<ShuffleVectorSDNode>(RHS.getNode())->getMask(RMask);
14294 if (RHS.getOpcode() != ISD::UNDEF)
14296 for (unsigned i = 0; i != NumElts; ++i)
14300 // Check that the shuffles are both shuffling the same vectors.
14301 if (!(A == C && B == D) && !(A == D && B == C))
14304 // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
14305 if (!A.getNode() && !B.getNode())
14308 // If A and B occur in reverse order in RHS, then "swap" them (which means
14309 // rewriting the mask).
14311 CommuteVectorShuffleMask(RMask, NumElts);
14313 // At this point LHS and RHS are equivalent to
14314 // LHS = VECTOR_SHUFFLE A, B, LMask
14315 // RHS = VECTOR_SHUFFLE A, B, RMask
14316 // Check that the masks correspond to performing a horizontal operation.
14317 for (unsigned i = 0; i != NumElts; ++i) {
14318 int LIdx = LMask[i], RIdx = RMask[i];
14320 // Ignore any UNDEF components.
14321 if (LIdx < 0 || RIdx < 0 ||
14322 (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
14323 (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
14326 // Check that successive elements are being operated on. If not, this is
14327 // not a horizontal operation.
14328 unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
14329 unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
14330 int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
14331 if (!(LIdx == Index && RIdx == Index + 1) &&
14332 !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
14336 LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
14337 RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
14341 /// PerformFADDCombine - Do target-specific dag combines on floating point adds.
14342 static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
14343 const X86Subtarget *Subtarget) {
14344 EVT VT = N->getValueType(0);
14345 SDValue LHS = N->getOperand(0);
14346 SDValue RHS = N->getOperand(1);
14348 // Try to synthesize horizontal adds from adds of shuffles.
14349 if (((Subtarget->hasSSE3orAVX() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14350 (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14351 isHorizontalBinOp(LHS, RHS, true))
14352 return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
14356 /// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
14357 static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
14358 const X86Subtarget *Subtarget) {
14359 EVT VT = N->getValueType(0);
14360 SDValue LHS = N->getOperand(0);
14361 SDValue RHS = N->getOperand(1);
14363 // Try to synthesize horizontal subs from subs of shuffles.
14364 if (((Subtarget->hasSSE3orAVX() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14365 (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14366 isHorizontalBinOp(LHS, RHS, false))
14367 return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
14371 /// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
14372 /// X86ISD::FXOR nodes.
14373 static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
14374 assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
14375 // F[X]OR(0.0, x) -> x
14376 // F[X]OR(x, 0.0) -> x
14377 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14378 if (C->getValueAPF().isPosZero())
14379 return N->getOperand(1);
14380 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14381 if (C->getValueAPF().isPosZero())
14382 return N->getOperand(0);
14386 /// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
14387 static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
14388 // FAND(0.0, x) -> 0.0
14389 // FAND(x, 0.0) -> 0.0
14390 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14391 if (C->getValueAPF().isPosZero())
14392 return N->getOperand(0);
14393 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14394 if (C->getValueAPF().isPosZero())
14395 return N->getOperand(1);
14399 static SDValue PerformBTCombine(SDNode *N,
14401 TargetLowering::DAGCombinerInfo &DCI) {
14402 // BT ignores high bits in the bit index operand.
14403 SDValue Op1 = N->getOperand(1);
14404 if (Op1.hasOneUse()) {
14405 unsigned BitWidth = Op1.getValueSizeInBits();
14406 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
14407 APInt KnownZero, KnownOne;
14408 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
14409 !DCI.isBeforeLegalizeOps());
14410 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14411 if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
14412 TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
14413 DCI.CommitTargetLoweringOpt(TLO);
14418 static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
14419 SDValue Op = N->getOperand(0);
14420 if (Op.getOpcode() == ISD::BITCAST)
14421 Op = Op.getOperand(0);
14422 EVT VT = N->getValueType(0), OpVT = Op.getValueType();
14423 if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
14424 VT.getVectorElementType().getSizeInBits() ==
14425 OpVT.getVectorElementType().getSizeInBits()) {
14426 return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
14431 static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
14432 // (i32 zext (and (i8 x86isd::setcc_carry), 1)) ->
14433 // (and (i32 x86isd::setcc_carry), 1)
14434 // This eliminates the zext. This transformation is necessary because
14435 // ISD::SETCC is always legalized to i8.
14436 DebugLoc dl = N->getDebugLoc();
14437 SDValue N0 = N->getOperand(0);
14438 EVT VT = N->getValueType(0);
14439 if (N0.getOpcode() == ISD::AND &&
14441 N0.getOperand(0).hasOneUse()) {
14442 SDValue N00 = N0.getOperand(0);
14443 if (N00.getOpcode() != X86ISD::SETCC_CARRY)
14445 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
14446 if (!C || C->getZExtValue() != 1)
14448 return DAG.getNode(ISD::AND, dl, VT,
14449 DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
14450 N00.getOperand(0), N00.getOperand(1)),
14451 DAG.getConstant(1, VT));
14457 // Optimize RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
14458 static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
14459 unsigned X86CC = N->getConstantOperandVal(0);
14460 SDValue EFLAG = N->getOperand(1);
14461 DebugLoc DL = N->getDebugLoc();
14463 // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
14464 // a zext and produces an all-ones bit which is more useful than 0/1 in some
14466 if (X86CC == X86::COND_B)
14467 return DAG.getNode(ISD::AND, DL, MVT::i8,
14468 DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
14469 DAG.getConstant(X86CC, MVT::i8), EFLAG),
14470 DAG.getConstant(1, MVT::i8));
14475 static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
14476 const X86TargetLowering *XTLI) {
14477 SDValue Op0 = N->getOperand(0);
14478 // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
14479 // a 32-bit target where SSE doesn't support i64->FP operations.
14480 if (Op0.getOpcode() == ISD::LOAD) {
14481 LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
14482 EVT VT = Ld->getValueType(0);
14483 if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
14484 ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
14485 !XTLI->getSubtarget()->is64Bit() &&
14486 !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
14487 SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
14488 Ld->getChain(), Op0, DAG);
14489 DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
14496 // Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
14497 static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
14498 X86TargetLowering::DAGCombinerInfo &DCI) {
14499 // If the LHS and RHS of the ADC node are zero, then it can't overflow and
14500 // the result is either zero or one (depending on the input carry bit).
14501 // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
14502 if (X86::isZeroNode(N->getOperand(0)) &&
14503 X86::isZeroNode(N->getOperand(1)) &&
14504 // We don't have a good way to replace an EFLAGS use, so only do this when
14506 SDValue(N, 1).use_empty()) {
14507 DebugLoc DL = N->getDebugLoc();
14508 EVT VT = N->getValueType(0);
14509 SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
14510 SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
14511 DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
14512 DAG.getConstant(X86::COND_B,MVT::i8),
14514 DAG.getConstant(1, VT));
14515 return DCI.CombineTo(N, Res1, CarryOut);
14521 // fold (add Y, (sete X, 0)) -> adc 0, Y
14522 // (add Y, (setne X, 0)) -> sbb -1, Y
14523 // (sub (sete X, 0), Y) -> sbb 0, Y
14524 // (sub (setne X, 0), Y) -> adc -1, Y
14525 static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
14526 DebugLoc DL = N->getDebugLoc();
14528 // Look through ZExts.
14529 SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
14530 if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
14533 SDValue SetCC = Ext.getOperand(0);
14534 if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
14537 X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
14538 if (CC != X86::COND_E && CC != X86::COND_NE)
14541 SDValue Cmp = SetCC.getOperand(1);
14542 if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
14543 !X86::isZeroNode(Cmp.getOperand(1)) ||
14544 !Cmp.getOperand(0).getValueType().isInteger())
14547 SDValue CmpOp0 = Cmp.getOperand(0);
14548 SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
14549 DAG.getConstant(1, CmpOp0.getValueType()));
14551 SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
14552 if (CC == X86::COND_NE)
14553 return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
14554 DL, OtherVal.getValueType(), OtherVal,
14555 DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
14556 return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
14557 DL, OtherVal.getValueType(), OtherVal,
14558 DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
14561 /// PerformADDCombine - Do target-specific dag combines on integer adds.
14562 static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
14563 const X86Subtarget *Subtarget) {
14564 EVT VT = N->getValueType(0);
14565 SDValue Op0 = N->getOperand(0);
14566 SDValue Op1 = N->getOperand(1);
14568 // Try to synthesize horizontal adds from adds of shuffles.
14569 if (((Subtarget->hasSSSE3orAVX() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
14570 (Subtarget->hasAVX2() && (VT == MVT::v16i16 || MVT::v8i32))) &&
14571 isHorizontalBinOp(Op0, Op1, true))
14572 return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
14574 return OptimizeConditionalInDecrement(N, DAG);
14577 static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
14578 const X86Subtarget *Subtarget) {
14579 SDValue Op0 = N->getOperand(0);
14580 SDValue Op1 = N->getOperand(1);
14582 // X86 can't encode an immediate LHS of a sub. See if we can push the
14583 // negation into a preceding instruction.
14584 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
14585 // If the RHS of the sub is a XOR with one use and a constant, invert the
14586 // immediate. Then add one to the LHS of the sub so we can turn
14587 // X-Y -> X+~Y+1, saving one register.
14588 if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
14589 isa<ConstantSDNode>(Op1.getOperand(1))) {
14590 APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
14591 EVT VT = Op0.getValueType();
14592 SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
14594 DAG.getConstant(~XorC, VT));
14595 return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
14596 DAG.getConstant(C->getAPIntValue()+1, VT));
14600 // Try to synthesize horizontal adds from adds of shuffles.
14601 EVT VT = N->getValueType(0);
14602 if (((Subtarget->hasSSSE3orAVX() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
14603 (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
14604 isHorizontalBinOp(Op0, Op1, true))
14605 return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
14607 return OptimizeConditionalInDecrement(N, DAG);
14610 SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
14611 DAGCombinerInfo &DCI) const {
14612 SelectionDAG &DAG = DCI.DAG;
14613 switch (N->getOpcode()) {
14615 case ISD::EXTRACT_VECTOR_ELT:
14616 return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
14618 case ISD::SELECT: return PerformSELECTCombine(N, DAG, Subtarget);
14619 case X86ISD::CMOV: return PerformCMOVCombine(N, DAG, DCI);
14620 case ISD::ADD: return PerformAddCombine(N, DAG, Subtarget);
14621 case ISD::SUB: return PerformSubCombine(N, DAG, Subtarget);
14622 case X86ISD::ADC: return PerformADCCombine(N, DAG, DCI);
14623 case ISD::MUL: return PerformMulCombine(N, DAG, DCI);
14626 case ISD::SRL: return PerformShiftCombine(N, DAG, Subtarget);
14627 case ISD::AND: return PerformAndCombine(N, DAG, DCI, Subtarget);
14628 case ISD::OR: return PerformOrCombine(N, DAG, DCI, Subtarget);
14629 case ISD::XOR: return PerformXorCombine(N, DAG, DCI, Subtarget);
14630 case ISD::LOAD: return PerformLOADCombine(N, DAG, Subtarget);
14631 case ISD::STORE: return PerformSTORECombine(N, DAG, Subtarget);
14632 case ISD::SINT_TO_FP: return PerformSINT_TO_FPCombine(N, DAG, this);
14633 case ISD::FADD: return PerformFADDCombine(N, DAG, Subtarget);
14634 case ISD::FSUB: return PerformFSUBCombine(N, DAG, Subtarget);
14636 case X86ISD::FOR: return PerformFORCombine(N, DAG);
14637 case X86ISD::FAND: return PerformFANDCombine(N, DAG);
14638 case X86ISD::BT: return PerformBTCombine(N, DAG, DCI);
14639 case X86ISD::VZEXT_MOVL: return PerformVZEXT_MOVLCombine(N, DAG);
14640 case ISD::ZERO_EXTEND: return PerformZExtCombine(N, DAG);
14641 case X86ISD::SETCC: return PerformSETCCCombine(N, DAG);
14642 case X86ISD::SHUFPS: // Handle all target specific shuffles
14643 case X86ISD::SHUFPD:
14644 case X86ISD::PALIGN:
14645 case X86ISD::UNPCKH:
14646 case X86ISD::UNPCKL:
14647 case X86ISD::MOVHLPS:
14648 case X86ISD::MOVLHPS:
14649 case X86ISD::PSHUFD:
14650 case X86ISD::PSHUFHW:
14651 case X86ISD::PSHUFLW:
14652 case X86ISD::MOVSS:
14653 case X86ISD::MOVSD:
14654 case X86ISD::VPERMILP:
14655 case X86ISD::VPERM2X128:
14656 case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
14662 /// isTypeDesirableForOp - Return true if the target has native support for
14663 /// the specified value type and it is 'desirable' to use the type for the
14664 /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
14665 /// instruction encodings are longer and some i16 instructions are slow.
14666 bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
14667 if (!isTypeLegal(VT))
14669 if (VT != MVT::i16)
14676 case ISD::SIGN_EXTEND:
14677 case ISD::ZERO_EXTEND:
14678 case ISD::ANY_EXTEND:
14691 /// IsDesirableToPromoteOp - This method query the target whether it is
14692 /// beneficial for dag combiner to promote the specified node. If true, it
14693 /// should return the desired promotion type by reference.
14694 bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
14695 EVT VT = Op.getValueType();
14696 if (VT != MVT::i16)
14699 bool Promote = false;
14700 bool Commute = false;
14701 switch (Op.getOpcode()) {
14704 LoadSDNode *LD = cast<LoadSDNode>(Op);
14705 // If the non-extending load has a single use and it's not live out, then it
14706 // might be folded.
14707 if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
14708 Op.hasOneUse()*/) {
14709 for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
14710 UE = Op.getNode()->use_end(); UI != UE; ++UI) {
14711 // The only case where we'd want to promote LOAD (rather then it being
14712 // promoted as an operand is when it's only use is liveout.
14713 if (UI->getOpcode() != ISD::CopyToReg)
14720 case ISD::SIGN_EXTEND:
14721 case ISD::ZERO_EXTEND:
14722 case ISD::ANY_EXTEND:
14727 SDValue N0 = Op.getOperand(0);
14728 // Look out for (store (shl (load), x)).
14729 if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
14742 SDValue N0 = Op.getOperand(0);
14743 SDValue N1 = Op.getOperand(1);
14744 if (!Commute && MayFoldLoad(N1))
14746 // Avoid disabling potential load folding opportunities.
14747 if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
14749 if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
14759 //===----------------------------------------------------------------------===//
14760 // X86 Inline Assembly Support
14761 //===----------------------------------------------------------------------===//
14764 // Helper to match a string separated by whitespace.
14765 bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
14766 s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
14768 for (unsigned i = 0, e = args.size(); i != e; ++i) {
14769 StringRef piece(*args[i]);
14770 if (!s.startswith(piece)) // Check if the piece matches.
14773 s = s.substr(piece.size());
14774 StringRef::size_type pos = s.find_first_not_of(" \t");
14775 if (pos == 0) // We matched a prefix.
14783 const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
14786 bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
14787 InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
14789 std::string AsmStr = IA->getAsmString();
14791 IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14792 if (!Ty || Ty->getBitWidth() % 16 != 0)
14795 // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
14796 SmallVector<StringRef, 4> AsmPieces;
14797 SplitString(AsmStr, AsmPieces, ";\n");
14799 switch (AsmPieces.size()) {
14800 default: return false;
14802 // FIXME: this should verify that we are targeting a 486 or better. If not,
14803 // we will turn this bswap into something that will be lowered to logical
14804 // ops instead of emitting the bswap asm. For now, we don't support 486 or
14805 // lower so don't worry about this.
14807 if (matchAsm(AsmPieces[0], "bswap", "$0") ||
14808 matchAsm(AsmPieces[0], "bswapl", "$0") ||
14809 matchAsm(AsmPieces[0], "bswapq", "$0") ||
14810 matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
14811 matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
14812 matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
14813 // No need to check constraints, nothing other than the equivalent of
14814 // "=r,0" would be valid here.
14815 return IntrinsicLowering::LowerToByteSwap(CI);
14818 // rorw $$8, ${0:w} --> llvm.bswap.i16
14819 if (CI->getType()->isIntegerTy(16) &&
14820 IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
14821 (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
14822 matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
14824 const std::string &ConstraintsStr = IA->getConstraintString();
14825 SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14826 std::sort(AsmPieces.begin(), AsmPieces.end());
14827 if (AsmPieces.size() == 4 &&
14828 AsmPieces[0] == "~{cc}" &&
14829 AsmPieces[1] == "~{dirflag}" &&
14830 AsmPieces[2] == "~{flags}" &&
14831 AsmPieces[3] == "~{fpsr}")
14832 return IntrinsicLowering::LowerToByteSwap(CI);
14836 if (CI->getType()->isIntegerTy(32) &&
14837 IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
14838 matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
14839 matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
14840 matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
14842 const std::string &ConstraintsStr = IA->getConstraintString();
14843 SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14844 std::sort(AsmPieces.begin(), AsmPieces.end());
14845 if (AsmPieces.size() == 4 &&
14846 AsmPieces[0] == "~{cc}" &&
14847 AsmPieces[1] == "~{dirflag}" &&
14848 AsmPieces[2] == "~{flags}" &&
14849 AsmPieces[3] == "~{fpsr}")
14850 return IntrinsicLowering::LowerToByteSwap(CI);
14853 if (CI->getType()->isIntegerTy(64)) {
14854 InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
14855 if (Constraints.size() >= 2 &&
14856 Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
14857 Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
14858 // bswap %eax / bswap %edx / xchgl %eax, %edx -> llvm.bswap.i64
14859 if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
14860 matchAsm(AsmPieces[1], "bswap", "%edx") &&
14861 matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
14862 return IntrinsicLowering::LowerToByteSwap(CI);
14872 /// getConstraintType - Given a constraint letter, return the type of
14873 /// constraint it is for this target.
14874 X86TargetLowering::ConstraintType
14875 X86TargetLowering::getConstraintType(const std::string &Constraint) const {
14876 if (Constraint.size() == 1) {
14877 switch (Constraint[0]) {
14888 return C_RegisterClass;
14912 return TargetLowering::getConstraintType(Constraint);
14915 /// Examine constraint type and operand type and determine a weight value.
14916 /// This object must already have been set up with the operand type
14917 /// and the current alternative constraint selected.
14918 TargetLowering::ConstraintWeight
14919 X86TargetLowering::getSingleConstraintMatchWeight(
14920 AsmOperandInfo &info, const char *constraint) const {
14921 ConstraintWeight weight = CW_Invalid;
14922 Value *CallOperandVal = info.CallOperandVal;
14923 // If we don't have a value, we can't do a match,
14924 // but allow it at the lowest weight.
14925 if (CallOperandVal == NULL)
14927 Type *type = CallOperandVal->getType();
14928 // Look at the constraint type.
14929 switch (*constraint) {
14931 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
14942 if (CallOperandVal->getType()->isIntegerTy())
14943 weight = CW_SpecificReg;
14948 if (type->isFloatingPointTy())
14949 weight = CW_SpecificReg;
14952 if (type->isX86_MMXTy() && Subtarget->hasMMX())
14953 weight = CW_SpecificReg;
14957 if ((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasXMM())
14958 weight = CW_Register;
14961 if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
14962 if (C->getZExtValue() <= 31)
14963 weight = CW_Constant;
14967 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14968 if (C->getZExtValue() <= 63)
14969 weight = CW_Constant;
14973 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14974 if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
14975 weight = CW_Constant;
14979 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14980 if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
14981 weight = CW_Constant;
14985 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14986 if (C->getZExtValue() <= 3)
14987 weight = CW_Constant;
14991 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14992 if (C->getZExtValue() <= 0xff)
14993 weight = CW_Constant;
14998 if (dyn_cast<ConstantFP>(CallOperandVal)) {
14999 weight = CW_Constant;
15003 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15004 if ((C->getSExtValue() >= -0x80000000LL) &&
15005 (C->getSExtValue() <= 0x7fffffffLL))
15006 weight = CW_Constant;
15010 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15011 if (C->getZExtValue() <= 0xffffffff)
15012 weight = CW_Constant;
15019 /// LowerXConstraint - try to replace an X constraint, which matches anything,
15020 /// with another that has more specific requirements based on the type of the
15021 /// corresponding operand.
15022 const char *X86TargetLowering::
15023 LowerXConstraint(EVT ConstraintVT) const {
15024 // FP X constraints get lowered to SSE1/2 registers if available, otherwise
15025 // 'f' like normal targets.
15026 if (ConstraintVT.isFloatingPoint()) {
15027 if (Subtarget->hasXMMInt())
15029 if (Subtarget->hasXMM())
15033 return TargetLowering::LowerXConstraint(ConstraintVT);
15036 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15037 /// vector. If it is invalid, don't add anything to Ops.
15038 void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15039 std::string &Constraint,
15040 std::vector<SDValue>&Ops,
15041 SelectionDAG &DAG) const {
15042 SDValue Result(0, 0);
15044 // Only support length 1 constraints for now.
15045 if (Constraint.length() > 1) return;
15047 char ConstraintLetter = Constraint[0];
15048 switch (ConstraintLetter) {
15051 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15052 if (C->getZExtValue() <= 31) {
15053 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15059 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15060 if (C->getZExtValue() <= 63) {
15061 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15067 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15068 if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
15069 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15075 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15076 if (C->getZExtValue() <= 255) {
15077 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15083 // 32-bit signed value
15084 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15085 if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15086 C->getSExtValue())) {
15087 // Widen to 64 bits here to get it sign extended.
15088 Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
15091 // FIXME gcc accepts some relocatable values here too, but only in certain
15092 // memory models; it's complicated.
15097 // 32-bit unsigned value
15098 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15099 if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15100 C->getZExtValue())) {
15101 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15105 // FIXME gcc accepts some relocatable values here too, but only in certain
15106 // memory models; it's complicated.
15110 // Literal immediates are always ok.
15111 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
15112 // Widen to 64 bits here to get it sign extended.
15113 Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
15117 // In any sort of PIC mode addresses need to be computed at runtime by
15118 // adding in a register or some sort of table lookup. These can't
15119 // be used as immediates.
15120 if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
15123 // If we are in non-pic codegen mode, we allow the address of a global (with
15124 // an optional displacement) to be used with 'i'.
15125 GlobalAddressSDNode *GA = 0;
15126 int64_t Offset = 0;
15128 // Match either (GA), (GA+C), (GA+C1+C2), etc.
15130 if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
15131 Offset += GA->getOffset();
15133 } else if (Op.getOpcode() == ISD::ADD) {
15134 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15135 Offset += C->getZExtValue();
15136 Op = Op.getOperand(0);
15139 } else if (Op.getOpcode() == ISD::SUB) {
15140 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15141 Offset += -C->getZExtValue();
15142 Op = Op.getOperand(0);
15147 // Otherwise, this isn't something we can handle, reject it.
15151 const GlobalValue *GV = GA->getGlobal();
15152 // If we require an extra load to get this address, as in PIC mode, we
15153 // can't accept it.
15154 if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
15155 getTargetMachine())))
15158 Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
15159 GA->getValueType(0), Offset);
15164 if (Result.getNode()) {
15165 Ops.push_back(Result);
15168 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15171 std::pair<unsigned, const TargetRegisterClass*>
15172 X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
15174 // First, see if this is a constraint that directly corresponds to an LLVM
15176 if (Constraint.size() == 1) {
15177 // GCC Constraint Letters
15178 switch (Constraint[0]) {
15180 // TODO: Slight differences here in allocation order and leaving
15181 // RIP in the class. Do they matter any more here than they do
15182 // in the normal allocation?
15183 case 'q': // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
15184 if (Subtarget->is64Bit()) {
15185 if (VT == MVT::i32 || VT == MVT::f32)
15186 return std::make_pair(0U, X86::GR32RegisterClass);
15187 else if (VT == MVT::i16)
15188 return std::make_pair(0U, X86::GR16RegisterClass);
15189 else if (VT == MVT::i8 || VT == MVT::i1)
15190 return std::make_pair(0U, X86::GR8RegisterClass);
15191 else if (VT == MVT::i64 || VT == MVT::f64)
15192 return std::make_pair(0U, X86::GR64RegisterClass);
15195 // 32-bit fallthrough
15196 case 'Q': // Q_REGS
15197 if (VT == MVT::i32 || VT == MVT::f32)
15198 return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
15199 else if (VT == MVT::i16)
15200 return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
15201 else if (VT == MVT::i8 || VT == MVT::i1)
15202 return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
15203 else if (VT == MVT::i64)
15204 return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
15206 case 'r': // GENERAL_REGS
15207 case 'l': // INDEX_REGS
15208 if (VT == MVT::i8 || VT == MVT::i1)
15209 return std::make_pair(0U, X86::GR8RegisterClass);
15210 if (VT == MVT::i16)
15211 return std::make_pair(0U, X86::GR16RegisterClass);
15212 if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
15213 return std::make_pair(0U, X86::GR32RegisterClass);
15214 return std::make_pair(0U, X86::GR64RegisterClass);
15215 case 'R': // LEGACY_REGS
15216 if (VT == MVT::i8 || VT == MVT::i1)
15217 return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
15218 if (VT == MVT::i16)
15219 return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
15220 if (VT == MVT::i32 || !Subtarget->is64Bit())
15221 return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
15222 return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
15223 case 'f': // FP Stack registers.
15224 // If SSE is enabled for this VT, use f80 to ensure the isel moves the
15225 // value to the correct fpstack register class.
15226 if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
15227 return std::make_pair(0U, X86::RFP32RegisterClass);
15228 if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
15229 return std::make_pair(0U, X86::RFP64RegisterClass);
15230 return std::make_pair(0U, X86::RFP80RegisterClass);
15231 case 'y': // MMX_REGS if MMX allowed.
15232 if (!Subtarget->hasMMX()) break;
15233 return std::make_pair(0U, X86::VR64RegisterClass);
15234 case 'Y': // SSE_REGS if SSE2 allowed
15235 if (!Subtarget->hasXMMInt()) break;
15237 case 'x': // SSE_REGS if SSE1 allowed
15238 if (!Subtarget->hasXMM()) break;
15240 switch (VT.getSimpleVT().SimpleTy) {
15242 // Scalar SSE types.
15245 return std::make_pair(0U, X86::FR32RegisterClass);
15248 return std::make_pair(0U, X86::FR64RegisterClass);
15256 return std::make_pair(0U, X86::VR128RegisterClass);
15262 // Use the default implementation in TargetLowering to convert the register
15263 // constraint into a member of a register class.
15264 std::pair<unsigned, const TargetRegisterClass*> Res;
15265 Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
15267 // Not found as a standard register?
15268 if (Res.second == 0) {
15269 // Map st(0) -> st(7) -> ST0
15270 if (Constraint.size() == 7 && Constraint[0] == '{' &&
15271 tolower(Constraint[1]) == 's' &&
15272 tolower(Constraint[2]) == 't' &&
15273 Constraint[3] == '(' &&
15274 (Constraint[4] >= '0' && Constraint[4] <= '7') &&
15275 Constraint[5] == ')' &&
15276 Constraint[6] == '}') {
15278 Res.first = X86::ST0+Constraint[4]-'0';
15279 Res.second = X86::RFP80RegisterClass;
15283 // GCC allows "st(0)" to be called just plain "st".
15284 if (StringRef("{st}").equals_lower(Constraint)) {
15285 Res.first = X86::ST0;
15286 Res.second = X86::RFP80RegisterClass;
15291 if (StringRef("{flags}").equals_lower(Constraint)) {
15292 Res.first = X86::EFLAGS;
15293 Res.second = X86::CCRRegisterClass;
15297 // 'A' means EAX + EDX.
15298 if (Constraint == "A") {
15299 Res.first = X86::EAX;
15300 Res.second = X86::GR32_ADRegisterClass;
15306 // Otherwise, check to see if this is a register class of the wrong value
15307 // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to
15308 // turn into {ax},{dx}.
15309 if (Res.second->hasType(VT))
15310 return Res; // Correct type already, nothing to do.
15312 // All of the single-register GCC register classes map their values onto
15313 // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we
15314 // really want an 8-bit or 32-bit register, map to the appropriate register
15315 // class and return the appropriate register.
15316 if (Res.second == X86::GR16RegisterClass) {
15317 if (VT == MVT::i8) {
15318 unsigned DestReg = 0;
15319 switch (Res.first) {
15321 case X86::AX: DestReg = X86::AL; break;
15322 case X86::DX: DestReg = X86::DL; break;
15323 case X86::CX: DestReg = X86::CL; break;
15324 case X86::BX: DestReg = X86::BL; break;
15327 Res.first = DestReg;
15328 Res.second = X86::GR8RegisterClass;
15330 } else if (VT == MVT::i32) {
15331 unsigned DestReg = 0;
15332 switch (Res.first) {
15334 case X86::AX: DestReg = X86::EAX; break;
15335 case X86::DX: DestReg = X86::EDX; break;
15336 case X86::CX: DestReg = X86::ECX; break;
15337 case X86::BX: DestReg = X86::EBX; break;
15338 case X86::SI: DestReg = X86::ESI; break;
15339 case X86::DI: DestReg = X86::EDI; break;
15340 case X86::BP: DestReg = X86::EBP; break;
15341 case X86::SP: DestReg = X86::ESP; break;
15344 Res.first = DestReg;
15345 Res.second = X86::GR32RegisterClass;
15347 } else if (VT == MVT::i64) {
15348 unsigned DestReg = 0;
15349 switch (Res.first) {
15351 case X86::AX: DestReg = X86::RAX; break;
15352 case X86::DX: DestReg = X86::RDX; break;
15353 case X86::CX: DestReg = X86::RCX; break;
15354 case X86::BX: DestReg = X86::RBX; break;
15355 case X86::SI: DestReg = X86::RSI; break;
15356 case X86::DI: DestReg = X86::RDI; break;
15357 case X86::BP: DestReg = X86::RBP; break;
15358 case X86::SP: DestReg = X86::RSP; break;
15361 Res.first = DestReg;
15362 Res.second = X86::GR64RegisterClass;
15365 } else if (Res.second == X86::FR32RegisterClass ||
15366 Res.second == X86::FR64RegisterClass ||
15367 Res.second == X86::VR128RegisterClass) {
15368 // Handle references to XMM physical registers that got mapped into the
15369 // wrong class. This can happen with constraints like {xmm0} where the
15370 // target independent register mapper will just pick the first match it can
15371 // find, ignoring the required type.
15372 if (VT == MVT::f32)
15373 Res.second = X86::FR32RegisterClass;
15374 else if (VT == MVT::f64)
15375 Res.second = X86::FR64RegisterClass;
15376 else if (X86::VR128RegisterClass->hasType(VT))
15377 Res.second = X86::VR128RegisterClass;