1 //===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the interfaces that X86 uses to lower LLVM code into a
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "x86-isel"
17 #include "X86InstrBuilder.h"
18 #include "X86ISelLowering.h"
19 #include "X86TargetMachine.h"
20 #include "X86TargetObjectFile.h"
21 #include "Utils/X86ShuffleDecode.h"
22 #include "llvm/CallingConv.h"
23 #include "llvm/Constants.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/GlobalAlias.h"
26 #include "llvm/GlobalVariable.h"
27 #include "llvm/Function.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/Intrinsics.h"
30 #include "llvm/LLVMContext.h"
31 #include "llvm/CodeGen/IntrinsicLowering.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineJumpTableInfo.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/MC/MCAsmInfo.h"
39 #include "llvm/MC/MCContext.h"
40 #include "llvm/MC/MCExpr.h"
41 #include "llvm/MC/MCSymbol.h"
42 #include "llvm/ADT/BitVector.h"
43 #include "llvm/ADT/SmallSet.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/ADT/StringExtras.h"
46 #include "llvm/ADT/VectorExtras.h"
47 #include "llvm/Support/CallSite.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/Dwarf.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/MathExtras.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Target/TargetOptions.h"
55 using namespace dwarf;
57 STATISTIC(NumTailCalls, "Number of tail calls");
59 // Forward declarations.
60 static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
63 static SDValue Insert128BitVector(SDValue Result,
69 static SDValue Extract128BitVector(SDValue Vec,
74 /// Generate a DAG to grab 128-bits from a vector > 128 bits. This
75 /// sets things up to match to an AVX VEXTRACTF128 instruction or a
76 /// simple subregister reference. Idx is an index in the 128 bits we
77 /// want. It need not be aligned to a 128-bit bounday. That makes
78 /// lowering EXTRACT_VECTOR_ELT operations easier.
79 static SDValue Extract128BitVector(SDValue Vec,
83 EVT VT = Vec.getValueType();
84 assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
85 EVT ElVT = VT.getVectorElementType();
86 int Factor = VT.getSizeInBits()/128;
87 EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
88 VT.getVectorNumElements()/Factor);
90 // Extract from UNDEF is UNDEF.
91 if (Vec.getOpcode() == ISD::UNDEF)
92 return DAG.getNode(ISD::UNDEF, dl, ResultVT);
94 if (isa<ConstantSDNode>(Idx)) {
95 unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
97 // Extract the relevant 128 bits. Generate an EXTRACT_SUBVECTOR
98 // we can match to VEXTRACTF128.
99 unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
101 // This is the index of the first element of the 128-bit chunk
103 unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
106 SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
107 SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
116 /// Generate a DAG to put 128-bits into a vector > 128 bits. This
117 /// sets things up to match to an AVX VINSERTF128 instruction or a
118 /// simple superregister reference. Idx is an index in the 128 bits
119 /// we want. It need not be aligned to a 128-bit bounday. That makes
120 /// lowering INSERT_VECTOR_ELT operations easier.
121 static SDValue Insert128BitVector(SDValue Result,
126 if (isa<ConstantSDNode>(Idx)) {
127 EVT VT = Vec.getValueType();
128 assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
130 EVT ElVT = VT.getVectorElementType();
131 unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
132 EVT ResultVT = Result.getValueType();
134 // Insert the relevant 128 bits.
135 unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
137 // This is the index of the first element of the 128-bit chunk
139 unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
142 SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
143 Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
151 static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
152 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
153 bool is64Bit = Subtarget->is64Bit();
155 if (Subtarget->isTargetEnvMacho()) {
157 return new X8664_MachoTargetObjectFile();
158 return new TargetLoweringObjectFileMachO();
161 if (Subtarget->isTargetELF())
162 return new TargetLoweringObjectFileELF();
163 if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
164 return new TargetLoweringObjectFileCOFF();
165 llvm_unreachable("unknown subtarget type");
168 X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
169 : TargetLowering(TM, createTLOF(TM)) {
170 Subtarget = &TM.getSubtarget<X86Subtarget>();
171 X86ScalarSSEf64 = Subtarget->hasXMMInt();
172 X86ScalarSSEf32 = Subtarget->hasXMM();
173 X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
175 RegInfo = TM.getRegisterInfo();
176 TD = getTargetData();
178 // Set up the TargetLowering object.
179 static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
181 // X86 is weird, it always uses i8 for shift amounts and setcc results.
182 setBooleanContents(ZeroOrOneBooleanContent);
183 // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
184 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
186 // For 64-bit since we have so many registers use the ILP scheduler, for
187 // 32-bit code use the register pressure specific scheduling.
188 if (Subtarget->is64Bit())
189 setSchedulingPreference(Sched::ILP);
191 setSchedulingPreference(Sched::RegPressure);
192 setStackPointerRegisterToSaveRestore(X86StackPtr);
194 if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
195 // Setup Windows compiler runtime calls.
196 setLibcallName(RTLIB::SDIV_I64, "_alldiv");
197 setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
198 setLibcallName(RTLIB::SREM_I64, "_allrem");
199 setLibcallName(RTLIB::UREM_I64, "_aullrem");
200 setLibcallName(RTLIB::MUL_I64, "_allmul");
201 setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
202 setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
203 setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
204 setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
205 setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
206 setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
207 setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
208 setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
209 setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
212 if (Subtarget->isTargetDarwin()) {
213 // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
214 setUseUnderscoreSetJmp(false);
215 setUseUnderscoreLongJmp(false);
216 } else if (Subtarget->isTargetMingw()) {
217 // MS runtime is weird: it exports _setjmp, but longjmp!
218 setUseUnderscoreSetJmp(true);
219 setUseUnderscoreLongJmp(false);
221 setUseUnderscoreSetJmp(true);
222 setUseUnderscoreLongJmp(true);
225 // Set up the register classes.
226 addRegisterClass(MVT::i8, X86::GR8RegisterClass);
227 addRegisterClass(MVT::i16, X86::GR16RegisterClass);
228 addRegisterClass(MVT::i32, X86::GR32RegisterClass);
229 if (Subtarget->is64Bit())
230 addRegisterClass(MVT::i64, X86::GR64RegisterClass);
232 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
234 // We don't accept any truncstore of integer registers.
235 setTruncStoreAction(MVT::i64, MVT::i32, Expand);
236 setTruncStoreAction(MVT::i64, MVT::i16, Expand);
237 setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
238 setTruncStoreAction(MVT::i32, MVT::i16, Expand);
239 setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
240 setTruncStoreAction(MVT::i16, MVT::i8, Expand);
242 // SETOEQ and SETUNE require checking two conditions.
243 setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
244 setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
245 setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
246 setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
247 setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
248 setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
250 // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
252 setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote);
253 setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote);
254 setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote);
256 if (Subtarget->is64Bit()) {
257 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
258 setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Expand);
259 } else if (!UseSoftFloat) {
260 // We have an algorithm for SSE2->double, and we turn this into a
261 // 64-bit FILD followed by conditional FADD for other targets.
262 setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom);
263 // We have an algorithm for SSE2, and we turn this into a 64-bit
264 // FILD for other targets.
265 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Custom);
268 // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
270 setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote);
271 setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote);
274 // SSE has no i16 to fp conversion, only i32
275 if (X86ScalarSSEf32) {
276 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
277 // f32 and f64 cases are Legal, f80 case is not
278 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
280 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom);
281 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
284 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
285 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Promote);
288 // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64
289 // are Legal, f80 is custom lowered.
290 setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom);
291 setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom);
293 // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
295 setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote);
296 setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote);
298 if (X86ScalarSSEf32) {
299 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote);
300 // f32 and f64 cases are Legal, f80 case is not
301 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
303 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom);
304 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
307 // Handle FP_TO_UINT by promoting the destination to a larger signed
309 setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote);
310 setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote);
311 setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote);
313 if (Subtarget->is64Bit()) {
314 setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand);
315 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
316 } else if (!UseSoftFloat) {
317 // Since AVX is a superset of SSE3, only check for SSE here.
318 if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
319 // Expand FP_TO_UINT into a select.
320 // FIXME: We would like to use a Custom expander here eventually to do
321 // the optimal thing for SSE vs. the default expansion in the legalizer.
322 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand);
324 // With SSE3 we can use fisttpll to convert to a signed i64; without
325 // SSE, we're stuck with a fistpll.
326 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Custom);
329 // TODO: when we have SSE, these could be more efficient, by using movd/movq.
330 if (!X86ScalarSSEf64) {
331 setOperationAction(ISD::BITCAST , MVT::f32 , Expand);
332 setOperationAction(ISD::BITCAST , MVT::i32 , Expand);
333 if (Subtarget->is64Bit()) {
334 setOperationAction(ISD::BITCAST , MVT::f64 , Expand);
335 // Without SSE, i64->f64 goes through memory.
336 setOperationAction(ISD::BITCAST , MVT::i64 , Expand);
340 // Scalar integer divide and remainder are lowered to use operations that
341 // produce two results, to match the available instructions. This exposes
342 // the two-result form to trivial CSE, which is able to combine x/y and x%y
343 // into a single instruction.
345 // Scalar integer multiply-high is also lowered to use two-result
346 // operations, to match the available instructions. However, plain multiply
347 // (low) operations are left as Legal, as there are single-result
348 // instructions for this in x86. Using the two-result multiply instructions
349 // when both high and low results are needed must be arranged by dagcombine.
350 for (unsigned i = 0, e = 4; i != e; ++i) {
352 setOperationAction(ISD::MULHS, VT, Expand);
353 setOperationAction(ISD::MULHU, VT, Expand);
354 setOperationAction(ISD::SDIV, VT, Expand);
355 setOperationAction(ISD::UDIV, VT, Expand);
356 setOperationAction(ISD::SREM, VT, Expand);
357 setOperationAction(ISD::UREM, VT, Expand);
359 // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
360 setOperationAction(ISD::ADDC, VT, Custom);
361 setOperationAction(ISD::ADDE, VT, Custom);
362 setOperationAction(ISD::SUBC, VT, Custom);
363 setOperationAction(ISD::SUBE, VT, Custom);
366 setOperationAction(ISD::BR_JT , MVT::Other, Expand);
367 setOperationAction(ISD::BRCOND , MVT::Other, Custom);
368 setOperationAction(ISD::BR_CC , MVT::Other, Expand);
369 setOperationAction(ISD::SELECT_CC , MVT::Other, Expand);
370 if (Subtarget->is64Bit())
371 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
372 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal);
373 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
374 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
375 setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand);
376 setOperationAction(ISD::FREM , MVT::f32 , Expand);
377 setOperationAction(ISD::FREM , MVT::f64 , Expand);
378 setOperationAction(ISD::FREM , MVT::f80 , Expand);
379 setOperationAction(ISD::FLT_ROUNDS_ , MVT::i32 , Custom);
381 if (Subtarget->hasBMI()) {
382 setOperationAction(ISD::CTTZ , MVT::i8 , Promote);
384 setOperationAction(ISD::CTTZ , MVT::i8 , Custom);
385 setOperationAction(ISD::CTTZ , MVT::i16 , Custom);
386 setOperationAction(ISD::CTTZ , MVT::i32 , Custom);
387 if (Subtarget->is64Bit())
388 setOperationAction(ISD::CTTZ , MVT::i64 , Custom);
391 if (Subtarget->hasLZCNT()) {
392 setOperationAction(ISD::CTLZ , MVT::i8 , Promote);
394 setOperationAction(ISD::CTLZ , MVT::i8 , Custom);
395 setOperationAction(ISD::CTLZ , MVT::i16 , Custom);
396 setOperationAction(ISD::CTLZ , MVT::i32 , Custom);
397 if (Subtarget->is64Bit())
398 setOperationAction(ISD::CTLZ , MVT::i64 , Custom);
401 if (Subtarget->hasPOPCNT()) {
402 setOperationAction(ISD::CTPOP , MVT::i8 , Promote);
404 setOperationAction(ISD::CTPOP , MVT::i8 , Expand);
405 setOperationAction(ISD::CTPOP , MVT::i16 , Expand);
406 setOperationAction(ISD::CTPOP , MVT::i32 , Expand);
407 if (Subtarget->is64Bit())
408 setOperationAction(ISD::CTPOP , MVT::i64 , Expand);
411 setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom);
412 setOperationAction(ISD::BSWAP , MVT::i16 , Expand);
414 // These should be promoted to a larger select which is supported.
415 setOperationAction(ISD::SELECT , MVT::i1 , Promote);
416 // X86 wants to expand cmov itself.
417 setOperationAction(ISD::SELECT , MVT::i8 , Custom);
418 setOperationAction(ISD::SELECT , MVT::i16 , Custom);
419 setOperationAction(ISD::SELECT , MVT::i32 , Custom);
420 setOperationAction(ISD::SELECT , MVT::f32 , Custom);
421 setOperationAction(ISD::SELECT , MVT::f64 , Custom);
422 setOperationAction(ISD::SELECT , MVT::f80 , Custom);
423 setOperationAction(ISD::SETCC , MVT::i8 , Custom);
424 setOperationAction(ISD::SETCC , MVT::i16 , Custom);
425 setOperationAction(ISD::SETCC , MVT::i32 , Custom);
426 setOperationAction(ISD::SETCC , MVT::f32 , Custom);
427 setOperationAction(ISD::SETCC , MVT::f64 , Custom);
428 setOperationAction(ISD::SETCC , MVT::f80 , Custom);
429 if (Subtarget->is64Bit()) {
430 setOperationAction(ISD::SELECT , MVT::i64 , Custom);
431 setOperationAction(ISD::SETCC , MVT::i64 , Custom);
433 setOperationAction(ISD::EH_RETURN , MVT::Other, Custom);
436 setOperationAction(ISD::ConstantPool , MVT::i32 , Custom);
437 setOperationAction(ISD::JumpTable , MVT::i32 , Custom);
438 setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom);
439 setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom);
440 if (Subtarget->is64Bit())
441 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
442 setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom);
443 setOperationAction(ISD::BlockAddress , MVT::i32 , Custom);
444 if (Subtarget->is64Bit()) {
445 setOperationAction(ISD::ConstantPool , MVT::i64 , Custom);
446 setOperationAction(ISD::JumpTable , MVT::i64 , Custom);
447 setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom);
448 setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom);
449 setOperationAction(ISD::BlockAddress , MVT::i64 , Custom);
451 // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
452 setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom);
453 setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom);
454 setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom);
455 if (Subtarget->is64Bit()) {
456 setOperationAction(ISD::SHL_PARTS , MVT::i64 , Custom);
457 setOperationAction(ISD::SRA_PARTS , MVT::i64 , Custom);
458 setOperationAction(ISD::SRL_PARTS , MVT::i64 , Custom);
461 if (Subtarget->hasXMM())
462 setOperationAction(ISD::PREFETCH , MVT::Other, Legal);
464 setOperationAction(ISD::MEMBARRIER , MVT::Other, Custom);
465 setOperationAction(ISD::ATOMIC_FENCE , MVT::Other, Custom);
467 // On X86 and X86-64, atomic operations are lowered to locked instructions.
468 // Locked instructions, in turn, have implicit fence semantics (all memory
469 // operations are flushed before issuing the locked instruction, and they
470 // are not buffered), so we can fold away the common pattern of
471 // fence-atomic-fence.
472 setShouldFoldAtomicFences(true);
474 // Expand certain atomics
475 for (unsigned i = 0, e = 4; i != e; ++i) {
477 setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
478 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
479 setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
482 if (!Subtarget->is64Bit()) {
483 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
484 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
485 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
486 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
487 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
488 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
489 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
490 setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
493 if (Subtarget->hasCmpxchg16b()) {
494 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
497 // FIXME - use subtarget debug flags
498 if (!Subtarget->isTargetDarwin() &&
499 !Subtarget->isTargetELF() &&
500 !Subtarget->isTargetCygMing()) {
501 setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
504 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
505 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
506 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
507 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
508 if (Subtarget->is64Bit()) {
509 setExceptionPointerRegister(X86::RAX);
510 setExceptionSelectorRegister(X86::RDX);
512 setExceptionPointerRegister(X86::EAX);
513 setExceptionSelectorRegister(X86::EDX);
515 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
516 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
518 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
519 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
521 setOperationAction(ISD::TRAP, MVT::Other, Legal);
523 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
524 setOperationAction(ISD::VASTART , MVT::Other, Custom);
525 setOperationAction(ISD::VAEND , MVT::Other, Expand);
526 if (Subtarget->is64Bit()) {
527 setOperationAction(ISD::VAARG , MVT::Other, Custom);
528 setOperationAction(ISD::VACOPY , MVT::Other, Custom);
530 setOperationAction(ISD::VAARG , MVT::Other, Expand);
531 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
534 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
535 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
537 if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
538 setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
539 MVT::i64 : MVT::i32, Custom);
540 else if (EnableSegmentedStacks)
541 setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
542 MVT::i64 : MVT::i32, Custom);
544 setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
545 MVT::i64 : MVT::i32, Expand);
547 if (!UseSoftFloat && X86ScalarSSEf64) {
548 // f32 and f64 use SSE.
549 // Set up the FP register classes.
550 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
551 addRegisterClass(MVT::f64, X86::FR64RegisterClass);
553 // Use ANDPD to simulate FABS.
554 setOperationAction(ISD::FABS , MVT::f64, Custom);
555 setOperationAction(ISD::FABS , MVT::f32, Custom);
557 // Use XORP to simulate FNEG.
558 setOperationAction(ISD::FNEG , MVT::f64, Custom);
559 setOperationAction(ISD::FNEG , MVT::f32, Custom);
561 // Use ANDPD and ORPD to simulate FCOPYSIGN.
562 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
563 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
565 // Lower this to FGETSIGNx86 plus an AND.
566 setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
567 setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
569 // We don't support sin/cos/fmod
570 setOperationAction(ISD::FSIN , MVT::f64, Expand);
571 setOperationAction(ISD::FCOS , MVT::f64, Expand);
572 setOperationAction(ISD::FSIN , MVT::f32, Expand);
573 setOperationAction(ISD::FCOS , MVT::f32, Expand);
575 // Expand FP immediates into loads from the stack, except for the special
577 addLegalFPImmediate(APFloat(+0.0)); // xorpd
578 addLegalFPImmediate(APFloat(+0.0f)); // xorps
579 } else if (!UseSoftFloat && X86ScalarSSEf32) {
580 // Use SSE for f32, x87 for f64.
581 // Set up the FP register classes.
582 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
583 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
585 // Use ANDPS to simulate FABS.
586 setOperationAction(ISD::FABS , MVT::f32, Custom);
588 // Use XORP to simulate FNEG.
589 setOperationAction(ISD::FNEG , MVT::f32, Custom);
591 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
593 // Use ANDPS and ORPS to simulate FCOPYSIGN.
594 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
595 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
597 // We don't support sin/cos/fmod
598 setOperationAction(ISD::FSIN , MVT::f32, Expand);
599 setOperationAction(ISD::FCOS , MVT::f32, Expand);
601 // Special cases we handle for FP constants.
602 addLegalFPImmediate(APFloat(+0.0f)); // xorps
603 addLegalFPImmediate(APFloat(+0.0)); // FLD0
604 addLegalFPImmediate(APFloat(+1.0)); // FLD1
605 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
606 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
609 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
610 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
612 } else if (!UseSoftFloat) {
613 // f32 and f64 in x87.
614 // Set up the FP register classes.
615 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
616 addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
618 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
619 setOperationAction(ISD::UNDEF, MVT::f32, Expand);
620 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
621 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
624 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
625 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
627 addLegalFPImmediate(APFloat(+0.0)); // FLD0
628 addLegalFPImmediate(APFloat(+1.0)); // FLD1
629 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
630 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
631 addLegalFPImmediate(APFloat(+0.0f)); // FLD0
632 addLegalFPImmediate(APFloat(+1.0f)); // FLD1
633 addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
634 addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
637 // We don't support FMA.
638 setOperationAction(ISD::FMA, MVT::f64, Expand);
639 setOperationAction(ISD::FMA, MVT::f32, Expand);
641 // Long double always uses X87.
643 addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
644 setOperationAction(ISD::UNDEF, MVT::f80, Expand);
645 setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
647 APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
648 addLegalFPImmediate(TmpFlt); // FLD0
650 addLegalFPImmediate(TmpFlt); // FLD0/FCHS
653 APFloat TmpFlt2(+1.0);
654 TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
656 addLegalFPImmediate(TmpFlt2); // FLD1
657 TmpFlt2.changeSign();
658 addLegalFPImmediate(TmpFlt2); // FLD1/FCHS
662 setOperationAction(ISD::FSIN , MVT::f80 , Expand);
663 setOperationAction(ISD::FCOS , MVT::f80 , Expand);
666 setOperationAction(ISD::FMA, MVT::f80, Expand);
669 // Always use a library call for pow.
670 setOperationAction(ISD::FPOW , MVT::f32 , Expand);
671 setOperationAction(ISD::FPOW , MVT::f64 , Expand);
672 setOperationAction(ISD::FPOW , MVT::f80 , Expand);
674 setOperationAction(ISD::FLOG, MVT::f80, Expand);
675 setOperationAction(ISD::FLOG2, MVT::f80, Expand);
676 setOperationAction(ISD::FLOG10, MVT::f80, Expand);
677 setOperationAction(ISD::FEXP, MVT::f80, Expand);
678 setOperationAction(ISD::FEXP2, MVT::f80, Expand);
680 // First set operation action for all vector types to either promote
681 // (for widening) or expand (for scalarization). Then we will selectively
682 // turn on ones that can be effectively codegen'd.
683 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
684 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
685 setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
686 setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
687 setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
688 setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
689 setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
690 setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
691 setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
692 setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
693 setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
694 setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
695 setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
696 setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
697 setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
698 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
699 setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
700 setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
701 setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
702 setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
703 setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
704 setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
705 setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
706 setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
707 setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
708 setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
709 setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
710 setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
711 setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
712 setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
713 setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
714 setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
715 setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
716 setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
717 setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
718 setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
719 setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
720 setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
721 setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
722 setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
723 setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
724 setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
725 setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
726 setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
727 setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
728 setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
729 setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
730 setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
731 setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
732 setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
733 setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
734 setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
735 setOperationAction(ISD::TRUNCATE, (MVT::SimpleValueType)VT, Expand);
736 setOperationAction(ISD::SIGN_EXTEND, (MVT::SimpleValueType)VT, Expand);
737 setOperationAction(ISD::ZERO_EXTEND, (MVT::SimpleValueType)VT, Expand);
738 setOperationAction(ISD::ANY_EXTEND, (MVT::SimpleValueType)VT, Expand);
739 setOperationAction(ISD::VSELECT, (MVT::SimpleValueType)VT, Expand);
740 for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
741 InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
742 setTruncStoreAction((MVT::SimpleValueType)VT,
743 (MVT::SimpleValueType)InnerVT, Expand);
744 setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
745 setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
746 setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
749 // FIXME: In order to prevent SSE instructions being expanded to MMX ones
750 // with -msoft-float, disable use of MMX as well.
751 if (!UseSoftFloat && Subtarget->hasMMX()) {
752 addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
753 // No operations on x86mmx supported, everything uses intrinsics.
756 // MMX-sized vectors (other than x86mmx) are expected to be expanded
757 // into smaller operations.
758 setOperationAction(ISD::MULHS, MVT::v8i8, Expand);
759 setOperationAction(ISD::MULHS, MVT::v4i16, Expand);
760 setOperationAction(ISD::MULHS, MVT::v2i32, Expand);
761 setOperationAction(ISD::MULHS, MVT::v1i64, Expand);
762 setOperationAction(ISD::AND, MVT::v8i8, Expand);
763 setOperationAction(ISD::AND, MVT::v4i16, Expand);
764 setOperationAction(ISD::AND, MVT::v2i32, Expand);
765 setOperationAction(ISD::AND, MVT::v1i64, Expand);
766 setOperationAction(ISD::OR, MVT::v8i8, Expand);
767 setOperationAction(ISD::OR, MVT::v4i16, Expand);
768 setOperationAction(ISD::OR, MVT::v2i32, Expand);
769 setOperationAction(ISD::OR, MVT::v1i64, Expand);
770 setOperationAction(ISD::XOR, MVT::v8i8, Expand);
771 setOperationAction(ISD::XOR, MVT::v4i16, Expand);
772 setOperationAction(ISD::XOR, MVT::v2i32, Expand);
773 setOperationAction(ISD::XOR, MVT::v1i64, Expand);
774 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Expand);
775 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Expand);
776 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i32, Expand);
777 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Expand);
778 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v1i64, Expand);
779 setOperationAction(ISD::SELECT, MVT::v8i8, Expand);
780 setOperationAction(ISD::SELECT, MVT::v4i16, Expand);
781 setOperationAction(ISD::SELECT, MVT::v2i32, Expand);
782 setOperationAction(ISD::SELECT, MVT::v1i64, Expand);
783 setOperationAction(ISD::BITCAST, MVT::v8i8, Expand);
784 setOperationAction(ISD::BITCAST, MVT::v4i16, Expand);
785 setOperationAction(ISD::BITCAST, MVT::v2i32, Expand);
786 setOperationAction(ISD::BITCAST, MVT::v1i64, Expand);
788 if (!UseSoftFloat && Subtarget->hasXMM()) {
789 addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
791 setOperationAction(ISD::FADD, MVT::v4f32, Legal);
792 setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
793 setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
794 setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
795 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
796 setOperationAction(ISD::FNEG, MVT::v4f32, Custom);
797 setOperationAction(ISD::LOAD, MVT::v4f32, Legal);
798 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
799 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
800 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
801 setOperationAction(ISD::SELECT, MVT::v4f32, Custom);
802 setOperationAction(ISD::SETCC, MVT::v4f32, Custom);
805 if (!UseSoftFloat && Subtarget->hasXMMInt()) {
806 addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
808 // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
809 // registers cannot be used even for integer operations.
810 addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
811 addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
812 addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
813 addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
815 setOperationAction(ISD::ADD, MVT::v16i8, Legal);
816 setOperationAction(ISD::ADD, MVT::v8i16, Legal);
817 setOperationAction(ISD::ADD, MVT::v4i32, Legal);
818 setOperationAction(ISD::ADD, MVT::v2i64, Legal);
819 setOperationAction(ISD::MUL, MVT::v2i64, Custom);
820 setOperationAction(ISD::SUB, MVT::v16i8, Legal);
821 setOperationAction(ISD::SUB, MVT::v8i16, Legal);
822 setOperationAction(ISD::SUB, MVT::v4i32, Legal);
823 setOperationAction(ISD::SUB, MVT::v2i64, Legal);
824 setOperationAction(ISD::MUL, MVT::v8i16, Legal);
825 setOperationAction(ISD::FADD, MVT::v2f64, Legal);
826 setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
827 setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
828 setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
829 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
830 setOperationAction(ISD::FNEG, MVT::v2f64, Custom);
832 setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
833 setOperationAction(ISD::SETCC, MVT::v16i8, Custom);
834 setOperationAction(ISD::SETCC, MVT::v8i16, Custom);
835 setOperationAction(ISD::SETCC, MVT::v4i32, Custom);
837 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom);
838 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom);
839 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
840 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
841 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
843 setOperationAction(ISD::CONCAT_VECTORS, MVT::v2f64, Custom);
844 setOperationAction(ISD::CONCAT_VECTORS, MVT::v2i64, Custom);
845 setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i8, Custom);
846 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i16, Custom);
847 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
849 // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
850 for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
851 EVT VT = (MVT::SimpleValueType)i;
852 // Do not attempt to custom lower non-power-of-2 vectors
853 if (!isPowerOf2_32(VT.getVectorNumElements()))
855 // Do not attempt to custom lower non-128-bit vectors
856 if (!VT.is128BitVector())
858 setOperationAction(ISD::BUILD_VECTOR,
859 VT.getSimpleVT().SimpleTy, Custom);
860 setOperationAction(ISD::VECTOR_SHUFFLE,
861 VT.getSimpleVT().SimpleTy, Custom);
862 setOperationAction(ISD::EXTRACT_VECTOR_ELT,
863 VT.getSimpleVT().SimpleTy, Custom);
866 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
867 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
868 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
869 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
870 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
871 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
873 if (Subtarget->is64Bit()) {
874 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom);
875 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
878 // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
879 for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
880 MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
883 // Do not attempt to promote non-128-bit vectors
884 if (!VT.is128BitVector())
887 setOperationAction(ISD::AND, SVT, Promote);
888 AddPromotedToType (ISD::AND, SVT, MVT::v2i64);
889 setOperationAction(ISD::OR, SVT, Promote);
890 AddPromotedToType (ISD::OR, SVT, MVT::v2i64);
891 setOperationAction(ISD::XOR, SVT, Promote);
892 AddPromotedToType (ISD::XOR, SVT, MVT::v2i64);
893 setOperationAction(ISD::LOAD, SVT, Promote);
894 AddPromotedToType (ISD::LOAD, SVT, MVT::v2i64);
895 setOperationAction(ISD::SELECT, SVT, Promote);
896 AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
899 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
901 // Custom lower v2i64 and v2f64 selects.
902 setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
903 setOperationAction(ISD::LOAD, MVT::v2i64, Legal);
904 setOperationAction(ISD::SELECT, MVT::v2f64, Custom);
905 setOperationAction(ISD::SELECT, MVT::v2i64, Custom);
907 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
908 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
911 if (Subtarget->hasSSE41() || Subtarget->hasAVX()) {
912 setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
913 setOperationAction(ISD::FCEIL, MVT::f32, Legal);
914 setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
915 setOperationAction(ISD::FRINT, MVT::f32, Legal);
916 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
917 setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
918 setOperationAction(ISD::FCEIL, MVT::f64, Legal);
919 setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
920 setOperationAction(ISD::FRINT, MVT::f64, Legal);
921 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
923 // FIXME: Do we need to handle scalar-to-vector here?
924 setOperationAction(ISD::MUL, MVT::v4i32, Legal);
926 setOperationAction(ISD::VSELECT, MVT::v2f64, Legal);
927 setOperationAction(ISD::VSELECT, MVT::v2i64, Legal);
928 setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
929 setOperationAction(ISD::VSELECT, MVT::v4i32, Legal);
930 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
932 // i8 and i16 vectors are custom , because the source register and source
933 // source memory operand types are not the same width. f32 vectors are
934 // custom since the immediate controlling the insert encodes additional
936 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
937 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
938 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
939 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
941 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
942 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
943 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
944 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
946 // FIXME: these should be Legal but thats only for the case where
947 // the index is constant. For now custom expand to deal with that
948 if (Subtarget->is64Bit()) {
949 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom);
950 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
954 if (Subtarget->hasXMMInt()) {
955 setOperationAction(ISD::SRL, MVT::v8i16, Custom);
956 setOperationAction(ISD::SRL, MVT::v16i8, Custom);
958 setOperationAction(ISD::SHL, MVT::v8i16, Custom);
959 setOperationAction(ISD::SHL, MVT::v16i8, Custom);
961 setOperationAction(ISD::SRA, MVT::v8i16, Custom);
962 setOperationAction(ISD::SRA, MVT::v16i8, Custom);
964 if (Subtarget->hasAVX2()) {
965 setOperationAction(ISD::SRL, MVT::v2i64, Legal);
966 setOperationAction(ISD::SRL, MVT::v4i32, Legal);
968 setOperationAction(ISD::SHL, MVT::v2i64, Legal);
969 setOperationAction(ISD::SHL, MVT::v4i32, Legal);
971 setOperationAction(ISD::SRA, MVT::v4i32, Legal);
973 setOperationAction(ISD::SRL, MVT::v2i64, Custom);
974 setOperationAction(ISD::SRL, MVT::v4i32, Custom);
976 setOperationAction(ISD::SHL, MVT::v2i64, Custom);
977 setOperationAction(ISD::SHL, MVT::v4i32, Custom);
979 setOperationAction(ISD::SRA, MVT::v4i32, Custom);
983 if (Subtarget->hasSSE42() || Subtarget->hasAVX())
984 setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
986 if (!UseSoftFloat && Subtarget->hasAVX()) {
987 addRegisterClass(MVT::v32i8, X86::VR256RegisterClass);
988 addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
989 addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
990 addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
991 addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
992 addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
994 setOperationAction(ISD::LOAD, MVT::v8f32, Legal);
995 setOperationAction(ISD::LOAD, MVT::v4f64, Legal);
996 setOperationAction(ISD::LOAD, MVT::v4i64, Legal);
998 setOperationAction(ISD::FADD, MVT::v8f32, Legal);
999 setOperationAction(ISD::FSUB, MVT::v8f32, Legal);
1000 setOperationAction(ISD::FMUL, MVT::v8f32, Legal);
1001 setOperationAction(ISD::FDIV, MVT::v8f32, Legal);
1002 setOperationAction(ISD::FSQRT, MVT::v8f32, Legal);
1003 setOperationAction(ISD::FNEG, MVT::v8f32, Custom);
1005 setOperationAction(ISD::FADD, MVT::v4f64, Legal);
1006 setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
1007 setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
1008 setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
1009 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
1010 setOperationAction(ISD::FNEG, MVT::v4f64, Custom);
1012 setOperationAction(ISD::FP_TO_SINT, MVT::v8i32, Legal);
1013 setOperationAction(ISD::SINT_TO_FP, MVT::v8i32, Legal);
1014 setOperationAction(ISD::FP_ROUND, MVT::v4f32, Legal);
1016 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f64, Custom);
1017 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i64, Custom);
1018 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
1019 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
1020 setOperationAction(ISD::CONCAT_VECTORS, MVT::v32i8, Custom);
1021 setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i16, Custom);
1023 setOperationAction(ISD::SRL, MVT::v16i16, Custom);
1024 setOperationAction(ISD::SRL, MVT::v32i8, Custom);
1026 setOperationAction(ISD::SHL, MVT::v16i16, Custom);
1027 setOperationAction(ISD::SHL, MVT::v32i8, Custom);
1029 setOperationAction(ISD::SRA, MVT::v16i16, Custom);
1030 setOperationAction(ISD::SRA, MVT::v32i8, Custom);
1032 setOperationAction(ISD::SETCC, MVT::v32i8, Custom);
1033 setOperationAction(ISD::SETCC, MVT::v16i16, Custom);
1034 setOperationAction(ISD::SETCC, MVT::v8i32, Custom);
1035 setOperationAction(ISD::SETCC, MVT::v4i64, Custom);
1037 setOperationAction(ISD::SELECT, MVT::v4f64, Custom);
1038 setOperationAction(ISD::SELECT, MVT::v4i64, Custom);
1039 setOperationAction(ISD::SELECT, MVT::v8f32, Custom);
1041 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
1042 setOperationAction(ISD::VSELECT, MVT::v4i64, Legal);
1043 setOperationAction(ISD::VSELECT, MVT::v8i32, Legal);
1044 setOperationAction(ISD::VSELECT, MVT::v8f32, Legal);
1046 if (Subtarget->hasAVX2()) {
1047 setOperationAction(ISD::ADD, MVT::v4i64, Legal);
1048 setOperationAction(ISD::ADD, MVT::v8i32, Legal);
1049 setOperationAction(ISD::ADD, MVT::v16i16, Legal);
1050 setOperationAction(ISD::ADD, MVT::v32i8, Legal);
1052 setOperationAction(ISD::SUB, MVT::v4i64, Legal);
1053 setOperationAction(ISD::SUB, MVT::v8i32, Legal);
1054 setOperationAction(ISD::SUB, MVT::v16i16, Legal);
1055 setOperationAction(ISD::SUB, MVT::v32i8, Legal);
1057 setOperationAction(ISD::MUL, MVT::v4i64, Custom);
1058 setOperationAction(ISD::MUL, MVT::v8i32, Legal);
1059 setOperationAction(ISD::MUL, MVT::v16i16, Legal);
1060 // Don't lower v32i8 because there is no 128-bit byte mul
1062 setOperationAction(ISD::VSELECT, MVT::v32i8, Legal);
1064 setOperationAction(ISD::SRL, MVT::v4i64, Legal);
1065 setOperationAction(ISD::SRL, MVT::v8i32, Legal);
1067 setOperationAction(ISD::SHL, MVT::v4i64, Legal);
1068 setOperationAction(ISD::SHL, MVT::v8i32, Legal);
1070 setOperationAction(ISD::SRA, MVT::v8i32, Legal);
1072 setOperationAction(ISD::ADD, MVT::v4i64, Custom);
1073 setOperationAction(ISD::ADD, MVT::v8i32, Custom);
1074 setOperationAction(ISD::ADD, MVT::v16i16, Custom);
1075 setOperationAction(ISD::ADD, MVT::v32i8, Custom);
1077 setOperationAction(ISD::SUB, MVT::v4i64, Custom);
1078 setOperationAction(ISD::SUB, MVT::v8i32, Custom);
1079 setOperationAction(ISD::SUB, MVT::v16i16, Custom);
1080 setOperationAction(ISD::SUB, MVT::v32i8, Custom);
1082 setOperationAction(ISD::MUL, MVT::v4i64, Custom);
1083 setOperationAction(ISD::MUL, MVT::v8i32, Custom);
1084 setOperationAction(ISD::MUL, MVT::v16i16, Custom);
1085 // Don't lower v32i8 because there is no 128-bit byte mul
1087 setOperationAction(ISD::SRL, MVT::v4i64, Custom);
1088 setOperationAction(ISD::SRL, MVT::v8i32, Custom);
1090 setOperationAction(ISD::SHL, MVT::v4i64, Custom);
1091 setOperationAction(ISD::SHL, MVT::v8i32, Custom);
1093 setOperationAction(ISD::SRA, MVT::v8i32, Custom);
1096 // Custom lower several nodes for 256-bit types.
1097 for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1098 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1099 MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1102 // Extract subvector is special because the value type
1103 // (result) is 128-bit but the source is 256-bit wide.
1104 if (VT.is128BitVector())
1105 setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1107 // Do not attempt to custom lower other non-256-bit vectors
1108 if (!VT.is256BitVector())
1111 setOperationAction(ISD::BUILD_VECTOR, SVT, Custom);
1112 setOperationAction(ISD::VECTOR_SHUFFLE, SVT, Custom);
1113 setOperationAction(ISD::INSERT_VECTOR_ELT, SVT, Custom);
1114 setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1115 setOperationAction(ISD::SCALAR_TO_VECTOR, SVT, Custom);
1116 setOperationAction(ISD::INSERT_SUBVECTOR, SVT, Custom);
1119 // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1120 for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
1121 MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1124 // Do not attempt to promote non-256-bit vectors
1125 if (!VT.is256BitVector())
1128 setOperationAction(ISD::AND, SVT, Promote);
1129 AddPromotedToType (ISD::AND, SVT, MVT::v4i64);
1130 setOperationAction(ISD::OR, SVT, Promote);
1131 AddPromotedToType (ISD::OR, SVT, MVT::v4i64);
1132 setOperationAction(ISD::XOR, SVT, Promote);
1133 AddPromotedToType (ISD::XOR, SVT, MVT::v4i64);
1134 setOperationAction(ISD::LOAD, SVT, Promote);
1135 AddPromotedToType (ISD::LOAD, SVT, MVT::v4i64);
1136 setOperationAction(ISD::SELECT, SVT, Promote);
1137 AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1141 // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1142 // of this type with custom code.
1143 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1144 VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
1145 setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT, Custom);
1148 // We want to custom lower some of our intrinsics.
1149 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1152 // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1153 // handle type legalization for these operations here.
1155 // FIXME: We really should do custom legalization for addition and
1156 // subtraction on x86-32 once PR3203 is fixed. We really can't do much better
1157 // than generic legalization for 64-bit multiplication-with-overflow, though.
1158 for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1159 // Add/Sub/Mul with overflow operations are custom lowered.
1161 setOperationAction(ISD::SADDO, VT, Custom);
1162 setOperationAction(ISD::UADDO, VT, Custom);
1163 setOperationAction(ISD::SSUBO, VT, Custom);
1164 setOperationAction(ISD::USUBO, VT, Custom);
1165 setOperationAction(ISD::SMULO, VT, Custom);
1166 setOperationAction(ISD::UMULO, VT, Custom);
1169 // There are no 8-bit 3-address imul/mul instructions
1170 setOperationAction(ISD::SMULO, MVT::i8, Expand);
1171 setOperationAction(ISD::UMULO, MVT::i8, Expand);
1173 if (!Subtarget->is64Bit()) {
1174 // These libcalls are not available in 32-bit.
1175 setLibcallName(RTLIB::SHL_I128, 0);
1176 setLibcallName(RTLIB::SRL_I128, 0);
1177 setLibcallName(RTLIB::SRA_I128, 0);
1180 // We have target-specific dag combine patterns for the following nodes:
1181 setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1182 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1183 setTargetDAGCombine(ISD::BUILD_VECTOR);
1184 setTargetDAGCombine(ISD::VSELECT);
1185 setTargetDAGCombine(ISD::SELECT);
1186 setTargetDAGCombine(ISD::SHL);
1187 setTargetDAGCombine(ISD::SRA);
1188 setTargetDAGCombine(ISD::SRL);
1189 setTargetDAGCombine(ISD::OR);
1190 setTargetDAGCombine(ISD::AND);
1191 setTargetDAGCombine(ISD::ADD);
1192 setTargetDAGCombine(ISD::FADD);
1193 setTargetDAGCombine(ISD::FSUB);
1194 setTargetDAGCombine(ISD::SUB);
1195 setTargetDAGCombine(ISD::LOAD);
1196 setTargetDAGCombine(ISD::STORE);
1197 setTargetDAGCombine(ISD::ZERO_EXTEND);
1198 setTargetDAGCombine(ISD::SINT_TO_FP);
1199 if (Subtarget->is64Bit())
1200 setTargetDAGCombine(ISD::MUL);
1201 if (Subtarget->hasBMI())
1202 setTargetDAGCombine(ISD::XOR);
1204 computeRegisterProperties();
1206 // On Darwin, -Os means optimize for size without hurting performance,
1207 // do not reduce the limit.
1208 maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1209 maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1210 maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1211 maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1212 maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1213 maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1214 setPrefLoopAlignment(16);
1215 benefitFromCodePlacementOpt = true;
1217 setPrefFunctionAlignment(4);
1221 EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1222 if (!VT.isVector()) return MVT::i8;
1223 return VT.changeVectorElementTypeToInteger();
1227 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1228 /// the desired ByVal argument alignment.
1229 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1232 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1233 if (VTy->getBitWidth() == 128)
1235 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1236 unsigned EltAlign = 0;
1237 getMaxByValAlign(ATy->getElementType(), EltAlign);
1238 if (EltAlign > MaxAlign)
1239 MaxAlign = EltAlign;
1240 } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1241 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1242 unsigned EltAlign = 0;
1243 getMaxByValAlign(STy->getElementType(i), EltAlign);
1244 if (EltAlign > MaxAlign)
1245 MaxAlign = EltAlign;
1253 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1254 /// function arguments in the caller parameter area. For X86, aggregates
1255 /// that contain SSE vectors are placed at 16-byte boundaries while the rest
1256 /// are at 4-byte boundaries.
1257 unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1258 if (Subtarget->is64Bit()) {
1259 // Max of 8 and alignment of type.
1260 unsigned TyAlign = TD->getABITypeAlignment(Ty);
1267 if (Subtarget->hasXMM())
1268 getMaxByValAlign(Ty, Align);
1272 /// getOptimalMemOpType - Returns the target specific optimal type for load
1273 /// and store operations as a result of memset, memcpy, and memmove
1274 /// lowering. If DstAlign is zero that means it's safe to destination
1275 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1276 /// means there isn't a need to check it against alignment requirement,
1277 /// probably because the source does not need to be loaded. If
1278 /// 'IsZeroVal' is true, that means it's safe to return a
1279 /// non-scalar-integer type, e.g. empty string source, constant, or loaded
1280 /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1281 /// constant so it does not need to be loaded.
1282 /// It returns EVT::Other if the type should be determined using generic
1283 /// target-independent logic.
1285 X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1286 unsigned DstAlign, unsigned SrcAlign,
1289 MachineFunction &MF) const {
1290 // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1291 // linux. This is because the stack realignment code can't handle certain
1292 // cases like PR2962. This should be removed when PR2962 is fixed.
1293 const Function *F = MF.getFunction();
1295 !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1297 (Subtarget->isUnalignedMemAccessFast() ||
1298 ((DstAlign == 0 || DstAlign >= 16) &&
1299 (SrcAlign == 0 || SrcAlign >= 16))) &&
1300 Subtarget->getStackAlignment() >= 16) {
1301 if (Subtarget->hasAVX() &&
1302 Subtarget->getStackAlignment() >= 32)
1304 if (Subtarget->hasXMMInt())
1306 if (Subtarget->hasXMM())
1308 } else if (!MemcpyStrSrc && Size >= 8 &&
1309 !Subtarget->is64Bit() &&
1310 Subtarget->getStackAlignment() >= 8 &&
1311 Subtarget->hasXMMInt()) {
1312 // Do not use f64 to lower memcpy if source is string constant. It's
1313 // better to use i32 to avoid the loads.
1317 if (Subtarget->is64Bit() && Size >= 8)
1322 /// getJumpTableEncoding - Return the entry encoding for a jump table in the
1323 /// current function. The returned value is a member of the
1324 /// MachineJumpTableInfo::JTEntryKind enum.
1325 unsigned X86TargetLowering::getJumpTableEncoding() const {
1326 // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1328 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1329 Subtarget->isPICStyleGOT())
1330 return MachineJumpTableInfo::EK_Custom32;
1332 // Otherwise, use the normal jump table encoding heuristics.
1333 return TargetLowering::getJumpTableEncoding();
1337 X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1338 const MachineBasicBlock *MBB,
1339 unsigned uid,MCContext &Ctx) const{
1340 assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1341 Subtarget->isPICStyleGOT());
1342 // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1344 return MCSymbolRefExpr::Create(MBB->getSymbol(),
1345 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1348 /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1350 SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1351 SelectionDAG &DAG) const {
1352 if (!Subtarget->is64Bit())
1353 // This doesn't have DebugLoc associated with it, but is not really the
1354 // same as a Register.
1355 return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1359 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1360 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1362 const MCExpr *X86TargetLowering::
1363 getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1364 MCContext &Ctx) const {
1365 // X86-64 uses RIP relative addressing based on the jump table label.
1366 if (Subtarget->isPICStyleRIPRel())
1367 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1369 // Otherwise, the reference is relative to the PIC base.
1370 return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1373 // FIXME: Why this routine is here? Move to RegInfo!
1374 std::pair<const TargetRegisterClass*, uint8_t>
1375 X86TargetLowering::findRepresentativeClass(EVT VT) const{
1376 const TargetRegisterClass *RRC = 0;
1378 switch (VT.getSimpleVT().SimpleTy) {
1380 return TargetLowering::findRepresentativeClass(VT);
1381 case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1382 RRC = (Subtarget->is64Bit()
1383 ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1386 RRC = X86::VR64RegisterClass;
1388 case MVT::f32: case MVT::f64:
1389 case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1390 case MVT::v4f32: case MVT::v2f64:
1391 case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1393 RRC = X86::VR128RegisterClass;
1396 return std::make_pair(RRC, Cost);
1399 bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1400 unsigned &Offset) const {
1401 if (!Subtarget->isTargetLinux())
1404 if (Subtarget->is64Bit()) {
1405 // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1407 if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1420 //===----------------------------------------------------------------------===//
1421 // Return Value Calling Convention Implementation
1422 //===----------------------------------------------------------------------===//
1424 #include "X86GenCallingConv.inc"
1427 X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1428 MachineFunction &MF, bool isVarArg,
1429 const SmallVectorImpl<ISD::OutputArg> &Outs,
1430 LLVMContext &Context) const {
1431 SmallVector<CCValAssign, 16> RVLocs;
1432 CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1434 return CCInfo.CheckReturn(Outs, RetCC_X86);
1438 X86TargetLowering::LowerReturn(SDValue Chain,
1439 CallingConv::ID CallConv, bool isVarArg,
1440 const SmallVectorImpl<ISD::OutputArg> &Outs,
1441 const SmallVectorImpl<SDValue> &OutVals,
1442 DebugLoc dl, SelectionDAG &DAG) const {
1443 MachineFunction &MF = DAG.getMachineFunction();
1444 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1446 SmallVector<CCValAssign, 16> RVLocs;
1447 CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1448 RVLocs, *DAG.getContext());
1449 CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1451 // Add the regs to the liveout set for the function.
1452 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1453 for (unsigned i = 0; i != RVLocs.size(); ++i)
1454 if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1455 MRI.addLiveOut(RVLocs[i].getLocReg());
1459 SmallVector<SDValue, 6> RetOps;
1460 RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1461 // Operand #1 = Bytes To Pop
1462 RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1465 // Copy the result values into the output registers.
1466 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1467 CCValAssign &VA = RVLocs[i];
1468 assert(VA.isRegLoc() && "Can only return in registers!");
1469 SDValue ValToCopy = OutVals[i];
1470 EVT ValVT = ValToCopy.getValueType();
1472 // If this is x86-64, and we disabled SSE, we can't return FP values,
1473 // or SSE or MMX vectors.
1474 if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1475 VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1476 (Subtarget->is64Bit() && !Subtarget->hasXMM())) {
1477 report_fatal_error("SSE register return with SSE disabled");
1479 // Likewise we can't return F64 values with SSE1 only. gcc does so, but
1480 // llvm-gcc has never done it right and no one has noticed, so this
1481 // should be OK for now.
1482 if (ValVT == MVT::f64 &&
1483 (Subtarget->is64Bit() && !Subtarget->hasXMMInt()))
1484 report_fatal_error("SSE2 register return with SSE2 disabled");
1486 // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1487 // the RET instruction and handled by the FP Stackifier.
1488 if (VA.getLocReg() == X86::ST0 ||
1489 VA.getLocReg() == X86::ST1) {
1490 // If this is a copy from an xmm register to ST(0), use an FPExtend to
1491 // change the value to the FP stack register class.
1492 if (isScalarFPTypeInSSEReg(VA.getValVT()))
1493 ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1494 RetOps.push_back(ValToCopy);
1495 // Don't emit a copytoreg.
1499 // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1500 // which is returned in RAX / RDX.
1501 if (Subtarget->is64Bit()) {
1502 if (ValVT == MVT::x86mmx) {
1503 if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1504 ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1505 ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1507 // If we don't have SSE2 available, convert to v4f32 so the generated
1508 // register is legal.
1509 if (!Subtarget->hasXMMInt())
1510 ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1515 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1516 Flag = Chain.getValue(1);
1519 // The x86-64 ABI for returning structs by value requires that we copy
1520 // the sret argument into %rax for the return. We saved the argument into
1521 // a virtual register in the entry block, so now we copy the value out
1523 if (Subtarget->is64Bit() &&
1524 DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1525 MachineFunction &MF = DAG.getMachineFunction();
1526 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1527 unsigned Reg = FuncInfo->getSRetReturnReg();
1529 "SRetReturnReg should have been set in LowerFormalArguments().");
1530 SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1532 Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1533 Flag = Chain.getValue(1);
1535 // RAX now acts like a return value.
1536 MRI.addLiveOut(X86::RAX);
1539 RetOps[0] = Chain; // Update chain.
1541 // Add the flag if we have it.
1543 RetOps.push_back(Flag);
1545 return DAG.getNode(X86ISD::RET_FLAG, dl,
1546 MVT::Other, &RetOps[0], RetOps.size());
1549 bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1550 if (N->getNumValues() != 1)
1552 if (!N->hasNUsesOfValue(1, 0))
1555 SDNode *Copy = *N->use_begin();
1556 if (Copy->getOpcode() != ISD::CopyToReg &&
1557 Copy->getOpcode() != ISD::FP_EXTEND)
1560 bool HasRet = false;
1561 for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1563 if (UI->getOpcode() != X86ISD::RET_FLAG)
1572 X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1573 ISD::NodeType ExtendKind) const {
1575 // TODO: Is this also valid on 32-bit?
1576 if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1577 ReturnMVT = MVT::i8;
1579 ReturnMVT = MVT::i32;
1581 EVT MinVT = getRegisterType(Context, ReturnMVT);
1582 return VT.bitsLT(MinVT) ? MinVT : VT;
1585 /// LowerCallResult - Lower the result values of a call into the
1586 /// appropriate copies out of appropriate physical registers.
1589 X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1590 CallingConv::ID CallConv, bool isVarArg,
1591 const SmallVectorImpl<ISD::InputArg> &Ins,
1592 DebugLoc dl, SelectionDAG &DAG,
1593 SmallVectorImpl<SDValue> &InVals) const {
1595 // Assign locations to each value returned by this call.
1596 SmallVector<CCValAssign, 16> RVLocs;
1597 bool Is64Bit = Subtarget->is64Bit();
1598 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1599 getTargetMachine(), RVLocs, *DAG.getContext());
1600 CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1602 // Copy all of the result registers out of their specified physreg.
1603 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1604 CCValAssign &VA = RVLocs[i];
1605 EVT CopyVT = VA.getValVT();
1607 // If this is x86-64, and we disabled SSE, we can't return FP values
1608 if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1609 ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasXMM())) {
1610 report_fatal_error("SSE register return with SSE disabled");
1615 // If this is a call to a function that returns an fp value on the floating
1616 // point stack, we must guarantee the the value is popped from the stack, so
1617 // a CopyFromReg is not good enough - the copy instruction may be eliminated
1618 // if the return value is not used. We use the FpPOP_RETVAL instruction
1620 if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1621 // If we prefer to use the value in xmm registers, copy it out as f80 and
1622 // use a truncate to move it from fp stack reg to xmm reg.
1623 if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1624 SDValue Ops[] = { Chain, InFlag };
1625 Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1626 MVT::Other, MVT::Glue, Ops, 2), 1);
1627 Val = Chain.getValue(0);
1629 // Round the f80 to the right size, which also moves it to the appropriate
1631 if (CopyVT != VA.getValVT())
1632 Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1633 // This truncation won't change the value.
1634 DAG.getIntPtrConstant(1));
1636 Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1637 CopyVT, InFlag).getValue(1);
1638 Val = Chain.getValue(0);
1640 InFlag = Chain.getValue(2);
1641 InVals.push_back(Val);
1648 //===----------------------------------------------------------------------===//
1649 // C & StdCall & Fast Calling Convention implementation
1650 //===----------------------------------------------------------------------===//
1651 // StdCall calling convention seems to be standard for many Windows' API
1652 // routines and around. It differs from C calling convention just a little:
1653 // callee should clean up the stack, not caller. Symbols should be also
1654 // decorated in some fancy way :) It doesn't support any vector arguments.
1655 // For info on fast calling convention see Fast Calling Convention (tail call)
1656 // implementation LowerX86_32FastCCCallTo.
1658 /// CallIsStructReturn - Determines whether a call uses struct return
1660 static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1664 return Outs[0].Flags.isSRet();
1667 /// ArgsAreStructReturn - Determines whether a function uses struct
1668 /// return semantics.
1670 ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1674 return Ins[0].Flags.isSRet();
1677 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1678 /// by "Src" to address "Dst" with size and alignment information specified by
1679 /// the specific parameter attribute. The copy will be passed as a byval
1680 /// function parameter.
1682 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1683 ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1685 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1687 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1688 /*isVolatile*/false, /*AlwaysInline=*/true,
1689 MachinePointerInfo(), MachinePointerInfo());
1692 /// IsTailCallConvention - Return true if the calling convention is one that
1693 /// supports tail call optimization.
1694 static bool IsTailCallConvention(CallingConv::ID CC) {
1695 return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1698 bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1699 if (!CI->isTailCall())
1703 CallingConv::ID CalleeCC = CS.getCallingConv();
1704 if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1710 /// FuncIsMadeTailCallSafe - Return true if the function is being made into
1711 /// a tailcall target by changing its ABI.
1712 static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1713 return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1717 X86TargetLowering::LowerMemArgument(SDValue Chain,
1718 CallingConv::ID CallConv,
1719 const SmallVectorImpl<ISD::InputArg> &Ins,
1720 DebugLoc dl, SelectionDAG &DAG,
1721 const CCValAssign &VA,
1722 MachineFrameInfo *MFI,
1724 // Create the nodes corresponding to a load from this parameter slot.
1725 ISD::ArgFlagsTy Flags = Ins[i].Flags;
1726 bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1727 bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1730 // If value is passed by pointer we have address passed instead of the value
1732 if (VA.getLocInfo() == CCValAssign::Indirect)
1733 ValVT = VA.getLocVT();
1735 ValVT = VA.getValVT();
1737 // FIXME: For now, all byval parameter objects are marked mutable. This can be
1738 // changed with more analysis.
1739 // In case of tail call optimization mark all arguments mutable. Since they
1740 // could be overwritten by lowering of arguments in case of a tail call.
1741 if (Flags.isByVal()) {
1742 unsigned Bytes = Flags.getByValSize();
1743 if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1744 int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1745 return DAG.getFrameIndex(FI, getPointerTy());
1747 int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1748 VA.getLocMemOffset(), isImmutable);
1749 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1750 return DAG.getLoad(ValVT, dl, Chain, FIN,
1751 MachinePointerInfo::getFixedStack(FI),
1752 false, false, false, 0);
1757 X86TargetLowering::LowerFormalArguments(SDValue Chain,
1758 CallingConv::ID CallConv,
1760 const SmallVectorImpl<ISD::InputArg> &Ins,
1763 SmallVectorImpl<SDValue> &InVals)
1765 MachineFunction &MF = DAG.getMachineFunction();
1766 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1768 const Function* Fn = MF.getFunction();
1769 if (Fn->hasExternalLinkage() &&
1770 Subtarget->isTargetCygMing() &&
1771 Fn->getName() == "main")
1772 FuncInfo->setForceFramePointer(true);
1774 MachineFrameInfo *MFI = MF.getFrameInfo();
1775 bool Is64Bit = Subtarget->is64Bit();
1776 bool IsWin64 = Subtarget->isTargetWin64();
1778 assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1779 "Var args not supported with calling convention fastcc or ghc");
1781 // Assign locations to all of the incoming arguments.
1782 SmallVector<CCValAssign, 16> ArgLocs;
1783 CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1784 ArgLocs, *DAG.getContext());
1786 // Allocate shadow area for Win64
1788 CCInfo.AllocateStack(32, 8);
1791 CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1793 unsigned LastVal = ~0U;
1795 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1796 CCValAssign &VA = ArgLocs[i];
1797 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1799 assert(VA.getValNo() != LastVal &&
1800 "Don't support value assigned to multiple locs yet");
1802 LastVal = VA.getValNo();
1804 if (VA.isRegLoc()) {
1805 EVT RegVT = VA.getLocVT();
1806 TargetRegisterClass *RC = NULL;
1807 if (RegVT == MVT::i32)
1808 RC = X86::GR32RegisterClass;
1809 else if (Is64Bit && RegVT == MVT::i64)
1810 RC = X86::GR64RegisterClass;
1811 else if (RegVT == MVT::f32)
1812 RC = X86::FR32RegisterClass;
1813 else if (RegVT == MVT::f64)
1814 RC = X86::FR64RegisterClass;
1815 else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1816 RC = X86::VR256RegisterClass;
1817 else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1818 RC = X86::VR128RegisterClass;
1819 else if (RegVT == MVT::x86mmx)
1820 RC = X86::VR64RegisterClass;
1822 llvm_unreachable("Unknown argument type!");
1824 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1825 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1827 // If this is an 8 or 16-bit value, it is really passed promoted to 32
1828 // bits. Insert an assert[sz]ext to capture this, then truncate to the
1830 if (VA.getLocInfo() == CCValAssign::SExt)
1831 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1832 DAG.getValueType(VA.getValVT()));
1833 else if (VA.getLocInfo() == CCValAssign::ZExt)
1834 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1835 DAG.getValueType(VA.getValVT()));
1836 else if (VA.getLocInfo() == CCValAssign::BCvt)
1837 ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1839 if (VA.isExtInLoc()) {
1840 // Handle MMX values passed in XMM regs.
1841 if (RegVT.isVector()) {
1842 ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1845 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1848 assert(VA.isMemLoc());
1849 ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1852 // If value is passed via pointer - do a load.
1853 if (VA.getLocInfo() == CCValAssign::Indirect)
1854 ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1855 MachinePointerInfo(), false, false, false, 0);
1857 InVals.push_back(ArgValue);
1860 // The x86-64 ABI for returning structs by value requires that we copy
1861 // the sret argument into %rax for the return. Save the argument into
1862 // a virtual register so that we can access it from the return points.
1863 if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1864 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1865 unsigned Reg = FuncInfo->getSRetReturnReg();
1867 Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1868 FuncInfo->setSRetReturnReg(Reg);
1870 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1871 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1874 unsigned StackSize = CCInfo.getNextStackOffset();
1875 // Align stack specially for tail calls.
1876 if (FuncIsMadeTailCallSafe(CallConv))
1877 StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1879 // If the function takes variable number of arguments, make a frame index for
1880 // the start of the first vararg value... for expansion of llvm.va_start.
1882 if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1883 CallConv != CallingConv::X86_ThisCall)) {
1884 FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1887 unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1889 // FIXME: We should really autogenerate these arrays
1890 static const unsigned GPR64ArgRegsWin64[] = {
1891 X86::RCX, X86::RDX, X86::R8, X86::R9
1893 static const unsigned GPR64ArgRegs64Bit[] = {
1894 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1896 static const unsigned XMMArgRegs64Bit[] = {
1897 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1898 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1900 const unsigned *GPR64ArgRegs;
1901 unsigned NumXMMRegs = 0;
1904 // The XMM registers which might contain var arg parameters are shadowed
1905 // in their paired GPR. So we only need to save the GPR to their home
1907 TotalNumIntRegs = 4;
1908 GPR64ArgRegs = GPR64ArgRegsWin64;
1910 TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1911 GPR64ArgRegs = GPR64ArgRegs64Bit;
1913 NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, TotalNumXMMRegs);
1915 unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1918 bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1919 assert(!(NumXMMRegs && !Subtarget->hasXMM()) &&
1920 "SSE register cannot be used when SSE is disabled!");
1921 assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1922 "SSE register cannot be used when SSE is disabled!");
1923 if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasXMM())
1924 // Kernel mode asks for SSE to be disabled, so don't push them
1926 TotalNumXMMRegs = 0;
1929 const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1930 // Get to the caller-allocated home save location. Add 8 to account
1931 // for the return address.
1932 int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1933 FuncInfo->setRegSaveFrameIndex(
1934 MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1935 // Fixup to set vararg frame on shadow area (4 x i64).
1937 FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1939 // For X86-64, if there are vararg parameters that are passed via
1940 // registers, then we must store them to their spots on the stack so they
1941 // may be loaded by deferencing the result of va_next.
1942 FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1943 FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1944 FuncInfo->setRegSaveFrameIndex(
1945 MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1949 // Store the integer parameter registers.
1950 SmallVector<SDValue, 8> MemOps;
1951 SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1953 unsigned Offset = FuncInfo->getVarArgsGPOffset();
1954 for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1955 SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1956 DAG.getIntPtrConstant(Offset));
1957 unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1958 X86::GR64RegisterClass);
1959 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1961 DAG.getStore(Val.getValue(1), dl, Val, FIN,
1962 MachinePointerInfo::getFixedStack(
1963 FuncInfo->getRegSaveFrameIndex(), Offset),
1965 MemOps.push_back(Store);
1969 if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1970 // Now store the XMM (fp + vector) parameter registers.
1971 SmallVector<SDValue, 11> SaveXMMOps;
1972 SaveXMMOps.push_back(Chain);
1974 unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1975 SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1976 SaveXMMOps.push_back(ALVal);
1978 SaveXMMOps.push_back(DAG.getIntPtrConstant(
1979 FuncInfo->getRegSaveFrameIndex()));
1980 SaveXMMOps.push_back(DAG.getIntPtrConstant(
1981 FuncInfo->getVarArgsFPOffset()));
1983 for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1984 unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
1985 X86::VR128RegisterClass);
1986 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1987 SaveXMMOps.push_back(Val);
1989 MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1991 &SaveXMMOps[0], SaveXMMOps.size()));
1994 if (!MemOps.empty())
1995 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1996 &MemOps[0], MemOps.size());
2000 // Some CCs need callee pop.
2001 if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt)) {
2002 FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2004 FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2005 // If this is an sret function, the return should pop the hidden pointer.
2006 if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
2007 FuncInfo->setBytesToPopOnReturn(4);
2011 // RegSaveFrameIndex is X86-64 only.
2012 FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2013 if (CallConv == CallingConv::X86_FastCall ||
2014 CallConv == CallingConv::X86_ThisCall)
2015 // fastcc functions can't have varargs.
2016 FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2019 FuncInfo->setArgumentStackSize(StackSize);
2025 X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2026 SDValue StackPtr, SDValue Arg,
2027 DebugLoc dl, SelectionDAG &DAG,
2028 const CCValAssign &VA,
2029 ISD::ArgFlagsTy Flags) const {
2030 unsigned LocMemOffset = VA.getLocMemOffset();
2031 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2032 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2033 if (Flags.isByVal())
2034 return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2036 return DAG.getStore(Chain, dl, Arg, PtrOff,
2037 MachinePointerInfo::getStack(LocMemOffset),
2041 /// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2042 /// optimization is performed and it is required.
2044 X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2045 SDValue &OutRetAddr, SDValue Chain,
2046 bool IsTailCall, bool Is64Bit,
2047 int FPDiff, DebugLoc dl) const {
2048 // Adjust the Return address stack slot.
2049 EVT VT = getPointerTy();
2050 OutRetAddr = getReturnAddressFrameIndex(DAG);
2052 // Load the "old" Return address.
2053 OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2054 false, false, false, 0);
2055 return SDValue(OutRetAddr.getNode(), 1);
2058 /// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2059 /// optimization is performed and it is required (FPDiff!=0).
2061 EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2062 SDValue Chain, SDValue RetAddrFrIdx,
2063 bool Is64Bit, int FPDiff, DebugLoc dl) {
2064 // Store the return address to the appropriate stack slot.
2065 if (!FPDiff) return Chain;
2066 // Calculate the new stack slot for the return address.
2067 int SlotSize = Is64Bit ? 8 : 4;
2068 int NewReturnAddrFI =
2069 MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2070 EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2071 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2072 Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2073 MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2079 X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2080 CallingConv::ID CallConv, bool isVarArg,
2082 const SmallVectorImpl<ISD::OutputArg> &Outs,
2083 const SmallVectorImpl<SDValue> &OutVals,
2084 const SmallVectorImpl<ISD::InputArg> &Ins,
2085 DebugLoc dl, SelectionDAG &DAG,
2086 SmallVectorImpl<SDValue> &InVals) const {
2087 MachineFunction &MF = DAG.getMachineFunction();
2088 bool Is64Bit = Subtarget->is64Bit();
2089 bool IsWin64 = Subtarget->isTargetWin64();
2090 bool IsStructRet = CallIsStructReturn(Outs);
2091 bool IsSibcall = false;
2094 // Check if it's really possible to do a tail call.
2095 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2096 isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
2097 Outs, OutVals, Ins, DAG);
2099 // Sibcalls are automatically detected tailcalls which do not require
2101 if (!GuaranteedTailCallOpt && isTailCall)
2108 assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2109 "Var args not supported with calling convention fastcc or ghc");
2111 // Analyze operands of the call, assigning locations to each operand.
2112 SmallVector<CCValAssign, 16> ArgLocs;
2113 CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2114 ArgLocs, *DAG.getContext());
2116 // Allocate shadow area for Win64
2118 CCInfo.AllocateStack(32, 8);
2121 CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2123 // Get a count of how many bytes are to be pushed on the stack.
2124 unsigned NumBytes = CCInfo.getNextStackOffset();
2126 // This is a sibcall. The memory operands are available in caller's
2127 // own caller's stack.
2129 else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
2130 NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2133 if (isTailCall && !IsSibcall) {
2134 // Lower arguments at fp - stackoffset + fpdiff.
2135 unsigned NumBytesCallerPushed =
2136 MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2137 FPDiff = NumBytesCallerPushed - NumBytes;
2139 // Set the delta of movement of the returnaddr stackslot.
2140 // But only set if delta is greater than previous delta.
2141 if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2142 MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2146 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2148 SDValue RetAddrFrIdx;
2149 // Load return address for tail calls.
2150 if (isTailCall && FPDiff)
2151 Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2152 Is64Bit, FPDiff, dl);
2154 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2155 SmallVector<SDValue, 8> MemOpChains;
2158 // Walk the register/memloc assignments, inserting copies/loads. In the case
2159 // of tail call optimization arguments are handle later.
2160 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2161 CCValAssign &VA = ArgLocs[i];
2162 EVT RegVT = VA.getLocVT();
2163 SDValue Arg = OutVals[i];
2164 ISD::ArgFlagsTy Flags = Outs[i].Flags;
2165 bool isByVal = Flags.isByVal();
2167 // Promote the value if needed.
2168 switch (VA.getLocInfo()) {
2169 default: llvm_unreachable("Unknown loc info!");
2170 case CCValAssign::Full: break;
2171 case CCValAssign::SExt:
2172 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2174 case CCValAssign::ZExt:
2175 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2177 case CCValAssign::AExt:
2178 if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2179 // Special case: passing MMX values in XMM registers.
2180 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2181 Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2182 Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2184 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2186 case CCValAssign::BCvt:
2187 Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2189 case CCValAssign::Indirect: {
2190 // Store the argument.
2191 SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2192 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2193 Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2194 MachinePointerInfo::getFixedStack(FI),
2201 if (VA.isRegLoc()) {
2202 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2203 if (isVarArg && IsWin64) {
2204 // Win64 ABI requires argument XMM reg to be copied to the corresponding
2205 // shadow reg if callee is a varargs function.
2206 unsigned ShadowReg = 0;
2207 switch (VA.getLocReg()) {
2208 case X86::XMM0: ShadowReg = X86::RCX; break;
2209 case X86::XMM1: ShadowReg = X86::RDX; break;
2210 case X86::XMM2: ShadowReg = X86::R8; break;
2211 case X86::XMM3: ShadowReg = X86::R9; break;
2214 RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2216 } else if (!IsSibcall && (!isTailCall || isByVal)) {
2217 assert(VA.isMemLoc());
2218 if (StackPtr.getNode() == 0)
2219 StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2220 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2221 dl, DAG, VA, Flags));
2225 if (!MemOpChains.empty())
2226 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2227 &MemOpChains[0], MemOpChains.size());
2229 // Build a sequence of copy-to-reg nodes chained together with token chain
2230 // and flag operands which copy the outgoing args into registers.
2232 // Tail call byval lowering might overwrite argument registers so in case of
2233 // tail call optimization the copies to registers are lowered later.
2235 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2236 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2237 RegsToPass[i].second, InFlag);
2238 InFlag = Chain.getValue(1);
2241 if (Subtarget->isPICStyleGOT()) {
2242 // ELF / PIC requires GOT in the EBX register before function calls via PLT
2245 Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2246 DAG.getNode(X86ISD::GlobalBaseReg,
2247 DebugLoc(), getPointerTy()),
2249 InFlag = Chain.getValue(1);
2251 // If we are tail calling and generating PIC/GOT style code load the
2252 // address of the callee into ECX. The value in ecx is used as target of
2253 // the tail jump. This is done to circumvent the ebx/callee-saved problem
2254 // for tail calls on PIC/GOT architectures. Normally we would just put the
2255 // address of GOT into ebx and then call target@PLT. But for tail calls
2256 // ebx would be restored (since ebx is callee saved) before jumping to the
2259 // Note: The actual moving to ECX is done further down.
2260 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2261 if (G && !G->getGlobal()->hasHiddenVisibility() &&
2262 !G->getGlobal()->hasProtectedVisibility())
2263 Callee = LowerGlobalAddress(Callee, DAG);
2264 else if (isa<ExternalSymbolSDNode>(Callee))
2265 Callee = LowerExternalSymbol(Callee, DAG);
2269 if (Is64Bit && isVarArg && !IsWin64) {
2270 // From AMD64 ABI document:
2271 // For calls that may call functions that use varargs or stdargs
2272 // (prototype-less calls or calls to functions containing ellipsis (...) in
2273 // the declaration) %al is used as hidden argument to specify the number
2274 // of SSE registers used. The contents of %al do not need to match exactly
2275 // the number of registers, but must be an ubound on the number of SSE
2276 // registers used and is in the range 0 - 8 inclusive.
2278 // Count the number of XMM registers allocated.
2279 static const unsigned XMMArgRegs[] = {
2280 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2281 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2283 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2284 assert((Subtarget->hasXMM() || !NumXMMRegs)
2285 && "SSE registers cannot be used when SSE is disabled");
2287 Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2288 DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2289 InFlag = Chain.getValue(1);
2293 // For tail calls lower the arguments to the 'real' stack slot.
2295 // Force all the incoming stack arguments to be loaded from the stack
2296 // before any new outgoing arguments are stored to the stack, because the
2297 // outgoing stack slots may alias the incoming argument stack slots, and
2298 // the alias isn't otherwise explicit. This is slightly more conservative
2299 // than necessary, because it means that each store effectively depends
2300 // on every argument instead of just those arguments it would clobber.
2301 SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2303 SmallVector<SDValue, 8> MemOpChains2;
2306 // Do not flag preceding copytoreg stuff together with the following stuff.
2308 if (GuaranteedTailCallOpt) {
2309 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2310 CCValAssign &VA = ArgLocs[i];
2313 assert(VA.isMemLoc());
2314 SDValue Arg = OutVals[i];
2315 ISD::ArgFlagsTy Flags = Outs[i].Flags;
2316 // Create frame index.
2317 int32_t Offset = VA.getLocMemOffset()+FPDiff;
2318 uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2319 FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2320 FIN = DAG.getFrameIndex(FI, getPointerTy());
2322 if (Flags.isByVal()) {
2323 // Copy relative to framepointer.
2324 SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2325 if (StackPtr.getNode() == 0)
2326 StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2328 Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2330 MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2334 // Store relative to framepointer.
2335 MemOpChains2.push_back(
2336 DAG.getStore(ArgChain, dl, Arg, FIN,
2337 MachinePointerInfo::getFixedStack(FI),
2343 if (!MemOpChains2.empty())
2344 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2345 &MemOpChains2[0], MemOpChains2.size());
2347 // Copy arguments to their registers.
2348 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2349 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2350 RegsToPass[i].second, InFlag);
2351 InFlag = Chain.getValue(1);
2355 // Store the return address to the appropriate stack slot.
2356 Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2360 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2361 assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2362 // In the 64-bit large code model, we have to make all calls
2363 // through a register, since the call instruction's 32-bit
2364 // pc-relative offset may not be large enough to hold the whole
2366 } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2367 // If the callee is a GlobalAddress node (quite common, every direct call
2368 // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2371 // We should use extra load for direct calls to dllimported functions in
2373 const GlobalValue *GV = G->getGlobal();
2374 if (!GV->hasDLLImportLinkage()) {
2375 unsigned char OpFlags = 0;
2376 bool ExtraLoad = false;
2377 unsigned WrapperKind = ISD::DELETED_NODE;
2379 // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2380 // external symbols most go through the PLT in PIC mode. If the symbol
2381 // has hidden or protected visibility, or if it is static or local, then
2382 // we don't need to use the PLT - we can directly call it.
2383 if (Subtarget->isTargetELF() &&
2384 getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2385 GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2386 OpFlags = X86II::MO_PLT;
2387 } else if (Subtarget->isPICStyleStubAny() &&
2388 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2389 (!Subtarget->getTargetTriple().isMacOSX() ||
2390 Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2391 // PC-relative references to external symbols should go through $stub,
2392 // unless we're building with the leopard linker or later, which
2393 // automatically synthesizes these stubs.
2394 OpFlags = X86II::MO_DARWIN_STUB;
2395 } else if (Subtarget->isPICStyleRIPRel() &&
2396 isa<Function>(GV) &&
2397 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2398 // If the function is marked as non-lazy, generate an indirect call
2399 // which loads from the GOT directly. This avoids runtime overhead
2400 // at the cost of eager binding (and one extra byte of encoding).
2401 OpFlags = X86II::MO_GOTPCREL;
2402 WrapperKind = X86ISD::WrapperRIP;
2406 Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2407 G->getOffset(), OpFlags);
2409 // Add a wrapper if needed.
2410 if (WrapperKind != ISD::DELETED_NODE)
2411 Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2412 // Add extra indirection if needed.
2414 Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2415 MachinePointerInfo::getGOT(),
2416 false, false, false, 0);
2418 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2419 unsigned char OpFlags = 0;
2421 // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2422 // external symbols should go through the PLT.
2423 if (Subtarget->isTargetELF() &&
2424 getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2425 OpFlags = X86II::MO_PLT;
2426 } else if (Subtarget->isPICStyleStubAny() &&
2427 (!Subtarget->getTargetTriple().isMacOSX() ||
2428 Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2429 // PC-relative references to external symbols should go through $stub,
2430 // unless we're building with the leopard linker or later, which
2431 // automatically synthesizes these stubs.
2432 OpFlags = X86II::MO_DARWIN_STUB;
2435 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2439 // Returns a chain & a flag for retval copy to use.
2440 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2441 SmallVector<SDValue, 8> Ops;
2443 if (!IsSibcall && isTailCall) {
2444 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2445 DAG.getIntPtrConstant(0, true), InFlag);
2446 InFlag = Chain.getValue(1);
2449 Ops.push_back(Chain);
2450 Ops.push_back(Callee);
2453 Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2455 // Add argument registers to the end of the list so that they are known live
2457 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2458 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2459 RegsToPass[i].second.getValueType()));
2461 // Add an implicit use GOT pointer in EBX.
2462 if (!isTailCall && Subtarget->isPICStyleGOT())
2463 Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2465 // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2466 if (Is64Bit && isVarArg && !IsWin64)
2467 Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2469 if (InFlag.getNode())
2470 Ops.push_back(InFlag);
2474 //// If this is the first return lowered for this function, add the regs
2475 //// to the liveout set for the function.
2476 // This isn't right, although it's probably harmless on x86; liveouts
2477 // should be computed from returns not tail calls. Consider a void
2478 // function making a tail call to a function returning int.
2479 return DAG.getNode(X86ISD::TC_RETURN, dl,
2480 NodeTys, &Ops[0], Ops.size());
2483 Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2484 InFlag = Chain.getValue(1);
2486 // Create the CALLSEQ_END node.
2487 unsigned NumBytesForCalleeToPush;
2488 if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt))
2489 NumBytesForCalleeToPush = NumBytes; // Callee pops everything
2490 else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2491 // If this is a call to a struct-return function, the callee
2492 // pops the hidden struct pointer, so we have to push it back.
2493 // This is common for Darwin/X86, Linux & Mingw32 targets.
2494 NumBytesForCalleeToPush = 4;
2496 NumBytesForCalleeToPush = 0; // Callee pops nothing.
2498 // Returns a flag for retval copy to use.
2500 Chain = DAG.getCALLSEQ_END(Chain,
2501 DAG.getIntPtrConstant(NumBytes, true),
2502 DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2505 InFlag = Chain.getValue(1);
2508 // Handle result values, copying them out of physregs into vregs that we
2510 return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2511 Ins, dl, DAG, InVals);
2515 //===----------------------------------------------------------------------===//
2516 // Fast Calling Convention (tail call) implementation
2517 //===----------------------------------------------------------------------===//
2519 // Like std call, callee cleans arguments, convention except that ECX is
2520 // reserved for storing the tail called function address. Only 2 registers are
2521 // free for argument passing (inreg). Tail call optimization is performed
2523 // * tailcallopt is enabled
2524 // * caller/callee are fastcc
2525 // On X86_64 architecture with GOT-style position independent code only local
2526 // (within module) calls are supported at the moment.
2527 // To keep the stack aligned according to platform abi the function
2528 // GetAlignedArgumentStackSize ensures that argument delta is always multiples
2529 // of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2530 // If a tail called function callee has more arguments than the caller the
2531 // caller needs to make sure that there is room to move the RETADDR to. This is
2532 // achieved by reserving an area the size of the argument delta right after the
2533 // original REtADDR, but before the saved framepointer or the spilled registers
2534 // e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2546 /// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2547 /// for a 16 byte align requirement.
2549 X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2550 SelectionDAG& DAG) const {
2551 MachineFunction &MF = DAG.getMachineFunction();
2552 const TargetMachine &TM = MF.getTarget();
2553 const TargetFrameLowering &TFI = *TM.getFrameLowering();
2554 unsigned StackAlignment = TFI.getStackAlignment();
2555 uint64_t AlignMask = StackAlignment - 1;
2556 int64_t Offset = StackSize;
2557 uint64_t SlotSize = TD->getPointerSize();
2558 if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2559 // Number smaller than 12 so just add the difference.
2560 Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2562 // Mask out lower bits, add stackalignment once plus the 12 bytes.
2563 Offset = ((~AlignMask) & Offset) + StackAlignment +
2564 (StackAlignment-SlotSize);
2569 /// MatchingStackOffset - Return true if the given stack call argument is
2570 /// already available in the same position (relatively) of the caller's
2571 /// incoming argument stack.
2573 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2574 MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2575 const X86InstrInfo *TII) {
2576 unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2578 if (Arg.getOpcode() == ISD::CopyFromReg) {
2579 unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2580 if (!TargetRegisterInfo::isVirtualRegister(VR))
2582 MachineInstr *Def = MRI->getVRegDef(VR);
2585 if (!Flags.isByVal()) {
2586 if (!TII->isLoadFromStackSlot(Def, FI))
2589 unsigned Opcode = Def->getOpcode();
2590 if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2591 Def->getOperand(1).isFI()) {
2592 FI = Def->getOperand(1).getIndex();
2593 Bytes = Flags.getByValSize();
2597 } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2598 if (Flags.isByVal())
2599 // ByVal argument is passed in as a pointer but it's now being
2600 // dereferenced. e.g.
2601 // define @foo(%struct.X* %A) {
2602 // tail call @bar(%struct.X* byval %A)
2605 SDValue Ptr = Ld->getBasePtr();
2606 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2609 FI = FINode->getIndex();
2610 } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2611 FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2612 FI = FINode->getIndex();
2613 Bytes = Flags.getByValSize();
2617 assert(FI != INT_MAX);
2618 if (!MFI->isFixedObjectIndex(FI))
2620 return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2623 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2624 /// for tail call optimization. Targets which want to do tail call
2625 /// optimization should implement this function.
2627 X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2628 CallingConv::ID CalleeCC,
2630 bool isCalleeStructRet,
2631 bool isCallerStructRet,
2632 const SmallVectorImpl<ISD::OutputArg> &Outs,
2633 const SmallVectorImpl<SDValue> &OutVals,
2634 const SmallVectorImpl<ISD::InputArg> &Ins,
2635 SelectionDAG& DAG) const {
2636 if (!IsTailCallConvention(CalleeCC) &&
2637 CalleeCC != CallingConv::C)
2640 // If -tailcallopt is specified, make fastcc functions tail-callable.
2641 const MachineFunction &MF = DAG.getMachineFunction();
2642 const Function *CallerF = DAG.getMachineFunction().getFunction();
2643 CallingConv::ID CallerCC = CallerF->getCallingConv();
2644 bool CCMatch = CallerCC == CalleeCC;
2646 if (GuaranteedTailCallOpt) {
2647 if (IsTailCallConvention(CalleeCC) && CCMatch)
2652 // Look for obvious safe cases to perform tail call optimization that do not
2653 // require ABI changes. This is what gcc calls sibcall.
2655 // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2656 // emit a special epilogue.
2657 if (RegInfo->needsStackRealignment(MF))
2660 // Also avoid sibcall optimization if either caller or callee uses struct
2661 // return semantics.
2662 if (isCalleeStructRet || isCallerStructRet)
2665 // An stdcall caller is expected to clean up its arguments; the callee
2666 // isn't going to do that.
2667 if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2670 // Do not sibcall optimize vararg calls unless all arguments are passed via
2672 if (isVarArg && !Outs.empty()) {
2674 // Optimizing for varargs on Win64 is unlikely to be safe without
2675 // additional testing.
2676 if (Subtarget->isTargetWin64())
2679 SmallVector<CCValAssign, 16> ArgLocs;
2680 CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2681 getTargetMachine(), ArgLocs, *DAG.getContext());
2683 CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2684 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2685 if (!ArgLocs[i].isRegLoc())
2689 // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2690 // Therefore if it's not used by the call it is not safe to optimize this into
2692 bool Unused = false;
2693 for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2700 SmallVector<CCValAssign, 16> RVLocs;
2701 CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2702 getTargetMachine(), RVLocs, *DAG.getContext());
2703 CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2704 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2705 CCValAssign &VA = RVLocs[i];
2706 if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2711 // If the calling conventions do not match, then we'd better make sure the
2712 // results are returned in the same way as what the caller expects.
2714 SmallVector<CCValAssign, 16> RVLocs1;
2715 CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2716 getTargetMachine(), RVLocs1, *DAG.getContext());
2717 CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2719 SmallVector<CCValAssign, 16> RVLocs2;
2720 CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2721 getTargetMachine(), RVLocs2, *DAG.getContext());
2722 CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2724 if (RVLocs1.size() != RVLocs2.size())
2726 for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2727 if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2729 if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2731 if (RVLocs1[i].isRegLoc()) {
2732 if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2735 if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2741 // If the callee takes no arguments then go on to check the results of the
2743 if (!Outs.empty()) {
2744 // Check if stack adjustment is needed. For now, do not do this if any
2745 // argument is passed on the stack.
2746 SmallVector<CCValAssign, 16> ArgLocs;
2747 CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2748 getTargetMachine(), ArgLocs, *DAG.getContext());
2750 // Allocate shadow area for Win64
2751 if (Subtarget->isTargetWin64()) {
2752 CCInfo.AllocateStack(32, 8);
2755 CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2756 if (CCInfo.getNextStackOffset()) {
2757 MachineFunction &MF = DAG.getMachineFunction();
2758 if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2761 // Check if the arguments are already laid out in the right way as
2762 // the caller's fixed stack objects.
2763 MachineFrameInfo *MFI = MF.getFrameInfo();
2764 const MachineRegisterInfo *MRI = &MF.getRegInfo();
2765 const X86InstrInfo *TII =
2766 ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2767 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2768 CCValAssign &VA = ArgLocs[i];
2769 SDValue Arg = OutVals[i];
2770 ISD::ArgFlagsTy Flags = Outs[i].Flags;
2771 if (VA.getLocInfo() == CCValAssign::Indirect)
2773 if (!VA.isRegLoc()) {
2774 if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2781 // If the tailcall address may be in a register, then make sure it's
2782 // possible to register allocate for it. In 32-bit, the call address can
2783 // only target EAX, EDX, or ECX since the tail call must be scheduled after
2784 // callee-saved registers are restored. These happen to be the same
2785 // registers used to pass 'inreg' arguments so watch out for those.
2786 if (!Subtarget->is64Bit() &&
2787 !isa<GlobalAddressSDNode>(Callee) &&
2788 !isa<ExternalSymbolSDNode>(Callee)) {
2789 unsigned NumInRegs = 0;
2790 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2791 CCValAssign &VA = ArgLocs[i];
2794 unsigned Reg = VA.getLocReg();
2797 case X86::EAX: case X86::EDX: case X86::ECX:
2798 if (++NumInRegs == 3)
2810 X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2811 return X86::createFastISel(funcInfo);
2815 //===----------------------------------------------------------------------===//
2816 // Other Lowering Hooks
2817 //===----------------------------------------------------------------------===//
2819 static bool MayFoldLoad(SDValue Op) {
2820 return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2823 static bool MayFoldIntoStore(SDValue Op) {
2824 return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2827 static bool isTargetShuffle(unsigned Opcode) {
2829 default: return false;
2830 case X86ISD::PSHUFD:
2831 case X86ISD::PSHUFHW:
2832 case X86ISD::PSHUFLW:
2833 case X86ISD::SHUFPD:
2834 case X86ISD::PALIGN:
2835 case X86ISD::SHUFPS:
2836 case X86ISD::MOVLHPS:
2837 case X86ISD::MOVLHPD:
2838 case X86ISD::MOVHLPS:
2839 case X86ISD::MOVLPS:
2840 case X86ISD::MOVLPD:
2841 case X86ISD::MOVSHDUP:
2842 case X86ISD::MOVSLDUP:
2843 case X86ISD::MOVDDUP:
2846 case X86ISD::UNPCKLPS:
2847 case X86ISD::UNPCKLPD:
2848 case X86ISD::VUNPCKLPSY:
2849 case X86ISD::VUNPCKLPDY:
2850 case X86ISD::PUNPCKLWD:
2851 case X86ISD::PUNPCKLBW:
2852 case X86ISD::PUNPCKLDQ:
2853 case X86ISD::PUNPCKLQDQ:
2854 case X86ISD::UNPCKHPS:
2855 case X86ISD::UNPCKHPD:
2856 case X86ISD::VUNPCKHPSY:
2857 case X86ISD::VUNPCKHPDY:
2858 case X86ISD::PUNPCKHWD:
2859 case X86ISD::PUNPCKHBW:
2860 case X86ISD::PUNPCKHDQ:
2861 case X86ISD::PUNPCKHQDQ:
2862 case X86ISD::VPERMILPS:
2863 case X86ISD::VPERMILPSY:
2864 case X86ISD::VPERMILPD:
2865 case X86ISD::VPERMILPDY:
2866 case X86ISD::VPERM2F128:
2872 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2873 SDValue V1, SelectionDAG &DAG) {
2875 default: llvm_unreachable("Unknown x86 shuffle node");
2876 case X86ISD::MOVSHDUP:
2877 case X86ISD::MOVSLDUP:
2878 case X86ISD::MOVDDUP:
2879 return DAG.getNode(Opc, dl, VT, V1);
2885 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2886 SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2888 default: llvm_unreachable("Unknown x86 shuffle node");
2889 case X86ISD::PSHUFD:
2890 case X86ISD::PSHUFHW:
2891 case X86ISD::PSHUFLW:
2892 case X86ISD::VPERMILPS:
2893 case X86ISD::VPERMILPSY:
2894 case X86ISD::VPERMILPD:
2895 case X86ISD::VPERMILPDY:
2896 return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2902 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2903 SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2905 default: llvm_unreachable("Unknown x86 shuffle node");
2906 case X86ISD::PALIGN:
2907 case X86ISD::SHUFPD:
2908 case X86ISD::SHUFPS:
2909 case X86ISD::VPERM2F128:
2910 return DAG.getNode(Opc, dl, VT, V1, V2,
2911 DAG.getConstant(TargetMask, MVT::i8));
2916 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2917 SDValue V1, SDValue V2, SelectionDAG &DAG) {
2919 default: llvm_unreachable("Unknown x86 shuffle node");
2920 case X86ISD::MOVLHPS:
2921 case X86ISD::MOVLHPD:
2922 case X86ISD::MOVHLPS:
2923 case X86ISD::MOVLPS:
2924 case X86ISD::MOVLPD:
2927 case X86ISD::UNPCKLPS:
2928 case X86ISD::UNPCKLPD:
2929 case X86ISD::VUNPCKLPSY:
2930 case X86ISD::VUNPCKLPDY:
2931 case X86ISD::PUNPCKLWD:
2932 case X86ISD::PUNPCKLBW:
2933 case X86ISD::PUNPCKLDQ:
2934 case X86ISD::PUNPCKLQDQ:
2935 case X86ISD::UNPCKHPS:
2936 case X86ISD::UNPCKHPD:
2937 case X86ISD::VUNPCKHPSY:
2938 case X86ISD::VUNPCKHPDY:
2939 case X86ISD::PUNPCKHWD:
2940 case X86ISD::PUNPCKHBW:
2941 case X86ISD::PUNPCKHDQ:
2942 case X86ISD::PUNPCKHQDQ:
2943 return DAG.getNode(Opc, dl, VT, V1, V2);
2948 SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2949 MachineFunction &MF = DAG.getMachineFunction();
2950 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2951 int ReturnAddrIndex = FuncInfo->getRAIndex();
2953 if (ReturnAddrIndex == 0) {
2954 // Set up a frame object for the return address.
2955 uint64_t SlotSize = TD->getPointerSize();
2956 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2958 FuncInfo->setRAIndex(ReturnAddrIndex);
2961 return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2965 bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2966 bool hasSymbolicDisplacement) {
2967 // Offset should fit into 32 bit immediate field.
2968 if (!isInt<32>(Offset))
2971 // If we don't have a symbolic displacement - we don't have any extra
2973 if (!hasSymbolicDisplacement)
2976 // FIXME: Some tweaks might be needed for medium code model.
2977 if (M != CodeModel::Small && M != CodeModel::Kernel)
2980 // For small code model we assume that latest object is 16MB before end of 31
2981 // bits boundary. We may also accept pretty large negative constants knowing
2982 // that all objects are in the positive half of address space.
2983 if (M == CodeModel::Small && Offset < 16*1024*1024)
2986 // For kernel code model we know that all object resist in the negative half
2987 // of 32bits address space. We may not accept negative offsets, since they may
2988 // be just off and we may accept pretty large positive ones.
2989 if (M == CodeModel::Kernel && Offset > 0)
2995 /// isCalleePop - Determines whether the callee is required to pop its
2996 /// own arguments. Callee pop is necessary to support tail calls.
2997 bool X86::isCalleePop(CallingConv::ID CallingConv,
2998 bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3002 switch (CallingConv) {
3005 case CallingConv::X86_StdCall:
3007 case CallingConv::X86_FastCall:
3009 case CallingConv::X86_ThisCall:
3011 case CallingConv::Fast:
3013 case CallingConv::GHC:
3018 /// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3019 /// specific condition code, returning the condition code and the LHS/RHS of the
3020 /// comparison to make.
3021 static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3022 SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3024 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3025 if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3026 // X > -1 -> X == 0, jump !sign.
3027 RHS = DAG.getConstant(0, RHS.getValueType());
3028 return X86::COND_NS;
3029 } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3030 // X < 0 -> X == 0, jump on sign.
3032 } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3034 RHS = DAG.getConstant(0, RHS.getValueType());
3035 return X86::COND_LE;
3039 switch (SetCCOpcode) {
3040 default: llvm_unreachable("Invalid integer condition!");
3041 case ISD::SETEQ: return X86::COND_E;
3042 case ISD::SETGT: return X86::COND_G;
3043 case ISD::SETGE: return X86::COND_GE;
3044 case ISD::SETLT: return X86::COND_L;
3045 case ISD::SETLE: return X86::COND_LE;
3046 case ISD::SETNE: return X86::COND_NE;
3047 case ISD::SETULT: return X86::COND_B;
3048 case ISD::SETUGT: return X86::COND_A;
3049 case ISD::SETULE: return X86::COND_BE;
3050 case ISD::SETUGE: return X86::COND_AE;
3054 // First determine if it is required or is profitable to flip the operands.
3056 // If LHS is a foldable load, but RHS is not, flip the condition.
3057 if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3058 !ISD::isNON_EXTLoad(RHS.getNode())) {
3059 SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3060 std::swap(LHS, RHS);
3063 switch (SetCCOpcode) {
3069 std::swap(LHS, RHS);
3073 // On a floating point condition, the flags are set as follows:
3075 // 0 | 0 | 0 | X > Y
3076 // 0 | 0 | 1 | X < Y
3077 // 1 | 0 | 0 | X == Y
3078 // 1 | 1 | 1 | unordered
3079 switch (SetCCOpcode) {
3080 default: llvm_unreachable("Condcode should be pre-legalized away");
3082 case ISD::SETEQ: return X86::COND_E;
3083 case ISD::SETOLT: // flipped
3085 case ISD::SETGT: return X86::COND_A;
3086 case ISD::SETOLE: // flipped
3088 case ISD::SETGE: return X86::COND_AE;
3089 case ISD::SETUGT: // flipped
3091 case ISD::SETLT: return X86::COND_B;
3092 case ISD::SETUGE: // flipped
3094 case ISD::SETLE: return X86::COND_BE;
3096 case ISD::SETNE: return X86::COND_NE;
3097 case ISD::SETUO: return X86::COND_P;
3098 case ISD::SETO: return X86::COND_NP;
3100 case ISD::SETUNE: return X86::COND_INVALID;
3104 /// hasFPCMov - is there a floating point cmov for the specific X86 condition
3105 /// code. Current x86 isa includes the following FP cmov instructions:
3106 /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3107 static bool hasFPCMov(unsigned X86CC) {
3123 /// isFPImmLegal - Returns true if the target can instruction select the
3124 /// specified FP immediate natively. If false, the legalizer will
3125 /// materialize the FP immediate as a load from a constant pool.
3126 bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3127 for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3128 if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3134 /// isUndefOrInRange - Return true if Val is undef or if its value falls within
3135 /// the specified range (L, H].
3136 static bool isUndefOrInRange(int Val, int Low, int Hi) {
3137 return (Val < 0) || (Val >= Low && Val < Hi);
3140 /// isUndefOrInRange - Return true if every element in Mask, begining
3141 /// from position Pos and ending in Pos+Size, falls within the specified
3142 /// range (L, L+Pos]. or is undef.
3143 static bool isUndefOrInRange(const SmallVectorImpl<int> &Mask,
3144 int Pos, int Size, int Low, int Hi) {
3145 for (int i = Pos, e = Pos+Size; i != e; ++i)
3146 if (!isUndefOrInRange(Mask[i], Low, Hi))
3151 /// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3152 /// specified value.
3153 static bool isUndefOrEqual(int Val, int CmpVal) {
3154 if (Val < 0 || Val == CmpVal)
3159 /// isSequentialOrUndefInRange - Return true if every element in Mask, begining
3160 /// from position Pos and ending in Pos+Size, falls within the specified
3161 /// sequential range (L, L+Pos]. or is undef.
3162 static bool isSequentialOrUndefInRange(const SmallVectorImpl<int> &Mask,
3163 int Pos, int Size, int Low) {
3164 for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3165 if (!isUndefOrEqual(Mask[i], Low))
3170 /// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3171 /// is suitable for input to PSHUFD or PSHUFW. That is, it doesn't reference
3172 /// the second operand.
3173 static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3174 if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3175 return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3176 if (VT == MVT::v2f64 || VT == MVT::v2i64)
3177 return (Mask[0] < 2 && Mask[1] < 2);
3181 bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
3182 SmallVector<int, 8> M;
3184 return ::isPSHUFDMask(M, N->getValueType(0));
3187 /// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3188 /// is suitable for input to PSHUFHW.
3189 static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3190 if (VT != MVT::v8i16)
3193 // Lower quadword copied in order or undef.
3194 for (int i = 0; i != 4; ++i)
3195 if (Mask[i] >= 0 && Mask[i] != i)
3198 // Upper quadword shuffled.
3199 for (int i = 4; i != 8; ++i)
3200 if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3206 bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
3207 SmallVector<int, 8> M;
3209 return ::isPSHUFHWMask(M, N->getValueType(0));
3212 /// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3213 /// is suitable for input to PSHUFLW.
3214 static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3215 if (VT != MVT::v8i16)
3218 // Upper quadword copied in order.
3219 for (int i = 4; i != 8; ++i)
3220 if (Mask[i] >= 0 && Mask[i] != i)
3223 // Lower quadword shuffled.
3224 for (int i = 0; i != 4; ++i)
3231 bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
3232 SmallVector<int, 8> M;
3234 return ::isPSHUFLWMask(M, N->getValueType(0));
3237 /// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3238 /// is suitable for input to PALIGNR.
3239 static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
3240 bool hasSSSE3OrAVX) {
3241 int i, e = VT.getVectorNumElements();
3242 if (VT.getSizeInBits() != 128 && VT.getSizeInBits() != 64)
3245 // Do not handle v2i64 / v2f64 shuffles with palignr.
3246 if (e < 4 || !hasSSSE3OrAVX)
3249 for (i = 0; i != e; ++i)
3253 // All undef, not a palignr.
3257 // Make sure we're shifting in the right direction.
3261 int s = Mask[i] - i;
3263 // Check the rest of the elements to see if they are consecutive.
3264 for (++i; i != e; ++i) {
3266 if (m >= 0 && m != s+i)
3272 /// isVSHUFPSYMask - Return true if the specified VECTOR_SHUFFLE operand
3273 /// specifies a shuffle of elements that is suitable for input to 256-bit
3275 static bool isVSHUFPSYMask(const SmallVectorImpl<int> &Mask, EVT VT,
3276 const X86Subtarget *Subtarget) {
3277 int NumElems = VT.getVectorNumElements();
3279 if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
3285 // VSHUFPSY divides the resulting vector into 4 chunks.
3286 // The sources are also splitted into 4 chunks, and each destination
3287 // chunk must come from a different source chunk.
3289 // SRC1 => X7 X6 X5 X4 X3 X2 X1 X0
3290 // SRC2 => Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y9
3292 // DST => Y7..Y4, Y7..Y4, X7..X4, X7..X4,
3293 // Y3..Y0, Y3..Y0, X3..X0, X3..X0
3295 int QuarterSize = NumElems/4;
3296 int HalfSize = QuarterSize*2;
3297 for (int i = 0; i < QuarterSize; ++i)
3298 if (!isUndefOrInRange(Mask[i], 0, HalfSize))
3300 for (int i = QuarterSize; i < QuarterSize*2; ++i)
3301 if (!isUndefOrInRange(Mask[i], NumElems, NumElems+HalfSize))
3304 // The mask of the second half must be the same as the first but with
3305 // the appropriate offsets. This works in the same way as VPERMILPS
3306 // works with masks.
3307 for (int i = QuarterSize*2; i < QuarterSize*3; ++i) {
3308 if (!isUndefOrInRange(Mask[i], HalfSize, NumElems))
3310 int FstHalfIdx = i-HalfSize;
3311 if (Mask[FstHalfIdx] < 0)
3313 if (!isUndefOrEqual(Mask[i], Mask[FstHalfIdx]+HalfSize))
3316 for (int i = QuarterSize*3; i < NumElems; ++i) {
3317 if (!isUndefOrInRange(Mask[i], NumElems+HalfSize, NumElems*2))
3319 int FstHalfIdx = i-HalfSize;
3320 if (Mask[FstHalfIdx] < 0)
3322 if (!isUndefOrEqual(Mask[i], Mask[FstHalfIdx]+HalfSize))
3330 /// getShuffleVSHUFPSYImmediate - Return the appropriate immediate to shuffle
3331 /// the specified VECTOR_MASK mask with VSHUFPSY instruction.
3332 static unsigned getShuffleVSHUFPSYImmediate(SDNode *N) {
3333 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3334 EVT VT = SVOp->getValueType(0);
3335 int NumElems = VT.getVectorNumElements();
3337 assert(NumElems == 8 && VT.getSizeInBits() == 256 &&
3338 "Only supports v8i32 and v8f32 types");
3340 int HalfSize = NumElems/2;
3342 for (int i = 0; i != NumElems ; ++i) {
3343 if (SVOp->getMaskElt(i) < 0)
3345 // The mask of the first half must be equal to the second one.
3346 unsigned Shamt = (i%HalfSize)*2;
3347 unsigned Elt = SVOp->getMaskElt(i) % HalfSize;
3348 Mask |= Elt << Shamt;
3354 /// isVSHUFPDYMask - Return true if the specified VECTOR_SHUFFLE operand
3355 /// specifies a shuffle of elements that is suitable for input to 256-bit
3356 /// VSHUFPDY. This shuffle doesn't have the same restriction as the PS
3357 /// version and the mask of the second half isn't binded with the first
3359 static bool isVSHUFPDYMask(const SmallVectorImpl<int> &Mask, EVT VT,
3360 const X86Subtarget *Subtarget) {
3361 int NumElems = VT.getVectorNumElements();
3363 if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
3369 // VSHUFPSY divides the resulting vector into 4 chunks.
3370 // The sources are also splitted into 4 chunks, and each destination
3371 // chunk must come from a different source chunk.
3373 // SRC1 => X3 X2 X1 X0
3374 // SRC2 => Y3 Y2 Y1 Y0
3376 // DST => Y2..Y3, X2..X3, Y1..Y0, X1..X0
3378 int QuarterSize = NumElems/4;
3379 int HalfSize = QuarterSize*2;
3380 for (int i = 0; i < QuarterSize; ++i)
3381 if (!isUndefOrInRange(Mask[i], 0, HalfSize))
3383 for (int i = QuarterSize; i < QuarterSize*2; ++i)
3384 if (!isUndefOrInRange(Mask[i], NumElems, NumElems+HalfSize))
3386 for (int i = QuarterSize*2; i < QuarterSize*3; ++i)
3387 if (!isUndefOrInRange(Mask[i], HalfSize, NumElems))
3389 for (int i = QuarterSize*3; i < NumElems; ++i)
3390 if (!isUndefOrInRange(Mask[i], NumElems+HalfSize, NumElems*2))
3396 /// getShuffleVSHUFPDYImmediate - Return the appropriate immediate to shuffle
3397 /// the specified VECTOR_MASK mask with VSHUFPDY instruction.
3398 static unsigned getShuffleVSHUFPDYImmediate(SDNode *N) {
3399 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3400 EVT VT = SVOp->getValueType(0);
3401 int NumElems = VT.getVectorNumElements();
3403 assert(NumElems == 4 && VT.getSizeInBits() == 256 &&
3404 "Only supports v4i64 and v4f64 types");
3406 int HalfSize = NumElems/2;
3408 for (int i = 0; i != NumElems ; ++i) {
3409 if (SVOp->getMaskElt(i) < 0)
3411 int Elt = SVOp->getMaskElt(i) % HalfSize;
3418 /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3419 /// specifies a shuffle of elements that is suitable for input to 128-bit
3420 /// SHUFPS and SHUFPD.
3421 static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3422 int NumElems = VT.getVectorNumElements();
3424 if (VT.getSizeInBits() != 128)
3427 if (NumElems != 2 && NumElems != 4)
3430 int Half = NumElems / 2;
3431 for (int i = 0; i < Half; ++i)
3432 if (!isUndefOrInRange(Mask[i], 0, NumElems))
3434 for (int i = Half; i < NumElems; ++i)
3435 if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3441 bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
3442 SmallVector<int, 8> M;
3444 return ::isSHUFPMask(M, N->getValueType(0));
3447 /// isCommutedSHUFP - Returns true if the shuffle mask is exactly
3448 /// the reverse of what x86 shuffles want. x86 shuffles requires the lower
3449 /// half elements to come from vector 1 (which would equal the dest.) and
3450 /// the upper half to come from vector 2.
3451 static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3452 int NumElems = VT.getVectorNumElements();
3454 if (NumElems != 2 && NumElems != 4)
3457 int Half = NumElems / 2;
3458 for (int i = 0; i < Half; ++i)
3459 if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3461 for (int i = Half; i < NumElems; ++i)
3462 if (!isUndefOrInRange(Mask[i], 0, NumElems))
3467 static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
3468 SmallVector<int, 8> M;
3470 return isCommutedSHUFPMask(M, N->getValueType(0));
3473 /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3474 /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3475 bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3476 EVT VT = N->getValueType(0);
3477 unsigned NumElems = VT.getVectorNumElements();
3479 if (VT.getSizeInBits() != 128)
3485 // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3486 return isUndefOrEqual(N->getMaskElt(0), 6) &&
3487 isUndefOrEqual(N->getMaskElt(1), 7) &&
3488 isUndefOrEqual(N->getMaskElt(2), 2) &&
3489 isUndefOrEqual(N->getMaskElt(3), 3);
3492 /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3493 /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3495 bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3496 EVT VT = N->getValueType(0);
3497 unsigned NumElems = VT.getVectorNumElements();
3499 if (VT.getSizeInBits() != 128)
3505 return isUndefOrEqual(N->getMaskElt(0), 2) &&
3506 isUndefOrEqual(N->getMaskElt(1), 3) &&
3507 isUndefOrEqual(N->getMaskElt(2), 2) &&
3508 isUndefOrEqual(N->getMaskElt(3), 3);
3511 /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3512 /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3513 bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3514 unsigned NumElems = N->getValueType(0).getVectorNumElements();
3516 if (NumElems != 2 && NumElems != 4)
3519 for (unsigned i = 0; i < NumElems/2; ++i)
3520 if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3523 for (unsigned i = NumElems/2; i < NumElems; ++i)
3524 if (!isUndefOrEqual(N->getMaskElt(i), i))
3530 /// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3531 /// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3532 bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3533 unsigned NumElems = N->getValueType(0).getVectorNumElements();
3535 if ((NumElems != 2 && NumElems != 4)
3536 || N->getValueType(0).getSizeInBits() > 128)
3539 for (unsigned i = 0; i < NumElems/2; ++i)
3540 if (!isUndefOrEqual(N->getMaskElt(i), i))
3543 for (unsigned i = 0; i < NumElems/2; ++i)
3544 if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3550 /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3551 /// specifies a shuffle of elements that is suitable for input to UNPCKL.
3552 static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3553 bool V2IsSplat = false) {
3554 int NumElts = VT.getVectorNumElements();
3556 assert((VT.is128BitVector() || VT.is256BitVector()) &&
3557 "Unsupported vector type for unpckh");
3559 if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8)
3562 // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3563 // independently on 128-bit lanes.
3564 unsigned NumLanes = VT.getSizeInBits()/128;
3565 unsigned NumLaneElts = NumElts/NumLanes;
3568 unsigned End = NumLaneElts;
3569 for (unsigned s = 0; s < NumLanes; ++s) {
3570 for (unsigned i = Start, j = s * NumLaneElts;
3574 int BitI1 = Mask[i+1];
3575 if (!isUndefOrEqual(BitI, j))
3578 if (!isUndefOrEqual(BitI1, NumElts))
3581 if (!isUndefOrEqual(BitI1, j + NumElts))
3585 // Process the next 128 bits.
3586 Start += NumLaneElts;
3593 bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3594 SmallVector<int, 8> M;
3596 return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
3599 /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3600 /// specifies a shuffle of elements that is suitable for input to UNPCKH.
3601 static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3602 bool V2IsSplat = false) {
3603 int NumElts = VT.getVectorNumElements();
3605 assert((VT.is128BitVector() || VT.is256BitVector()) &&
3606 "Unsupported vector type for unpckh");
3608 if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8)
3611 // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3612 // independently on 128-bit lanes.
3613 unsigned NumLanes = VT.getSizeInBits()/128;
3614 unsigned NumLaneElts = NumElts/NumLanes;
3617 unsigned End = NumLaneElts;
3618 for (unsigned l = 0; l != NumLanes; ++l) {
3619 for (unsigned i = Start, j = (l*NumLaneElts)+NumLaneElts/2;
3620 i != End; i += 2, ++j) {
3622 int BitI1 = Mask[i+1];
3623 if (!isUndefOrEqual(BitI, j))
3626 if (isUndefOrEqual(BitI1, NumElts))
3629 if (!isUndefOrEqual(BitI1, j+NumElts))
3633 // Process the next 128 bits.
3634 Start += NumLaneElts;
3640 bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3641 SmallVector<int, 8> M;
3643 return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
3646 /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3647 /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3649 static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3650 int NumElems = VT.getVectorNumElements();
3651 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3654 // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3655 // FIXME: Need a better way to get rid of this, there's no latency difference
3656 // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3657 // the former later. We should also remove the "_undef" special mask.
3658 if (NumElems == 4 && VT.getSizeInBits() == 256)
3661 // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3662 // independently on 128-bit lanes.
3663 unsigned NumLanes = VT.getSizeInBits() / 128;
3664 unsigned NumLaneElts = NumElems / NumLanes;
3666 for (unsigned s = 0; s < NumLanes; ++s) {
3667 for (unsigned i = s * NumLaneElts, j = s * NumLaneElts;
3668 i != NumLaneElts * (s + 1);
3671 int BitI1 = Mask[i+1];
3673 if (!isUndefOrEqual(BitI, j))
3675 if (!isUndefOrEqual(BitI1, j))
3683 bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3684 SmallVector<int, 8> M;
3686 return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3689 /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3690 /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3692 static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3693 int NumElems = VT.getVectorNumElements();
3694 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3697 for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3699 int BitI1 = Mask[i+1];
3700 if (!isUndefOrEqual(BitI, j))
3702 if (!isUndefOrEqual(BitI1, j))
3708 bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3709 SmallVector<int, 8> M;
3711 return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3714 /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3715 /// specifies a shuffle of elements that is suitable for input to MOVSS,
3716 /// MOVSD, and MOVD, i.e. setting the lowest element.
3717 static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3718 if (VT.getVectorElementType().getSizeInBits() < 32)
3721 int NumElts = VT.getVectorNumElements();
3723 if (!isUndefOrEqual(Mask[0], NumElts))
3726 for (int i = 1; i < NumElts; ++i)
3727 if (!isUndefOrEqual(Mask[i], i))
3733 bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3734 SmallVector<int, 8> M;
3736 return ::isMOVLMask(M, N->getValueType(0));
3739 /// isVPERM2F128Mask - Match 256-bit shuffles where the elements are considered
3740 /// as permutations between 128-bit chunks or halves. As an example: this
3742 /// vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3743 /// The first half comes from the second half of V1 and the second half from the
3744 /// the second half of V2.
3745 static bool isVPERM2F128Mask(const SmallVectorImpl<int> &Mask, EVT VT,
3746 const X86Subtarget *Subtarget) {
3747 if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
3750 // The shuffle result is divided into half A and half B. In total the two
3751 // sources have 4 halves, namely: C, D, E, F. The final values of A and
3752 // B must come from C, D, E or F.
3753 int HalfSize = VT.getVectorNumElements()/2;
3754 bool MatchA = false, MatchB = false;
3756 // Check if A comes from one of C, D, E, F.
3757 for (int Half = 0; Half < 4; ++Half) {
3758 if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3764 // Check if B comes from one of C, D, E, F.
3765 for (int Half = 0; Half < 4; ++Half) {
3766 if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3772 return MatchA && MatchB;
3775 /// getShuffleVPERM2F128Immediate - Return the appropriate immediate to shuffle
3776 /// the specified VECTOR_MASK mask with VPERM2F128 instructions.
3777 static unsigned getShuffleVPERM2F128Immediate(SDNode *N) {
3778 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3779 EVT VT = SVOp->getValueType(0);
3781 int HalfSize = VT.getVectorNumElements()/2;
3783 int FstHalf = 0, SndHalf = 0;
3784 for (int i = 0; i < HalfSize; ++i) {
3785 if (SVOp->getMaskElt(i) > 0) {
3786 FstHalf = SVOp->getMaskElt(i)/HalfSize;
3790 for (int i = HalfSize; i < HalfSize*2; ++i) {
3791 if (SVOp->getMaskElt(i) > 0) {
3792 SndHalf = SVOp->getMaskElt(i)/HalfSize;
3797 return (FstHalf | (SndHalf << 4));
3800 /// isVPERMILPDMask - Return true if the specified VECTOR_SHUFFLE operand
3801 /// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3802 /// Note that VPERMIL mask matching is different depending whether theunderlying
3803 /// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3804 /// to the same elements of the low, but to the higher half of the source.
3805 /// In VPERMILPD the two lanes could be shuffled independently of each other
3806 /// with the same restriction that lanes can't be crossed.
3807 static bool isVPERMILPDMask(const SmallVectorImpl<int> &Mask, EVT VT,
3808 const X86Subtarget *Subtarget) {
3809 int NumElts = VT.getVectorNumElements();
3810 int NumLanes = VT.getSizeInBits()/128;
3812 if (!Subtarget->hasAVX())
3815 // Only match 256-bit with 64-bit types
3816 if (VT.getSizeInBits() != 256 || NumElts != 4)
3819 // The mask on the high lane is independent of the low. Both can match
3820 // any element in inside its own lane, but can't cross.
3821 int LaneSize = NumElts/NumLanes;
3822 for (int l = 0; l < NumLanes; ++l)
3823 for (int i = l*LaneSize; i < LaneSize*(l+1); ++i) {
3824 int LaneStart = l*LaneSize;
3825 if (!isUndefOrInRange(Mask[i], LaneStart, LaneStart+LaneSize))
3832 /// isVPERMILPSMask - Return true if the specified VECTOR_SHUFFLE operand
3833 /// specifies a shuffle of elements that is suitable for input to VPERMILPS*.
3834 /// Note that VPERMIL mask matching is different depending whether theunderlying
3835 /// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3836 /// to the same elements of the low, but to the higher half of the source.
3837 /// In VPERMILPD the two lanes could be shuffled independently of each other
3838 /// with the same restriction that lanes can't be crossed.
3839 static bool isVPERMILPSMask(const SmallVectorImpl<int> &Mask, EVT VT,
3840 const X86Subtarget *Subtarget) {
3841 unsigned NumElts = VT.getVectorNumElements();
3842 unsigned NumLanes = VT.getSizeInBits()/128;
3844 if (!Subtarget->hasAVX())
3847 // Only match 256-bit with 32-bit types
3848 if (VT.getSizeInBits() != 256 || NumElts != 8)
3851 // The mask on the high lane should be the same as the low. Actually,
3852 // they can differ if any of the corresponding index in a lane is undef
3853 // and the other stays in range.
3854 int LaneSize = NumElts/NumLanes;
3855 for (int i = 0; i < LaneSize; ++i) {
3856 int HighElt = i+LaneSize;
3857 bool HighValid = isUndefOrInRange(Mask[HighElt], LaneSize, NumElts);
3858 bool LowValid = isUndefOrInRange(Mask[i], 0, LaneSize);
3860 if (!HighValid || !LowValid)
3862 if (Mask[i] < 0 || Mask[HighElt] < 0)
3864 if (Mask[HighElt]-Mask[i] != LaneSize)
3871 /// getShuffleVPERMILPSImmediate - Return the appropriate immediate to shuffle
3872 /// the specified VECTOR_MASK mask with VPERMILPS* instructions.
3873 static unsigned getShuffleVPERMILPSImmediate(SDNode *N) {
3874 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3875 EVT VT = SVOp->getValueType(0);
3877 int NumElts = VT.getVectorNumElements();
3878 int NumLanes = VT.getSizeInBits()/128;
3879 int LaneSize = NumElts/NumLanes;
3881 // Although the mask is equal for both lanes do it twice to get the cases
3882 // where a mask will match because the same mask element is undef on the
3883 // first half but valid on the second. This would get pathological cases
3884 // such as: shuffle <u, 0, 1, 2, 4, 4, 5, 6>, which is completely valid.
3886 for (int l = 0; l < NumLanes; ++l) {
3887 for (int i = 0; i < LaneSize; ++i) {
3888 int MaskElt = SVOp->getMaskElt(i+(l*LaneSize));
3891 if (MaskElt >= LaneSize)
3892 MaskElt -= LaneSize;
3893 Mask |= MaskElt << (i*2);
3900 /// getShuffleVPERMILPDImmediate - Return the appropriate immediate to shuffle
3901 /// the specified VECTOR_MASK mask with VPERMILPD* instructions.
3902 static unsigned getShuffleVPERMILPDImmediate(SDNode *N) {
3903 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3904 EVT VT = SVOp->getValueType(0);
3906 int NumElts = VT.getVectorNumElements();
3907 int NumLanes = VT.getSizeInBits()/128;
3910 int LaneSize = NumElts/NumLanes;
3911 for (int l = 0; l < NumLanes; ++l)
3912 for (int i = l*LaneSize; i < LaneSize*(l+1); ++i) {
3913 int MaskElt = SVOp->getMaskElt(i);
3916 Mask |= (MaskElt-l*LaneSize) << i;
3922 /// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3923 /// of what x86 movss want. X86 movs requires the lowest element to be lowest
3924 /// element of vector 2 and the other elements to come from vector 1 in order.
3925 static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3926 bool V2IsSplat = false, bool V2IsUndef = false) {
3927 int NumOps = VT.getVectorNumElements();
3928 if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3931 if (!isUndefOrEqual(Mask[0], 0))
3934 for (int i = 1; i < NumOps; ++i)
3935 if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3936 (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3937 (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3943 static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3944 bool V2IsUndef = false) {
3945 SmallVector<int, 8> M;
3947 return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3950 /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3951 /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3952 /// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3953 bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N,
3954 const X86Subtarget *Subtarget) {
3955 if (!Subtarget->hasSSE3() && !Subtarget->hasAVX())
3958 // The second vector must be undef
3959 if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3962 EVT VT = N->getValueType(0);
3963 unsigned NumElems = VT.getVectorNumElements();
3965 if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3966 (VT.getSizeInBits() == 256 && NumElems != 8))
3969 // "i+1" is the value the indexed mask element must have
3970 for (unsigned i = 0; i < NumElems; i += 2)
3971 if (!isUndefOrEqual(N->getMaskElt(i), i+1) ||
3972 !isUndefOrEqual(N->getMaskElt(i+1), i+1))
3978 /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3979 /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3980 /// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3981 bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N,
3982 const X86Subtarget *Subtarget) {
3983 if (!Subtarget->hasSSE3() && !Subtarget->hasAVX())
3986 // The second vector must be undef
3987 if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3990 EVT VT = N->getValueType(0);
3991 unsigned NumElems = VT.getVectorNumElements();
3993 if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3994 (VT.getSizeInBits() == 256 && NumElems != 8))
3997 // "i" is the value the indexed mask element must have
3998 for (unsigned i = 0; i < NumElems; i += 2)
3999 if (!isUndefOrEqual(N->getMaskElt(i), i) ||
4000 !isUndefOrEqual(N->getMaskElt(i+1), i))
4006 /// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
4007 /// specifies a shuffle of elements that is suitable for input to 256-bit
4008 /// version of MOVDDUP.
4009 static bool isMOVDDUPYMask(ShuffleVectorSDNode *N,
4010 const X86Subtarget *Subtarget) {
4011 EVT VT = N->getValueType(0);
4012 int NumElts = VT.getVectorNumElements();
4013 bool V2IsUndef = N->getOperand(1).getOpcode() == ISD::UNDEF;
4015 if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256 ||
4016 !V2IsUndef || NumElts != 4)
4019 for (int i = 0; i != NumElts/2; ++i)
4020 if (!isUndefOrEqual(N->getMaskElt(i), 0))
4022 for (int i = NumElts/2; i != NumElts; ++i)
4023 if (!isUndefOrEqual(N->getMaskElt(i), NumElts/2))
4028 /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
4029 /// specifies a shuffle of elements that is suitable for input to 128-bit
4030 /// version of MOVDDUP.
4031 bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
4032 EVT VT = N->getValueType(0);
4034 if (VT.getSizeInBits() != 128)
4037 int e = VT.getVectorNumElements() / 2;
4038 for (int i = 0; i < e; ++i)
4039 if (!isUndefOrEqual(N->getMaskElt(i), i))
4041 for (int i = 0; i < e; ++i)
4042 if (!isUndefOrEqual(N->getMaskElt(e+i), i))
4047 /// isVEXTRACTF128Index - Return true if the specified
4048 /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
4049 /// suitable for input to VEXTRACTF128.
4050 bool X86::isVEXTRACTF128Index(SDNode *N) {
4051 if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4054 // The index should be aligned on a 128-bit boundary.
4056 cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4058 unsigned VL = N->getValueType(0).getVectorNumElements();
4059 unsigned VBits = N->getValueType(0).getSizeInBits();
4060 unsigned ElSize = VBits / VL;
4061 bool Result = (Index * ElSize) % 128 == 0;
4066 /// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
4067 /// operand specifies a subvector insert that is suitable for input to
4069 bool X86::isVINSERTF128Index(SDNode *N) {
4070 if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4073 // The index should be aligned on a 128-bit boundary.
4075 cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4077 unsigned VL = N->getValueType(0).getVectorNumElements();
4078 unsigned VBits = N->getValueType(0).getSizeInBits();
4079 unsigned ElSize = VBits / VL;
4080 bool Result = (Index * ElSize) % 128 == 0;
4085 /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
4086 /// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
4087 unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
4088 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4089 int NumOperands = SVOp->getValueType(0).getVectorNumElements();
4091 unsigned Shift = (NumOperands == 4) ? 2 : 1;
4093 for (int i = 0; i < NumOperands; ++i) {
4094 int Val = SVOp->getMaskElt(NumOperands-i-1);
4095 if (Val < 0) Val = 0;
4096 if (Val >= NumOperands) Val -= NumOperands;
4098 if (i != NumOperands - 1)
4104 /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
4105 /// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
4106 unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
4107 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4109 // 8 nodes, but we only care about the last 4.
4110 for (unsigned i = 7; i >= 4; --i) {
4111 int Val = SVOp->getMaskElt(i);
4120 /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
4121 /// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
4122 unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
4123 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4125 // 8 nodes, but we only care about the first 4.
4126 for (int i = 3; i >= 0; --i) {
4127 int Val = SVOp->getMaskElt(i);
4136 /// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4137 /// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4138 unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
4139 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4140 EVT VVT = N->getValueType(0);
4141 unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
4145 for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
4146 Val = SVOp->getMaskElt(i);
4150 assert(Val - i > 0 && "PALIGNR imm should be positive");
4151 return (Val - i) * EltSize;
4154 /// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4155 /// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4157 unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4158 if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4159 llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4162 cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4164 EVT VecVT = N->getOperand(0).getValueType();
4165 EVT ElVT = VecVT.getVectorElementType();
4167 unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4168 return Index / NumElemsPerChunk;
4171 /// getInsertVINSERTF128Immediate - Return the appropriate immediate
4172 /// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4174 unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4175 if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4176 llvm_unreachable("Illegal insert subvector for VINSERTF128");
4179 cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4181 EVT VecVT = N->getValueType(0);
4182 EVT ElVT = VecVT.getVectorElementType();
4184 unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4185 return Index / NumElemsPerChunk;
4188 /// isZeroNode - Returns true if Elt is a constant zero or a floating point
4190 bool X86::isZeroNode(SDValue Elt) {
4191 return ((isa<ConstantSDNode>(Elt) &&
4192 cast<ConstantSDNode>(Elt)->isNullValue()) ||
4193 (isa<ConstantFPSDNode>(Elt) &&
4194 cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4197 /// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4198 /// their permute mask.
4199 static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4200 SelectionDAG &DAG) {
4201 EVT VT = SVOp->getValueType(0);
4202 unsigned NumElems = VT.getVectorNumElements();
4203 SmallVector<int, 8> MaskVec;
4205 for (unsigned i = 0; i != NumElems; ++i) {
4206 int idx = SVOp->getMaskElt(i);
4208 MaskVec.push_back(idx);
4209 else if (idx < (int)NumElems)
4210 MaskVec.push_back(idx + NumElems);
4212 MaskVec.push_back(idx - NumElems);
4214 return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4215 SVOp->getOperand(0), &MaskVec[0]);
4218 /// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
4219 /// the two vector operands have swapped position.
4220 static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
4221 unsigned NumElems = VT.getVectorNumElements();
4222 for (unsigned i = 0; i != NumElems; ++i) {
4226 else if (idx < (int)NumElems)
4227 Mask[i] = idx + NumElems;
4229 Mask[i] = idx - NumElems;
4233 /// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4234 /// match movhlps. The lower half elements should come from upper half of
4235 /// V1 (and in order), and the upper half elements should come from the upper
4236 /// half of V2 (and in order).
4237 static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
4238 EVT VT = Op->getValueType(0);
4239 if (VT.getSizeInBits() != 128)
4241 if (VT.getVectorNumElements() != 4)
4243 for (unsigned i = 0, e = 2; i != e; ++i)
4244 if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
4246 for (unsigned i = 2; i != 4; ++i)
4247 if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
4252 /// isScalarLoadToVector - Returns true if the node is a scalar load that
4253 /// is promoted to a vector. It also returns the LoadSDNode by reference if
4255 static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4256 if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4258 N = N->getOperand(0).getNode();
4259 if (!ISD::isNON_EXTLoad(N))
4262 *LD = cast<LoadSDNode>(N);
4266 // Test whether the given value is a vector value which will be legalized
4268 static bool WillBeConstantPoolLoad(SDNode *N) {
4269 if (N->getOpcode() != ISD::BUILD_VECTOR)
4272 // Check for any non-constant elements.
4273 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4274 switch (N->getOperand(i).getNode()->getOpcode()) {
4276 case ISD::ConstantFP:
4283 // Vectors of all-zeros and all-ones are materialized with special
4284 // instructions rather than being loaded.
4285 return !ISD::isBuildVectorAllZeros(N) &&
4286 !ISD::isBuildVectorAllOnes(N);
4289 /// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4290 /// match movlp{s|d}. The lower half elements should come from lower half of
4291 /// V1 (and in order), and the upper half elements should come from the upper
4292 /// half of V2 (and in order). And since V1 will become the source of the
4293 /// MOVLP, it must be either a vector load or a scalar load to vector.
4294 static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4295 ShuffleVectorSDNode *Op) {
4296 EVT VT = Op->getValueType(0);
4297 if (VT.getSizeInBits() != 128)
4300 if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4302 // Is V2 is a vector load, don't do this transformation. We will try to use
4303 // load folding shufps op.
4304 if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4307 unsigned NumElems = VT.getVectorNumElements();
4309 if (NumElems != 2 && NumElems != 4)
4311 for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4312 if (!isUndefOrEqual(Op->getMaskElt(i), i))
4314 for (unsigned i = NumElems/2; i != NumElems; ++i)
4315 if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
4320 /// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4322 static bool isSplatVector(SDNode *N) {
4323 if (N->getOpcode() != ISD::BUILD_VECTOR)
4326 SDValue SplatValue = N->getOperand(0);
4327 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4328 if (N->getOperand(i) != SplatValue)
4333 /// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4334 /// to an zero vector.
4335 /// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4336 static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4337 SDValue V1 = N->getOperand(0);
4338 SDValue V2 = N->getOperand(1);
4339 unsigned NumElems = N->getValueType(0).getVectorNumElements();
4340 for (unsigned i = 0; i != NumElems; ++i) {
4341 int Idx = N->getMaskElt(i);
4342 if (Idx >= (int)NumElems) {
4343 unsigned Opc = V2.getOpcode();
4344 if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4346 if (Opc != ISD::BUILD_VECTOR ||
4347 !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4349 } else if (Idx >= 0) {
4350 unsigned Opc = V1.getOpcode();
4351 if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4353 if (Opc != ISD::BUILD_VECTOR ||
4354 !X86::isZeroNode(V1.getOperand(Idx)))
4361 /// getZeroVector - Returns a vector of specified type with all zero elements.
4363 static SDValue getZeroVector(EVT VT, bool HasXMMInt, SelectionDAG &DAG,
4365 assert(VT.isVector() && "Expected a vector type");
4367 // Always build SSE zero vectors as <4 x i32> bitcasted
4368 // to their dest type. This ensures they get CSE'd.
4370 if (VT.getSizeInBits() == 128) { // SSE
4371 if (HasXMMInt) { // SSE2
4372 SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4373 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4375 SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4376 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4378 } else if (VT.getSizeInBits() == 256) { // AVX
4379 // 256-bit logic and arithmetic instructions in AVX are
4380 // all floating-point, no support for integer ops. Default
4381 // to emitting fp zeroed vectors then.
4382 SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4383 SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4384 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4386 return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4389 /// getOnesVector - Returns a vector of specified type with all bits set.
4390 /// Always build ones vectors as <4 x i32>. For 256-bit types, use two
4391 /// <4 x i32> inserted in a <8 x i32> appropriately. Then bitcast to their
4392 /// original type, ensuring they get CSE'd.
4393 static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
4394 assert(VT.isVector() && "Expected a vector type");
4395 assert((VT.is128BitVector() || VT.is256BitVector())
4396 && "Expected a 128-bit or 256-bit vector type");
4398 SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4399 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
4400 Cst, Cst, Cst, Cst);
4402 if (VT.is256BitVector()) {
4403 SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
4404 Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
4405 Vec = Insert128BitVector(InsV, Vec,
4406 DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
4409 return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4412 /// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4413 /// that point to V2 points to its first element.
4414 static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4415 EVT VT = SVOp->getValueType(0);
4416 unsigned NumElems = VT.getVectorNumElements();
4418 bool Changed = false;
4419 SmallVector<int, 8> MaskVec;
4420 SVOp->getMask(MaskVec);
4422 for (unsigned i = 0; i != NumElems; ++i) {
4423 if (MaskVec[i] > (int)NumElems) {
4424 MaskVec[i] = NumElems;
4429 return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
4430 SVOp->getOperand(1), &MaskVec[0]);
4431 return SDValue(SVOp, 0);
4434 /// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4435 /// operation of specified width.
4436 static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4438 unsigned NumElems = VT.getVectorNumElements();
4439 SmallVector<int, 8> Mask;
4440 Mask.push_back(NumElems);
4441 for (unsigned i = 1; i != NumElems; ++i)
4443 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4446 /// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4447 static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4449 unsigned NumElems = VT.getVectorNumElements();
4450 SmallVector<int, 8> Mask;
4451 for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4453 Mask.push_back(i + NumElems);
4455 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4458 /// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4459 static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4461 unsigned NumElems = VT.getVectorNumElements();
4462 unsigned Half = NumElems/2;
4463 SmallVector<int, 8> Mask;
4464 for (unsigned i = 0; i != Half; ++i) {
4465 Mask.push_back(i + Half);
4466 Mask.push_back(i + NumElems + Half);
4468 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4471 // PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4472 // a generic shuffle instruction because the target has no such instructions.
4473 // Generate shuffles which repeat i16 and i8 several times until they can be
4474 // represented by v4f32 and then be manipulated by target suported shuffles.
4475 static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4476 EVT VT = V.getValueType();
4477 int NumElems = VT.getVectorNumElements();
4478 DebugLoc dl = V.getDebugLoc();
4480 while (NumElems > 4) {
4481 if (EltNo < NumElems/2) {
4482 V = getUnpackl(DAG, dl, VT, V, V);
4484 V = getUnpackh(DAG, dl, VT, V, V);
4485 EltNo -= NumElems/2;
4492 /// getLegalSplat - Generate a legal splat with supported x86 shuffles
4493 static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4494 EVT VT = V.getValueType();
4495 DebugLoc dl = V.getDebugLoc();
4496 assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
4497 && "Vector size not supported");
4499 if (VT.getSizeInBits() == 128) {
4500 V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4501 int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4502 V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4505 // To use VPERMILPS to splat scalars, the second half of indicies must
4506 // refer to the higher part, which is a duplication of the lower one,
4507 // because VPERMILPS can only handle in-lane permutations.
4508 int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4509 EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4511 V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4512 V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4516 return DAG.getNode(ISD::BITCAST, dl, VT, V);
4519 /// PromoteSplat - Splat is promoted to target supported vector shuffles.
4520 static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4521 EVT SrcVT = SV->getValueType(0);
4522 SDValue V1 = SV->getOperand(0);
4523 DebugLoc dl = SV->getDebugLoc();
4525 int EltNo = SV->getSplatIndex();
4526 int NumElems = SrcVT.getVectorNumElements();
4527 unsigned Size = SrcVT.getSizeInBits();
4529 assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4530 "Unknown how to promote splat for type");
4532 // Extract the 128-bit part containing the splat element and update
4533 // the splat element index when it refers to the higher register.
4535 unsigned Idx = (EltNo > NumElems/2) ? NumElems/2 : 0;
4536 V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
4538 EltNo -= NumElems/2;
4541 // All i16 and i8 vector types can't be used directly by a generic shuffle
4542 // instruction because the target has no such instruction. Generate shuffles
4543 // which repeat i16 and i8 several times until they fit in i32, and then can
4544 // be manipulated by target suported shuffles.
4545 EVT EltVT = SrcVT.getVectorElementType();
4546 if (EltVT == MVT::i8 || EltVT == MVT::i16)
4547 V1 = PromoteSplati8i16(V1, DAG, EltNo);
4549 // Recreate the 256-bit vector and place the same 128-bit vector
4550 // into the low and high part. This is necessary because we want
4551 // to use VPERM* to shuffle the vectors
4553 SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
4554 DAG.getConstant(0, MVT::i32), DAG, dl);
4555 V1 = Insert128BitVector(InsV, V1,
4556 DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4559 return getLegalSplat(DAG, V1, EltNo);
4562 /// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4563 /// vector of zero or undef vector. This produces a shuffle where the low
4564 /// element of V2 is swizzled into the zero/undef vector, landing at element
4565 /// Idx. This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3).
4566 static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4567 bool isZero, bool HasXMMInt,
4568 SelectionDAG &DAG) {
4569 EVT VT = V2.getValueType();
4571 ? getZeroVector(VT, HasXMMInt, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4572 unsigned NumElems = VT.getVectorNumElements();
4573 SmallVector<int, 16> MaskVec;
4574 for (unsigned i = 0; i != NumElems; ++i)
4575 // If this is the insertion idx, put the low elt of V2 here.
4576 MaskVec.push_back(i == Idx ? NumElems : i);
4577 return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4580 /// getShuffleScalarElt - Returns the scalar element that will make up the ith
4581 /// element of the result of the vector shuffle.
4582 static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
4585 return SDValue(); // Limit search depth.
4587 SDValue V = SDValue(N, 0);
4588 EVT VT = V.getValueType();
4589 unsigned Opcode = V.getOpcode();
4591 // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4592 if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4593 Index = SV->getMaskElt(Index);
4596 return DAG.getUNDEF(VT.getVectorElementType());
4598 int NumElems = VT.getVectorNumElements();
4599 SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
4600 return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
4603 // Recurse into target specific vector shuffles to find scalars.
4604 if (isTargetShuffle(Opcode)) {
4605 int NumElems = VT.getVectorNumElements();
4606 SmallVector<unsigned, 16> ShuffleMask;
4610 case X86ISD::SHUFPS:
4611 case X86ISD::SHUFPD:
4612 ImmN = N->getOperand(N->getNumOperands()-1);
4613 DecodeSHUFPSMask(NumElems,
4614 cast<ConstantSDNode>(ImmN)->getZExtValue(),
4617 case X86ISD::PUNPCKHBW:
4618 case X86ISD::PUNPCKHWD:
4619 case X86ISD::PUNPCKHDQ:
4620 case X86ISD::PUNPCKHQDQ:
4621 DecodePUNPCKHMask(NumElems, ShuffleMask);
4623 case X86ISD::UNPCKHPS:
4624 case X86ISD::UNPCKHPD:
4625 case X86ISD::VUNPCKHPSY:
4626 case X86ISD::VUNPCKHPDY:
4627 DecodeUNPCKHPMask(NumElems, ShuffleMask);
4629 case X86ISD::PUNPCKLBW:
4630 case X86ISD::PUNPCKLWD:
4631 case X86ISD::PUNPCKLDQ:
4632 case X86ISD::PUNPCKLQDQ:
4633 DecodePUNPCKLMask(VT, ShuffleMask);
4635 case X86ISD::UNPCKLPS:
4636 case X86ISD::UNPCKLPD:
4637 case X86ISD::VUNPCKLPSY:
4638 case X86ISD::VUNPCKLPDY:
4639 DecodeUNPCKLPMask(VT, ShuffleMask);
4641 case X86ISD::MOVHLPS:
4642 DecodeMOVHLPSMask(NumElems, ShuffleMask);
4644 case X86ISD::MOVLHPS:
4645 DecodeMOVLHPSMask(NumElems, ShuffleMask);
4647 case X86ISD::PSHUFD:
4648 ImmN = N->getOperand(N->getNumOperands()-1);
4649 DecodePSHUFMask(NumElems,
4650 cast<ConstantSDNode>(ImmN)->getZExtValue(),
4653 case X86ISD::PSHUFHW:
4654 ImmN = N->getOperand(N->getNumOperands()-1);
4655 DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4658 case X86ISD::PSHUFLW:
4659 ImmN = N->getOperand(N->getNumOperands()-1);
4660 DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4664 case X86ISD::MOVSD: {
4665 // The index 0 always comes from the first element of the second source,
4666 // this is why MOVSS and MOVSD are used in the first place. The other
4667 // elements come from the other positions of the first source vector.
4668 unsigned OpNum = (Index == 0) ? 1 : 0;
4669 return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
4672 case X86ISD::VPERMILPS:
4673 ImmN = N->getOperand(N->getNumOperands()-1);
4674 DecodeVPERMILPSMask(4, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4677 case X86ISD::VPERMILPSY:
4678 ImmN = N->getOperand(N->getNumOperands()-1);
4679 DecodeVPERMILPSMask(8, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4682 case X86ISD::VPERMILPD:
4683 ImmN = N->getOperand(N->getNumOperands()-1);
4684 DecodeVPERMILPDMask(2, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4687 case X86ISD::VPERMILPDY:
4688 ImmN = N->getOperand(N->getNumOperands()-1);
4689 DecodeVPERMILPDMask(4, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4692 case X86ISD::VPERM2F128:
4693 ImmN = N->getOperand(N->getNumOperands()-1);
4694 DecodeVPERM2F128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4697 case X86ISD::MOVDDUP:
4698 case X86ISD::MOVLHPD:
4699 case X86ISD::MOVLPD:
4700 case X86ISD::MOVLPS:
4701 case X86ISD::MOVSHDUP:
4702 case X86ISD::MOVSLDUP:
4703 case X86ISD::PALIGN:
4704 return SDValue(); // Not yet implemented.
4706 assert(0 && "unknown target shuffle node");
4710 Index = ShuffleMask[Index];
4712 return DAG.getUNDEF(VT.getVectorElementType());
4714 SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
4715 return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
4719 // Actual nodes that may contain scalar elements
4720 if (Opcode == ISD::BITCAST) {
4721 V = V.getOperand(0);
4722 EVT SrcVT = V.getValueType();
4723 unsigned NumElems = VT.getVectorNumElements();
4725 if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4729 if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4730 return (Index == 0) ? V.getOperand(0)
4731 : DAG.getUNDEF(VT.getVectorElementType());
4733 if (V.getOpcode() == ISD::BUILD_VECTOR)
4734 return V.getOperand(Index);
4739 /// getNumOfConsecutiveZeros - Return the number of elements of a vector
4740 /// shuffle operation which come from a consecutively from a zero. The
4741 /// search can start in two different directions, from left or right.
4743 unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
4744 bool ZerosFromLeft, SelectionDAG &DAG) {
4747 while (i < NumElems) {
4748 unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4749 SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
4750 if (!(Elt.getNode() &&
4751 (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4759 /// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
4760 /// MaskE correspond consecutively to elements from one of the vector operands,
4761 /// starting from its index OpIdx. Also tell OpNum which source vector operand.
4763 bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
4764 int OpIdx, int NumElems, unsigned &OpNum) {
4765 bool SeenV1 = false;
4766 bool SeenV2 = false;
4768 for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
4769 int Idx = SVOp->getMaskElt(i);
4770 // Ignore undef indicies
4779 // Only accept consecutive elements from the same vector
4780 if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4784 OpNum = SeenV1 ? 0 : 1;
4788 /// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4789 /// logical left shift of a vector.
4790 static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4791 bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4792 unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4793 unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4794 false /* check zeros from right */, DAG);
4800 // Considering the elements in the mask that are not consecutive zeros,
4801 // check if they consecutively come from only one of the source vectors.
4803 // V1 = {X, A, B, C} 0
4805 // vector_shuffle V1, V2 <1, 2, 3, X>
4807 if (!isShuffleMaskConsecutive(SVOp,
4808 0, // Mask Start Index
4809 NumElems-NumZeros-1, // Mask End Index
4810 NumZeros, // Where to start looking in the src vector
4811 NumElems, // Number of elements in vector
4812 OpSrc)) // Which source operand ?
4817 ShVal = SVOp->getOperand(OpSrc);
4821 /// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4822 /// logical left shift of a vector.
4823 static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4824 bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4825 unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4826 unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4827 true /* check zeros from left */, DAG);
4833 // Considering the elements in the mask that are not consecutive zeros,
4834 // check if they consecutively come from only one of the source vectors.
4836 // 0 { A, B, X, X } = V2
4838 // vector_shuffle V1, V2 <X, X, 4, 5>
4840 if (!isShuffleMaskConsecutive(SVOp,
4841 NumZeros, // Mask Start Index
4842 NumElems-1, // Mask End Index
4843 0, // Where to start looking in the src vector
4844 NumElems, // Number of elements in vector
4845 OpSrc)) // Which source operand ?
4850 ShVal = SVOp->getOperand(OpSrc);
4854 /// isVectorShift - Returns true if the shuffle can be implemented as a
4855 /// logical left or right shift of a vector.
4856 static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4857 bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4858 // Although the logic below support any bitwidth size, there are no
4859 // shift instructions which handle more than 128-bit vectors.
4860 if (SVOp->getValueType(0).getSizeInBits() > 128)
4863 if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4864 isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4870 /// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4872 static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4873 unsigned NumNonZero, unsigned NumZero,
4875 const TargetLowering &TLI) {
4879 DebugLoc dl = Op.getDebugLoc();
4882 for (unsigned i = 0; i < 16; ++i) {
4883 bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4884 if (ThisIsNonZero && First) {
4886 V = getZeroVector(MVT::v8i16, true, DAG, dl);
4888 V = DAG.getUNDEF(MVT::v8i16);
4893 SDValue ThisElt(0, 0), LastElt(0, 0);
4894 bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4895 if (LastIsNonZero) {
4896 LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4897 MVT::i16, Op.getOperand(i-1));
4899 if (ThisIsNonZero) {
4900 ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4901 ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4902 ThisElt, DAG.getConstant(8, MVT::i8));
4904 ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4908 if (ThisElt.getNode())
4909 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4910 DAG.getIntPtrConstant(i/2));
4914 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4917 /// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4919 static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4920 unsigned NumNonZero, unsigned NumZero,
4922 const TargetLowering &TLI) {
4926 DebugLoc dl = Op.getDebugLoc();
4929 for (unsigned i = 0; i < 8; ++i) {
4930 bool isNonZero = (NonZeros & (1 << i)) != 0;
4934 V = getZeroVector(MVT::v8i16, true, DAG, dl);
4936 V = DAG.getUNDEF(MVT::v8i16);
4939 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4940 MVT::v8i16, V, Op.getOperand(i),
4941 DAG.getIntPtrConstant(i));
4948 /// getVShift - Return a vector logical shift node.
4950 static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4951 unsigned NumBits, SelectionDAG &DAG,
4952 const TargetLowering &TLI, DebugLoc dl) {
4953 assert(VT.getSizeInBits() == 128 && "Unknown type for VShift");
4954 EVT ShVT = MVT::v2i64;
4955 unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
4956 SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4957 return DAG.getNode(ISD::BITCAST, dl, VT,
4958 DAG.getNode(Opc, dl, ShVT, SrcOp,
4959 DAG.getConstant(NumBits,
4960 TLI.getShiftAmountTy(SrcOp.getValueType()))));
4964 X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4965 SelectionDAG &DAG) const {
4967 // Check if the scalar load can be widened into a vector load. And if
4968 // the address is "base + cst" see if the cst can be "absorbed" into
4969 // the shuffle mask.
4970 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4971 SDValue Ptr = LD->getBasePtr();
4972 if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4974 EVT PVT = LD->getValueType(0);
4975 if (PVT != MVT::i32 && PVT != MVT::f32)
4980 if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4981 FI = FINode->getIndex();
4983 } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4984 isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4985 FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4986 Offset = Ptr.getConstantOperandVal(1);
4987 Ptr = Ptr.getOperand(0);
4992 // FIXME: 256-bit vector instructions don't require a strict alignment,
4993 // improve this code to support it better.
4994 unsigned RequiredAlign = VT.getSizeInBits()/8;
4995 SDValue Chain = LD->getChain();
4996 // Make sure the stack object alignment is at least 16 or 32.
4997 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4998 if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4999 if (MFI->isFixedObjectIndex(FI)) {
5000 // Can't change the alignment. FIXME: It's possible to compute
5001 // the exact stack offset and reference FI + adjust offset instead.
5002 // If someone *really* cares about this. That's the way to implement it.
5005 MFI->setObjectAlignment(FI, RequiredAlign);
5009 // (Offset % 16 or 32) must be multiple of 4. Then address is then
5010 // Ptr + (Offset & ~15).
5013 if ((Offset % RequiredAlign) & 3)
5015 int64_t StartOffset = Offset & ~(RequiredAlign-1);
5017 Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
5018 Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
5020 int EltNo = (Offset - StartOffset) >> 2;
5021 int NumElems = VT.getVectorNumElements();
5023 EVT CanonVT = VT.getSizeInBits() == 128 ? MVT::v4i32 : MVT::v8i32;
5024 EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
5025 SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
5026 LD->getPointerInfo().getWithOffset(StartOffset),
5027 false, false, false, 0);
5029 // Canonicalize it to a v4i32 or v8i32 shuffle.
5030 SmallVector<int, 8> Mask;
5031 for (int i = 0; i < NumElems; ++i)
5032 Mask.push_back(EltNo);
5034 V1 = DAG.getNode(ISD::BITCAST, dl, CanonVT, V1);
5035 return DAG.getNode(ISD::BITCAST, dl, NVT,
5036 DAG.getVectorShuffle(CanonVT, dl, V1,
5037 DAG.getUNDEF(CanonVT),&Mask[0]));
5043 /// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
5044 /// vector of type 'VT', see if the elements can be replaced by a single large
5045 /// load which has the same value as a build_vector whose operands are 'elts'.
5047 /// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
5049 /// FIXME: we'd also like to handle the case where the last elements are zero
5050 /// rather than undef via VZEXT_LOAD, but we do not detect that case today.
5051 /// There's even a handy isZeroNode for that purpose.
5052 static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
5053 DebugLoc &DL, SelectionDAG &DAG) {
5054 EVT EltVT = VT.getVectorElementType();
5055 unsigned NumElems = Elts.size();
5057 LoadSDNode *LDBase = NULL;
5058 unsigned LastLoadedElt = -1U;
5060 // For each element in the initializer, see if we've found a load or an undef.
5061 // If we don't find an initial load element, or later load elements are
5062 // non-consecutive, bail out.
5063 for (unsigned i = 0; i < NumElems; ++i) {
5064 SDValue Elt = Elts[i];
5066 if (!Elt.getNode() ||
5067 (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
5070 if (Elt.getNode()->getOpcode() == ISD::UNDEF)
5072 LDBase = cast<LoadSDNode>(Elt.getNode());
5076 if (Elt.getOpcode() == ISD::UNDEF)
5079 LoadSDNode *LD = cast<LoadSDNode>(Elt);
5080 if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
5085 // If we have found an entire vector of loads and undefs, then return a large
5086 // load of the entire vector width starting at the base pointer. If we found
5087 // consecutive loads for the low half, generate a vzext_load node.
5088 if (LastLoadedElt == NumElems - 1) {
5089 if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
5090 return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5091 LDBase->getPointerInfo(),
5092 LDBase->isVolatile(), LDBase->isNonTemporal(),
5093 LDBase->isInvariant(), 0);
5094 return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5095 LDBase->getPointerInfo(),
5096 LDBase->isVolatile(), LDBase->isNonTemporal(),
5097 LDBase->isInvariant(), LDBase->getAlignment());
5098 } else if (NumElems == 4 && LastLoadedElt == 1 &&
5099 DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
5100 SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
5101 SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
5103 DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
5104 LDBase->getPointerInfo(),
5105 LDBase->getAlignment(),
5106 false/*isVolatile*/, true/*ReadMem*/,
5108 return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
5113 /// isVectorBroadcast - Check if the node chain is suitable to be xformed to
5114 /// a vbroadcast node. We support two patterns:
5115 /// 1. A splat BUILD_VECTOR which uses a single scalar load.
5116 /// 2. A splat shuffle which uses a scalar_to_vector node which comes from
5118 /// The scalar load node is returned when a pattern is found,
5119 /// or SDValue() otherwise.
5120 static SDValue isVectorBroadcast(SDValue &Op) {
5121 EVT VT = Op.getValueType();
5124 if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
5125 V = V.getOperand(0);
5127 //A suspected load to be broadcasted.
5130 switch (V.getOpcode()) {
5132 // Unknown pattern found.
5135 case ISD::BUILD_VECTOR: {
5136 // The BUILD_VECTOR node must be a splat.
5137 if (!isSplatVector(V.getNode()))
5140 Ld = V.getOperand(0);
5142 // The suspected load node has several users. Make sure that all
5143 // of its users are from the BUILD_VECTOR node.
5144 if (!Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
5149 case ISD::VECTOR_SHUFFLE: {
5150 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5152 // Shuffles must have a splat mask where the first element is
5154 if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
5157 SDValue Sc = Op.getOperand(0);
5158 if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR)
5161 Ld = Sc.getOperand(0);
5163 // The scalar_to_vector node and the suspected
5164 // load node must have exactly one user.
5165 if (!Sc.hasOneUse() || !Ld.hasOneUse())
5171 // The scalar source must be a normal load.
5172 if (!ISD::isNormalLoad(Ld.getNode()))
5175 bool Is256 = VT.getSizeInBits() == 256;
5176 bool Is128 = VT.getSizeInBits() == 128;
5177 unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5179 // VBroadcast to YMM
5180 if (Is256 && (ScalarSize == 32 || ScalarSize == 64))
5183 // VBroadcast to XMM
5184 if (Is128 && (ScalarSize == 32))
5187 // Unsupported broadcast.
5192 X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5193 DebugLoc dl = Op.getDebugLoc();
5195 EVT VT = Op.getValueType();
5196 EVT ExtVT = VT.getVectorElementType();
5197 unsigned NumElems = Op.getNumOperands();
5199 // Vectors containing all zeros can be matched by pxor and xorps later
5200 if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5201 // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5202 // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5203 if (Op.getValueType() == MVT::v4i32 ||
5204 Op.getValueType() == MVT::v8i32)
5207 return getZeroVector(Op.getValueType(), Subtarget->hasXMMInt(), DAG, dl);
5210 // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5211 // vectors or broken into v4i32 operations on 256-bit vectors.
5212 if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5213 if (Op.getValueType() == MVT::v4i32)
5216 return getOnesVector(Op.getValueType(), DAG, dl);
5219 SDValue LD = isVectorBroadcast(Op);
5220 if (Subtarget->hasAVX() && LD.getNode())
5221 return DAG.getNode(X86ISD::VBROADCAST, dl, VT, LD);
5223 unsigned EVTBits = ExtVT.getSizeInBits();
5225 unsigned NumZero = 0;
5226 unsigned NumNonZero = 0;
5227 unsigned NonZeros = 0;
5228 bool IsAllConstants = true;
5229 SmallSet<SDValue, 8> Values;
5230 for (unsigned i = 0; i < NumElems; ++i) {
5231 SDValue Elt = Op.getOperand(i);
5232 if (Elt.getOpcode() == ISD::UNDEF)
5235 if (Elt.getOpcode() != ISD::Constant &&
5236 Elt.getOpcode() != ISD::ConstantFP)
5237 IsAllConstants = false;
5238 if (X86::isZeroNode(Elt))
5241 NonZeros |= (1 << i);
5246 // All undef vector. Return an UNDEF. All zero vectors were handled above.
5247 if (NumNonZero == 0)
5248 return DAG.getUNDEF(VT);
5250 // Special case for single non-zero, non-undef, element.
5251 if (NumNonZero == 1) {
5252 unsigned Idx = CountTrailingZeros_32(NonZeros);
5253 SDValue Item = Op.getOperand(Idx);
5255 // If this is an insertion of an i64 value on x86-32, and if the top bits of
5256 // the value are obviously zero, truncate the value to i32 and do the
5257 // insertion that way. Only do this if the value is non-constant or if the
5258 // value is a constant being inserted into element 0. It is cheaper to do
5259 // a constant pool load than it is to do a movd + shuffle.
5260 if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5261 (!IsAllConstants || Idx == 0)) {
5262 if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5264 assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5265 EVT VecVT = MVT::v4i32;
5266 unsigned VecElts = 4;
5268 // Truncate the value (which may itself be a constant) to i32, and
5269 // convert it to a vector with movd (S2V+shuffle to zero extend).
5270 Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5271 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5272 Item = getShuffleVectorZeroOrUndef(Item, 0, true,
5273 Subtarget->hasXMMInt(), DAG);
5275 // Now we have our 32-bit value zero extended in the low element of
5276 // a vector. If Idx != 0, swizzle it into place.
5278 SmallVector<int, 4> Mask;
5279 Mask.push_back(Idx);
5280 for (unsigned i = 1; i != VecElts; ++i)
5282 Item = DAG.getVectorShuffle(VecVT, dl, Item,
5283 DAG.getUNDEF(Item.getValueType()),
5286 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item);
5290 // If we have a constant or non-constant insertion into the low element of
5291 // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5292 // the rest of the elements. This will be matched as movd/movq/movss/movsd
5293 // depending on what the source datatype is.
5296 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5297 } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5298 (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5299 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5300 // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5301 return getShuffleVectorZeroOrUndef(Item, 0, true,Subtarget->hasXMMInt(),
5303 } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5304 Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5305 assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5306 EVT MiddleVT = MVT::v4i32;
5307 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
5308 Item = getShuffleVectorZeroOrUndef(Item, 0, true,
5309 Subtarget->hasXMMInt(), DAG);
5310 return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5314 // Is it a vector logical left shift?
5315 if (NumElems == 2 && Idx == 1 &&
5316 X86::isZeroNode(Op.getOperand(0)) &&
5317 !X86::isZeroNode(Op.getOperand(1))) {
5318 unsigned NumBits = VT.getSizeInBits();
5319 return getVShift(true, VT,
5320 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5321 VT, Op.getOperand(1)),
5322 NumBits/2, DAG, *this, dl);
5325 if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5328 // Otherwise, if this is a vector with i32 or f32 elements, and the element
5329 // is a non-constant being inserted into an element other than the low one,
5330 // we can't use a constant pool load. Instead, use SCALAR_TO_VECTOR (aka
5331 // movd/movss) to move this into the low element, then shuffle it into
5333 if (EVTBits == 32) {
5334 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5336 // Turn it into a shuffle of zero and zero-extended scalar to vector.
5337 Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
5338 Subtarget->hasXMMInt(), DAG);
5339 SmallVector<int, 8> MaskVec;
5340 for (unsigned i = 0; i < NumElems; i++)
5341 MaskVec.push_back(i == Idx ? 0 : 1);
5342 return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5346 // Splat is obviously ok. Let legalizer expand it to a shuffle.
5347 if (Values.size() == 1) {
5348 if (EVTBits == 32) {
5349 // Instead of a shuffle like this:
5350 // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5351 // Check if it's possible to issue this instead.
5352 // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5353 unsigned Idx = CountTrailingZeros_32(NonZeros);
5354 SDValue Item = Op.getOperand(Idx);
5355 if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5356 return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5361 // A vector full of immediates; various special cases are already
5362 // handled, so this is best done with a single constant-pool load.
5366 // For AVX-length vectors, build the individual 128-bit pieces and use
5367 // shuffles to put them in place.
5368 if (VT.getSizeInBits() == 256 && !ISD::isBuildVectorAllZeros(Op.getNode())) {
5369 SmallVector<SDValue, 32> V;
5370 for (unsigned i = 0; i < NumElems; ++i)
5371 V.push_back(Op.getOperand(i));
5373 EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5375 // Build both the lower and upper subvector.
5376 SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5377 SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5380 // Recreate the wider vector with the lower and upper part.
5381 SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Lower,
5382 DAG.getConstant(0, MVT::i32), DAG, dl);
5383 return Insert128BitVector(Vec, Upper, DAG.getConstant(NumElems/2, MVT::i32),
5387 // Let legalizer expand 2-wide build_vectors.
5388 if (EVTBits == 64) {
5389 if (NumNonZero == 1) {
5390 // One half is zero or undef.
5391 unsigned Idx = CountTrailingZeros_32(NonZeros);
5392 SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5393 Op.getOperand(Idx));
5394 return getShuffleVectorZeroOrUndef(V2, Idx, true,
5395 Subtarget->hasXMMInt(), DAG);
5400 // If element VT is < 32 bits, convert it to inserts into a zero vector.
5401 if (EVTBits == 8 && NumElems == 16) {
5402 SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5404 if (V.getNode()) return V;
5407 if (EVTBits == 16 && NumElems == 8) {
5408 SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5410 if (V.getNode()) return V;
5413 // If element VT is == 32 bits, turn it into a number of shuffles.
5414 SmallVector<SDValue, 8> V;
5416 if (NumElems == 4 && NumZero > 0) {
5417 for (unsigned i = 0; i < 4; ++i) {
5418 bool isZero = !(NonZeros & (1 << i));
5420 V[i] = getZeroVector(VT, Subtarget->hasXMMInt(), DAG, dl);
5422 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5425 for (unsigned i = 0; i < 2; ++i) {
5426 switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5429 V[i] = V[i*2]; // Must be a zero vector.
5432 V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5435 V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5438 V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5443 SmallVector<int, 8> MaskVec;
5444 bool Reverse = (NonZeros & 0x3) == 2;
5445 for (unsigned i = 0; i < 2; ++i)
5446 MaskVec.push_back(Reverse ? 1-i : i);
5447 Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5448 for (unsigned i = 0; i < 2; ++i)
5449 MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
5450 return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5453 if (Values.size() > 1 && VT.getSizeInBits() == 128) {
5454 // Check for a build vector of consecutive loads.
5455 for (unsigned i = 0; i < NumElems; ++i)
5456 V[i] = Op.getOperand(i);
5458 // Check for elements which are consecutive loads.
5459 SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5463 // For SSE 4.1, use insertps to put the high elements into the low element.
5464 if (getSubtarget()->hasSSE41() || getSubtarget()->hasAVX()) {
5466 if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5467 Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5469 Result = DAG.getUNDEF(VT);
5471 for (unsigned i = 1; i < NumElems; ++i) {
5472 if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5473 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5474 Op.getOperand(i), DAG.getIntPtrConstant(i));
5479 // Otherwise, expand into a number of unpckl*, start by extending each of
5480 // our (non-undef) elements to the full vector width with the element in the
5481 // bottom slot of the vector (which generates no code for SSE).
5482 for (unsigned i = 0; i < NumElems; ++i) {
5483 if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5484 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5486 V[i] = DAG.getUNDEF(VT);
5489 // Next, we iteratively mix elements, e.g. for v4f32:
5490 // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5491 // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5492 // Step 2: unpcklps X, Y ==> <3, 2, 1, 0>
5493 unsigned EltStride = NumElems >> 1;
5494 while (EltStride != 0) {
5495 for (unsigned i = 0; i < EltStride; ++i) {
5496 // If V[i+EltStride] is undef and this is the first round of mixing,
5497 // then it is safe to just drop this shuffle: V[i] is already in the
5498 // right place, the one element (since it's the first round) being
5499 // inserted as undef can be dropped. This isn't safe for successive
5500 // rounds because they will permute elements within both vectors.
5501 if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5502 EltStride == NumElems/2)
5505 V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5514 // LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5515 // them in a MMX register. This is better than doing a stack convert.
5516 static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5517 DebugLoc dl = Op.getDebugLoc();
5518 EVT ResVT = Op.getValueType();
5520 assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5521 ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5523 SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5524 SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5525 InVec = Op.getOperand(1);
5526 if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5527 unsigned NumElts = ResVT.getVectorNumElements();
5528 VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5529 VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5530 InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5532 InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5533 SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5534 Mask[0] = 0; Mask[1] = 2;
5535 VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5537 return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5540 // LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5541 // to create 256-bit vectors from two other 128-bit ones.
5542 static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5543 DebugLoc dl = Op.getDebugLoc();
5544 EVT ResVT = Op.getValueType();
5546 assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5548 SDValue V1 = Op.getOperand(0);
5549 SDValue V2 = Op.getOperand(1);
5550 unsigned NumElems = ResVT.getVectorNumElements();
5552 SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, ResVT), V1,
5553 DAG.getConstant(0, MVT::i32), DAG, dl);
5554 return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5559 X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5560 EVT ResVT = Op.getValueType();
5562 assert(Op.getNumOperands() == 2);
5563 assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5564 "Unsupported CONCAT_VECTORS for value type");
5566 // We support concatenate two MMX registers and place them in a MMX register.
5567 // This is better than doing a stack convert.
5568 if (ResVT.is128BitVector())
5569 return LowerMMXCONCAT_VECTORS(Op, DAG);
5571 // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5572 // from two other 128-bit ones.
5573 return LowerAVXCONCAT_VECTORS(Op, DAG);
5576 // v8i16 shuffles - Prefer shuffles in the following order:
5577 // 1. [all] pshuflw, pshufhw, optional move
5578 // 2. [ssse3] 1 x pshufb
5579 // 3. [ssse3] 2 x pshufb + 1 x por
5580 // 4. [all] mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5582 X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5583 SelectionDAG &DAG) const {
5584 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5585 SDValue V1 = SVOp->getOperand(0);
5586 SDValue V2 = SVOp->getOperand(1);
5587 DebugLoc dl = SVOp->getDebugLoc();
5588 SmallVector<int, 8> MaskVals;
5590 // Determine if more than 1 of the words in each of the low and high quadwords
5591 // of the result come from the same quadword of one of the two inputs. Undef
5592 // mask values count as coming from any quadword, for better codegen.
5593 unsigned LoQuad[] = { 0, 0, 0, 0 };
5594 unsigned HiQuad[] = { 0, 0, 0, 0 };
5595 BitVector InputQuads(4);
5596 for (unsigned i = 0; i < 8; ++i) {
5597 unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5598 int EltIdx = SVOp->getMaskElt(i);
5599 MaskVals.push_back(EltIdx);
5608 InputQuads.set(EltIdx / 4);
5611 int BestLoQuad = -1;
5612 unsigned MaxQuad = 1;
5613 for (unsigned i = 0; i < 4; ++i) {
5614 if (LoQuad[i] > MaxQuad) {
5616 MaxQuad = LoQuad[i];
5620 int BestHiQuad = -1;
5622 for (unsigned i = 0; i < 4; ++i) {
5623 if (HiQuad[i] > MaxQuad) {
5625 MaxQuad = HiQuad[i];
5629 // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5630 // of the two input vectors, shuffle them into one input vector so only a
5631 // single pshufb instruction is necessary. If There are more than 2 input
5632 // quads, disable the next transformation since it does not help SSSE3.
5633 bool V1Used = InputQuads[0] || InputQuads[1];
5634 bool V2Used = InputQuads[2] || InputQuads[3];
5635 if (Subtarget->hasSSSE3() || Subtarget->hasAVX()) {
5636 if (InputQuads.count() == 2 && V1Used && V2Used) {
5637 BestLoQuad = InputQuads.find_first();
5638 BestHiQuad = InputQuads.find_next(BestLoQuad);
5640 if (InputQuads.count() > 2) {
5646 // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5647 // the shuffle mask. If a quad is scored as -1, that means that it contains
5648 // words from all 4 input quadwords.
5650 if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5651 SmallVector<int, 8> MaskV;
5652 MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
5653 MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
5654 NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5655 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5656 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5657 NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5659 // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5660 // source words for the shuffle, to aid later transformations.
5661 bool AllWordsInNewV = true;
5662 bool InOrder[2] = { true, true };
5663 for (unsigned i = 0; i != 8; ++i) {
5664 int idx = MaskVals[i];
5666 InOrder[i/4] = false;
5667 if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5669 AllWordsInNewV = false;
5673 bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5674 if (AllWordsInNewV) {
5675 for (int i = 0; i != 8; ++i) {
5676 int idx = MaskVals[i];
5679 idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5680 if ((idx != i) && idx < 4)
5682 if ((idx != i) && idx > 3)
5691 // If we've eliminated the use of V2, and the new mask is a pshuflw or
5692 // pshufhw, that's as cheap as it gets. Return the new shuffle.
5693 if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5694 unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5695 unsigned TargetMask = 0;
5696 NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5697 DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5698 TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
5699 X86::getShufflePSHUFLWImmediate(NewV.getNode());
5700 V1 = NewV.getOperand(0);
5701 return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5705 // If we have SSSE3, and all words of the result are from 1 input vector,
5706 // case 2 is generated, otherwise case 3 is generated. If no SSSE3
5707 // is present, fall back to case 4.
5708 if (Subtarget->hasSSSE3() || Subtarget->hasAVX()) {
5709 SmallVector<SDValue,16> pshufbMask;
5711 // If we have elements from both input vectors, set the high bit of the
5712 // shuffle mask element to zero out elements that come from V2 in the V1
5713 // mask, and elements that come from V1 in the V2 mask, so that the two
5714 // results can be OR'd together.
5715 bool TwoInputs = V1Used && V2Used;
5716 for (unsigned i = 0; i != 8; ++i) {
5717 int EltIdx = MaskVals[i] * 2;
5718 if (TwoInputs && (EltIdx >= 16)) {
5719 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5720 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5723 pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5724 pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5726 V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5727 V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5728 DAG.getNode(ISD::BUILD_VECTOR, dl,
5729 MVT::v16i8, &pshufbMask[0], 16));
5731 return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5733 // Calculate the shuffle mask for the second input, shuffle it, and
5734 // OR it with the first shuffled input.
5736 for (unsigned i = 0; i != 8; ++i) {
5737 int EltIdx = MaskVals[i] * 2;
5739 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5740 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5743 pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5744 pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5746 V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5747 V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5748 DAG.getNode(ISD::BUILD_VECTOR, dl,
5749 MVT::v16i8, &pshufbMask[0], 16));
5750 V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5751 return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5754 // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5755 // and update MaskVals with new element order.
5756 BitVector InOrder(8);
5757 if (BestLoQuad >= 0) {
5758 SmallVector<int, 8> MaskV;
5759 for (int i = 0; i != 4; ++i) {
5760 int idx = MaskVals[i];
5762 MaskV.push_back(-1);
5764 } else if ((idx / 4) == BestLoQuad) {
5765 MaskV.push_back(idx & 3);
5768 MaskV.push_back(-1);
5771 for (unsigned i = 4; i != 8; ++i)
5773 NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5776 if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE &&
5777 (Subtarget->hasSSSE3() || Subtarget->hasAVX()))
5778 NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5780 X86::getShufflePSHUFLWImmediate(NewV.getNode()),
5784 // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5785 // and update MaskVals with the new element order.
5786 if (BestHiQuad >= 0) {
5787 SmallVector<int, 8> MaskV;
5788 for (unsigned i = 0; i != 4; ++i)
5790 for (unsigned i = 4; i != 8; ++i) {
5791 int idx = MaskVals[i];
5793 MaskV.push_back(-1);
5795 } else if ((idx / 4) == BestHiQuad) {
5796 MaskV.push_back((idx & 3) + 4);
5799 MaskV.push_back(-1);
5802 NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5805 if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE &&
5806 (Subtarget->hasSSSE3() || Subtarget->hasAVX()))
5807 NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5809 X86::getShufflePSHUFHWImmediate(NewV.getNode()),
5813 // In case BestHi & BestLo were both -1, which means each quadword has a word
5814 // from each of the four input quadwords, calculate the InOrder bitvector now
5815 // before falling through to the insert/extract cleanup.
5816 if (BestLoQuad == -1 && BestHiQuad == -1) {
5818 for (int i = 0; i != 8; ++i)
5819 if (MaskVals[i] < 0 || MaskVals[i] == i)
5823 // The other elements are put in the right place using pextrw and pinsrw.
5824 for (unsigned i = 0; i != 8; ++i) {
5827 int EltIdx = MaskVals[i];
5830 SDValue ExtOp = (EltIdx < 8)
5831 ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5832 DAG.getIntPtrConstant(EltIdx))
5833 : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5834 DAG.getIntPtrConstant(EltIdx - 8));
5835 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5836 DAG.getIntPtrConstant(i));
5841 // v16i8 shuffles - Prefer shuffles in the following order:
5842 // 1. [ssse3] 1 x pshufb
5843 // 2. [ssse3] 2 x pshufb + 1 x por
5844 // 3. [all] v8i16 shuffle + N x pextrw + rotate + pinsrw
5846 SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5848 const X86TargetLowering &TLI) {
5849 SDValue V1 = SVOp->getOperand(0);
5850 SDValue V2 = SVOp->getOperand(1);
5851 DebugLoc dl = SVOp->getDebugLoc();
5852 SmallVector<int, 16> MaskVals;
5853 SVOp->getMask(MaskVals);
5855 // If we have SSSE3, case 1 is generated when all result bytes come from
5856 // one of the inputs. Otherwise, case 2 is generated. If no SSSE3 is
5857 // present, fall back to case 3.
5858 // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5861 for (unsigned i = 0; i < 16; ++i) {
5862 int EltIdx = MaskVals[i];
5871 // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5872 if (TLI.getSubtarget()->hasSSSE3() || TLI.getSubtarget()->hasAVX()) {
5873 SmallVector<SDValue,16> pshufbMask;
5875 // If all result elements are from one input vector, then only translate
5876 // undef mask values to 0x80 (zero out result) in the pshufb mask.
5878 // Otherwise, we have elements from both input vectors, and must zero out
5879 // elements that come from V2 in the first mask, and V1 in the second mask
5880 // so that we can OR them together.
5881 bool TwoInputs = !(V1Only || V2Only);
5882 for (unsigned i = 0; i != 16; ++i) {
5883 int EltIdx = MaskVals[i];
5884 if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5885 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5888 pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5890 // If all the elements are from V2, assign it to V1 and return after
5891 // building the first pshufb.
5894 V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5895 DAG.getNode(ISD::BUILD_VECTOR, dl,
5896 MVT::v16i8, &pshufbMask[0], 16));
5900 // Calculate the shuffle mask for the second input, shuffle it, and
5901 // OR it with the first shuffled input.
5903 for (unsigned i = 0; i != 16; ++i) {
5904 int EltIdx = MaskVals[i];
5906 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5909 pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5911 V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5912 DAG.getNode(ISD::BUILD_VECTOR, dl,
5913 MVT::v16i8, &pshufbMask[0], 16));
5914 return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5917 // No SSSE3 - Calculate in place words and then fix all out of place words
5918 // With 0-16 extracts & inserts. Worst case is 16 bytes out of order from
5919 // the 16 different words that comprise the two doublequadword input vectors.
5920 V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5921 V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5922 SDValue NewV = V2Only ? V2 : V1;
5923 for (int i = 0; i != 8; ++i) {
5924 int Elt0 = MaskVals[i*2];
5925 int Elt1 = MaskVals[i*2+1];
5927 // This word of the result is all undef, skip it.
5928 if (Elt0 < 0 && Elt1 < 0)
5931 // This word of the result is already in the correct place, skip it.
5932 if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5934 if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5937 SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5938 SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5941 // If Elt0 and Elt1 are defined, are consecutive, and can be load
5942 // using a single extract together, load it and store it.
5943 if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5944 InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5945 DAG.getIntPtrConstant(Elt1 / 2));
5946 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5947 DAG.getIntPtrConstant(i));
5951 // If Elt1 is defined, extract it from the appropriate source. If the
5952 // source byte is not also odd, shift the extracted word left 8 bits
5953 // otherwise clear the bottom 8 bits if we need to do an or.
5955 InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5956 DAG.getIntPtrConstant(Elt1 / 2));
5957 if ((Elt1 & 1) == 0)
5958 InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5960 TLI.getShiftAmountTy(InsElt.getValueType())));
5962 InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5963 DAG.getConstant(0xFF00, MVT::i16));
5965 // If Elt0 is defined, extract it from the appropriate source. If the
5966 // source byte is not also even, shift the extracted word right 8 bits. If
5967 // Elt1 was also defined, OR the extracted values together before
5968 // inserting them in the result.
5970 SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5971 Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5972 if ((Elt0 & 1) != 0)
5973 InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5975 TLI.getShiftAmountTy(InsElt0.getValueType())));
5977 InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5978 DAG.getConstant(0x00FF, MVT::i16));
5979 InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5982 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5983 DAG.getIntPtrConstant(i));
5985 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5988 /// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5989 /// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5990 /// done when every pair / quad of shuffle mask elements point to elements in
5991 /// the right sequence. e.g.
5992 /// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5994 SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5995 SelectionDAG &DAG, DebugLoc dl) {
5996 EVT VT = SVOp->getValueType(0);
5997 SDValue V1 = SVOp->getOperand(0);
5998 SDValue V2 = SVOp->getOperand(1);
5999 unsigned NumElems = VT.getVectorNumElements();
6000 unsigned NewWidth = (NumElems == 4) ? 2 : 4;
6002 switch (VT.getSimpleVT().SimpleTy) {
6003 default: assert(false && "Unexpected!");
6004 case MVT::v4f32: NewVT = MVT::v2f64; break;
6005 case MVT::v4i32: NewVT = MVT::v2i64; break;
6006 case MVT::v8i16: NewVT = MVT::v4i32; break;
6007 case MVT::v16i8: NewVT = MVT::v4i32; break;
6010 int Scale = NumElems / NewWidth;
6011 SmallVector<int, 8> MaskVec;
6012 for (unsigned i = 0; i < NumElems; i += Scale) {
6014 for (int j = 0; j < Scale; ++j) {
6015 int EltIdx = SVOp->getMaskElt(i+j);
6019 StartIdx = EltIdx - (EltIdx % Scale);
6020 if (EltIdx != StartIdx + j)
6024 MaskVec.push_back(-1);
6026 MaskVec.push_back(StartIdx / Scale);
6029 V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
6030 V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
6031 return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
6034 /// getVZextMovL - Return a zero-extending vector move low node.
6036 static SDValue getVZextMovL(EVT VT, EVT OpVT,
6037 SDValue SrcOp, SelectionDAG &DAG,
6038 const X86Subtarget *Subtarget, DebugLoc dl) {
6039 if (VT == MVT::v2f64 || VT == MVT::v4f32) {
6040 LoadSDNode *LD = NULL;
6041 if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
6042 LD = dyn_cast<LoadSDNode>(SrcOp);
6044 // movssrr and movsdrr do not clear top bits. Try to use movd, movq
6046 MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
6047 if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
6048 SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
6049 SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
6050 SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
6052 OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
6053 return DAG.getNode(ISD::BITCAST, dl, VT,
6054 DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6055 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6063 return DAG.getNode(ISD::BITCAST, dl, VT,
6064 DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6065 DAG.getNode(ISD::BITCAST, dl,
6069 /// areShuffleHalvesWithinDisjointLanes - Check whether each half of a vector
6070 /// shuffle node referes to only one lane in the sources.
6071 static bool areShuffleHalvesWithinDisjointLanes(ShuffleVectorSDNode *SVOp) {
6072 EVT VT = SVOp->getValueType(0);
6073 int NumElems = VT.getVectorNumElements();
6074 int HalfSize = NumElems/2;
6075 SmallVector<int, 16> M;
6077 bool MatchA = false, MatchB = false;
6079 for (int l = 0; l < NumElems*2; l += HalfSize) {
6080 if (isUndefOrInRange(M, 0, HalfSize, l, l+HalfSize)) {
6086 for (int l = 0; l < NumElems*2; l += HalfSize) {
6087 if (isUndefOrInRange(M, HalfSize, HalfSize, l, l+HalfSize)) {
6093 return MatchA && MatchB;
6096 /// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
6097 /// which could not be matched by any known target speficic shuffle
6099 LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6100 if (areShuffleHalvesWithinDisjointLanes(SVOp)) {
6101 // If each half of a vector shuffle node referes to only one lane in the
6102 // source vectors, extract each used 128-bit lane and shuffle them using
6103 // 128-bit shuffles. Then, concatenate the results. Otherwise leave
6104 // the work to the legalizer.
6105 DebugLoc dl = SVOp->getDebugLoc();
6106 EVT VT = SVOp->getValueType(0);
6107 int NumElems = VT.getVectorNumElements();
6108 int HalfSize = NumElems/2;
6110 // Extract the reference for each half
6111 int FstVecExtractIdx = 0, SndVecExtractIdx = 0;
6112 int FstVecOpNum = 0, SndVecOpNum = 0;
6113 for (int i = 0; i < HalfSize; ++i) {
6114 int Elt = SVOp->getMaskElt(i);
6115 if (SVOp->getMaskElt(i) < 0)
6117 FstVecOpNum = Elt/NumElems;
6118 FstVecExtractIdx = Elt % NumElems < HalfSize ? 0 : HalfSize;
6121 for (int i = HalfSize; i < NumElems; ++i) {
6122 int Elt = SVOp->getMaskElt(i);
6123 if (SVOp->getMaskElt(i) < 0)
6125 SndVecOpNum = Elt/NumElems;
6126 SndVecExtractIdx = Elt % NumElems < HalfSize ? 0 : HalfSize;
6130 // Extract the subvectors
6131 SDValue V1 = Extract128BitVector(SVOp->getOperand(FstVecOpNum),
6132 DAG.getConstant(FstVecExtractIdx, MVT::i32), DAG, dl);
6133 SDValue V2 = Extract128BitVector(SVOp->getOperand(SndVecOpNum),
6134 DAG.getConstant(SndVecExtractIdx, MVT::i32), DAG, dl);
6136 // Generate 128-bit shuffles
6137 SmallVector<int, 16> MaskV1, MaskV2;
6138 for (int i = 0; i < HalfSize; ++i) {
6139 int Elt = SVOp->getMaskElt(i);
6140 MaskV1.push_back(Elt < 0 ? Elt : Elt % HalfSize);
6142 for (int i = HalfSize; i < NumElems; ++i) {
6143 int Elt = SVOp->getMaskElt(i);
6144 MaskV2.push_back(Elt < 0 ? Elt : Elt % HalfSize);
6147 EVT NVT = V1.getValueType();
6148 V1 = DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &MaskV1[0]);
6149 V2 = DAG.getVectorShuffle(NVT, dl, V2, DAG.getUNDEF(NVT), &MaskV2[0]);
6151 // Concatenate the result back
6152 SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), V1,
6153 DAG.getConstant(0, MVT::i32), DAG, dl);
6154 return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
6161 /// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6162 /// 4 elements, and match them with several different shuffle types.
6164 LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6165 SDValue V1 = SVOp->getOperand(0);
6166 SDValue V2 = SVOp->getOperand(1);
6167 DebugLoc dl = SVOp->getDebugLoc();
6168 EVT VT = SVOp->getValueType(0);
6170 assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
6172 SmallVector<std::pair<int, int>, 8> Locs;
6174 SmallVector<int, 8> Mask1(4U, -1);
6175 SmallVector<int, 8> PermMask;
6176 SVOp->getMask(PermMask);
6180 for (unsigned i = 0; i != 4; ++i) {
6181 int Idx = PermMask[i];
6183 Locs[i] = std::make_pair(-1, -1);
6185 assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6187 Locs[i] = std::make_pair(0, NumLo);
6191 Locs[i] = std::make_pair(1, NumHi);
6193 Mask1[2+NumHi] = Idx;
6199 if (NumLo <= 2 && NumHi <= 2) {
6200 // If no more than two elements come from either vector. This can be
6201 // implemented with two shuffles. First shuffle gather the elements.
6202 // The second shuffle, which takes the first shuffle as both of its
6203 // vector operands, put the elements into the right order.
6204 V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6206 SmallVector<int, 8> Mask2(4U, -1);
6208 for (unsigned i = 0; i != 4; ++i) {
6209 if (Locs[i].first == -1)
6212 unsigned Idx = (i < 2) ? 0 : 4;
6213 Idx += Locs[i].first * 2 + Locs[i].second;
6218 return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6219 } else if (NumLo == 3 || NumHi == 3) {
6220 // Otherwise, we must have three elements from one vector, call it X, and
6221 // one element from the other, call it Y. First, use a shufps to build an
6222 // intermediate vector with the one element from Y and the element from X
6223 // that will be in the same half in the final destination (the indexes don't
6224 // matter). Then, use a shufps to build the final vector, taking the half
6225 // containing the element from Y from the intermediate, and the other half
6228 // Normalize it so the 3 elements come from V1.
6229 CommuteVectorShuffleMask(PermMask, VT);
6233 // Find the element from V2.
6235 for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6236 int Val = PermMask[HiIndex];
6243 Mask1[0] = PermMask[HiIndex];
6245 Mask1[2] = PermMask[HiIndex^1];
6247 V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6250 Mask1[0] = PermMask[0];
6251 Mask1[1] = PermMask[1];
6252 Mask1[2] = HiIndex & 1 ? 6 : 4;
6253 Mask1[3] = HiIndex & 1 ? 4 : 6;
6254 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6256 Mask1[0] = HiIndex & 1 ? 2 : 0;
6257 Mask1[1] = HiIndex & 1 ? 0 : 2;
6258 Mask1[2] = PermMask[2];
6259 Mask1[3] = PermMask[3];
6264 return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6268 // Break it into (shuffle shuffle_hi, shuffle_lo).
6271 SmallVector<int,8> LoMask(4U, -1);
6272 SmallVector<int,8> HiMask(4U, -1);
6274 SmallVector<int,8> *MaskPtr = &LoMask;
6275 unsigned MaskIdx = 0;
6278 for (unsigned i = 0; i != 4; ++i) {
6285 int Idx = PermMask[i];
6287 Locs[i] = std::make_pair(-1, -1);
6288 } else if (Idx < 4) {
6289 Locs[i] = std::make_pair(MaskIdx, LoIdx);
6290 (*MaskPtr)[LoIdx] = Idx;
6293 Locs[i] = std::make_pair(MaskIdx, HiIdx);
6294 (*MaskPtr)[HiIdx] = Idx;
6299 SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6300 SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6301 SmallVector<int, 8> MaskOps;
6302 for (unsigned i = 0; i != 4; ++i) {
6303 if (Locs[i].first == -1) {
6304 MaskOps.push_back(-1);
6306 unsigned Idx = Locs[i].first * 4 + Locs[i].second;
6307 MaskOps.push_back(Idx);
6310 return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6313 static bool MayFoldVectorLoad(SDValue V) {
6314 if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6315 V = V.getOperand(0);
6316 if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6317 V = V.getOperand(0);
6318 if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6319 V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6320 // BUILD_VECTOR (load), undef
6321 V = V.getOperand(0);
6327 // FIXME: the version above should always be used. Since there's
6328 // a bug where several vector shuffles can't be folded because the
6329 // DAG is not updated during lowering and a node claims to have two
6330 // uses while it only has one, use this version, and let isel match
6331 // another instruction if the load really happens to have more than
6332 // one use. Remove this version after this bug get fixed.
6333 // rdar://8434668, PR8156
6334 static bool RelaxedMayFoldVectorLoad(SDValue V) {
6335 if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6336 V = V.getOperand(0);
6337 if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6338 V = V.getOperand(0);
6339 if (ISD::isNormalLoad(V.getNode()))
6344 /// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
6345 /// a vector extract, and if both can be later optimized into a single load.
6346 /// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
6347 /// here because otherwise a target specific shuffle node is going to be
6348 /// emitted for this shuffle, and the optimization not done.
6349 /// FIXME: This is probably not the best approach, but fix the problem
6350 /// until the right path is decided.
6352 bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
6353 const TargetLowering &TLI) {
6354 EVT VT = V.getValueType();
6355 ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
6357 // Be sure that the vector shuffle is present in a pattern like this:
6358 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
6362 SDNode *N = *V.getNode()->use_begin();
6363 if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6366 SDValue EltNo = N->getOperand(1);
6367 if (!isa<ConstantSDNode>(EltNo))
6370 // If the bit convert changed the number of elements, it is unsafe
6371 // to examine the mask.
6372 bool HasShuffleIntoBitcast = false;
6373 if (V.getOpcode() == ISD::BITCAST) {
6374 EVT SrcVT = V.getOperand(0).getValueType();
6375 if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
6377 V = V.getOperand(0);
6378 HasShuffleIntoBitcast = true;
6381 // Select the input vector, guarding against out of range extract vector.
6382 unsigned NumElems = VT.getVectorNumElements();
6383 unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
6384 int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
6385 V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
6387 // Skip one more bit_convert if necessary
6388 if (V.getOpcode() == ISD::BITCAST)
6389 V = V.getOperand(0);
6391 if (ISD::isNormalLoad(V.getNode())) {
6392 // Is the original load suitable?
6393 LoadSDNode *LN0 = cast<LoadSDNode>(V);
6395 // FIXME: avoid the multi-use bug that is preventing lots of
6396 // of foldings to be detected, this is still wrong of course, but
6397 // give the temporary desired behavior, and if it happens that
6398 // the load has real more uses, during isel it will not fold, and
6399 // will generate poor code.
6400 if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse()
6403 if (!HasShuffleIntoBitcast)
6406 // If there's a bitcast before the shuffle, check if the load type and
6407 // alignment is valid.
6408 unsigned Align = LN0->getAlignment();
6410 TLI.getTargetData()->getABITypeAlignment(
6411 VT.getTypeForEVT(*DAG.getContext()));
6413 if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
6421 SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6422 EVT VT = Op.getValueType();
6424 // Canonizalize to v2f64.
6425 V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6426 return DAG.getNode(ISD::BITCAST, dl, VT,
6427 getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6432 SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6434 SDValue V1 = Op.getOperand(0);
6435 SDValue V2 = Op.getOperand(1);
6436 EVT VT = Op.getValueType();
6438 assert(VT != MVT::v2i64 && "unsupported shuffle type");
6440 if (HasXMMInt && VT == MVT::v2f64)
6441 return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6443 // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6444 return DAG.getNode(ISD::BITCAST, dl, VT,
6445 getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6446 DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6447 DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6451 SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6452 SDValue V1 = Op.getOperand(0);
6453 SDValue V2 = Op.getOperand(1);
6454 EVT VT = Op.getValueType();
6456 assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6457 "unsupported shuffle type");
6459 if (V2.getOpcode() == ISD::UNDEF)
6463 return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6466 static inline unsigned getSHUFPOpcode(EVT VT) {
6467 switch(VT.getSimpleVT().SimpleTy) {
6468 case MVT::v8i32: // Use fp unit for int unpack.
6470 case MVT::v4i32: // Use fp unit for int unpack.
6471 case MVT::v4f32: return X86ISD::SHUFPS;
6472 case MVT::v4i64: // Use fp unit for int unpack.
6474 case MVT::v2i64: // Use fp unit for int unpack.
6475 case MVT::v2f64: return X86ISD::SHUFPD;
6477 llvm_unreachable("Unknown type for shufp*");
6483 SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasXMMInt) {
6484 SDValue V1 = Op.getOperand(0);
6485 SDValue V2 = Op.getOperand(1);
6486 EVT VT = Op.getValueType();
6487 unsigned NumElems = VT.getVectorNumElements();
6489 // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6490 // operand of these instructions is only memory, so check if there's a
6491 // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6493 bool CanFoldLoad = false;
6495 // Trivial case, when V2 comes from a load.
6496 if (MayFoldVectorLoad(V2))
6499 // When V1 is a load, it can be folded later into a store in isel, example:
6500 // (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6502 // (MOVLPSmr addr:$src1, VR128:$src2)
6503 // So, recognize this potential and also use MOVLPS or MOVLPD
6504 else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6507 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6509 if (HasXMMInt && NumElems == 2)
6510 return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6513 // If we don't care about the second element, procede to use movss.
6514 if (SVOp->getMaskElt(1) != -1)
6515 return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6518 // movl and movlp will both match v2i64, but v2i64 is never matched by
6519 // movl earlier because we make it strict to avoid messing with the movlp load
6520 // folding logic (see the code above getMOVLP call). Match it here then,
6521 // this is horrible, but will stay like this until we move all shuffle
6522 // matching to x86 specific nodes. Note that for the 1st condition all
6523 // types are matched with movsd.
6525 // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6526 // as to remove this logic from here, as much as possible
6527 if (NumElems == 2 || !X86::isMOVLMask(SVOp))
6528 return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6529 return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6532 assert(VT != MVT::v4i32 && "unsupported shuffle type");
6534 // Invert the operand order and use SHUFPS to match it.
6535 return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V2, V1,
6536 X86::getShuffleSHUFImmediate(SVOp), DAG);
6539 static inline unsigned getUNPCKLOpcode(EVT VT) {
6540 switch(VT.getSimpleVT().SimpleTy) {
6541 case MVT::v4i32: return X86ISD::PUNPCKLDQ;
6542 case MVT::v2i64: return X86ISD::PUNPCKLQDQ;
6543 case MVT::v4f32: return X86ISD::UNPCKLPS;
6544 case MVT::v2f64: return X86ISD::UNPCKLPD;
6545 case MVT::v8i32: // Use fp unit for int unpack.
6546 case MVT::v8f32: return X86ISD::VUNPCKLPSY;
6547 case MVT::v4i64: // Use fp unit for int unpack.
6548 case MVT::v4f64: return X86ISD::VUNPCKLPDY;
6549 case MVT::v16i8: return X86ISD::PUNPCKLBW;
6550 case MVT::v8i16: return X86ISD::PUNPCKLWD;
6552 llvm_unreachable("Unknown type for unpckl");
6557 static inline unsigned getUNPCKHOpcode(EVT VT) {
6558 switch(VT.getSimpleVT().SimpleTy) {
6559 case MVT::v4i32: return X86ISD::PUNPCKHDQ;
6560 case MVT::v2i64: return X86ISD::PUNPCKHQDQ;
6561 case MVT::v4f32: return X86ISD::UNPCKHPS;
6562 case MVT::v2f64: return X86ISD::UNPCKHPD;
6563 case MVT::v8i32: // Use fp unit for int unpack.
6564 case MVT::v8f32: return X86ISD::VUNPCKHPSY;
6565 case MVT::v4i64: // Use fp unit for int unpack.
6566 case MVT::v4f64: return X86ISD::VUNPCKHPDY;
6567 case MVT::v16i8: return X86ISD::PUNPCKHBW;
6568 case MVT::v8i16: return X86ISD::PUNPCKHWD;
6570 llvm_unreachable("Unknown type for unpckh");
6575 static inline unsigned getVPERMILOpcode(EVT VT) {
6576 switch(VT.getSimpleVT().SimpleTy) {
6578 case MVT::v4f32: return X86ISD::VPERMILPS;
6580 case MVT::v2f64: return X86ISD::VPERMILPD;
6582 case MVT::v8f32: return X86ISD::VPERMILPSY;
6584 case MVT::v4f64: return X86ISD::VPERMILPDY;
6586 llvm_unreachable("Unknown type for vpermil");
6592 SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
6593 const TargetLowering &TLI,
6594 const X86Subtarget *Subtarget) {
6595 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6596 EVT VT = Op.getValueType();
6597 DebugLoc dl = Op.getDebugLoc();
6598 SDValue V1 = Op.getOperand(0);
6599 SDValue V2 = Op.getOperand(1);
6601 if (isZeroShuffle(SVOp))
6602 return getZeroVector(VT, Subtarget->hasXMMInt(), DAG, dl);
6604 // Handle splat operations
6605 if (SVOp->isSplat()) {
6606 unsigned NumElem = VT.getVectorNumElements();
6607 int Size = VT.getSizeInBits();
6608 // Special case, this is the only place now where it's allowed to return
6609 // a vector_shuffle operation without using a target specific node, because
6610 // *hopefully* it will be optimized away by the dag combiner. FIXME: should
6611 // this be moved to DAGCombine instead?
6612 if (NumElem <= 4 && CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
6615 // Use vbroadcast whenever the splat comes from a foldable load
6616 SDValue LD = isVectorBroadcast(Op);
6617 if (Subtarget->hasAVX() && LD.getNode())
6618 return DAG.getNode(X86ISD::VBROADCAST, dl, VT, LD);
6620 // Handle splats by matching through known shuffle masks
6621 if ((Size == 128 && NumElem <= 4) ||
6622 (Size == 256 && NumElem < 8))
6625 // All remaning splats are promoted to target supported vector shuffles.
6626 return PromoteSplat(SVOp, DAG);
6629 // If the shuffle can be profitably rewritten as a narrower shuffle, then
6631 if (VT == MVT::v8i16 || VT == MVT::v16i8) {
6632 SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6633 if (NewOp.getNode())
6634 return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6635 } else if ((VT == MVT::v4i32 ||
6636 (VT == MVT::v4f32 && Subtarget->hasXMMInt()))) {
6637 // FIXME: Figure out a cleaner way to do this.
6638 // Try to make use of movq to zero out the top part.
6639 if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6640 SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6641 if (NewOp.getNode()) {
6642 if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
6643 return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
6644 DAG, Subtarget, dl);
6646 } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6647 SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6648 if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
6649 return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
6650 DAG, Subtarget, dl);
6657 X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6658 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6659 SDValue V1 = Op.getOperand(0);
6660 SDValue V2 = Op.getOperand(1);
6661 EVT VT = Op.getValueType();
6662 DebugLoc dl = Op.getDebugLoc();
6663 unsigned NumElems = VT.getVectorNumElements();
6664 bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6665 bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6666 bool V1IsSplat = false;
6667 bool V2IsSplat = false;
6668 bool HasXMMInt = Subtarget->hasXMMInt();
6669 MachineFunction &MF = DAG.getMachineFunction();
6670 bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6672 assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6674 // Vector shuffle lowering takes 3 steps:
6676 // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6677 // narrowing and commutation of operands should be handled.
6678 // 2) Matching of shuffles with known shuffle masks to x86 target specific
6680 // 3) Rewriting of unmatched masks into new generic shuffle operations,
6681 // so the shuffle can be broken into other shuffles and the legalizer can
6682 // try the lowering again.
6684 // The general idea is that no vector_shuffle operation should be left to
6685 // be matched during isel, all of them must be converted to a target specific
6688 // Normalize the input vectors. Here splats, zeroed vectors, profitable
6689 // narrowing and commutation of operands should be handled. The actual code
6690 // doesn't include all of those, work in progress...
6691 SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
6692 if (NewOp.getNode())
6695 // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6696 // unpckh_undef). Only use pshufd if speed is more important than size.
6697 if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp))
6698 return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
6699 if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp))
6700 return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6702 if (X86::isMOVDDUPMask(SVOp) &&
6703 (Subtarget->hasSSE3() || Subtarget->hasAVX()) &&
6704 V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6705 return getMOVDDup(Op, dl, V1, DAG);
6707 if (X86::isMOVHLPS_v_undef_Mask(SVOp))
6708 return getMOVHighToLow(Op, dl, DAG);
6710 // Use to match splats
6711 if (HasXMMInt && X86::isUNPCKHMask(SVOp) && V2IsUndef &&
6712 (VT == MVT::v2f64 || VT == MVT::v2i64))
6713 return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6715 if (X86::isPSHUFDMask(SVOp)) {
6716 // The actual implementation will match the mask in the if above and then
6717 // during isel it can match several different instructions, not only pshufd
6718 // as its name says, sad but true, emulate the behavior for now...
6719 if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6720 return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6722 unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
6724 if (HasXMMInt && (VT == MVT::v4f32 || VT == MVT::v4i32))
6725 return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6727 return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V1,
6731 // Check if this can be converted into a logical shift.
6732 bool isLeft = false;
6735 bool isShift = getSubtarget()->hasXMMInt() &&
6736 isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6737 if (isShift && ShVal.hasOneUse()) {
6738 // If the shifted value has multiple uses, it may be cheaper to use
6739 // v_set0 + movlhps or movhlps, etc.
6740 EVT EltVT = VT.getVectorElementType();
6741 ShAmt *= EltVT.getSizeInBits();
6742 return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6745 if (X86::isMOVLMask(SVOp)) {
6748 if (ISD::isBuildVectorAllZeros(V1.getNode()))
6749 return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6750 if (!X86::isMOVLPMask(SVOp)) {
6751 if (HasXMMInt && (VT == MVT::v2i64 || VT == MVT::v2f64))
6752 return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6754 if (VT == MVT::v4i32 || VT == MVT::v4f32)
6755 return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6759 // FIXME: fold these into legal mask.
6760 if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp))
6761 return getMOVLowToHigh(Op, dl, DAG, HasXMMInt);
6763 if (X86::isMOVHLPSMask(SVOp))
6764 return getMOVHighToLow(Op, dl, DAG);
6766 if (X86::isMOVSHDUPMask(SVOp, Subtarget))
6767 return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6769 if (X86::isMOVSLDUPMask(SVOp, Subtarget))
6770 return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6772 if (X86::isMOVLPMask(SVOp))
6773 return getMOVLP(Op, dl, DAG, HasXMMInt);
6775 if (ShouldXformToMOVHLPS(SVOp) ||
6776 ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
6777 return CommuteVectorShuffle(SVOp, DAG);
6780 // No better options. Use a vshl / vsrl.
6781 EVT EltVT = VT.getVectorElementType();
6782 ShAmt *= EltVT.getSizeInBits();
6783 return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6786 bool Commuted = false;
6787 // FIXME: This should also accept a bitcast of a splat? Be careful, not
6788 // 1,1,1,1 -> v8i16 though.
6789 V1IsSplat = isSplatVector(V1.getNode());
6790 V2IsSplat = isSplatVector(V2.getNode());
6792 // Canonicalize the splat or undef, if present, to be on the RHS.
6793 if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
6794 Op = CommuteVectorShuffle(SVOp, DAG);
6795 SVOp = cast<ShuffleVectorSDNode>(Op);
6796 V1 = SVOp->getOperand(0);
6797 V2 = SVOp->getOperand(1);
6798 std::swap(V1IsSplat, V2IsSplat);
6799 std::swap(V1IsUndef, V2IsUndef);
6803 if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
6804 // Shuffling low element of v1 into undef, just return v1.
6807 // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6808 // the instruction selector will not match, so get a canonical MOVL with
6809 // swapped operands to undo the commute.
6810 return getMOVL(DAG, dl, VT, V2, V1);
6813 if (X86::isUNPCKLMask(SVOp))
6814 return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V2, DAG);
6816 if (X86::isUNPCKHMask(SVOp))
6817 return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V2, DAG);
6820 // Normalize mask so all entries that point to V2 points to its first
6821 // element then try to match unpck{h|l} again. If match, return a
6822 // new vector_shuffle with the corrected mask.
6823 SDValue NewMask = NormalizeMask(SVOp, DAG);
6824 ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
6825 if (NSVOp != SVOp) {
6826 if (X86::isUNPCKLMask(NSVOp, true)) {
6828 } else if (X86::isUNPCKHMask(NSVOp, true)) {
6835 // Commute is back and try unpck* again.
6836 // FIXME: this seems wrong.
6837 SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
6838 ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
6840 if (X86::isUNPCKLMask(NewSVOp))
6841 return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V2, V1, DAG);
6843 if (X86::isUNPCKHMask(NewSVOp))
6844 return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V2, V1, DAG);
6847 // Normalize the node to match x86 shuffle ops if needed
6848 if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
6849 return CommuteVectorShuffle(SVOp, DAG);
6851 // The checks below are all present in isShuffleMaskLegal, but they are
6852 // inlined here right now to enable us to directly emit target specific
6853 // nodes, and remove one by one until they don't return Op anymore.
6854 SmallVector<int, 16> M;
6857 if (isPALIGNRMask(M, VT, Subtarget->hasSSSE3() || Subtarget->hasAVX()))
6858 return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6859 X86::getShufflePALIGNRImmediate(SVOp),
6862 if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6863 SVOp->getSplatIndex() == 0 && V2IsUndef) {
6864 if (VT == MVT::v2f64)
6865 return getTargetShuffleNode(X86ISD::UNPCKLPD, dl, VT, V1, V1, DAG);
6866 if (VT == MVT::v2i64)
6867 return getTargetShuffleNode(X86ISD::PUNPCKLQDQ, dl, VT, V1, V1, DAG);
6870 if (isPSHUFHWMask(M, VT))
6871 return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6872 X86::getShufflePSHUFHWImmediate(SVOp),
6875 if (isPSHUFLWMask(M, VT))
6876 return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6877 X86::getShufflePSHUFLWImmediate(SVOp),
6880 if (isSHUFPMask(M, VT))
6881 return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6882 X86::getShuffleSHUFImmediate(SVOp), DAG);
6884 if (X86::isUNPCKL_v_undef_Mask(SVOp))
6885 return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
6886 if (X86::isUNPCKH_v_undef_Mask(SVOp))
6887 return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6889 //===--------------------------------------------------------------------===//
6890 // Generate target specific nodes for 128 or 256-bit shuffles only
6891 // supported in the AVX instruction set.
6894 // Handle VMOVDDUPY permutations
6895 if (isMOVDDUPYMask(SVOp, Subtarget))
6896 return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6898 // Handle VPERMILPS* permutations
6899 if (isVPERMILPSMask(M, VT, Subtarget))
6900 return getTargetShuffleNode(getVPERMILOpcode(VT), dl, VT, V1,
6901 getShuffleVPERMILPSImmediate(SVOp), DAG);
6903 // Handle VPERMILPD* permutations
6904 if (isVPERMILPDMask(M, VT, Subtarget))
6905 return getTargetShuffleNode(getVPERMILOpcode(VT), dl, VT, V1,
6906 getShuffleVPERMILPDImmediate(SVOp), DAG);
6908 // Handle VPERM2F128 permutations
6909 if (isVPERM2F128Mask(M, VT, Subtarget))
6910 return getTargetShuffleNode(X86ISD::VPERM2F128, dl, VT, V1, V2,
6911 getShuffleVPERM2F128Immediate(SVOp), DAG);
6913 // Handle VSHUFPSY permutations
6914 if (isVSHUFPSYMask(M, VT, Subtarget))
6915 return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6916 getShuffleVSHUFPSYImmediate(SVOp), DAG);
6918 // Handle VSHUFPDY permutations
6919 if (isVSHUFPDYMask(M, VT, Subtarget))
6920 return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6921 getShuffleVSHUFPDYImmediate(SVOp), DAG);
6923 //===--------------------------------------------------------------------===//
6924 // Since no target specific shuffle was selected for this generic one,
6925 // lower it into other known shuffles. FIXME: this isn't true yet, but
6926 // this is the plan.
6929 // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6930 if (VT == MVT::v8i16) {
6931 SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6932 if (NewOp.getNode())
6936 if (VT == MVT::v16i8) {
6937 SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6938 if (NewOp.getNode())
6942 // Handle all 128-bit wide vectors with 4 elements, and match them with
6943 // several different shuffle types.
6944 if (NumElems == 4 && VT.getSizeInBits() == 128)
6945 return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6947 // Handle general 256-bit shuffles
6948 if (VT.is256BitVector())
6949 return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6955 X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6956 SelectionDAG &DAG) const {
6957 EVT VT = Op.getValueType();
6958 DebugLoc dl = Op.getDebugLoc();
6960 if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6963 if (VT.getSizeInBits() == 8) {
6964 SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6965 Op.getOperand(0), Op.getOperand(1));
6966 SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6967 DAG.getValueType(VT));
6968 return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6969 } else if (VT.getSizeInBits() == 16) {
6970 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6971 // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6973 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6974 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6975 DAG.getNode(ISD::BITCAST, dl,
6979 SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6980 Op.getOperand(0), Op.getOperand(1));
6981 SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6982 DAG.getValueType(VT));
6983 return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6984 } else if (VT == MVT::f32) {
6985 // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6986 // the result back to FR32 register. It's only worth matching if the
6987 // result has a single use which is a store or a bitcast to i32. And in
6988 // the case of a store, it's not worth it if the index is a constant 0,
6989 // because a MOVSSmr can be used instead, which is smaller and faster.
6990 if (!Op.hasOneUse())
6992 SDNode *User = *Op.getNode()->use_begin();
6993 if ((User->getOpcode() != ISD::STORE ||
6994 (isa<ConstantSDNode>(Op.getOperand(1)) &&
6995 cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6996 (User->getOpcode() != ISD::BITCAST ||
6997 User->getValueType(0) != MVT::i32))
6999 SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7000 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
7003 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
7004 } else if (VT == MVT::i32 || VT == MVT::i64) {
7005 // ExtractPS/pextrq works with constant index.
7006 if (isa<ConstantSDNode>(Op.getOperand(1)))
7014 X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
7015 SelectionDAG &DAG) const {
7016 if (!isa<ConstantSDNode>(Op.getOperand(1)))
7019 SDValue Vec = Op.getOperand(0);
7020 EVT VecVT = Vec.getValueType();
7022 // If this is a 256-bit vector result, first extract the 128-bit vector and
7023 // then extract the element from the 128-bit vector.
7024 if (VecVT.getSizeInBits() == 256) {
7025 DebugLoc dl = Op.getNode()->getDebugLoc();
7026 unsigned NumElems = VecVT.getVectorNumElements();
7027 SDValue Idx = Op.getOperand(1);
7028 unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7030 // Get the 128-bit vector.
7031 bool Upper = IdxVal >= NumElems/2;
7032 Vec = Extract128BitVector(Vec,
7033 DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32), DAG, dl);
7035 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
7036 Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : Idx);
7039 assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
7041 if (Subtarget->hasSSE41() || Subtarget->hasAVX()) {
7042 SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
7047 EVT VT = Op.getValueType();
7048 DebugLoc dl = Op.getDebugLoc();
7049 // TODO: handle v16i8.
7050 if (VT.getSizeInBits() == 16) {
7051 SDValue Vec = Op.getOperand(0);
7052 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7054 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
7055 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7056 DAG.getNode(ISD::BITCAST, dl,
7059 // Transform it so it match pextrw which produces a 32-bit result.
7060 EVT EltVT = MVT::i32;
7061 SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
7062 Op.getOperand(0), Op.getOperand(1));
7063 SDValue Assert = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
7064 DAG.getValueType(VT));
7065 return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7066 } else if (VT.getSizeInBits() == 32) {
7067 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7071 // SHUFPS the element to the lowest double word, then movss.
7072 int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
7073 EVT VVT = Op.getOperand(0).getValueType();
7074 SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7075 DAG.getUNDEF(VVT), Mask);
7076 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7077 DAG.getIntPtrConstant(0));
7078 } else if (VT.getSizeInBits() == 64) {
7079 // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
7080 // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
7081 // to match extract_elt for f64.
7082 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7086 // UNPCKHPD the element to the lowest double word, then movsd.
7087 // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
7088 // to a f64mem, the whole operation is folded into a single MOVHPDmr.
7089 int Mask[2] = { 1, -1 };
7090 EVT VVT = Op.getOperand(0).getValueType();
7091 SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7092 DAG.getUNDEF(VVT), Mask);
7093 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7094 DAG.getIntPtrConstant(0));
7101 X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
7102 SelectionDAG &DAG) const {
7103 EVT VT = Op.getValueType();
7104 EVT EltVT = VT.getVectorElementType();
7105 DebugLoc dl = Op.getDebugLoc();
7107 SDValue N0 = Op.getOperand(0);
7108 SDValue N1 = Op.getOperand(1);
7109 SDValue N2 = Op.getOperand(2);
7111 if (VT.getSizeInBits() == 256)
7114 if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
7115 isa<ConstantSDNode>(N2)) {
7117 if (VT == MVT::v8i16)
7118 Opc = X86ISD::PINSRW;
7119 else if (VT == MVT::v16i8)
7120 Opc = X86ISD::PINSRB;
7122 Opc = X86ISD::PINSRB;
7124 // Transform it so it match pinsr{b,w} which expects a GR32 as its second
7126 if (N1.getValueType() != MVT::i32)
7127 N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7128 if (N2.getValueType() != MVT::i32)
7129 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7130 return DAG.getNode(Opc, dl, VT, N0, N1, N2);
7131 } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
7132 // Bits [7:6] of the constant are the source select. This will always be
7133 // zero here. The DAG Combiner may combine an extract_elt index into these
7134 // bits. For example (insert (extract, 3), 2) could be matched by putting
7135 // the '3' into bits [7:6] of X86ISD::INSERTPS.
7136 // Bits [5:4] of the constant are the destination select. This is the
7137 // value of the incoming immediate.
7138 // Bits [3:0] of the constant are the zero mask. The DAG Combiner may
7139 // combine either bitwise AND or insert of float 0.0 to set these bits.
7140 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
7141 // Create this as a scalar to vector..
7142 N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
7143 return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
7144 } else if ((EltVT == MVT::i32 || EltVT == MVT::i64) &&
7145 isa<ConstantSDNode>(N2)) {
7146 // PINSR* works with constant index.
7153 X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
7154 EVT VT = Op.getValueType();
7155 EVT EltVT = VT.getVectorElementType();
7157 DebugLoc dl = Op.getDebugLoc();
7158 SDValue N0 = Op.getOperand(0);
7159 SDValue N1 = Op.getOperand(1);
7160 SDValue N2 = Op.getOperand(2);
7162 // If this is a 256-bit vector result, first extract the 128-bit vector,
7163 // insert the element into the extracted half and then place it back.
7164 if (VT.getSizeInBits() == 256) {
7165 if (!isa<ConstantSDNode>(N2))
7168 // Get the desired 128-bit vector half.
7169 unsigned NumElems = VT.getVectorNumElements();
7170 unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
7171 bool Upper = IdxVal >= NumElems/2;
7172 SDValue Ins128Idx = DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32);
7173 SDValue V = Extract128BitVector(N0, Ins128Idx, DAG, dl);
7175 // Insert the element into the desired half.
7176 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V,
7177 N1, Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : N2);
7179 // Insert the changed part back to the 256-bit vector
7180 return Insert128BitVector(N0, V, Ins128Idx, DAG, dl);
7183 if (Subtarget->hasSSE41() || Subtarget->hasAVX())
7184 return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
7186 if (EltVT == MVT::i8)
7189 if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
7190 // Transform it so it match pinsrw which expects a 16-bit value in a GR32
7191 // as its second argument.
7192 if (N1.getValueType() != MVT::i32)
7193 N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7194 if (N2.getValueType() != MVT::i32)
7195 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7196 return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
7202 X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
7203 LLVMContext *Context = DAG.getContext();
7204 DebugLoc dl = Op.getDebugLoc();
7205 EVT OpVT = Op.getValueType();
7207 // If this is a 256-bit vector result, first insert into a 128-bit
7208 // vector and then insert into the 256-bit vector.
7209 if (OpVT.getSizeInBits() > 128) {
7210 // Insert into a 128-bit vector.
7211 EVT VT128 = EVT::getVectorVT(*Context,
7212 OpVT.getVectorElementType(),
7213 OpVT.getVectorNumElements() / 2);
7215 Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7217 // Insert the 128-bit vector.
7218 return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
7219 DAG.getConstant(0, MVT::i32),
7223 if (Op.getValueType() == MVT::v1i64 &&
7224 Op.getOperand(0).getValueType() == MVT::i64)
7225 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7227 SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7228 assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
7229 "Expected an SSE type!");
7230 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
7231 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7234 // Lower a node with an EXTRACT_SUBVECTOR opcode. This may result in
7235 // a simple subregister reference or explicit instructions to grab
7236 // upper bits of a vector.
7238 X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7239 if (Subtarget->hasAVX()) {
7240 DebugLoc dl = Op.getNode()->getDebugLoc();
7241 SDValue Vec = Op.getNode()->getOperand(0);
7242 SDValue Idx = Op.getNode()->getOperand(1);
7244 if (Op.getNode()->getValueType(0).getSizeInBits() == 128
7245 && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
7246 return Extract128BitVector(Vec, Idx, DAG, dl);
7252 // Lower a node with an INSERT_SUBVECTOR opcode. This may result in a
7253 // simple superregister reference or explicit instructions to insert
7254 // the upper bits of a vector.
7256 X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7257 if (Subtarget->hasAVX()) {
7258 DebugLoc dl = Op.getNode()->getDebugLoc();
7259 SDValue Vec = Op.getNode()->getOperand(0);
7260 SDValue SubVec = Op.getNode()->getOperand(1);
7261 SDValue Idx = Op.getNode()->getOperand(2);
7263 if (Op.getNode()->getValueType(0).getSizeInBits() == 256
7264 && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
7265 return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
7271 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7272 // their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7273 // one of the above mentioned nodes. It has to be wrapped because otherwise
7274 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7275 // be used to form addressing mode. These wrapped nodes will be selected
7278 X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7279 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7281 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7283 unsigned char OpFlag = 0;
7284 unsigned WrapperKind = X86ISD::Wrapper;
7285 CodeModel::Model M = getTargetMachine().getCodeModel();
7287 if (Subtarget->isPICStyleRIPRel() &&
7288 (M == CodeModel::Small || M == CodeModel::Kernel))
7289 WrapperKind = X86ISD::WrapperRIP;
7290 else if (Subtarget->isPICStyleGOT())
7291 OpFlag = X86II::MO_GOTOFF;
7292 else if (Subtarget->isPICStyleStubPIC())
7293 OpFlag = X86II::MO_PIC_BASE_OFFSET;
7295 SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7297 CP->getOffset(), OpFlag);
7298 DebugLoc DL = CP->getDebugLoc();
7299 Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7300 // With PIC, the address is actually $g + Offset.
7302 Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7303 DAG.getNode(X86ISD::GlobalBaseReg,
7304 DebugLoc(), getPointerTy()),
7311 SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7312 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7314 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7316 unsigned char OpFlag = 0;
7317 unsigned WrapperKind = X86ISD::Wrapper;
7318 CodeModel::Model M = getTargetMachine().getCodeModel();
7320 if (Subtarget->isPICStyleRIPRel() &&
7321 (M == CodeModel::Small || M == CodeModel::Kernel))
7322 WrapperKind = X86ISD::WrapperRIP;
7323 else if (Subtarget->isPICStyleGOT())
7324 OpFlag = X86II::MO_GOTOFF;
7325 else if (Subtarget->isPICStyleStubPIC())
7326 OpFlag = X86II::MO_PIC_BASE_OFFSET;
7328 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7330 DebugLoc DL = JT->getDebugLoc();
7331 Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7333 // With PIC, the address is actually $g + Offset.
7335 Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7336 DAG.getNode(X86ISD::GlobalBaseReg,
7337 DebugLoc(), getPointerTy()),
7344 X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7345 const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7347 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7349 unsigned char OpFlag = 0;
7350 unsigned WrapperKind = X86ISD::Wrapper;
7351 CodeModel::Model M = getTargetMachine().getCodeModel();
7353 if (Subtarget->isPICStyleRIPRel() &&
7354 (M == CodeModel::Small || M == CodeModel::Kernel)) {
7355 if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7356 OpFlag = X86II::MO_GOTPCREL;
7357 WrapperKind = X86ISD::WrapperRIP;
7358 } else if (Subtarget->isPICStyleGOT()) {
7359 OpFlag = X86II::MO_GOT;
7360 } else if (Subtarget->isPICStyleStubPIC()) {
7361 OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7362 } else if (Subtarget->isPICStyleStubNoDynamic()) {
7363 OpFlag = X86II::MO_DARWIN_NONLAZY;
7366 SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7368 DebugLoc DL = Op.getDebugLoc();
7369 Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7372 // With PIC, the address is actually $g + Offset.
7373 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7374 !Subtarget->is64Bit()) {
7375 Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7376 DAG.getNode(X86ISD::GlobalBaseReg,
7377 DebugLoc(), getPointerTy()),
7381 // For symbols that require a load from a stub to get the address, emit the
7383 if (isGlobalStubReference(OpFlag))
7384 Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7385 MachinePointerInfo::getGOT(), false, false, false, 0);
7391 X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7392 // Create the TargetBlockAddressAddress node.
7393 unsigned char OpFlags =
7394 Subtarget->ClassifyBlockAddressReference();
7395 CodeModel::Model M = getTargetMachine().getCodeModel();
7396 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7397 DebugLoc dl = Op.getDebugLoc();
7398 SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
7399 /*isTarget=*/true, OpFlags);
7401 if (Subtarget->isPICStyleRIPRel() &&
7402 (M == CodeModel::Small || M == CodeModel::Kernel))
7403 Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7405 Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7407 // With PIC, the address is actually $g + Offset.
7408 if (isGlobalRelativeToPICBase(OpFlags)) {
7409 Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7410 DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7418 X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7420 SelectionDAG &DAG) const {
7421 // Create the TargetGlobalAddress node, folding in the constant
7422 // offset if it is legal.
7423 unsigned char OpFlags =
7424 Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7425 CodeModel::Model M = getTargetMachine().getCodeModel();
7427 if (OpFlags == X86II::MO_NO_FLAG &&
7428 X86::isOffsetSuitableForCodeModel(Offset, M)) {
7429 // A direct static reference to a global.
7430 Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7433 Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7436 if (Subtarget->isPICStyleRIPRel() &&
7437 (M == CodeModel::Small || M == CodeModel::Kernel))
7438 Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7440 Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7442 // With PIC, the address is actually $g + Offset.
7443 if (isGlobalRelativeToPICBase(OpFlags)) {
7444 Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7445 DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7449 // For globals that require a load from a stub to get the address, emit the
7451 if (isGlobalStubReference(OpFlags))
7452 Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7453 MachinePointerInfo::getGOT(), false, false, false, 0);
7455 // If there was a non-zero offset that we didn't fold, create an explicit
7458 Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7459 DAG.getConstant(Offset, getPointerTy()));
7465 X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7466 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7467 int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7468 return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7472 GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7473 SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7474 unsigned char OperandFlags) {
7475 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7476 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7477 DebugLoc dl = GA->getDebugLoc();
7478 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7479 GA->getValueType(0),
7483 SDValue Ops[] = { Chain, TGA, *InFlag };
7484 Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
7486 SDValue Ops[] = { Chain, TGA };
7487 Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
7490 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7491 MFI->setAdjustsStack(true);
7493 SDValue Flag = Chain.getValue(1);
7494 return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7497 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7499 LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7502 DebugLoc dl = GA->getDebugLoc(); // ? function entry point might be better
7503 SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7504 DAG.getNode(X86ISD::GlobalBaseReg,
7505 DebugLoc(), PtrVT), InFlag);
7506 InFlag = Chain.getValue(1);
7508 return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7511 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7513 LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7515 return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7516 X86::RAX, X86II::MO_TLSGD);
7519 // Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
7520 // "local exec" model.
7521 static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7522 const EVT PtrVT, TLSModel::Model model,
7524 DebugLoc dl = GA->getDebugLoc();
7526 // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7527 Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7528 is64Bit ? 257 : 256));
7530 SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7531 DAG.getIntPtrConstant(0),
7532 MachinePointerInfo(Ptr),
7533 false, false, false, 0);
7535 unsigned char OperandFlags = 0;
7536 // Most TLS accesses are not RIP relative, even on x86-64. One exception is
7538 unsigned WrapperKind = X86ISD::Wrapper;
7539 if (model == TLSModel::LocalExec) {
7540 OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7541 } else if (is64Bit) {
7542 assert(model == TLSModel::InitialExec);
7543 OperandFlags = X86II::MO_GOTTPOFF;
7544 WrapperKind = X86ISD::WrapperRIP;
7546 assert(model == TLSModel::InitialExec);
7547 OperandFlags = X86II::MO_INDNTPOFF;
7550 // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
7552 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7553 GA->getValueType(0),
7554 GA->getOffset(), OperandFlags);
7555 SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7557 if (model == TLSModel::InitialExec)
7558 Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7559 MachinePointerInfo::getGOT(), false, false, false, 0);
7561 // The address of the thread local variable is the add of the thread
7562 // pointer with the offset of the variable.
7563 return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7567 X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7569 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7570 const GlobalValue *GV = GA->getGlobal();
7572 if (Subtarget->isTargetELF()) {
7573 // TODO: implement the "local dynamic" model
7574 // TODO: implement the "initial exec"model for pic executables
7576 // If GV is an alias then use the aliasee for determining
7577 // thread-localness.
7578 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7579 GV = GA->resolveAliasedGlobal(false);
7581 TLSModel::Model model
7582 = getTLSModel(GV, getTargetMachine().getRelocationModel());
7585 case TLSModel::GeneralDynamic:
7586 case TLSModel::LocalDynamic: // not implemented
7587 if (Subtarget->is64Bit())
7588 return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7589 return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7591 case TLSModel::InitialExec:
7592 case TLSModel::LocalExec:
7593 return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7594 Subtarget->is64Bit());
7596 } else if (Subtarget->isTargetDarwin()) {
7597 // Darwin only has one model of TLS. Lower to that.
7598 unsigned char OpFlag = 0;
7599 unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7600 X86ISD::WrapperRIP : X86ISD::Wrapper;
7602 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7604 bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7605 !Subtarget->is64Bit();
7607 OpFlag = X86II::MO_TLVP_PIC_BASE;
7609 OpFlag = X86II::MO_TLVP;
7610 DebugLoc DL = Op.getDebugLoc();
7611 SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7612 GA->getValueType(0),
7613 GA->getOffset(), OpFlag);
7614 SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7616 // With PIC32, the address is actually $g + Offset.
7618 Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7619 DAG.getNode(X86ISD::GlobalBaseReg,
7620 DebugLoc(), getPointerTy()),
7623 // Lowering the machine isd will make sure everything is in the right
7625 SDValue Chain = DAG.getEntryNode();
7626 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7627 SDValue Args[] = { Chain, Offset };
7628 Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7630 // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7631 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7632 MFI->setAdjustsStack(true);
7634 // And our return value (tls address) is in the standard call return value
7636 unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7637 return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7642 "TLS not implemented for this target.");
7644 llvm_unreachable("Unreachable");
7649 /// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values and
7650 /// take a 2 x i32 value to shift plus a shift amount.
7651 SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const {
7652 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7653 EVT VT = Op.getValueType();
7654 unsigned VTBits = VT.getSizeInBits();
7655 DebugLoc dl = Op.getDebugLoc();
7656 bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7657 SDValue ShOpLo = Op.getOperand(0);
7658 SDValue ShOpHi = Op.getOperand(1);
7659 SDValue ShAmt = Op.getOperand(2);
7660 SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7661 DAG.getConstant(VTBits - 1, MVT::i8))
7662 : DAG.getConstant(0, VT);
7665 if (Op.getOpcode() == ISD::SHL_PARTS) {
7666 Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7667 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7669 Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7670 Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7673 SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7674 DAG.getConstant(VTBits, MVT::i8));
7675 SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7676 AndNode, DAG.getConstant(0, MVT::i8));
7679 SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7680 SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7681 SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7683 if (Op.getOpcode() == ISD::SHL_PARTS) {
7684 Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7685 Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7687 Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7688 Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7691 SDValue Ops[2] = { Lo, Hi };
7692 return DAG.getMergeValues(Ops, 2, dl);
7695 SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7696 SelectionDAG &DAG) const {
7697 EVT SrcVT = Op.getOperand(0).getValueType();
7699 if (SrcVT.isVector())
7702 assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7703 "Unknown SINT_TO_FP to lower!");
7705 // These are really Legal; return the operand so the caller accepts it as
7707 if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7709 if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7710 Subtarget->is64Bit()) {
7714 DebugLoc dl = Op.getDebugLoc();
7715 unsigned Size = SrcVT.getSizeInBits()/8;
7716 MachineFunction &MF = DAG.getMachineFunction();
7717 int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7718 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7719 SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7721 MachinePointerInfo::getFixedStack(SSFI),
7723 return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7726 SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7728 SelectionDAG &DAG) const {
7730 DebugLoc DL = Op.getDebugLoc();
7732 bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7734 Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7736 Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7738 unsigned ByteSize = SrcVT.getSizeInBits()/8;
7740 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7741 MachineMemOperand *MMO;
7743 int SSFI = FI->getIndex();
7745 DAG.getMachineFunction()
7746 .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7747 MachineMemOperand::MOLoad, ByteSize, ByteSize);
7749 MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7750 StackSlot = StackSlot.getOperand(1);
7752 SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7753 SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7755 Tys, Ops, array_lengthof(Ops),
7759 Chain = Result.getValue(1);
7760 SDValue InFlag = Result.getValue(2);
7762 // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7763 // shouldn't be necessary except that RFP cannot be live across
7764 // multiple blocks. When stackifier is fixed, they can be uncoupled.
7765 MachineFunction &MF = DAG.getMachineFunction();
7766 unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7767 int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7768 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7769 Tys = DAG.getVTList(MVT::Other);
7771 Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7773 MachineMemOperand *MMO =
7774 DAG.getMachineFunction()
7775 .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7776 MachineMemOperand::MOStore, SSFISize, SSFISize);
7778 Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7779 Ops, array_lengthof(Ops),
7780 Op.getValueType(), MMO);
7781 Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7782 MachinePointerInfo::getFixedStack(SSFI),
7783 false, false, false, 0);
7789 // LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7790 SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7791 SelectionDAG &DAG) const {
7792 // This algorithm is not obvious. Here it is in C code, more or less:
7794 double uint64_to_double( uint32_t hi, uint32_t lo ) {
7795 static const __m128i exp = { 0x4330000045300000ULL, 0 };
7796 static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
7798 // Copy ints to xmm registers.
7799 __m128i xh = _mm_cvtsi32_si128( hi );
7800 __m128i xl = _mm_cvtsi32_si128( lo );
7802 // Combine into low half of a single xmm register.
7803 __m128i x = _mm_unpacklo_epi32( xh, xl );
7807 // Merge in appropriate exponents to give the integer bits the right
7809 x = _mm_unpacklo_epi32( x, exp );
7811 // Subtract away the biases to deal with the IEEE-754 double precision
7813 d = _mm_sub_pd( (__m128d) x, bias );
7815 // All conversions up to here are exact. The correctly rounded result is
7816 // calculated using the current rounding mode using the following
7818 d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
7819 _mm_store_sd( &sd, d ); // Because we are returning doubles in XMM, this
7820 // store doesn't really need to be here (except
7821 // maybe to zero the other double)
7826 DebugLoc dl = Op.getDebugLoc();
7827 LLVMContext *Context = DAG.getContext();
7829 // Build some magic constants.
7830 std::vector<Constant*> CV0;
7831 CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
7832 CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
7833 CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7834 CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7835 Constant *C0 = ConstantVector::get(CV0);
7836 SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7838 std::vector<Constant*> CV1;
7840 ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7842 ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7843 Constant *C1 = ConstantVector::get(CV1);
7844 SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7846 SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7847 DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7849 DAG.getIntPtrConstant(1)));
7850 SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7851 DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7853 DAG.getIntPtrConstant(0)));
7854 SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
7855 SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7856 MachinePointerInfo::getConstantPool(),
7857 false, false, false, 16);
7858 SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
7859 SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck2);
7860 SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7861 MachinePointerInfo::getConstantPool(),
7862 false, false, false, 16);
7863 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7865 // Add the halves; easiest way is to swap them into another reg first.
7866 int ShufMask[2] = { 1, -1 };
7867 SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
7868 DAG.getUNDEF(MVT::v2f64), ShufMask);
7869 SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
7870 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
7871 DAG.getIntPtrConstant(0));
7874 // LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7875 SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7876 SelectionDAG &DAG) const {
7877 DebugLoc dl = Op.getDebugLoc();
7878 // FP constant to bias correct the final result.
7879 SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7882 // Load the 32-bit value into an XMM register.
7883 SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7886 // Zero out the upper parts of the register.
7887 Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget->hasXMMInt(),
7890 Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7891 DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7892 DAG.getIntPtrConstant(0));
7894 // Or the load with the bias.
7895 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7896 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7897 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7899 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7900 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7901 MVT::v2f64, Bias)));
7902 Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7903 DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7904 DAG.getIntPtrConstant(0));
7906 // Subtract the bias.
7907 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7909 // Handle final rounding.
7910 EVT DestVT = Op.getValueType();
7912 if (DestVT.bitsLT(MVT::f64)) {
7913 return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7914 DAG.getIntPtrConstant(0));
7915 } else if (DestVT.bitsGT(MVT::f64)) {
7916 return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7919 // Handle final rounding.
7923 SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7924 SelectionDAG &DAG) const {
7925 SDValue N0 = Op.getOperand(0);
7926 DebugLoc dl = Op.getDebugLoc();
7928 // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7929 // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7930 // the optimization here.
7931 if (DAG.SignBitIsZero(N0))
7932 return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7934 EVT SrcVT = N0.getValueType();
7935 EVT DstVT = Op.getValueType();
7936 if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7937 return LowerUINT_TO_FP_i64(Op, DAG);
7938 else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7939 return LowerUINT_TO_FP_i32(Op, DAG);
7941 // Make a 64-bit buffer, and use it to build an FILD.
7942 SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7943 if (SrcVT == MVT::i32) {
7944 SDValue WordOff = DAG.getConstant(4, getPointerTy());
7945 SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7946 getPointerTy(), StackSlot, WordOff);
7947 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7948 StackSlot, MachinePointerInfo(),
7950 SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7951 OffsetSlot, MachinePointerInfo(),
7953 SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7957 assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7958 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7959 StackSlot, MachinePointerInfo(),
7961 // For i64 source, we need to add the appropriate power of 2 if the input
7962 // was negative. This is the same as the optimization in
7963 // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7964 // we must be careful to do the computation in x87 extended precision, not
7965 // in SSE. (The generic code can't know it's OK to do this, or how to.)
7966 int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7967 MachineMemOperand *MMO =
7968 DAG.getMachineFunction()
7969 .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7970 MachineMemOperand::MOLoad, 8, 8);
7972 SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7973 SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7974 SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7977 APInt FF(32, 0x5F800000ULL);
7979 // Check whether the sign bit is set.
7980 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7981 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7984 // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7985 SDValue FudgePtr = DAG.getConstantPool(
7986 ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7989 // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7990 SDValue Zero = DAG.getIntPtrConstant(0);
7991 SDValue Four = DAG.getIntPtrConstant(4);
7992 SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7994 FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7996 // Load the value out, extending it from f32 to f80.
7997 // FIXME: Avoid the extend by constructing the right constant pool?
7998 SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7999 FudgePtr, MachinePointerInfo::getConstantPool(),
8000 MVT::f32, false, false, 4);
8001 // Extend everything to 80 bits to force it to be done on x87.
8002 SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
8003 return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
8006 std::pair<SDValue,SDValue> X86TargetLowering::
8007 FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
8008 DebugLoc DL = Op.getDebugLoc();
8010 EVT DstTy = Op.getValueType();
8013 assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
8017 assert(DstTy.getSimpleVT() <= MVT::i64 &&
8018 DstTy.getSimpleVT() >= MVT::i16 &&
8019 "Unknown FP_TO_SINT to lower!");
8021 // These are really Legal.
8022 if (DstTy == MVT::i32 &&
8023 isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8024 return std::make_pair(SDValue(), SDValue());
8025 if (Subtarget->is64Bit() &&
8026 DstTy == MVT::i64 &&
8027 isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8028 return std::make_pair(SDValue(), SDValue());
8030 // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
8032 MachineFunction &MF = DAG.getMachineFunction();
8033 unsigned MemSize = DstTy.getSizeInBits()/8;
8034 int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8035 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8040 switch (DstTy.getSimpleVT().SimpleTy) {
8041 default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
8042 case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
8043 case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
8044 case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
8047 SDValue Chain = DAG.getEntryNode();
8048 SDValue Value = Op.getOperand(0);
8049 EVT TheVT = Op.getOperand(0).getValueType();
8050 if (isScalarFPTypeInSSEReg(TheVT)) {
8051 assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
8052 Chain = DAG.getStore(Chain, DL, Value, StackSlot,
8053 MachinePointerInfo::getFixedStack(SSFI),
8055 SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
8057 Chain, StackSlot, DAG.getValueType(TheVT)
8060 MachineMemOperand *MMO =
8061 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8062 MachineMemOperand::MOLoad, MemSize, MemSize);
8063 Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
8065 Chain = Value.getValue(1);
8066 SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8067 StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8070 MachineMemOperand *MMO =
8071 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8072 MachineMemOperand::MOStore, MemSize, MemSize);
8074 // Build the FP_TO_INT*_IN_MEM
8075 SDValue Ops[] = { Chain, Value, StackSlot };
8076 SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
8077 Ops, 3, DstTy, MMO);
8079 return std::make_pair(FIST, StackSlot);
8082 SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
8083 SelectionDAG &DAG) const {
8084 if (Op.getValueType().isVector())
8087 std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
8088 SDValue FIST = Vals.first, StackSlot = Vals.second;
8089 // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
8090 if (FIST.getNode() == 0) return Op;
8093 return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8094 FIST, StackSlot, MachinePointerInfo(),
8095 false, false, false, 0);
8098 SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
8099 SelectionDAG &DAG) const {
8100 std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
8101 SDValue FIST = Vals.first, StackSlot = Vals.second;
8102 assert(FIST.getNode() && "Unexpected failure");
8105 return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8106 FIST, StackSlot, MachinePointerInfo(),
8107 false, false, false, 0);
8110 SDValue X86TargetLowering::LowerFABS(SDValue Op,
8111 SelectionDAG &DAG) const {
8112 LLVMContext *Context = DAG.getContext();
8113 DebugLoc dl = Op.getDebugLoc();
8114 EVT VT = Op.getValueType();
8117 EltVT = VT.getVectorElementType();
8118 std::vector<Constant*> CV;
8119 if (EltVT == MVT::f64) {
8120 Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
8124 Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
8130 Constant *C = ConstantVector::get(CV);
8131 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8132 SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8133 MachinePointerInfo::getConstantPool(),
8134 false, false, false, 16);
8135 return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
8138 SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
8139 LLVMContext *Context = DAG.getContext();
8140 DebugLoc dl = Op.getDebugLoc();
8141 EVT VT = Op.getValueType();
8144 EltVT = VT.getVectorElementType();
8145 std::vector<Constant*> CV;
8146 if (EltVT == MVT::f64) {
8147 Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
8151 Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
8157 Constant *C = ConstantVector::get(CV);
8158 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8159 SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8160 MachinePointerInfo::getConstantPool(),
8161 false, false, false, 16);
8162 if (VT.isVector()) {
8163 return DAG.getNode(ISD::BITCAST, dl, VT,
8164 DAG.getNode(ISD::XOR, dl, MVT::v2i64,
8165 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
8167 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Mask)));
8169 return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
8173 SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
8174 LLVMContext *Context = DAG.getContext();
8175 SDValue Op0 = Op.getOperand(0);
8176 SDValue Op1 = Op.getOperand(1);
8177 DebugLoc dl = Op.getDebugLoc();
8178 EVT VT = Op.getValueType();
8179 EVT SrcVT = Op1.getValueType();
8181 // If second operand is smaller, extend it first.
8182 if (SrcVT.bitsLT(VT)) {
8183 Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
8186 // And if it is bigger, shrink it first.
8187 if (SrcVT.bitsGT(VT)) {
8188 Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
8192 // At this point the operands and the result should have the same
8193 // type, and that won't be f80 since that is not custom lowered.
8195 // First get the sign bit of second operand.
8196 std::vector<Constant*> CV;
8197 if (SrcVT == MVT::f64) {
8198 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
8199 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8201 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
8202 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8203 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8204 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8206 Constant *C = ConstantVector::get(CV);
8207 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8208 SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
8209 MachinePointerInfo::getConstantPool(),
8210 false, false, false, 16);
8211 SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
8213 // Shift sign bit right or left if the two operands have different types.
8214 if (SrcVT.bitsGT(VT)) {
8215 // Op0 is MVT::f32, Op1 is MVT::f64.
8216 SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
8217 SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
8218 DAG.getConstant(32, MVT::i32));
8219 SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
8220 SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
8221 DAG.getIntPtrConstant(0));
8224 // Clear first operand sign bit.
8226 if (VT == MVT::f64) {
8227 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8228 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8230 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8231 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8232 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8233 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8235 C = ConstantVector::get(CV);
8236 CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8237 SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8238 MachinePointerInfo::getConstantPool(),
8239 false, false, false, 16);
8240 SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8242 // Or the value with the sign bit.
8243 return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8246 SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
8247 SDValue N0 = Op.getOperand(0);
8248 DebugLoc dl = Op.getDebugLoc();
8249 EVT VT = Op.getValueType();
8251 // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8252 SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8253 DAG.getConstant(1, VT));
8254 return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8257 /// Emit nodes that will be selected as "test Op0,Op0", or something
8259 SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8260 SelectionDAG &DAG) const {
8261 DebugLoc dl = Op.getDebugLoc();
8263 // CF and OF aren't always set the way we want. Determine which
8264 // of these we need.
8265 bool NeedCF = false;
8266 bool NeedOF = false;
8269 case X86::COND_A: case X86::COND_AE:
8270 case X86::COND_B: case X86::COND_BE:
8273 case X86::COND_G: case X86::COND_GE:
8274 case X86::COND_L: case X86::COND_LE:
8275 case X86::COND_O: case X86::COND_NO:
8280 // See if we can use the EFLAGS value from the operand instead of
8281 // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8282 // we prove that the arithmetic won't overflow, we can't use OF or CF.
8283 if (Op.getResNo() != 0 || NeedOF || NeedCF)
8284 // Emit a CMP with 0, which is the TEST pattern.
8285 return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8286 DAG.getConstant(0, Op.getValueType()));
8288 unsigned Opcode = 0;
8289 unsigned NumOperands = 0;
8290 switch (Op.getNode()->getOpcode()) {
8292 // Due to an isel shortcoming, be conservative if this add is likely to be
8293 // selected as part of a load-modify-store instruction. When the root node
8294 // in a match is a store, isel doesn't know how to remap non-chain non-flag
8295 // uses of other nodes in the match, such as the ADD in this case. This
8296 // leads to the ADD being left around and reselected, with the result being
8297 // two adds in the output. Alas, even if none our users are stores, that
8298 // doesn't prove we're O.K. Ergo, if we have any parents that aren't
8299 // CopyToReg or SETCC, eschew INC/DEC. A better fix seems to require
8300 // climbing the DAG back to the root, and it doesn't seem to be worth the
8302 for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8303 UE = Op.getNode()->use_end(); UI != UE; ++UI)
8304 if (UI->getOpcode() != ISD::CopyToReg &&
8305 UI->getOpcode() != ISD::SETCC &&
8306 UI->getOpcode() != ISD::STORE)
8309 if (ConstantSDNode *C =
8310 dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
8311 // An add of one will be selected as an INC.
8312 if (C->getAPIntValue() == 1) {
8313 Opcode = X86ISD::INC;
8318 // An add of negative one (subtract of one) will be selected as a DEC.
8319 if (C->getAPIntValue().isAllOnesValue()) {
8320 Opcode = X86ISD::DEC;
8326 // Otherwise use a regular EFLAGS-setting add.
8327 Opcode = X86ISD::ADD;
8331 // If the primary and result isn't used, don't bother using X86ISD::AND,
8332 // because a TEST instruction will be better.
8333 bool NonFlagUse = false;
8334 for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8335 UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8337 unsigned UOpNo = UI.getOperandNo();
8338 if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8339 // Look pass truncate.
8340 UOpNo = User->use_begin().getOperandNo();
8341 User = *User->use_begin();
8344 if (User->getOpcode() != ISD::BRCOND &&
8345 User->getOpcode() != ISD::SETCC &&
8346 (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
8359 // Due to the ISEL shortcoming noted above, be conservative if this op is
8360 // likely to be selected as part of a load-modify-store instruction.
8361 for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8362 UE = Op.getNode()->use_end(); UI != UE; ++UI)
8363 if (UI->getOpcode() == ISD::STORE)
8366 // Otherwise use a regular EFLAGS-setting instruction.
8367 switch (Op.getNode()->getOpcode()) {
8368 default: llvm_unreachable("unexpected operator!");
8369 case ISD::SUB: Opcode = X86ISD::SUB; break;
8370 case ISD::OR: Opcode = X86ISD::OR; break;
8371 case ISD::XOR: Opcode = X86ISD::XOR; break;
8372 case ISD::AND: Opcode = X86ISD::AND; break;
8384 return SDValue(Op.getNode(), 1);
8391 // Emit a CMP with 0, which is the TEST pattern.
8392 return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8393 DAG.getConstant(0, Op.getValueType()));
8395 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8396 SmallVector<SDValue, 4> Ops;
8397 for (unsigned i = 0; i != NumOperands; ++i)
8398 Ops.push_back(Op.getOperand(i));
8400 SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8401 DAG.ReplaceAllUsesWith(Op, New);
8402 return SDValue(New.getNode(), 1);
8405 /// Emit nodes that will be selected as "cmp Op0,Op1", or something
8407 SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8408 SelectionDAG &DAG) const {
8409 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8410 if (C->getAPIntValue() == 0)
8411 return EmitTest(Op0, X86CC, DAG);
8413 DebugLoc dl = Op0.getDebugLoc();
8414 return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8417 /// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8418 /// if it's possible.
8419 SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8420 DebugLoc dl, SelectionDAG &DAG) const {
8421 SDValue Op0 = And.getOperand(0);
8422 SDValue Op1 = And.getOperand(1);
8423 if (Op0.getOpcode() == ISD::TRUNCATE)
8424 Op0 = Op0.getOperand(0);
8425 if (Op1.getOpcode() == ISD::TRUNCATE)
8426 Op1 = Op1.getOperand(0);
8429 if (Op1.getOpcode() == ISD::SHL)
8430 std::swap(Op0, Op1);
8431 if (Op0.getOpcode() == ISD::SHL) {
8432 if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8433 if (And00C->getZExtValue() == 1) {
8434 // If we looked past a truncate, check that it's only truncating away
8436 unsigned BitWidth = Op0.getValueSizeInBits();
8437 unsigned AndBitWidth = And.getValueSizeInBits();
8438 if (BitWidth > AndBitWidth) {
8439 APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
8440 DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
8441 if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8445 RHS = Op0.getOperand(1);
8447 } else if (Op1.getOpcode() == ISD::Constant) {
8448 ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8449 SDValue AndLHS = Op0;
8450 if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
8451 LHS = AndLHS.getOperand(0);
8452 RHS = AndLHS.getOperand(1);
8456 if (LHS.getNode()) {
8457 // If LHS is i8, promote it to i32 with any_extend. There is no i8 BT
8458 // instruction. Since the shift amount is in-range-or-undefined, we know
8459 // that doing a bittest on the i32 value is ok. We extend to i32 because
8460 // the encoding for the i16 version is larger than the i32 version.
8461 // Also promote i16 to i32 for performance / code size reason.
8462 if (LHS.getValueType() == MVT::i8 ||
8463 LHS.getValueType() == MVT::i16)
8464 LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8466 // If the operand types disagree, extend the shift amount to match. Since
8467 // BT ignores high bits (like shifts) we can use anyextend.
8468 if (LHS.getValueType() != RHS.getValueType())
8469 RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8471 SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8472 unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8473 return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8474 DAG.getConstant(Cond, MVT::i8), BT);
8480 SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8482 if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8484 assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8485 SDValue Op0 = Op.getOperand(0);
8486 SDValue Op1 = Op.getOperand(1);
8487 DebugLoc dl = Op.getDebugLoc();
8488 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8490 // Optimize to BT if possible.
8491 // Lower (X & (1 << N)) == 0 to BT(X, N).
8492 // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8493 // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8494 if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8495 Op1.getOpcode() == ISD::Constant &&
8496 cast<ConstantSDNode>(Op1)->isNullValue() &&
8497 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8498 SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8499 if (NewSetCC.getNode())
8503 // Look for X == 0, X == 1, X != 0, or X != 1. We can simplify some forms of
8505 if (Op1.getOpcode() == ISD::Constant &&
8506 (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8507 cast<ConstantSDNode>(Op1)->isNullValue()) &&
8508 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8510 // If the input is a setcc, then reuse the input setcc or use a new one with
8511 // the inverted condition.
8512 if (Op0.getOpcode() == X86ISD::SETCC) {
8513 X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8514 bool Invert = (CC == ISD::SETNE) ^
8515 cast<ConstantSDNode>(Op1)->isNullValue();
8516 if (!Invert) return Op0;
8518 CCode = X86::GetOppositeBranchCondition(CCode);
8519 return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8520 DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8524 bool isFP = Op1.getValueType().isFloatingPoint();
8525 unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8526 if (X86CC == X86::COND_INVALID)
8529 SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8530 return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8531 DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8534 // Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8535 // ones, and then concatenate the result back.
8536 static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8537 EVT VT = Op.getValueType();
8539 assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC &&
8540 "Unsupported value type for operation");
8542 int NumElems = VT.getVectorNumElements();
8543 DebugLoc dl = Op.getDebugLoc();
8544 SDValue CC = Op.getOperand(2);
8545 SDValue Idx0 = DAG.getConstant(0, MVT::i32);
8546 SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
8548 // Extract the LHS vectors
8549 SDValue LHS = Op.getOperand(0);
8550 SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
8551 SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
8553 // Extract the RHS vectors
8554 SDValue RHS = Op.getOperand(1);
8555 SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
8556 SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
8558 // Issue the operation on the smaller types and concatenate the result back
8559 MVT EltVT = VT.getVectorElementType().getSimpleVT();
8560 EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8561 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8562 DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8563 DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8567 SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8569 SDValue Op0 = Op.getOperand(0);
8570 SDValue Op1 = Op.getOperand(1);
8571 SDValue CC = Op.getOperand(2);
8572 EVT VT = Op.getValueType();
8573 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8574 bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8575 DebugLoc dl = Op.getDebugLoc();
8579 EVT EltVT = Op0.getValueType().getVectorElementType();
8580 assert(EltVT == MVT::f32 || EltVT == MVT::f64);
8582 unsigned Opc = EltVT == MVT::f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
8585 // SSE Condition code mapping:
8594 switch (SetCCOpcode) {
8597 case ISD::SETEQ: SSECC = 0; break;
8599 case ISD::SETGT: Swap = true; // Fallthrough
8601 case ISD::SETOLT: SSECC = 1; break;
8603 case ISD::SETGE: Swap = true; // Fallthrough
8605 case ISD::SETOLE: SSECC = 2; break;
8606 case ISD::SETUO: SSECC = 3; break;
8608 case ISD::SETNE: SSECC = 4; break;
8609 case ISD::SETULE: Swap = true;
8610 case ISD::SETUGE: SSECC = 5; break;
8611 case ISD::SETULT: Swap = true;
8612 case ISD::SETUGT: SSECC = 6; break;
8613 case ISD::SETO: SSECC = 7; break;
8616 std::swap(Op0, Op1);
8618 // In the two special cases we can't handle, emit two comparisons.
8620 if (SetCCOpcode == ISD::SETUEQ) {
8622 UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
8623 EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
8624 return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
8625 } else if (SetCCOpcode == ISD::SETONE) {
8627 ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
8628 NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
8629 return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
8631 llvm_unreachable("Illegal FP comparison");
8633 // Handle all other FP comparisons here.
8634 return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
8637 // Break 256-bit integer vector compare into smaller ones.
8638 if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
8639 return Lower256IntVSETCC(Op, DAG);
8641 // We are handling one of the integer comparisons here. Since SSE only has
8642 // GT and EQ comparisons for integer, swapping operands and multiple
8643 // operations may be required for some comparisons.
8644 unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
8645 bool Swap = false, Invert = false, FlipSigns = false;
8647 switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
8649 case MVT::i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
8650 case MVT::i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
8651 case MVT::i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
8652 case MVT::i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
8655 switch (SetCCOpcode) {
8657 case ISD::SETNE: Invert = true;
8658 case ISD::SETEQ: Opc = EQOpc; break;
8659 case ISD::SETLT: Swap = true;
8660 case ISD::SETGT: Opc = GTOpc; break;
8661 case ISD::SETGE: Swap = true;
8662 case ISD::SETLE: Opc = GTOpc; Invert = true; break;
8663 case ISD::SETULT: Swap = true;
8664 case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
8665 case ISD::SETUGE: Swap = true;
8666 case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
8669 std::swap(Op0, Op1);
8671 // Check that the operation in question is available (most are plain SSE2,
8672 // but PCMPGTQ and PCMPEQQ have different requirements).
8673 if (Opc == X86ISD::PCMPGTQ && !Subtarget->hasSSE42() && !Subtarget->hasAVX())
8675 if (Opc == X86ISD::PCMPEQQ && !Subtarget->hasSSE41() && !Subtarget->hasAVX())
8678 // Since SSE has no unsigned integer comparisons, we need to flip the sign
8679 // bits of the inputs before performing those operations.
8681 EVT EltVT = VT.getVectorElementType();
8682 SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8684 std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8685 SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8687 Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8688 Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8691 SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8693 // If the logical-not of the result is required, perform that now.
8695 Result = DAG.getNOT(dl, Result, VT);
8700 // isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8701 static bool isX86LogicalCmp(SDValue Op) {
8702 unsigned Opc = Op.getNode()->getOpcode();
8703 if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
8705 if (Op.getResNo() == 1 &&
8706 (Opc == X86ISD::ADD ||
8707 Opc == X86ISD::SUB ||
8708 Opc == X86ISD::ADC ||
8709 Opc == X86ISD::SBB ||
8710 Opc == X86ISD::SMUL ||
8711 Opc == X86ISD::UMUL ||
8712 Opc == X86ISD::INC ||
8713 Opc == X86ISD::DEC ||
8714 Opc == X86ISD::OR ||
8715 Opc == X86ISD::XOR ||
8716 Opc == X86ISD::AND))
8719 if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8725 static bool isZero(SDValue V) {
8726 ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8727 return C && C->isNullValue();
8730 static bool isAllOnes(SDValue V) {
8731 ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8732 return C && C->isAllOnesValue();
8735 SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8736 bool addTest = true;
8737 SDValue Cond = Op.getOperand(0);
8738 SDValue Op1 = Op.getOperand(1);
8739 SDValue Op2 = Op.getOperand(2);
8740 DebugLoc DL = Op.getDebugLoc();
8743 if (Cond.getOpcode() == ISD::SETCC) {
8744 SDValue NewCond = LowerSETCC(Cond, DAG);
8745 if (NewCond.getNode())
8749 // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8750 // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8751 // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8752 // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8753 if (Cond.getOpcode() == X86ISD::SETCC &&
8754 Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8755 isZero(Cond.getOperand(1).getOperand(1))) {
8756 SDValue Cmp = Cond.getOperand(1);
8758 unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8760 if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8761 (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8762 SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8764 SDValue CmpOp0 = Cmp.getOperand(0);
8765 Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8766 CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8768 SDValue Res = // Res = 0 or -1.
8769 DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8770 DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8772 if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8773 Res = DAG.getNOT(DL, Res, Res.getValueType());
8775 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8776 if (N2C == 0 || !N2C->isNullValue())
8777 Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8782 // Look past (and (setcc_carry (cmp ...)), 1).
8783 if (Cond.getOpcode() == ISD::AND &&
8784 Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8785 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8786 if (C && C->getAPIntValue() == 1)
8787 Cond = Cond.getOperand(0);
8790 // If condition flag is set by a X86ISD::CMP, then use it as the condition
8791 // setting operand in place of the X86ISD::SETCC.
8792 unsigned CondOpcode = Cond.getOpcode();
8793 if (CondOpcode == X86ISD::SETCC ||
8794 CondOpcode == X86ISD::SETCC_CARRY) {
8795 CC = Cond.getOperand(0);
8797 SDValue Cmp = Cond.getOperand(1);
8798 unsigned Opc = Cmp.getOpcode();
8799 EVT VT = Op.getValueType();
8801 bool IllegalFPCMov = false;
8802 if (VT.isFloatingPoint() && !VT.isVector() &&
8803 !isScalarFPTypeInSSEReg(VT)) // FPStack?
8804 IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8806 if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8807 Opc == X86ISD::BT) { // FIXME
8811 } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8812 CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8813 ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8814 Cond.getOperand(0).getValueType() != MVT::i8)) {
8815 SDValue LHS = Cond.getOperand(0);
8816 SDValue RHS = Cond.getOperand(1);
8820 switch (CondOpcode) {
8821 case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8822 case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8823 case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8824 case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8825 case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8826 case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8827 default: llvm_unreachable("unexpected overflowing operator");
8829 if (CondOpcode == ISD::UMULO)
8830 VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8833 VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8835 SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
8837 if (CondOpcode == ISD::UMULO)
8838 Cond = X86Op.getValue(2);
8840 Cond = X86Op.getValue(1);
8842 CC = DAG.getConstant(X86Cond, MVT::i8);
8847 // Look pass the truncate.
8848 if (Cond.getOpcode() == ISD::TRUNCATE)
8849 Cond = Cond.getOperand(0);
8851 // We know the result of AND is compared against zero. Try to match
8853 if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8854 SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8855 if (NewSetCC.getNode()) {
8856 CC = NewSetCC.getOperand(0);
8857 Cond = NewSetCC.getOperand(1);
8864 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8865 Cond = EmitTest(Cond, X86::COND_NE, DAG);
8868 // a < b ? -1 : 0 -> RES = ~setcc_carry
8869 // a < b ? 0 : -1 -> RES = setcc_carry
8870 // a >= b ? -1 : 0 -> RES = setcc_carry
8871 // a >= b ? 0 : -1 -> RES = ~setcc_carry
8872 if (Cond.getOpcode() == X86ISD::CMP) {
8873 unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8875 if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8876 (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8877 SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8878 DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8879 if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8880 return DAG.getNOT(DL, Res, Res.getValueType());
8885 // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8886 // condition is true.
8887 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8888 SDValue Ops[] = { Op2, Op1, CC, Cond };
8889 return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8892 // isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8893 // ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8894 // from the AND / OR.
8895 static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8896 Opc = Op.getOpcode();
8897 if (Opc != ISD::OR && Opc != ISD::AND)
8899 return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8900 Op.getOperand(0).hasOneUse() &&
8901 Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8902 Op.getOperand(1).hasOneUse());
8905 // isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8906 // 1 and that the SETCC node has a single use.
8907 static bool isXor1OfSetCC(SDValue Op) {
8908 if (Op.getOpcode() != ISD::XOR)
8910 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8911 if (N1C && N1C->getAPIntValue() == 1) {
8912 return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8913 Op.getOperand(0).hasOneUse();
8918 SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8919 bool addTest = true;
8920 SDValue Chain = Op.getOperand(0);
8921 SDValue Cond = Op.getOperand(1);
8922 SDValue Dest = Op.getOperand(2);
8923 DebugLoc dl = Op.getDebugLoc();
8925 bool Inverted = false;
8927 if (Cond.getOpcode() == ISD::SETCC) {
8928 // Check for setcc([su]{add,sub,mul}o == 0).
8929 if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
8930 isa<ConstantSDNode>(Cond.getOperand(1)) &&
8931 cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
8932 Cond.getOperand(0).getResNo() == 1 &&
8933 (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
8934 Cond.getOperand(0).getOpcode() == ISD::UADDO ||
8935 Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
8936 Cond.getOperand(0).getOpcode() == ISD::USUBO ||
8937 Cond.getOperand(0).getOpcode() == ISD::SMULO ||
8938 Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
8940 Cond = Cond.getOperand(0);
8942 SDValue NewCond = LowerSETCC(Cond, DAG);
8943 if (NewCond.getNode())
8948 // FIXME: LowerXALUO doesn't handle these!!
8949 else if (Cond.getOpcode() == X86ISD::ADD ||
8950 Cond.getOpcode() == X86ISD::SUB ||
8951 Cond.getOpcode() == X86ISD::SMUL ||
8952 Cond.getOpcode() == X86ISD::UMUL)
8953 Cond = LowerXALUO(Cond, DAG);
8956 // Look pass (and (setcc_carry (cmp ...)), 1).
8957 if (Cond.getOpcode() == ISD::AND &&
8958 Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8959 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8960 if (C && C->getAPIntValue() == 1)
8961 Cond = Cond.getOperand(0);
8964 // If condition flag is set by a X86ISD::CMP, then use it as the condition
8965 // setting operand in place of the X86ISD::SETCC.
8966 unsigned CondOpcode = Cond.getOpcode();
8967 if (CondOpcode == X86ISD::SETCC ||
8968 CondOpcode == X86ISD::SETCC_CARRY) {
8969 CC = Cond.getOperand(0);
8971 SDValue Cmp = Cond.getOperand(1);
8972 unsigned Opc = Cmp.getOpcode();
8973 // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8974 if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8978 switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8982 // These can only come from an arithmetic instruction with overflow,
8983 // e.g. SADDO, UADDO.
8984 Cond = Cond.getNode()->getOperand(1);
8990 CondOpcode = Cond.getOpcode();
8991 if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8992 CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8993 ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8994 Cond.getOperand(0).getValueType() != MVT::i8)) {
8995 SDValue LHS = Cond.getOperand(0);
8996 SDValue RHS = Cond.getOperand(1);
9000 switch (CondOpcode) {
9001 case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
9002 case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
9003 case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
9004 case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
9005 case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
9006 case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
9007 default: llvm_unreachable("unexpected overflowing operator");
9010 X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
9011 if (CondOpcode == ISD::UMULO)
9012 VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
9015 VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
9017 SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
9019 if (CondOpcode == ISD::UMULO)
9020 Cond = X86Op.getValue(2);
9022 Cond = X86Op.getValue(1);
9024 CC = DAG.getConstant(X86Cond, MVT::i8);
9028 if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
9029 SDValue Cmp = Cond.getOperand(0).getOperand(1);
9030 if (CondOpc == ISD::OR) {
9031 // Also, recognize the pattern generated by an FCMP_UNE. We can emit
9032 // two branches instead of an explicit OR instruction with a
9034 if (Cmp == Cond.getOperand(1).getOperand(1) &&
9035 isX86LogicalCmp(Cmp)) {
9036 CC = Cond.getOperand(0).getOperand(0);
9037 Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9038 Chain, Dest, CC, Cmp);
9039 CC = Cond.getOperand(1).getOperand(0);
9043 } else { // ISD::AND
9044 // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
9045 // two branches instead of an explicit AND instruction with a
9046 // separate test. However, we only do this if this block doesn't
9047 // have a fall-through edge, because this requires an explicit
9048 // jmp when the condition is false.
9049 if (Cmp == Cond.getOperand(1).getOperand(1) &&
9050 isX86LogicalCmp(Cmp) &&
9051 Op.getNode()->hasOneUse()) {
9052 X86::CondCode CCode =
9053 (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9054 CCode = X86::GetOppositeBranchCondition(CCode);
9055 CC = DAG.getConstant(CCode, MVT::i8);
9056 SDNode *User = *Op.getNode()->use_begin();
9057 // Look for an unconditional branch following this conditional branch.
9058 // We need this because we need to reverse the successors in order
9059 // to implement FCMP_OEQ.
9060 if (User->getOpcode() == ISD::BR) {
9061 SDValue FalseBB = User->getOperand(1);
9063 DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9064 assert(NewBR == User);
9068 Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9069 Chain, Dest, CC, Cmp);
9070 X86::CondCode CCode =
9071 (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
9072 CCode = X86::GetOppositeBranchCondition(CCode);
9073 CC = DAG.getConstant(CCode, MVT::i8);
9079 } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
9080 // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
9081 // It should be transformed during dag combiner except when the condition
9082 // is set by a arithmetics with overflow node.
9083 X86::CondCode CCode =
9084 (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9085 CCode = X86::GetOppositeBranchCondition(CCode);
9086 CC = DAG.getConstant(CCode, MVT::i8);
9087 Cond = Cond.getOperand(0).getOperand(1);
9089 } else if (Cond.getOpcode() == ISD::SETCC &&
9090 cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
9091 // For FCMP_OEQ, we can emit
9092 // two branches instead of an explicit AND instruction with a
9093 // separate test. However, we only do this if this block doesn't
9094 // have a fall-through edge, because this requires an explicit
9095 // jmp when the condition is false.
9096 if (Op.getNode()->hasOneUse()) {
9097 SDNode *User = *Op.getNode()->use_begin();
9098 // Look for an unconditional branch following this conditional branch.
9099 // We need this because we need to reverse the successors in order
9100 // to implement FCMP_OEQ.
9101 if (User->getOpcode() == ISD::BR) {
9102 SDValue FalseBB = User->getOperand(1);
9104 DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9105 assert(NewBR == User);
9109 SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9110 Cond.getOperand(0), Cond.getOperand(1));
9111 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9112 Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9113 Chain, Dest, CC, Cmp);
9114 CC = DAG.getConstant(X86::COND_P, MVT::i8);
9119 } else if (Cond.getOpcode() == ISD::SETCC &&
9120 cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
9121 // For FCMP_UNE, we can emit
9122 // two branches instead of an explicit AND instruction with a
9123 // separate test. However, we only do this if this block doesn't
9124 // have a fall-through edge, because this requires an explicit
9125 // jmp when the condition is false.
9126 if (Op.getNode()->hasOneUse()) {
9127 SDNode *User = *Op.getNode()->use_begin();
9128 // Look for an unconditional branch following this conditional branch.
9129 // We need this because we need to reverse the successors in order
9130 // to implement FCMP_UNE.
9131 if (User->getOpcode() == ISD::BR) {
9132 SDValue FalseBB = User->getOperand(1);
9134 DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9135 assert(NewBR == User);
9138 SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9139 Cond.getOperand(0), Cond.getOperand(1));
9140 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9141 Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9142 Chain, Dest, CC, Cmp);
9143 CC = DAG.getConstant(X86::COND_NP, MVT::i8);
9153 // Look pass the truncate.
9154 if (Cond.getOpcode() == ISD::TRUNCATE)
9155 Cond = Cond.getOperand(0);
9157 // We know the result of AND is compared against zero. Try to match
9159 if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
9160 SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
9161 if (NewSetCC.getNode()) {
9162 CC = NewSetCC.getOperand(0);
9163 Cond = NewSetCC.getOperand(1);
9170 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9171 Cond = EmitTest(Cond, X86::COND_NE, DAG);
9173 return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9174 Chain, Dest, CC, Cond);
9178 // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
9179 // Calls to _alloca is needed to probe the stack when allocating more than 4k
9180 // bytes in one go. Touching the stack at 4K increments is necessary to ensure
9181 // that the guard pages used by the OS virtual memory manager are allocated in
9182 // correct sequence.
9184 X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
9185 SelectionDAG &DAG) const {
9186 assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
9187 EnableSegmentedStacks) &&
9188 "This should be used only on Windows targets or when segmented stacks "
9190 assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
9191 DebugLoc dl = Op.getDebugLoc();
9194 SDValue Chain = Op.getOperand(0);
9195 SDValue Size = Op.getOperand(1);
9196 // FIXME: Ensure alignment here
9198 bool Is64Bit = Subtarget->is64Bit();
9199 EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
9201 if (EnableSegmentedStacks) {
9202 MachineFunction &MF = DAG.getMachineFunction();
9203 MachineRegisterInfo &MRI = MF.getRegInfo();
9206 // The 64 bit implementation of segmented stacks needs to clobber both r10
9207 // r11. This makes it impossible to use it along with nested parameters.
9208 const Function *F = MF.getFunction();
9210 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
9212 if (I->hasNestAttr())
9213 report_fatal_error("Cannot use segmented stacks with functions that "
9214 "have nested arguments.");
9217 const TargetRegisterClass *AddrRegClass =
9218 getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
9219 unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
9220 Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
9221 SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
9222 DAG.getRegister(Vreg, SPTy));
9223 SDValue Ops1[2] = { Value, Chain };
9224 return DAG.getMergeValues(Ops1, 2, dl);
9227 unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
9229 Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
9230 Flag = Chain.getValue(1);
9231 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9233 Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
9234 Flag = Chain.getValue(1);
9236 Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
9238 SDValue Ops1[2] = { Chain.getValue(0), Chain };
9239 return DAG.getMergeValues(Ops1, 2, dl);
9243 SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
9244 MachineFunction &MF = DAG.getMachineFunction();
9245 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
9247 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9248 DebugLoc DL = Op.getDebugLoc();
9250 if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
9251 // vastart just stores the address of the VarArgsFrameIndex slot into the
9252 // memory location argument.
9253 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9255 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
9256 MachinePointerInfo(SV), false, false, 0);
9260 // gp_offset (0 - 6 * 8)
9261 // fp_offset (48 - 48 + 8 * 16)
9262 // overflow_arg_area (point to parameters coming in memory).
9264 SmallVector<SDValue, 8> MemOps;
9265 SDValue FIN = Op.getOperand(1);
9267 SDValue Store = DAG.getStore(Op.getOperand(0), DL,
9268 DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
9270 FIN, MachinePointerInfo(SV), false, false, 0);
9271 MemOps.push_back(Store);
9274 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9275 FIN, DAG.getIntPtrConstant(4));
9276 Store = DAG.getStore(Op.getOperand(0), DL,
9277 DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
9279 FIN, MachinePointerInfo(SV, 4), false, false, 0);
9280 MemOps.push_back(Store);
9282 // Store ptr to overflow_arg_area
9283 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9284 FIN, DAG.getIntPtrConstant(4));
9285 SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9287 Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9288 MachinePointerInfo(SV, 8),
9290 MemOps.push_back(Store);
9292 // Store ptr to reg_save_area.
9293 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9294 FIN, DAG.getIntPtrConstant(8));
9295 SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9297 Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9298 MachinePointerInfo(SV, 16), false, false, 0);
9299 MemOps.push_back(Store);
9300 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9301 &MemOps[0], MemOps.size());
9304 SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9305 assert(Subtarget->is64Bit() &&
9306 "LowerVAARG only handles 64-bit va_arg!");
9307 assert((Subtarget->isTargetLinux() ||
9308 Subtarget->isTargetDarwin()) &&
9309 "Unhandled target in LowerVAARG");
9310 assert(Op.getNode()->getNumOperands() == 4);
9311 SDValue Chain = Op.getOperand(0);
9312 SDValue SrcPtr = Op.getOperand(1);
9313 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9314 unsigned Align = Op.getConstantOperandVal(3);
9315 DebugLoc dl = Op.getDebugLoc();
9317 EVT ArgVT = Op.getNode()->getValueType(0);
9318 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9319 uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
9322 // Decide which area this value should be read from.
9323 // TODO: Implement the AMD64 ABI in its entirety. This simple
9324 // selection mechanism works only for the basic types.
9325 if (ArgVT == MVT::f80) {
9326 llvm_unreachable("va_arg for f80 not yet implemented");
9327 } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9328 ArgMode = 2; // Argument passed in XMM register. Use fp_offset.
9329 } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9330 ArgMode = 1; // Argument passed in GPR64 register(s). Use gp_offset.
9332 llvm_unreachable("Unhandled argument type in LowerVAARG");
9336 // Sanity Check: Make sure using fp_offset makes sense.
9337 assert(!UseSoftFloat &&
9338 !(DAG.getMachineFunction()
9339 .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
9340 Subtarget->hasXMM());
9343 // Insert VAARG_64 node into the DAG
9344 // VAARG_64 returns two values: Variable Argument Address, Chain
9345 SmallVector<SDValue, 11> InstOps;
9346 InstOps.push_back(Chain);
9347 InstOps.push_back(SrcPtr);
9348 InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9349 InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9350 InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9351 SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9352 SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9353 VTs, &InstOps[0], InstOps.size(),
9355 MachinePointerInfo(SV),
9360 Chain = VAARG.getValue(1);
9362 // Load the next argument and return it
9363 return DAG.getLoad(ArgVT, dl,
9366 MachinePointerInfo(),
9367 false, false, false, 0);
9370 SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
9371 // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9372 assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9373 SDValue Chain = Op.getOperand(0);
9374 SDValue DstPtr = Op.getOperand(1);
9375 SDValue SrcPtr = Op.getOperand(2);
9376 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9377 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9378 DebugLoc DL = Op.getDebugLoc();
9380 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9381 DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9383 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9387 X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9388 DebugLoc dl = Op.getDebugLoc();
9389 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9391 default: return SDValue(); // Don't custom lower most intrinsics.
9392 // Comparison intrinsics.
9393 case Intrinsic::x86_sse_comieq_ss:
9394 case Intrinsic::x86_sse_comilt_ss:
9395 case Intrinsic::x86_sse_comile_ss:
9396 case Intrinsic::x86_sse_comigt_ss:
9397 case Intrinsic::x86_sse_comige_ss:
9398 case Intrinsic::x86_sse_comineq_ss:
9399 case Intrinsic::x86_sse_ucomieq_ss:
9400 case Intrinsic::x86_sse_ucomilt_ss:
9401 case Intrinsic::x86_sse_ucomile_ss:
9402 case Intrinsic::x86_sse_ucomigt_ss:
9403 case Intrinsic::x86_sse_ucomige_ss:
9404 case Intrinsic::x86_sse_ucomineq_ss:
9405 case Intrinsic::x86_sse2_comieq_sd:
9406 case Intrinsic::x86_sse2_comilt_sd:
9407 case Intrinsic::x86_sse2_comile_sd:
9408 case Intrinsic::x86_sse2_comigt_sd:
9409 case Intrinsic::x86_sse2_comige_sd:
9410 case Intrinsic::x86_sse2_comineq_sd:
9411 case Intrinsic::x86_sse2_ucomieq_sd:
9412 case Intrinsic::x86_sse2_ucomilt_sd:
9413 case Intrinsic::x86_sse2_ucomile_sd:
9414 case Intrinsic::x86_sse2_ucomigt_sd:
9415 case Intrinsic::x86_sse2_ucomige_sd:
9416 case Intrinsic::x86_sse2_ucomineq_sd: {
9418 ISD::CondCode CC = ISD::SETCC_INVALID;
9421 case Intrinsic::x86_sse_comieq_ss:
9422 case Intrinsic::x86_sse2_comieq_sd:
9426 case Intrinsic::x86_sse_comilt_ss:
9427 case Intrinsic::x86_sse2_comilt_sd:
9431 case Intrinsic::x86_sse_comile_ss:
9432 case Intrinsic::x86_sse2_comile_sd:
9436 case Intrinsic::x86_sse_comigt_ss:
9437 case Intrinsic::x86_sse2_comigt_sd:
9441 case Intrinsic::x86_sse_comige_ss:
9442 case Intrinsic::x86_sse2_comige_sd:
9446 case Intrinsic::x86_sse_comineq_ss:
9447 case Intrinsic::x86_sse2_comineq_sd:
9451 case Intrinsic::x86_sse_ucomieq_ss:
9452 case Intrinsic::x86_sse2_ucomieq_sd:
9453 Opc = X86ISD::UCOMI;
9456 case Intrinsic::x86_sse_ucomilt_ss:
9457 case Intrinsic::x86_sse2_ucomilt_sd:
9458 Opc = X86ISD::UCOMI;
9461 case Intrinsic::x86_sse_ucomile_ss:
9462 case Intrinsic::x86_sse2_ucomile_sd:
9463 Opc = X86ISD::UCOMI;
9466 case Intrinsic::x86_sse_ucomigt_ss:
9467 case Intrinsic::x86_sse2_ucomigt_sd:
9468 Opc = X86ISD::UCOMI;
9471 case Intrinsic::x86_sse_ucomige_ss:
9472 case Intrinsic::x86_sse2_ucomige_sd:
9473 Opc = X86ISD::UCOMI;
9476 case Intrinsic::x86_sse_ucomineq_ss:
9477 case Intrinsic::x86_sse2_ucomineq_sd:
9478 Opc = X86ISD::UCOMI;
9483 SDValue LHS = Op.getOperand(1);
9484 SDValue RHS = Op.getOperand(2);
9485 unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9486 assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9487 SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9488 SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9489 DAG.getConstant(X86CC, MVT::i8), Cond);
9490 return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9492 // Arithmetic intrinsics.
9493 case Intrinsic::x86_sse3_hadd_ps:
9494 case Intrinsic::x86_sse3_hadd_pd:
9495 case Intrinsic::x86_avx_hadd_ps_256:
9496 case Intrinsic::x86_avx_hadd_pd_256:
9497 return DAG.getNode(X86ISD::FHADD, dl, Op.getValueType(),
9498 Op.getOperand(1), Op.getOperand(2));
9499 case Intrinsic::x86_sse3_hsub_ps:
9500 case Intrinsic::x86_sse3_hsub_pd:
9501 case Intrinsic::x86_avx_hsub_ps_256:
9502 case Intrinsic::x86_avx_hsub_pd_256:
9503 return DAG.getNode(X86ISD::FHSUB, dl, Op.getValueType(),
9504 Op.getOperand(1), Op.getOperand(2));
9505 // ptest and testp intrinsics. The intrinsic these come from are designed to
9506 // return an integer value, not just an instruction so lower it to the ptest
9507 // or testp pattern and a setcc for the result.
9508 case Intrinsic::x86_sse41_ptestz:
9509 case Intrinsic::x86_sse41_ptestc:
9510 case Intrinsic::x86_sse41_ptestnzc:
9511 case Intrinsic::x86_avx_ptestz_256:
9512 case Intrinsic::x86_avx_ptestc_256:
9513 case Intrinsic::x86_avx_ptestnzc_256:
9514 case Intrinsic::x86_avx_vtestz_ps:
9515 case Intrinsic::x86_avx_vtestc_ps:
9516 case Intrinsic::x86_avx_vtestnzc_ps:
9517 case Intrinsic::x86_avx_vtestz_pd:
9518 case Intrinsic::x86_avx_vtestc_pd:
9519 case Intrinsic::x86_avx_vtestnzc_pd:
9520 case Intrinsic::x86_avx_vtestz_ps_256:
9521 case Intrinsic::x86_avx_vtestc_ps_256:
9522 case Intrinsic::x86_avx_vtestnzc_ps_256:
9523 case Intrinsic::x86_avx_vtestz_pd_256:
9524 case Intrinsic::x86_avx_vtestc_pd_256:
9525 case Intrinsic::x86_avx_vtestnzc_pd_256: {
9526 bool IsTestPacked = false;
9529 default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9530 case Intrinsic::x86_avx_vtestz_ps:
9531 case Intrinsic::x86_avx_vtestz_pd:
9532 case Intrinsic::x86_avx_vtestz_ps_256:
9533 case Intrinsic::x86_avx_vtestz_pd_256:
9534 IsTestPacked = true; // Fallthrough
9535 case Intrinsic::x86_sse41_ptestz:
9536 case Intrinsic::x86_avx_ptestz_256:
9538 X86CC = X86::COND_E;
9540 case Intrinsic::x86_avx_vtestc_ps:
9541 case Intrinsic::x86_avx_vtestc_pd:
9542 case Intrinsic::x86_avx_vtestc_ps_256:
9543 case Intrinsic::x86_avx_vtestc_pd_256:
9544 IsTestPacked = true; // Fallthrough
9545 case Intrinsic::x86_sse41_ptestc:
9546 case Intrinsic::x86_avx_ptestc_256:
9548 X86CC = X86::COND_B;
9550 case Intrinsic::x86_avx_vtestnzc_ps:
9551 case Intrinsic::x86_avx_vtestnzc_pd:
9552 case Intrinsic::x86_avx_vtestnzc_ps_256:
9553 case Intrinsic::x86_avx_vtestnzc_pd_256:
9554 IsTestPacked = true; // Fallthrough
9555 case Intrinsic::x86_sse41_ptestnzc:
9556 case Intrinsic::x86_avx_ptestnzc_256:
9558 X86CC = X86::COND_A;
9562 SDValue LHS = Op.getOperand(1);
9563 SDValue RHS = Op.getOperand(2);
9564 unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9565 SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9566 SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9567 SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9568 return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9571 // Fix vector shift instructions where the last operand is a non-immediate
9573 case Intrinsic::x86_avx2_pslli_w:
9574 case Intrinsic::x86_avx2_pslli_d:
9575 case Intrinsic::x86_avx2_pslli_q:
9576 case Intrinsic::x86_avx2_psrli_w:
9577 case Intrinsic::x86_avx2_psrli_d:
9578 case Intrinsic::x86_avx2_psrli_q:
9579 case Intrinsic::x86_avx2_psrai_w:
9580 case Intrinsic::x86_avx2_psrai_d:
9581 case Intrinsic::x86_sse2_pslli_w:
9582 case Intrinsic::x86_sse2_pslli_d:
9583 case Intrinsic::x86_sse2_pslli_q:
9584 case Intrinsic::x86_sse2_psrli_w:
9585 case Intrinsic::x86_sse2_psrli_d:
9586 case Intrinsic::x86_sse2_psrli_q:
9587 case Intrinsic::x86_sse2_psrai_w:
9588 case Intrinsic::x86_sse2_psrai_d:
9589 case Intrinsic::x86_mmx_pslli_w:
9590 case Intrinsic::x86_mmx_pslli_d:
9591 case Intrinsic::x86_mmx_pslli_q:
9592 case Intrinsic::x86_mmx_psrli_w:
9593 case Intrinsic::x86_mmx_psrli_d:
9594 case Intrinsic::x86_mmx_psrli_q:
9595 case Intrinsic::x86_mmx_psrai_w:
9596 case Intrinsic::x86_mmx_psrai_d: {
9597 SDValue ShAmt = Op.getOperand(2);
9598 if (isa<ConstantSDNode>(ShAmt))
9601 unsigned NewIntNo = 0;
9602 EVT ShAmtVT = MVT::v4i32;
9604 case Intrinsic::x86_sse2_pslli_w:
9605 NewIntNo = Intrinsic::x86_sse2_psll_w;
9607 case Intrinsic::x86_sse2_pslli_d:
9608 NewIntNo = Intrinsic::x86_sse2_psll_d;
9610 case Intrinsic::x86_sse2_pslli_q:
9611 NewIntNo = Intrinsic::x86_sse2_psll_q;
9613 case Intrinsic::x86_sse2_psrli_w:
9614 NewIntNo = Intrinsic::x86_sse2_psrl_w;
9616 case Intrinsic::x86_sse2_psrli_d:
9617 NewIntNo = Intrinsic::x86_sse2_psrl_d;
9619 case Intrinsic::x86_sse2_psrli_q:
9620 NewIntNo = Intrinsic::x86_sse2_psrl_q;
9622 case Intrinsic::x86_sse2_psrai_w:
9623 NewIntNo = Intrinsic::x86_sse2_psra_w;
9625 case Intrinsic::x86_sse2_psrai_d:
9626 NewIntNo = Intrinsic::x86_sse2_psra_d;
9628 case Intrinsic::x86_avx2_pslli_w:
9629 NewIntNo = Intrinsic::x86_avx2_psll_w;
9631 case Intrinsic::x86_avx2_pslli_d:
9632 NewIntNo = Intrinsic::x86_avx2_psll_d;
9634 case Intrinsic::x86_avx2_pslli_q:
9635 NewIntNo = Intrinsic::x86_avx2_psll_q;
9637 case Intrinsic::x86_avx2_psrli_w:
9638 NewIntNo = Intrinsic::x86_avx2_psrl_w;
9640 case Intrinsic::x86_avx2_psrli_d:
9641 NewIntNo = Intrinsic::x86_avx2_psrl_d;
9643 case Intrinsic::x86_avx2_psrli_q:
9644 NewIntNo = Intrinsic::x86_avx2_psrl_q;
9646 case Intrinsic::x86_avx2_psrai_w:
9647 NewIntNo = Intrinsic::x86_avx2_psra_w;
9649 case Intrinsic::x86_avx2_psrai_d:
9650 NewIntNo = Intrinsic::x86_avx2_psra_d;
9653 ShAmtVT = MVT::v2i32;
9655 case Intrinsic::x86_mmx_pslli_w:
9656 NewIntNo = Intrinsic::x86_mmx_psll_w;
9658 case Intrinsic::x86_mmx_pslli_d:
9659 NewIntNo = Intrinsic::x86_mmx_psll_d;
9661 case Intrinsic::x86_mmx_pslli_q:
9662 NewIntNo = Intrinsic::x86_mmx_psll_q;
9664 case Intrinsic::x86_mmx_psrli_w:
9665 NewIntNo = Intrinsic::x86_mmx_psrl_w;
9667 case Intrinsic::x86_mmx_psrli_d:
9668 NewIntNo = Intrinsic::x86_mmx_psrl_d;
9670 case Intrinsic::x86_mmx_psrli_q:
9671 NewIntNo = Intrinsic::x86_mmx_psrl_q;
9673 case Intrinsic::x86_mmx_psrai_w:
9674 NewIntNo = Intrinsic::x86_mmx_psra_w;
9676 case Intrinsic::x86_mmx_psrai_d:
9677 NewIntNo = Intrinsic::x86_mmx_psra_d;
9679 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
9685 // The vector shift intrinsics with scalars uses 32b shift amounts but
9686 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
9690 ShOps[1] = DAG.getConstant(0, MVT::i32);
9691 if (ShAmtVT == MVT::v4i32) {
9692 ShOps[2] = DAG.getUNDEF(MVT::i32);
9693 ShOps[3] = DAG.getUNDEF(MVT::i32);
9694 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
9696 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
9697 // FIXME this must be lowered to get rid of the invalid type.
9700 EVT VT = Op.getValueType();
9701 ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9702 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9703 DAG.getConstant(NewIntNo, MVT::i32),
9704 Op.getOperand(1), ShAmt);
9709 SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
9710 SelectionDAG &DAG) const {
9711 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9712 MFI->setReturnAddressIsTaken(true);
9714 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9715 DebugLoc dl = Op.getDebugLoc();
9718 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
9720 DAG.getConstant(TD->getPointerSize(),
9721 Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9722 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9723 DAG.getNode(ISD::ADD, dl, getPointerTy(),
9725 MachinePointerInfo(), false, false, false, 0);
9728 // Just load the return address.
9729 SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
9730 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9731 RetAddrFI, MachinePointerInfo(), false, false, false, 0);
9734 SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
9735 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9736 MFI->setFrameAddressIsTaken(true);
9738 EVT VT = Op.getValueType();
9739 DebugLoc dl = Op.getDebugLoc(); // FIXME probably not meaningful
9740 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9741 unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
9742 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
9744 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
9745 MachinePointerInfo(),
9746 false, false, false, 0);
9750 SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
9751 SelectionDAG &DAG) const {
9752 return DAG.getIntPtrConstant(2*TD->getPointerSize());
9755 SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
9756 MachineFunction &MF = DAG.getMachineFunction();
9757 SDValue Chain = Op.getOperand(0);
9758 SDValue Offset = Op.getOperand(1);
9759 SDValue Handler = Op.getOperand(2);
9760 DebugLoc dl = Op.getDebugLoc();
9762 SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
9763 Subtarget->is64Bit() ? X86::RBP : X86::EBP,
9765 unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
9767 SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
9768 DAG.getIntPtrConstant(TD->getPointerSize()));
9769 StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
9770 Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
9772 Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
9773 MF.getRegInfo().addLiveOut(StoreAddrReg);
9775 return DAG.getNode(X86ISD::EH_RETURN, dl,
9777 Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
9780 SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
9781 SelectionDAG &DAG) const {
9782 return Op.getOperand(0);
9785 SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
9786 SelectionDAG &DAG) const {
9787 SDValue Root = Op.getOperand(0);
9788 SDValue Trmp = Op.getOperand(1); // trampoline
9789 SDValue FPtr = Op.getOperand(2); // nested function
9790 SDValue Nest = Op.getOperand(3); // 'nest' parameter value
9791 DebugLoc dl = Op.getDebugLoc();
9793 const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9795 if (Subtarget->is64Bit()) {
9796 SDValue OutChains[6];
9798 // Large code-model.
9799 const unsigned char JMP64r = 0xFF; // 64-bit jmp through register opcode.
9800 const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
9802 const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
9803 const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
9805 const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
9807 // Load the pointer to the nested function into R11.
9808 unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
9809 SDValue Addr = Trmp;
9810 OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9811 Addr, MachinePointerInfo(TrmpAddr),
9814 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9815 DAG.getConstant(2, MVT::i64));
9816 OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
9817 MachinePointerInfo(TrmpAddr, 2),
9820 // Load the 'nest' parameter value into R10.
9821 // R10 is specified in X86CallingConv.td
9822 OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
9823 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9824 DAG.getConstant(10, MVT::i64));
9825 OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9826 Addr, MachinePointerInfo(TrmpAddr, 10),
9829 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9830 DAG.getConstant(12, MVT::i64));
9831 OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
9832 MachinePointerInfo(TrmpAddr, 12),
9835 // Jump to the nested function.
9836 OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
9837 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9838 DAG.getConstant(20, MVT::i64));
9839 OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9840 Addr, MachinePointerInfo(TrmpAddr, 20),
9843 unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
9844 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9845 DAG.getConstant(22, MVT::i64));
9846 OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
9847 MachinePointerInfo(TrmpAddr, 22),
9850 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
9852 const Function *Func =
9853 cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
9854 CallingConv::ID CC = Func->getCallingConv();
9859 llvm_unreachable("Unsupported calling convention");
9860 case CallingConv::C:
9861 case CallingConv::X86_StdCall: {
9862 // Pass 'nest' parameter in ECX.
9863 // Must be kept in sync with X86CallingConv.td
9866 // Check that ECX wasn't needed by an 'inreg' parameter.
9867 FunctionType *FTy = Func->getFunctionType();
9868 const AttrListPtr &Attrs = Func->getAttributes();
9870 if (!Attrs.isEmpty() && !Func->isVarArg()) {
9871 unsigned InRegCount = 0;
9874 for (FunctionType::param_iterator I = FTy->param_begin(),
9875 E = FTy->param_end(); I != E; ++I, ++Idx)
9876 if (Attrs.paramHasAttr(Idx, Attribute::InReg))
9877 // FIXME: should only count parameters that are lowered to integers.
9878 InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
9880 if (InRegCount > 2) {
9881 report_fatal_error("Nest register in use - reduce number of inreg"
9887 case CallingConv::X86_FastCall:
9888 case CallingConv::X86_ThisCall:
9889 case CallingConv::Fast:
9890 // Pass 'nest' parameter in EAX.
9891 // Must be kept in sync with X86CallingConv.td
9896 SDValue OutChains[4];
9899 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9900 DAG.getConstant(10, MVT::i32));
9901 Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
9903 // This is storing the opcode for MOV32ri.
9904 const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
9905 const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
9906 OutChains[0] = DAG.getStore(Root, dl,
9907 DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
9908 Trmp, MachinePointerInfo(TrmpAddr),
9911 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9912 DAG.getConstant(1, MVT::i32));
9913 OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
9914 MachinePointerInfo(TrmpAddr, 1),
9917 const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
9918 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9919 DAG.getConstant(5, MVT::i32));
9920 OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
9921 MachinePointerInfo(TrmpAddr, 5),
9924 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9925 DAG.getConstant(6, MVT::i32));
9926 OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
9927 MachinePointerInfo(TrmpAddr, 6),
9930 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
9934 SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
9935 SelectionDAG &DAG) const {
9937 The rounding mode is in bits 11:10 of FPSR, and has the following
9944 FLT_ROUNDS, on the other hand, expects the following:
9951 To perform the conversion, we do:
9952 (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
9955 MachineFunction &MF = DAG.getMachineFunction();
9956 const TargetMachine &TM = MF.getTarget();
9957 const TargetFrameLowering &TFI = *TM.getFrameLowering();
9958 unsigned StackAlignment = TFI.getStackAlignment();
9959 EVT VT = Op.getValueType();
9960 DebugLoc DL = Op.getDebugLoc();
9962 // Save FP Control Word to stack slot
9963 int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
9964 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
9967 MachineMemOperand *MMO =
9968 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
9969 MachineMemOperand::MOStore, 2, 2);
9971 SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
9972 SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
9973 DAG.getVTList(MVT::Other),
9974 Ops, 2, MVT::i16, MMO);
9976 // Load FP Control Word from stack slot
9977 SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
9978 MachinePointerInfo(), false, false, false, 0);
9980 // Transform as necessary
9982 DAG.getNode(ISD::SRL, DL, MVT::i16,
9983 DAG.getNode(ISD::AND, DL, MVT::i16,
9984 CWD, DAG.getConstant(0x800, MVT::i16)),
9985 DAG.getConstant(11, MVT::i8));
9987 DAG.getNode(ISD::SRL, DL, MVT::i16,
9988 DAG.getNode(ISD::AND, DL, MVT::i16,
9989 CWD, DAG.getConstant(0x400, MVT::i16)),
9990 DAG.getConstant(9, MVT::i8));
9993 DAG.getNode(ISD::AND, DL, MVT::i16,
9994 DAG.getNode(ISD::ADD, DL, MVT::i16,
9995 DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
9996 DAG.getConstant(1, MVT::i16)),
9997 DAG.getConstant(3, MVT::i16));
10000 return DAG.getNode((VT.getSizeInBits() < 16 ?
10001 ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
10004 SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
10005 EVT VT = Op.getValueType();
10007 unsigned NumBits = VT.getSizeInBits();
10008 DebugLoc dl = Op.getDebugLoc();
10010 Op = Op.getOperand(0);
10011 if (VT == MVT::i8) {
10012 // Zero extend to i32 since there is not an i8 bsr.
10014 Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10017 // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
10018 SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10019 Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10021 // If src is zero (i.e. bsr sets ZF), returns NumBits.
10024 DAG.getConstant(NumBits+NumBits-1, OpVT),
10025 DAG.getConstant(X86::COND_E, MVT::i8),
10028 Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
10030 // Finally xor with NumBits-1.
10031 Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10034 Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10038 SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
10039 EVT VT = Op.getValueType();
10041 unsigned NumBits = VT.getSizeInBits();
10042 DebugLoc dl = Op.getDebugLoc();
10044 Op = Op.getOperand(0);
10045 if (VT == MVT::i8) {
10047 Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10050 // Issue a bsf (scan bits forward) which also sets EFLAGS.
10051 SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10052 Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
10054 // If src is zero (i.e. bsf sets ZF), returns NumBits.
10057 DAG.getConstant(NumBits, OpVT),
10058 DAG.getConstant(X86::COND_E, MVT::i8),
10061 Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
10064 Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10068 // Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
10069 // ones, and then concatenate the result back.
10070 static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
10071 EVT VT = Op.getValueType();
10073 assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
10074 "Unsupported value type for operation");
10076 int NumElems = VT.getVectorNumElements();
10077 DebugLoc dl = Op.getDebugLoc();
10078 SDValue Idx0 = DAG.getConstant(0, MVT::i32);
10079 SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
10081 // Extract the LHS vectors
10082 SDValue LHS = Op.getOperand(0);
10083 SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
10084 SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
10086 // Extract the RHS vectors
10087 SDValue RHS = Op.getOperand(1);
10088 SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
10089 SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
10091 MVT EltVT = VT.getVectorElementType().getSimpleVT();
10092 EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10094 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
10095 DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
10096 DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
10099 SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
10100 assert(Op.getValueType().getSizeInBits() == 256 &&
10101 Op.getValueType().isInteger() &&
10102 "Only handle AVX 256-bit vector integer operation");
10103 return Lower256IntArith(Op, DAG);
10106 SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
10107 assert(Op.getValueType().getSizeInBits() == 256 &&
10108 Op.getValueType().isInteger() &&
10109 "Only handle AVX 256-bit vector integer operation");
10110 return Lower256IntArith(Op, DAG);
10113 SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10114 EVT VT = Op.getValueType();
10116 // Decompose 256-bit ops into smaller 128-bit ops.
10117 if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
10118 return Lower256IntArith(Op, DAG);
10120 DebugLoc dl = Op.getDebugLoc();
10122 SDValue A = Op.getOperand(0);
10123 SDValue B = Op.getOperand(1);
10125 if (VT == MVT::v4i64) {
10126 assert(Subtarget->hasAVX2() && "Lowering v4i64 multiply requires AVX2");
10128 // ulong2 Ahi = __builtin_ia32_psrlqi256( a, 32);
10129 // ulong2 Bhi = __builtin_ia32_psrlqi256( b, 32);
10130 // ulong2 AloBlo = __builtin_ia32_pmuludq256( a, b );
10131 // ulong2 AloBhi = __builtin_ia32_pmuludq256( a, Bhi );
10132 // ulong2 AhiBlo = __builtin_ia32_pmuludq256( Ahi, b );
10134 // AloBhi = __builtin_ia32_psllqi256( AloBhi, 32 );
10135 // AhiBlo = __builtin_ia32_psllqi256( AhiBlo, 32 );
10136 // return AloBlo + AloBhi + AhiBlo;
10138 SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10139 DAG.getConstant(Intrinsic::x86_avx2_psrli_q, MVT::i32),
10140 A, DAG.getConstant(32, MVT::i32));
10141 SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10142 DAG.getConstant(Intrinsic::x86_avx2_psrli_q, MVT::i32),
10143 B, DAG.getConstant(32, MVT::i32));
10144 SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10145 DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
10147 SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10148 DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
10150 SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10151 DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
10153 AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10154 DAG.getConstant(Intrinsic::x86_avx2_pslli_q, MVT::i32),
10155 AloBhi, DAG.getConstant(32, MVT::i32));
10156 AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10157 DAG.getConstant(Intrinsic::x86_avx2_pslli_q, MVT::i32),
10158 AhiBlo, DAG.getConstant(32, MVT::i32));
10159 SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10160 Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10164 assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
10166 // ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
10167 // ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
10168 // ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
10169 // ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
10170 // ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
10172 // AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
10173 // AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
10174 // return AloBlo + AloBhi + AhiBlo;
10176 SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10177 DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
10178 A, DAG.getConstant(32, MVT::i32));
10179 SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10180 DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
10181 B, DAG.getConstant(32, MVT::i32));
10182 SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10183 DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
10185 SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10186 DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
10188 SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10189 DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
10191 AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10192 DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
10193 AloBhi, DAG.getConstant(32, MVT::i32));
10194 AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10195 DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
10196 AhiBlo, DAG.getConstant(32, MVT::i32));
10197 SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10198 Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10202 SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
10204 EVT VT = Op.getValueType();
10205 DebugLoc dl = Op.getDebugLoc();
10206 SDValue R = Op.getOperand(0);
10207 SDValue Amt = Op.getOperand(1);
10208 LLVMContext *Context = DAG.getContext();
10210 if (!Subtarget->hasXMMInt())
10213 // Optimize shl/srl/sra with constant shift amount.
10214 if (isSplatVector(Amt.getNode())) {
10215 SDValue SclrAmt = Amt->getOperand(0);
10216 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
10217 uint64_t ShiftAmt = C->getZExtValue();
10219 if (VT == MVT::v16i8 && Op.getOpcode() == ISD::SHL) {
10220 // Make a large shift.
10222 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10223 DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10224 R, DAG.getConstant(ShiftAmt, MVT::i32));
10225 // Zero out the rightmost bits.
10226 SmallVector<SDValue, 16> V(16, DAG.getConstant(uint8_t(-1U << ShiftAmt),
10228 return DAG.getNode(ISD::AND, dl, VT, SHL,
10229 DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10232 if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SHL)
10233 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10234 DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
10235 R, DAG.getConstant(ShiftAmt, MVT::i32));
10237 if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SHL)
10238 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10239 DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
10240 R, DAG.getConstant(ShiftAmt, MVT::i32));
10242 if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SHL)
10243 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10244 DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10245 R, DAG.getConstant(ShiftAmt, MVT::i32));
10247 if (VT == MVT::v16i8 && Op.getOpcode() == ISD::SRL) {
10248 // Make a large shift.
10250 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10251 DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
10252 R, DAG.getConstant(ShiftAmt, MVT::i32));
10253 // Zero out the leftmost bits.
10254 SmallVector<SDValue, 16> V(16, DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10256 return DAG.getNode(ISD::AND, dl, VT, SRL,
10257 DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10260 if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SRL)
10261 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10262 DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
10263 R, DAG.getConstant(ShiftAmt, MVT::i32));
10265 if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRL)
10266 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10267 DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
10268 R, DAG.getConstant(ShiftAmt, MVT::i32));
10270 if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRL)
10271 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10272 DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
10273 R, DAG.getConstant(ShiftAmt, MVT::i32));
10275 if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRA)
10276 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10277 DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
10278 R, DAG.getConstant(ShiftAmt, MVT::i32));
10280 if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRA)
10281 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10282 DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
10283 R, DAG.getConstant(ShiftAmt, MVT::i32));
10285 if (VT == MVT::v16i8 && Op.getOpcode() == ISD::SRA) {
10286 if (ShiftAmt == 7) {
10287 // R s>> 7 === R s< 0
10288 SDValue Zeros = getZeroVector(VT, true /* HasXMMInt */, DAG, dl);
10289 return DAG.getNode(X86ISD::PCMPGTB, dl, VT, Zeros, R);
10292 // R s>> a === ((R u>> a) ^ m) - m
10293 SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10294 SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
10296 SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
10297 Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10298 Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10302 if (Subtarget->hasAVX2()) {
10303 if (VT == MVT::v4i64 && Op.getOpcode() == ISD::SHL)
10304 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10305 DAG.getConstant(Intrinsic::x86_avx2_pslli_q, MVT::i32),
10306 R, DAG.getConstant(ShiftAmt, MVT::i32));
10308 if (VT == MVT::v8i32 && Op.getOpcode() == ISD::SHL)
10309 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10310 DAG.getConstant(Intrinsic::x86_avx2_pslli_d, MVT::i32),
10311 R, DAG.getConstant(ShiftAmt, MVT::i32));
10313 if (VT == MVT::v16i16 && Op.getOpcode() == ISD::SHL)
10314 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10315 DAG.getConstant(Intrinsic::x86_avx2_pslli_w, MVT::i32),
10316 R, DAG.getConstant(ShiftAmt, MVT::i32));
10318 if (VT == MVT::v4i64 && Op.getOpcode() == ISD::SRL)
10319 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10320 DAG.getConstant(Intrinsic::x86_avx2_psrli_q, MVT::i32),
10321 R, DAG.getConstant(ShiftAmt, MVT::i32));
10323 if (VT == MVT::v8i32 && Op.getOpcode() == ISD::SRL)
10324 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10325 DAG.getConstant(Intrinsic::x86_avx2_psrli_d, MVT::i32),
10326 R, DAG.getConstant(ShiftAmt, MVT::i32));
10328 if (VT == MVT::v16i16 && Op.getOpcode() == ISD::SRL)
10329 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10330 DAG.getConstant(Intrinsic::x86_avx2_psrli_w, MVT::i32),
10331 R, DAG.getConstant(ShiftAmt, MVT::i32));
10333 if (VT == MVT::v8i32 && Op.getOpcode() == ISD::SRA)
10334 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10335 DAG.getConstant(Intrinsic::x86_avx2_psrai_d, MVT::i32),
10336 R, DAG.getConstant(ShiftAmt, MVT::i32));
10338 if (VT == MVT::v16i16 && Op.getOpcode() == ISD::SRA)
10339 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10340 DAG.getConstant(Intrinsic::x86_avx2_psrai_w, MVT::i32),
10341 R, DAG.getConstant(ShiftAmt, MVT::i32));
10346 // Lower SHL with variable shift amount.
10347 if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
10348 Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10349 DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
10350 Op.getOperand(1), DAG.getConstant(23, MVT::i32));
10352 ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
10354 std::vector<Constant*> CV(4, CI);
10355 Constant *C = ConstantVector::get(CV);
10356 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10357 SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10358 MachinePointerInfo::getConstantPool(),
10359 false, false, false, 16);
10361 Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
10362 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
10363 Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
10364 return DAG.getNode(ISD::MUL, dl, VT, Op, R);
10366 if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
10368 Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10369 DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10370 Op.getOperand(1), DAG.getConstant(5, MVT::i32));
10372 ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
10373 ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
10375 std::vector<Constant*> CVM1(16, CM1);
10376 std::vector<Constant*> CVM2(16, CM2);
10377 Constant *C = ConstantVector::get(CVM1);
10378 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10379 SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10380 MachinePointerInfo::getConstantPool(),
10381 false, false, false, 16);
10383 // r = pblendv(r, psllw(r & (char16)15, 4), a);
10384 M = DAG.getNode(ISD::AND, dl, VT, R, M);
10385 M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10386 DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
10387 DAG.getConstant(4, MVT::i32));
10388 R = DAG.getNode(ISD::VSELECT, dl, VT, Op, R, M);
10390 Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10392 C = ConstantVector::get(CVM2);
10393 CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10394 M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10395 MachinePointerInfo::getConstantPool(),
10396 false, false, false, 16);
10398 // r = pblendv(r, psllw(r & (char16)63, 2), a);
10399 M = DAG.getNode(ISD::AND, dl, VT, R, M);
10400 M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10401 DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
10402 DAG.getConstant(2, MVT::i32));
10403 R = DAG.getNode(ISD::VSELECT, dl, VT, Op, R, M);
10405 Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10407 // return pblendv(r, r+r, a);
10408 R = DAG.getNode(ISD::VSELECT, dl, VT, Op,
10409 R, DAG.getNode(ISD::ADD, dl, VT, R, R));
10413 // Decompose 256-bit shifts into smaller 128-bit shifts.
10414 if (VT.getSizeInBits() == 256) {
10415 int NumElems = VT.getVectorNumElements();
10416 MVT EltVT = VT.getVectorElementType().getSimpleVT();
10417 EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10419 // Extract the two vectors
10420 SDValue V1 = Extract128BitVector(R, DAG.getConstant(0, MVT::i32), DAG, dl);
10421 SDValue V2 = Extract128BitVector(R, DAG.getConstant(NumElems/2, MVT::i32),
10424 // Recreate the shift amount vectors
10425 SDValue Amt1, Amt2;
10426 if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
10427 // Constant shift amount
10428 SmallVector<SDValue, 4> Amt1Csts;
10429 SmallVector<SDValue, 4> Amt2Csts;
10430 for (int i = 0; i < NumElems/2; ++i)
10431 Amt1Csts.push_back(Amt->getOperand(i));
10432 for (int i = NumElems/2; i < NumElems; ++i)
10433 Amt2Csts.push_back(Amt->getOperand(i));
10435 Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10436 &Amt1Csts[0], NumElems/2);
10437 Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10438 &Amt2Csts[0], NumElems/2);
10440 // Variable shift amount
10441 Amt1 = Extract128BitVector(Amt, DAG.getConstant(0, MVT::i32), DAG, dl);
10442 Amt2 = Extract128BitVector(Amt, DAG.getConstant(NumElems/2, MVT::i32),
10446 // Issue new vector shifts for the smaller types
10447 V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
10448 V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
10450 // Concatenate the result back
10451 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
10457 SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
10458 // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
10459 // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
10460 // looks for this combo and may remove the "setcc" instruction if the "setcc"
10461 // has only one use.
10462 SDNode *N = Op.getNode();
10463 SDValue LHS = N->getOperand(0);
10464 SDValue RHS = N->getOperand(1);
10465 unsigned BaseOp = 0;
10467 DebugLoc DL = Op.getDebugLoc();
10468 switch (Op.getOpcode()) {
10469 default: llvm_unreachable("Unknown ovf instruction!");
10471 // A subtract of one will be selected as a INC. Note that INC doesn't
10472 // set CF, so we can't do this for UADDO.
10473 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10475 BaseOp = X86ISD::INC;
10476 Cond = X86::COND_O;
10479 BaseOp = X86ISD::ADD;
10480 Cond = X86::COND_O;
10483 BaseOp = X86ISD::ADD;
10484 Cond = X86::COND_B;
10487 // A subtract of one will be selected as a DEC. Note that DEC doesn't
10488 // set CF, so we can't do this for USUBO.
10489 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10491 BaseOp = X86ISD::DEC;
10492 Cond = X86::COND_O;
10495 BaseOp = X86ISD::SUB;
10496 Cond = X86::COND_O;
10499 BaseOp = X86ISD::SUB;
10500 Cond = X86::COND_B;
10503 BaseOp = X86ISD::SMUL;
10504 Cond = X86::COND_O;
10506 case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
10507 SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
10509 SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
10512 DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10513 DAG.getConstant(X86::COND_O, MVT::i32),
10514 SDValue(Sum.getNode(), 2));
10516 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10520 // Also sets EFLAGS.
10521 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
10522 SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
10525 DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
10526 DAG.getConstant(Cond, MVT::i32),
10527 SDValue(Sum.getNode(), 1));
10529 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10532 SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const{
10533 DebugLoc dl = Op.getDebugLoc();
10534 SDNode* Node = Op.getNode();
10535 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
10536 EVT VT = Node->getValueType(0);
10537 if (Subtarget->hasXMMInt() && VT.isVector()) {
10538 unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
10539 ExtraVT.getScalarType().getSizeInBits();
10540 SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
10542 unsigned SHLIntrinsicsID = 0;
10543 unsigned SRAIntrinsicsID = 0;
10544 switch (VT.getSimpleVT().SimpleTy) {
10548 SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_d;
10549 SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_d;
10553 SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_w;
10554 SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_w;
10559 SDValue Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10560 DAG.getConstant(SHLIntrinsicsID, MVT::i32),
10561 Node->getOperand(0), ShAmt);
10563 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10564 DAG.getConstant(SRAIntrinsicsID, MVT::i32),
10572 SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
10573 DebugLoc dl = Op.getDebugLoc();
10575 // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10576 // There isn't any reason to disable it if the target processor supports it.
10577 if (!Subtarget->hasXMMInt() && !Subtarget->is64Bit()) {
10578 SDValue Chain = Op.getOperand(0);
10579 SDValue Zero = DAG.getConstant(0, MVT::i32);
10581 DAG.getRegister(X86::ESP, MVT::i32), // Base
10582 DAG.getTargetConstant(1, MVT::i8), // Scale
10583 DAG.getRegister(0, MVT::i32), // Index
10584 DAG.getTargetConstant(0, MVT::i32), // Disp
10585 DAG.getRegister(0, MVT::i32), // Segment.
10590 DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10591 array_lengthof(Ops));
10592 return SDValue(Res, 0);
10595 unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10597 return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10599 unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10600 unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10601 unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10602 unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10604 // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10605 if (!Op1 && !Op2 && !Op3 && Op4)
10606 return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10608 // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10609 if (Op1 && !Op2 && !Op3 && !Op4)
10610 return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10612 // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10614 return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10617 SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10618 SelectionDAG &DAG) const {
10619 DebugLoc dl = Op.getDebugLoc();
10620 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10621 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10622 SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10623 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10625 // The only fence that needs an instruction is a sequentially-consistent
10626 // cross-thread fence.
10627 if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
10628 // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
10629 // no-sse2). There isn't any reason to disable it if the target processor
10631 if (Subtarget->hasXMMInt() || Subtarget->is64Bit())
10632 return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10634 SDValue Chain = Op.getOperand(0);
10635 SDValue Zero = DAG.getConstant(0, MVT::i32);
10637 DAG.getRegister(X86::ESP, MVT::i32), // Base
10638 DAG.getTargetConstant(1, MVT::i8), // Scale
10639 DAG.getRegister(0, MVT::i32), // Index
10640 DAG.getTargetConstant(0, MVT::i32), // Disp
10641 DAG.getRegister(0, MVT::i32), // Segment.
10646 DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10647 array_lengthof(Ops));
10648 return SDValue(Res, 0);
10651 // MEMBARRIER is a compiler barrier; it codegens to a no-op.
10652 return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10656 SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10657 EVT T = Op.getValueType();
10658 DebugLoc DL = Op.getDebugLoc();
10661 switch(T.getSimpleVT().SimpleTy) {
10663 assert(false && "Invalid value type!");
10664 case MVT::i8: Reg = X86::AL; size = 1; break;
10665 case MVT::i16: Reg = X86::AX; size = 2; break;
10666 case MVT::i32: Reg = X86::EAX; size = 4; break;
10668 assert(Subtarget->is64Bit() && "Node not type legal!");
10669 Reg = X86::RAX; size = 8;
10672 SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
10673 Op.getOperand(2), SDValue());
10674 SDValue Ops[] = { cpIn.getValue(0),
10677 DAG.getTargetConstant(size, MVT::i8),
10678 cpIn.getValue(1) };
10679 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10680 MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
10681 SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
10684 DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
10688 SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
10689 SelectionDAG &DAG) const {
10690 assert(Subtarget->is64Bit() && "Result not type legalized?");
10691 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10692 SDValue TheChain = Op.getOperand(0);
10693 DebugLoc dl = Op.getDebugLoc();
10694 SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10695 SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
10696 SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
10698 SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
10699 DAG.getConstant(32, MVT::i8));
10701 DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
10704 return DAG.getMergeValues(Ops, 2, dl);
10707 SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
10708 SelectionDAG &DAG) const {
10709 EVT SrcVT = Op.getOperand(0).getValueType();
10710 EVT DstVT = Op.getValueType();
10711 assert(Subtarget->is64Bit() && !Subtarget->hasXMMInt() &&
10712 Subtarget->hasMMX() && "Unexpected custom BITCAST");
10713 assert((DstVT == MVT::i64 ||
10714 (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
10715 "Unexpected custom BITCAST");
10716 // i64 <=> MMX conversions are Legal.
10717 if (SrcVT==MVT::i64 && DstVT.isVector())
10719 if (DstVT==MVT::i64 && SrcVT.isVector())
10721 // MMX <=> MMX conversions are Legal.
10722 if (SrcVT.isVector() && DstVT.isVector())
10724 // All other conversions need to be expanded.
10728 SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
10729 SDNode *Node = Op.getNode();
10730 DebugLoc dl = Node->getDebugLoc();
10731 EVT T = Node->getValueType(0);
10732 SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
10733 DAG.getConstant(0, T), Node->getOperand(2));
10734 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
10735 cast<AtomicSDNode>(Node)->getMemoryVT(),
10736 Node->getOperand(0),
10737 Node->getOperand(1), negOp,
10738 cast<AtomicSDNode>(Node)->getSrcValue(),
10739 cast<AtomicSDNode>(Node)->getAlignment(),
10740 cast<AtomicSDNode>(Node)->getOrdering(),
10741 cast<AtomicSDNode>(Node)->getSynchScope());
10744 static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
10745 SDNode *Node = Op.getNode();
10746 DebugLoc dl = Node->getDebugLoc();
10747 EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10749 // Convert seq_cst store -> xchg
10750 // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
10751 // FIXME: On 32-bit, store -> fist or movq would be more efficient
10752 // (The only way to get a 16-byte store is cmpxchg16b)
10753 // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
10754 if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
10755 !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10756 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
10757 cast<AtomicSDNode>(Node)->getMemoryVT(),
10758 Node->getOperand(0),
10759 Node->getOperand(1), Node->getOperand(2),
10760 cast<AtomicSDNode>(Node)->getMemOperand(),
10761 cast<AtomicSDNode>(Node)->getOrdering(),
10762 cast<AtomicSDNode>(Node)->getSynchScope());
10763 return Swap.getValue(1);
10765 // Other atomic stores have a simple pattern.
10769 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
10770 EVT VT = Op.getNode()->getValueType(0);
10772 // Let legalize expand this if it isn't a legal type yet.
10773 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10776 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10779 bool ExtraOp = false;
10780 switch (Op.getOpcode()) {
10781 default: assert(0 && "Invalid code");
10782 case ISD::ADDC: Opc = X86ISD::ADD; break;
10783 case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
10784 case ISD::SUBC: Opc = X86ISD::SUB; break;
10785 case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
10789 return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10791 return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10792 Op.getOperand(1), Op.getOperand(2));
10795 /// LowerOperation - Provide custom lowering hooks for some operations.
10797 SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10798 switch (Op.getOpcode()) {
10799 default: llvm_unreachable("Should not custom lower this!");
10800 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op,DAG);
10801 case ISD::MEMBARRIER: return LowerMEMBARRIER(Op,DAG);
10802 case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op,DAG);
10803 case ISD::ATOMIC_CMP_SWAP: return LowerCMP_SWAP(Op,DAG);
10804 case ISD::ATOMIC_LOAD_SUB: return LowerLOAD_SUB(Op,DAG);
10805 case ISD::ATOMIC_STORE: return LowerATOMIC_STORE(Op,DAG);
10806 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
10807 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
10808 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
10809 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10810 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
10811 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
10812 case ISD::INSERT_SUBVECTOR: return LowerINSERT_SUBVECTOR(Op, DAG);
10813 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
10814 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
10815 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
10816 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
10817 case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
10818 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
10819 case ISD::SHL_PARTS:
10820 case ISD::SRA_PARTS:
10821 case ISD::SRL_PARTS: return LowerShiftParts(Op, DAG);
10822 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
10823 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
10824 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
10825 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
10826 case ISD::FABS: return LowerFABS(Op, DAG);
10827 case ISD::FNEG: return LowerFNEG(Op, DAG);
10828 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
10829 case ISD::FGETSIGN: return LowerFGETSIGN(Op, DAG);
10830 case ISD::SETCC: return LowerSETCC(Op, DAG);
10831 case ISD::SELECT: return LowerSELECT(Op, DAG);
10832 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
10833 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
10834 case ISD::VASTART: return LowerVASTART(Op, DAG);
10835 case ISD::VAARG: return LowerVAARG(Op, DAG);
10836 case ISD::VACOPY: return LowerVACOPY(Op, DAG);
10837 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10838 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
10839 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
10840 case ISD::FRAME_TO_ARGS_OFFSET:
10841 return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
10842 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10843 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
10844 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG);
10845 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG);
10846 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
10847 case ISD::CTLZ: return LowerCTLZ(Op, DAG);
10848 case ISD::CTTZ: return LowerCTTZ(Op, DAG);
10849 case ISD::MUL: return LowerMUL(Op, DAG);
10852 case ISD::SHL: return LowerShift(Op, DAG);
10858 case ISD::UMULO: return LowerXALUO(Op, DAG);
10859 case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, DAG);
10860 case ISD::BITCAST: return LowerBITCAST(Op, DAG);
10864 case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
10865 case ISD::ADD: return LowerADD(Op, DAG);
10866 case ISD::SUB: return LowerSUB(Op, DAG);
10870 static void ReplaceATOMIC_LOAD(SDNode *Node,
10871 SmallVectorImpl<SDValue> &Results,
10872 SelectionDAG &DAG) {
10873 DebugLoc dl = Node->getDebugLoc();
10874 EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10876 // Convert wide load -> cmpxchg8b/cmpxchg16b
10877 // FIXME: On 32-bit, load -> fild or movq would be more efficient
10878 // (The only way to get a 16-byte load is cmpxchg16b)
10879 // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
10880 SDValue Zero = DAG.getConstant(0, VT);
10881 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
10882 Node->getOperand(0),
10883 Node->getOperand(1), Zero, Zero,
10884 cast<AtomicSDNode>(Node)->getMemOperand(),
10885 cast<AtomicSDNode>(Node)->getOrdering(),
10886 cast<AtomicSDNode>(Node)->getSynchScope());
10887 Results.push_back(Swap.getValue(0));
10888 Results.push_back(Swap.getValue(1));
10891 void X86TargetLowering::
10892 ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
10893 SelectionDAG &DAG, unsigned NewOp) const {
10894 DebugLoc dl = Node->getDebugLoc();
10895 assert (Node->getValueType(0) == MVT::i64 &&
10896 "Only know how to expand i64 atomics");
10898 SDValue Chain = Node->getOperand(0);
10899 SDValue In1 = Node->getOperand(1);
10900 SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10901 Node->getOperand(2), DAG.getIntPtrConstant(0));
10902 SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10903 Node->getOperand(2), DAG.getIntPtrConstant(1));
10904 SDValue Ops[] = { Chain, In1, In2L, In2H };
10905 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10907 DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
10908 cast<MemSDNode>(Node)->getMemOperand());
10909 SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
10910 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
10911 Results.push_back(Result.getValue(2));
10914 /// ReplaceNodeResults - Replace a node with an illegal result type
10915 /// with a new node built out of custom code.
10916 void X86TargetLowering::ReplaceNodeResults(SDNode *N,
10917 SmallVectorImpl<SDValue>&Results,
10918 SelectionDAG &DAG) const {
10919 DebugLoc dl = N->getDebugLoc();
10920 switch (N->getOpcode()) {
10922 assert(false && "Do not know how to custom type legalize this operation!");
10924 case ISD::SIGN_EXTEND_INREG:
10929 // We don't want to expand or promote these.
10931 case ISD::FP_TO_SINT: {
10932 std::pair<SDValue,SDValue> Vals =
10933 FP_TO_INTHelper(SDValue(N, 0), DAG, true);
10934 SDValue FIST = Vals.first, StackSlot = Vals.second;
10935 if (FIST.getNode() != 0) {
10936 EVT VT = N->getValueType(0);
10937 // Return a load from the stack slot.
10938 Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
10939 MachinePointerInfo(),
10940 false, false, false, 0));
10944 case ISD::READCYCLECOUNTER: {
10945 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10946 SDValue TheChain = N->getOperand(0);
10947 SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10948 SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
10950 SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
10952 // Use a buildpair to merge the two 32-bit values into a 64-bit one.
10953 SDValue Ops[] = { eax, edx };
10954 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
10955 Results.push_back(edx.getValue(1));
10958 case ISD::ATOMIC_CMP_SWAP: {
10959 EVT T = N->getValueType(0);
10960 assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
10961 bool Regs64bit = T == MVT::i128;
10962 EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
10963 SDValue cpInL, cpInH;
10964 cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10965 DAG.getConstant(0, HalfT));
10966 cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10967 DAG.getConstant(1, HalfT));
10968 cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
10969 Regs64bit ? X86::RAX : X86::EAX,
10971 cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
10972 Regs64bit ? X86::RDX : X86::EDX,
10973 cpInH, cpInL.getValue(1));
10974 SDValue swapInL, swapInH;
10975 swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10976 DAG.getConstant(0, HalfT));
10977 swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10978 DAG.getConstant(1, HalfT));
10979 swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
10980 Regs64bit ? X86::RBX : X86::EBX,
10981 swapInL, cpInH.getValue(1));
10982 swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
10983 Regs64bit ? X86::RCX : X86::ECX,
10984 swapInH, swapInL.getValue(1));
10985 SDValue Ops[] = { swapInH.getValue(0),
10987 swapInH.getValue(1) };
10988 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10989 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
10990 unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
10991 X86ISD::LCMPXCHG8_DAG;
10992 SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
10994 SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
10995 Regs64bit ? X86::RAX : X86::EAX,
10996 HalfT, Result.getValue(1));
10997 SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
10998 Regs64bit ? X86::RDX : X86::EDX,
10999 HalfT, cpOutL.getValue(2));
11000 SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
11001 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
11002 Results.push_back(cpOutH.getValue(1));
11005 case ISD::ATOMIC_LOAD_ADD:
11006 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
11008 case ISD::ATOMIC_LOAD_AND:
11009 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
11011 case ISD::ATOMIC_LOAD_NAND:
11012 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
11014 case ISD::ATOMIC_LOAD_OR:
11015 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
11017 case ISD::ATOMIC_LOAD_SUB:
11018 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
11020 case ISD::ATOMIC_LOAD_XOR:
11021 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
11023 case ISD::ATOMIC_SWAP:
11024 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
11026 case ISD::ATOMIC_LOAD:
11027 ReplaceATOMIC_LOAD(N, Results, DAG);
11031 const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
11033 default: return NULL;
11034 case X86ISD::BSF: return "X86ISD::BSF";
11035 case X86ISD::BSR: return "X86ISD::BSR";
11036 case X86ISD::SHLD: return "X86ISD::SHLD";
11037 case X86ISD::SHRD: return "X86ISD::SHRD";
11038 case X86ISD::FAND: return "X86ISD::FAND";
11039 case X86ISD::FOR: return "X86ISD::FOR";
11040 case X86ISD::FXOR: return "X86ISD::FXOR";
11041 case X86ISD::FSRL: return "X86ISD::FSRL";
11042 case X86ISD::FILD: return "X86ISD::FILD";
11043 case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG";
11044 case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
11045 case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
11046 case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
11047 case X86ISD::FLD: return "X86ISD::FLD";
11048 case X86ISD::FST: return "X86ISD::FST";
11049 case X86ISD::CALL: return "X86ISD::CALL";
11050 case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG";
11051 case X86ISD::BT: return "X86ISD::BT";
11052 case X86ISD::CMP: return "X86ISD::CMP";
11053 case X86ISD::COMI: return "X86ISD::COMI";
11054 case X86ISD::UCOMI: return "X86ISD::UCOMI";
11055 case X86ISD::SETCC: return "X86ISD::SETCC";
11056 case X86ISD::SETCC_CARRY: return "X86ISD::SETCC_CARRY";
11057 case X86ISD::FSETCCsd: return "X86ISD::FSETCCsd";
11058 case X86ISD::FSETCCss: return "X86ISD::FSETCCss";
11059 case X86ISD::CMOV: return "X86ISD::CMOV";
11060 case X86ISD::BRCOND: return "X86ISD::BRCOND";
11061 case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG";
11062 case X86ISD::REP_STOS: return "X86ISD::REP_STOS";
11063 case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS";
11064 case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg";
11065 case X86ISD::Wrapper: return "X86ISD::Wrapper";
11066 case X86ISD::WrapperRIP: return "X86ISD::WrapperRIP";
11067 case X86ISD::PEXTRB: return "X86ISD::PEXTRB";
11068 case X86ISD::PEXTRW: return "X86ISD::PEXTRW";
11069 case X86ISD::INSERTPS: return "X86ISD::INSERTPS";
11070 case X86ISD::PINSRB: return "X86ISD::PINSRB";
11071 case X86ISD::PINSRW: return "X86ISD::PINSRW";
11072 case X86ISD::PSHUFB: return "X86ISD::PSHUFB";
11073 case X86ISD::ANDNP: return "X86ISD::ANDNP";
11074 case X86ISD::PSIGNB: return "X86ISD::PSIGNB";
11075 case X86ISD::PSIGNW: return "X86ISD::PSIGNW";
11076 case X86ISD::PSIGND: return "X86ISD::PSIGND";
11077 case X86ISD::BLENDV: return "X86ISD::BLENDV";
11078 case X86ISD::FHADD: return "X86ISD::FHADD";
11079 case X86ISD::FHSUB: return "X86ISD::FHSUB";
11080 case X86ISD::FMAX: return "X86ISD::FMAX";
11081 case X86ISD::FMIN: return "X86ISD::FMIN";
11082 case X86ISD::FRSQRT: return "X86ISD::FRSQRT";
11083 case X86ISD::FRCP: return "X86ISD::FRCP";
11084 case X86ISD::TLSADDR: return "X86ISD::TLSADDR";
11085 case X86ISD::TLSCALL: return "X86ISD::TLSCALL";
11086 case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN";
11087 case X86ISD::TC_RETURN: return "X86ISD::TC_RETURN";
11088 case X86ISD::FNSTCW16m: return "X86ISD::FNSTCW16m";
11089 case X86ISD::LCMPXCHG_DAG: return "X86ISD::LCMPXCHG_DAG";
11090 case X86ISD::LCMPXCHG8_DAG: return "X86ISD::LCMPXCHG8_DAG";
11091 case X86ISD::ATOMADD64_DAG: return "X86ISD::ATOMADD64_DAG";
11092 case X86ISD::ATOMSUB64_DAG: return "X86ISD::ATOMSUB64_DAG";
11093 case X86ISD::ATOMOR64_DAG: return "X86ISD::ATOMOR64_DAG";
11094 case X86ISD::ATOMXOR64_DAG: return "X86ISD::ATOMXOR64_DAG";
11095 case X86ISD::ATOMAND64_DAG: return "X86ISD::ATOMAND64_DAG";
11096 case X86ISD::ATOMNAND64_DAG: return "X86ISD::ATOMNAND64_DAG";
11097 case X86ISD::VZEXT_MOVL: return "X86ISD::VZEXT_MOVL";
11098 case X86ISD::VZEXT_LOAD: return "X86ISD::VZEXT_LOAD";
11099 case X86ISD::VSHL: return "X86ISD::VSHL";
11100 case X86ISD::VSRL: return "X86ISD::VSRL";
11101 case X86ISD::CMPPD: return "X86ISD::CMPPD";
11102 case X86ISD::CMPPS: return "X86ISD::CMPPS";
11103 case X86ISD::PCMPEQB: return "X86ISD::PCMPEQB";
11104 case X86ISD::PCMPEQW: return "X86ISD::PCMPEQW";
11105 case X86ISD::PCMPEQD: return "X86ISD::PCMPEQD";
11106 case X86ISD::PCMPEQQ: return "X86ISD::PCMPEQQ";
11107 case X86ISD::PCMPGTB: return "X86ISD::PCMPGTB";
11108 case X86ISD::PCMPGTW: return "X86ISD::PCMPGTW";
11109 case X86ISD::PCMPGTD: return "X86ISD::PCMPGTD";
11110 case X86ISD::PCMPGTQ: return "X86ISD::PCMPGTQ";
11111 case X86ISD::ADD: return "X86ISD::ADD";
11112 case X86ISD::SUB: return "X86ISD::SUB";
11113 case X86ISD::ADC: return "X86ISD::ADC";
11114 case X86ISD::SBB: return "X86ISD::SBB";
11115 case X86ISD::SMUL: return "X86ISD::SMUL";
11116 case X86ISD::UMUL: return "X86ISD::UMUL";
11117 case X86ISD::INC: return "X86ISD::INC";
11118 case X86ISD::DEC: return "X86ISD::DEC";
11119 case X86ISD::OR: return "X86ISD::OR";
11120 case X86ISD::XOR: return "X86ISD::XOR";
11121 case X86ISD::AND: return "X86ISD::AND";
11122 case X86ISD::ANDN: return "X86ISD::ANDN";
11123 case X86ISD::BLSI: return "X86ISD::BLSI";
11124 case X86ISD::BLSMSK: return "X86ISD::BLSMSK";
11125 case X86ISD::BLSR: return "X86ISD::BLSR";
11126 case X86ISD::MUL_IMM: return "X86ISD::MUL_IMM";
11127 case X86ISD::PTEST: return "X86ISD::PTEST";
11128 case X86ISD::TESTP: return "X86ISD::TESTP";
11129 case X86ISD::PALIGN: return "X86ISD::PALIGN";
11130 case X86ISD::PSHUFD: return "X86ISD::PSHUFD";
11131 case X86ISD::PSHUFHW: return "X86ISD::PSHUFHW";
11132 case X86ISD::PSHUFHW_LD: return "X86ISD::PSHUFHW_LD";
11133 case X86ISD::PSHUFLW: return "X86ISD::PSHUFLW";
11134 case X86ISD::PSHUFLW_LD: return "X86ISD::PSHUFLW_LD";
11135 case X86ISD::SHUFPS: return "X86ISD::SHUFPS";
11136 case X86ISD::SHUFPD: return "X86ISD::SHUFPD";
11137 case X86ISD::MOVLHPS: return "X86ISD::MOVLHPS";
11138 case X86ISD::MOVLHPD: return "X86ISD::MOVLHPD";
11139 case X86ISD::MOVHLPS: return "X86ISD::MOVHLPS";
11140 case X86ISD::MOVHLPD: return "X86ISD::MOVHLPD";
11141 case X86ISD::MOVLPS: return "X86ISD::MOVLPS";
11142 case X86ISD::MOVLPD: return "X86ISD::MOVLPD";
11143 case X86ISD::MOVDDUP: return "X86ISD::MOVDDUP";
11144 case X86ISD::MOVSHDUP: return "X86ISD::MOVSHDUP";
11145 case X86ISD::MOVSLDUP: return "X86ISD::MOVSLDUP";
11146 case X86ISD::MOVSHDUP_LD: return "X86ISD::MOVSHDUP_LD";
11147 case X86ISD::MOVSLDUP_LD: return "X86ISD::MOVSLDUP_LD";
11148 case X86ISD::MOVSD: return "X86ISD::MOVSD";
11149 case X86ISD::MOVSS: return "X86ISD::MOVSS";
11150 case X86ISD::UNPCKLPS: return "X86ISD::UNPCKLPS";
11151 case X86ISD::UNPCKLPD: return "X86ISD::UNPCKLPD";
11152 case X86ISD::VUNPCKLPDY: return "X86ISD::VUNPCKLPDY";
11153 case X86ISD::UNPCKHPS: return "X86ISD::UNPCKHPS";
11154 case X86ISD::UNPCKHPD: return "X86ISD::UNPCKHPD";
11155 case X86ISD::PUNPCKLBW: return "X86ISD::PUNPCKLBW";
11156 case X86ISD::PUNPCKLWD: return "X86ISD::PUNPCKLWD";
11157 case X86ISD::PUNPCKLDQ: return "X86ISD::PUNPCKLDQ";
11158 case X86ISD::PUNPCKLQDQ: return "X86ISD::PUNPCKLQDQ";
11159 case X86ISD::PUNPCKHBW: return "X86ISD::PUNPCKHBW";
11160 case X86ISD::PUNPCKHWD: return "X86ISD::PUNPCKHWD";
11161 case X86ISD::PUNPCKHDQ: return "X86ISD::PUNPCKHDQ";
11162 case X86ISD::PUNPCKHQDQ: return "X86ISD::PUNPCKHQDQ";
11163 case X86ISD::VBROADCAST: return "X86ISD::VBROADCAST";
11164 case X86ISD::VPERMILPS: return "X86ISD::VPERMILPS";
11165 case X86ISD::VPERMILPSY: return "X86ISD::VPERMILPSY";
11166 case X86ISD::VPERMILPD: return "X86ISD::VPERMILPD";
11167 case X86ISD::VPERMILPDY: return "X86ISD::VPERMILPDY";
11168 case X86ISD::VPERM2F128: return "X86ISD::VPERM2F128";
11169 case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
11170 case X86ISD::VAARG_64: return "X86ISD::VAARG_64";
11171 case X86ISD::WIN_ALLOCA: return "X86ISD::WIN_ALLOCA";
11172 case X86ISD::MEMBARRIER: return "X86ISD::MEMBARRIER";
11173 case X86ISD::SEG_ALLOCA: return "X86ISD::SEG_ALLOCA";
11177 // isLegalAddressingMode - Return true if the addressing mode represented
11178 // by AM is legal for this target, for a load/store of the specified type.
11179 bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
11181 // X86 supports extremely general addressing modes.
11182 CodeModel::Model M = getTargetMachine().getCodeModel();
11183 Reloc::Model R = getTargetMachine().getRelocationModel();
11185 // X86 allows a sign-extended 32-bit immediate field as a displacement.
11186 if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
11191 Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
11193 // If a reference to this global requires an extra load, we can't fold it.
11194 if (isGlobalStubReference(GVFlags))
11197 // If BaseGV requires a register for the PIC base, we cannot also have a
11198 // BaseReg specified.
11199 if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
11202 // If lower 4G is not available, then we must use rip-relative addressing.
11203 if ((M != CodeModel::Small || R != Reloc::Static) &&
11204 Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
11208 switch (AM.Scale) {
11214 // These scales always work.
11219 // These scales are formed with basereg+scalereg. Only accept if there is
11224 default: // Other stuff never works.
11232 bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11233 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11235 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11236 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11237 if (NumBits1 <= NumBits2)
11242 bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11243 if (!VT1.isInteger() || !VT2.isInteger())
11245 unsigned NumBits1 = VT1.getSizeInBits();
11246 unsigned NumBits2 = VT2.getSizeInBits();
11247 if (NumBits1 <= NumBits2)
11252 bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
11253 // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11254 return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
11257 bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
11258 // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11259 return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
11262 bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
11263 // i16 instructions are longer (0x66 prefix) and potentially slower.
11264 return !(VT1 == MVT::i32 && VT2 == MVT::i16);
11267 /// isShuffleMaskLegal - Targets can use this to indicate that they only
11268 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
11269 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
11270 /// are assumed to be legal.
11272 X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
11274 // Very little shuffling can be done for 64-bit vectors right now.
11275 if (VT.getSizeInBits() == 64)
11276 return isPALIGNRMask(M, VT, Subtarget->hasSSSE3() || Subtarget->hasAVX());
11278 // FIXME: pshufb, blends, shifts.
11279 return (VT.getVectorNumElements() == 2 ||
11280 ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
11281 isMOVLMask(M, VT) ||
11282 isSHUFPMask(M, VT) ||
11283 isPSHUFDMask(M, VT) ||
11284 isPSHUFHWMask(M, VT) ||
11285 isPSHUFLWMask(M, VT) ||
11286 isPALIGNRMask(M, VT, Subtarget->hasSSSE3() || Subtarget->hasAVX()) ||
11287 isUNPCKLMask(M, VT) ||
11288 isUNPCKHMask(M, VT) ||
11289 isUNPCKL_v_undef_Mask(M, VT) ||
11290 isUNPCKH_v_undef_Mask(M, VT));
11294 X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
11296 unsigned NumElts = VT.getVectorNumElements();
11297 // FIXME: This collection of masks seems suspect.
11300 if (NumElts == 4 && VT.getSizeInBits() == 128) {
11301 return (isMOVLMask(Mask, VT) ||
11302 isCommutedMOVLMask(Mask, VT, true) ||
11303 isSHUFPMask(Mask, VT) ||
11304 isCommutedSHUFPMask(Mask, VT));
11309 //===----------------------------------------------------------------------===//
11310 // X86 Scheduler Hooks
11311 //===----------------------------------------------------------------------===//
11313 // private utility function
11314 MachineBasicBlock *
11315 X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
11316 MachineBasicBlock *MBB,
11323 TargetRegisterClass *RC,
11324 bool invSrc) const {
11325 // For the atomic bitwise operator, we generate
11328 // ld t1 = [bitinstr.addr]
11329 // op t2 = t1, [bitinstr.val]
11331 // lcs dest = [bitinstr.addr], t2 [EAX is implicit]
11333 // fallthrough -->nextMBB
11334 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11335 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11336 MachineFunction::iterator MBBIter = MBB;
11339 /// First build the CFG
11340 MachineFunction *F = MBB->getParent();
11341 MachineBasicBlock *thisMBB = MBB;
11342 MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11343 MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11344 F->insert(MBBIter, newMBB);
11345 F->insert(MBBIter, nextMBB);
11347 // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11348 nextMBB->splice(nextMBB->begin(), thisMBB,
11349 llvm::next(MachineBasicBlock::iterator(bInstr)),
11351 nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11353 // Update thisMBB to fall through to newMBB
11354 thisMBB->addSuccessor(newMBB);
11356 // newMBB jumps to itself and fall through to nextMBB
11357 newMBB->addSuccessor(nextMBB);
11358 newMBB->addSuccessor(newMBB);
11360 // Insert instructions into newMBB based on incoming instruction
11361 assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11362 "unexpected number of operands");
11363 DebugLoc dl = bInstr->getDebugLoc();
11364 MachineOperand& destOper = bInstr->getOperand(0);
11365 MachineOperand* argOpers[2 + X86::AddrNumOperands];
11366 int numArgs = bInstr->getNumOperands() - 1;
11367 for (int i=0; i < numArgs; ++i)
11368 argOpers[i] = &bInstr->getOperand(i+1);
11370 // x86 address has 4 operands: base, index, scale, and displacement
11371 int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11372 int valArgIndx = lastAddrIndx + 1;
11374 unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11375 MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
11376 for (int i=0; i <= lastAddrIndx; ++i)
11377 (*MIB).addOperand(*argOpers[i]);
11379 unsigned tt = F->getRegInfo().createVirtualRegister(RC);
11381 MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
11386 unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11387 assert((argOpers[valArgIndx]->isReg() ||
11388 argOpers[valArgIndx]->isImm()) &&
11389 "invalid operand");
11390 if (argOpers[valArgIndx]->isReg())
11391 MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
11393 MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
11395 (*MIB).addOperand(*argOpers[valArgIndx]);
11397 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
11400 MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
11401 for (int i=0; i <= lastAddrIndx; ++i)
11402 (*MIB).addOperand(*argOpers[i]);
11404 assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11405 (*MIB).setMemRefs(bInstr->memoperands_begin(),
11406 bInstr->memoperands_end());
11408 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11409 MIB.addReg(EAXreg);
11412 BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11414 bInstr->eraseFromParent(); // The pseudo instruction is gone now.
11418 // private utility function: 64 bit atomics on 32 bit host.
11419 MachineBasicBlock *
11420 X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
11421 MachineBasicBlock *MBB,
11426 bool invSrc) const {
11427 // For the atomic bitwise operator, we generate
11428 // thisMBB (instructions are in pairs, except cmpxchg8b)
11429 // ld t1,t2 = [bitinstr.addr]
11431 // out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
11432 // op t5, t6 <- out1, out2, [bitinstr.val]
11433 // (for SWAP, substitute: mov t5, t6 <- [bitinstr.val])
11434 // mov ECX, EBX <- t5, t6
11435 // mov EAX, EDX <- t1, t2
11436 // cmpxchg8b [bitinstr.addr] [EAX, EDX, EBX, ECX implicit]
11437 // mov t3, t4 <- EAX, EDX
11439 // result in out1, out2
11440 // fallthrough -->nextMBB
11442 const TargetRegisterClass *RC = X86::GR32RegisterClass;
11443 const unsigned LoadOpc = X86::MOV32rm;
11444 const unsigned NotOpc = X86::NOT32r;
11445 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11446 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11447 MachineFunction::iterator MBBIter = MBB;
11450 /// First build the CFG
11451 MachineFunction *F = MBB->getParent();
11452 MachineBasicBlock *thisMBB = MBB;
11453 MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11454 MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11455 F->insert(MBBIter, newMBB);
11456 F->insert(MBBIter, nextMBB);
11458 // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11459 nextMBB->splice(nextMBB->begin(), thisMBB,
11460 llvm::next(MachineBasicBlock::iterator(bInstr)),
11462 nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11464 // Update thisMBB to fall through to newMBB
11465 thisMBB->addSuccessor(newMBB);
11467 // newMBB jumps to itself and fall through to nextMBB
11468 newMBB->addSuccessor(nextMBB);
11469 newMBB->addSuccessor(newMBB);
11471 DebugLoc dl = bInstr->getDebugLoc();
11472 // Insert instructions into newMBB based on incoming instruction
11473 // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
11474 assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
11475 "unexpected number of operands");
11476 MachineOperand& dest1Oper = bInstr->getOperand(0);
11477 MachineOperand& dest2Oper = bInstr->getOperand(1);
11478 MachineOperand* argOpers[2 + X86::AddrNumOperands];
11479 for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
11480 argOpers[i] = &bInstr->getOperand(i+2);
11482 // We use some of the operands multiple times, so conservatively just
11483 // clear any kill flags that might be present.
11484 if (argOpers[i]->isReg() && argOpers[i]->isUse())
11485 argOpers[i]->setIsKill(false);
11488 // x86 address has 5 operands: base, index, scale, displacement, and segment.
11489 int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11491 unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11492 MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
11493 for (int i=0; i <= lastAddrIndx; ++i)
11494 (*MIB).addOperand(*argOpers[i]);
11495 unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11496 MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
11497 // add 4 to displacement.
11498 for (int i=0; i <= lastAddrIndx-2; ++i)
11499 (*MIB).addOperand(*argOpers[i]);
11500 MachineOperand newOp3 = *(argOpers[3]);
11501 if (newOp3.isImm())
11502 newOp3.setImm(newOp3.getImm()+4);
11504 newOp3.setOffset(newOp3.getOffset()+4);
11505 (*MIB).addOperand(newOp3);
11506 (*MIB).addOperand(*argOpers[lastAddrIndx]);
11508 // t3/4 are defined later, at the bottom of the loop
11509 unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11510 unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
11511 BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
11512 .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
11513 BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
11514 .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
11516 // The subsequent operations should be using the destination registers of
11517 //the PHI instructions.
11519 t1 = F->getRegInfo().createVirtualRegister(RC);
11520 t2 = F->getRegInfo().createVirtualRegister(RC);
11521 MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
11522 MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
11524 t1 = dest1Oper.getReg();
11525 t2 = dest2Oper.getReg();
11528 int valArgIndx = lastAddrIndx + 1;
11529 assert((argOpers[valArgIndx]->isReg() ||
11530 argOpers[valArgIndx]->isImm()) &&
11531 "invalid operand");
11532 unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
11533 unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
11534 if (argOpers[valArgIndx]->isReg())
11535 MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
11537 MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
11538 if (regOpcL != X86::MOV32rr)
11540 (*MIB).addOperand(*argOpers[valArgIndx]);
11541 assert(argOpers[valArgIndx + 1]->isReg() ==
11542 argOpers[valArgIndx]->isReg());
11543 assert(argOpers[valArgIndx + 1]->isImm() ==
11544 argOpers[valArgIndx]->isImm());
11545 if (argOpers[valArgIndx + 1]->isReg())
11546 MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
11548 MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
11549 if (regOpcH != X86::MOV32rr)
11551 (*MIB).addOperand(*argOpers[valArgIndx + 1]);
11553 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11555 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
11558 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
11560 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
11563 MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
11564 for (int i=0; i <= lastAddrIndx; ++i)
11565 (*MIB).addOperand(*argOpers[i]);
11567 assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11568 (*MIB).setMemRefs(bInstr->memoperands_begin(),
11569 bInstr->memoperands_end());
11571 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
11572 MIB.addReg(X86::EAX);
11573 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
11574 MIB.addReg(X86::EDX);
11577 BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11579 bInstr->eraseFromParent(); // The pseudo instruction is gone now.
11583 // private utility function
11584 MachineBasicBlock *
11585 X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
11586 MachineBasicBlock *MBB,
11587 unsigned cmovOpc) const {
11588 // For the atomic min/max operator, we generate
11591 // ld t1 = [min/max.addr]
11592 // mov t2 = [min/max.val]
11594 // cmov[cond] t2 = t1
11596 // lcs dest = [bitinstr.addr], t2 [EAX is implicit]
11598 // fallthrough -->nextMBB
11600 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11601 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11602 MachineFunction::iterator MBBIter = MBB;
11605 /// First build the CFG
11606 MachineFunction *F = MBB->getParent();
11607 MachineBasicBlock *thisMBB = MBB;
11608 MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11609 MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11610 F->insert(MBBIter, newMBB);
11611 F->insert(MBBIter, nextMBB);
11613 // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11614 nextMBB->splice(nextMBB->begin(), thisMBB,
11615 llvm::next(MachineBasicBlock::iterator(mInstr)),
11617 nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11619 // Update thisMBB to fall through to newMBB
11620 thisMBB->addSuccessor(newMBB);
11622 // newMBB jumps to newMBB and fall through to nextMBB
11623 newMBB->addSuccessor(nextMBB);
11624 newMBB->addSuccessor(newMBB);
11626 DebugLoc dl = mInstr->getDebugLoc();
11627 // Insert instructions into newMBB based on incoming instruction
11628 assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11629 "unexpected number of operands");
11630 MachineOperand& destOper = mInstr->getOperand(0);
11631 MachineOperand* argOpers[2 + X86::AddrNumOperands];
11632 int numArgs = mInstr->getNumOperands() - 1;
11633 for (int i=0; i < numArgs; ++i)
11634 argOpers[i] = &mInstr->getOperand(i+1);
11636 // x86 address has 4 operands: base, index, scale, and displacement
11637 int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11638 int valArgIndx = lastAddrIndx + 1;
11640 unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11641 MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
11642 for (int i=0; i <= lastAddrIndx; ++i)
11643 (*MIB).addOperand(*argOpers[i]);
11645 // We only support register and immediate values
11646 assert((argOpers[valArgIndx]->isReg() ||
11647 argOpers[valArgIndx]->isImm()) &&
11648 "invalid operand");
11650 unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11651 if (argOpers[valArgIndx]->isReg())
11652 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
11654 MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
11655 (*MIB).addOperand(*argOpers[valArgIndx]);
11657 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11660 MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
11665 unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11666 MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
11670 // Cmp and exchange if none has modified the memory location
11671 MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
11672 for (int i=0; i <= lastAddrIndx; ++i)
11673 (*MIB).addOperand(*argOpers[i]);
11675 assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11676 (*MIB).setMemRefs(mInstr->memoperands_begin(),
11677 mInstr->memoperands_end());
11679 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11680 MIB.addReg(X86::EAX);
11683 BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11685 mInstr->eraseFromParent(); // The pseudo instruction is gone now.
11689 // FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
11690 // or XMM0_V32I8 in AVX all of this code can be replaced with that
11691 // in the .td file.
11692 MachineBasicBlock *
11693 X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
11694 unsigned numArgs, bool memArg) const {
11695 assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
11696 "Target must have SSE4.2 or AVX features enabled");
11698 DebugLoc dl = MI->getDebugLoc();
11699 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11701 if (!Subtarget->hasAVX()) {
11703 Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
11705 Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
11708 Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
11710 Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
11713 MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
11714 for (unsigned i = 0; i < numArgs; ++i) {
11715 MachineOperand &Op = MI->getOperand(i+1);
11716 if (!(Op.isReg() && Op.isImplicit()))
11717 MIB.addOperand(Op);
11719 BuildMI(*BB, MI, dl,
11720 TII->get(Subtarget->hasAVX() ? X86::VMOVAPSrr : X86::MOVAPSrr),
11721 MI->getOperand(0).getReg())
11722 .addReg(X86::XMM0);
11724 MI->eraseFromParent();
11728 MachineBasicBlock *
11729 X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
11730 DebugLoc dl = MI->getDebugLoc();
11731 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11733 // Address into RAX/EAX, other two args into ECX, EDX.
11734 unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
11735 unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11736 MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
11737 for (int i = 0; i < X86::AddrNumOperands; ++i)
11738 MIB.addOperand(MI->getOperand(i));
11740 unsigned ValOps = X86::AddrNumOperands;
11741 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11742 .addReg(MI->getOperand(ValOps).getReg());
11743 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
11744 .addReg(MI->getOperand(ValOps+1).getReg());
11746 // The instruction doesn't actually take any operands though.
11747 BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
11749 MI->eraseFromParent(); // The pseudo is gone now.
11753 MachineBasicBlock *
11754 X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
11755 DebugLoc dl = MI->getDebugLoc();
11756 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11758 // First arg in ECX, the second in EAX.
11759 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11760 .addReg(MI->getOperand(0).getReg());
11761 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
11762 .addReg(MI->getOperand(1).getReg());
11764 // The instruction doesn't actually take any operands though.
11765 BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
11767 MI->eraseFromParent(); // The pseudo is gone now.
11771 MachineBasicBlock *
11772 X86TargetLowering::EmitVAARG64WithCustomInserter(
11774 MachineBasicBlock *MBB) const {
11775 // Emit va_arg instruction on X86-64.
11777 // Operands to this pseudo-instruction:
11778 // 0 ) Output : destination address (reg)
11779 // 1-5) Input : va_list address (addr, i64mem)
11780 // 6 ) ArgSize : Size (in bytes) of vararg type
11781 // 7 ) ArgMode : 0=overflow only, 1=use gp_offset, 2=use fp_offset
11782 // 8 ) Align : Alignment of type
11783 // 9 ) EFLAGS (implicit-def)
11785 assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
11786 assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
11788 unsigned DestReg = MI->getOperand(0).getReg();
11789 MachineOperand &Base = MI->getOperand(1);
11790 MachineOperand &Scale = MI->getOperand(2);
11791 MachineOperand &Index = MI->getOperand(3);
11792 MachineOperand &Disp = MI->getOperand(4);
11793 MachineOperand &Segment = MI->getOperand(5);
11794 unsigned ArgSize = MI->getOperand(6).getImm();
11795 unsigned ArgMode = MI->getOperand(7).getImm();
11796 unsigned Align = MI->getOperand(8).getImm();
11798 // Memory Reference
11799 assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
11800 MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
11801 MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
11803 // Machine Information
11804 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11805 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11806 const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
11807 const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
11808 DebugLoc DL = MI->getDebugLoc();
11810 // struct va_list {
11813 // i64 overflow_area (address)
11814 // i64 reg_save_area (address)
11816 // sizeof(va_list) = 24
11817 // alignment(va_list) = 8
11819 unsigned TotalNumIntRegs = 6;
11820 unsigned TotalNumXMMRegs = 8;
11821 bool UseGPOffset = (ArgMode == 1);
11822 bool UseFPOffset = (ArgMode == 2);
11823 unsigned MaxOffset = TotalNumIntRegs * 8 +
11824 (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
11826 /* Align ArgSize to a multiple of 8 */
11827 unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
11828 bool NeedsAlign = (Align > 8);
11830 MachineBasicBlock *thisMBB = MBB;
11831 MachineBasicBlock *overflowMBB;
11832 MachineBasicBlock *offsetMBB;
11833 MachineBasicBlock *endMBB;
11835 unsigned OffsetDestReg = 0; // Argument address computed by offsetMBB
11836 unsigned OverflowDestReg = 0; // Argument address computed by overflowMBB
11837 unsigned OffsetReg = 0;
11839 if (!UseGPOffset && !UseFPOffset) {
11840 // If we only pull from the overflow region, we don't create a branch.
11841 // We don't need to alter control flow.
11842 OffsetDestReg = 0; // unused
11843 OverflowDestReg = DestReg;
11846 overflowMBB = thisMBB;
11849 // First emit code to check if gp_offset (or fp_offset) is below the bound.
11850 // If so, pull the argument from reg_save_area. (branch to offsetMBB)
11851 // If not, pull from overflow_area. (branch to overflowMBB)
11856 // offsetMBB overflowMBB
11861 // Registers for the PHI in endMBB
11862 OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
11863 OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
11865 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11866 MachineFunction *MF = MBB->getParent();
11867 overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11868 offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11869 endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11871 MachineFunction::iterator MBBIter = MBB;
11874 // Insert the new basic blocks
11875 MF->insert(MBBIter, offsetMBB);
11876 MF->insert(MBBIter, overflowMBB);
11877 MF->insert(MBBIter, endMBB);
11879 // Transfer the remainder of MBB and its successor edges to endMBB.
11880 endMBB->splice(endMBB->begin(), thisMBB,
11881 llvm::next(MachineBasicBlock::iterator(MI)),
11883 endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11885 // Make offsetMBB and overflowMBB successors of thisMBB
11886 thisMBB->addSuccessor(offsetMBB);
11887 thisMBB->addSuccessor(overflowMBB);
11889 // endMBB is a successor of both offsetMBB and overflowMBB
11890 offsetMBB->addSuccessor(endMBB);
11891 overflowMBB->addSuccessor(endMBB);
11893 // Load the offset value into a register
11894 OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11895 BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
11899 .addDisp(Disp, UseFPOffset ? 4 : 0)
11900 .addOperand(Segment)
11901 .setMemRefs(MMOBegin, MMOEnd);
11903 // Check if there is enough room left to pull this argument.
11904 BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
11906 .addImm(MaxOffset + 8 - ArgSizeA8);
11908 // Branch to "overflowMBB" if offset >= max
11909 // Fall through to "offsetMBB" otherwise
11910 BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
11911 .addMBB(overflowMBB);
11914 // In offsetMBB, emit code to use the reg_save_area.
11916 assert(OffsetReg != 0);
11918 // Read the reg_save_area address.
11919 unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
11920 BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
11925 .addOperand(Segment)
11926 .setMemRefs(MMOBegin, MMOEnd);
11928 // Zero-extend the offset
11929 unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
11930 BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
11933 .addImm(X86::sub_32bit);
11935 // Add the offset to the reg_save_area to get the final address.
11936 BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
11937 .addReg(OffsetReg64)
11938 .addReg(RegSaveReg);
11940 // Compute the offset for the next argument
11941 unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11942 BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
11944 .addImm(UseFPOffset ? 16 : 8);
11946 // Store it back into the va_list.
11947 BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
11951 .addDisp(Disp, UseFPOffset ? 4 : 0)
11952 .addOperand(Segment)
11953 .addReg(NextOffsetReg)
11954 .setMemRefs(MMOBegin, MMOEnd);
11957 BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
11962 // Emit code to use overflow area
11965 // Load the overflow_area address into a register.
11966 unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
11967 BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
11972 .addOperand(Segment)
11973 .setMemRefs(MMOBegin, MMOEnd);
11975 // If we need to align it, do so. Otherwise, just copy the address
11976 // to OverflowDestReg.
11978 // Align the overflow address
11979 assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
11980 unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
11982 // aligned_addr = (addr + (align-1)) & ~(align-1)
11983 BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
11984 .addReg(OverflowAddrReg)
11987 BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
11989 .addImm(~(uint64_t)(Align-1));
11991 BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
11992 .addReg(OverflowAddrReg);
11995 // Compute the next overflow address after this argument.
11996 // (the overflow address should be kept 8-byte aligned)
11997 unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
11998 BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
11999 .addReg(OverflowDestReg)
12000 .addImm(ArgSizeA8);
12002 // Store the new overflow address.
12003 BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
12008 .addOperand(Segment)
12009 .addReg(NextAddrReg)
12010 .setMemRefs(MMOBegin, MMOEnd);
12012 // If we branched, emit the PHI to the front of endMBB.
12014 BuildMI(*endMBB, endMBB->begin(), DL,
12015 TII->get(X86::PHI), DestReg)
12016 .addReg(OffsetDestReg).addMBB(offsetMBB)
12017 .addReg(OverflowDestReg).addMBB(overflowMBB);
12020 // Erase the pseudo instruction
12021 MI->eraseFromParent();
12026 MachineBasicBlock *
12027 X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
12029 MachineBasicBlock *MBB) const {
12030 // Emit code to save XMM registers to the stack. The ABI says that the
12031 // number of registers to save is given in %al, so it's theoretically
12032 // possible to do an indirect jump trick to avoid saving all of them,
12033 // however this code takes a simpler approach and just executes all
12034 // of the stores if %al is non-zero. It's less code, and it's probably
12035 // easier on the hardware branch predictor, and stores aren't all that
12036 // expensive anyway.
12038 // Create the new basic blocks. One block contains all the XMM stores,
12039 // and one block is the final destination regardless of whether any
12040 // stores were performed.
12041 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
12042 MachineFunction *F = MBB->getParent();
12043 MachineFunction::iterator MBBIter = MBB;
12045 MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
12046 MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
12047 F->insert(MBBIter, XMMSaveMBB);
12048 F->insert(MBBIter, EndMBB);
12050 // Transfer the remainder of MBB and its successor edges to EndMBB.
12051 EndMBB->splice(EndMBB->begin(), MBB,
12052 llvm::next(MachineBasicBlock::iterator(MI)),
12054 EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
12056 // The original block will now fall through to the XMM save block.
12057 MBB->addSuccessor(XMMSaveMBB);
12058 // The XMMSaveMBB will fall through to the end block.
12059 XMMSaveMBB->addSuccessor(EndMBB);
12061 // Now add the instructions.
12062 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12063 DebugLoc DL = MI->getDebugLoc();
12065 unsigned CountReg = MI->getOperand(0).getReg();
12066 int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
12067 int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
12069 if (!Subtarget->isTargetWin64()) {
12070 // If %al is 0, branch around the XMM save block.
12071 BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
12072 BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
12073 MBB->addSuccessor(EndMBB);
12076 unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
12077 // In the XMM save block, save all the XMM argument registers.
12078 for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
12079 int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
12080 MachineMemOperand *MMO =
12081 F->getMachineMemOperand(
12082 MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
12083 MachineMemOperand::MOStore,
12084 /*Size=*/16, /*Align=*/16);
12085 BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
12086 .addFrameIndex(RegSaveFrameIndex)
12087 .addImm(/*Scale=*/1)
12088 .addReg(/*IndexReg=*/0)
12089 .addImm(/*Disp=*/Offset)
12090 .addReg(/*Segment=*/0)
12091 .addReg(MI->getOperand(i).getReg())
12092 .addMemOperand(MMO);
12095 MI->eraseFromParent(); // The pseudo instruction is gone now.
12100 MachineBasicBlock *
12101 X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
12102 MachineBasicBlock *BB) const {
12103 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12104 DebugLoc DL = MI->getDebugLoc();
12106 // To "insert" a SELECT_CC instruction, we actually have to insert the
12107 // diamond control-flow pattern. The incoming instruction knows the
12108 // destination vreg to set, the condition code register to branch on, the
12109 // true/false values to select between, and a branch opcode to use.
12110 const BasicBlock *LLVM_BB = BB->getBasicBlock();
12111 MachineFunction::iterator It = BB;
12117 // cmpTY ccX, r1, r2
12119 // fallthrough --> copy0MBB
12120 MachineBasicBlock *thisMBB = BB;
12121 MachineFunction *F = BB->getParent();
12122 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
12123 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12124 F->insert(It, copy0MBB);
12125 F->insert(It, sinkMBB);
12127 // If the EFLAGS register isn't dead in the terminator, then claim that it's
12128 // live into the sink and copy blocks.
12129 if (!MI->killsRegister(X86::EFLAGS)) {
12130 copy0MBB->addLiveIn(X86::EFLAGS);
12131 sinkMBB->addLiveIn(X86::EFLAGS);
12134 // Transfer the remainder of BB and its successor edges to sinkMBB.
12135 sinkMBB->splice(sinkMBB->begin(), BB,
12136 llvm::next(MachineBasicBlock::iterator(MI)),
12138 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12140 // Add the true and fallthrough blocks as its successors.
12141 BB->addSuccessor(copy0MBB);
12142 BB->addSuccessor(sinkMBB);
12144 // Create the conditional branch instruction.
12146 X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
12147 BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
12150 // %FalseValue = ...
12151 // # fallthrough to sinkMBB
12152 copy0MBB->addSuccessor(sinkMBB);
12155 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
12157 BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12158 TII->get(X86::PHI), MI->getOperand(0).getReg())
12159 .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
12160 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
12162 MI->eraseFromParent(); // The pseudo instruction is gone now.
12166 MachineBasicBlock *
12167 X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
12168 bool Is64Bit) const {
12169 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12170 DebugLoc DL = MI->getDebugLoc();
12171 MachineFunction *MF = BB->getParent();
12172 const BasicBlock *LLVM_BB = BB->getBasicBlock();
12174 assert(EnableSegmentedStacks);
12176 unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
12177 unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
12180 // ... [Till the alloca]
12181 // If stacklet is not large enough, jump to mallocMBB
12184 // Allocate by subtracting from RSP
12185 // Jump to continueMBB
12188 // Allocate by call to runtime
12192 // [rest of original BB]
12195 MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12196 MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12197 MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12199 MachineRegisterInfo &MRI = MF->getRegInfo();
12200 const TargetRegisterClass *AddrRegClass =
12201 getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
12203 unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12204 bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12205 tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
12206 SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
12207 sizeVReg = MI->getOperand(1).getReg(),
12208 physSPReg = Is64Bit ? X86::RSP : X86::ESP;
12210 MachineFunction::iterator MBBIter = BB;
12213 MF->insert(MBBIter, bumpMBB);
12214 MF->insert(MBBIter, mallocMBB);
12215 MF->insert(MBBIter, continueMBB);
12217 continueMBB->splice(continueMBB->begin(), BB, llvm::next
12218 (MachineBasicBlock::iterator(MI)), BB->end());
12219 continueMBB->transferSuccessorsAndUpdatePHIs(BB);
12221 // Add code to the main basic block to check if the stack limit has been hit,
12222 // and if so, jump to mallocMBB otherwise to bumpMBB.
12223 BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
12224 BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
12225 .addReg(tmpSPVReg).addReg(sizeVReg);
12226 BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
12227 .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg)
12228 .addReg(SPLimitVReg);
12229 BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
12231 // bumpMBB simply decreases the stack pointer, since we know the current
12232 // stacklet has enough space.
12233 BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
12234 .addReg(SPLimitVReg);
12235 BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
12236 .addReg(SPLimitVReg);
12237 BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12239 // Calls into a routine in libgcc to allocate more space from the heap.
12241 BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
12243 BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
12244 .addExternalSymbol("__morestack_allocate_stack_space").addReg(X86::RDI);
12246 BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
12248 BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
12249 BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
12250 .addExternalSymbol("__morestack_allocate_stack_space");
12254 BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
12257 BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
12258 .addReg(Is64Bit ? X86::RAX : X86::EAX);
12259 BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12261 // Set up the CFG correctly.
12262 BB->addSuccessor(bumpMBB);
12263 BB->addSuccessor(mallocMBB);
12264 mallocMBB->addSuccessor(continueMBB);
12265 bumpMBB->addSuccessor(continueMBB);
12267 // Take care of the PHI nodes.
12268 BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
12269 MI->getOperand(0).getReg())
12270 .addReg(mallocPtrVReg).addMBB(mallocMBB)
12271 .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
12273 // Delete the original pseudo instruction.
12274 MI->eraseFromParent();
12277 return continueMBB;
12280 MachineBasicBlock *
12281 X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
12282 MachineBasicBlock *BB) const {
12283 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12284 DebugLoc DL = MI->getDebugLoc();
12286 assert(!Subtarget->isTargetEnvMacho());
12288 // The lowering is pretty easy: we're just emitting the call to _alloca. The
12289 // non-trivial part is impdef of ESP.
12291 if (Subtarget->isTargetWin64()) {
12292 if (Subtarget->isTargetCygMing()) {
12293 // ___chkstk(Mingw64):
12294 // Clobbers R10, R11, RAX and EFLAGS.
12296 BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12297 .addExternalSymbol("___chkstk")
12298 .addReg(X86::RAX, RegState::Implicit)
12299 .addReg(X86::RSP, RegState::Implicit)
12300 .addReg(X86::RAX, RegState::Define | RegState::Implicit)
12301 .addReg(X86::RSP, RegState::Define | RegState::Implicit)
12302 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12304 // __chkstk(MSVCRT): does not update stack pointer.
12305 // Clobbers R10, R11 and EFLAGS.
12306 // FIXME: RAX(allocated size) might be reused and not killed.
12307 BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12308 .addExternalSymbol("__chkstk")
12309 .addReg(X86::RAX, RegState::Implicit)
12310 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12311 // RAX has the offset to subtracted from RSP.
12312 BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
12317 const char *StackProbeSymbol =
12318 Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
12320 BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
12321 .addExternalSymbol(StackProbeSymbol)
12322 .addReg(X86::EAX, RegState::Implicit)
12323 .addReg(X86::ESP, RegState::Implicit)
12324 .addReg(X86::EAX, RegState::Define | RegState::Implicit)
12325 .addReg(X86::ESP, RegState::Define | RegState::Implicit)
12326 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12329 MI->eraseFromParent(); // The pseudo instruction is gone now.
12333 MachineBasicBlock *
12334 X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
12335 MachineBasicBlock *BB) const {
12336 // This is pretty easy. We're taking the value that we received from
12337 // our load from the relocation, sticking it in either RDI (x86-64)
12338 // or EAX and doing an indirect call. The return value will then
12339 // be in the normal return register.
12340 const X86InstrInfo *TII
12341 = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
12342 DebugLoc DL = MI->getDebugLoc();
12343 MachineFunction *F = BB->getParent();
12345 assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
12346 assert(MI->getOperand(3).isGlobal() && "This should be a global");
12348 if (Subtarget->is64Bit()) {
12349 MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12350 TII->get(X86::MOV64rm), X86::RDI)
12352 .addImm(0).addReg(0)
12353 .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12354 MI->getOperand(3).getTargetFlags())
12356 MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
12357 addDirectMem(MIB, X86::RDI);
12358 } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
12359 MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12360 TII->get(X86::MOV32rm), X86::EAX)
12362 .addImm(0).addReg(0)
12363 .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12364 MI->getOperand(3).getTargetFlags())
12366 MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12367 addDirectMem(MIB, X86::EAX);
12369 MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12370 TII->get(X86::MOV32rm), X86::EAX)
12371 .addReg(TII->getGlobalBaseReg(F))
12372 .addImm(0).addReg(0)
12373 .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12374 MI->getOperand(3).getTargetFlags())
12376 MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12377 addDirectMem(MIB, X86::EAX);
12380 MI->eraseFromParent(); // The pseudo instruction is gone now.
12384 MachineBasicBlock *
12385 X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
12386 MachineBasicBlock *BB) const {
12387 switch (MI->getOpcode()) {
12388 default: assert(0 && "Unexpected instr type to insert");
12389 case X86::TAILJMPd64:
12390 case X86::TAILJMPr64:
12391 case X86::TAILJMPm64:
12392 assert(0 && "TAILJMP64 would not be touched here.");
12393 case X86::TCRETURNdi64:
12394 case X86::TCRETURNri64:
12395 case X86::TCRETURNmi64:
12396 // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
12397 // On AMD64, additional defs should be added before register allocation.
12398 if (!Subtarget->isTargetWin64()) {
12399 MI->addRegisterDefined(X86::RSI);
12400 MI->addRegisterDefined(X86::RDI);
12401 MI->addRegisterDefined(X86::XMM6);
12402 MI->addRegisterDefined(X86::XMM7);
12403 MI->addRegisterDefined(X86::XMM8);
12404 MI->addRegisterDefined(X86::XMM9);
12405 MI->addRegisterDefined(X86::XMM10);
12406 MI->addRegisterDefined(X86::XMM11);
12407 MI->addRegisterDefined(X86::XMM12);
12408 MI->addRegisterDefined(X86::XMM13);
12409 MI->addRegisterDefined(X86::XMM14);
12410 MI->addRegisterDefined(X86::XMM15);
12413 case X86::WIN_ALLOCA:
12414 return EmitLoweredWinAlloca(MI, BB);
12415 case X86::SEG_ALLOCA_32:
12416 return EmitLoweredSegAlloca(MI, BB, false);
12417 case X86::SEG_ALLOCA_64:
12418 return EmitLoweredSegAlloca(MI, BB, true);
12419 case X86::TLSCall_32:
12420 case X86::TLSCall_64:
12421 return EmitLoweredTLSCall(MI, BB);
12422 case X86::CMOV_GR8:
12423 case X86::CMOV_FR32:
12424 case X86::CMOV_FR64:
12425 case X86::CMOV_V4F32:
12426 case X86::CMOV_V2F64:
12427 case X86::CMOV_V2I64:
12428 case X86::CMOV_V8F32:
12429 case X86::CMOV_V4F64:
12430 case X86::CMOV_V4I64:
12431 case X86::CMOV_GR16:
12432 case X86::CMOV_GR32:
12433 case X86::CMOV_RFP32:
12434 case X86::CMOV_RFP64:
12435 case X86::CMOV_RFP80:
12436 return EmitLoweredSelect(MI, BB);
12438 case X86::FP32_TO_INT16_IN_MEM:
12439 case X86::FP32_TO_INT32_IN_MEM:
12440 case X86::FP32_TO_INT64_IN_MEM:
12441 case X86::FP64_TO_INT16_IN_MEM:
12442 case X86::FP64_TO_INT32_IN_MEM:
12443 case X86::FP64_TO_INT64_IN_MEM:
12444 case X86::FP80_TO_INT16_IN_MEM:
12445 case X86::FP80_TO_INT32_IN_MEM:
12446 case X86::FP80_TO_INT64_IN_MEM: {
12447 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12448 DebugLoc DL = MI->getDebugLoc();
12450 // Change the floating point control register to use "round towards zero"
12451 // mode when truncating to an integer value.
12452 MachineFunction *F = BB->getParent();
12453 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
12454 addFrameReference(BuildMI(*BB, MI, DL,
12455 TII->get(X86::FNSTCW16m)), CWFrameIdx);
12457 // Load the old value of the high byte of the control word...
12459 F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
12460 addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
12463 // Set the high part to be round to zero...
12464 addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
12467 // Reload the modified control word now...
12468 addFrameReference(BuildMI(*BB, MI, DL,
12469 TII->get(X86::FLDCW16m)), CWFrameIdx);
12471 // Restore the memory image of control word to original value
12472 addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
12475 // Get the X86 opcode to use.
12477 switch (MI->getOpcode()) {
12478 default: llvm_unreachable("illegal opcode!");
12479 case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
12480 case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
12481 case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
12482 case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
12483 case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
12484 case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
12485 case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
12486 case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
12487 case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
12491 MachineOperand &Op = MI->getOperand(0);
12493 AM.BaseType = X86AddressMode::RegBase;
12494 AM.Base.Reg = Op.getReg();
12496 AM.BaseType = X86AddressMode::FrameIndexBase;
12497 AM.Base.FrameIndex = Op.getIndex();
12499 Op = MI->getOperand(1);
12501 AM.Scale = Op.getImm();
12502 Op = MI->getOperand(2);
12504 AM.IndexReg = Op.getImm();
12505 Op = MI->getOperand(3);
12506 if (Op.isGlobal()) {
12507 AM.GV = Op.getGlobal();
12509 AM.Disp = Op.getImm();
12511 addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
12512 .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
12514 // Reload the original control word now.
12515 addFrameReference(BuildMI(*BB, MI, DL,
12516 TII->get(X86::FLDCW16m)), CWFrameIdx);
12518 MI->eraseFromParent(); // The pseudo instruction is gone now.
12521 // String/text processing lowering.
12522 case X86::PCMPISTRM128REG:
12523 case X86::VPCMPISTRM128REG:
12524 return EmitPCMP(MI, BB, 3, false /* in-mem */);
12525 case X86::PCMPISTRM128MEM:
12526 case X86::VPCMPISTRM128MEM:
12527 return EmitPCMP(MI, BB, 3, true /* in-mem */);
12528 case X86::PCMPESTRM128REG:
12529 case X86::VPCMPESTRM128REG:
12530 return EmitPCMP(MI, BB, 5, false /* in mem */);
12531 case X86::PCMPESTRM128MEM:
12532 case X86::VPCMPESTRM128MEM:
12533 return EmitPCMP(MI, BB, 5, true /* in mem */);
12535 // Thread synchronization.
12537 return EmitMonitor(MI, BB);
12539 return EmitMwait(MI, BB);
12541 // Atomic Lowering.
12542 case X86::ATOMAND32:
12543 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12544 X86::AND32ri, X86::MOV32rm,
12546 X86::NOT32r, X86::EAX,
12547 X86::GR32RegisterClass);
12548 case X86::ATOMOR32:
12549 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
12550 X86::OR32ri, X86::MOV32rm,
12552 X86::NOT32r, X86::EAX,
12553 X86::GR32RegisterClass);
12554 case X86::ATOMXOR32:
12555 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
12556 X86::XOR32ri, X86::MOV32rm,
12558 X86::NOT32r, X86::EAX,
12559 X86::GR32RegisterClass);
12560 case X86::ATOMNAND32:
12561 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12562 X86::AND32ri, X86::MOV32rm,
12564 X86::NOT32r, X86::EAX,
12565 X86::GR32RegisterClass, true);
12566 case X86::ATOMMIN32:
12567 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
12568 case X86::ATOMMAX32:
12569 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
12570 case X86::ATOMUMIN32:
12571 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
12572 case X86::ATOMUMAX32:
12573 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
12575 case X86::ATOMAND16:
12576 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12577 X86::AND16ri, X86::MOV16rm,
12579 X86::NOT16r, X86::AX,
12580 X86::GR16RegisterClass);
12581 case X86::ATOMOR16:
12582 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
12583 X86::OR16ri, X86::MOV16rm,
12585 X86::NOT16r, X86::AX,
12586 X86::GR16RegisterClass);
12587 case X86::ATOMXOR16:
12588 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
12589 X86::XOR16ri, X86::MOV16rm,
12591 X86::NOT16r, X86::AX,
12592 X86::GR16RegisterClass);
12593 case X86::ATOMNAND16:
12594 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12595 X86::AND16ri, X86::MOV16rm,
12597 X86::NOT16r, X86::AX,
12598 X86::GR16RegisterClass, true);
12599 case X86::ATOMMIN16:
12600 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
12601 case X86::ATOMMAX16:
12602 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
12603 case X86::ATOMUMIN16:
12604 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
12605 case X86::ATOMUMAX16:
12606 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
12608 case X86::ATOMAND8:
12609 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12610 X86::AND8ri, X86::MOV8rm,
12612 X86::NOT8r, X86::AL,
12613 X86::GR8RegisterClass);
12615 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
12616 X86::OR8ri, X86::MOV8rm,
12618 X86::NOT8r, X86::AL,
12619 X86::GR8RegisterClass);
12620 case X86::ATOMXOR8:
12621 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
12622 X86::XOR8ri, X86::MOV8rm,
12624 X86::NOT8r, X86::AL,
12625 X86::GR8RegisterClass);
12626 case X86::ATOMNAND8:
12627 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12628 X86::AND8ri, X86::MOV8rm,
12630 X86::NOT8r, X86::AL,
12631 X86::GR8RegisterClass, true);
12632 // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
12633 // This group is for 64-bit host.
12634 case X86::ATOMAND64:
12635 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12636 X86::AND64ri32, X86::MOV64rm,
12638 X86::NOT64r, X86::RAX,
12639 X86::GR64RegisterClass);
12640 case X86::ATOMOR64:
12641 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
12642 X86::OR64ri32, X86::MOV64rm,
12644 X86::NOT64r, X86::RAX,
12645 X86::GR64RegisterClass);
12646 case X86::ATOMXOR64:
12647 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
12648 X86::XOR64ri32, X86::MOV64rm,
12650 X86::NOT64r, X86::RAX,
12651 X86::GR64RegisterClass);
12652 case X86::ATOMNAND64:
12653 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12654 X86::AND64ri32, X86::MOV64rm,
12656 X86::NOT64r, X86::RAX,
12657 X86::GR64RegisterClass, true);
12658 case X86::ATOMMIN64:
12659 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
12660 case X86::ATOMMAX64:
12661 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
12662 case X86::ATOMUMIN64:
12663 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
12664 case X86::ATOMUMAX64:
12665 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
12667 // This group does 64-bit operations on a 32-bit host.
12668 case X86::ATOMAND6432:
12669 return EmitAtomicBit6432WithCustomInserter(MI, BB,
12670 X86::AND32rr, X86::AND32rr,
12671 X86::AND32ri, X86::AND32ri,
12673 case X86::ATOMOR6432:
12674 return EmitAtomicBit6432WithCustomInserter(MI, BB,
12675 X86::OR32rr, X86::OR32rr,
12676 X86::OR32ri, X86::OR32ri,
12678 case X86::ATOMXOR6432:
12679 return EmitAtomicBit6432WithCustomInserter(MI, BB,
12680 X86::XOR32rr, X86::XOR32rr,
12681 X86::XOR32ri, X86::XOR32ri,
12683 case X86::ATOMNAND6432:
12684 return EmitAtomicBit6432WithCustomInserter(MI, BB,
12685 X86::AND32rr, X86::AND32rr,
12686 X86::AND32ri, X86::AND32ri,
12688 case X86::ATOMADD6432:
12689 return EmitAtomicBit6432WithCustomInserter(MI, BB,
12690 X86::ADD32rr, X86::ADC32rr,
12691 X86::ADD32ri, X86::ADC32ri,
12693 case X86::ATOMSUB6432:
12694 return EmitAtomicBit6432WithCustomInserter(MI, BB,
12695 X86::SUB32rr, X86::SBB32rr,
12696 X86::SUB32ri, X86::SBB32ri,
12698 case X86::ATOMSWAP6432:
12699 return EmitAtomicBit6432WithCustomInserter(MI, BB,
12700 X86::MOV32rr, X86::MOV32rr,
12701 X86::MOV32ri, X86::MOV32ri,
12703 case X86::VASTART_SAVE_XMM_REGS:
12704 return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
12706 case X86::VAARG_64:
12707 return EmitVAARG64WithCustomInserter(MI, BB);
12711 //===----------------------------------------------------------------------===//
12712 // X86 Optimization Hooks
12713 //===----------------------------------------------------------------------===//
12715 void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
12719 const SelectionDAG &DAG,
12720 unsigned Depth) const {
12721 unsigned Opc = Op.getOpcode();
12722 assert((Opc >= ISD::BUILTIN_OP_END ||
12723 Opc == ISD::INTRINSIC_WO_CHAIN ||
12724 Opc == ISD::INTRINSIC_W_CHAIN ||
12725 Opc == ISD::INTRINSIC_VOID) &&
12726 "Should use MaskedValueIsZero if you don't know whether Op"
12727 " is a target node!");
12729 KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0); // Don't know anything.
12743 // These nodes' second result is a boolean.
12744 if (Op.getResNo() == 0)
12747 case X86ISD::SETCC:
12748 KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
12749 Mask.getBitWidth() - 1);
12751 case ISD::INTRINSIC_WO_CHAIN: {
12752 unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12753 unsigned NumLoBits = 0;
12756 case Intrinsic::x86_sse_movmsk_ps:
12757 case Intrinsic::x86_avx_movmsk_ps_256:
12758 case Intrinsic::x86_sse2_movmsk_pd:
12759 case Intrinsic::x86_avx_movmsk_pd_256:
12760 case Intrinsic::x86_mmx_pmovmskb:
12761 case Intrinsic::x86_sse2_pmovmskb_128: {
12762 // High bits of movmskp{s|d}, pmovmskb are known zero.
12764 case Intrinsic::x86_sse_movmsk_ps: NumLoBits = 4; break;
12765 case Intrinsic::x86_avx_movmsk_ps_256: NumLoBits = 8; break;
12766 case Intrinsic::x86_sse2_movmsk_pd: NumLoBits = 2; break;
12767 case Intrinsic::x86_avx_movmsk_pd_256: NumLoBits = 4; break;
12768 case Intrinsic::x86_mmx_pmovmskb: NumLoBits = 8; break;
12769 case Intrinsic::x86_sse2_pmovmskb_128: NumLoBits = 16; break;
12771 KnownZero = APInt::getHighBitsSet(Mask.getBitWidth(),
12772 Mask.getBitWidth() - NumLoBits);
12781 unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
12782 unsigned Depth) const {
12783 // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
12784 if (Op.getOpcode() == X86ISD::SETCC_CARRY)
12785 return Op.getValueType().getScalarType().getSizeInBits();
12791 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
12792 /// node is a GlobalAddress + offset.
12793 bool X86TargetLowering::isGAPlusOffset(SDNode *N,
12794 const GlobalValue* &GA,
12795 int64_t &Offset) const {
12796 if (N->getOpcode() == X86ISD::Wrapper) {
12797 if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
12798 GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
12799 Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
12803 return TargetLowering::isGAPlusOffset(N, GA, Offset);
12806 /// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
12807 /// same as extracting the high 128-bit part of 256-bit vector and then
12808 /// inserting the result into the low part of a new 256-bit vector
12809 static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
12810 EVT VT = SVOp->getValueType(0);
12811 int NumElems = VT.getVectorNumElements();
12813 // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12814 for (int i = 0, j = NumElems/2; i < NumElems/2; ++i, ++j)
12815 if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12816 SVOp->getMaskElt(j) >= 0)
12822 /// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
12823 /// same as extracting the low 128-bit part of 256-bit vector and then
12824 /// inserting the result into the high part of a new 256-bit vector
12825 static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
12826 EVT VT = SVOp->getValueType(0);
12827 int NumElems = VT.getVectorNumElements();
12829 // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12830 for (int i = NumElems/2, j = 0; i < NumElems; ++i, ++j)
12831 if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12832 SVOp->getMaskElt(j) >= 0)
12838 /// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
12839 static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
12840 TargetLowering::DAGCombinerInfo &DCI) {
12841 DebugLoc dl = N->getDebugLoc();
12842 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
12843 SDValue V1 = SVOp->getOperand(0);
12844 SDValue V2 = SVOp->getOperand(1);
12845 EVT VT = SVOp->getValueType(0);
12846 int NumElems = VT.getVectorNumElements();
12848 if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
12849 V2.getOpcode() == ISD::CONCAT_VECTORS) {
12853 // V UNDEF BUILD_VECTOR UNDEF
12855 // CONCAT_VECTOR CONCAT_VECTOR
12858 // RESULT: V + zero extended
12860 if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
12861 V2.getOperand(1).getOpcode() != ISD::UNDEF ||
12862 V1.getOperand(1).getOpcode() != ISD::UNDEF)
12865 if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
12868 // To match the shuffle mask, the first half of the mask should
12869 // be exactly the first vector, and all the rest a splat with the
12870 // first element of the second one.
12871 for (int i = 0; i < NumElems/2; ++i)
12872 if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
12873 !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
12876 // Emit a zeroed vector and insert the desired subvector on its
12878 SDValue Zeros = getZeroVector(VT, true /* HasXMMInt */, DAG, dl);
12879 SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
12880 DAG.getConstant(0, MVT::i32), DAG, dl);
12881 return DCI.CombineTo(N, InsV);
12884 //===--------------------------------------------------------------------===//
12885 // Combine some shuffles into subvector extracts and inserts:
12888 // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12889 if (isShuffleHigh128VectorInsertLow(SVOp)) {
12890 SDValue V = Extract128BitVector(V1, DAG.getConstant(NumElems/2, MVT::i32),
12892 SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12893 V, DAG.getConstant(0, MVT::i32), DAG, dl);
12894 return DCI.CombineTo(N, InsV);
12897 // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12898 if (isShuffleLow128VectorInsertHigh(SVOp)) {
12899 SDValue V = Extract128BitVector(V1, DAG.getConstant(0, MVT::i32), DAG, dl);
12900 SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12901 V, DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
12902 return DCI.CombineTo(N, InsV);
12908 /// PerformShuffleCombine - Performs several different shuffle combines.
12909 static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
12910 TargetLowering::DAGCombinerInfo &DCI,
12911 const X86Subtarget *Subtarget) {
12912 DebugLoc dl = N->getDebugLoc();
12913 EVT VT = N->getValueType(0);
12915 // Don't create instructions with illegal types after legalize types has run.
12916 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12917 if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
12920 // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
12921 if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
12922 N->getOpcode() == ISD::VECTOR_SHUFFLE)
12923 return PerformShuffleCombine256(N, DAG, DCI);
12925 // Only handle 128 wide vector from here on.
12926 if (VT.getSizeInBits() != 128)
12929 // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
12930 // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
12931 // consecutive, non-overlapping, and in the right order.
12932 SmallVector<SDValue, 16> Elts;
12933 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
12934 Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
12936 return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
12939 /// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
12940 /// generation and convert it from being a bunch of shuffles and extracts
12941 /// to a simple store and scalar loads to extract the elements.
12942 static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
12943 const TargetLowering &TLI) {
12944 SDValue InputVector = N->getOperand(0);
12946 // Only operate on vectors of 4 elements, where the alternative shuffling
12947 // gets to be more expensive.
12948 if (InputVector.getValueType() != MVT::v4i32)
12951 // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
12952 // single use which is a sign-extend or zero-extend, and all elements are
12954 SmallVector<SDNode *, 4> Uses;
12955 unsigned ExtractedElements = 0;
12956 for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
12957 UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
12958 if (UI.getUse().getResNo() != InputVector.getResNo())
12961 SDNode *Extract = *UI;
12962 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12965 if (Extract->getValueType(0) != MVT::i32)
12967 if (!Extract->hasOneUse())
12969 if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
12970 Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
12972 if (!isa<ConstantSDNode>(Extract->getOperand(1)))
12975 // Record which element was extracted.
12976 ExtractedElements |=
12977 1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
12979 Uses.push_back(Extract);
12982 // If not all the elements were used, this may not be worthwhile.
12983 if (ExtractedElements != 15)
12986 // Ok, we've now decided to do the transformation.
12987 DebugLoc dl = InputVector.getDebugLoc();
12989 // Store the value to a temporary stack slot.
12990 SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
12991 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
12992 MachinePointerInfo(), false, false, 0);
12994 // Replace each use (extract) with a load of the appropriate element.
12995 for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
12996 UE = Uses.end(); UI != UE; ++UI) {
12997 SDNode *Extract = *UI;
12999 // cOMpute the element's address.
13000 SDValue Idx = Extract->getOperand(1);
13002 InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
13003 uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
13004 SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
13006 SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
13007 StackPtr, OffsetVal);
13009 // Load the scalar.
13010 SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
13011 ScalarAddr, MachinePointerInfo(),
13012 false, false, false, 0);
13014 // Replace the exact with the load.
13015 DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
13018 // The replacement was made in place; don't return anything.
13022 /// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
13024 static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
13025 const X86Subtarget *Subtarget) {
13026 DebugLoc DL = N->getDebugLoc();
13027 SDValue Cond = N->getOperand(0);
13028 // Get the LHS/RHS of the select.
13029 SDValue LHS = N->getOperand(1);
13030 SDValue RHS = N->getOperand(2);
13031 EVT VT = LHS.getValueType();
13033 // If we have SSE[12] support, try to form min/max nodes. SSE min/max
13034 // instructions match the semantics of the common C idiom x<y?x:y but not
13035 // x<=y?x:y, because of how they handle negative zero (which can be
13036 // ignored in unsafe-math mode).
13037 if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
13038 VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
13039 (Subtarget->hasXMMInt() ||
13040 (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
13041 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13043 unsigned Opcode = 0;
13044 // Check for x CC y ? x : y.
13045 if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13046 DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13050 // Converting this to a min would handle NaNs incorrectly, and swapping
13051 // the operands would cause it to handle comparisons between positive
13052 // and negative zero incorrectly.
13053 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13054 if (!UnsafeFPMath &&
13055 !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13057 std::swap(LHS, RHS);
13059 Opcode = X86ISD::FMIN;
13062 // Converting this to a min would handle comparisons between positive
13063 // and negative zero incorrectly.
13064 if (!UnsafeFPMath &&
13065 !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13067 Opcode = X86ISD::FMIN;
13070 // Converting this to a min would handle both negative zeros and NaNs
13071 // incorrectly, but we can swap the operands to fix both.
13072 std::swap(LHS, RHS);
13076 Opcode = X86ISD::FMIN;
13080 // Converting this to a max would handle comparisons between positive
13081 // and negative zero incorrectly.
13082 if (!UnsafeFPMath &&
13083 !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13085 Opcode = X86ISD::FMAX;
13088 // Converting this to a max would handle NaNs incorrectly, and swapping
13089 // the operands would cause it to handle comparisons between positive
13090 // and negative zero incorrectly.
13091 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13092 if (!UnsafeFPMath &&
13093 !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13095 std::swap(LHS, RHS);
13097 Opcode = X86ISD::FMAX;
13100 // Converting this to a max would handle both negative zeros and NaNs
13101 // incorrectly, but we can swap the operands to fix both.
13102 std::swap(LHS, RHS);
13106 Opcode = X86ISD::FMAX;
13109 // Check for x CC y ? y : x -- a min/max with reversed arms.
13110 } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
13111 DAG.isEqualTo(RHS, Cond.getOperand(0))) {
13115 // Converting this to a min would handle comparisons between positive
13116 // and negative zero incorrectly, and swapping the operands would
13117 // cause it to handle NaNs incorrectly.
13118 if (!UnsafeFPMath &&
13119 !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
13120 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13122 std::swap(LHS, RHS);
13124 Opcode = X86ISD::FMIN;
13127 // Converting this to a min would handle NaNs incorrectly.
13128 if (!UnsafeFPMath &&
13129 (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
13131 Opcode = X86ISD::FMIN;
13134 // Converting this to a min would handle both negative zeros and NaNs
13135 // incorrectly, but we can swap the operands to fix both.
13136 std::swap(LHS, RHS);
13140 Opcode = X86ISD::FMIN;
13144 // Converting this to a max would handle NaNs incorrectly.
13145 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13147 Opcode = X86ISD::FMAX;
13150 // Converting this to a max would handle comparisons between positive
13151 // and negative zero incorrectly, and swapping the operands would
13152 // cause it to handle NaNs incorrectly.
13153 if (!UnsafeFPMath &&
13154 !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
13155 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13157 std::swap(LHS, RHS);
13159 Opcode = X86ISD::FMAX;
13162 // Converting this to a max would handle both negative zeros and NaNs
13163 // incorrectly, but we can swap the operands to fix both.
13164 std::swap(LHS, RHS);
13168 Opcode = X86ISD::FMAX;
13174 return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
13177 // If this is a select between two integer constants, try to do some
13179 if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
13180 if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
13181 // Don't do this for crazy integer types.
13182 if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
13183 // If this is efficiently invertible, canonicalize the LHSC/RHSC values
13184 // so that TrueC (the true value) is larger than FalseC.
13185 bool NeedsCondInvert = false;
13187 if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
13188 // Efficiently invertible.
13189 (Cond.getOpcode() == ISD::SETCC || // setcc -> invertible.
13190 (Cond.getOpcode() == ISD::XOR && // xor(X, C) -> invertible.
13191 isa<ConstantSDNode>(Cond.getOperand(1))))) {
13192 NeedsCondInvert = true;
13193 std::swap(TrueC, FalseC);
13196 // Optimize C ? 8 : 0 -> zext(C) << 3. Likewise for any pow2/0.
13197 if (FalseC->getAPIntValue() == 0 &&
13198 TrueC->getAPIntValue().isPowerOf2()) {
13199 if (NeedsCondInvert) // Invert the condition if needed.
13200 Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13201 DAG.getConstant(1, Cond.getValueType()));
13203 // Zero extend the condition if needed.
13204 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
13206 unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13207 return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
13208 DAG.getConstant(ShAmt, MVT::i8));
13211 // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
13212 if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13213 if (NeedsCondInvert) // Invert the condition if needed.
13214 Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13215 DAG.getConstant(1, Cond.getValueType()));
13217 // Zero extend the condition if needed.
13218 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13219 FalseC->getValueType(0), Cond);
13220 return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13221 SDValue(FalseC, 0));
13224 // Optimize cases that will turn into an LEA instruction. This requires
13225 // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13226 if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13227 uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13228 if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13230 bool isFastMultiplier = false;
13232 switch ((unsigned char)Diff) {
13234 case 1: // result = add base, cond
13235 case 2: // result = lea base( , cond*2)
13236 case 3: // result = lea base(cond, cond*2)
13237 case 4: // result = lea base( , cond*4)
13238 case 5: // result = lea base(cond, cond*4)
13239 case 8: // result = lea base( , cond*8)
13240 case 9: // result = lea base(cond, cond*8)
13241 isFastMultiplier = true;
13246 if (isFastMultiplier) {
13247 APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13248 if (NeedsCondInvert) // Invert the condition if needed.
13249 Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13250 DAG.getConstant(1, Cond.getValueType()));
13252 // Zero extend the condition if needed.
13253 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13255 // Scale the condition by the difference.
13257 Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13258 DAG.getConstant(Diff, Cond.getValueType()));
13260 // Add the base if non-zero.
13261 if (FalseC->getAPIntValue() != 0)
13262 Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13263 SDValue(FalseC, 0));
13273 /// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
13274 static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
13275 TargetLowering::DAGCombinerInfo &DCI) {
13276 DebugLoc DL = N->getDebugLoc();
13278 // If the flag operand isn't dead, don't touch this CMOV.
13279 if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
13282 SDValue FalseOp = N->getOperand(0);
13283 SDValue TrueOp = N->getOperand(1);
13284 X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
13285 SDValue Cond = N->getOperand(3);
13286 if (CC == X86::COND_E || CC == X86::COND_NE) {
13287 switch (Cond.getOpcode()) {
13291 // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
13292 if (DAG.isKnownNeverZero(Cond.getOperand(0)))
13293 return (CC == X86::COND_E) ? FalseOp : TrueOp;
13297 // If this is a select between two integer constants, try to do some
13298 // optimizations. Note that the operands are ordered the opposite of SELECT
13300 if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
13301 if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
13302 // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
13303 // larger than FalseC (the false value).
13304 if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
13305 CC = X86::GetOppositeBranchCondition(CC);
13306 std::swap(TrueC, FalseC);
13309 // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3. Likewise for any pow2/0.
13310 // This is efficient for any integer data type (including i8/i16) and
13312 if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
13313 Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13314 DAG.getConstant(CC, MVT::i8), Cond);
13316 // Zero extend the condition if needed.
13317 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
13319 unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13320 Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
13321 DAG.getConstant(ShAmt, MVT::i8));
13322 if (N->getNumValues() == 2) // Dead flag value?
13323 return DCI.CombineTo(N, Cond, SDValue());
13327 // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. This is efficient
13328 // for any integer data type, including i8/i16.
13329 if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13330 Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13331 DAG.getConstant(CC, MVT::i8), Cond);
13333 // Zero extend the condition if needed.
13334 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13335 FalseC->getValueType(0), Cond);
13336 Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13337 SDValue(FalseC, 0));
13339 if (N->getNumValues() == 2) // Dead flag value?
13340 return DCI.CombineTo(N, Cond, SDValue());
13344 // Optimize cases that will turn into an LEA instruction. This requires
13345 // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13346 if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13347 uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13348 if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13350 bool isFastMultiplier = false;
13352 switch ((unsigned char)Diff) {
13354 case 1: // result = add base, cond
13355 case 2: // result = lea base( , cond*2)
13356 case 3: // result = lea base(cond, cond*2)
13357 case 4: // result = lea base( , cond*4)
13358 case 5: // result = lea base(cond, cond*4)
13359 case 8: // result = lea base( , cond*8)
13360 case 9: // result = lea base(cond, cond*8)
13361 isFastMultiplier = true;
13366 if (isFastMultiplier) {
13367 APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13368 Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13369 DAG.getConstant(CC, MVT::i8), Cond);
13370 // Zero extend the condition if needed.
13371 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13373 // Scale the condition by the difference.
13375 Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13376 DAG.getConstant(Diff, Cond.getValueType()));
13378 // Add the base if non-zero.
13379 if (FalseC->getAPIntValue() != 0)
13380 Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13381 SDValue(FalseC, 0));
13382 if (N->getNumValues() == 2) // Dead flag value?
13383 return DCI.CombineTo(N, Cond, SDValue());
13393 /// PerformMulCombine - Optimize a single multiply with constant into two
13394 /// in order to implement it with two cheaper instructions, e.g.
13395 /// LEA + SHL, LEA + LEA.
13396 static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
13397 TargetLowering::DAGCombinerInfo &DCI) {
13398 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
13401 EVT VT = N->getValueType(0);
13402 if (VT != MVT::i64)
13405 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
13408 uint64_t MulAmt = C->getZExtValue();
13409 if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
13412 uint64_t MulAmt1 = 0;
13413 uint64_t MulAmt2 = 0;
13414 if ((MulAmt % 9) == 0) {
13416 MulAmt2 = MulAmt / 9;
13417 } else if ((MulAmt % 5) == 0) {
13419 MulAmt2 = MulAmt / 5;
13420 } else if ((MulAmt % 3) == 0) {
13422 MulAmt2 = MulAmt / 3;
13425 (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
13426 DebugLoc DL = N->getDebugLoc();
13428 if (isPowerOf2_64(MulAmt2) &&
13429 !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
13430 // If second multiplifer is pow2, issue it first. We want the multiply by
13431 // 3, 5, or 9 to be folded into the addressing mode unless the lone use
13433 std::swap(MulAmt1, MulAmt2);
13436 if (isPowerOf2_64(MulAmt1))
13437 NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
13438 DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
13440 NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
13441 DAG.getConstant(MulAmt1, VT));
13443 if (isPowerOf2_64(MulAmt2))
13444 NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
13445 DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
13447 NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
13448 DAG.getConstant(MulAmt2, VT));
13450 // Do not add new nodes to DAG combiner worklist.
13451 DCI.CombineTo(N, NewMul, false);
13456 static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
13457 SDValue N0 = N->getOperand(0);
13458 SDValue N1 = N->getOperand(1);
13459 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
13460 EVT VT = N0.getValueType();
13462 // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
13463 // since the result of setcc_c is all zero's or all ones.
13464 if (VT.isInteger() && !VT.isVector() &&
13465 N1C && N0.getOpcode() == ISD::AND &&
13466 N0.getOperand(1).getOpcode() == ISD::Constant) {
13467 SDValue N00 = N0.getOperand(0);
13468 if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
13469 ((N00.getOpcode() == ISD::ANY_EXTEND ||
13470 N00.getOpcode() == ISD::ZERO_EXTEND) &&
13471 N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
13472 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
13473 APInt ShAmt = N1C->getAPIntValue();
13474 Mask = Mask.shl(ShAmt);
13476 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
13477 N00, DAG.getConstant(Mask, VT));
13482 // Hardware support for vector shifts is sparse which makes us scalarize the
13483 // vector operations in many cases. Also, on sandybridge ADD is faster than
13485 // (shl V, 1) -> add V,V
13486 if (isSplatVector(N1.getNode())) {
13487 assert(N0.getValueType().isVector() && "Invalid vector shift type");
13488 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
13489 // We shift all of the values by one. In many cases we do not have
13490 // hardware support for this operation. This is better expressed as an ADD
13492 if (N1C && (1 == N1C->getZExtValue())) {
13493 return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
13500 /// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
13502 static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
13503 const X86Subtarget *Subtarget) {
13504 EVT VT = N->getValueType(0);
13505 if (N->getOpcode() == ISD::SHL) {
13506 SDValue V = PerformSHLCombine(N, DAG);
13507 if (V.getNode()) return V;
13510 // On X86 with SSE2 support, we can transform this to a vector shift if
13511 // all elements are shifted by the same amount. We can't do this in legalize
13512 // because the a constant vector is typically transformed to a constant pool
13513 // so we have no knowledge of the shift amount.
13514 if (!Subtarget->hasXMMInt())
13517 if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
13518 (!Subtarget->hasAVX2() ||
13519 (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
13522 SDValue ShAmtOp = N->getOperand(1);
13523 EVT EltVT = VT.getVectorElementType();
13524 DebugLoc DL = N->getDebugLoc();
13525 SDValue BaseShAmt = SDValue();
13526 if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
13527 unsigned NumElts = VT.getVectorNumElements();
13529 for (; i != NumElts; ++i) {
13530 SDValue Arg = ShAmtOp.getOperand(i);
13531 if (Arg.getOpcode() == ISD::UNDEF) continue;
13535 for (; i != NumElts; ++i) {
13536 SDValue Arg = ShAmtOp.getOperand(i);
13537 if (Arg.getOpcode() == ISD::UNDEF) continue;
13538 if (Arg != BaseShAmt) {
13542 } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
13543 cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
13544 SDValue InVec = ShAmtOp.getOperand(0);
13545 if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
13546 unsigned NumElts = InVec.getValueType().getVectorNumElements();
13548 for (; i != NumElts; ++i) {
13549 SDValue Arg = InVec.getOperand(i);
13550 if (Arg.getOpcode() == ISD::UNDEF) continue;
13554 } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
13555 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
13556 unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
13557 if (C->getZExtValue() == SplatIdx)
13558 BaseShAmt = InVec.getOperand(1);
13561 if (BaseShAmt.getNode() == 0)
13562 BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
13563 DAG.getIntPtrConstant(0));
13567 // The shift amount is an i32.
13568 if (EltVT.bitsGT(MVT::i32))
13569 BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
13570 else if (EltVT.bitsLT(MVT::i32))
13571 BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
13573 // The shift amount is identical so we can do a vector shift.
13574 SDValue ValOp = N->getOperand(0);
13575 switch (N->getOpcode()) {
13577 llvm_unreachable("Unknown shift opcode!");
13580 if (VT == MVT::v2i64)
13581 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13582 DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
13584 if (VT == MVT::v4i32)
13585 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13586 DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
13588 if (VT == MVT::v8i16)
13589 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13590 DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
13592 if (VT == MVT::v4i64)
13593 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13594 DAG.getConstant(Intrinsic::x86_avx2_pslli_q, MVT::i32),
13596 if (VT == MVT::v8i32)
13597 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13598 DAG.getConstant(Intrinsic::x86_avx2_pslli_d, MVT::i32),
13600 if (VT == MVT::v16i16)
13601 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13602 DAG.getConstant(Intrinsic::x86_avx2_pslli_w, MVT::i32),
13606 if (VT == MVT::v4i32)
13607 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13608 DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
13610 if (VT == MVT::v8i16)
13611 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13612 DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
13614 if (VT == MVT::v8i32)
13615 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13616 DAG.getConstant(Intrinsic::x86_avx2_psrai_d, MVT::i32),
13618 if (VT == MVT::v16i16)
13619 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13620 DAG.getConstant(Intrinsic::x86_avx2_psrai_w, MVT::i32),
13624 if (VT == MVT::v2i64)
13625 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13626 DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
13628 if (VT == MVT::v4i32)
13629 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13630 DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
13632 if (VT == MVT::v8i16)
13633 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13634 DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
13636 if (VT == MVT::v4i64)
13637 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13638 DAG.getConstant(Intrinsic::x86_avx2_psrli_q, MVT::i32),
13640 if (VT == MVT::v8i32)
13641 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13642 DAG.getConstant(Intrinsic::x86_avx2_psrli_d, MVT::i32),
13644 if (VT == MVT::v16i16)
13645 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13646 DAG.getConstant(Intrinsic::x86_avx2_psrli_w, MVT::i32),
13654 // CMPEQCombine - Recognize the distinctive (AND (setcc ...) (setcc ..))
13655 // where both setccs reference the same FP CMP, and rewrite for CMPEQSS
13656 // and friends. Likewise for OR -> CMPNEQSS.
13657 static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
13658 TargetLowering::DAGCombinerInfo &DCI,
13659 const X86Subtarget *Subtarget) {
13662 // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
13663 // we're requiring SSE2 for both.
13664 if (Subtarget->hasXMMInt() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
13665 SDValue N0 = N->getOperand(0);
13666 SDValue N1 = N->getOperand(1);
13667 SDValue CMP0 = N0->getOperand(1);
13668 SDValue CMP1 = N1->getOperand(1);
13669 DebugLoc DL = N->getDebugLoc();
13671 // The SETCCs should both refer to the same CMP.
13672 if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
13675 SDValue CMP00 = CMP0->getOperand(0);
13676 SDValue CMP01 = CMP0->getOperand(1);
13677 EVT VT = CMP00.getValueType();
13679 if (VT == MVT::f32 || VT == MVT::f64) {
13680 bool ExpectingFlags = false;
13681 // Check for any users that want flags:
13682 for (SDNode::use_iterator UI = N->use_begin(),
13684 !ExpectingFlags && UI != UE; ++UI)
13685 switch (UI->getOpcode()) {
13690 ExpectingFlags = true;
13692 case ISD::CopyToReg:
13693 case ISD::SIGN_EXTEND:
13694 case ISD::ZERO_EXTEND:
13695 case ISD::ANY_EXTEND:
13699 if (!ExpectingFlags) {
13700 enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
13701 enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
13703 if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
13704 X86::CondCode tmp = cc0;
13709 if ((cc0 == X86::COND_E && cc1 == X86::COND_NP) ||
13710 (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
13711 bool is64BitFP = (CMP00.getValueType() == MVT::f64);
13712 X86ISD::NodeType NTOperator = is64BitFP ?
13713 X86ISD::FSETCCsd : X86ISD::FSETCCss;
13714 // FIXME: need symbolic constants for these magic numbers.
13715 // See X86ATTInstPrinter.cpp:printSSECC().
13716 unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
13717 SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
13718 DAG.getConstant(x86cc, MVT::i8));
13719 SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
13721 SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
13722 DAG.getConstant(1, MVT::i32));
13723 SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
13724 return OneBitOfTruth;
13732 /// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
13733 /// so it can be folded inside ANDNP.
13734 static bool CanFoldXORWithAllOnes(const SDNode *N) {
13735 EVT VT = N->getValueType(0);
13737 // Match direct AllOnes for 128 and 256-bit vectors
13738 if (ISD::isBuildVectorAllOnes(N))
13741 // Look through a bit convert.
13742 if (N->getOpcode() == ISD::BITCAST)
13743 N = N->getOperand(0).getNode();
13745 // Sometimes the operand may come from a insert_subvector building a 256-bit
13747 if (VT.getSizeInBits() == 256 &&
13748 N->getOpcode() == ISD::INSERT_SUBVECTOR) {
13749 SDValue V1 = N->getOperand(0);
13750 SDValue V2 = N->getOperand(1);
13752 if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
13753 V1.getOperand(0).getOpcode() == ISD::UNDEF &&
13754 ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
13755 ISD::isBuildVectorAllOnes(V2.getNode()))
13762 static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
13763 TargetLowering::DAGCombinerInfo &DCI,
13764 const X86Subtarget *Subtarget) {
13765 if (DCI.isBeforeLegalizeOps())
13768 SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13772 EVT VT = N->getValueType(0);
13774 // Create ANDN, BLSI, and BLSR instructions
13775 // BLSI is X & (-X)
13776 // BLSR is X & (X-1)
13777 if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
13778 SDValue N0 = N->getOperand(0);
13779 SDValue N1 = N->getOperand(1);
13780 DebugLoc DL = N->getDebugLoc();
13782 // Check LHS for not
13783 if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
13784 return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
13785 // Check RHS for not
13786 if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
13787 return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
13789 // Check LHS for neg
13790 if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
13791 isZero(N0.getOperand(0)))
13792 return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
13794 // Check RHS for neg
13795 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
13796 isZero(N1.getOperand(0)))
13797 return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
13799 // Check LHS for X-1
13800 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
13801 isAllOnes(N0.getOperand(1)))
13802 return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
13804 // Check RHS for X-1
13805 if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
13806 isAllOnes(N1.getOperand(1)))
13807 return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
13812 // Want to form ANDNP nodes:
13813 // 1) In the hopes of then easily combining them with OR and AND nodes
13814 // to form PBLEND/PSIGN.
13815 // 2) To match ANDN packed intrinsics
13816 if (VT != MVT::v2i64 && VT != MVT::v4i64)
13819 SDValue N0 = N->getOperand(0);
13820 SDValue N1 = N->getOperand(1);
13821 DebugLoc DL = N->getDebugLoc();
13823 // Check LHS for vnot
13824 if (N0.getOpcode() == ISD::XOR &&
13825 //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
13826 CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
13827 return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
13829 // Check RHS for vnot
13830 if (N1.getOpcode() == ISD::XOR &&
13831 //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
13832 CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
13833 return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
13838 static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
13839 TargetLowering::DAGCombinerInfo &DCI,
13840 const X86Subtarget *Subtarget) {
13841 if (DCI.isBeforeLegalizeOps())
13844 SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13848 EVT VT = N->getValueType(0);
13849 if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64 && VT != MVT::v2i64)
13852 SDValue N0 = N->getOperand(0);
13853 SDValue N1 = N->getOperand(1);
13855 // look for psign/blend
13856 if (Subtarget->hasSSSE3() || Subtarget->hasAVX()) {
13857 if (VT == MVT::v2i64) {
13858 // Canonicalize pandn to RHS
13859 if (N0.getOpcode() == X86ISD::ANDNP)
13861 // or (and (m, x), (pandn m, y))
13862 if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
13863 SDValue Mask = N1.getOperand(0);
13864 SDValue X = N1.getOperand(1);
13866 if (N0.getOperand(0) == Mask)
13867 Y = N0.getOperand(1);
13868 if (N0.getOperand(1) == Mask)
13869 Y = N0.getOperand(0);
13871 // Check to see if the mask appeared in both the AND and ANDNP and
13875 // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
13876 if (Mask.getOpcode() != ISD::BITCAST ||
13877 X.getOpcode() != ISD::BITCAST ||
13878 Y.getOpcode() != ISD::BITCAST)
13881 // Look through mask bitcast.
13882 Mask = Mask.getOperand(0);
13883 EVT MaskVT = Mask.getValueType();
13885 // Validate that the Mask operand is a vector sra node. The sra node
13886 // will be an intrinsic.
13887 if (Mask.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
13890 // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
13891 // there is no psrai.b
13892 switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) {
13893 case Intrinsic::x86_sse2_psrai_w:
13894 case Intrinsic::x86_sse2_psrai_d:
13896 default: return SDValue();
13899 // Check that the SRA is all signbits.
13900 SDValue SraC = Mask.getOperand(2);
13901 unsigned SraAmt = cast<ConstantSDNode>(SraC)->getZExtValue();
13902 unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
13903 if ((SraAmt + 1) != EltBits)
13906 DebugLoc DL = N->getDebugLoc();
13908 // Now we know we at least have a plendvb with the mask val. See if
13909 // we can form a psignb/w/d.
13910 // psign = x.type == y.type == mask.type && y = sub(0, x);
13911 X = X.getOperand(0);
13912 Y = Y.getOperand(0);
13913 if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
13914 ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
13915 X.getValueType() == MaskVT && X.getValueType() == Y.getValueType()){
13918 case 8: Opc = X86ISD::PSIGNB; break;
13919 case 16: Opc = X86ISD::PSIGNW; break;
13920 case 32: Opc = X86ISD::PSIGND; break;
13924 SDValue Sign = DAG.getNode(Opc, DL, MaskVT, X, Mask.getOperand(1));
13925 return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Sign);
13928 // PBLENDVB only available on SSE 4.1
13929 if (!(Subtarget->hasSSE41() || Subtarget->hasAVX()))
13932 X = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, X);
13933 Y = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Y);
13934 Mask = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Mask);
13935 Mask = DAG.getNode(ISD::VSELECT, DL, MVT::v16i8, Mask, X, Y);
13936 return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Mask);
13941 // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
13942 if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
13944 if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
13946 if (!N0.hasOneUse() || !N1.hasOneUse())
13949 SDValue ShAmt0 = N0.getOperand(1);
13950 if (ShAmt0.getValueType() != MVT::i8)
13952 SDValue ShAmt1 = N1.getOperand(1);
13953 if (ShAmt1.getValueType() != MVT::i8)
13955 if (ShAmt0.getOpcode() == ISD::TRUNCATE)
13956 ShAmt0 = ShAmt0.getOperand(0);
13957 if (ShAmt1.getOpcode() == ISD::TRUNCATE)
13958 ShAmt1 = ShAmt1.getOperand(0);
13960 DebugLoc DL = N->getDebugLoc();
13961 unsigned Opc = X86ISD::SHLD;
13962 SDValue Op0 = N0.getOperand(0);
13963 SDValue Op1 = N1.getOperand(0);
13964 if (ShAmt0.getOpcode() == ISD::SUB) {
13965 Opc = X86ISD::SHRD;
13966 std::swap(Op0, Op1);
13967 std::swap(ShAmt0, ShAmt1);
13970 unsigned Bits = VT.getSizeInBits();
13971 if (ShAmt1.getOpcode() == ISD::SUB) {
13972 SDValue Sum = ShAmt1.getOperand(0);
13973 if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
13974 SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
13975 if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
13976 ShAmt1Op1 = ShAmt1Op1.getOperand(0);
13977 if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
13978 return DAG.getNode(Opc, DL, VT,
13980 DAG.getNode(ISD::TRUNCATE, DL,
13983 } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
13984 ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
13986 ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
13987 return DAG.getNode(Opc, DL, VT,
13988 N0.getOperand(0), N1.getOperand(0),
13989 DAG.getNode(ISD::TRUNCATE, DL,
13996 static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
13997 TargetLowering::DAGCombinerInfo &DCI,
13998 const X86Subtarget *Subtarget) {
13999 if (DCI.isBeforeLegalizeOps())
14002 EVT VT = N->getValueType(0);
14004 if (VT != MVT::i32 && VT != MVT::i64)
14007 // Create BLSMSK instructions by finding X ^ (X-1)
14008 SDValue N0 = N->getOperand(0);
14009 SDValue N1 = N->getOperand(1);
14010 DebugLoc DL = N->getDebugLoc();
14012 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
14013 isAllOnes(N0.getOperand(1)))
14014 return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
14016 if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
14017 isAllOnes(N1.getOperand(1)))
14018 return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
14023 /// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
14024 static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
14025 const X86Subtarget *Subtarget) {
14026 LoadSDNode *Ld = cast<LoadSDNode>(N);
14027 EVT RegVT = Ld->getValueType(0);
14028 EVT MemVT = Ld->getMemoryVT();
14029 DebugLoc dl = Ld->getDebugLoc();
14030 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14032 ISD::LoadExtType Ext = Ld->getExtensionType();
14034 // If this is a vector EXT Load then attempt to optimize it using a
14035 // shuffle. We need SSE4 for the shuffles.
14036 // TODO: It is possible to support ZExt by zeroing the undef values
14037 // during the shuffle phase or after the shuffle.
14038 if (RegVT.isVector() && Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
14039 assert(MemVT != RegVT && "Cannot extend to the same type");
14040 assert(MemVT.isVector() && "Must load a vector from memory");
14042 unsigned NumElems = RegVT.getVectorNumElements();
14043 unsigned RegSz = RegVT.getSizeInBits();
14044 unsigned MemSz = MemVT.getSizeInBits();
14045 assert(RegSz > MemSz && "Register size must be greater than the mem size");
14046 // All sizes must be a power of two
14047 if (!isPowerOf2_32(RegSz * MemSz * NumElems)) return SDValue();
14049 // Attempt to load the original value using a single load op.
14050 // Find a scalar type which is equal to the loaded word size.
14051 MVT SclrLoadTy = MVT::i8;
14052 for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14053 tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14054 MVT Tp = (MVT::SimpleValueType)tp;
14055 if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() == MemSz) {
14061 // Proceed if a load word is found.
14062 if (SclrLoadTy.getSizeInBits() != MemSz) return SDValue();
14064 EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
14065 RegSz/SclrLoadTy.getSizeInBits());
14067 EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
14068 RegSz/MemVT.getScalarType().getSizeInBits());
14069 // Can't shuffle using an illegal type.
14070 if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14072 // Perform a single load.
14073 SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
14075 Ld->getPointerInfo(), Ld->isVolatile(),
14076 Ld->isNonTemporal(), Ld->isInvariant(),
14077 Ld->getAlignment());
14079 // Insert the word loaded into a vector.
14080 SDValue ScalarInVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
14081 LoadUnitVecVT, ScalarLoad);
14083 // Bitcast the loaded value to a vector of the original element type, in
14084 // the size of the target vector type.
14085 SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, ScalarInVector);
14086 unsigned SizeRatio = RegSz/MemSz;
14088 // Redistribute the loaded elements into the different locations.
14089 SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14090 for (unsigned i = 0; i < NumElems; i++) ShuffleVec[i*SizeRatio] = i;
14092 SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
14093 DAG.getUNDEF(SlicedVec.getValueType()),
14094 ShuffleVec.data());
14096 // Bitcast to the requested type.
14097 Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
14098 // Replace the original load with the new sequence
14099 // and return the new chain.
14100 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Shuff);
14101 return SDValue(ScalarLoad.getNode(), 1);
14107 /// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
14108 static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
14109 const X86Subtarget *Subtarget) {
14110 StoreSDNode *St = cast<StoreSDNode>(N);
14111 EVT VT = St->getValue().getValueType();
14112 EVT StVT = St->getMemoryVT();
14113 DebugLoc dl = St->getDebugLoc();
14114 SDValue StoredVal = St->getOperand(1);
14115 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14117 // If we are saving a concatination of two XMM registers, perform two stores.
14118 // This is better in Sandy Bridge cause one 256-bit mem op is done via two
14119 // 128-bit ones. If in the future the cost becomes only one memory access the
14120 // first version would be better.
14121 if (VT.getSizeInBits() == 256 &&
14122 StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
14123 StoredVal.getNumOperands() == 2) {
14125 SDValue Value0 = StoredVal.getOperand(0);
14126 SDValue Value1 = StoredVal.getOperand(1);
14128 SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
14129 SDValue Ptr0 = St->getBasePtr();
14130 SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
14132 SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
14133 St->getPointerInfo(), St->isVolatile(),
14134 St->isNonTemporal(), St->getAlignment());
14135 SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
14136 St->getPointerInfo(), St->isVolatile(),
14137 St->isNonTemporal(), St->getAlignment());
14138 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
14141 // Optimize trunc store (of multiple scalars) to shuffle and store.
14142 // First, pack all of the elements in one place. Next, store to memory
14143 // in fewer chunks.
14144 if (St->isTruncatingStore() && VT.isVector()) {
14145 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14146 unsigned NumElems = VT.getVectorNumElements();
14147 assert(StVT != VT && "Cannot truncate to the same type");
14148 unsigned FromSz = VT.getVectorElementType().getSizeInBits();
14149 unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
14151 // From, To sizes and ElemCount must be pow of two
14152 if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
14153 // We are going to use the original vector elt for storing.
14154 // Accumulated smaller vector elements must be a multiple of the store size.
14155 if (0 != (NumElems * FromSz) % ToSz) return SDValue();
14157 unsigned SizeRatio = FromSz / ToSz;
14159 assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
14161 // Create a type on which we perform the shuffle
14162 EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
14163 StVT.getScalarType(), NumElems*SizeRatio);
14165 assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
14167 SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
14168 SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14169 for (unsigned i = 0; i < NumElems; i++ ) ShuffleVec[i] = i * SizeRatio;
14171 // Can't shuffle using an illegal type
14172 if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14174 SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
14175 DAG.getUNDEF(WideVec.getValueType()),
14176 ShuffleVec.data());
14177 // At this point all of the data is stored at the bottom of the
14178 // register. We now need to save it to mem.
14180 // Find the largest store unit
14181 MVT StoreType = MVT::i8;
14182 for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14183 tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14184 MVT Tp = (MVT::SimpleValueType)tp;
14185 if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
14189 // Bitcast the original vector into a vector of store-size units
14190 EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
14191 StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
14192 assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
14193 SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
14194 SmallVector<SDValue, 8> Chains;
14195 SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
14196 TLI.getPointerTy());
14197 SDValue Ptr = St->getBasePtr();
14199 // Perform one or more big stores into memory.
14200 for (unsigned i = 0; i < (ToSz*NumElems)/StoreType.getSizeInBits() ; i++) {
14201 SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
14202 StoreType, ShuffWide,
14203 DAG.getIntPtrConstant(i));
14204 SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
14205 St->getPointerInfo(), St->isVolatile(),
14206 St->isNonTemporal(), St->getAlignment());
14207 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14208 Chains.push_back(Ch);
14211 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
14216 // Turn load->store of MMX types into GPR load/stores. This avoids clobbering
14217 // the FP state in cases where an emms may be missing.
14218 // A preferable solution to the general problem is to figure out the right
14219 // places to insert EMMS. This qualifies as a quick hack.
14221 // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
14222 if (VT.getSizeInBits() != 64)
14225 const Function *F = DAG.getMachineFunction().getFunction();
14226 bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
14227 bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
14228 && Subtarget->hasXMMInt();
14229 if ((VT.isVector() ||
14230 (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
14231 isa<LoadSDNode>(St->getValue()) &&
14232 !cast<LoadSDNode>(St->getValue())->isVolatile() &&
14233 St->getChain().hasOneUse() && !St->isVolatile()) {
14234 SDNode* LdVal = St->getValue().getNode();
14235 LoadSDNode *Ld = 0;
14236 int TokenFactorIndex = -1;
14237 SmallVector<SDValue, 8> Ops;
14238 SDNode* ChainVal = St->getChain().getNode();
14239 // Must be a store of a load. We currently handle two cases: the load
14240 // is a direct child, and it's under an intervening TokenFactor. It is
14241 // possible to dig deeper under nested TokenFactors.
14242 if (ChainVal == LdVal)
14243 Ld = cast<LoadSDNode>(St->getChain());
14244 else if (St->getValue().hasOneUse() &&
14245 ChainVal->getOpcode() == ISD::TokenFactor) {
14246 for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
14247 if (ChainVal->getOperand(i).getNode() == LdVal) {
14248 TokenFactorIndex = i;
14249 Ld = cast<LoadSDNode>(St->getValue());
14251 Ops.push_back(ChainVal->getOperand(i));
14255 if (!Ld || !ISD::isNormalLoad(Ld))
14258 // If this is not the MMX case, i.e. we are just turning i64 load/store
14259 // into f64 load/store, avoid the transformation if there are multiple
14260 // uses of the loaded value.
14261 if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
14264 DebugLoc LdDL = Ld->getDebugLoc();
14265 DebugLoc StDL = N->getDebugLoc();
14266 // If we are a 64-bit capable x86, lower to a single movq load/store pair.
14267 // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
14269 if (Subtarget->is64Bit() || F64IsLegal) {
14270 EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
14271 SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
14272 Ld->getPointerInfo(), Ld->isVolatile(),
14273 Ld->isNonTemporal(), Ld->isInvariant(),
14274 Ld->getAlignment());
14275 SDValue NewChain = NewLd.getValue(1);
14276 if (TokenFactorIndex != -1) {
14277 Ops.push_back(NewChain);
14278 NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14281 return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
14282 St->getPointerInfo(),
14283 St->isVolatile(), St->isNonTemporal(),
14284 St->getAlignment());
14287 // Otherwise, lower to two pairs of 32-bit loads / stores.
14288 SDValue LoAddr = Ld->getBasePtr();
14289 SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
14290 DAG.getConstant(4, MVT::i32));
14292 SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
14293 Ld->getPointerInfo(),
14294 Ld->isVolatile(), Ld->isNonTemporal(),
14295 Ld->isInvariant(), Ld->getAlignment());
14296 SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
14297 Ld->getPointerInfo().getWithOffset(4),
14298 Ld->isVolatile(), Ld->isNonTemporal(),
14300 MinAlign(Ld->getAlignment(), 4));
14302 SDValue NewChain = LoLd.getValue(1);
14303 if (TokenFactorIndex != -1) {
14304 Ops.push_back(LoLd);
14305 Ops.push_back(HiLd);
14306 NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14310 LoAddr = St->getBasePtr();
14311 HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
14312 DAG.getConstant(4, MVT::i32));
14314 SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
14315 St->getPointerInfo(),
14316 St->isVolatile(), St->isNonTemporal(),
14317 St->getAlignment());
14318 SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
14319 St->getPointerInfo().getWithOffset(4),
14321 St->isNonTemporal(),
14322 MinAlign(St->getAlignment(), 4));
14323 return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
14328 /// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
14329 /// and return the operands for the horizontal operation in LHS and RHS. A
14330 /// horizontal operation performs the binary operation on successive elements
14331 /// of its first operand, then on successive elements of its second operand,
14332 /// returning the resulting values in a vector. For example, if
14333 /// A = < float a0, float a1, float a2, float a3 >
14335 /// B = < float b0, float b1, float b2, float b3 >
14336 /// then the result of doing a horizontal operation on A and B is
14337 /// A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
14338 /// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
14339 /// A horizontal-op B, for some already available A and B, and if so then LHS is
14340 /// set to A, RHS to B, and the routine returns 'true'.
14341 /// Note that the binary operation should have the property that if one of the
14342 /// operands is UNDEF then the result is UNDEF.
14343 static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool isCommutative) {
14344 // Look for the following pattern: if
14345 // A = < float a0, float a1, float a2, float a3 >
14346 // B = < float b0, float b1, float b2, float b3 >
14348 // LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
14349 // RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
14350 // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
14351 // which is A horizontal-op B.
14353 // At least one of the operands should be a vector shuffle.
14354 if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14355 RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
14358 EVT VT = LHS.getValueType();
14359 unsigned N = VT.getVectorNumElements();
14361 // View LHS in the form
14362 // LHS = VECTOR_SHUFFLE A, B, LMask
14363 // If LHS is not a shuffle then pretend it is the shuffle
14364 // LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
14365 // NOTE: in what follows a default initialized SDValue represents an UNDEF of
14368 SmallVector<int, 8> LMask(N);
14369 if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14370 if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
14371 A = LHS.getOperand(0);
14372 if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
14373 B = LHS.getOperand(1);
14374 cast<ShuffleVectorSDNode>(LHS.getNode())->getMask(LMask);
14376 if (LHS.getOpcode() != ISD::UNDEF)
14378 for (unsigned i = 0; i != N; ++i)
14382 // Likewise, view RHS in the form
14383 // RHS = VECTOR_SHUFFLE C, D, RMask
14385 SmallVector<int, 8> RMask(N);
14386 if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14387 if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
14388 C = RHS.getOperand(0);
14389 if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
14390 D = RHS.getOperand(1);
14391 cast<ShuffleVectorSDNode>(RHS.getNode())->getMask(RMask);
14393 if (RHS.getOpcode() != ISD::UNDEF)
14395 for (unsigned i = 0; i != N; ++i)
14399 // Check that the shuffles are both shuffling the same vectors.
14400 if (!(A == C && B == D) && !(A == D && B == C))
14403 // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
14404 if (!A.getNode() && !B.getNode())
14407 // If A and B occur in reverse order in RHS, then "swap" them (which means
14408 // rewriting the mask).
14410 for (unsigned i = 0; i != N; ++i) {
14411 unsigned Idx = RMask[i];
14414 else if (Idx < 2*N)
14418 // At this point LHS and RHS are equivalent to
14419 // LHS = VECTOR_SHUFFLE A, B, LMask
14420 // RHS = VECTOR_SHUFFLE A, B, RMask
14421 // Check that the masks correspond to performing a horizontal operation.
14422 for (unsigned i = 0; i != N; ++i) {
14423 unsigned LIdx = LMask[i], RIdx = RMask[i];
14425 // Ignore any UNDEF components.
14426 if (LIdx >= 2*N || RIdx >= 2*N || (!A.getNode() && (LIdx < N || RIdx < N))
14427 || (!B.getNode() && (LIdx >= N || RIdx >= N)))
14430 // Check that successive elements are being operated on. If not, this is
14431 // not a horizontal operation.
14432 if (!(LIdx == 2*i && RIdx == 2*i + 1) &&
14433 !(isCommutative && LIdx == 2*i + 1 && RIdx == 2*i))
14437 LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
14438 RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
14442 /// PerformFADDCombine - Do target-specific dag combines on floating point adds.
14443 static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
14444 const X86Subtarget *Subtarget) {
14445 EVT VT = N->getValueType(0);
14446 SDValue LHS = N->getOperand(0);
14447 SDValue RHS = N->getOperand(1);
14449 // Try to synthesize horizontal adds from adds of shuffles.
14450 if ((Subtarget->hasSSE3() || Subtarget->hasAVX()) &&
14451 (VT == MVT::v4f32 || VT == MVT::v2f64) &&
14452 isHorizontalBinOp(LHS, RHS, true))
14453 return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
14457 /// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
14458 static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
14459 const X86Subtarget *Subtarget) {
14460 EVT VT = N->getValueType(0);
14461 SDValue LHS = N->getOperand(0);
14462 SDValue RHS = N->getOperand(1);
14464 // Try to synthesize horizontal subs from subs of shuffles.
14465 if ((Subtarget->hasSSE3() || Subtarget->hasAVX()) &&
14466 (VT == MVT::v4f32 || VT == MVT::v2f64) &&
14467 isHorizontalBinOp(LHS, RHS, false))
14468 return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
14472 /// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
14473 /// X86ISD::FXOR nodes.
14474 static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
14475 assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
14476 // F[X]OR(0.0, x) -> x
14477 // F[X]OR(x, 0.0) -> x
14478 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14479 if (C->getValueAPF().isPosZero())
14480 return N->getOperand(1);
14481 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14482 if (C->getValueAPF().isPosZero())
14483 return N->getOperand(0);
14487 /// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
14488 static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
14489 // FAND(0.0, x) -> 0.0
14490 // FAND(x, 0.0) -> 0.0
14491 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14492 if (C->getValueAPF().isPosZero())
14493 return N->getOperand(0);
14494 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14495 if (C->getValueAPF().isPosZero())
14496 return N->getOperand(1);
14500 static SDValue PerformBTCombine(SDNode *N,
14502 TargetLowering::DAGCombinerInfo &DCI) {
14503 // BT ignores high bits in the bit index operand.
14504 SDValue Op1 = N->getOperand(1);
14505 if (Op1.hasOneUse()) {
14506 unsigned BitWidth = Op1.getValueSizeInBits();
14507 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
14508 APInt KnownZero, KnownOne;
14509 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
14510 !DCI.isBeforeLegalizeOps());
14511 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14512 if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
14513 TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
14514 DCI.CommitTargetLoweringOpt(TLO);
14519 static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
14520 SDValue Op = N->getOperand(0);
14521 if (Op.getOpcode() == ISD::BITCAST)
14522 Op = Op.getOperand(0);
14523 EVT VT = N->getValueType(0), OpVT = Op.getValueType();
14524 if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
14525 VT.getVectorElementType().getSizeInBits() ==
14526 OpVT.getVectorElementType().getSizeInBits()) {
14527 return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
14532 static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
14533 // (i32 zext (and (i8 x86isd::setcc_carry), 1)) ->
14534 // (and (i32 x86isd::setcc_carry), 1)
14535 // This eliminates the zext. This transformation is necessary because
14536 // ISD::SETCC is always legalized to i8.
14537 DebugLoc dl = N->getDebugLoc();
14538 SDValue N0 = N->getOperand(0);
14539 EVT VT = N->getValueType(0);
14540 if (N0.getOpcode() == ISD::AND &&
14542 N0.getOperand(0).hasOneUse()) {
14543 SDValue N00 = N0.getOperand(0);
14544 if (N00.getOpcode() != X86ISD::SETCC_CARRY)
14546 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
14547 if (!C || C->getZExtValue() != 1)
14549 return DAG.getNode(ISD::AND, dl, VT,
14550 DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
14551 N00.getOperand(0), N00.getOperand(1)),
14552 DAG.getConstant(1, VT));
14558 // Optimize RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
14559 static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
14560 unsigned X86CC = N->getConstantOperandVal(0);
14561 SDValue EFLAG = N->getOperand(1);
14562 DebugLoc DL = N->getDebugLoc();
14564 // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
14565 // a zext and produces an all-ones bit which is more useful than 0/1 in some
14567 if (X86CC == X86::COND_B)
14568 return DAG.getNode(ISD::AND, DL, MVT::i8,
14569 DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
14570 DAG.getConstant(X86CC, MVT::i8), EFLAG),
14571 DAG.getConstant(1, MVT::i8));
14576 static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
14577 const X86TargetLowering *XTLI) {
14578 SDValue Op0 = N->getOperand(0);
14579 // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
14580 // a 32-bit target where SSE doesn't support i64->FP operations.
14581 if (Op0.getOpcode() == ISD::LOAD) {
14582 LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
14583 EVT VT = Ld->getValueType(0);
14584 if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
14585 ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
14586 !XTLI->getSubtarget()->is64Bit() &&
14587 !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
14588 SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
14589 Ld->getChain(), Op0, DAG);
14590 DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
14597 // Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
14598 static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
14599 X86TargetLowering::DAGCombinerInfo &DCI) {
14600 // If the LHS and RHS of the ADC node are zero, then it can't overflow and
14601 // the result is either zero or one (depending on the input carry bit).
14602 // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
14603 if (X86::isZeroNode(N->getOperand(0)) &&
14604 X86::isZeroNode(N->getOperand(1)) &&
14605 // We don't have a good way to replace an EFLAGS use, so only do this when
14607 SDValue(N, 1).use_empty()) {
14608 DebugLoc DL = N->getDebugLoc();
14609 EVT VT = N->getValueType(0);
14610 SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
14611 SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
14612 DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
14613 DAG.getConstant(X86::COND_B,MVT::i8),
14615 DAG.getConstant(1, VT));
14616 return DCI.CombineTo(N, Res1, CarryOut);
14622 // fold (add Y, (sete X, 0)) -> adc 0, Y
14623 // (add Y, (setne X, 0)) -> sbb -1, Y
14624 // (sub (sete X, 0), Y) -> sbb 0, Y
14625 // (sub (setne X, 0), Y) -> adc -1, Y
14626 static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
14627 DebugLoc DL = N->getDebugLoc();
14629 // Look through ZExts.
14630 SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
14631 if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
14634 SDValue SetCC = Ext.getOperand(0);
14635 if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
14638 X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
14639 if (CC != X86::COND_E && CC != X86::COND_NE)
14642 SDValue Cmp = SetCC.getOperand(1);
14643 if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
14644 !X86::isZeroNode(Cmp.getOperand(1)) ||
14645 !Cmp.getOperand(0).getValueType().isInteger())
14648 SDValue CmpOp0 = Cmp.getOperand(0);
14649 SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
14650 DAG.getConstant(1, CmpOp0.getValueType()));
14652 SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
14653 if (CC == X86::COND_NE)
14654 return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
14655 DL, OtherVal.getValueType(), OtherVal,
14656 DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
14657 return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
14658 DL, OtherVal.getValueType(), OtherVal,
14659 DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
14662 static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG) {
14663 SDValue Op0 = N->getOperand(0);
14664 SDValue Op1 = N->getOperand(1);
14666 // X86 can't encode an immediate LHS of a sub. See if we can push the
14667 // negation into a preceding instruction.
14668 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
14669 // If the RHS of the sub is a XOR with one use and a constant, invert the
14670 // immediate. Then add one to the LHS of the sub so we can turn
14671 // X-Y -> X+~Y+1, saving one register.
14672 if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
14673 isa<ConstantSDNode>(Op1.getOperand(1))) {
14674 APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
14675 EVT VT = Op0.getValueType();
14676 SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
14678 DAG.getConstant(~XorC, VT));
14679 return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
14680 DAG.getConstant(C->getAPIntValue()+1, VT));
14684 return OptimizeConditionalInDecrement(N, DAG);
14687 SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
14688 DAGCombinerInfo &DCI) const {
14689 SelectionDAG &DAG = DCI.DAG;
14690 switch (N->getOpcode()) {
14692 case ISD::EXTRACT_VECTOR_ELT:
14693 return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
14695 case ISD::SELECT: return PerformSELECTCombine(N, DAG, Subtarget);
14696 case X86ISD::CMOV: return PerformCMOVCombine(N, DAG, DCI);
14697 case ISD::ADD: return OptimizeConditionalInDecrement(N, DAG);
14698 case ISD::SUB: return PerformSubCombine(N, DAG);
14699 case X86ISD::ADC: return PerformADCCombine(N, DAG, DCI);
14700 case ISD::MUL: return PerformMulCombine(N, DAG, DCI);
14703 case ISD::SRL: return PerformShiftCombine(N, DAG, Subtarget);
14704 case ISD::AND: return PerformAndCombine(N, DAG, DCI, Subtarget);
14705 case ISD::OR: return PerformOrCombine(N, DAG, DCI, Subtarget);
14706 case ISD::XOR: return PerformXorCombine(N, DAG, DCI, Subtarget);
14707 case ISD::LOAD: return PerformLOADCombine(N, DAG, Subtarget);
14708 case ISD::STORE: return PerformSTORECombine(N, DAG, Subtarget);
14709 case ISD::SINT_TO_FP: return PerformSINT_TO_FPCombine(N, DAG, this);
14710 case ISD::FADD: return PerformFADDCombine(N, DAG, Subtarget);
14711 case ISD::FSUB: return PerformFSUBCombine(N, DAG, Subtarget);
14713 case X86ISD::FOR: return PerformFORCombine(N, DAG);
14714 case X86ISD::FAND: return PerformFANDCombine(N, DAG);
14715 case X86ISD::BT: return PerformBTCombine(N, DAG, DCI);
14716 case X86ISD::VZEXT_MOVL: return PerformVZEXT_MOVLCombine(N, DAG);
14717 case ISD::ZERO_EXTEND: return PerformZExtCombine(N, DAG);
14718 case X86ISD::SETCC: return PerformSETCCCombine(N, DAG);
14719 case X86ISD::SHUFPS: // Handle all target specific shuffles
14720 case X86ISD::SHUFPD:
14721 case X86ISD::PALIGN:
14722 case X86ISD::PUNPCKHBW:
14723 case X86ISD::PUNPCKHWD:
14724 case X86ISD::PUNPCKHDQ:
14725 case X86ISD::PUNPCKHQDQ:
14726 case X86ISD::UNPCKHPS:
14727 case X86ISD::UNPCKHPD:
14728 case X86ISD::VUNPCKHPSY:
14729 case X86ISD::VUNPCKHPDY:
14730 case X86ISD::PUNPCKLBW:
14731 case X86ISD::PUNPCKLWD:
14732 case X86ISD::PUNPCKLDQ:
14733 case X86ISD::PUNPCKLQDQ:
14734 case X86ISD::UNPCKLPS:
14735 case X86ISD::UNPCKLPD:
14736 case X86ISD::VUNPCKLPSY:
14737 case X86ISD::VUNPCKLPDY:
14738 case X86ISD::MOVHLPS:
14739 case X86ISD::MOVLHPS:
14740 case X86ISD::PSHUFD:
14741 case X86ISD::PSHUFHW:
14742 case X86ISD::PSHUFLW:
14743 case X86ISD::MOVSS:
14744 case X86ISD::MOVSD:
14745 case X86ISD::VPERMILPS:
14746 case X86ISD::VPERMILPSY:
14747 case X86ISD::VPERMILPD:
14748 case X86ISD::VPERMILPDY:
14749 case X86ISD::VPERM2F128:
14750 case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
14756 /// isTypeDesirableForOp - Return true if the target has native support for
14757 /// the specified value type and it is 'desirable' to use the type for the
14758 /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
14759 /// instruction encodings are longer and some i16 instructions are slow.
14760 bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
14761 if (!isTypeLegal(VT))
14763 if (VT != MVT::i16)
14770 case ISD::SIGN_EXTEND:
14771 case ISD::ZERO_EXTEND:
14772 case ISD::ANY_EXTEND:
14785 /// IsDesirableToPromoteOp - This method query the target whether it is
14786 /// beneficial for dag combiner to promote the specified node. If true, it
14787 /// should return the desired promotion type by reference.
14788 bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
14789 EVT VT = Op.getValueType();
14790 if (VT != MVT::i16)
14793 bool Promote = false;
14794 bool Commute = false;
14795 switch (Op.getOpcode()) {
14798 LoadSDNode *LD = cast<LoadSDNode>(Op);
14799 // If the non-extending load has a single use and it's not live out, then it
14800 // might be folded.
14801 if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
14802 Op.hasOneUse()*/) {
14803 for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
14804 UE = Op.getNode()->use_end(); UI != UE; ++UI) {
14805 // The only case where we'd want to promote LOAD (rather then it being
14806 // promoted as an operand is when it's only use is liveout.
14807 if (UI->getOpcode() != ISD::CopyToReg)
14814 case ISD::SIGN_EXTEND:
14815 case ISD::ZERO_EXTEND:
14816 case ISD::ANY_EXTEND:
14821 SDValue N0 = Op.getOperand(0);
14822 // Look out for (store (shl (load), x)).
14823 if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
14836 SDValue N0 = Op.getOperand(0);
14837 SDValue N1 = Op.getOperand(1);
14838 if (!Commute && MayFoldLoad(N1))
14840 // Avoid disabling potential load folding opportunities.
14841 if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
14843 if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
14853 //===----------------------------------------------------------------------===//
14854 // X86 Inline Assembly Support
14855 //===----------------------------------------------------------------------===//
14857 bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
14858 InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
14860 std::string AsmStr = IA->getAsmString();
14862 // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
14863 SmallVector<StringRef, 4> AsmPieces;
14864 SplitString(AsmStr, AsmPieces, ";\n");
14866 switch (AsmPieces.size()) {
14867 default: return false;
14869 AsmStr = AsmPieces[0];
14871 SplitString(AsmStr, AsmPieces, " \t"); // Split with whitespace.
14873 // FIXME: this should verify that we are targeting a 486 or better. If not,
14874 // we will turn this bswap into something that will be lowered to logical ops
14875 // instead of emitting the bswap asm. For now, we don't support 486 or lower
14876 // so don't worry about this.
14878 if (AsmPieces.size() == 2 &&
14879 (AsmPieces[0] == "bswap" ||
14880 AsmPieces[0] == "bswapq" ||
14881 AsmPieces[0] == "bswapl") &&
14882 (AsmPieces[1] == "$0" ||
14883 AsmPieces[1] == "${0:q}")) {
14884 // No need to check constraints, nothing other than the equivalent of
14885 // "=r,0" would be valid here.
14886 IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14887 if (!Ty || Ty->getBitWidth() % 16 != 0)
14889 return IntrinsicLowering::LowerToByteSwap(CI);
14891 // rorw $$8, ${0:w} --> llvm.bswap.i16
14892 if (CI->getType()->isIntegerTy(16) &&
14893 AsmPieces.size() == 3 &&
14894 (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
14895 AsmPieces[1] == "$$8," &&
14896 AsmPieces[2] == "${0:w}" &&
14897 IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
14899 const std::string &ConstraintsStr = IA->getConstraintString();
14900 SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14901 std::sort(AsmPieces.begin(), AsmPieces.end());
14902 if (AsmPieces.size() == 4 &&
14903 AsmPieces[0] == "~{cc}" &&
14904 AsmPieces[1] == "~{dirflag}" &&
14905 AsmPieces[2] == "~{flags}" &&
14906 AsmPieces[3] == "~{fpsr}") {
14907 IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14908 if (!Ty || Ty->getBitWidth() % 16 != 0)
14910 return IntrinsicLowering::LowerToByteSwap(CI);
14915 if (CI->getType()->isIntegerTy(32) &&
14916 IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
14917 SmallVector<StringRef, 4> Words;
14918 SplitString(AsmPieces[0], Words, " \t,");
14919 if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
14920 Words[2] == "${0:w}") {
14922 SplitString(AsmPieces[1], Words, " \t,");
14923 if (Words.size() == 3 && Words[0] == "rorl" && Words[1] == "$$16" &&
14924 Words[2] == "$0") {
14926 SplitString(AsmPieces[2], Words, " \t,");
14927 if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
14928 Words[2] == "${0:w}") {
14930 const std::string &ConstraintsStr = IA->getConstraintString();
14931 SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14932 std::sort(AsmPieces.begin(), AsmPieces.end());
14933 if (AsmPieces.size() == 4 &&
14934 AsmPieces[0] == "~{cc}" &&
14935 AsmPieces[1] == "~{dirflag}" &&
14936 AsmPieces[2] == "~{flags}" &&
14937 AsmPieces[3] == "~{fpsr}") {
14938 IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14939 if (!Ty || Ty->getBitWidth() % 16 != 0)
14941 return IntrinsicLowering::LowerToByteSwap(CI);
14948 if (CI->getType()->isIntegerTy(64)) {
14949 InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
14950 if (Constraints.size() >= 2 &&
14951 Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
14952 Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
14953 // bswap %eax / bswap %edx / xchgl %eax, %edx -> llvm.bswap.i64
14954 SmallVector<StringRef, 4> Words;
14955 SplitString(AsmPieces[0], Words, " \t");
14956 if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
14958 SplitString(AsmPieces[1], Words, " \t");
14959 if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
14961 SplitString(AsmPieces[2], Words, " \t,");
14962 if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
14963 Words[2] == "%edx") {
14964 IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14965 if (!Ty || Ty->getBitWidth() % 16 != 0)
14967 return IntrinsicLowering::LowerToByteSwap(CI);
14980 /// getConstraintType - Given a constraint letter, return the type of
14981 /// constraint it is for this target.
14982 X86TargetLowering::ConstraintType
14983 X86TargetLowering::getConstraintType(const std::string &Constraint) const {
14984 if (Constraint.size() == 1) {
14985 switch (Constraint[0]) {
14996 return C_RegisterClass;
15020 return TargetLowering::getConstraintType(Constraint);
15023 /// Examine constraint type and operand type and determine a weight value.
15024 /// This object must already have been set up with the operand type
15025 /// and the current alternative constraint selected.
15026 TargetLowering::ConstraintWeight
15027 X86TargetLowering::getSingleConstraintMatchWeight(
15028 AsmOperandInfo &info, const char *constraint) const {
15029 ConstraintWeight weight = CW_Invalid;
15030 Value *CallOperandVal = info.CallOperandVal;
15031 // If we don't have a value, we can't do a match,
15032 // but allow it at the lowest weight.
15033 if (CallOperandVal == NULL)
15035 Type *type = CallOperandVal->getType();
15036 // Look at the constraint type.
15037 switch (*constraint) {
15039 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15050 if (CallOperandVal->getType()->isIntegerTy())
15051 weight = CW_SpecificReg;
15056 if (type->isFloatingPointTy())
15057 weight = CW_SpecificReg;
15060 if (type->isX86_MMXTy() && Subtarget->hasMMX())
15061 weight = CW_SpecificReg;
15065 if ((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasXMM())
15066 weight = CW_Register;
15069 if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
15070 if (C->getZExtValue() <= 31)
15071 weight = CW_Constant;
15075 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15076 if (C->getZExtValue() <= 63)
15077 weight = CW_Constant;
15081 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15082 if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
15083 weight = CW_Constant;
15087 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15088 if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
15089 weight = CW_Constant;
15093 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15094 if (C->getZExtValue() <= 3)
15095 weight = CW_Constant;
15099 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15100 if (C->getZExtValue() <= 0xff)
15101 weight = CW_Constant;
15106 if (dyn_cast<ConstantFP>(CallOperandVal)) {
15107 weight = CW_Constant;
15111 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15112 if ((C->getSExtValue() >= -0x80000000LL) &&
15113 (C->getSExtValue() <= 0x7fffffffLL))
15114 weight = CW_Constant;
15118 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15119 if (C->getZExtValue() <= 0xffffffff)
15120 weight = CW_Constant;
15127 /// LowerXConstraint - try to replace an X constraint, which matches anything,
15128 /// with another that has more specific requirements based on the type of the
15129 /// corresponding operand.
15130 const char *X86TargetLowering::
15131 LowerXConstraint(EVT ConstraintVT) const {
15132 // FP X constraints get lowered to SSE1/2 registers if available, otherwise
15133 // 'f' like normal targets.
15134 if (ConstraintVT.isFloatingPoint()) {
15135 if (Subtarget->hasXMMInt())
15137 if (Subtarget->hasXMM())
15141 return TargetLowering::LowerXConstraint(ConstraintVT);
15144 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15145 /// vector. If it is invalid, don't add anything to Ops.
15146 void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15147 std::string &Constraint,
15148 std::vector<SDValue>&Ops,
15149 SelectionDAG &DAG) const {
15150 SDValue Result(0, 0);
15152 // Only support length 1 constraints for now.
15153 if (Constraint.length() > 1) return;
15155 char ConstraintLetter = Constraint[0];
15156 switch (ConstraintLetter) {
15159 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15160 if (C->getZExtValue() <= 31) {
15161 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15167 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15168 if (C->getZExtValue() <= 63) {
15169 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15175 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15176 if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
15177 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15183 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15184 if (C->getZExtValue() <= 255) {
15185 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15191 // 32-bit signed value
15192 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15193 if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15194 C->getSExtValue())) {
15195 // Widen to 64 bits here to get it sign extended.
15196 Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
15199 // FIXME gcc accepts some relocatable values here too, but only in certain
15200 // memory models; it's complicated.
15205 // 32-bit unsigned value
15206 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15207 if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15208 C->getZExtValue())) {
15209 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15213 // FIXME gcc accepts some relocatable values here too, but only in certain
15214 // memory models; it's complicated.
15218 // Literal immediates are always ok.
15219 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
15220 // Widen to 64 bits here to get it sign extended.
15221 Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
15225 // In any sort of PIC mode addresses need to be computed at runtime by
15226 // adding in a register or some sort of table lookup. These can't
15227 // be used as immediates.
15228 if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
15231 // If we are in non-pic codegen mode, we allow the address of a global (with
15232 // an optional displacement) to be used with 'i'.
15233 GlobalAddressSDNode *GA = 0;
15234 int64_t Offset = 0;
15236 // Match either (GA), (GA+C), (GA+C1+C2), etc.
15238 if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
15239 Offset += GA->getOffset();
15241 } else if (Op.getOpcode() == ISD::ADD) {
15242 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15243 Offset += C->getZExtValue();
15244 Op = Op.getOperand(0);
15247 } else if (Op.getOpcode() == ISD::SUB) {
15248 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15249 Offset += -C->getZExtValue();
15250 Op = Op.getOperand(0);
15255 // Otherwise, this isn't something we can handle, reject it.
15259 const GlobalValue *GV = GA->getGlobal();
15260 // If we require an extra load to get this address, as in PIC mode, we
15261 // can't accept it.
15262 if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
15263 getTargetMachine())))
15266 Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
15267 GA->getValueType(0), Offset);
15272 if (Result.getNode()) {
15273 Ops.push_back(Result);
15276 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15279 std::pair<unsigned, const TargetRegisterClass*>
15280 X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
15282 // First, see if this is a constraint that directly corresponds to an LLVM
15284 if (Constraint.size() == 1) {
15285 // GCC Constraint Letters
15286 switch (Constraint[0]) {
15288 // TODO: Slight differences here in allocation order and leaving
15289 // RIP in the class. Do they matter any more here than they do
15290 // in the normal allocation?
15291 case 'q': // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
15292 if (Subtarget->is64Bit()) {
15293 if (VT == MVT::i32 || VT == MVT::f32)
15294 return std::make_pair(0U, X86::GR32RegisterClass);
15295 else if (VT == MVT::i16)
15296 return std::make_pair(0U, X86::GR16RegisterClass);
15297 else if (VT == MVT::i8 || VT == MVT::i1)
15298 return std::make_pair(0U, X86::GR8RegisterClass);
15299 else if (VT == MVT::i64 || VT == MVT::f64)
15300 return std::make_pair(0U, X86::GR64RegisterClass);
15303 // 32-bit fallthrough
15304 case 'Q': // Q_REGS
15305 if (VT == MVT::i32 || VT == MVT::f32)
15306 return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
15307 else if (VT == MVT::i16)
15308 return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
15309 else if (VT == MVT::i8 || VT == MVT::i1)
15310 return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
15311 else if (VT == MVT::i64)
15312 return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
15314 case 'r': // GENERAL_REGS
15315 case 'l': // INDEX_REGS
15316 if (VT == MVT::i8 || VT == MVT::i1)
15317 return std::make_pair(0U, X86::GR8RegisterClass);
15318 if (VT == MVT::i16)
15319 return std::make_pair(0U, X86::GR16RegisterClass);
15320 if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
15321 return std::make_pair(0U, X86::GR32RegisterClass);
15322 return std::make_pair(0U, X86::GR64RegisterClass);
15323 case 'R': // LEGACY_REGS
15324 if (VT == MVT::i8 || VT == MVT::i1)
15325 return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
15326 if (VT == MVT::i16)
15327 return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
15328 if (VT == MVT::i32 || !Subtarget->is64Bit())
15329 return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
15330 return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
15331 case 'f': // FP Stack registers.
15332 // If SSE is enabled for this VT, use f80 to ensure the isel moves the
15333 // value to the correct fpstack register class.
15334 if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
15335 return std::make_pair(0U, X86::RFP32RegisterClass);
15336 if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
15337 return std::make_pair(0U, X86::RFP64RegisterClass);
15338 return std::make_pair(0U, X86::RFP80RegisterClass);
15339 case 'y': // MMX_REGS if MMX allowed.
15340 if (!Subtarget->hasMMX()) break;
15341 return std::make_pair(0U, X86::VR64RegisterClass);
15342 case 'Y': // SSE_REGS if SSE2 allowed
15343 if (!Subtarget->hasXMMInt()) break;
15345 case 'x': // SSE_REGS if SSE1 allowed
15346 if (!Subtarget->hasXMM()) break;
15348 switch (VT.getSimpleVT().SimpleTy) {
15350 // Scalar SSE types.
15353 return std::make_pair(0U, X86::FR32RegisterClass);
15356 return std::make_pair(0U, X86::FR64RegisterClass);
15364 return std::make_pair(0U, X86::VR128RegisterClass);
15370 // Use the default implementation in TargetLowering to convert the register
15371 // constraint into a member of a register class.
15372 std::pair<unsigned, const TargetRegisterClass*> Res;
15373 Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
15375 // Not found as a standard register?
15376 if (Res.second == 0) {
15377 // Map st(0) -> st(7) -> ST0
15378 if (Constraint.size() == 7 && Constraint[0] == '{' &&
15379 tolower(Constraint[1]) == 's' &&
15380 tolower(Constraint[2]) == 't' &&
15381 Constraint[3] == '(' &&
15382 (Constraint[4] >= '0' && Constraint[4] <= '7') &&
15383 Constraint[5] == ')' &&
15384 Constraint[6] == '}') {
15386 Res.first = X86::ST0+Constraint[4]-'0';
15387 Res.second = X86::RFP80RegisterClass;
15391 // GCC allows "st(0)" to be called just plain "st".
15392 if (StringRef("{st}").equals_lower(Constraint)) {
15393 Res.first = X86::ST0;
15394 Res.second = X86::RFP80RegisterClass;
15399 if (StringRef("{flags}").equals_lower(Constraint)) {
15400 Res.first = X86::EFLAGS;
15401 Res.second = X86::CCRRegisterClass;
15405 // 'A' means EAX + EDX.
15406 if (Constraint == "A") {
15407 Res.first = X86::EAX;
15408 Res.second = X86::GR32_ADRegisterClass;
15414 // Otherwise, check to see if this is a register class of the wrong value
15415 // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to
15416 // turn into {ax},{dx}.
15417 if (Res.second->hasType(VT))
15418 return Res; // Correct type already, nothing to do.
15420 // All of the single-register GCC register classes map their values onto
15421 // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we
15422 // really want an 8-bit or 32-bit register, map to the appropriate register
15423 // class and return the appropriate register.
15424 if (Res.second == X86::GR16RegisterClass) {
15425 if (VT == MVT::i8) {
15426 unsigned DestReg = 0;
15427 switch (Res.first) {
15429 case X86::AX: DestReg = X86::AL; break;
15430 case X86::DX: DestReg = X86::DL; break;
15431 case X86::CX: DestReg = X86::CL; break;
15432 case X86::BX: DestReg = X86::BL; break;
15435 Res.first = DestReg;
15436 Res.second = X86::GR8RegisterClass;
15438 } else if (VT == MVT::i32) {
15439 unsigned DestReg = 0;
15440 switch (Res.first) {
15442 case X86::AX: DestReg = X86::EAX; break;
15443 case X86::DX: DestReg = X86::EDX; break;
15444 case X86::CX: DestReg = X86::ECX; break;
15445 case X86::BX: DestReg = X86::EBX; break;
15446 case X86::SI: DestReg = X86::ESI; break;
15447 case X86::DI: DestReg = X86::EDI; break;
15448 case X86::BP: DestReg = X86::EBP; break;
15449 case X86::SP: DestReg = X86::ESP; break;
15452 Res.first = DestReg;
15453 Res.second = X86::GR32RegisterClass;
15455 } else if (VT == MVT::i64) {
15456 unsigned DestReg = 0;
15457 switch (Res.first) {
15459 case X86::AX: DestReg = X86::RAX; break;
15460 case X86::DX: DestReg = X86::RDX; break;
15461 case X86::CX: DestReg = X86::RCX; break;
15462 case X86::BX: DestReg = X86::RBX; break;
15463 case X86::SI: DestReg = X86::RSI; break;
15464 case X86::DI: DestReg = X86::RDI; break;
15465 case X86::BP: DestReg = X86::RBP; break;
15466 case X86::SP: DestReg = X86::RSP; break;
15469 Res.first = DestReg;
15470 Res.second = X86::GR64RegisterClass;
15473 } else if (Res.second == X86::FR32RegisterClass ||
15474 Res.second == X86::FR64RegisterClass ||
15475 Res.second == X86::VR128RegisterClass) {
15476 // Handle references to XMM physical registers that got mapped into the
15477 // wrong class. This can happen with constraints like {xmm0} where the
15478 // target independent register mapper will just pick the first match it can
15479 // find, ignoring the required type.
15480 if (VT == MVT::f32)
15481 Res.second = X86::FR32RegisterClass;
15482 else if (VT == MVT::f64)
15483 Res.second = X86::FR64RegisterClass;
15484 else if (X86::VR128RegisterClass->hasType(VT))
15485 Res.second = X86::VR128RegisterClass;