1 //===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the interfaces that X86 uses to lower LLVM code into a
13 //===----------------------------------------------------------------------===//
15 #ifndef X86ISELLOWERING_H
16 #define X86ISELLOWERING_H
18 #include "X86Subtarget.h"
19 #include "X86RegisterInfo.h"
20 #include "X86MachineFunctionInfo.h"
21 #include "llvm/Target/TargetLowering.h"
22 #include "llvm/Target/TargetOptions.h"
23 #include "llvm/CodeGen/FastISel.h"
24 #include "llvm/CodeGen/SelectionDAG.h"
25 #include "llvm/CodeGen/CallingConvLower.h"
29 // X86 Specific DAG Nodes
31 // Start the numbering where the builtin ops leave off.
32 FIRST_NUMBER = ISD::BUILTIN_OP_END,
34 /// BSF - Bit scan forward.
35 /// BSR - Bit scan reverse.
39 /// SHLD, SHRD - Double shift instructions. These correspond to
40 /// X86::SHLDxx and X86::SHRDxx instructions.
44 /// FAND - Bitwise logical AND of floating point values. This corresponds
45 /// to X86::ANDPS or X86::ANDPD.
48 /// FOR - Bitwise logical OR of floating point values. This corresponds
49 /// to X86::ORPS or X86::ORPD.
52 /// FXOR - Bitwise logical XOR of floating point values. This corresponds
53 /// to X86::XORPS or X86::XORPD.
56 /// FSRL - Bitwise logical right shift of floating point values. These
57 /// corresponds to X86::PSRLDQ.
60 /// CALL - These operations represent an abstract X86 call
61 /// instruction, which includes a bunch of information. In particular the
62 /// operands of these node are:
64 /// #0 - The incoming token chain
66 /// #2 - The number of arg bytes the caller pushes on the stack.
67 /// #3 - The number of arg bytes the callee pops off the stack.
68 /// #4 - The value to pass in AL/AX/EAX (optional)
69 /// #5 - The value to pass in DL/DX/EDX (optional)
71 /// The result values of these nodes are:
73 /// #0 - The outgoing token chain
74 /// #1 - The first register result value (optional)
75 /// #2 - The second register result value (optional)
79 /// RDTSC_DAG - This operation implements the lowering for
83 /// X86 compare and logical compare instructions.
86 /// X86 bit-test instructions.
89 /// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS
90 /// operand, usually produced by a CMP instruction.
93 // Same as SETCC except it's materialized with a sbb and the value is all
94 // one's or all zero's.
95 SETCC_CARRY, // R = carry_bit ? ~0 : 0
97 /// X86 MOVMSK{pd|ps}, extracts sign bits of two or four FP values,
98 /// result in an integer GPR. Needs masking for scalar result.
101 /// X86 conditional moves. Operand 0 and operand 1 are the two values
102 /// to select from. Operand 2 is the condition code, and operand 3 is the
103 /// flag operand produced by a CMP or TEST instruction. It also writes a
107 /// X86 conditional branches. Operand 0 is the chain operand, operand 1
108 /// is the block to branch if condition is true, operand 2 is the
109 /// condition code, and operand 3 is the flag operand produced by a CMP
110 /// or TEST instruction.
113 /// Return with a flag operand. Operand 0 is the chain operand, operand
114 /// 1 is the number of bytes of stack to pop.
117 /// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx.
120 /// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx.
123 /// GlobalBaseReg - On Darwin, this node represents the result of the popl
124 /// at function entry, used for PIC code.
127 /// Wrapper - A wrapper node for TargetConstantPool,
128 /// TargetExternalSymbol, and TargetGlobalAddress.
131 /// WrapperRIP - Special wrapper used under X86-64 PIC mode for RIP
132 /// relative displacements.
135 /// MOVQ2DQ - Copies a 64-bit value from an MMX vector to the low word
136 /// of an XMM vector, with the high word zero filled.
139 /// MOVDQ2Q - Copies a 64-bit value from the low word of an XMM vector
140 /// to an MMX vector. If you think this is too close to the previous
141 /// mnemonic, so do I; blame Intel.
144 /// PEXTRB - Extract an 8-bit value from a vector and zero extend it to
145 /// i32, corresponds to X86::PEXTRB.
148 /// PEXTRW - Extract a 16-bit value from a vector and zero extend it to
149 /// i32, corresponds to X86::PEXTRW.
152 /// INSERTPS - Insert any element of a 4 x float vector into any element
153 /// of a destination 4 x floatvector.
156 /// PINSRB - Insert the lower 8-bits of a 32-bit value to a vector,
157 /// corresponds to X86::PINSRB.
160 /// PINSRW - Insert the lower 16-bits of a 32-bit value to a vector,
161 /// corresponds to X86::PINSRW.
164 /// PSHUFB - Shuffle 16 8-bit values within a vector.
167 /// PANDN - and with not'd value.
170 /// PSIGNB/W/D - Copy integer sign.
171 PSIGNB, PSIGNW, PSIGND,
173 /// PBLENDVB - Variable blend
176 /// FMAX, FMIN - Floating point max and min.
180 /// FRSQRT, FRCP - Floating point reciprocal-sqrt and reciprocal
181 /// approximation. Note that these typically require refinement
182 /// in order to obtain suitable precision.
185 // TLSADDR - Thread Local Storage.
188 // TLSCALL - Thread Local Storage. When calling to an OS provided
189 // thunk at the address from an earlier relocation.
192 // EH_RETURN - Exception Handling helpers.
195 /// TC_RETURN - Tail call return.
197 /// operand #1 callee (register or absolute)
198 /// operand #2 stack adjustment
199 /// operand #3 optional in flag
202 // VZEXT_MOVL - Vector move low and zero extend.
205 // VSHL, VSRL - Vector logical left / right shift.
208 // CMPPD, CMPPS - Vector double/float comparison.
209 // CMPPD, CMPPS - Vector double/float comparison.
212 // PCMP* - Vector integer comparisons.
213 PCMPEQB, PCMPEQW, PCMPEQD, PCMPEQQ,
214 PCMPGTB, PCMPGTW, PCMPGTD, PCMPGTQ,
216 // ADD, SUB, SMUL, etc. - Arithmetic operations with FLAGS results.
217 ADD, SUB, ADC, SBB, SMUL,
218 INC, DEC, OR, XOR, AND,
220 UMUL, // LOW, HI, FLAGS = umul LHS, RHS
222 // MUL_IMM - X86 specific multiply by immediate.
225 // PTEST - Vector bitwise comparisons
228 // TESTP - Vector packed fp sign bitwise comparisons
231 // Several flavors of instructions with vector shuffle behaviors.
270 // VASTART_SAVE_XMM_REGS - Save xmm argument registers to the stack,
271 // according to %al. An operator is needed so that this can be expanded
272 // with control flow.
273 VASTART_SAVE_XMM_REGS,
275 // WIN_ALLOCA - Windows's _chkstk call to do stack probing.
284 // ATOMADD64_DAG, ATOMSUB64_DAG, ATOMOR64_DAG, ATOMAND64_DAG,
285 // ATOMXOR64_DAG, ATOMNAND64_DAG, ATOMSWAP64_DAG -
286 // Atomic 64-bit binary operations.
287 ATOMADD64_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE,
295 // LCMPXCHG_DAG, LCMPXCHG8_DAG - Compare and swap.
299 // VZEXT_LOAD - Load, scalar_to_vector, and zero extend.
302 // FNSTCW16m - Store FP control world into i16 memory.
305 /// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the
306 /// integer destination in memory and a FP reg source. This corresponds
307 /// to the X86::FIST*m instructions and the rounding mode change stuff. It
308 /// has two inputs (token chain and address) and two outputs (int value
309 /// and token chain).
314 /// FILD, FILD_FLAG - This instruction implements SINT_TO_FP with the
315 /// integer source in memory and FP reg result. This corresponds to the
316 /// X86::FILD*m instructions. It has three inputs (token chain, address,
317 /// and source type) and two outputs (FP value and token chain). FILD_FLAG
318 /// also produces a flag).
322 /// FLD - This instruction implements an extending load to FP stack slots.
323 /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
324 /// operand, ptr to load from, and a ValueType node indicating the type
328 /// FST - This instruction implements a truncating store to FP stack
329 /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
330 /// chain operand, value to store, address, and a ValueType to store it
334 /// VAARG_64 - This instruction grabs the address of the next argument
335 /// from a va_list. (reads and modifies the va_list in memory)
338 // WARNING: Do not add anything in the end unless you want the node to
339 // have memop! In fact, starting from ATOMADD64_DAG all opcodes will be
340 // thought as target memory ops!
344 /// Define some predicates that are used for node matching.
346 /// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
347 /// specifies a shuffle of elements that is suitable for input to PSHUFD.
348 bool isPSHUFDMask(ShuffleVectorSDNode *N);
350 /// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
351 /// specifies a shuffle of elements that is suitable for input to PSHUFD.
352 bool isPSHUFHWMask(ShuffleVectorSDNode *N);
354 /// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
355 /// specifies a shuffle of elements that is suitable for input to PSHUFD.
356 bool isPSHUFLWMask(ShuffleVectorSDNode *N);
358 /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
359 /// specifies a shuffle of elements that is suitable for input to SHUFP*.
360 bool isSHUFPMask(ShuffleVectorSDNode *N);
362 /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
363 /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
364 bool isMOVHLPSMask(ShuffleVectorSDNode *N);
366 /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
367 /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
369 bool isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N);
371 /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
372 /// specifies a shuffle of elements that is suitable for MOVLP{S|D}.
373 bool isMOVLPMask(ShuffleVectorSDNode *N);
375 /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
376 /// specifies a shuffle of elements that is suitable for MOVHP{S|D}.
377 /// as well as MOVLHPS.
378 bool isMOVLHPSMask(ShuffleVectorSDNode *N);
380 /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
381 /// specifies a shuffle of elements that is suitable for input to UNPCKL.
382 bool isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat = false);
384 /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
385 /// specifies a shuffle of elements that is suitable for input to UNPCKH.
386 bool isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat = false);
388 /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
389 /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
391 bool isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N);
393 /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
394 /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
396 bool isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N);
398 /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
399 /// specifies a shuffle of elements that is suitable for input to MOVSS,
400 /// MOVSD, and MOVD, i.e. setting the lowest element.
401 bool isMOVLMask(ShuffleVectorSDNode *N);
403 /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
404 /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
405 bool isMOVSHDUPMask(ShuffleVectorSDNode *N);
407 /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
408 /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
409 bool isMOVSLDUPMask(ShuffleVectorSDNode *N);
411 /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
412 /// specifies a shuffle of elements that is suitable for input to MOVDDUP.
413 bool isMOVDDUPMask(ShuffleVectorSDNode *N);
415 /// isPALIGNRMask - Return true if the specified VECTOR_SHUFFLE operand
416 /// specifies a shuffle of elements that is suitable for input to PALIGNR.
417 bool isPALIGNRMask(ShuffleVectorSDNode *N);
419 /// isVEXTRACTF128Index - Return true if the specified
420 /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
421 /// suitable for input to VEXTRACTF128.
422 bool isVEXTRACTF128Index(SDNode *N);
424 /// isVINSERTF128Index - Return true if the specified
425 /// INSERT_SUBVECTOR operand specifies a subvector insert that is
426 /// suitable for input to VINSERTF128.
427 bool isVINSERTF128Index(SDNode *N);
429 /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
430 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
432 unsigned getShuffleSHUFImmediate(SDNode *N);
434 /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
435 /// the specified VECTOR_SHUFFLE mask with PSHUFHW instruction.
436 unsigned getShufflePSHUFHWImmediate(SDNode *N);
438 /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
439 /// the specified VECTOR_SHUFFLE mask with PSHUFLW instruction.
440 unsigned getShufflePSHUFLWImmediate(SDNode *N);
442 /// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
443 /// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
444 unsigned getShufflePALIGNRImmediate(SDNode *N);
446 /// getExtractVEXTRACTF128Immediate - Return the appropriate
447 /// immediate to extract the specified EXTRACT_SUBVECTOR index
448 /// with VEXTRACTF128 instructions.
449 unsigned getExtractVEXTRACTF128Immediate(SDNode *N);
451 /// getInsertVINSERTF128Immediate - Return the appropriate
452 /// immediate to insert at the specified INSERT_SUBVECTOR index
453 /// with VINSERTF128 instructions.
454 unsigned getInsertVINSERTF128Immediate(SDNode *N);
456 /// isZeroNode - Returns true if Elt is a constant zero or a floating point
458 bool isZeroNode(SDValue Elt);
460 /// isOffsetSuitableForCodeModel - Returns true of the given offset can be
461 /// fit into displacement field of the instruction.
462 bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
463 bool hasSymbolicDisplacement = true);
466 //===--------------------------------------------------------------------===//
467 // X86TargetLowering - X86 Implementation of the TargetLowering interface
468 class X86TargetLowering : public TargetLowering {
470 explicit X86TargetLowering(X86TargetMachine &TM);
472 virtual unsigned getJumpTableEncoding() const;
474 virtual MVT getShiftAmountTy(EVT LHSTy) const { return MVT::i8; }
476 virtual const MCExpr *
477 LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
478 const MachineBasicBlock *MBB, unsigned uid,
479 MCContext &Ctx) const;
481 /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
483 virtual SDValue getPICJumpTableRelocBase(SDValue Table,
484 SelectionDAG &DAG) const;
485 virtual const MCExpr *
486 getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
487 unsigned JTI, MCContext &Ctx) const;
489 /// getStackPtrReg - Return the stack pointer register we are using: either
491 unsigned getStackPtrReg() const { return X86StackPtr; }
493 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
494 /// function arguments in the caller parameter area. For X86, aggregates
495 /// that contains are placed at 16-byte boundaries while the rest are at
496 /// 4-byte boundaries.
497 virtual unsigned getByValTypeAlignment(const Type *Ty) const;
499 /// getOptimalMemOpType - Returns the target specific optimal type for load
500 /// and store operations as a result of memset, memcpy, and memmove
501 /// lowering. If DstAlign is zero that means it's safe to destination
502 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
503 /// means there isn't a need to check it against alignment requirement,
504 /// probably because the source does not need to be loaded. If
505 /// 'NonScalarIntSafe' is true, that means it's safe to return a
506 /// non-scalar-integer type, e.g. empty string source, constant, or loaded
507 /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
508 /// constant so it does not need to be loaded.
509 /// It returns EVT::Other if the type should be determined using generic
510 /// target-independent logic.
512 getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
513 bool NonScalarIntSafe, bool MemcpyStrSrc,
514 MachineFunction &MF) const;
516 /// allowsUnalignedMemoryAccesses - Returns true if the target allows
517 /// unaligned memory accesses. of the specified type.
518 virtual bool allowsUnalignedMemoryAccesses(EVT VT) const {
522 /// LowerOperation - Provide custom lowering hooks for some operations.
524 virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
526 /// ReplaceNodeResults - Replace the results of node with an illegal result
527 /// type with new values built out of custom code.
529 virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
530 SelectionDAG &DAG) const;
533 virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
535 /// isTypeDesirableForOp - Return true if the target has native support for
536 /// the specified value type and it is 'desirable' to use the type for the
537 /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
538 /// instruction encodings are longer and some i16 instructions are slow.
539 virtual bool isTypeDesirableForOp(unsigned Opc, EVT VT) const;
541 /// isTypeDesirable - Return true if the target has native support for the
542 /// specified value type and it is 'desirable' to use the type. e.g. On x86
543 /// i16 is legal, but undesirable since i16 instruction encodings are longer
544 /// and some i16 instructions are slow.
545 virtual bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const;
547 virtual MachineBasicBlock *
548 EmitInstrWithCustomInserter(MachineInstr *MI,
549 MachineBasicBlock *MBB) const;
552 /// getTargetNodeName - This method returns the name of a target specific
554 virtual const char *getTargetNodeName(unsigned Opcode) const;
556 /// getSetCCResultType - Return the ISD::SETCC ValueType
557 virtual MVT::SimpleValueType getSetCCResultType(EVT VT) const;
559 /// computeMaskedBitsForTargetNode - Determine which of the bits specified
560 /// in Mask are known to be either zero or one and return them in the
561 /// KnownZero/KnownOne bitsets.
562 virtual void computeMaskedBitsForTargetNode(const SDValue Op,
566 const SelectionDAG &DAG,
567 unsigned Depth = 0) const;
569 // ComputeNumSignBitsForTargetNode - Determine the number of bits in the
570 // operation that are sign bits.
571 virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
572 unsigned Depth) const;
575 isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
577 SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const;
579 virtual bool ExpandInlineAsm(CallInst *CI) const;
581 ConstraintType getConstraintType(const std::string &Constraint) const;
583 /// Examine constraint string and operand type and determine a weight value.
584 /// The operand object must already have been set up with the operand type.
585 virtual ConstraintWeight getSingleConstraintMatchWeight(
586 AsmOperandInfo &info, const char *constraint) const;
588 std::vector<unsigned>
589 getRegClassForInlineAsmConstraint(const std::string &Constraint,
592 virtual const char *LowerXConstraint(EVT ConstraintVT) const;
594 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
595 /// vector. If it is invalid, don't add anything to Ops. If hasMemory is
596 /// true it means one of the asm constraint of the inline asm instruction
597 /// being processed is 'm'.
598 virtual void LowerAsmOperandForConstraint(SDValue Op,
599 std::string &Constraint,
600 std::vector<SDValue> &Ops,
601 SelectionDAG &DAG) const;
603 /// getRegForInlineAsmConstraint - Given a physical register constraint
604 /// (e.g. {edx}), return the register number and the register class for the
605 /// register. This should only be used for C_Register constraints. On
606 /// error, this returns a register number of 0.
607 std::pair<unsigned, const TargetRegisterClass*>
608 getRegForInlineAsmConstraint(const std::string &Constraint,
611 /// isLegalAddressingMode - Return true if the addressing mode represented
612 /// by AM is legal for this target, for a load/store of the specified type.
613 virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty)const;
615 /// isTruncateFree - Return true if it's free to truncate a value of
616 /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
617 /// register EAX to i16 by referencing its sub-register AX.
618 virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const;
619 virtual bool isTruncateFree(EVT VT1, EVT VT2) const;
621 /// isZExtFree - Return true if any actual instruction that defines a
622 /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
623 /// register. This does not necessarily include registers defined in
624 /// unknown ways, such as incoming arguments, or copies from unknown
625 /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
626 /// does not necessarily apply to truncate instructions. e.g. on x86-64,
627 /// all instructions that define 32-bit values implicit zero-extend the
628 /// result out to 64 bits.
629 virtual bool isZExtFree(const Type *Ty1, const Type *Ty2) const;
630 virtual bool isZExtFree(EVT VT1, EVT VT2) const;
632 /// isNarrowingProfitable - Return true if it's profitable to narrow
633 /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
634 /// from i32 to i8 but not from i32 to i16.
635 virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const;
637 /// isFPImmLegal - Returns true if the target can instruction select the
638 /// specified FP immediate natively. If false, the legalizer will
639 /// materialize the FP immediate as a load from a constant pool.
640 virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const;
642 /// isShuffleMaskLegal - Targets can use this to indicate that they only
643 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
644 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask
645 /// values are assumed to be legal.
646 virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
649 /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
650 /// used by Targets can use this to indicate if there is a suitable
651 /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
653 virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
656 /// ShouldShrinkFPConstant - If true, then instruction selection should
657 /// seek to shrink the FP constant of the specified type to a smaller type
658 /// in order to save space and / or reduce runtime.
659 virtual bool ShouldShrinkFPConstant(EVT VT) const {
660 // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
661 // expensive than a straight movsd. On the other hand, it's important to
662 // shrink long double fp constant since fldt is very slow.
663 return !X86ScalarSSEf64 || VT == MVT::f80;
666 const X86Subtarget* getSubtarget() const {
670 /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
671 /// computed in an SSE register, not on the X87 floating point stack.
672 bool isScalarFPTypeInSSEReg(EVT VT) const {
673 return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
674 (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1
677 /// createFastISel - This method returns a target specific FastISel object,
678 /// or null if the target does not support "fast" ISel.
679 virtual FastISel *createFastISel(FunctionLoweringInfo &funcInfo) const;
681 /// getStackCookieLocation - Return true if the target stores stack
682 /// protector cookies at a fixed offset in some non-standard address
683 /// space, and populates the address space and offset as
685 virtual bool getStackCookieLocation(unsigned &AddressSpace, unsigned &Offset) const;
688 std::pair<const TargetRegisterClass*, uint8_t>
689 findRepresentativeClass(EVT VT) const;
692 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
693 /// make the right decision when generating code for different targets.
694 const X86Subtarget *Subtarget;
695 const X86RegisterInfo *RegInfo;
696 const TargetData *TD;
698 /// X86StackPtr - X86 physical register used as stack ptr.
699 unsigned X86StackPtr;
701 /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
702 /// floating point ops.
703 /// When SSE is available, use it for f32 operations.
704 /// When SSE2 is available, use it for f64 operations.
705 bool X86ScalarSSEf32;
706 bool X86ScalarSSEf64;
708 /// LegalFPImmediates - A list of legal fp immediates.
709 std::vector<APFloat> LegalFPImmediates;
711 /// addLegalFPImmediate - Indicate that this x86 target can instruction
712 /// select the specified FP immediate natively.
713 void addLegalFPImmediate(const APFloat& Imm) {
714 LegalFPImmediates.push_back(Imm);
717 SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
718 CallingConv::ID CallConv, bool isVarArg,
719 const SmallVectorImpl<ISD::InputArg> &Ins,
720 DebugLoc dl, SelectionDAG &DAG,
721 SmallVectorImpl<SDValue> &InVals) const;
722 SDValue LowerMemArgument(SDValue Chain,
723 CallingConv::ID CallConv,
724 const SmallVectorImpl<ISD::InputArg> &ArgInfo,
725 DebugLoc dl, SelectionDAG &DAG,
726 const CCValAssign &VA, MachineFrameInfo *MFI,
728 SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
729 DebugLoc dl, SelectionDAG &DAG,
730 const CCValAssign &VA,
731 ISD::ArgFlagsTy Flags) const;
733 // Call lowering helpers.
735 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
736 /// for tail call optimization. Targets which want to do tail call
737 /// optimization should implement this function.
738 bool IsEligibleForTailCallOptimization(SDValue Callee,
739 CallingConv::ID CalleeCC,
741 bool isCalleeStructRet,
742 bool isCallerStructRet,
743 const SmallVectorImpl<ISD::OutputArg> &Outs,
744 const SmallVectorImpl<SDValue> &OutVals,
745 const SmallVectorImpl<ISD::InputArg> &Ins,
746 SelectionDAG& DAG) const;
747 bool IsCalleePop(bool isVarArg, CallingConv::ID CallConv) const;
748 SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr,
749 SDValue Chain, bool IsTailCall, bool Is64Bit,
750 int FPDiff, DebugLoc dl) const;
752 unsigned GetAlignedArgumentStackSize(unsigned StackSize,
753 SelectionDAG &DAG) const;
755 std::pair<SDValue,SDValue> FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
756 bool isSigned) const;
758 SDValue LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
759 SelectionDAG &DAG) const;
760 SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
761 SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const;
762 SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
763 SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
764 SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) const;
765 SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
766 SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) const;
767 SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
768 SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const;
769 SDValue LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const;
770 SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
771 SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
772 SDValue LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
773 int64_t Offset, SelectionDAG &DAG) const;
774 SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
775 SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
776 SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const;
777 SDValue LowerShiftParts(SDValue Op, SelectionDAG &DAG) const;
778 SDValue BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot,
779 SelectionDAG &DAG) const;
780 SDValue LowerBITCAST(SDValue op, SelectionDAG &DAG) const;
781 SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
782 SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
783 SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) const;
784 SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) const;
785 SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const;
786 SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const;
787 SDValue LowerFABS(SDValue Op, SelectionDAG &DAG) const;
788 SDValue LowerFNEG(SDValue Op, SelectionDAG &DAG) const;
789 SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const;
790 SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const;
791 SDValue LowerToBT(SDValue And, ISD::CondCode CC,
792 DebugLoc dl, SelectionDAG &DAG) const;
793 SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
794 SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) const;
795 SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
796 SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
797 SDValue LowerMEMSET(SDValue Op, SelectionDAG &DAG) const;
798 SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
799 SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
800 SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
801 SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
802 SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
803 SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
804 SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
805 SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
806 SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const;
807 SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
808 SDValue LowerTRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
809 SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
810 SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) const;
811 SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) const;
812 SDValue LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const;
813 SDValue LowerShift(SDValue Op, SelectionDAG &DAG) const;
814 SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) const;
816 SDValue LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
817 SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const;
818 SDValue LowerREADCYCLECOUNTER(SDValue Op, SelectionDAG &DAG) const;
819 SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const;
821 // Utility functions to help LowerVECTOR_SHUFFLE
822 SDValue LowerVECTOR_SHUFFLEv8i16(SDValue Op, SelectionDAG &DAG) const;
825 LowerFormalArguments(SDValue Chain,
826 CallingConv::ID CallConv, bool isVarArg,
827 const SmallVectorImpl<ISD::InputArg> &Ins,
828 DebugLoc dl, SelectionDAG &DAG,
829 SmallVectorImpl<SDValue> &InVals) const;
831 LowerCall(SDValue Chain, SDValue Callee,
832 CallingConv::ID CallConv, bool isVarArg, bool &isTailCall,
833 const SmallVectorImpl<ISD::OutputArg> &Outs,
834 const SmallVectorImpl<SDValue> &OutVals,
835 const SmallVectorImpl<ISD::InputArg> &Ins,
836 DebugLoc dl, SelectionDAG &DAG,
837 SmallVectorImpl<SDValue> &InVals) const;
840 LowerReturn(SDValue Chain,
841 CallingConv::ID CallConv, bool isVarArg,
842 const SmallVectorImpl<ISD::OutputArg> &Outs,
843 const SmallVectorImpl<SDValue> &OutVals,
844 DebugLoc dl, SelectionDAG &DAG) const;
846 virtual bool isUsedByReturnOnly(SDNode *N) const;
848 virtual bool mayBeEmittedAsTailCall(CallInst *CI) const;
851 getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
852 ISD::NodeType ExtendKind) const;
855 CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
856 const SmallVectorImpl<ISD::OutputArg> &Outs,
857 LLVMContext &Context) const;
859 void ReplaceATOMIC_BINARY_64(SDNode *N, SmallVectorImpl<SDValue> &Results,
860 SelectionDAG &DAG, unsigned NewOp) const;
862 /// Utility function to emit string processing sse4.2 instructions
863 /// that return in xmm0.
864 /// This takes the instruction to expand, the associated machine basic
865 /// block, the number of args, and whether or not the second arg is
866 /// in memory or not.
867 MachineBasicBlock *EmitPCMP(MachineInstr *BInstr, MachineBasicBlock *BB,
868 unsigned argNum, bool inMem) const;
870 /// Utility functions to emit monitor and mwait instructions. These
871 /// need to make sure that the arguments to the intrinsic are in the
872 /// correct registers.
873 MachineBasicBlock *EmitMonitor(MachineInstr *MI,
874 MachineBasicBlock *BB) const;
875 MachineBasicBlock *EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const;
877 /// Utility function to emit atomic bitwise operations (and, or, xor).
878 /// It takes the bitwise instruction to expand, the associated machine basic
879 /// block, and the associated X86 opcodes for reg/reg and reg/imm.
880 MachineBasicBlock *EmitAtomicBitwiseWithCustomInserter(
881 MachineInstr *BInstr,
882 MachineBasicBlock *BB,
889 TargetRegisterClass *RC,
890 bool invSrc = false) const;
892 MachineBasicBlock *EmitAtomicBit6432WithCustomInserter(
893 MachineInstr *BInstr,
894 MachineBasicBlock *BB,
899 bool invSrc = false) const;
901 /// Utility function to emit atomic min and max. It takes the min/max
902 /// instruction to expand, the associated basic block, and the associated
903 /// cmov opcode for moving the min or max value.
904 MachineBasicBlock *EmitAtomicMinMaxWithCustomInserter(MachineInstr *BInstr,
905 MachineBasicBlock *BB,
906 unsigned cmovOpc) const;
908 // Utility function to emit the low-level va_arg code for X86-64.
909 MachineBasicBlock *EmitVAARG64WithCustomInserter(
911 MachineBasicBlock *MBB) const;
913 /// Utility function to emit the xmm reg save portion of va_start.
914 MachineBasicBlock *EmitVAStartSaveXMMRegsWithCustomInserter(
915 MachineInstr *BInstr,
916 MachineBasicBlock *BB) const;
918 MachineBasicBlock *EmitLoweredSelect(MachineInstr *I,
919 MachineBasicBlock *BB) const;
921 MachineBasicBlock *EmitLoweredWinAlloca(MachineInstr *MI,
922 MachineBasicBlock *BB) const;
924 MachineBasicBlock *EmitLoweredTLSCall(MachineInstr *MI,
925 MachineBasicBlock *BB) const;
927 MachineBasicBlock *emitLoweredTLSAddr(MachineInstr *MI,
928 MachineBasicBlock *BB) const;
930 /// Emit nodes that will be selected as "test Op0,Op0", or something
931 /// equivalent, for use with the given x86 condition code.
932 SDValue EmitTest(SDValue Op0, unsigned X86CC, SelectionDAG &DAG) const;
934 /// Emit nodes that will be selected as "cmp Op0,Op1", or something
935 /// equivalent, for use with the given x86 condition code.
936 SDValue EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
937 SelectionDAG &DAG) const;
941 FastISel *createFastISel(FunctionLoweringInfo &funcInfo);
945 #endif // X86ISELLOWERING_H