1 //===-- X86ISelSimple.cpp - A simple instruction selector for x86 ---------===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines a simple peephole instruction selector for the x86 target
12 //===----------------------------------------------------------------------===//
15 #include "X86InstrBuilder.h"
16 #include "X86InstrInfo.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/Function.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/Pass.h"
22 #include "llvm/CodeGen/IntrinsicLowering.h"
23 #include "llvm/CodeGen/MachineConstantPool.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/SSARegMap.h"
27 #include "llvm/Target/MRegisterInfo.h"
28 #include "llvm/Target/TargetMachine.h"
29 #include "llvm/Support/GetElementPtrTypeIterator.h"
30 #include "llvm/Support/InstVisitor.h"
31 #include "llvm/ADT/Statistic.h"
36 NumFPKill("x86-codegen", "Number of FP_REG_KILL instructions added");
38 /// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
42 cByte, cShort, cInt, cFP, cLong
46 /// getClass - Turn a primitive type into a "class" number which is based on the
47 /// size of the type, and whether or not it is floating point.
49 static inline TypeClass getClass(const Type *Ty) {
50 switch (Ty->getTypeID()) {
52 case Type::UByteTyID: return cByte; // Byte operands are class #0
54 case Type::UShortTyID: return cShort; // Short operands are class #1
57 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
60 case Type::DoubleTyID: return cFP; // Floating Point is #3
63 case Type::ULongTyID: return cLong; // Longs are class #4
65 assert(0 && "Invalid type to getClass!");
66 return cByte; // not reached
70 // getClassB - Just like getClass, but treat boolean values as bytes.
71 static inline TypeClass getClassB(const Type *Ty) {
72 if (Ty == Type::BoolTy) return cByte;
77 struct X86ISel : public FunctionPass, InstVisitor<X86ISel> {
79 MachineFunction *F; // The function we are compiling into
80 MachineBasicBlock *BB; // The current MBB we are compiling
81 int VarArgsFrameIndex; // FrameIndex for start of varargs area
82 int ReturnAddressIndex; // FrameIndex for the return address
84 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
86 // MBBMap - Mapping between LLVM BB -> Machine BB
87 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
89 // AllocaMap - Mapping from fixed sized alloca instructions to the
90 // FrameIndex for the alloca.
91 std::map<AllocaInst*, unsigned> AllocaMap;
93 X86ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
95 /// runOnFunction - Top level implementation of instruction selection for
96 /// the entire function.
98 bool runOnFunction(Function &Fn) {
99 // First pass over the function, lower any unknown intrinsic functions
100 // with the IntrinsicLowering class.
101 LowerUnknownIntrinsicFunctionCalls(Fn);
103 F = &MachineFunction::construct(&Fn, TM);
105 // Create all of the machine basic blocks for the function...
106 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
107 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
111 // Set up a frame object for the return address. This is used by the
112 // llvm.returnaddress & llvm.frameaddress intrinisics.
113 ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4);
115 // Copy incoming arguments off of the stack...
116 LoadArgumentsToVirtualRegs(Fn);
118 // Instruction select everything except PHI nodes
121 // Select the PHI nodes
124 // Insert the FP_REG_KILL instructions into blocks that need them.
131 // We always build a machine code representation for the function
135 virtual const char *getPassName() const {
136 return "X86 Simple Instruction Selection";
139 /// visitBasicBlock - This method is called when we are visiting a new basic
140 /// block. This simply creates a new MachineBasicBlock to emit code into
141 /// and adds it to the current MachineFunction. Subsequent visit* for
142 /// instructions will be invoked for all instructions in the basic block.
144 void visitBasicBlock(BasicBlock &LLVM_BB) {
145 BB = MBBMap[&LLVM_BB];
148 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
149 /// function, lowering any calls to unknown intrinsic functions into the
150 /// equivalent LLVM code.
152 void LowerUnknownIntrinsicFunctionCalls(Function &F);
154 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
155 /// from the stack into virtual registers.
157 void LoadArgumentsToVirtualRegs(Function &F);
159 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
160 /// because we have to generate our sources into the source basic blocks,
161 /// not the current one.
163 void SelectPHINodes();
165 /// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks
166 /// that need them. This only occurs due to the floating point stackifier
167 /// not being aggressive enough to handle arbitrary global stackification.
169 void InsertFPRegKills();
171 // Visitation methods for various instructions. These methods simply emit
172 // fixed X86 code for each instruction.
175 // Control flow operators
176 void visitReturnInst(ReturnInst &RI);
177 void visitBranchInst(BranchInst &BI);
178 void visitUnreachableInst(UnreachableInst &UI) {}
184 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
185 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
187 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
188 const std::vector<ValueRecord> &Args);
189 void visitCallInst(CallInst &I);
190 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
192 // Arithmetic operators
193 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
194 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
195 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
196 void visitMul(BinaryOperator &B);
198 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
199 void visitRem(BinaryOperator &B) { visitDivRem(B); }
200 void visitDivRem(BinaryOperator &B);
203 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
204 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
205 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
207 // Comparison operators...
208 void visitSetCondInst(SetCondInst &I);
209 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
210 MachineBasicBlock *MBB,
211 MachineBasicBlock::iterator MBBI);
212 void visitSelectInst(SelectInst &SI);
215 // Memory Instructions
216 void visitLoadInst(LoadInst &I);
217 void visitStoreInst(StoreInst &I);
218 void visitGetElementPtrInst(GetElementPtrInst &I);
219 void visitAllocaInst(AllocaInst &I);
220 void visitMallocInst(MallocInst &I);
221 void visitFreeInst(FreeInst &I);
224 void visitShiftInst(ShiftInst &I);
225 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
226 void visitCastInst(CastInst &I);
227 void visitVANextInst(VANextInst &I);
228 void visitVAArgInst(VAArgInst &I);
230 void visitInstruction(Instruction &I) {
231 std::cerr << "Cannot instruction select: " << I;
235 /// promote32 - Make a value 32-bits wide, and put it somewhere.
237 void promote32(unsigned targetReg, const ValueRecord &VR);
239 /// getAddressingMode - Get the addressing mode to use to address the
240 /// specified value. The returned value should be used with addFullAddress.
241 void getAddressingMode(Value *Addr, X86AddressMode &AM);
244 /// getGEPIndex - This is used to fold GEP instructions into X86 addressing
246 void getGEPIndex(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
247 std::vector<Value*> &GEPOps,
248 std::vector<const Type*> &GEPTypes,
251 /// isGEPFoldable - Return true if the specified GEP can be completely
252 /// folded into the addressing mode of a load/store or lea instruction.
253 bool isGEPFoldable(MachineBasicBlock *MBB,
254 Value *Src, User::op_iterator IdxBegin,
255 User::op_iterator IdxEnd, X86AddressMode &AM);
257 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
258 /// constant expression GEP support.
260 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
261 Value *Src, User::op_iterator IdxBegin,
262 User::op_iterator IdxEnd, unsigned TargetReg);
264 /// emitCastOperation - Common code shared between visitCastInst and
265 /// constant expression cast support.
267 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
268 Value *Src, const Type *DestTy, unsigned TargetReg);
270 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
271 /// and constant expression support.
273 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
274 MachineBasicBlock::iterator IP,
275 Value *Op0, Value *Op1,
276 unsigned OperatorClass, unsigned TargetReg);
278 /// emitBinaryFPOperation - This method handles emission of floating point
279 /// Add (0), Sub (1), Mul (2), and Div (3) operations.
280 void emitBinaryFPOperation(MachineBasicBlock *BB,
281 MachineBasicBlock::iterator IP,
282 Value *Op0, Value *Op1,
283 unsigned OperatorClass, unsigned TargetReg);
285 void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
286 Value *Op0, Value *Op1, unsigned TargetReg);
288 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
289 unsigned DestReg, const Type *DestTy,
290 unsigned Op0Reg, unsigned Op1Reg);
291 void doMultiplyConst(MachineBasicBlock *MBB,
292 MachineBasicBlock::iterator MBBI,
293 unsigned DestReg, const Type *DestTy,
294 unsigned Op0Reg, unsigned Op1Val);
296 void emitDivRemOperation(MachineBasicBlock *BB,
297 MachineBasicBlock::iterator IP,
298 Value *Op0, Value *Op1, bool isDiv,
301 /// emitSetCCOperation - Common code shared between visitSetCondInst and
302 /// constant expression support.
304 void emitSetCCOperation(MachineBasicBlock *BB,
305 MachineBasicBlock::iterator IP,
306 Value *Op0, Value *Op1, unsigned Opcode,
309 /// emitShiftOperation - Common code shared between visitShiftInst and
310 /// constant expression support.
312 void emitShiftOperation(MachineBasicBlock *MBB,
313 MachineBasicBlock::iterator IP,
314 Value *Op, Value *ShiftAmount, bool isLeftShift,
315 const Type *ResultTy, unsigned DestReg);
317 // Emit code for a 'SHLD DestReg, Op0, Op1, Amt' operation, where Amt is a
319 void doSHLDConst(MachineBasicBlock *MBB,
320 MachineBasicBlock::iterator MBBI,
321 unsigned DestReg, unsigned Op0Reg, unsigned Op1Reg,
324 /// emitSelectOperation - Common code shared between visitSelectInst and the
325 /// constant expression support.
326 void emitSelectOperation(MachineBasicBlock *MBB,
327 MachineBasicBlock::iterator IP,
328 Value *Cond, Value *TrueVal, Value *FalseVal,
331 /// copyConstantToRegister - Output the instructions required to put the
332 /// specified constant into the specified register.
334 void copyConstantToRegister(MachineBasicBlock *MBB,
335 MachineBasicBlock::iterator MBBI,
336 Constant *C, unsigned Reg);
338 void emitUCOMr(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
339 unsigned LHS, unsigned RHS);
341 /// makeAnotherReg - This method returns the next register number we haven't
344 /// Long values are handled somewhat specially. They are always allocated
345 /// as pairs of 32 bit integer values. The register number returned is the
346 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
347 /// of the long value.
349 unsigned makeAnotherReg(const Type *Ty) {
350 assert(dynamic_cast<const X86RegisterInfo*>(TM.getRegisterInfo()) &&
351 "Current target doesn't have X86 reg info??");
352 const X86RegisterInfo *MRI =
353 static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
354 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
355 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
356 // Create the lower part
357 F->getSSARegMap()->createVirtualRegister(RC);
358 // Create the upper part.
359 return F->getSSARegMap()->createVirtualRegister(RC)-1;
362 // Add the mapping of regnumber => reg class to MachineFunction
363 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
364 return F->getSSARegMap()->createVirtualRegister(RC);
367 /// getReg - This method turns an LLVM value into a register number.
369 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
370 unsigned getReg(Value *V) {
371 // Just append to the end of the current bb.
372 MachineBasicBlock::iterator It = BB->end();
373 return getReg(V, BB, It);
375 unsigned getReg(Value *V, MachineBasicBlock *MBB,
376 MachineBasicBlock::iterator IPt);
378 /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
379 /// that is to be statically allocated with the initial stack frame
381 unsigned getFixedSizedAllocaFI(AllocaInst *AI);
385 /// dyn_castFixedAlloca - If the specified value is a fixed size alloca
386 /// instruction in the entry block, return it. Otherwise, return a null
388 static AllocaInst *dyn_castFixedAlloca(Value *V) {
389 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
390 BasicBlock *BB = AI->getParent();
391 if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
397 /// getReg - This method turns an LLVM value into a register number.
399 unsigned X86ISel::getReg(Value *V, MachineBasicBlock *MBB,
400 MachineBasicBlock::iterator IPt) {
401 // If this operand is a constant, emit the code to copy the constant into
402 // the register here...
403 if (Constant *C = dyn_cast<Constant>(V)) {
404 unsigned Reg = makeAnotherReg(V->getType());
405 copyConstantToRegister(MBB, IPt, C, Reg);
407 } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
408 // Do not emit noop casts at all, unless it's a double -> float cast.
409 if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType()) &&
410 (CI->getType() != Type::FloatTy ||
411 CI->getOperand(0)->getType() != Type::DoubleTy))
412 return getReg(CI->getOperand(0), MBB, IPt);
413 } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
414 // If the alloca address couldn't be folded into the instruction addressing,
415 // emit an explicit LEA as appropriate.
416 unsigned Reg = makeAnotherReg(V->getType());
417 unsigned FI = getFixedSizedAllocaFI(AI);
418 addFrameReference(BuildMI(*MBB, IPt, X86::LEA32r, 4, Reg), FI);
422 unsigned &Reg = RegMap[V];
424 Reg = makeAnotherReg(V->getType());
431 /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
432 /// that is to be statically allocated with the initial stack frame
434 unsigned X86ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
435 // Already computed this?
436 std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
437 if (I != AllocaMap.end() && I->first == AI) return I->second;
439 const Type *Ty = AI->getAllocatedType();
440 ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
441 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
442 TySize *= CUI->getValue(); // Get total allocated size...
443 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
445 // Create a new stack object using the frame manager...
446 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
447 AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
452 /// copyConstantToRegister - Output the instructions required to put the
453 /// specified constant into the specified register.
455 void X86ISel::copyConstantToRegister(MachineBasicBlock *MBB,
456 MachineBasicBlock::iterator IP,
457 Constant *C, unsigned R) {
458 if (isa<UndefValue>(C)) {
459 switch (getClassB(C->getType())) {
461 // FIXME: SHOULD TEACH STACKIFIER ABOUT UNDEF VALUES!
462 BuildMI(*MBB, IP, X86::FLD0, 0, R);
465 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, R+1);
468 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, R);
471 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
473 switch (CE->getOpcode()) {
474 case Instruction::GetElementPtr:
475 emitGEPOperation(MBB, IP, CE->getOperand(0),
476 CE->op_begin()+1, CE->op_end(), R);
478 case Instruction::Cast:
479 emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
482 case Instruction::Xor: ++Class; // FALL THROUGH
483 case Instruction::Or: ++Class; // FALL THROUGH
484 case Instruction::And: ++Class; // FALL THROUGH
485 case Instruction::Sub: ++Class; // FALL THROUGH
486 case Instruction::Add:
487 emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
491 case Instruction::Mul:
492 emitMultiply(MBB, IP, CE->getOperand(0), CE->getOperand(1), R);
495 case Instruction::Div:
496 case Instruction::Rem:
497 emitDivRemOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
498 CE->getOpcode() == Instruction::Div, R);
501 case Instruction::SetNE:
502 case Instruction::SetEQ:
503 case Instruction::SetLT:
504 case Instruction::SetGT:
505 case Instruction::SetLE:
506 case Instruction::SetGE:
507 emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
511 case Instruction::Shl:
512 case Instruction::Shr:
513 emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
514 CE->getOpcode() == Instruction::Shl, CE->getType(), R);
517 case Instruction::Select:
518 emitSelectOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
519 CE->getOperand(2), R);
523 std::cerr << "Offending expr: " << *C << "\n";
524 assert(0 && "Constant expression not yet handled!\n");
528 if (C->getType()->isIntegral()) {
529 unsigned Class = getClassB(C->getType());
531 if (Class == cLong) {
532 // Copy the value into the register pair.
533 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
534 BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(Val & 0xFFFFFFFF);
535 BuildMI(*MBB, IP, X86::MOV32ri, 1, R+1).addImm(Val >> 32);
539 assert(Class <= cInt && "Type not handled yet!");
541 static const unsigned IntegralOpcodeTab[] = {
542 X86::MOV8ri, X86::MOV16ri, X86::MOV32ri
545 if (C->getType() == Type::BoolTy) {
546 BuildMI(*MBB, IP, X86::MOV8ri, 1, R).addImm(C == ConstantBool::True);
548 ConstantInt *CI = cast<ConstantInt>(C);
549 BuildMI(*MBB, IP, IntegralOpcodeTab[Class],1,R).addImm(CI->getRawValue());
551 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
552 if (CFP->isExactlyValue(+0.0))
553 BuildMI(*MBB, IP, X86::FLD0, 0, R);
554 else if (CFP->isExactlyValue(+1.0))
555 BuildMI(*MBB, IP, X86::FLD1, 0, R);
557 // Otherwise we need to spill the constant to memory...
558 MachineConstantPool *CP = F->getConstantPool();
559 unsigned CPI = CP->getConstantPoolIndex(CFP);
560 const Type *Ty = CFP->getType();
562 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
563 unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLD32m : X86::FLD64m;
564 addConstantPoolReference(BuildMI(*MBB, IP, LoadOpcode, 4, R), CPI);
567 } else if (isa<ConstantPointerNull>(C)) {
568 // Copy zero (null pointer) to the register.
569 BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(0);
570 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
571 BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addGlobalAddress(GV);
573 std::cerr << "Offending constant: " << *C << "\n";
574 assert(0 && "Type not handled yet!");
578 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
579 /// the stack into virtual registers.
581 void X86ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
582 // Emit instructions to load the arguments... On entry to a function on the
583 // X86, the stack frame looks like this:
585 // [ESP] -- return address
586 // [ESP + 4] -- first argument (leftmost lexically)
587 // [ESP + 8] -- second argument, if first argument is four bytes in size
590 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
591 MachineFrameInfo *MFI = F->getFrameInfo();
593 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
594 bool ArgLive = !I->use_empty();
595 unsigned Reg = ArgLive ? getReg(*I) : 0;
596 int FI; // Frame object index
598 switch (getClassB(I->getType())) {
601 FI = MFI->CreateFixedObject(1, ArgOffset);
602 addFrameReference(BuildMI(BB, X86::MOV8rm, 4, Reg), FI);
607 FI = MFI->CreateFixedObject(2, ArgOffset);
608 addFrameReference(BuildMI(BB, X86::MOV16rm, 4, Reg), FI);
613 FI = MFI->CreateFixedObject(4, ArgOffset);
614 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI);
619 FI = MFI->CreateFixedObject(8, ArgOffset);
620 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI);
621 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg+1), FI, 4);
623 ArgOffset += 4; // longs require 4 additional bytes
628 if (I->getType() == Type::FloatTy) {
629 Opcode = X86::FLD32m;
630 FI = MFI->CreateFixedObject(4, ArgOffset);
632 Opcode = X86::FLD64m;
633 FI = MFI->CreateFixedObject(8, ArgOffset);
635 addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI);
637 if (I->getType() == Type::DoubleTy)
638 ArgOffset += 4; // doubles require 4 additional bytes
641 assert(0 && "Unhandled argument type!");
643 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
646 // If the function takes variable number of arguments, add a frame offset for
647 // the start of the first vararg value... this is used to expand
649 if (Fn.getFunctionType()->isVarArg())
650 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
654 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
655 /// because we have to generate our sources into the source basic blocks, not
658 void X86ISel::SelectPHINodes() {
659 const TargetInstrInfo &TII = *TM.getInstrInfo();
660 const Function &LF = *F->getFunction(); // The LLVM function...
661 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
662 const BasicBlock *BB = I;
663 MachineBasicBlock &MBB = *MBBMap[I];
665 // Loop over all of the PHI nodes in the LLVM basic block...
666 MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
667 for (BasicBlock::const_iterator I = BB->begin(); isa<PHINode>(I); ++I) {
668 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I));
670 // Create a new machine instr PHI node, and insert it.
671 unsigned PHIReg = getReg(*PN);
672 MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
673 X86::PHI, PN->getNumOperands(), PHIReg);
675 MachineInstr *LongPhiMI = 0;
676 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
677 LongPhiMI = BuildMI(MBB, PHIInsertPoint,
678 X86::PHI, PN->getNumOperands(), PHIReg+1);
680 // PHIValues - Map of blocks to incoming virtual registers. We use this
681 // so that we only initialize one incoming value for a particular block,
682 // even if the block has multiple entries in the PHI node.
684 std::map<MachineBasicBlock*, unsigned> PHIValues;
686 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
687 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
689 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
690 PHIValues.lower_bound(PredMBB);
692 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
693 // We already inserted an initialization of the register for this
694 // predecessor. Recycle it.
695 ValReg = EntryIt->second;
698 // Get the incoming value into a virtual register.
700 Value *Val = PN->getIncomingValue(i);
702 // If this is a constant or GlobalValue, we may have to insert code
703 // into the basic block to compute it into a virtual register.
704 if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val))) {
705 // Simple constants get emitted at the end of the basic block,
706 // before any terminator instructions. We "know" that the code to
707 // move a constant into a register will never clobber any flags.
708 ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
710 // Because we don't want to clobber any values which might be in
711 // physical registers with the computation of this constant (which
712 // might be arbitrarily complex if it is a constant expression),
713 // just insert the computation at the top of the basic block.
714 MachineBasicBlock::iterator PI = PredMBB->begin();
716 // Skip over any PHI nodes though!
717 while (PI != PredMBB->end() && PI->getOpcode() == X86::PHI)
720 ValReg = getReg(Val, PredMBB, PI);
723 // Remember that we inserted a value for this PHI for this predecessor
724 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
727 PhiMI->addRegOperand(ValReg);
728 PhiMI->addMachineBasicBlockOperand(PredMBB);
730 LongPhiMI->addRegOperand(ValReg+1);
731 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
735 // Now that we emitted all of the incoming values for the PHI node, make
736 // sure to reposition the InsertPoint after the PHI that we just added.
737 // This is needed because we might have inserted a constant into this
738 // block, right after the PHI's which is before the old insert point!
739 PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
745 /// RequiresFPRegKill - The floating point stackifier pass cannot insert
746 /// compensation code on critical edges. As such, it requires that we kill all
747 /// FP registers on the exit from any blocks that either ARE critical edges, or
748 /// branch to a block that has incoming critical edges.
750 /// Note that this kill instruction will eventually be eliminated when
751 /// restrictions in the stackifier are relaxed.
753 static bool RequiresFPRegKill(const MachineBasicBlock *MBB) {
755 const BasicBlock *BB = MBB->getBasicBlock ();
756 for (succ_const_iterator SI = succ_begin(BB), E = succ_end(BB); SI!=E; ++SI) {
757 const BasicBlock *Succ = *SI;
758 pred_const_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
759 ++PI; // Block have at least one predecessory
760 if (PI != PE) { // If it has exactly one, this isn't crit edge
761 // If this block has more than one predecessor, check all of the
762 // predecessors to see if they have multiple successors. If so, then the
763 // block we are analyzing needs an FPRegKill.
764 for (PI = pred_begin(Succ); PI != PE; ++PI) {
765 const BasicBlock *Pred = *PI;
766 succ_const_iterator SI2 = succ_begin(Pred);
767 ++SI2; // There must be at least one successor of this block.
768 if (SI2 != succ_end(Pred))
769 return true; // Yes, we must insert the kill on this edge.
773 // If we got this far, there is no need to insert the kill instruction.
780 // InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks that
781 // need them. This only occurs due to the floating point stackifier not being
782 // aggressive enough to handle arbitrary global stackification.
784 // Currently we insert an FP_REG_KILL instruction into each block that uses or
785 // defines a floating point virtual register.
787 // When the global register allocators (like linear scan) finally update live
788 // variable analysis, we can keep floating point values in registers across
789 // portions of the CFG that do not involve critical edges. This will be a big
790 // win, but we are waiting on the global allocators before we can do this.
792 // With a bit of work, the floating point stackifier pass can be enhanced to
793 // break critical edges as needed (to make a place to put compensation code),
794 // but this will require some infrastructure improvements as well.
796 void X86ISel::InsertFPRegKills() {
797 SSARegMap &RegMap = *F->getSSARegMap();
799 for (MachineFunction::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
800 for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
801 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
802 MachineOperand& MO = I->getOperand(i);
803 if (MO.isRegister() && MO.getReg()) {
804 unsigned Reg = MO.getReg();
805 if (MRegisterInfo::isVirtualRegister(Reg))
806 if (RegMap.getRegClass(Reg)->getSize() == 10)
810 // If we haven't found an FP register use or def in this basic block, check
811 // to see if any of our successors has an FP PHI node, which will cause a
812 // copy to be inserted into this block.
813 for (MachineBasicBlock::const_succ_iterator SI = BB->succ_begin(),
814 SE = BB->succ_end(); SI != SE; ++SI) {
815 MachineBasicBlock *SBB = *SI;
816 for (MachineBasicBlock::iterator I = SBB->begin();
817 I != SBB->end() && I->getOpcode() == X86::PHI; ++I) {
818 const TargetRegisterClass *RC =
819 RegMap.getRegClass(I->getOperand(0).getReg());
820 if (RC->getSize() == 10 || RC->getSize() == 8)
826 // Okay, this block uses an FP register. If the block has successors (ie,
827 // it's not an unwind/return), insert the FP_REG_KILL instruction.
828 if (BB->succ_size () && RequiresFPRegKill(BB)) {
829 BuildMI(*BB, BB->getFirstTerminator(), X86::FP_REG_KILL, 0);
836 void X86ISel::getAddressingMode(Value *Addr, X86AddressMode &AM) {
837 AM.BaseType = X86AddressMode::RegBase;
838 AM.Base.Reg = 0; AM.Scale = 1; AM.IndexReg = 0; AM.Disp = 0;
839 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr)) {
840 if (isGEPFoldable(BB, GEP->getOperand(0), GEP->op_begin()+1, GEP->op_end(),
843 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
844 if (CE->getOpcode() == Instruction::GetElementPtr)
845 if (isGEPFoldable(BB, CE->getOperand(0), CE->op_begin()+1, CE->op_end(),
848 } else if (AllocaInst *AI = dyn_castFixedAlloca(Addr)) {
849 AM.BaseType = X86AddressMode::FrameIndexBase;
850 AM.Base.FrameIndex = getFixedSizedAllocaFI(AI);
852 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
857 // If it's not foldable, reset addr mode.
858 AM.BaseType = X86AddressMode::RegBase;
859 AM.Base.Reg = getReg(Addr);
860 AM.Scale = 1; AM.IndexReg = 0; AM.Disp = 0;
863 // canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
864 // it into the conditional branch or select instruction which is the only user
865 // of the cc instruction. This is the case if the conditional branch is the
866 // only user of the setcc. We also don't handle long arguments below, so we
867 // reject them here as well.
869 static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
870 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
871 if (SCI->hasOneUse()) {
872 Instruction *User = cast<Instruction>(SCI->use_back());
873 if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
874 (getClassB(SCI->getOperand(0)->getType()) != cLong ||
875 SCI->getOpcode() == Instruction::SetEQ ||
876 SCI->getOpcode() == Instruction::SetNE) &&
877 (isa<BranchInst>(User) || User->getOperand(0) == V))
883 // Return a fixed numbering for setcc instructions which does not depend on the
884 // order of the opcodes.
886 static unsigned getSetCCNumber(unsigned Opcode) {
888 default: assert(0 && "Unknown setcc instruction!");
889 case Instruction::SetEQ: return 0;
890 case Instruction::SetNE: return 1;
891 case Instruction::SetLT: return 2;
892 case Instruction::SetGE: return 3;
893 case Instruction::SetGT: return 4;
894 case Instruction::SetLE: return 5;
898 // LLVM -> X86 signed X86 unsigned
899 // ----- ---------- ------------
900 // seteq -> sete sete
901 // setne -> setne setne
902 // setlt -> setl setb
903 // setge -> setge setae
904 // setgt -> setg seta
905 // setle -> setle setbe
907 // sets // Used by comparison with 0 optimization
909 static const unsigned SetCCOpcodeTab[2][8] = {
910 { X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr,
912 { X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr,
913 X86::SETSr, X86::SETNSr },
916 /// emitUCOMr - In the future when we support processors before the P6, this
917 /// wraps the logic for emitting an FUCOMr vs FUCOMIr.
918 void X86ISel::emitUCOMr(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
919 unsigned LHS, unsigned RHS) {
920 if (0) { // for processors prior to the P6
921 BuildMI(*MBB, IP, X86::FUCOMr, 2).addReg(LHS).addReg(RHS);
922 BuildMI(*MBB, IP, X86::FNSTSW8r, 0);
923 BuildMI(*MBB, IP, X86::SAHF, 1);
925 BuildMI(*MBB, IP, X86::FUCOMIr, 2).addReg(LHS).addReg(RHS);
929 // EmitComparison - This function emits a comparison of the two operands,
930 // returning the extended setcc code to use.
931 unsigned X86ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
932 MachineBasicBlock *MBB,
933 MachineBasicBlock::iterator IP) {
934 // The arguments are already supposed to be of the same type.
935 const Type *CompTy = Op0->getType();
936 unsigned Class = getClassB(CompTy);
938 // Special case handling of: cmp R, i
939 if (isa<ConstantPointerNull>(Op1)) {
940 unsigned Op0r = getReg(Op0, MBB, IP);
941 if (OpNum < 2) // seteq/setne -> test
942 BuildMI(*MBB, IP, X86::TEST32rr, 2).addReg(Op0r).addReg(Op0r);
944 BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r).addImm(0);
947 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
948 if (Class == cByte || Class == cShort || Class == cInt) {
949 unsigned Op1v = CI->getRawValue();
951 // Mask off any upper bits of the constant, if there are any...
952 Op1v &= (1ULL << (8 << Class)) - 1;
954 // If this is a comparison against zero, emit more efficient code. We
955 // can't handle unsigned comparisons against zero unless they are == or
956 // !=. These should have been strength reduced already anyway.
957 if (Op1v == 0 && (CompTy->isSigned() || OpNum < 2)) {
959 // If this is a comparison against zero and the LHS is an and of a
960 // register with a constant, use the test to do the and.
961 if (Instruction *Op0I = dyn_cast<Instruction>(Op0))
962 if (Op0I->getOpcode() == Instruction::And && Op0->hasOneUse() &&
963 isa<ConstantInt>(Op0I->getOperand(1))) {
964 static const unsigned TESTTab[] = {
965 X86::TEST8ri, X86::TEST16ri, X86::TEST32ri
969 unsigned LHS = getReg(Op0I->getOperand(0), MBB, IP);
971 cast<ConstantInt>(Op0I->getOperand(1))->getRawValue();
972 BuildMI(*MBB, IP, TESTTab[Class], 2).addReg(LHS).addImm(Imm);
974 if (OpNum == 2) return 6; // Map jl -> js
975 if (OpNum == 3) return 7; // Map jg -> jns
979 unsigned Op0r = getReg(Op0, MBB, IP);
980 static const unsigned TESTTab[] = {
981 X86::TEST8rr, X86::TEST16rr, X86::TEST32rr
983 BuildMI(*MBB, IP, TESTTab[Class], 2).addReg(Op0r).addReg(Op0r);
985 if (OpNum == 2) return 6; // Map jl -> js
986 if (OpNum == 3) return 7; // Map jg -> jns
990 static const unsigned CMPTab[] = {
991 X86::CMP8ri, X86::CMP16ri, X86::CMP32ri
994 unsigned Op0r = getReg(Op0, MBB, IP);
995 BuildMI(*MBB, IP, CMPTab[Class], 2).addReg(Op0r).addImm(Op1v);
998 unsigned Op0r = getReg(Op0, MBB, IP);
999 assert(Class == cLong && "Unknown integer class!");
1000 unsigned LowCst = CI->getRawValue();
1001 unsigned HiCst = CI->getRawValue() >> 32;
1002 if (OpNum < 2) { // seteq, setne
1003 unsigned LoTmp = Op0r;
1005 LoTmp = makeAnotherReg(Type::IntTy);
1006 BuildMI(*MBB, IP, X86::XOR32ri, 2, LoTmp).addReg(Op0r).addImm(LowCst);
1008 unsigned HiTmp = Op0r+1;
1010 HiTmp = makeAnotherReg(Type::IntTy);
1011 BuildMI(*MBB, IP, X86::XOR32ri, 2,HiTmp).addReg(Op0r+1).addImm(HiCst);
1013 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
1014 BuildMI(*MBB, IP, X86::OR32rr, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
1017 // Emit a sequence of code which compares the high and low parts once
1018 // each, then uses a conditional move to handle the overflow case. For
1019 // example, a setlt for long would generate code like this:
1021 // AL = lo(op1) < lo(op2) // Always unsigned comparison
1022 // BL = hi(op1) < hi(op2) // Signedness depends on operands
1023 // dest = hi(op1) == hi(op2) ? BL : AL;
1026 // FIXME: This would be much better if we had hierarchical register
1027 // classes! Until then, hardcode registers so that we can deal with
1028 // their aliases (because we don't have conditional byte moves).
1030 BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r).addImm(LowCst);
1031 BuildMI(*MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
1032 BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r+1).addImm(HiCst);
1033 BuildMI(*MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0,X86::BL);
1034 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
1035 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
1036 BuildMI(*MBB, IP, X86::CMOVE16rr, 2, X86::BX).addReg(X86::BX)
1038 // NOTE: visitSetCondInst knows that the value is dumped into the BL
1039 // register at this point for long values...
1045 unsigned Op0r = getReg(Op0, MBB, IP);
1047 // Special case handling of comparison against +/- 0.0
1048 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op1))
1049 if (CFP->isExactlyValue(+0.0) || CFP->isExactlyValue(-0.0)) {
1050 BuildMI(*MBB, IP, X86::FTST, 1).addReg(Op0r);
1051 BuildMI(*MBB, IP, X86::FNSTSW8r, 0);
1052 BuildMI(*MBB, IP, X86::SAHF, 1);
1056 unsigned Op1r = getReg(Op1, MBB, IP);
1058 default: assert(0 && "Unknown type class!");
1059 // Emit: cmp <var1>, <var2> (do the comparison). We can
1060 // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
1063 BuildMI(*MBB, IP, X86::CMP8rr, 2).addReg(Op0r).addReg(Op1r);
1066 BuildMI(*MBB, IP, X86::CMP16rr, 2).addReg(Op0r).addReg(Op1r);
1069 BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r);
1072 emitUCOMr(MBB, IP, Op0r, Op1r);
1076 if (OpNum < 2) { // seteq, setne
1077 unsigned LoTmp = makeAnotherReg(Type::IntTy);
1078 unsigned HiTmp = makeAnotherReg(Type::IntTy);
1079 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
1080 BuildMI(*MBB, IP, X86::XOR32rr, 2, LoTmp).addReg(Op0r).addReg(Op1r);
1081 BuildMI(*MBB, IP, X86::XOR32rr, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
1082 BuildMI(*MBB, IP, X86::OR32rr, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
1083 break; // Allow the sete or setne to be generated from flags set by OR
1085 // Emit a sequence of code which compares the high and low parts once
1086 // each, then uses a conditional move to handle the overflow case. For
1087 // example, a setlt for long would generate code like this:
1089 // AL = lo(op1) < lo(op2) // Signedness depends on operands
1090 // BL = hi(op1) < hi(op2) // Always unsigned comparison
1091 // dest = hi(op1) == hi(op2) ? BL : AL;
1094 // FIXME: This would be much better if we had hierarchical register
1095 // classes! Until then, hardcode registers so that we can deal with their
1096 // aliases (because we don't have conditional byte moves).
1098 BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r);
1099 BuildMI(*MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
1100 BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r+1).addReg(Op1r+1);
1101 BuildMI(*MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0, X86::BL);
1102 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
1103 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
1104 BuildMI(*MBB, IP, X86::CMOVE16rr, 2, X86::BX).addReg(X86::BX)
1106 // NOTE: visitSetCondInst knows that the value is dumped into the BL
1107 // register at this point for long values...
1114 /// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
1115 /// register, then move it to wherever the result should be.
1117 void X86ISel::visitSetCondInst(SetCondInst &I) {
1118 if (canFoldSetCCIntoBranchOrSelect(&I))
1119 return; // Fold this into a branch or select.
1121 unsigned DestReg = getReg(I);
1122 MachineBasicBlock::iterator MII = BB->end();
1123 emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(),
1127 /// emitSetCCOperation - Common code shared between visitSetCondInst and
1128 /// constant expression support.
1130 void X86ISel::emitSetCCOperation(MachineBasicBlock *MBB,
1131 MachineBasicBlock::iterator IP,
1132 Value *Op0, Value *Op1, unsigned Opcode,
1133 unsigned TargetReg) {
1134 unsigned OpNum = getSetCCNumber(Opcode);
1135 OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP);
1137 const Type *CompTy = Op0->getType();
1138 unsigned CompClass = getClassB(CompTy);
1139 bool isSigned = CompTy->isSigned() && CompClass != cFP;
1141 if (CompClass != cLong || OpNum < 2) {
1142 // Handle normal comparisons with a setcc instruction...
1143 BuildMI(*MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, TargetReg);
1145 // Handle long comparisons by copying the value which is already in BL into
1146 // the register we want...
1147 BuildMI(*MBB, IP, X86::MOV8rr, 1, TargetReg).addReg(X86::BL);
1151 void X86ISel::visitSelectInst(SelectInst &SI) {
1152 unsigned DestReg = getReg(SI);
1153 MachineBasicBlock::iterator MII = BB->end();
1154 emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
1155 SI.getFalseValue(), DestReg);
1158 /// emitSelect - Common code shared between visitSelectInst and the constant
1159 /// expression support.
1160 void X86ISel::emitSelectOperation(MachineBasicBlock *MBB,
1161 MachineBasicBlock::iterator IP,
1162 Value *Cond, Value *TrueVal, Value *FalseVal,
1164 unsigned SelectClass = getClassB(TrueVal->getType());
1166 // We don't support 8-bit conditional moves. If we have incoming constants,
1167 // transform them into 16-bit constants to avoid having a run-time conversion.
1168 if (SelectClass == cByte) {
1169 if (Constant *T = dyn_cast<Constant>(TrueVal))
1170 TrueVal = ConstantExpr::getCast(T, Type::ShortTy);
1171 if (Constant *F = dyn_cast<Constant>(FalseVal))
1172 FalseVal = ConstantExpr::getCast(F, Type::ShortTy);
1175 unsigned TrueReg = getReg(TrueVal, MBB, IP);
1176 unsigned FalseReg = getReg(FalseVal, MBB, IP);
1177 if (TrueReg == FalseReg) {
1178 static const unsigned Opcode[] = {
1179 X86::MOV8rr, X86::MOV16rr, X86::MOV32rr, X86::FpMOV, X86::MOV32rr
1181 BuildMI(*MBB, IP, Opcode[SelectClass], 1, DestReg).addReg(TrueReg);
1182 if (SelectClass == cLong)
1183 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(TrueReg+1);
1188 if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) {
1189 // We successfully folded the setcc into the select instruction.
1191 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
1192 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), MBB,
1195 const Type *CompTy = SCI->getOperand(0)->getType();
1196 bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
1198 // LLVM -> X86 signed X86 unsigned
1199 // ----- ---------- ------------
1200 // seteq -> cmovNE cmovNE
1201 // setne -> cmovE cmovE
1202 // setlt -> cmovGE cmovAE
1203 // setge -> cmovL cmovB
1204 // setgt -> cmovLE cmovBE
1205 // setle -> cmovG cmovA
1207 // cmovNS // Used by comparison with 0 optimization
1210 switch (SelectClass) {
1211 default: assert(0 && "Unknown value class!");
1213 // Annoyingly, we don't have a full set of floating point conditional
1215 static const unsigned OpcodeTab[2][8] = {
1216 { X86::FCMOVNE, X86::FCMOVE, X86::FCMOVAE, X86::FCMOVB,
1217 X86::FCMOVBE, X86::FCMOVA, 0, 0 },
1218 { X86::FCMOVNE, X86::FCMOVE, 0, 0, 0, 0, 0, 0 },
1220 Opcode = OpcodeTab[isSigned][OpNum];
1222 // If opcode == 0, we hit a case that we don't support. Output a setcc
1223 // and compare the result against zero.
1225 unsigned CompClass = getClassB(CompTy);
1227 if (CompClass != cLong || OpNum < 2) {
1228 CondReg = makeAnotherReg(Type::BoolTy);
1229 // Handle normal comparisons with a setcc instruction...
1230 BuildMI(*MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, CondReg);
1232 // Long comparisons end up in the BL register.
1236 BuildMI(*MBB, IP, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg);
1237 Opcode = X86::FCMOVE;
1243 static const unsigned OpcodeTab[2][8] = {
1244 { X86::CMOVNE16rr, X86::CMOVE16rr, X86::CMOVAE16rr, X86::CMOVB16rr,
1245 X86::CMOVBE16rr, X86::CMOVA16rr, 0, 0 },
1246 { X86::CMOVNE16rr, X86::CMOVE16rr, X86::CMOVGE16rr, X86::CMOVL16rr,
1247 X86::CMOVLE16rr, X86::CMOVG16rr, X86::CMOVNS16rr, X86::CMOVS16rr },
1249 Opcode = OpcodeTab[isSigned][OpNum];
1254 static const unsigned OpcodeTab[2][8] = {
1255 { X86::CMOVNE32rr, X86::CMOVE32rr, X86::CMOVAE32rr, X86::CMOVB32rr,
1256 X86::CMOVBE32rr, X86::CMOVA32rr, 0, 0 },
1257 { X86::CMOVNE32rr, X86::CMOVE32rr, X86::CMOVGE32rr, X86::CMOVL32rr,
1258 X86::CMOVLE32rr, X86::CMOVG32rr, X86::CMOVNS32rr, X86::CMOVS32rr },
1260 Opcode = OpcodeTab[isSigned][OpNum];
1265 // Get the value being branched on, and use it to set the condition codes.
1266 unsigned CondReg = getReg(Cond, MBB, IP);
1267 BuildMI(*MBB, IP, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg);
1268 switch (SelectClass) {
1269 default: assert(0 && "Unknown value class!");
1270 case cFP: Opcode = X86::FCMOVE; break;
1272 case cShort: Opcode = X86::CMOVE16rr; break;
1274 case cLong: Opcode = X86::CMOVE32rr; break;
1278 unsigned RealDestReg = DestReg;
1281 // Annoyingly enough, X86 doesn't HAVE 8-bit conditional moves. Because of
1282 // this, we have to promote the incoming values to 16 bits, perform a 16-bit
1283 // cmove, then truncate the result.
1284 if (SelectClass == cByte) {
1285 DestReg = makeAnotherReg(Type::ShortTy);
1286 if (getClassB(TrueVal->getType()) == cByte) {
1287 // Promote the true value, by storing it into AL, and reading from AX.
1288 BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::AL).addReg(TrueReg);
1289 BuildMI(*MBB, IP, X86::MOV8ri, 1, X86::AH).addImm(0);
1290 TrueReg = makeAnotherReg(Type::ShortTy);
1291 BuildMI(*MBB, IP, X86::MOV16rr, 1, TrueReg).addReg(X86::AX);
1293 if (getClassB(FalseVal->getType()) == cByte) {
1294 // Promote the true value, by storing it into CL, and reading from CX.
1295 BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(FalseReg);
1296 BuildMI(*MBB, IP, X86::MOV8ri, 1, X86::CH).addImm(0);
1297 FalseReg = makeAnotherReg(Type::ShortTy);
1298 BuildMI(*MBB, IP, X86::MOV16rr, 1, FalseReg).addReg(X86::CX);
1302 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(TrueReg).addReg(FalseReg);
1304 switch (SelectClass) {
1306 // We did the computation with 16-bit registers. Truncate back to our
1307 // result by copying into AX then copying out AL.
1308 BuildMI(*MBB, IP, X86::MOV16rr, 1, X86::AX).addReg(DestReg);
1309 BuildMI(*MBB, IP, X86::MOV8rr, 1, RealDestReg).addReg(X86::AL);
1312 // Move the upper half of the value as well.
1313 BuildMI(*MBB, IP, Opcode, 2,DestReg+1).addReg(TrueReg+1).addReg(FalseReg+1);
1320 /// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
1321 /// operand, in the specified target register.
1323 void X86ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
1324 bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
1326 Value *Val = VR.Val;
1327 const Type *Ty = VR.Ty;
1329 if (Constant *C = dyn_cast<Constant>(Val)) {
1330 Val = ConstantExpr::getCast(C, Type::IntTy);
1334 // If this is a simple constant, just emit a MOVri directly to avoid the
1336 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
1337 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
1338 BuildMI(BB, X86::MOV32ri, 1, targetReg).addImm(TheVal);
1343 // Make sure we have the register number for this value...
1344 unsigned Reg = Val ? getReg(Val) : VR.Reg;
1346 switch (getClassB(Ty)) {
1348 // Extend value into target register (8->32)
1350 BuildMI(BB, X86::MOVZX32rr8, 1, targetReg).addReg(Reg);
1352 BuildMI(BB, X86::MOVSX32rr8, 1, targetReg).addReg(Reg);
1355 // Extend value into target register (16->32)
1357 BuildMI(BB, X86::MOVZX32rr16, 1, targetReg).addReg(Reg);
1359 BuildMI(BB, X86::MOVSX32rr16, 1, targetReg).addReg(Reg);
1362 // Move value into target register (32->32)
1363 BuildMI(BB, X86::MOV32rr, 1, targetReg).addReg(Reg);
1366 assert(0 && "Unpromotable operand class in promote32");
1370 /// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
1371 /// we have the following possibilities:
1373 /// ret void: No return value, simply emit a 'ret' instruction
1374 /// ret sbyte, ubyte : Extend value into EAX and return
1375 /// ret short, ushort: Extend value into EAX and return
1376 /// ret int, uint : Move value into EAX and return
1377 /// ret pointer : Move value into EAX and return
1378 /// ret long, ulong : Move value into EAX/EDX and return
1379 /// ret float/double : Top of FP stack
1381 void X86ISel::visitReturnInst(ReturnInst &I) {
1382 if (I.getNumOperands() == 0) {
1383 BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
1387 Value *RetVal = I.getOperand(0);
1388 switch (getClassB(RetVal->getType())) {
1389 case cByte: // integral return values: extend or move into EAX and return
1392 promote32(X86::EAX, ValueRecord(RetVal));
1393 // Declare that EAX is live on exit
1394 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP);
1396 case cFP: { // Floats & Doubles: Return in ST(0)
1397 unsigned RetReg = getReg(RetVal);
1398 BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg);
1399 // Declare that top-of-stack is live on exit
1400 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP);
1404 unsigned RetReg = getReg(RetVal);
1405 BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(RetReg);
1406 BuildMI(BB, X86::MOV32rr, 1, X86::EDX).addReg(RetReg+1);
1407 // Declare that EAX & EDX are live on exit
1408 BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX)
1413 visitInstruction(I);
1415 // Emit a 'ret' instruction
1416 BuildMI(BB, X86::RET, 0);
1419 // getBlockAfter - Return the basic block which occurs lexically after the
1421 static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
1422 Function::iterator I = BB; ++I; // Get iterator to next block
1423 return I != BB->getParent()->end() ? &*I : 0;
1426 /// visitBranchInst - Handle conditional and unconditional branches here. Note
1427 /// that since code layout is frozen at this point, that if we are trying to
1428 /// jump to a block that is the immediate successor of the current block, we can
1429 /// just make a fall-through (but we don't currently).
1431 void X86ISel::visitBranchInst(BranchInst &BI) {
1432 // Update machine-CFG edges
1433 BB->addSuccessor (MBBMap[BI.getSuccessor(0)]);
1434 if (BI.isConditional())
1435 BB->addSuccessor (MBBMap[BI.getSuccessor(1)]);
1437 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
1439 if (!BI.isConditional()) { // Unconditional branch?
1440 if (BI.getSuccessor(0) != NextBB)
1441 BuildMI(BB, X86::JMP, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1445 // See if we can fold the setcc into the branch itself...
1446 SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
1448 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
1449 // computed some other way...
1450 unsigned condReg = getReg(BI.getCondition());
1451 BuildMI(BB, X86::TEST8rr, 2).addReg(condReg).addReg(condReg);
1452 if (BI.getSuccessor(1) == NextBB) {
1453 if (BI.getSuccessor(0) != NextBB)
1454 BuildMI(BB, X86::JNE, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1456 BuildMI(BB, X86::JE, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
1458 if (BI.getSuccessor(0) != NextBB)
1459 BuildMI(BB, X86::JMP, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1464 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
1465 MachineBasicBlock::iterator MII = BB->end();
1466 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
1468 const Type *CompTy = SCI->getOperand(0)->getType();
1469 bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
1472 // LLVM -> X86 signed X86 unsigned
1473 // ----- ---------- ------------
1481 // js // Used by comparison with 0 optimization
1484 static const unsigned OpcodeTab[2][8] = {
1485 { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE, 0, 0 },
1486 { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE,
1487 X86::JS, X86::JNS },
1490 if (BI.getSuccessor(0) != NextBB) {
1491 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1)
1492 .addMBB(MBBMap[BI.getSuccessor(0)]);
1493 if (BI.getSuccessor(1) != NextBB)
1494 BuildMI(BB, X86::JMP, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
1496 // Change to the inverse condition...
1497 if (BI.getSuccessor(1) != NextBB) {
1499 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1)
1500 .addMBB(MBBMap[BI.getSuccessor(1)]);
1506 /// doCall - This emits an abstract call instruction, setting up the arguments
1507 /// and the return value as appropriate. For the actual function call itself,
1508 /// it inserts the specified CallMI instruction into the stream.
1510 void X86ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
1511 const std::vector<ValueRecord> &Args) {
1512 // Count how many bytes are to be pushed on the stack...
1513 unsigned NumBytes = 0;
1515 if (!Args.empty()) {
1516 for (unsigned i = 0, e = Args.size(); i != e; ++i)
1517 switch (getClassB(Args[i].Ty)) {
1518 case cByte: case cShort: case cInt:
1519 NumBytes += 4; break;
1521 NumBytes += 8; break;
1523 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
1525 default: assert(0 && "Unknown class!");
1528 // Adjust the stack pointer for the new arguments...
1529 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
1531 // Arguments go on the stack in reverse order, as specified by the ABI.
1532 unsigned ArgOffset = 0;
1533 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1535 switch (getClassB(Args[i].Ty)) {
1537 if (Args[i].Val && isa<ConstantBool>(Args[i].Val)) {
1538 addRegOffset(BuildMI(BB, X86::MOV32mi, 5), X86::ESP, ArgOffset)
1539 .addImm(Args[i].Val == ConstantBool::True);
1544 if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
1545 // Zero/Sign extend constant, then stuff into memory.
1546 ConstantInt *Val = cast<ConstantInt>(Args[i].Val);
1547 Val = cast<ConstantInt>(ConstantExpr::getCast(Val, Type::IntTy));
1548 addRegOffset(BuildMI(BB, X86::MOV32mi, 5), X86::ESP, ArgOffset)
1549 .addImm(Val->getRawValue() & 0xFFFFFFFF);
1551 // Promote arg to 32 bits wide into a temporary register...
1552 ArgReg = makeAnotherReg(Type::UIntTy);
1553 promote32(ArgReg, Args[i]);
1554 addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
1555 X86::ESP, ArgOffset).addReg(ArgReg);
1559 if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
1560 unsigned Val = cast<ConstantInt>(Args[i].Val)->getRawValue();
1561 addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
1562 X86::ESP, ArgOffset).addImm(Val);
1563 } else if (Args[i].Val && isa<ConstantPointerNull>(Args[i].Val)) {
1564 addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
1565 X86::ESP, ArgOffset).addImm(0);
1567 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1568 addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
1569 X86::ESP, ArgOffset).addReg(ArgReg);
1573 if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
1574 uint64_t Val = cast<ConstantInt>(Args[i].Val)->getRawValue();
1575 addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
1576 X86::ESP, ArgOffset).addImm(Val & ~0U);
1577 addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
1578 X86::ESP, ArgOffset+4).addImm(Val >> 32ULL);
1580 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1581 addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
1582 X86::ESP, ArgOffset).addReg(ArgReg);
1583 addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
1584 X86::ESP, ArgOffset+4).addReg(ArgReg+1);
1586 ArgOffset += 4; // 8 byte entry, not 4.
1590 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1591 if (Args[i].Ty == Type::FloatTy) {
1592 addRegOffset(BuildMI(BB, X86::FST32m, 5),
1593 X86::ESP, ArgOffset).addReg(ArgReg);
1595 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
1596 addRegOffset(BuildMI(BB, X86::FST64m, 5),
1597 X86::ESP, ArgOffset).addReg(ArgReg);
1598 ArgOffset += 4; // 8 byte entry, not 4.
1602 default: assert(0 && "Unknown class!");
1607 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(0);
1610 BB->push_back(CallMI);
1612 BuildMI(BB, X86::ADJCALLSTACKUP, 1).addImm(NumBytes);
1614 // If there is a return value, scavenge the result from the location the call
1617 if (Ret.Ty != Type::VoidTy) {
1618 unsigned DestClass = getClassB(Ret.Ty);
1619 switch (DestClass) {
1623 // Integral results are in %eax, or the appropriate portion
1625 static const unsigned regRegMove[] = {
1626 X86::MOV8rr, X86::MOV16rr, X86::MOV32rr
1628 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
1629 BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]);
1632 case cFP: // Floating-point return values live in %ST(0)
1633 BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg);
1635 case cLong: // Long values are left in EDX:EAX
1636 BuildMI(BB, X86::MOV32rr, 1, Ret.Reg).addReg(X86::EAX);
1637 BuildMI(BB, X86::MOV32rr, 1, Ret.Reg+1).addReg(X86::EDX);
1639 default: assert(0 && "Unknown class!");
1645 /// visitCallInst - Push args on stack and do a procedure call instruction.
1646 void X86ISel::visitCallInst(CallInst &CI) {
1647 MachineInstr *TheCall;
1648 if (Function *F = CI.getCalledFunction()) {
1649 // Is it an intrinsic function call?
1650 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
1651 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1655 // Emit a CALL instruction with PC-relative displacement.
1656 TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true);
1657 } else { // Emit an indirect call...
1658 unsigned Reg = getReg(CI.getCalledValue());
1659 TheCall = BuildMI(X86::CALL32r, 1).addReg(Reg);
1662 std::vector<ValueRecord> Args;
1663 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
1664 Args.push_back(ValueRecord(CI.getOperand(i)));
1666 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
1667 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
1670 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1671 /// function, lowering any calls to unknown intrinsic functions into the
1672 /// equivalent LLVM code.
1674 void X86ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
1675 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1676 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1677 if (CallInst *CI = dyn_cast<CallInst>(I++))
1678 if (Function *F = CI->getCalledFunction())
1679 switch (F->getIntrinsicID()) {
1680 case Intrinsic::not_intrinsic:
1681 case Intrinsic::vastart:
1682 case Intrinsic::vacopy:
1683 case Intrinsic::vaend:
1684 case Intrinsic::returnaddress:
1685 case Intrinsic::frameaddress:
1686 case Intrinsic::memcpy:
1687 case Intrinsic::memset:
1688 case Intrinsic::isunordered:
1689 case Intrinsic::readport:
1690 case Intrinsic::writeport:
1691 // We directly implement these intrinsics
1693 case Intrinsic::readio: {
1694 // On X86, memory operations are in-order. Lower this intrinsic
1695 // into a volatile load.
1696 Instruction *Before = CI->getPrev();
1697 LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
1698 CI->replaceAllUsesWith(LI);
1699 BB->getInstList().erase(CI);
1702 case Intrinsic::writeio: {
1703 // On X86, memory operations are in-order. Lower this intrinsic
1704 // into a volatile store.
1705 Instruction *Before = CI->getPrev();
1706 StoreInst *LI = new StoreInst(CI->getOperand(1),
1707 CI->getOperand(2), true, CI);
1708 CI->replaceAllUsesWith(LI);
1709 BB->getInstList().erase(CI);
1713 // All other intrinsic calls we must lower.
1714 Instruction *Before = CI->getPrev();
1715 TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
1716 if (Before) { // Move iterator to instruction after call
1724 void X86ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
1725 unsigned TmpReg1, TmpReg2;
1727 case Intrinsic::vastart:
1728 // Get the address of the first vararg value...
1729 TmpReg1 = getReg(CI);
1730 addFrameReference(BuildMI(BB, X86::LEA32r, 5, TmpReg1), VarArgsFrameIndex);
1733 case Intrinsic::vacopy:
1734 TmpReg1 = getReg(CI);
1735 TmpReg2 = getReg(CI.getOperand(1));
1736 BuildMI(BB, X86::MOV32rr, 1, TmpReg1).addReg(TmpReg2);
1738 case Intrinsic::vaend: return; // Noop on X86
1740 case Intrinsic::returnaddress:
1741 case Intrinsic::frameaddress:
1742 TmpReg1 = getReg(CI);
1743 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
1744 if (ID == Intrinsic::returnaddress) {
1745 // Just load the return address
1746 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, TmpReg1),
1747 ReturnAddressIndex);
1749 addFrameReference(BuildMI(BB, X86::LEA32r, 4, TmpReg1),
1750 ReturnAddressIndex, -4);
1753 // Values other than zero are not implemented yet.
1754 BuildMI(BB, X86::MOV32ri, 1, TmpReg1).addImm(0);
1758 case Intrinsic::isunordered:
1759 TmpReg1 = getReg(CI.getOperand(1));
1760 TmpReg2 = getReg(CI.getOperand(2));
1761 emitUCOMr(BB, BB->end(), TmpReg2, TmpReg1);
1762 TmpReg2 = getReg(CI);
1763 BuildMI(BB, X86::SETPr, 0, TmpReg2);
1766 case Intrinsic::memcpy: {
1767 assert(CI.getNumOperands() == 5 && "Illegal llvm.memcpy call!");
1769 if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) {
1770 Align = AlignC->getRawValue();
1771 if (Align == 0) Align = 1;
1774 // Turn the byte code into # iterations
1777 switch (Align & 3) {
1778 case 2: // WORD aligned
1779 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
1780 CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2));
1782 CountReg = makeAnotherReg(Type::IntTy);
1783 unsigned ByteReg = getReg(CI.getOperand(3));
1784 BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1);
1786 Opcode = X86::REP_MOVSW;
1788 case 0: // DWORD aligned
1789 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
1790 CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4));
1792 CountReg = makeAnotherReg(Type::IntTy);
1793 unsigned ByteReg = getReg(CI.getOperand(3));
1794 BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2);
1796 Opcode = X86::REP_MOVSD;
1798 default: // BYTE aligned
1799 CountReg = getReg(CI.getOperand(3));
1800 Opcode = X86::REP_MOVSB;
1804 // No matter what the alignment is, we put the source in ESI, the
1805 // destination in EDI, and the count in ECX.
1806 TmpReg1 = getReg(CI.getOperand(1));
1807 TmpReg2 = getReg(CI.getOperand(2));
1808 BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg);
1809 BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1);
1810 BuildMI(BB, X86::MOV32rr, 1, X86::ESI).addReg(TmpReg2);
1811 BuildMI(BB, Opcode, 0);
1814 case Intrinsic::memset: {
1815 assert(CI.getNumOperands() == 5 && "Illegal llvm.memset call!");
1817 if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) {
1818 Align = AlignC->getRawValue();
1819 if (Align == 0) Align = 1;
1822 // Turn the byte code into # iterations
1825 if (ConstantInt *ValC = dyn_cast<ConstantInt>(CI.getOperand(2))) {
1826 unsigned Val = ValC->getRawValue() & 255;
1828 // If the value is a constant, then we can potentially use larger copies.
1829 switch (Align & 3) {
1830 case 2: // WORD aligned
1831 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
1832 CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2));
1834 CountReg = makeAnotherReg(Type::IntTy);
1835 unsigned ByteReg = getReg(CI.getOperand(3));
1836 BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1);
1838 BuildMI(BB, X86::MOV16ri, 1, X86::AX).addImm((Val << 8) | Val);
1839 Opcode = X86::REP_STOSW;
1841 case 0: // DWORD aligned
1842 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
1843 CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4));
1845 CountReg = makeAnotherReg(Type::IntTy);
1846 unsigned ByteReg = getReg(CI.getOperand(3));
1847 BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2);
1849 Val = (Val << 8) | Val;
1850 BuildMI(BB, X86::MOV32ri, 1, X86::EAX).addImm((Val << 16) | Val);
1851 Opcode = X86::REP_STOSD;
1853 default: // BYTE aligned
1854 CountReg = getReg(CI.getOperand(3));
1855 BuildMI(BB, X86::MOV8ri, 1, X86::AL).addImm(Val);
1856 Opcode = X86::REP_STOSB;
1860 // If it's not a constant value we are storing, just fall back. We could
1861 // try to be clever to form 16 bit and 32 bit values, but we don't yet.
1862 unsigned ValReg = getReg(CI.getOperand(2));
1863 BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg);
1864 CountReg = getReg(CI.getOperand(3));
1865 Opcode = X86::REP_STOSB;
1868 // No matter what the alignment is, we put the source in ESI, the
1869 // destination in EDI, and the count in ECX.
1870 TmpReg1 = getReg(CI.getOperand(1));
1871 //TmpReg2 = getReg(CI.getOperand(2));
1872 BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg);
1873 BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1);
1874 BuildMI(BB, Opcode, 0);
1878 case Intrinsic::readport: {
1879 // First, determine that the size of the operand falls within the acceptable
1880 // range for this architecture.
1882 if (getClassB(CI.getOperand(1)->getType()) != cShort) {
1883 std::cerr << "llvm.readport: Address size is not 16 bits\n";
1887 // Now, move the I/O port address into the DX register and use the IN
1888 // instruction to get the input data.
1890 unsigned Class = getClass(CI.getCalledFunction()->getReturnType());
1891 unsigned DestReg = getReg(CI);
1893 // If the port is a single-byte constant, use the immediate form.
1894 if (ConstantInt *C = dyn_cast<ConstantInt>(CI.getOperand(1)))
1895 if ((C->getRawValue() & 255) == C->getRawValue()) {
1898 BuildMI(BB, X86::IN8ri, 1).addImm((unsigned char)C->getRawValue());
1899 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AL);
1902 BuildMI(BB, X86::IN16ri, 1).addImm((unsigned char)C->getRawValue());
1903 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AX);
1906 BuildMI(BB, X86::IN32ri, 1).addImm((unsigned char)C->getRawValue());
1907 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::EAX);
1912 unsigned Reg = getReg(CI.getOperand(1));
1913 BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Reg);
1916 BuildMI(BB, X86::IN8rr, 0);
1917 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AL);
1920 BuildMI(BB, X86::IN16rr, 0);
1921 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AX);
1924 BuildMI(BB, X86::IN32rr, 0);
1925 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::EAX);
1928 std::cerr << "Cannot do input on this data type";
1934 case Intrinsic::writeport: {
1935 // First, determine that the size of the operand falls within the
1936 // acceptable range for this architecture.
1937 if (getClass(CI.getOperand(2)->getType()) != cShort) {
1938 std::cerr << "llvm.writeport: Address size is not 16 bits\n";
1942 unsigned Class = getClassB(CI.getOperand(1)->getType());
1943 unsigned ValReg = getReg(CI.getOperand(1));
1946 BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg);
1949 BuildMI(BB, X86::MOV16rr, 1, X86::AX).addReg(ValReg);
1952 BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(ValReg);
1955 std::cerr << "llvm.writeport: invalid data type for X86 target";
1960 // If the port is a single-byte constant, use the immediate form.
1961 if (ConstantInt *C = dyn_cast<ConstantInt>(CI.getOperand(2)))
1962 if ((C->getRawValue() & 255) == C->getRawValue()) {
1963 static const unsigned O[] = { X86::OUT8ir, X86::OUT16ir, X86::OUT32ir };
1964 BuildMI(BB, O[Class], 1).addImm((unsigned char)C->getRawValue());
1968 // Otherwise, move the I/O port address into the DX register and the value
1969 // to write into the AL/AX/EAX register.
1970 static const unsigned Opc[] = { X86::OUT8rr, X86::OUT16rr, X86::OUT32rr };
1971 unsigned Reg = getReg(CI.getOperand(2));
1972 BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Reg);
1973 BuildMI(BB, Opc[Class], 0);
1977 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
1981 static bool isSafeToFoldLoadIntoInstruction(LoadInst &LI, Instruction &User) {
1982 if (LI.getParent() != User.getParent())
1984 BasicBlock::iterator It = &LI;
1985 // Check all of the instructions between the load and the user. We should
1986 // really use alias analysis here, but for now we just do something simple.
1987 for (++It; It != BasicBlock::iterator(&User); ++It) {
1988 switch (It->getOpcode()) {
1989 case Instruction::Free:
1990 case Instruction::Store:
1991 case Instruction::Call:
1992 case Instruction::Invoke:
1994 case Instruction::Load:
1995 if (cast<LoadInst>(It)->isVolatile() && LI.isVolatile())
2003 /// visitSimpleBinary - Implement simple binary operators for integral types...
2004 /// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
2007 void X86ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
2008 unsigned DestReg = getReg(B);
2009 MachineBasicBlock::iterator MI = BB->end();
2010 Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
2011 unsigned Class = getClassB(B.getType());
2013 // If this is AND X, C, and it is only used by a setcc instruction, it will
2014 // be folded. There is no need to emit this instruction.
2015 if (B.hasOneUse() && OperatorClass == 2 && isa<ConstantInt>(Op1))
2016 if (Class == cByte || Class == cShort || Class == cInt) {
2017 Instruction *Use = cast<Instruction>(B.use_back());
2018 if (isa<SetCondInst>(Use) &&
2019 Use->getOperand(1) == Constant::getNullValue(B.getType())) {
2020 switch (getSetCCNumber(Use->getOpcode())) {
2025 if (B.getType()->isSigned()) return;
2030 // Special case: op Reg, load [mem]
2031 if (isa<LoadInst>(Op0) && !isa<LoadInst>(Op1) && Class != cLong &&
2033 isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op0), B))
2034 if (!B.swapOperands())
2035 std::swap(Op0, Op1); // Make sure any loads are in the RHS.
2037 if (isa<LoadInst>(Op1) && Class != cLong && Op1->hasOneUse() &&
2038 isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op1), B)) {
2042 static const unsigned OpcodeTab[][3] = {
2043 // Arithmetic operators
2044 { X86::ADD8rm, X86::ADD16rm, X86::ADD32rm }, // ADD
2045 { X86::SUB8rm, X86::SUB16rm, X86::SUB32rm }, // SUB
2047 // Bitwise operators
2048 { X86::AND8rm, X86::AND16rm, X86::AND32rm }, // AND
2049 { X86:: OR8rm, X86:: OR16rm, X86:: OR32rm }, // OR
2050 { X86::XOR8rm, X86::XOR16rm, X86::XOR32rm }, // XOR
2052 Opcode = OpcodeTab[OperatorClass][Class];
2054 static const unsigned OpcodeTab[][2] = {
2055 { X86::FADD32m, X86::FADD64m }, // ADD
2056 { X86::FSUB32m, X86::FSUB64m }, // SUB
2058 const Type *Ty = Op0->getType();
2059 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
2060 Opcode = OpcodeTab[OperatorClass][Ty == Type::DoubleTy];
2063 unsigned Op0r = getReg(Op0);
2064 if (AllocaInst *AI =
2065 dyn_castFixedAlloca(cast<LoadInst>(Op1)->getOperand(0))) {
2066 unsigned FI = getFixedSizedAllocaFI(AI);
2067 addFrameReference(BuildMI(BB, Opcode, 5, DestReg).addReg(Op0r), FI);
2071 getAddressingMode(cast<LoadInst>(Op1)->getOperand(0), AM);
2073 addFullAddress(BuildMI(BB, Opcode, 5, DestReg).addReg(Op0r), AM);
2078 // If this is a floating point subtract, check to see if we can fold the first
2080 if (Class == cFP && OperatorClass == 1 &&
2081 isa<LoadInst>(Op0) &&
2082 isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op0), B)) {
2083 const Type *Ty = Op0->getType();
2084 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
2085 unsigned Opcode = Ty == Type::FloatTy ? X86::FSUBR32m : X86::FSUBR64m;
2087 unsigned Op1r = getReg(Op1);
2088 if (AllocaInst *AI =
2089 dyn_castFixedAlloca(cast<LoadInst>(Op0)->getOperand(0))) {
2090 unsigned FI = getFixedSizedAllocaFI(AI);
2091 addFrameReference(BuildMI(BB, Opcode, 5, DestReg).addReg(Op1r), FI);
2094 getAddressingMode(cast<LoadInst>(Op0)->getOperand(0), AM);
2096 addFullAddress(BuildMI(BB, Opcode, 5, DestReg).addReg(Op1r), AM);
2101 emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
2105 /// emitBinaryFPOperation - This method handles emission of floating point
2106 /// Add (0), Sub (1), Mul (2), and Div (3) operations.
2107 void X86ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
2108 MachineBasicBlock::iterator IP,
2109 Value *Op0, Value *Op1,
2110 unsigned OperatorClass, unsigned DestReg) {
2111 // Special case: op Reg, <const fp>
2112 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1))
2113 if (!Op1C->isExactlyValue(+0.0) && !Op1C->isExactlyValue(+1.0)) {
2114 // Create a constant pool entry for this constant.
2115 MachineConstantPool *CP = F->getConstantPool();
2116 unsigned CPI = CP->getConstantPoolIndex(Op1C);
2117 const Type *Ty = Op1->getType();
2119 static const unsigned OpcodeTab[][4] = {
2120 { X86::FADD32m, X86::FSUB32m, X86::FMUL32m, X86::FDIV32m }, // Float
2121 { X86::FADD64m, X86::FSUB64m, X86::FMUL64m, X86::FDIV64m }, // Double
2124 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
2125 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
2126 unsigned Op0r = getReg(Op0, BB, IP);
2127 addConstantPoolReference(BuildMI(*BB, IP, Opcode, 5,
2128 DestReg).addReg(Op0r), CPI);
2132 // Special case: R1 = op <const fp>, R2
2133 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op0))
2134 if (CFP->isExactlyValue(-0.0) && OperatorClass == 1) {
2136 unsigned op1Reg = getReg(Op1, BB, IP);
2137 BuildMI(*BB, IP, X86::FCHS, 1, DestReg).addReg(op1Reg);
2139 } else if (!CFP->isExactlyValue(+0.0) && !CFP->isExactlyValue(+1.0)) {
2140 // R1 = op CST, R2 --> R1 = opr R2, CST
2142 // Create a constant pool entry for this constant.
2143 MachineConstantPool *CP = F->getConstantPool();
2144 unsigned CPI = CP->getConstantPoolIndex(CFP);
2145 const Type *Ty = CFP->getType();
2147 static const unsigned OpcodeTab[][4] = {
2148 { X86::FADD32m, X86::FSUBR32m, X86::FMUL32m, X86::FDIVR32m }, // Float
2149 { X86::FADD64m, X86::FSUBR64m, X86::FMUL64m, X86::FDIVR64m }, // Double
2152 assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
2153 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
2154 unsigned Op1r = getReg(Op1, BB, IP);
2155 addConstantPoolReference(BuildMI(*BB, IP, Opcode, 5,
2156 DestReg).addReg(Op1r), CPI);
2161 static const unsigned OpcodeTab[4] = {
2162 X86::FpADD, X86::FpSUB, X86::FpMUL, X86::FpDIV
2165 unsigned Opcode = OpcodeTab[OperatorClass];
2166 unsigned Op0r = getReg(Op0, BB, IP);
2167 unsigned Op1r = getReg(Op1, BB, IP);
2168 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
2171 /// emitSimpleBinaryOperation - Implement simple binary operators for integral
2172 /// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
2175 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
2176 /// and constant expression support.
2178 void X86ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
2179 MachineBasicBlock::iterator IP,
2180 Value *Op0, Value *Op1,
2181 unsigned OperatorClass,
2183 unsigned Class = getClassB(Op0->getType());
2186 assert(OperatorClass < 2 && "No logical ops for FP!");
2187 emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
2191 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
2192 if (OperatorClass == 1) {
2193 static unsigned const NEGTab[] = {
2194 X86::NEG8r, X86::NEG16r, X86::NEG32r, 0, X86::NEG32r
2197 // sub 0, X -> neg X
2198 if (CI->isNullValue()) {
2199 unsigned op1Reg = getReg(Op1, MBB, IP);
2200 BuildMI(*MBB, IP, NEGTab[Class], 1, DestReg).addReg(op1Reg);
2202 if (Class == cLong) {
2203 // We just emitted: Dl = neg Sl
2204 // Now emit : T = addc Sh, 0
2206 unsigned T = makeAnotherReg(Type::IntTy);
2207 BuildMI(*MBB, IP, X86::ADC32ri, 2, T).addReg(op1Reg+1).addImm(0);
2208 BuildMI(*MBB, IP, X86::NEG32r, 1, DestReg+1).addReg(T);
2211 } else if (Op1->hasOneUse() && Class != cLong) {
2212 // sub C, X -> tmp = neg X; DestReg = add tmp, C. This is better
2213 // than copying C into a temporary register, because of register
2214 // pressure (tmp and destreg can share a register.
2215 static unsigned const ADDRITab[] = {
2216 X86::ADD8ri, X86::ADD16ri, X86::ADD32ri, 0, X86::ADD32ri
2218 unsigned op1Reg = getReg(Op1, MBB, IP);
2219 unsigned Tmp = makeAnotherReg(Op0->getType());
2220 BuildMI(*MBB, IP, NEGTab[Class], 1, Tmp).addReg(op1Reg);
2221 BuildMI(*MBB, IP, ADDRITab[Class], 2,
2222 DestReg).addReg(Tmp).addImm(CI->getRawValue());
2227 // Special case: op Reg, <const int>
2228 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
2229 unsigned Op0r = getReg(Op0, MBB, IP);
2231 // xor X, -1 -> not X
2232 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
2233 static unsigned const NOTTab[] = {
2234 X86::NOT8r, X86::NOT16r, X86::NOT32r, 0, X86::NOT32r
2236 BuildMI(*MBB, IP, NOTTab[Class], 1, DestReg).addReg(Op0r);
2237 if (Class == cLong) // Invert the top part too
2238 BuildMI(*MBB, IP, X86::NOT32r, 1, DestReg+1).addReg(Op0r+1);
2242 // add X, -1 -> dec X
2243 if (OperatorClass == 0 && Op1C->isAllOnesValue() && Class != cLong) {
2244 // Note that we can't use dec for 64-bit decrements, because it does not
2245 // set the carry flag!
2246 static unsigned const DECTab[] = { X86::DEC8r, X86::DEC16r, X86::DEC32r };
2247 BuildMI(*MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
2251 // add X, 1 -> inc X
2252 if (OperatorClass == 0 && Op1C->equalsInt(1) && Class != cLong) {
2253 // Note that we can't use inc for 64-bit increments, because it does not
2254 // set the carry flag!
2255 static unsigned const INCTab[] = { X86::INC8r, X86::INC16r, X86::INC32r };
2256 BuildMI(*MBB, IP, INCTab[Class], 1, DestReg).addReg(Op0r);
2260 static const unsigned OpcodeTab[][5] = {
2261 // Arithmetic operators
2262 { X86::ADD8ri, X86::ADD16ri, X86::ADD32ri, 0, X86::ADD32ri }, // ADD
2263 { X86::SUB8ri, X86::SUB16ri, X86::SUB32ri, 0, X86::SUB32ri }, // SUB
2265 // Bitwise operators
2266 { X86::AND8ri, X86::AND16ri, X86::AND32ri, 0, X86::AND32ri }, // AND
2267 { X86:: OR8ri, X86:: OR16ri, X86:: OR32ri, 0, X86::OR32ri }, // OR
2268 { X86::XOR8ri, X86::XOR16ri, X86::XOR32ri, 0, X86::XOR32ri }, // XOR
2271 unsigned Opcode = OpcodeTab[OperatorClass][Class];
2272 unsigned Op1l = cast<ConstantInt>(Op1C)->getRawValue();
2274 if (Class != cLong) {
2275 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addImm(Op1l);
2279 // If this is a long value and the high or low bits have a special
2280 // property, emit some special cases.
2281 unsigned Op1h = cast<ConstantInt>(Op1C)->getRawValue() >> 32LL;
2283 // If the constant is zero in the low 32-bits, just copy the low part
2284 // across and apply the normal 32-bit operation to the high parts. There
2285 // will be no carry or borrow into the top.
2287 if (OperatorClass != 2) // All but and...
2288 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg).addReg(Op0r);
2290 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
2291 BuildMI(*MBB, IP, OpcodeTab[OperatorClass][cLong], 2, DestReg+1)
2292 .addReg(Op0r+1).addImm(Op1h);
2296 // If this is a logical operation and the top 32-bits are zero, just
2297 // operate on the lower 32.
2298 if (Op1h == 0 && OperatorClass > 1) {
2299 BuildMI(*MBB, IP, OpcodeTab[OperatorClass][cLong], 2, DestReg)
2300 .addReg(Op0r).addImm(Op1l);
2301 if (OperatorClass != 2) // All but and
2302 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(Op0r+1);
2304 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
2308 // TODO: We could handle lots of other special cases here, such as AND'ing
2309 // with 0xFFFFFFFF00000000 -> noop, etc.
2311 // Otherwise, code generate the full operation with a constant.
2312 static const unsigned TopTab[] = {
2313 X86::ADC32ri, X86::SBB32ri, X86::AND32ri, X86::OR32ri, X86::XOR32ri
2316 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addImm(Op1l);
2317 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1)
2318 .addReg(Op0r+1).addImm(Op1h);
2322 // Finally, handle the general case now.
2323 static const unsigned OpcodeTab[][5] = {
2324 // Arithmetic operators
2325 { X86::ADD8rr, X86::ADD16rr, X86::ADD32rr, 0, X86::ADD32rr }, // ADD
2326 { X86::SUB8rr, X86::SUB16rr, X86::SUB32rr, 0, X86::SUB32rr }, // SUB
2328 // Bitwise operators
2329 { X86::AND8rr, X86::AND16rr, X86::AND32rr, 0, X86::AND32rr }, // AND
2330 { X86:: OR8rr, X86:: OR16rr, X86:: OR32rr, 0, X86:: OR32rr }, // OR
2331 { X86::XOR8rr, X86::XOR16rr, X86::XOR32rr, 0, X86::XOR32rr }, // XOR
2334 unsigned Opcode = OpcodeTab[OperatorClass][Class];
2335 unsigned Op0r = getReg(Op0, MBB, IP);
2336 unsigned Op1r = getReg(Op1, MBB, IP);
2337 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
2339 if (Class == cLong) { // Handle the upper 32 bits of long values...
2340 static const unsigned TopTab[] = {
2341 X86::ADC32rr, X86::SBB32rr, X86::AND32rr, X86::OR32rr, X86::XOR32rr
2343 BuildMI(*MBB, IP, TopTab[OperatorClass], 2,
2344 DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
2348 /// doMultiply - Emit appropriate instructions to multiply together the
2349 /// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
2350 /// result should be given as DestTy.
2352 void X86ISel::doMultiply(MachineBasicBlock *MBB,
2353 MachineBasicBlock::iterator MBBI,
2354 unsigned DestReg, const Type *DestTy,
2355 unsigned op0Reg, unsigned op1Reg) {
2356 unsigned Class = getClass(DestTy);
2360 BuildMI(*MBB, MBBI, Class == cInt ? X86::IMUL32rr:X86::IMUL16rr, 2, DestReg)
2361 .addReg(op0Reg).addReg(op1Reg);
2364 // Must use the MUL instruction, which forces use of AL...
2365 BuildMI(*MBB, MBBI, X86::MOV8rr, 1, X86::AL).addReg(op0Reg);
2366 BuildMI(*MBB, MBBI, X86::MUL8r, 1).addReg(op1Reg);
2367 BuildMI(*MBB, MBBI, X86::MOV8rr, 1, DestReg).addReg(X86::AL);
2370 case cLong: assert(0 && "doMultiply cannot operate on LONG values!");
2374 // ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
2375 // returns zero when the input is not exactly a power of two.
2376 static unsigned ExactLog2(unsigned Val) {
2377 if (Val == 0 || (Val & (Val-1))) return 0;
2387 /// doMultiplyConst - This function is specialized to efficiently codegen an 8,
2388 /// 16, or 32-bit integer multiply by a constant.
2389 void X86ISel::doMultiplyConst(MachineBasicBlock *MBB,
2390 MachineBasicBlock::iterator IP,
2391 unsigned DestReg, const Type *DestTy,
2392 unsigned op0Reg, unsigned ConstRHS) {
2393 static const unsigned MOVrrTab[] = {X86::MOV8rr, X86::MOV16rr, X86::MOV32rr};
2394 static const unsigned MOVriTab[] = {X86::MOV8ri, X86::MOV16ri, X86::MOV32ri};
2395 static const unsigned ADDrrTab[] = {X86::ADD8rr, X86::ADD16rr, X86::ADD32rr};
2396 static const unsigned NEGrTab[] = {X86::NEG8r , X86::NEG16r , X86::NEG32r };
2398 unsigned Class = getClass(DestTy);
2401 // Handle special cases here.
2404 TmpReg = makeAnotherReg(DestTy);
2405 BuildMI(*MBB, IP, NEGrTab[Class], 1, TmpReg).addReg(op0Reg);
2406 BuildMI(*MBB, IP, ADDrrTab[Class], 1,DestReg).addReg(TmpReg).addReg(TmpReg);
2409 BuildMI(*MBB, IP, NEGrTab[Class], 1, DestReg).addReg(op0Reg);
2412 BuildMI(*MBB, IP, MOVriTab[Class], 1, DestReg).addImm(0);
2415 BuildMI(*MBB, IP, MOVrrTab[Class], 1, DestReg).addReg(op0Reg);
2418 BuildMI(*MBB, IP, ADDrrTab[Class], 1,DestReg).addReg(op0Reg).addReg(op0Reg);
2423 if (Class == cInt) {
2425 AM.BaseType = X86AddressMode::RegBase;
2426 AM.Base.Reg = op0Reg;
2427 AM.Scale = ConstRHS-1;
2428 AM.IndexReg = op0Reg;
2430 addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, DestReg), AM);
2436 if (Class == cInt) {
2437 TmpReg = makeAnotherReg(DestTy);
2439 AM.BaseType = X86AddressMode::RegBase;
2440 AM.Base.Reg = op0Reg;
2441 AM.Scale = -ConstRHS-1;
2442 AM.IndexReg = op0Reg;
2444 addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, TmpReg), AM);
2445 BuildMI(*MBB, IP, NEGrTab[Class], 1, DestReg).addReg(TmpReg);
2450 // If the element size is exactly a power of 2, use a shift to get it.
2451 if (unsigned Shift = ExactLog2(ConstRHS)) {
2453 default: assert(0 && "Unknown class for this function!");
2455 BuildMI(*MBB, IP, X86::SHL8ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
2458 BuildMI(*MBB, IP, X86::SHL16ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
2461 BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
2466 // If the element size is a negative power of 2, use a shift/neg to get it.
2467 if (unsigned Shift = ExactLog2(-ConstRHS)) {
2468 TmpReg = makeAnotherReg(DestTy);
2469 BuildMI(*MBB, IP, NEGrTab[Class], 1, TmpReg).addReg(op0Reg);
2471 default: assert(0 && "Unknown class for this function!");
2473 BuildMI(*MBB, IP, X86::SHL8ri,2, DestReg).addReg(TmpReg).addImm(Shift-1);
2476 BuildMI(*MBB, IP, X86::SHL16ri,2, DestReg).addReg(TmpReg).addImm(Shift-1);
2479 BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(TmpReg).addImm(Shift-1);
2484 if (Class == cShort) {
2485 BuildMI(*MBB, IP, X86::IMUL16rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS);
2487 } else if (Class == cInt) {
2488 BuildMI(*MBB, IP, X86::IMUL32rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS);
2492 // Most general case, emit a normal multiply...
2493 TmpReg = makeAnotherReg(DestTy);
2494 BuildMI(*MBB, IP, MOVriTab[Class], 1, TmpReg).addImm(ConstRHS);
2496 // Emit a MUL to multiply the register holding the index by
2497 // elementSize, putting the result in OffsetReg.
2498 doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg);
2501 /// visitMul - Multiplies are not simple binary operators because they must deal
2502 /// with the EAX register explicitly.
2504 void X86ISel::visitMul(BinaryOperator &I) {
2505 unsigned ResultReg = getReg(I);
2507 Value *Op0 = I.getOperand(0);
2508 Value *Op1 = I.getOperand(1);
2510 // Fold loads into floating point multiplies.
2511 if (getClass(Op0->getType()) == cFP) {
2512 if (isa<LoadInst>(Op0) && !isa<LoadInst>(Op1))
2513 if (!I.swapOperands())
2514 std::swap(Op0, Op1); // Make sure any loads are in the RHS.
2515 if (LoadInst *LI = dyn_cast<LoadInst>(Op1))
2516 if (isSafeToFoldLoadIntoInstruction(*LI, I)) {
2517 const Type *Ty = Op0->getType();
2518 assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
2519 unsigned Opcode = Ty == Type::FloatTy ? X86::FMUL32m : X86::FMUL64m;
2521 unsigned Op0r = getReg(Op0);
2522 if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) {
2523 unsigned FI = getFixedSizedAllocaFI(AI);
2524 addFrameReference(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), FI);
2527 getAddressingMode(LI->getOperand(0), AM);
2529 addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), AM);
2535 MachineBasicBlock::iterator IP = BB->end();
2536 emitMultiply(BB, IP, Op0, Op1, ResultReg);
2539 void X86ISel::emitMultiply(MachineBasicBlock *MBB,
2540 MachineBasicBlock::iterator IP,
2541 Value *Op0, Value *Op1, unsigned DestReg) {
2542 MachineBasicBlock &BB = *MBB;
2543 TypeClass Class = getClass(Op0->getType());
2545 // Simple scalar multiply?
2546 unsigned Op0Reg = getReg(Op0, &BB, IP);
2551 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2552 unsigned Val = (unsigned)CI->getRawValue(); // Isn't a 64-bit constant
2553 doMultiplyConst(&BB, IP, DestReg, Op0->getType(), Op0Reg, Val);
2555 unsigned Op1Reg = getReg(Op1, &BB, IP);
2556 doMultiply(&BB, IP, DestReg, Op1->getType(), Op0Reg, Op1Reg);
2560 emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
2566 // Long value. We have to do things the hard way...
2567 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2568 unsigned CLow = CI->getRawValue();
2569 unsigned CHi = CI->getRawValue() >> 32;
2572 // If the low part of the constant is all zeros, things are simple.
2573 BuildMI(BB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
2574 doMultiplyConst(&BB, IP, DestReg+1, Type::UIntTy, Op0Reg, CHi);
2578 // Multiply the two low parts... capturing carry into EDX
2579 unsigned OverflowReg = 0;
2581 BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(Op0Reg);
2583 unsigned Op1RegL = makeAnotherReg(Type::UIntTy);
2584 OverflowReg = makeAnotherReg(Type::UIntTy);
2585 BuildMI(BB, IP, X86::MOV32ri, 1, Op1RegL).addImm(CLow);
2586 BuildMI(BB, IP, X86::MOV32rr, 1, X86::EAX).addReg(Op0Reg);
2587 BuildMI(BB, IP, X86::MUL32r, 1).addReg(Op1RegL); // AL*BL
2589 BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(X86::EAX); // AL*BL
2590 BuildMI(BB, IP, X86::MOV32rr, 1,
2591 OverflowReg).addReg(X86::EDX); // AL*BL >> 32
2594 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
2595 doMultiplyConst(&BB, IP, AHBLReg, Type::UIntTy, Op0Reg+1, CLow);
2597 unsigned AHBLplusOverflowReg;
2599 AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
2600 BuildMI(BB, IP, X86::ADD32rr, 2, // AH*BL+(AL*BL >> 32)
2601 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
2603 AHBLplusOverflowReg = AHBLReg;
2607 BuildMI(BB, IP, X86::MOV32rr, 1, DestReg+1).addReg(AHBLplusOverflowReg);
2609 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
2610 doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi);
2612 BuildMI(BB, IP, X86::ADD32rr, 2, // AL*BH + AH*BL + (AL*BL >> 32)
2613 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
2618 // General 64x64 multiply
2620 unsigned Op1Reg = getReg(Op1, &BB, IP);
2621 // Multiply the two low parts... capturing carry into EDX
2622 BuildMI(BB, IP, X86::MOV32rr, 1, X86::EAX).addReg(Op0Reg);
2623 BuildMI(BB, IP, X86::MUL32r, 1).addReg(Op1Reg); // AL*BL
2625 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
2626 BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(X86::EAX); // AL*BL
2627 BuildMI(BB, IP, X86::MOV32rr, 1,
2628 OverflowReg).addReg(X86::EDX); // AL*BL >> 32
2630 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
2631 BuildMI(BB, IP, X86::IMUL32rr, 2,
2632 AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
2634 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
2635 BuildMI(BB, IP, X86::ADD32rr, 2, // AH*BL+(AL*BL >> 32)
2636 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
2638 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
2639 BuildMI(BB, IP, X86::IMUL32rr, 2,
2640 ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
2642 BuildMI(BB, IP, X86::ADD32rr, 2, // AL*BH + AH*BL + (AL*BL >> 32)
2643 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
2647 /// visitDivRem - Handle division and remainder instructions... these
2648 /// instruction both require the same instructions to be generated, they just
2649 /// select the result from a different register. Note that both of these
2650 /// instructions work differently for signed and unsigned operands.
2652 void X86ISel::visitDivRem(BinaryOperator &I) {
2653 unsigned ResultReg = getReg(I);
2654 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2656 // Fold loads into floating point divides.
2657 if (getClass(Op0->getType()) == cFP) {
2658 if (LoadInst *LI = dyn_cast<LoadInst>(Op1))
2659 if (isSafeToFoldLoadIntoInstruction(*LI, I)) {
2660 const Type *Ty = Op0->getType();
2661 assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
2662 unsigned Opcode = Ty == Type::FloatTy ? X86::FDIV32m : X86::FDIV64m;
2664 unsigned Op0r = getReg(Op0);
2665 if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) {
2666 unsigned FI = getFixedSizedAllocaFI(AI);
2667 addFrameReference(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), FI);
2670 getAddressingMode(LI->getOperand(0), AM);
2672 addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), AM);
2677 if (LoadInst *LI = dyn_cast<LoadInst>(Op0))
2678 if (isSafeToFoldLoadIntoInstruction(*LI, I)) {
2679 const Type *Ty = Op0->getType();
2680 assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
2681 unsigned Opcode = Ty == Type::FloatTy ? X86::FDIVR32m : X86::FDIVR64m;
2683 unsigned Op1r = getReg(Op1);
2684 if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) {
2685 unsigned FI = getFixedSizedAllocaFI(AI);
2686 addFrameReference(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op1r), FI);
2689 getAddressingMode(LI->getOperand(0), AM);
2690 addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op1r), AM);
2697 MachineBasicBlock::iterator IP = BB->end();
2698 emitDivRemOperation(BB, IP, Op0, Op1,
2699 I.getOpcode() == Instruction::Div, ResultReg);
2702 void X86ISel::emitDivRemOperation(MachineBasicBlock *BB,
2703 MachineBasicBlock::iterator IP,
2704 Value *Op0, Value *Op1, bool isDiv,
2705 unsigned ResultReg) {
2706 const Type *Ty = Op0->getType();
2707 unsigned Class = getClass(Ty);
2709 case cFP: // Floating point divide
2711 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
2713 } else { // Floating point remainder...
2714 unsigned Op0Reg = getReg(Op0, BB, IP);
2715 unsigned Op1Reg = getReg(Op1, BB, IP);
2716 MachineInstr *TheCall =
2717 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true);
2718 std::vector<ValueRecord> Args;
2719 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
2720 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
2721 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
2725 static const char *FnName[] =
2726 { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
2727 unsigned Op0Reg = getReg(Op0, BB, IP);
2728 unsigned Op1Reg = getReg(Op1, BB, IP);
2729 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
2730 MachineInstr *TheCall =
2731 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true);
2733 std::vector<ValueRecord> Args;
2734 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
2735 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
2736 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
2739 case cByte: case cShort: case cInt:
2740 break; // Small integrals, handled below...
2741 default: assert(0 && "Unknown class!");
2744 static const unsigned MovOpcode[]={ X86::MOV8rr, X86::MOV16rr, X86::MOV32rr };
2745 static const unsigned NEGOpcode[]={ X86::NEG8r, X86::NEG16r, X86::NEG32r };
2746 static const unsigned SAROpcode[]={ X86::SAR8ri, X86::SAR16ri, X86::SAR32ri };
2747 static const unsigned SHROpcode[]={ X86::SHR8ri, X86::SHR16ri, X86::SHR32ri };
2748 static const unsigned ADDOpcode[]={ X86::ADD8rr, X86::ADD16rr, X86::ADD32rr };
2750 // Special case signed division by power of 2.
2751 if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1))
2753 assert(Class != cLong && "This doesn't handle 64-bit divides!");
2754 int V = CI->getValue();
2756 if (V == 1) { // X /s 1 => X
2757 unsigned Op0Reg = getReg(Op0, BB, IP);
2758 BuildMI(*BB, IP, MovOpcode[Class], 1, ResultReg).addReg(Op0Reg);
2762 if (V == -1) { // X /s -1 => -X
2763 unsigned Op0Reg = getReg(Op0, BB, IP);
2764 BuildMI(*BB, IP, NEGOpcode[Class], 1, ResultReg).addReg(Op0Reg);
2768 if (V == 2 || V == -2) { // X /s 2
2769 static const unsigned CMPOpcode[] = {
2770 X86::CMP8ri, X86::CMP16ri, X86::CMP32ri
2772 static const unsigned SBBOpcode[] = {
2773 X86::SBB8ri, X86::SBB16ri, X86::SBB32ri
2775 unsigned Op0Reg = getReg(Op0, BB, IP);
2776 unsigned SignBit = 1 << (CI->getType()->getPrimitiveSize()*8-1);
2777 BuildMI(*BB, IP, CMPOpcode[Class], 2).addReg(Op0Reg).addImm(SignBit);
2779 unsigned TmpReg = makeAnotherReg(Op0->getType());
2780 BuildMI(*BB, IP, SBBOpcode[Class], 2, TmpReg).addReg(Op0Reg).addImm(-1);
2782 unsigned TmpReg2 = V == 2 ? ResultReg : makeAnotherReg(Op0->getType());
2783 BuildMI(*BB, IP, SAROpcode[Class], 2, TmpReg2).addReg(TmpReg).addImm(1);
2785 BuildMI(*BB, IP, NEGOpcode[Class], 1, ResultReg).addReg(TmpReg2);
2791 if (V < 0) { // Not a positive power of 2?
2793 isNeg = true; // Maybe it's a negative power of 2.
2795 if (unsigned Log = ExactLog2(V)) {
2797 unsigned Op0Reg = getReg(Op0, BB, IP);
2798 unsigned TmpReg = makeAnotherReg(Op0->getType());
2799 BuildMI(*BB, IP, SAROpcode[Class], 2, TmpReg)
2800 .addReg(Op0Reg).addImm(Log-1);
2801 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
2802 BuildMI(*BB, IP, SHROpcode[Class], 2, TmpReg2)
2803 .addReg(TmpReg).addImm(32-Log);
2804 unsigned TmpReg3 = makeAnotherReg(Op0->getType());
2805 BuildMI(*BB, IP, ADDOpcode[Class], 2, TmpReg3)
2806 .addReg(Op0Reg).addReg(TmpReg2);
2808 unsigned TmpReg4 = isNeg ? makeAnotherReg(Op0->getType()) : ResultReg;
2809 BuildMI(*BB, IP, SAROpcode[Class], 2, TmpReg4)
2810 .addReg(TmpReg3).addImm(Log);
2812 BuildMI(*BB, IP, NEGOpcode[Class], 1, ResultReg).addReg(TmpReg4);
2816 assert(Class != cLong && "This doesn't handle 64-bit remainder!");
2817 int V = CI->getValue();
2819 if (V == 2 || V == -2) { // X % 2, X % -2
2820 static const unsigned SExtOpcode[] = { X86::CBW, X86::CWD, X86::CDQ };
2821 static const unsigned BaseReg[] = { X86::AL , X86::AX , X86::EAX };
2822 static const unsigned SExtReg[] = { X86::AH , X86::DX , X86::EDX };
2823 static const unsigned ANDOpcode[] = {
2824 X86::AND8ri, X86::AND16ri, X86::AND32ri
2826 static const unsigned XOROpcode[] = {
2827 X86::XOR8rr, X86::XOR16rr, X86::XOR32rr
2829 static const unsigned SUBOpcode[] = {
2830 X86::SUB8rr, X86::SUB16rr, X86::SUB32rr
2833 // Sign extend result into reg of -1 or 0.
2834 unsigned Op0Reg = getReg(Op0, BB, IP);
2835 BuildMI(*BB, IP, MovOpcode[Class], 1, BaseReg[Class]).addReg(Op0Reg);
2836 BuildMI(*BB, IP, SExtOpcode[Class], 0);
2837 unsigned TmpReg0 = makeAnotherReg(Op0->getType());
2838 BuildMI(*BB, IP, MovOpcode[Class], 1, TmpReg0).addReg(SExtReg[Class]);
2840 unsigned TmpReg1 = makeAnotherReg(Op0->getType());
2841 BuildMI(*BB, IP, ANDOpcode[Class], 2, TmpReg1).addReg(Op0Reg).addImm(1);
2843 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
2844 BuildMI(*BB, IP, XOROpcode[Class], 2,
2845 TmpReg2).addReg(TmpReg1).addReg(TmpReg0);
2846 BuildMI(*BB, IP, SUBOpcode[Class], 2,
2847 ResultReg).addReg(TmpReg2).addReg(TmpReg0);
2852 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
2853 static const unsigned ClrOpcode[]={ X86::MOV8ri, X86::MOV16ri, X86::MOV32ri };
2854 static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
2856 static const unsigned DivOpcode[][4] = {
2857 { X86::DIV8r , X86::DIV16r , X86::DIV32r , 0 }, // Unsigned division
2858 { X86::IDIV8r, X86::IDIV16r, X86::IDIV32r, 0 }, // Signed division
2861 unsigned Reg = Regs[Class];
2862 unsigned ExtReg = ExtRegs[Class];
2864 // Put the first operand into one of the A registers...
2865 unsigned Op0Reg = getReg(Op0, BB, IP);
2866 unsigned Op1Reg = getReg(Op1, BB, IP);
2867 BuildMI(*BB, IP, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
2869 if (Ty->isSigned()) {
2870 // Emit a sign extension instruction...
2871 unsigned ShiftResult = makeAnotherReg(Op0->getType());
2872 BuildMI(*BB, IP, SAROpcode[Class], 2,ShiftResult).addReg(Op0Reg).addImm(31);
2873 BuildMI(*BB, IP, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult);
2875 // Emit the appropriate divide or remainder instruction...
2876 BuildMI(*BB, IP, DivOpcode[1][Class], 1).addReg(Op1Reg);
2878 // If unsigned, emit a zeroing instruction... (reg = 0)
2879 BuildMI(*BB, IP, ClrOpcode[Class], 2, ExtReg).addImm(0);
2881 // Emit the appropriate divide or remainder instruction...
2882 BuildMI(*BB, IP, DivOpcode[0][Class], 1).addReg(Op1Reg);
2885 // Figure out which register we want to pick the result out of...
2886 unsigned DestReg = isDiv ? Reg : ExtReg;
2888 // Put the result into the destination register...
2889 BuildMI(*BB, IP, MovOpcode[Class], 1, ResultReg).addReg(DestReg);
2893 /// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
2894 /// for constant immediate shift values, and for constant immediate
2895 /// shift values equal to 1. Even the general case is sort of special,
2896 /// because the shift amount has to be in CL, not just any old register.
2898 void X86ISel::visitShiftInst(ShiftInst &I) {
2899 MachineBasicBlock::iterator IP = BB->end ();
2900 emitShiftOperation (BB, IP, I.getOperand (0), I.getOperand (1),
2901 I.getOpcode () == Instruction::Shl, I.getType (),
2905 /// Emit code for a 'SHLD DestReg, Op0, Op1, Amt' operation, where Amt is a
2907 void X86ISel::doSHLDConst(MachineBasicBlock *MBB,
2908 MachineBasicBlock::iterator IP,
2909 unsigned DestReg, unsigned Op0Reg, unsigned Op1Reg,
2911 // SHLD is a very inefficient operation on every processor, try to do
2912 // somethign simpler for common values of 'Amt'.
2914 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg).addReg(Op0Reg);
2915 } else if (Amt == 1) {
2916 unsigned Tmp = makeAnotherReg(Type::UIntTy);
2917 BuildMI(*MBB, IP, X86::ADD32rr, 2, Tmp).addReg(Op1Reg).addReg(Op1Reg);
2918 BuildMI(*MBB, IP, X86::ADC32rr, 2, DestReg).addReg(Op0Reg).addReg(Op0Reg);
2919 } else if (Amt == 2 || Amt == 3) {
2920 // On the P4 and Athlon it is cheaper to replace shld ..., 2|3 with a
2921 // shift/lea pair. NOTE: This should not be done on the P6 family!
2922 unsigned Tmp = makeAnotherReg(Type::UIntTy);
2923 BuildMI(*MBB, IP, X86::SHR32ri, 2, Tmp).addReg(Op1Reg).addImm(32-Amt);
2925 AM.BaseType = X86AddressMode::RegBase;
2927 AM.Scale = 1 << Amt;
2928 AM.IndexReg = Op0Reg;
2930 addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 4, DestReg), AM);
2932 // NOTE: It is always cheaper on the P4 to emit SHLD as two shifts and an OR
2933 // than it is to emit a real SHLD.
2935 BuildMI(*MBB, IP, X86::SHLD32rri8, 3,
2936 DestReg).addReg(Op0Reg).addReg(Op1Reg).addImm(Amt);
2940 /// emitShiftOperation - Common code shared between visitShiftInst and
2941 /// constant expression support.
2942 void X86ISel::emitShiftOperation(MachineBasicBlock *MBB,
2943 MachineBasicBlock::iterator IP,
2944 Value *Op, Value *ShiftAmount,
2945 bool isLeftShift, const Type *ResultTy,
2947 unsigned SrcReg = getReg (Op, MBB, IP);
2948 bool isSigned = ResultTy->isSigned ();
2949 unsigned Class = getClass (ResultTy);
2951 static const unsigned ConstantOperand[][3] = {
2952 { X86::SHR8ri, X86::SHR16ri, X86::SHR32ri }, // SHR
2953 { X86::SAR8ri, X86::SAR16ri, X86::SAR32ri }, // SAR
2954 { X86::SHL8ri, X86::SHL16ri, X86::SHL32ri }, // SHL
2955 { X86::SHL8ri, X86::SHL16ri, X86::SHL32ri }, // SAL = SHL
2958 static const unsigned NonConstantOperand[][3] = {
2959 { X86::SHR8rCL, X86::SHR16rCL, X86::SHR32rCL }, // SHR
2960 { X86::SAR8rCL, X86::SAR16rCL, X86::SAR32rCL }, // SAR
2961 { X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL }, // SHL
2962 { X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL }, // SAL = SHL
2965 // Longs, as usual, are handled specially.
2966 if (Class == cLong) {
2967 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2968 unsigned Amount = CUI->getValue();
2969 if (Amount == 1 && isLeftShift) { // X << 1 == X+X
2970 BuildMI(*MBB, IP, X86::ADD32rr, 2,
2971 DestReg).addReg(SrcReg).addReg(SrcReg);
2972 BuildMI(*MBB, IP, X86::ADC32rr, 2,
2973 DestReg+1).addReg(SrcReg+1).addReg(SrcReg+1);
2974 } else if (Amount < 32) {
2975 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
2977 doSHLDConst(MBB, IP, DestReg+1, SrcReg+1, SrcReg, Amount);
2978 BuildMI(*MBB, IP, Opc[2], 2, DestReg).addReg(SrcReg).addImm(Amount);
2980 BuildMI(*MBB, IP, X86::SHRD32rri8, 3,
2981 DestReg).addReg(SrcReg ).addReg(SrcReg+1).addImm(Amount);
2982 BuildMI(*MBB, IP, Opc[2],2,DestReg+1).addReg(SrcReg+1).addImm(Amount);
2984 } else if (Amount == 32) {
2986 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(SrcReg);
2987 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
2989 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg+1);
2991 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
2993 BuildMI(*MBB, IP, X86::SAR32ri, 2,
2994 DestReg+1).addReg(SrcReg).addImm(31);
2997 } else { // Shifting more than 32 bits
3000 BuildMI(*MBB, IP, X86::SHL32ri, 2,
3001 DestReg + 1).addReg(SrcReg).addImm(Amount);
3002 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
3004 BuildMI(*MBB, IP, isSigned ? X86::SAR32ri : X86::SHR32ri, 2,
3005 DestReg).addReg(SrcReg+1).addImm(Amount);
3006 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
3010 unsigned TmpReg = makeAnotherReg(Type::IntTy);
3011 if (!isLeftShift && isSigned) {
3012 // If this is a SHR of a Long, then we need to do funny sign extension
3013 // stuff. TmpReg gets the value to use as the high-part if we are
3014 // shifting more than 32 bits.
3015 BuildMI(*MBB, IP, X86::SAR32ri, 2, TmpReg).addReg(SrcReg).addImm(31);
3017 // Other shifts use a fixed zero value if the shift is more than 32
3019 BuildMI(*MBB, IP, X86::MOV32ri, 1, TmpReg).addImm(0);
3022 // Initialize CL with the shift amount...
3023 unsigned ShiftAmountReg = getReg(ShiftAmount, MBB, IP);
3024 BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg);
3026 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
3027 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
3029 // TmpReg2 = shld inHi, inLo
3030 BuildMI(*MBB, IP, X86::SHLD32rrCL,2,TmpReg2).addReg(SrcReg+1)
3032 // TmpReg3 = shl inLo, CL
3033 BuildMI(*MBB, IP, X86::SHL32rCL, 1, TmpReg3).addReg(SrcReg);
3035 // Set the flags to indicate whether the shift was by more than 32 bits.
3036 BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32);
3038 // DestHi = (>32) ? TmpReg3 : TmpReg2;
3039 BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
3040 DestReg+1).addReg(TmpReg2).addReg(TmpReg3);
3041 // DestLo = (>32) ? TmpReg : TmpReg3;
3042 BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
3043 DestReg).addReg(TmpReg3).addReg(TmpReg);
3045 // TmpReg2 = shrd inLo, inHi
3046 BuildMI(*MBB, IP, X86::SHRD32rrCL,2,TmpReg2).addReg(SrcReg)
3048 // TmpReg3 = s[ah]r inHi, CL
3049 BuildMI(*MBB, IP, isSigned ? X86::SAR32rCL : X86::SHR32rCL, 1, TmpReg3)
3052 // Set the flags to indicate whether the shift was by more than 32 bits.
3053 BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32);
3055 // DestLo = (>32) ? TmpReg3 : TmpReg2;
3056 BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
3057 DestReg).addReg(TmpReg2).addReg(TmpReg3);
3059 // DestHi = (>32) ? TmpReg : TmpReg3;
3060 BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
3061 DestReg+1).addReg(TmpReg3).addReg(TmpReg);
3067 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
3068 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
3069 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
3071 if (CUI->getValue() == 1 && isLeftShift) { // X << 1 -> X+X
3072 static const int AddOpC[] = { X86::ADD8rr, X86::ADD16rr, X86::ADD32rr };
3073 BuildMI(*MBB, IP, AddOpC[Class], 2,DestReg).addReg(SrcReg).addReg(SrcReg);
3075 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
3076 BuildMI(*MBB, IP, Opc[Class], 2,
3077 DestReg).addReg(SrcReg).addImm(CUI->getValue());
3079 } else { // The shift amount is non-constant.
3080 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
3081 BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg);
3083 const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned];
3084 BuildMI(*MBB, IP, Opc[Class], 1, DestReg).addReg(SrcReg);
3089 /// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
3090 /// instruction. The load and store instructions are the only place where we
3091 /// need to worry about the memory layout of the target machine.
3093 void X86ISel::visitLoadInst(LoadInst &I) {
3094 // Check to see if this load instruction is going to be folded into a binary
3095 // instruction, like add. If so, we don't want to emit it. Wouldn't a real
3096 // pattern matching instruction selector be nice?
3097 unsigned Class = getClassB(I.getType());
3098 if (I.hasOneUse()) {
3099 Instruction *User = cast<Instruction>(I.use_back());
3100 switch (User->getOpcode()) {
3101 case Instruction::Cast:
3102 // If this is a cast from a signed-integer type to a floating point type,
3103 // fold the cast here.
3104 if (getClassB(User->getType()) == cFP &&
3105 (I.getType() == Type::ShortTy || I.getType() == Type::IntTy ||
3106 I.getType() == Type::LongTy)) {
3107 unsigned DestReg = getReg(User);
3108 static const unsigned Opcode[] = {
3109 0/*BYTE*/, X86::FILD16m, X86::FILD32m, 0/*FP*/, X86::FILD64m
3112 if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
3113 unsigned FI = getFixedSizedAllocaFI(AI);
3114 addFrameReference(BuildMI(BB, Opcode[Class], 4, DestReg), FI);
3117 getAddressingMode(I.getOperand(0), AM);
3118 addFullAddress(BuildMI(BB, Opcode[Class], 4, DestReg), AM);
3126 case Instruction::Add:
3127 case Instruction::Sub:
3128 case Instruction::And:
3129 case Instruction::Or:
3130 case Instruction::Xor:
3131 if (Class == cLong) User = 0;
3133 case Instruction::Mul:
3134 case Instruction::Div:
3135 if (Class != cFP) User = 0;
3136 break; // Folding only implemented for floating point.
3137 default: User = 0; break;
3141 // Okay, we found a user. If the load is the first operand and there is
3142 // no second operand load, reverse the operand ordering. Note that this
3143 // can fail for a subtract (ie, no change will be made).
3144 bool Swapped = false;
3145 if (!isa<LoadInst>(User->getOperand(1)))
3146 Swapped = !cast<BinaryOperator>(User)->swapOperands();
3148 // Okay, now that everything is set up, if this load is used by the second
3149 // operand, and if there are no instructions that invalidate the load
3150 // before the binary operator, eliminate the load.
3151 if (User->getOperand(1) == &I &&
3152 isSafeToFoldLoadIntoInstruction(I, *User))
3153 return; // Eliminate the load!
3155 // If this is a floating point sub or div, we won't be able to swap the
3156 // operands, but we will still be able to eliminate the load.
3157 if (Class == cFP && User->getOperand(0) == &I &&
3158 !isa<LoadInst>(User->getOperand(1)) &&
3159 (User->getOpcode() == Instruction::Sub ||
3160 User->getOpcode() == Instruction::Div) &&
3161 isSafeToFoldLoadIntoInstruction(I, *User))
3162 return; // Eliminate the load!
3164 // If we swapped the operands to the instruction, but couldn't fold the
3165 // load anyway, swap them back. We don't want to break add X, int
3167 if (Swapped) cast<BinaryOperator>(User)->swapOperands();
3171 static const unsigned Opcodes[] = {
3172 X86::MOV8rm, X86::MOV16rm, X86::MOV32rm, X86::FLD32m, X86::MOV32rm
3174 unsigned Opcode = Opcodes[Class];
3175 if (I.getType() == Type::DoubleTy) Opcode = X86::FLD64m;
3177 unsigned DestReg = getReg(I);
3179 if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
3180 unsigned FI = getFixedSizedAllocaFI(AI);
3181 if (Class == cLong) {
3182 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, DestReg), FI);
3183 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), FI, 4);
3185 addFrameReference(BuildMI(BB, Opcode, 4, DestReg), FI);
3189 getAddressingMode(I.getOperand(0), AM);
3191 if (Class == cLong) {
3192 addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg), AM);
3194 addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), AM);
3196 addFullAddress(BuildMI(BB, Opcode, 4, DestReg), AM);
3201 /// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
3204 void X86ISel::visitStoreInst(StoreInst &I) {
3206 getAddressingMode(I.getOperand(1), AM);
3208 const Type *ValTy = I.getOperand(0)->getType();
3209 unsigned Class = getClassB(ValTy);
3211 if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(0))) {
3212 uint64_t Val = CI->getRawValue();
3213 if (Class == cLong) {
3214 addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(Val & ~0U);
3216 addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(Val>>32);
3218 static const unsigned Opcodes[] = {
3219 X86::MOV8mi, X86::MOV16mi, X86::MOV32mi
3221 unsigned Opcode = Opcodes[Class];
3222 addFullAddress(BuildMI(BB, Opcode, 5), AM).addImm(Val);
3224 } else if (isa<ConstantPointerNull>(I.getOperand(0))) {
3225 addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(0);
3226 } else if (ConstantBool *CB = dyn_cast<ConstantBool>(I.getOperand(0))) {
3227 addFullAddress(BuildMI(BB, X86::MOV8mi, 5), AM).addImm(CB->getValue());
3228 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) {
3229 // Store constant FP values with integer instructions to avoid having to
3230 // load the constants from the constant pool then do a store.
3231 if (CFP->getType() == Type::FloatTy) {
3236 V.F = CFP->getValue();
3237 addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(V.I);
3243 V.F = CFP->getValue();
3244 addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm((unsigned)V.I);
3246 addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(
3247 unsigned(V.I >> 32));
3250 } else if (Class == cLong) {
3251 unsigned ValReg = getReg(I.getOperand(0));
3252 addFullAddress(BuildMI(BB, X86::MOV32mr, 5), AM).addReg(ValReg);
3254 addFullAddress(BuildMI(BB, X86::MOV32mr, 5), AM).addReg(ValReg+1);
3256 // FIXME: stop emitting these two instructions:
3257 // movl $global,%eax
3259 // when one instruction will suffice. That includes when the global
3260 // has an offset applied to it.
3261 unsigned ValReg = getReg(I.getOperand(0));
3262 static const unsigned Opcodes[] = {
3263 X86::MOV8mr, X86::MOV16mr, X86::MOV32mr, X86::FST32m
3265 unsigned Opcode = Opcodes[Class];
3266 if (ValTy == Type::DoubleTy) Opcode = X86::FST64m;
3268 addFullAddress(BuildMI(BB, Opcode, 1+4), AM).addReg(ValReg);
3273 /// visitCastInst - Here we have various kinds of copying with or without sign
3274 /// extension going on.
3276 void X86ISel::visitCastInst(CastInst &CI) {
3277 Value *Op = CI.getOperand(0);
3279 unsigned SrcClass = getClassB(Op->getType());
3280 unsigned DestClass = getClassB(CI.getType());
3281 // Noop casts are not emitted: getReg will return the source operand as the
3282 // register to use for any uses of the noop cast.
3283 if (DestClass == SrcClass) {
3284 // The only detail in this plan is that casts from double -> float are
3285 // truncating operations that we have to codegen through memory (despite
3286 // the fact that the source/dest registers are the same class).
3287 if (CI.getType() != Type::FloatTy || Op->getType() != Type::DoubleTy)
3291 // If this is a cast from a 32-bit integer to a Long type, and the only uses
3292 // of the case are GEP instructions, then the cast does not need to be
3293 // generated explicitly, it will be folded into the GEP.
3294 if (DestClass == cLong && SrcClass == cInt) {
3295 bool AllUsesAreGEPs = true;
3296 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
3297 if (!isa<GetElementPtrInst>(*I)) {
3298 AllUsesAreGEPs = false;
3302 // No need to codegen this cast if all users are getelementptr instrs...
3303 if (AllUsesAreGEPs) return;
3306 // If this cast converts a load from a short,int, or long integer to a FP
3307 // value, we will have folded this cast away.
3308 if (DestClass == cFP && isa<LoadInst>(Op) && Op->hasOneUse() &&
3309 (Op->getType() == Type::ShortTy || Op->getType() == Type::IntTy ||
3310 Op->getType() == Type::LongTy))
3314 unsigned DestReg = getReg(CI);
3315 MachineBasicBlock::iterator MI = BB->end();
3316 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
3319 /// emitCastOperation - Common code shared between visitCastInst and constant
3320 /// expression cast support.
3322 void X86ISel::emitCastOperation(MachineBasicBlock *BB,
3323 MachineBasicBlock::iterator IP,
3324 Value *Src, const Type *DestTy,
3326 const Type *SrcTy = Src->getType();
3327 unsigned SrcClass = getClassB(SrcTy);
3328 unsigned DestClass = getClassB(DestTy);
3329 unsigned SrcReg = getReg(Src, BB, IP);
3331 // Implement casts to bool by using compare on the operand followed by set if
3332 // not zero on the result.
3333 if (DestTy == Type::BoolTy) {
3336 BuildMI(*BB, IP, X86::TEST8rr, 2).addReg(SrcReg).addReg(SrcReg);
3339 BuildMI(*BB, IP, X86::TEST16rr, 2).addReg(SrcReg).addReg(SrcReg);
3342 BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg).addReg(SrcReg);
3345 unsigned TmpReg = makeAnotherReg(Type::IntTy);
3346 BuildMI(*BB, IP, X86::OR32rr, 2, TmpReg).addReg(SrcReg).addReg(SrcReg+1);
3350 BuildMI(*BB, IP, X86::FTST, 1).addReg(SrcReg);
3351 BuildMI(*BB, IP, X86::FNSTSW8r, 0);
3352 BuildMI(*BB, IP, X86::SAHF, 1);
3356 // If the zero flag is not set, then the value is true, set the byte to
3358 BuildMI(*BB, IP, X86::SETNEr, 1, DestReg);
3362 static const unsigned RegRegMove[] = {
3363 X86::MOV8rr, X86::MOV16rr, X86::MOV32rr, X86::FpMOV, X86::MOV32rr
3366 // Implement casts between values of the same type class (as determined by
3367 // getClass) by using a register-to-register move.
3368 if (SrcClass == DestClass) {
3369 if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) {
3370 BuildMI(*BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg);
3371 } else if (SrcClass == cFP) {
3372 if (SrcTy == Type::FloatTy) { // double -> float
3373 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
3374 BuildMI(*BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg);
3375 } else { // float -> double
3376 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
3377 "Unknown cFP member!");
3378 // Truncate from double to float by storing to memory as short, then
3380 unsigned FltAlign = TM.getTargetData().getFloatAlignment();
3381 int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign);
3382 addFrameReference(BuildMI(*BB, IP, X86::FST32m, 5), FrameIdx).addReg(SrcReg);
3383 addFrameReference(BuildMI(*BB, IP, X86::FLD32m, 5, DestReg), FrameIdx);
3385 } else if (SrcClass == cLong) {
3386 BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg);
3387 BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg+1).addReg(SrcReg+1);
3389 assert(0 && "Cannot handle this type of cast instruction!");
3395 // Handle cast of SMALLER int to LARGER int using a move with sign extension
3396 // or zero extension, depending on whether the source type was signed.
3397 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
3398 SrcClass < DestClass) {
3399 bool isLong = DestClass == cLong;
3400 if (isLong) DestClass = cInt;
3402 static const unsigned Opc[][4] = {
3403 { X86::MOVSX16rr8, X86::MOVSX32rr8, X86::MOVSX32rr16, X86::MOV32rr }, // s
3404 { X86::MOVZX16rr8, X86::MOVZX32rr8, X86::MOVZX32rr16, X86::MOV32rr } // u
3407 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
3408 BuildMI(*BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1,
3409 DestReg).addReg(SrcReg);
3411 if (isLong) { // Handle upper 32 bits as appropriate...
3412 if (isUnsigned) // Zero out top bits...
3413 BuildMI(*BB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
3414 else // Sign extend bottom half...
3415 BuildMI(*BB, IP, X86::SAR32ri, 2, DestReg+1).addReg(DestReg).addImm(31);
3420 // Special case long -> int ...
3421 if (SrcClass == cLong && DestClass == cInt) {
3422 BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg);
3426 // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a
3427 // move out of AX or AL.
3428 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
3429 && SrcClass > DestClass) {
3430 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX };
3431 BuildMI(*BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg);
3432 BuildMI(*BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]);
3436 // Handle casts from integer to floating point now...
3437 if (DestClass == cFP) {
3438 // Promote the integer to a type supported by FLD. We do this because there
3439 // are no unsigned FLD instructions, so we must promote an unsigned value to
3440 // a larger signed value, then use FLD on the larger value.
3442 const Type *PromoteType = 0;
3443 unsigned PromoteOpcode = 0;
3444 unsigned RealDestReg = DestReg;
3445 switch (SrcTy->getTypeID()) {
3446 case Type::BoolTyID:
3447 case Type::SByteTyID:
3448 // We don't have the facilities for directly loading byte sized data from
3449 // memory (even signed). Promote it to 16 bits.
3450 PromoteType = Type::ShortTy;
3451 PromoteOpcode = X86::MOVSX16rr8;
3453 case Type::UByteTyID:
3454 PromoteType = Type::ShortTy;
3455 PromoteOpcode = X86::MOVZX16rr8;
3457 case Type::UShortTyID:
3458 PromoteType = Type::IntTy;
3459 PromoteOpcode = X86::MOVZX32rr16;
3461 case Type::ULongTyID:
3462 case Type::UIntTyID:
3463 // Don't fild into the read destination.
3464 DestReg = makeAnotherReg(Type::DoubleTy);
3466 default: // No promotion needed...
3471 unsigned TmpReg = makeAnotherReg(PromoteType);
3472 BuildMI(*BB, IP, PromoteOpcode, 1, TmpReg).addReg(SrcReg);
3473 SrcTy = PromoteType;
3474 SrcClass = getClass(PromoteType);
3478 // Spill the integer to memory and reload it from there...
3480 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
3482 if (SrcClass == cLong) {
3483 addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5),
3484 FrameIdx).addReg(SrcReg);
3485 addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5),
3486 FrameIdx, 4).addReg(SrcReg+1);
3488 static const unsigned Op1[] = { X86::MOV8mr, X86::MOV16mr, X86::MOV32mr };
3489 addFrameReference(BuildMI(*BB, IP, Op1[SrcClass], 5),
3490 FrameIdx).addReg(SrcReg);
3493 static const unsigned Op2[] =
3494 { 0/*byte*/, X86::FILD16m, X86::FILD32m, 0/*FP*/, X86::FILD64m };
3495 addFrameReference(BuildMI(*BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx);
3497 if (SrcTy == Type::UIntTy) {
3498 // If this is a cast from uint -> double, we need to be careful about if
3499 // the "sign" bit is set. If so, we don't want to make a negative number,
3500 // we want to make a positive number. Emit code to add an offset if the
3503 // Compute whether the sign bit is set by shifting the reg right 31 bits.
3504 unsigned IsNeg = makeAnotherReg(Type::IntTy);
3505 BuildMI(BB, X86::SHR32ri, 2, IsNeg).addReg(SrcReg).addImm(31);
3507 // Create a CP value that has the offset in one word and 0 in the other.
3508 static ConstantInt *TheOffset = ConstantUInt::get(Type::ULongTy,
3509 0x4f80000000000000ULL);
3510 unsigned CPI = F->getConstantPool()->getConstantPoolIndex(TheOffset);
3511 BuildMI(BB, X86::FADD32m, 5, RealDestReg).addReg(DestReg)
3512 .addConstantPoolIndex(CPI).addZImm(4).addReg(IsNeg).addSImm(0);
3514 } else if (SrcTy == Type::ULongTy) {
3515 // We need special handling for unsigned 64-bit integer sources. If the
3516 // input number has the "sign bit" set, then we loaded it incorrectly as a
3517 // negative 64-bit number. In this case, add an offset value.
3519 // Emit a test instruction to see if the dynamic input value was signed.
3520 BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg+1).addReg(SrcReg+1);
3522 // If the sign bit is set, get a pointer to an offset, otherwise get a
3523 // pointer to a zero.
3524 MachineConstantPool *CP = F->getConstantPool();
3525 unsigned Zero = makeAnotherReg(Type::IntTy);
3526 Constant *Null = Constant::getNullValue(Type::UIntTy);
3527 addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Zero),
3528 CP->getConstantPoolIndex(Null));
3529 unsigned Offset = makeAnotherReg(Type::IntTy);
3530 Constant *OffsetCst = ConstantUInt::get(Type::UIntTy, 0x5f800000);
3532 addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Offset),
3533 CP->getConstantPoolIndex(OffsetCst));
3534 unsigned Addr = makeAnotherReg(Type::IntTy);
3535 BuildMI(*BB, IP, X86::CMOVS32rr, 2, Addr).addReg(Zero).addReg(Offset);
3537 // Load the constant for an add. FIXME: this could make an 'fadd' that
3538 // reads directly from memory, but we don't support these yet.
3539 unsigned ConstReg = makeAnotherReg(Type::DoubleTy);
3540 addDirectMem(BuildMI(*BB, IP, X86::FLD32m, 4, ConstReg), Addr);
3542 BuildMI(*BB, IP, X86::FpADD, 2, RealDestReg)
3543 .addReg(ConstReg).addReg(DestReg);
3549 // Handle casts from floating point to integer now...
3550 if (SrcClass == cFP) {
3551 // Change the floating point control register to use "round towards zero"
3552 // mode when truncating to an integer value.
3554 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
3555 addFrameReference(BuildMI(*BB, IP, X86::FNSTCW16m, 4), CWFrameIdx);
3557 // Load the old value of the high byte of the control word...
3558 unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy);
3559 addFrameReference(BuildMI(*BB, IP, X86::MOV8rm, 4, HighPartOfCW),
3562 // Set the high part to be round to zero...
3563 addFrameReference(BuildMI(*BB, IP, X86::MOV8mi, 5),
3564 CWFrameIdx, 1).addImm(12);
3566 // Reload the modified control word now...
3567 addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx);
3569 // Restore the memory image of control word to original value
3570 addFrameReference(BuildMI(*BB, IP, X86::MOV8mr, 5),
3571 CWFrameIdx, 1).addReg(HighPartOfCW);
3573 // We don't have the facilities for directly storing byte sized data to
3574 // memory. Promote it to 16 bits. We also must promote unsigned values to
3575 // larger classes because we only have signed FP stores.
3576 unsigned StoreClass = DestClass;
3577 const Type *StoreTy = DestTy;
3578 if (StoreClass == cByte || DestTy->isUnsigned())
3579 switch (StoreClass) {
3580 case cByte: StoreTy = Type::ShortTy; StoreClass = cShort; break;
3581 case cShort: StoreTy = Type::IntTy; StoreClass = cInt; break;
3582 case cInt: StoreTy = Type::LongTy; StoreClass = cLong; break;
3583 // The following treatment of cLong may not be perfectly right,
3584 // but it survives chains of casts of the form
3585 // double->ulong->double.
3586 case cLong: StoreTy = Type::LongTy; StoreClass = cLong; break;
3587 default: assert(0 && "Unknown store class!");
3590 // Spill the integer to memory and reload it from there...
3592 F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData());
3594 static const unsigned Op1[] =
3595 { 0, X86::FIST16m, X86::FIST32m, 0, X86::FISTP64m };
3596 addFrameReference(BuildMI(*BB, IP, Op1[StoreClass], 5),
3597 FrameIdx).addReg(SrcReg);
3599 if (DestClass == cLong) {
3600 addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg), FrameIdx);
3601 addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg+1),
3604 static const unsigned Op2[] = { X86::MOV8rm, X86::MOV16rm, X86::MOV32rm };
3605 addFrameReference(BuildMI(*BB, IP, Op2[DestClass], 4, DestReg), FrameIdx);
3608 // Reload the original control word now...
3609 addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx);
3613 // Anything we haven't handled already, we can't (yet) handle at all.
3614 assert(0 && "Unhandled cast instruction!");
3618 /// visitVANextInst - Implement the va_next instruction...
3620 void X86ISel::visitVANextInst(VANextInst &I) {
3621 unsigned VAList = getReg(I.getOperand(0));
3622 unsigned DestReg = getReg(I);
3625 switch (I.getArgType()->getTypeID()) {
3628 assert(0 && "Error: bad type for va_next instruction!");
3630 case Type::PointerTyID:
3631 case Type::UIntTyID:
3635 case Type::ULongTyID:
3636 case Type::LongTyID:
3637 case Type::DoubleTyID:
3642 // Increment the VAList pointer...
3643 BuildMI(BB, X86::ADD32ri, 2, DestReg).addReg(VAList).addImm(Size);
3646 void X86ISel::visitVAArgInst(VAArgInst &I) {
3647 unsigned VAList = getReg(I.getOperand(0));
3648 unsigned DestReg = getReg(I);
3650 switch (I.getType()->getTypeID()) {
3653 assert(0 && "Error: bad type for va_next instruction!");
3655 case Type::PointerTyID:
3656 case Type::UIntTyID:
3658 addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList);
3660 case Type::ULongTyID:
3661 case Type::LongTyID:
3662 addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList);
3663 addRegOffset(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), VAList, 4);
3665 case Type::DoubleTyID:
3666 addDirectMem(BuildMI(BB, X86::FLD64m, 4, DestReg), VAList);
3671 /// visitGetElementPtrInst - instruction-select GEP instructions
3673 void X86ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
3674 // If this GEP instruction will be folded into all of its users, we don't need
3675 // to explicitly calculate it!
3677 if (isGEPFoldable(0, I.getOperand(0), I.op_begin()+1, I.op_end(), AM)) {
3678 // Check all of the users of the instruction to see if they are loads and
3680 bool AllWillFold = true;
3681 for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI)
3682 if (cast<Instruction>(*UI)->getOpcode() != Instruction::Load)
3683 if (cast<Instruction>(*UI)->getOpcode() != Instruction::Store ||
3684 cast<Instruction>(*UI)->getOperand(0) == &I) {
3685 AllWillFold = false;
3689 // If the instruction is foldable, and will be folded into all users, don't
3691 if (AllWillFold) return;
3694 unsigned outputReg = getReg(I);
3695 emitGEPOperation(BB, BB->end(), I.getOperand(0),
3696 I.op_begin()+1, I.op_end(), outputReg);
3699 /// getGEPIndex - Inspect the getelementptr operands specified with GEPOps and
3700 /// GEPTypes (the derived types being stepped through at each level). On return
3701 /// from this function, if some indexes of the instruction are representable as
3702 /// an X86 lea instruction, the machine operands are put into the Ops
3703 /// instruction and the consumed indexes are poped from the GEPOps/GEPTypes
3704 /// lists. Otherwise, GEPOps.size() is returned. If this returns a an
3705 /// addressing mode that only partially consumes the input, the BaseReg input of
3706 /// the addressing mode must be left free.
3708 /// Note that there is one fewer entry in GEPTypes than there is in GEPOps.
3710 void X86ISel::getGEPIndex(MachineBasicBlock *MBB,
3711 MachineBasicBlock::iterator IP,
3712 std::vector<Value*> &GEPOps,
3713 std::vector<const Type*> &GEPTypes,
3714 X86AddressMode &AM) {
3715 const TargetData &TD = TM.getTargetData();
3717 // Clear out the state we are working with...
3718 AM.BaseType = X86AddressMode::RegBase;
3719 AM.Base.Reg = 0; // No base register
3720 AM.Scale = 1; // Unit scale
3721 AM.IndexReg = 0; // No index register
3722 AM.Disp = 0; // No displacement
3724 // While there are GEP indexes that can be folded into the current address,
3725 // keep processing them.
3726 while (!GEPTypes.empty()) {
3727 if (const StructType *StTy = dyn_cast<StructType>(GEPTypes.back())) {
3728 // It's a struct access. CUI is the index into the structure,
3729 // which names the field. This index must have unsigned type.
3730 const ConstantUInt *CUI = cast<ConstantUInt>(GEPOps.back());
3732 // Use the TargetData structure to pick out what the layout of the
3733 // structure is in memory. Since the structure index must be constant, we
3734 // can get its value and use it to find the right byte offset from the
3735 // StructLayout class's list of structure member offsets.
3736 AM.Disp += TD.getStructLayout(StTy)->MemberOffsets[CUI->getValue()];
3737 GEPOps.pop_back(); // Consume a GEP operand
3738 GEPTypes.pop_back();
3740 // It's an array or pointer access: [ArraySize x ElementType].
3741 const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
3742 Value *idx = GEPOps.back();
3744 // idx is the index into the array. Unlike with structure
3745 // indices, we may not know its actual value at code-generation
3748 // If idx is a constant, fold it into the offset.
3749 unsigned TypeSize = TD.getTypeSize(SqTy->getElementType());
3750 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
3751 AM.Disp += TypeSize*CSI->getValue();
3752 } else if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(idx)) {
3753 AM.Disp += TypeSize*CUI->getValue();
3755 // If the index reg is already taken, we can't handle this index.
3756 if (AM.IndexReg) return;
3758 // If this is a size that we can handle, then add the index as
3760 case 1: case 2: case 4: case 8:
3761 // These are all acceptable scales on X86.
3762 AM.Scale = TypeSize;
3765 // Otherwise, we can't handle this scale
3769 if (CastInst *CI = dyn_cast<CastInst>(idx))
3770 if (CI->getOperand(0)->getType() == Type::IntTy ||
3771 CI->getOperand(0)->getType() == Type::UIntTy)
3772 idx = CI->getOperand(0);
3774 AM.IndexReg = MBB ? getReg(idx, MBB, IP) : 1;
3777 GEPOps.pop_back(); // Consume a GEP operand
3778 GEPTypes.pop_back();
3782 // GEPTypes is empty, which means we have a single operand left. Set it as
3783 // the base register.
3785 assert(AM.Base.Reg == 0);
3787 if (AllocaInst *AI = dyn_castFixedAlloca(GEPOps.back())) {
3788 AM.BaseType = X86AddressMode::FrameIndexBase;
3789 AM.Base.FrameIndex = getFixedSizedAllocaFI(AI);
3794 if (GlobalValue *GV = dyn_cast<GlobalValue>(GEPOps.back())) {
3800 AM.Base.Reg = MBB ? getReg(GEPOps[0], MBB, IP) : 1;
3801 GEPOps.pop_back(); // Consume the last GEP operand
3805 /// isGEPFoldable - Return true if the specified GEP can be completely
3806 /// folded into the addressing mode of a load/store or lea instruction.
3807 bool X86ISel::isGEPFoldable(MachineBasicBlock *MBB,
3808 Value *Src, User::op_iterator IdxBegin,
3809 User::op_iterator IdxEnd, X86AddressMode &AM) {
3811 std::vector<Value*> GEPOps;
3812 GEPOps.resize(IdxEnd-IdxBegin+1);
3814 std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
3816 std::vector<const Type*>
3817 GEPTypes(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
3818 gep_type_end(Src->getType(), IdxBegin, IdxEnd));
3820 MachineBasicBlock::iterator IP;
3821 if (MBB) IP = MBB->end();
3822 getGEPIndex(MBB, IP, GEPOps, GEPTypes, AM);
3824 // We can fold it away iff the getGEPIndex call eliminated all operands.
3825 return GEPOps.empty();
3828 void X86ISel::emitGEPOperation(MachineBasicBlock *MBB,
3829 MachineBasicBlock::iterator IP,
3830 Value *Src, User::op_iterator IdxBegin,
3831 User::op_iterator IdxEnd, unsigned TargetReg) {
3832 const TargetData &TD = TM.getTargetData();
3834 // If this is a getelementptr null, with all constant integer indices, just
3835 // replace it with TargetReg = 42.
3836 if (isa<ConstantPointerNull>(Src)) {
3837 User::op_iterator I = IdxBegin;
3838 for (; I != IdxEnd; ++I)
3839 if (!isa<ConstantInt>(*I))
3841 if (I == IdxEnd) { // All constant indices
3842 unsigned Offset = TD.getIndexedOffset(Src->getType(),
3843 std::vector<Value*>(IdxBegin, IdxEnd));
3844 BuildMI(*MBB, IP, X86::MOV32ri, 1, TargetReg).addImm(Offset);
3849 std::vector<Value*> GEPOps;
3850 GEPOps.resize(IdxEnd-IdxBegin+1);
3852 std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
3854 std::vector<const Type*> GEPTypes;
3855 GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
3856 gep_type_end(Src->getType(), IdxBegin, IdxEnd));
3858 // Keep emitting instructions until we consume the entire GEP instruction.
3859 while (!GEPOps.empty()) {
3860 unsigned OldSize = GEPOps.size();
3862 getGEPIndex(MBB, IP, GEPOps, GEPTypes, AM);
3864 if (GEPOps.size() != OldSize) {
3865 // getGEPIndex consumed some of the input. Build an LEA instruction here.
3866 unsigned NextTarget = 0;
3867 if (!GEPOps.empty()) {
3868 assert(AM.Base.Reg == 0 &&
3869 "getGEPIndex should have left the base register open for chaining!");
3870 NextTarget = AM.Base.Reg = makeAnotherReg(Type::UIntTy);
3873 if (AM.BaseType == X86AddressMode::RegBase &&
3874 AM.IndexReg == 0 && AM.Disp == 0 && !AM.GV)
3875 BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(AM.Base.Reg);
3876 else if (AM.BaseType == X86AddressMode::RegBase && AM.Base.Reg == 0 &&
3877 AM.IndexReg == 0 && AM.Disp == 0)
3878 BuildMI(*MBB, IP, X86::MOV32ri, 1, TargetReg).addGlobalAddress(AM.GV);
3880 addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, TargetReg), AM);
3882 TargetReg = NextTarget;
3883 } else if (GEPTypes.empty()) {
3884 // The getGEPIndex operation didn't want to build an LEA. Check to see if
3885 // all operands are consumed but the base pointer. If so, just load it
3886 // into the register.
3887 if (GlobalValue *GV = dyn_cast<GlobalValue>(GEPOps[0])) {
3888 BuildMI(*MBB, IP, X86::MOV32ri, 1, TargetReg).addGlobalAddress(GV);
3890 unsigned BaseReg = getReg(GEPOps[0], MBB, IP);
3891 BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(BaseReg);
3893 break; // we are now done
3896 // It's an array or pointer access: [ArraySize x ElementType].
3897 const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
3898 Value *idx = GEPOps.back();
3899 GEPOps.pop_back(); // Consume a GEP operand
3900 GEPTypes.pop_back();
3902 // Many GEP instructions use a [cast (int/uint) to LongTy] as their
3903 // operand on X86. Handle this case directly now...
3904 if (CastInst *CI = dyn_cast<CastInst>(idx))
3905 if (CI->getOperand(0)->getType() == Type::IntTy ||
3906 CI->getOperand(0)->getType() == Type::UIntTy)
3907 idx = CI->getOperand(0);
3909 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
3910 // must find the size of the pointed-to type (Not coincidentally, the next
3911 // type is the type of the elements in the array).
3912 const Type *ElTy = SqTy->getElementType();
3913 unsigned elementSize = TD.getTypeSize(ElTy);
3915 // If idxReg is a constant, we don't need to perform the multiply!
3916 if (ConstantInt *CSI = dyn_cast<ConstantInt>(idx)) {
3917 if (!CSI->isNullValue()) {
3918 unsigned Offset = elementSize*CSI->getRawValue();
3919 unsigned Reg = makeAnotherReg(Type::UIntTy);
3920 BuildMI(*MBB, IP, X86::ADD32ri, 2, TargetReg)
3921 .addReg(Reg).addImm(Offset);
3922 --IP; // Insert the next instruction before this one.
3923 TargetReg = Reg; // Codegen the rest of the GEP into this
3925 } else if (elementSize == 1) {
3926 // If the element size is 1, we don't have to multiply, just add
3927 unsigned idxReg = getReg(idx, MBB, IP);
3928 unsigned Reg = makeAnotherReg(Type::UIntTy);
3929 BuildMI(*MBB, IP, X86::ADD32rr, 2,TargetReg).addReg(Reg).addReg(idxReg);
3930 --IP; // Insert the next instruction before this one.
3931 TargetReg = Reg; // Codegen the rest of the GEP into this
3933 unsigned idxReg = getReg(idx, MBB, IP);
3934 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
3936 // Make sure we can back the iterator up to point to the first
3937 // instruction emitted.
3938 MachineBasicBlock::iterator BeforeIt = IP;
3939 if (IP == MBB->begin())
3940 BeforeIt = MBB->end();
3943 doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
3945 // Emit an ADD to add OffsetReg to the basePtr.
3946 unsigned Reg = makeAnotherReg(Type::UIntTy);
3947 BuildMI(*MBB, IP, X86::ADD32rr, 2, TargetReg)
3948 .addReg(Reg).addReg(OffsetReg);
3950 // Step to the first instruction of the multiply.
3951 if (BeforeIt == MBB->end())
3956 TargetReg = Reg; // Codegen the rest of the GEP into this
3962 /// visitAllocaInst - If this is a fixed size alloca, allocate space from the
3963 /// frame manager, otherwise do it the hard way.
3965 void X86ISel::visitAllocaInst(AllocaInst &I) {
3966 // If this is a fixed size alloca in the entry block for the function, we
3967 // statically stack allocate the space, so we don't need to do anything here.
3969 if (dyn_castFixedAlloca(&I)) return;
3971 // Find the data size of the alloca inst's getAllocatedType.
3972 const Type *Ty = I.getAllocatedType();
3973 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
3975 // Create a register to hold the temporary result of multiplying the type size
3976 // constant by the variable amount.
3977 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
3978 unsigned SrcReg1 = getReg(I.getArraySize());
3980 // TotalSizeReg = mul <numelements>, <TypeSize>
3981 MachineBasicBlock::iterator MBBI = BB->end();
3982 doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
3984 // AddedSize = add <TotalSizeReg>, 15
3985 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
3986 BuildMI(BB, X86::ADD32ri, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15);
3988 // AlignedSize = and <AddedSize>, ~15
3989 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
3990 BuildMI(BB, X86::AND32ri, 2, AlignedSize).addReg(AddedSizeReg).addImm(~15);
3992 // Subtract size from stack pointer, thereby allocating some space.
3993 BuildMI(BB, X86::SUB32rr, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize);
3995 // Put a pointer to the space into the result register, by copying
3996 // the stack pointer.
3997 BuildMI(BB, X86::MOV32rr, 1, getReg(I)).addReg(X86::ESP);
3999 // Inform the Frame Information that we have just allocated a variable-sized
4001 F->getFrameInfo()->CreateVariableSizedObject();
4004 /// visitMallocInst - Malloc instructions are code generated into direct calls
4005 /// to the library malloc.
4007 void X86ISel::visitMallocInst(MallocInst &I) {
4008 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
4011 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
4012 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
4014 Arg = makeAnotherReg(Type::UIntTy);
4015 unsigned Op0Reg = getReg(I.getOperand(0));
4016 MachineBasicBlock::iterator MBBI = BB->end();
4017 doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
4020 std::vector<ValueRecord> Args;
4021 Args.push_back(ValueRecord(Arg, Type::UIntTy));
4022 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
4023 1).addExternalSymbol("malloc", true);
4024 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
4028 /// visitFreeInst - Free instructions are code gen'd to call the free libc
4031 void X86ISel::visitFreeInst(FreeInst &I) {
4032 std::vector<ValueRecord> Args;
4033 Args.push_back(ValueRecord(I.getOperand(0)));
4034 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
4035 1).addExternalSymbol("free", true);
4036 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
4039 /// createX86SimpleInstructionSelector - This pass converts an LLVM function
4040 /// into a machine code representation is a very simple peep-hole fashion. The
4041 /// generated code sucks but the implementation is nice and simple.
4043 FunctionPass *llvm::createX86SimpleInstructionSelector(TargetMachine &TM) {
4044 return new X86ISel(TM);