1 //===-- X86ISelSimple.cpp - A simple instruction selector for x86 ---------===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines a simple peephole instruction selector for the x86 target
12 //===----------------------------------------------------------------------===//
15 #include "X86InstrBuilder.h"
16 #include "X86InstrInfo.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/Function.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/Pass.h"
22 #include "llvm/CodeGen/IntrinsicLowering.h"
23 #include "llvm/CodeGen/MachineConstantPool.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/SSARegMap.h"
27 #include "llvm/Target/MRegisterInfo.h"
28 #include "llvm/Target/TargetMachine.h"
29 #include "llvm/Support/GetElementPtrTypeIterator.h"
30 #include "llvm/Support/InstVisitor.h"
31 #include "llvm/ADT/Statistic.h"
36 NumFPKill("x86-codegen", "Number of FP_REG_KILL instructions added");
38 /// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
42 cByte, cShort, cInt, cFP, cLong
46 /// getClass - Turn a primitive type into a "class" number which is based on the
47 /// size of the type, and whether or not it is floating point.
49 static inline TypeClass getClass(const Type *Ty) {
50 switch (Ty->getTypeID()) {
52 case Type::UByteTyID: return cByte; // Byte operands are class #0
54 case Type::UShortTyID: return cShort; // Short operands are class #1
57 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
60 case Type::DoubleTyID: return cFP; // Floating Point is #3
63 case Type::ULongTyID: return cLong; // Longs are class #4
65 assert(0 && "Invalid type to getClass!");
66 return cByte; // not reached
70 // getClassB - Just like getClass, but treat boolean values as bytes.
71 static inline TypeClass getClassB(const Type *Ty) {
72 if (Ty == Type::BoolTy) return cByte;
77 struct X86ISel : public FunctionPass, InstVisitor<X86ISel> {
79 MachineFunction *F; // The function we are compiling into
80 MachineBasicBlock *BB; // The current MBB we are compiling
81 int VarArgsFrameIndex; // FrameIndex for start of varargs area
82 int ReturnAddressIndex; // FrameIndex for the return address
84 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
86 // MBBMap - Mapping between LLVM BB -> Machine BB
87 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
89 // AllocaMap - Mapping from fixed sized alloca instructions to the
90 // FrameIndex for the alloca.
91 std::map<AllocaInst*, unsigned> AllocaMap;
93 X86ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
95 /// runOnFunction - Top level implementation of instruction selection for
96 /// the entire function.
98 bool runOnFunction(Function &Fn) {
99 // First pass over the function, lower any unknown intrinsic functions
100 // with the IntrinsicLowering class.
101 LowerUnknownIntrinsicFunctionCalls(Fn);
103 F = &MachineFunction::construct(&Fn, TM);
105 // Create all of the machine basic blocks for the function...
106 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
107 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
111 // Set up a frame object for the return address. This is used by the
112 // llvm.returnaddress & llvm.frameaddress intrinisics.
113 ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4);
115 // Copy incoming arguments off of the stack...
116 LoadArgumentsToVirtualRegs(Fn);
118 // Instruction select everything except PHI nodes
121 // Select the PHI nodes
124 // Insert the FP_REG_KILL instructions into blocks that need them.
131 // We always build a machine code representation for the function
135 virtual const char *getPassName() const {
136 return "X86 Simple Instruction Selection";
139 /// visitBasicBlock - This method is called when we are visiting a new basic
140 /// block. This simply creates a new MachineBasicBlock to emit code into
141 /// and adds it to the current MachineFunction. Subsequent visit* for
142 /// instructions will be invoked for all instructions in the basic block.
144 void visitBasicBlock(BasicBlock &LLVM_BB) {
145 BB = MBBMap[&LLVM_BB];
148 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
149 /// function, lowering any calls to unknown intrinsic functions into the
150 /// equivalent LLVM code.
152 void LowerUnknownIntrinsicFunctionCalls(Function &F);
154 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
155 /// from the stack into virtual registers.
157 void LoadArgumentsToVirtualRegs(Function &F);
159 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
160 /// because we have to generate our sources into the source basic blocks,
161 /// not the current one.
163 void SelectPHINodes();
165 /// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks
166 /// that need them. This only occurs due to the floating point stackifier
167 /// not being aggressive enough to handle arbitrary global stackification.
169 void InsertFPRegKills();
171 // Visitation methods for various instructions. These methods simply emit
172 // fixed X86 code for each instruction.
175 // Control flow operators
176 void visitReturnInst(ReturnInst &RI);
177 void visitBranchInst(BranchInst &BI);
178 void visitUnreachableInst(UnreachableInst &UI) {}
184 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
185 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
187 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
188 const std::vector<ValueRecord> &Args);
189 void visitCallInst(CallInst &I);
190 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
192 // Arithmetic operators
193 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
194 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
195 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
196 void visitMul(BinaryOperator &B);
198 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
199 void visitRem(BinaryOperator &B) { visitDivRem(B); }
200 void visitDivRem(BinaryOperator &B);
203 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
204 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
205 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
207 // Comparison operators...
208 void visitSetCondInst(SetCondInst &I);
209 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
210 MachineBasicBlock *MBB,
211 MachineBasicBlock::iterator MBBI);
212 void visitSelectInst(SelectInst &SI);
215 // Memory Instructions
216 void visitLoadInst(LoadInst &I);
217 void visitStoreInst(StoreInst &I);
218 void visitGetElementPtrInst(GetElementPtrInst &I);
219 void visitAllocaInst(AllocaInst &I);
220 void visitMallocInst(MallocInst &I);
221 void visitFreeInst(FreeInst &I);
224 void visitShiftInst(ShiftInst &I);
225 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
226 void visitCastInst(CastInst &I);
227 void visitVANextInst(VANextInst &I);
228 void visitVAArgInst(VAArgInst &I);
230 void visitInstruction(Instruction &I) {
231 std::cerr << "Cannot instruction select: " << I;
235 /// promote32 - Make a value 32-bits wide, and put it somewhere.
237 void promote32(unsigned targetReg, const ValueRecord &VR);
239 /// getAddressingMode - Get the addressing mode to use to address the
240 /// specified value. The returned value should be used with addFullAddress.
241 void getAddressingMode(Value *Addr, X86AddressMode &AM);
244 /// getGEPIndex - This is used to fold GEP instructions into X86 addressing
246 void getGEPIndex(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
247 std::vector<Value*> &GEPOps,
248 std::vector<const Type*> &GEPTypes,
251 /// isGEPFoldable - Return true if the specified GEP can be completely
252 /// folded into the addressing mode of a load/store or lea instruction.
253 bool isGEPFoldable(MachineBasicBlock *MBB,
254 Value *Src, User::op_iterator IdxBegin,
255 User::op_iterator IdxEnd, X86AddressMode &AM);
257 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
258 /// constant expression GEP support.
260 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
261 Value *Src, User::op_iterator IdxBegin,
262 User::op_iterator IdxEnd, unsigned TargetReg);
264 /// emitCastOperation - Common code shared between visitCastInst and
265 /// constant expression cast support.
267 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
268 Value *Src, const Type *DestTy, unsigned TargetReg);
270 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
271 /// and constant expression support.
273 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
274 MachineBasicBlock::iterator IP,
275 Value *Op0, Value *Op1,
276 unsigned OperatorClass, unsigned TargetReg);
278 /// emitBinaryFPOperation - This method handles emission of floating point
279 /// Add (0), Sub (1), Mul (2), and Div (3) operations.
280 void emitBinaryFPOperation(MachineBasicBlock *BB,
281 MachineBasicBlock::iterator IP,
282 Value *Op0, Value *Op1,
283 unsigned OperatorClass, unsigned TargetReg);
285 void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
286 Value *Op0, Value *Op1, unsigned TargetReg);
288 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
289 unsigned DestReg, const Type *DestTy,
290 unsigned Op0Reg, unsigned Op1Reg);
291 void doMultiplyConst(MachineBasicBlock *MBB,
292 MachineBasicBlock::iterator MBBI,
293 unsigned DestReg, const Type *DestTy,
294 unsigned Op0Reg, unsigned Op1Val);
296 void emitDivRemOperation(MachineBasicBlock *BB,
297 MachineBasicBlock::iterator IP,
298 Value *Op0, Value *Op1, bool isDiv,
301 /// emitSetCCOperation - Common code shared between visitSetCondInst and
302 /// constant expression support.
304 void emitSetCCOperation(MachineBasicBlock *BB,
305 MachineBasicBlock::iterator IP,
306 Value *Op0, Value *Op1, unsigned Opcode,
309 /// emitShiftOperation - Common code shared between visitShiftInst and
310 /// constant expression support.
312 void emitShiftOperation(MachineBasicBlock *MBB,
313 MachineBasicBlock::iterator IP,
314 Value *Op, Value *ShiftAmount, bool isLeftShift,
315 const Type *ResultTy, unsigned DestReg);
317 // Emit code for a 'SHLD DestReg, Op0, Op1, Amt' operation, where Amt is a
319 void doSHLDConst(MachineBasicBlock *MBB,
320 MachineBasicBlock::iterator MBBI,
321 unsigned DestReg, unsigned Op0Reg, unsigned Op1Reg,
324 /// emitSelectOperation - Common code shared between visitSelectInst and the
325 /// constant expression support.
326 void emitSelectOperation(MachineBasicBlock *MBB,
327 MachineBasicBlock::iterator IP,
328 Value *Cond, Value *TrueVal, Value *FalseVal,
331 /// copyConstantToRegister - Output the instructions required to put the
332 /// specified constant into the specified register.
334 void copyConstantToRegister(MachineBasicBlock *MBB,
335 MachineBasicBlock::iterator MBBI,
336 Constant *C, unsigned Reg);
338 void emitUCOMr(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
339 unsigned LHS, unsigned RHS);
341 /// makeAnotherReg - This method returns the next register number we haven't
344 /// Long values are handled somewhat specially. They are always allocated
345 /// as pairs of 32 bit integer values. The register number returned is the
346 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
347 /// of the long value.
349 unsigned makeAnotherReg(const Type *Ty) {
350 assert(dynamic_cast<const X86RegisterInfo*>(TM.getRegisterInfo()) &&
351 "Current target doesn't have X86 reg info??");
352 const X86RegisterInfo *MRI =
353 static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
354 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
355 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
356 // Create the lower part
357 F->getSSARegMap()->createVirtualRegister(RC);
358 // Create the upper part.
359 return F->getSSARegMap()->createVirtualRegister(RC)-1;
362 // Add the mapping of regnumber => reg class to MachineFunction
363 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
364 return F->getSSARegMap()->createVirtualRegister(RC);
367 /// getReg - This method turns an LLVM value into a register number.
369 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
370 unsigned getReg(Value *V) {
371 // Just append to the end of the current bb.
372 MachineBasicBlock::iterator It = BB->end();
373 return getReg(V, BB, It);
375 unsigned getReg(Value *V, MachineBasicBlock *MBB,
376 MachineBasicBlock::iterator IPt);
378 /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
379 /// that is to be statically allocated with the initial stack frame
381 unsigned getFixedSizedAllocaFI(AllocaInst *AI);
385 /// dyn_castFixedAlloca - If the specified value is a fixed size alloca
386 /// instruction in the entry block, return it. Otherwise, return a null
388 static AllocaInst *dyn_castFixedAlloca(Value *V) {
389 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
390 BasicBlock *BB = AI->getParent();
391 if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
397 /// getReg - This method turns an LLVM value into a register number.
399 unsigned X86ISel::getReg(Value *V, MachineBasicBlock *MBB,
400 MachineBasicBlock::iterator IPt) {
401 // If this operand is a constant, emit the code to copy the constant into
402 // the register here...
403 if (Constant *C = dyn_cast<Constant>(V)) {
404 unsigned Reg = makeAnotherReg(V->getType());
405 copyConstantToRegister(MBB, IPt, C, Reg);
407 } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
408 // Do not emit noop casts at all, unless it's a double -> float cast.
409 if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType()) &&
410 (CI->getType() != Type::FloatTy ||
411 CI->getOperand(0)->getType() != Type::DoubleTy))
412 return getReg(CI->getOperand(0), MBB, IPt);
413 } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
414 // If the alloca address couldn't be folded into the instruction addressing,
415 // emit an explicit LEA as appropriate.
416 unsigned Reg = makeAnotherReg(V->getType());
417 unsigned FI = getFixedSizedAllocaFI(AI);
418 addFrameReference(BuildMI(*MBB, IPt, X86::LEA32r, 4, Reg), FI);
422 unsigned &Reg = RegMap[V];
424 Reg = makeAnotherReg(V->getType());
431 /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
432 /// that is to be statically allocated with the initial stack frame
434 unsigned X86ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
435 // Already computed this?
436 std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
437 if (I != AllocaMap.end() && I->first == AI) return I->second;
439 const Type *Ty = AI->getAllocatedType();
440 ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
441 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
442 TySize *= CUI->getValue(); // Get total allocated size...
443 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
445 // Create a new stack object using the frame manager...
446 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
447 AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
452 /// copyConstantToRegister - Output the instructions required to put the
453 /// specified constant into the specified register.
455 void X86ISel::copyConstantToRegister(MachineBasicBlock *MBB,
456 MachineBasicBlock::iterator IP,
457 Constant *C, unsigned R) {
458 if (isa<UndefValue>(C)) {
459 switch (getClassB(C->getType())) {
461 // FIXME: SHOULD TEACH STACKIFIER ABOUT UNDEF VALUES!
462 BuildMI(*MBB, IP, X86::FLD0, 0, R);
465 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, R+1);
468 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, R);
471 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
473 switch (CE->getOpcode()) {
474 case Instruction::GetElementPtr:
475 emitGEPOperation(MBB, IP, CE->getOperand(0),
476 CE->op_begin()+1, CE->op_end(), R);
478 case Instruction::Cast:
479 emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
482 case Instruction::Xor: ++Class; // FALL THROUGH
483 case Instruction::Or: ++Class; // FALL THROUGH
484 case Instruction::And: ++Class; // FALL THROUGH
485 case Instruction::Sub: ++Class; // FALL THROUGH
486 case Instruction::Add:
487 emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
491 case Instruction::Mul:
492 emitMultiply(MBB, IP, CE->getOperand(0), CE->getOperand(1), R);
495 case Instruction::Div:
496 case Instruction::Rem:
497 emitDivRemOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
498 CE->getOpcode() == Instruction::Div, R);
501 case Instruction::SetNE:
502 case Instruction::SetEQ:
503 case Instruction::SetLT:
504 case Instruction::SetGT:
505 case Instruction::SetLE:
506 case Instruction::SetGE:
507 emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
511 case Instruction::Shl:
512 case Instruction::Shr:
513 emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
514 CE->getOpcode() == Instruction::Shl, CE->getType(), R);
517 case Instruction::Select:
518 emitSelectOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
519 CE->getOperand(2), R);
523 std::cerr << "Offending expr: " << *C << "\n";
524 assert(0 && "Constant expression not yet handled!\n");
528 if (C->getType()->isIntegral()) {
529 unsigned Class = getClassB(C->getType());
531 if (Class == cLong) {
532 // Copy the value into the register pair.
533 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
534 BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(Val & 0xFFFFFFFF);
535 BuildMI(*MBB, IP, X86::MOV32ri, 1, R+1).addImm(Val >> 32);
539 assert(Class <= cInt && "Type not handled yet!");
541 static const unsigned IntegralOpcodeTab[] = {
542 X86::MOV8ri, X86::MOV16ri, X86::MOV32ri
545 if (C->getType() == Type::BoolTy) {
546 BuildMI(*MBB, IP, X86::MOV8ri, 1, R).addImm(C == ConstantBool::True);
548 ConstantInt *CI = cast<ConstantInt>(C);
549 BuildMI(*MBB, IP, IntegralOpcodeTab[Class],1,R).addImm(CI->getRawValue());
551 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
552 if (CFP->isExactlyValue(+0.0))
553 BuildMI(*MBB, IP, X86::FLD0, 0, R);
554 else if (CFP->isExactlyValue(+1.0))
555 BuildMI(*MBB, IP, X86::FLD1, 0, R);
557 // Otherwise we need to spill the constant to memory...
558 MachineConstantPool *CP = F->getConstantPool();
559 unsigned CPI = CP->getConstantPoolIndex(CFP);
560 const Type *Ty = CFP->getType();
562 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
563 unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLD32m : X86::FLD64m;
564 addConstantPoolReference(BuildMI(*MBB, IP, LoadOpcode, 4, R), CPI);
567 } else if (isa<ConstantPointerNull>(C)) {
568 // Copy zero (null pointer) to the register.
569 BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(0);
570 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
571 BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addGlobalAddress(GV);
573 std::cerr << "Offending constant: " << *C << "\n";
574 assert(0 && "Type not handled yet!");
578 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
579 /// the stack into virtual registers.
581 void X86ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
582 // Emit instructions to load the arguments... On entry to a function on the
583 // X86, the stack frame looks like this:
585 // [ESP] -- return address
586 // [ESP + 4] -- first argument (leftmost lexically)
587 // [ESP + 8] -- second argument, if first argument is four bytes in size
590 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
591 MachineFrameInfo *MFI = F->getFrameInfo();
593 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
594 bool ArgLive = !I->use_empty();
595 unsigned Reg = ArgLive ? getReg(*I) : 0;
596 int FI; // Frame object index
598 switch (getClassB(I->getType())) {
601 FI = MFI->CreateFixedObject(1, ArgOffset);
602 addFrameReference(BuildMI(BB, X86::MOV8rm, 4, Reg), FI);
607 FI = MFI->CreateFixedObject(2, ArgOffset);
608 addFrameReference(BuildMI(BB, X86::MOV16rm, 4, Reg), FI);
613 FI = MFI->CreateFixedObject(4, ArgOffset);
614 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI);
619 FI = MFI->CreateFixedObject(8, ArgOffset);
620 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI);
621 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg+1), FI, 4);
623 ArgOffset += 4; // longs require 4 additional bytes
628 if (I->getType() == Type::FloatTy) {
629 Opcode = X86::FLD32m;
630 FI = MFI->CreateFixedObject(4, ArgOffset);
632 Opcode = X86::FLD64m;
633 FI = MFI->CreateFixedObject(8, ArgOffset);
635 addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI);
637 if (I->getType() == Type::DoubleTy)
638 ArgOffset += 4; // doubles require 4 additional bytes
641 assert(0 && "Unhandled argument type!");
643 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
646 // If the function takes variable number of arguments, add a frame offset for
647 // the start of the first vararg value... this is used to expand
649 if (Fn.getFunctionType()->isVarArg())
650 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
654 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
655 /// because we have to generate our sources into the source basic blocks, not
658 void X86ISel::SelectPHINodes() {
659 const TargetInstrInfo &TII = *TM.getInstrInfo();
660 const Function &LF = *F->getFunction(); // The LLVM function...
661 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
662 const BasicBlock *BB = I;
663 MachineBasicBlock &MBB = *MBBMap[I];
665 // Loop over all of the PHI nodes in the LLVM basic block...
666 MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
667 for (BasicBlock::const_iterator I = BB->begin(); isa<PHINode>(I); ++I) {
668 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I));
670 // Create a new machine instr PHI node, and insert it.
671 unsigned PHIReg = getReg(*PN);
672 MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
673 X86::PHI, PN->getNumOperands(), PHIReg);
675 MachineInstr *LongPhiMI = 0;
676 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
677 LongPhiMI = BuildMI(MBB, PHIInsertPoint,
678 X86::PHI, PN->getNumOperands(), PHIReg+1);
680 // PHIValues - Map of blocks to incoming virtual registers. We use this
681 // so that we only initialize one incoming value for a particular block,
682 // even if the block has multiple entries in the PHI node.
684 std::map<MachineBasicBlock*, unsigned> PHIValues;
686 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
687 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
689 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
690 PHIValues.lower_bound(PredMBB);
692 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
693 // We already inserted an initialization of the register for this
694 // predecessor. Recycle it.
695 ValReg = EntryIt->second;
698 // Get the incoming value into a virtual register.
700 Value *Val = PN->getIncomingValue(i);
702 // If this is a constant or GlobalValue, we may have to insert code
703 // into the basic block to compute it into a virtual register.
704 if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val))) {
705 // Simple constants get emitted at the end of the basic block,
706 // before any terminator instructions. We "know" that the code to
707 // move a constant into a register will never clobber any flags.
708 ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
710 // Because we don't want to clobber any values which might be in
711 // physical registers with the computation of this constant (which
712 // might be arbitrarily complex if it is a constant expression),
713 // just insert the computation at the top of the basic block.
714 MachineBasicBlock::iterator PI = PredMBB->begin();
716 // Skip over any PHI nodes though!
717 while (PI != PredMBB->end() && PI->getOpcode() == X86::PHI)
720 ValReg = getReg(Val, PredMBB, PI);
723 // Remember that we inserted a value for this PHI for this predecessor
724 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
727 PhiMI->addRegOperand(ValReg);
728 PhiMI->addMachineBasicBlockOperand(PredMBB);
730 LongPhiMI->addRegOperand(ValReg+1);
731 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
735 // Now that we emitted all of the incoming values for the PHI node, make
736 // sure to reposition the InsertPoint after the PHI that we just added.
737 // This is needed because we might have inserted a constant into this
738 // block, right after the PHI's which is before the old insert point!
739 PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
745 /// RequiresFPRegKill - The floating point stackifier pass cannot insert
746 /// compensation code on critical edges. As such, it requires that we kill all
747 /// FP registers on the exit from any blocks that either ARE critical edges, or
748 /// branch to a block that has incoming critical edges.
750 /// Note that this kill instruction will eventually be eliminated when
751 /// restrictions in the stackifier are relaxed.
753 static bool RequiresFPRegKill(const MachineBasicBlock *MBB) {
755 const BasicBlock *BB = MBB->getBasicBlock ();
756 for (succ_const_iterator SI = succ_begin(BB), E = succ_end(BB); SI!=E; ++SI) {
757 const BasicBlock *Succ = *SI;
758 pred_const_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
759 ++PI; // Block have at least one predecessory
760 if (PI != PE) { // If it has exactly one, this isn't crit edge
761 // If this block has more than one predecessor, check all of the
762 // predecessors to see if they have multiple successors. If so, then the
763 // block we are analyzing needs an FPRegKill.
764 for (PI = pred_begin(Succ); PI != PE; ++PI) {
765 const BasicBlock *Pred = *PI;
766 succ_const_iterator SI2 = succ_begin(Pred);
767 ++SI2; // There must be at least one successor of this block.
768 if (SI2 != succ_end(Pred))
769 return true; // Yes, we must insert the kill on this edge.
773 // If we got this far, there is no need to insert the kill instruction.
780 // InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks that
781 // need them. This only occurs due to the floating point stackifier not being
782 // aggressive enough to handle arbitrary global stackification.
784 // Currently we insert an FP_REG_KILL instruction into each block that uses or
785 // defines a floating point virtual register.
787 // When the global register allocators (like linear scan) finally update live
788 // variable analysis, we can keep floating point values in registers across
789 // portions of the CFG that do not involve critical edges. This will be a big
790 // win, but we are waiting on the global allocators before we can do this.
792 // With a bit of work, the floating point stackifier pass can be enhanced to
793 // break critical edges as needed (to make a place to put compensation code),
794 // but this will require some infrastructure improvements as well.
796 void X86ISel::InsertFPRegKills() {
797 SSARegMap &RegMap = *F->getSSARegMap();
799 for (MachineFunction::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
800 for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
801 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
802 MachineOperand& MO = I->getOperand(i);
803 if (MO.isRegister() && MO.getReg()) {
804 unsigned Reg = MO.getReg();
805 if (MRegisterInfo::isVirtualRegister(Reg))
806 if (RegMap.getRegClass(Reg)->getSize() == 10)
810 // If we haven't found an FP register use or def in this basic block, check
811 // to see if any of our successors has an FP PHI node, which will cause a
812 // copy to be inserted into this block.
813 for (MachineBasicBlock::const_succ_iterator SI = BB->succ_begin(),
814 SE = BB->succ_end(); SI != SE; ++SI) {
815 MachineBasicBlock *SBB = *SI;
816 for (MachineBasicBlock::iterator I = SBB->begin();
817 I != SBB->end() && I->getOpcode() == X86::PHI; ++I) {
818 if (RegMap.getRegClass(I->getOperand(0).getReg())->getSize() == 10)
824 // Okay, this block uses an FP register. If the block has successors (ie,
825 // it's not an unwind/return), insert the FP_REG_KILL instruction.
826 if (BB->succ_size () && RequiresFPRegKill(BB)) {
827 BuildMI(*BB, BB->getFirstTerminator(), X86::FP_REG_KILL, 0);
834 void X86ISel::getAddressingMode(Value *Addr, X86AddressMode &AM) {
835 AM.BaseType = X86AddressMode::RegBase;
836 AM.Base.Reg = 0; AM.Scale = 1; AM.IndexReg = 0; AM.Disp = 0;
837 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr)) {
838 if (isGEPFoldable(BB, GEP->getOperand(0), GEP->op_begin()+1, GEP->op_end(),
841 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
842 if (CE->getOpcode() == Instruction::GetElementPtr)
843 if (isGEPFoldable(BB, CE->getOperand(0), CE->op_begin()+1, CE->op_end(),
846 } else if (AllocaInst *AI = dyn_castFixedAlloca(Addr)) {
847 AM.BaseType = X86AddressMode::FrameIndexBase;
848 AM.Base.FrameIndex = getFixedSizedAllocaFI(AI);
850 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
855 // If it's not foldable, reset addr mode.
856 AM.BaseType = X86AddressMode::RegBase;
857 AM.Base.Reg = getReg(Addr);
858 AM.Scale = 1; AM.IndexReg = 0; AM.Disp = 0;
861 // canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
862 // it into the conditional branch or select instruction which is the only user
863 // of the cc instruction. This is the case if the conditional branch is the
864 // only user of the setcc. We also don't handle long arguments below, so we
865 // reject them here as well.
867 static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
868 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
869 if (SCI->hasOneUse()) {
870 Instruction *User = cast<Instruction>(SCI->use_back());
871 if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
872 (getClassB(SCI->getOperand(0)->getType()) != cLong ||
873 SCI->getOpcode() == Instruction::SetEQ ||
874 SCI->getOpcode() == Instruction::SetNE) &&
875 (isa<BranchInst>(User) || User->getOperand(0) == V))
881 // Return a fixed numbering for setcc instructions which does not depend on the
882 // order of the opcodes.
884 static unsigned getSetCCNumber(unsigned Opcode) {
886 default: assert(0 && "Unknown setcc instruction!");
887 case Instruction::SetEQ: return 0;
888 case Instruction::SetNE: return 1;
889 case Instruction::SetLT: return 2;
890 case Instruction::SetGE: return 3;
891 case Instruction::SetGT: return 4;
892 case Instruction::SetLE: return 5;
896 // LLVM -> X86 signed X86 unsigned
897 // ----- ---------- ------------
898 // seteq -> sete sete
899 // setne -> setne setne
900 // setlt -> setl setb
901 // setge -> setge setae
902 // setgt -> setg seta
903 // setle -> setle setbe
905 // sets // Used by comparison with 0 optimization
907 static const unsigned SetCCOpcodeTab[2][8] = {
908 { X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr,
910 { X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr,
911 X86::SETSr, X86::SETNSr },
914 /// emitUCOMr - In the future when we support processors before the P6, this
915 /// wraps the logic for emitting an FUCOMr vs FUCOMIr.
916 void X86ISel::emitUCOMr(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
917 unsigned LHS, unsigned RHS) {
918 if (0) { // for processors prior to the P6
919 BuildMI(*MBB, IP, X86::FUCOMr, 2).addReg(LHS).addReg(RHS);
920 BuildMI(*MBB, IP, X86::FNSTSW8r, 0);
921 BuildMI(*MBB, IP, X86::SAHF, 1);
923 BuildMI(*MBB, IP, X86::FUCOMIr, 2).addReg(LHS).addReg(RHS);
927 // EmitComparison - This function emits a comparison of the two operands,
928 // returning the extended setcc code to use.
929 unsigned X86ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
930 MachineBasicBlock *MBB,
931 MachineBasicBlock::iterator IP) {
932 // The arguments are already supposed to be of the same type.
933 const Type *CompTy = Op0->getType();
934 unsigned Class = getClassB(CompTy);
936 // Special case handling of: cmp R, i
937 if (isa<ConstantPointerNull>(Op1)) {
938 unsigned Op0r = getReg(Op0, MBB, IP);
939 if (OpNum < 2) // seteq/setne -> test
940 BuildMI(*MBB, IP, X86::TEST32rr, 2).addReg(Op0r).addReg(Op0r);
942 BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r).addImm(0);
945 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
946 if (Class == cByte || Class == cShort || Class == cInt) {
947 unsigned Op1v = CI->getRawValue();
949 // Mask off any upper bits of the constant, if there are any...
950 Op1v &= (1ULL << (8 << Class)) - 1;
952 // If this is a comparison against zero, emit more efficient code. We
953 // can't handle unsigned comparisons against zero unless they are == or
954 // !=. These should have been strength reduced already anyway.
955 if (Op1v == 0 && (CompTy->isSigned() || OpNum < 2)) {
957 // If this is a comparison against zero and the LHS is an and of a
958 // register with a constant, use the test to do the and.
959 if (Instruction *Op0I = dyn_cast<Instruction>(Op0))
960 if (Op0I->getOpcode() == Instruction::And && Op0->hasOneUse() &&
961 isa<ConstantInt>(Op0I->getOperand(1))) {
962 static const unsigned TESTTab[] = {
963 X86::TEST8ri, X86::TEST16ri, X86::TEST32ri
967 unsigned LHS = getReg(Op0I->getOperand(0), MBB, IP);
969 cast<ConstantInt>(Op0I->getOperand(1))->getRawValue();
970 BuildMI(*MBB, IP, TESTTab[Class], 2).addReg(LHS).addImm(Imm);
972 if (OpNum == 2) return 6; // Map jl -> js
973 if (OpNum == 3) return 7; // Map jg -> jns
977 unsigned Op0r = getReg(Op0, MBB, IP);
978 static const unsigned TESTTab[] = {
979 X86::TEST8rr, X86::TEST16rr, X86::TEST32rr
981 BuildMI(*MBB, IP, TESTTab[Class], 2).addReg(Op0r).addReg(Op0r);
983 if (OpNum == 2) return 6; // Map jl -> js
984 if (OpNum == 3) return 7; // Map jg -> jns
988 static const unsigned CMPTab[] = {
989 X86::CMP8ri, X86::CMP16ri, X86::CMP32ri
992 unsigned Op0r = getReg(Op0, MBB, IP);
993 BuildMI(*MBB, IP, CMPTab[Class], 2).addReg(Op0r).addImm(Op1v);
996 unsigned Op0r = getReg(Op0, MBB, IP);
997 assert(Class == cLong && "Unknown integer class!");
998 unsigned LowCst = CI->getRawValue();
999 unsigned HiCst = CI->getRawValue() >> 32;
1000 if (OpNum < 2) { // seteq, setne
1001 unsigned LoTmp = Op0r;
1003 LoTmp = makeAnotherReg(Type::IntTy);
1004 BuildMI(*MBB, IP, X86::XOR32ri, 2, LoTmp).addReg(Op0r).addImm(LowCst);
1006 unsigned HiTmp = Op0r+1;
1008 HiTmp = makeAnotherReg(Type::IntTy);
1009 BuildMI(*MBB, IP, X86::XOR32ri, 2,HiTmp).addReg(Op0r+1).addImm(HiCst);
1011 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
1012 BuildMI(*MBB, IP, X86::OR32rr, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
1015 // Emit a sequence of code which compares the high and low parts once
1016 // each, then uses a conditional move to handle the overflow case. For
1017 // example, a setlt for long would generate code like this:
1019 // AL = lo(op1) < lo(op2) // Always unsigned comparison
1020 // BL = hi(op1) < hi(op2) // Signedness depends on operands
1021 // dest = hi(op1) == hi(op2) ? BL : AL;
1024 // FIXME: This would be much better if we had hierarchical register
1025 // classes! Until then, hardcode registers so that we can deal with
1026 // their aliases (because we don't have conditional byte moves).
1028 BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r).addImm(LowCst);
1029 BuildMI(*MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
1030 BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r+1).addImm(HiCst);
1031 BuildMI(*MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0,X86::BL);
1032 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
1033 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
1034 BuildMI(*MBB, IP, X86::CMOVE16rr, 2, X86::BX).addReg(X86::BX)
1036 // NOTE: visitSetCondInst knows that the value is dumped into the BL
1037 // register at this point for long values...
1043 unsigned Op0r = getReg(Op0, MBB, IP);
1045 // Special case handling of comparison against +/- 0.0
1046 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op1))
1047 if (CFP->isExactlyValue(+0.0) || CFP->isExactlyValue(-0.0)) {
1048 BuildMI(*MBB, IP, X86::FTST, 1).addReg(Op0r);
1049 BuildMI(*MBB, IP, X86::FNSTSW8r, 0);
1050 BuildMI(*MBB, IP, X86::SAHF, 1);
1054 unsigned Op1r = getReg(Op1, MBB, IP);
1056 default: assert(0 && "Unknown type class!");
1057 // Emit: cmp <var1>, <var2> (do the comparison). We can
1058 // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
1061 BuildMI(*MBB, IP, X86::CMP8rr, 2).addReg(Op0r).addReg(Op1r);
1064 BuildMI(*MBB, IP, X86::CMP16rr, 2).addReg(Op0r).addReg(Op1r);
1067 BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r);
1070 emitUCOMr(MBB, IP, Op0r, Op1r);
1074 if (OpNum < 2) { // seteq, setne
1075 unsigned LoTmp = makeAnotherReg(Type::IntTy);
1076 unsigned HiTmp = makeAnotherReg(Type::IntTy);
1077 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
1078 BuildMI(*MBB, IP, X86::XOR32rr, 2, LoTmp).addReg(Op0r).addReg(Op1r);
1079 BuildMI(*MBB, IP, X86::XOR32rr, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
1080 BuildMI(*MBB, IP, X86::OR32rr, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
1081 break; // Allow the sete or setne to be generated from flags set by OR
1083 // Emit a sequence of code which compares the high and low parts once
1084 // each, then uses a conditional move to handle the overflow case. For
1085 // example, a setlt for long would generate code like this:
1087 // AL = lo(op1) < lo(op2) // Signedness depends on operands
1088 // BL = hi(op1) < hi(op2) // Always unsigned comparison
1089 // dest = hi(op1) == hi(op2) ? BL : AL;
1092 // FIXME: This would be much better if we had hierarchical register
1093 // classes! Until then, hardcode registers so that we can deal with their
1094 // aliases (because we don't have conditional byte moves).
1096 BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r);
1097 BuildMI(*MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
1098 BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r+1).addReg(Op1r+1);
1099 BuildMI(*MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0, X86::BL);
1100 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
1101 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
1102 BuildMI(*MBB, IP, X86::CMOVE16rr, 2, X86::BX).addReg(X86::BX)
1104 // NOTE: visitSetCondInst knows that the value is dumped into the BL
1105 // register at this point for long values...
1112 /// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
1113 /// register, then move it to wherever the result should be.
1115 void X86ISel::visitSetCondInst(SetCondInst &I) {
1116 if (canFoldSetCCIntoBranchOrSelect(&I))
1117 return; // Fold this into a branch or select.
1119 unsigned DestReg = getReg(I);
1120 MachineBasicBlock::iterator MII = BB->end();
1121 emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(),
1125 /// emitSetCCOperation - Common code shared between visitSetCondInst and
1126 /// constant expression support.
1128 void X86ISel::emitSetCCOperation(MachineBasicBlock *MBB,
1129 MachineBasicBlock::iterator IP,
1130 Value *Op0, Value *Op1, unsigned Opcode,
1131 unsigned TargetReg) {
1132 unsigned OpNum = getSetCCNumber(Opcode);
1133 OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP);
1135 const Type *CompTy = Op0->getType();
1136 unsigned CompClass = getClassB(CompTy);
1137 bool isSigned = CompTy->isSigned() && CompClass != cFP;
1139 if (CompClass != cLong || OpNum < 2) {
1140 // Handle normal comparisons with a setcc instruction...
1141 BuildMI(*MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, TargetReg);
1143 // Handle long comparisons by copying the value which is already in BL into
1144 // the register we want...
1145 BuildMI(*MBB, IP, X86::MOV8rr, 1, TargetReg).addReg(X86::BL);
1149 void X86ISel::visitSelectInst(SelectInst &SI) {
1150 unsigned DestReg = getReg(SI);
1151 MachineBasicBlock::iterator MII = BB->end();
1152 emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
1153 SI.getFalseValue(), DestReg);
1156 /// emitSelect - Common code shared between visitSelectInst and the constant
1157 /// expression support.
1158 void X86ISel::emitSelectOperation(MachineBasicBlock *MBB,
1159 MachineBasicBlock::iterator IP,
1160 Value *Cond, Value *TrueVal, Value *FalseVal,
1162 unsigned SelectClass = getClassB(TrueVal->getType());
1164 // We don't support 8-bit conditional moves. If we have incoming constants,
1165 // transform them into 16-bit constants to avoid having a run-time conversion.
1166 if (SelectClass == cByte) {
1167 if (Constant *T = dyn_cast<Constant>(TrueVal))
1168 TrueVal = ConstantExpr::getCast(T, Type::ShortTy);
1169 if (Constant *F = dyn_cast<Constant>(FalseVal))
1170 FalseVal = ConstantExpr::getCast(F, Type::ShortTy);
1173 unsigned TrueReg = getReg(TrueVal, MBB, IP);
1174 unsigned FalseReg = getReg(FalseVal, MBB, IP);
1175 if (TrueReg == FalseReg) {
1176 static const unsigned Opcode[] = {
1177 X86::MOV8rr, X86::MOV16rr, X86::MOV32rr, X86::FpMOV, X86::MOV32rr
1179 BuildMI(*MBB, IP, Opcode[SelectClass], 1, DestReg).addReg(TrueReg);
1180 if (SelectClass == cLong)
1181 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(TrueReg+1);
1186 if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) {
1187 // We successfully folded the setcc into the select instruction.
1189 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
1190 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), MBB,
1193 const Type *CompTy = SCI->getOperand(0)->getType();
1194 bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
1196 // LLVM -> X86 signed X86 unsigned
1197 // ----- ---------- ------------
1198 // seteq -> cmovNE cmovNE
1199 // setne -> cmovE cmovE
1200 // setlt -> cmovGE cmovAE
1201 // setge -> cmovL cmovB
1202 // setgt -> cmovLE cmovBE
1203 // setle -> cmovG cmovA
1205 // cmovNS // Used by comparison with 0 optimization
1208 switch (SelectClass) {
1209 default: assert(0 && "Unknown value class!");
1211 // Annoyingly, we don't have a full set of floating point conditional
1213 static const unsigned OpcodeTab[2][8] = {
1214 { X86::FCMOVNE, X86::FCMOVE, X86::FCMOVAE, X86::FCMOVB,
1215 X86::FCMOVBE, X86::FCMOVA, 0, 0 },
1216 { X86::FCMOVNE, X86::FCMOVE, 0, 0, 0, 0, 0, 0 },
1218 Opcode = OpcodeTab[isSigned][OpNum];
1220 // If opcode == 0, we hit a case that we don't support. Output a setcc
1221 // and compare the result against zero.
1223 unsigned CompClass = getClassB(CompTy);
1225 if (CompClass != cLong || OpNum < 2) {
1226 CondReg = makeAnotherReg(Type::BoolTy);
1227 // Handle normal comparisons with a setcc instruction...
1228 BuildMI(*MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, CondReg);
1230 // Long comparisons end up in the BL register.
1234 BuildMI(*MBB, IP, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg);
1235 Opcode = X86::FCMOVE;
1241 static const unsigned OpcodeTab[2][8] = {
1242 { X86::CMOVNE16rr, X86::CMOVE16rr, X86::CMOVAE16rr, X86::CMOVB16rr,
1243 X86::CMOVBE16rr, X86::CMOVA16rr, 0, 0 },
1244 { X86::CMOVNE16rr, X86::CMOVE16rr, X86::CMOVGE16rr, X86::CMOVL16rr,
1245 X86::CMOVLE16rr, X86::CMOVG16rr, X86::CMOVNS16rr, X86::CMOVS16rr },
1247 Opcode = OpcodeTab[isSigned][OpNum];
1252 static const unsigned OpcodeTab[2][8] = {
1253 { X86::CMOVNE32rr, X86::CMOVE32rr, X86::CMOVAE32rr, X86::CMOVB32rr,
1254 X86::CMOVBE32rr, X86::CMOVA32rr, 0, 0 },
1255 { X86::CMOVNE32rr, X86::CMOVE32rr, X86::CMOVGE32rr, X86::CMOVL32rr,
1256 X86::CMOVLE32rr, X86::CMOVG32rr, X86::CMOVNS32rr, X86::CMOVS32rr },
1258 Opcode = OpcodeTab[isSigned][OpNum];
1263 // Get the value being branched on, and use it to set the condition codes.
1264 unsigned CondReg = getReg(Cond, MBB, IP);
1265 BuildMI(*MBB, IP, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg);
1266 switch (SelectClass) {
1267 default: assert(0 && "Unknown value class!");
1268 case cFP: Opcode = X86::FCMOVE; break;
1270 case cShort: Opcode = X86::CMOVE16rr; break;
1272 case cLong: Opcode = X86::CMOVE32rr; break;
1276 unsigned RealDestReg = DestReg;
1279 // Annoyingly enough, X86 doesn't HAVE 8-bit conditional moves. Because of
1280 // this, we have to promote the incoming values to 16 bits, perform a 16-bit
1281 // cmove, then truncate the result.
1282 if (SelectClass == cByte) {
1283 DestReg = makeAnotherReg(Type::ShortTy);
1284 if (getClassB(TrueVal->getType()) == cByte) {
1285 // Promote the true value, by storing it into AL, and reading from AX.
1286 BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::AL).addReg(TrueReg);
1287 BuildMI(*MBB, IP, X86::MOV8ri, 1, X86::AH).addImm(0);
1288 TrueReg = makeAnotherReg(Type::ShortTy);
1289 BuildMI(*MBB, IP, X86::MOV16rr, 1, TrueReg).addReg(X86::AX);
1291 if (getClassB(FalseVal->getType()) == cByte) {
1292 // Promote the true value, by storing it into CL, and reading from CX.
1293 BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(FalseReg);
1294 BuildMI(*MBB, IP, X86::MOV8ri, 1, X86::CH).addImm(0);
1295 FalseReg = makeAnotherReg(Type::ShortTy);
1296 BuildMI(*MBB, IP, X86::MOV16rr, 1, FalseReg).addReg(X86::CX);
1300 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(TrueReg).addReg(FalseReg);
1302 switch (SelectClass) {
1304 // We did the computation with 16-bit registers. Truncate back to our
1305 // result by copying into AX then copying out AL.
1306 BuildMI(*MBB, IP, X86::MOV16rr, 1, X86::AX).addReg(DestReg);
1307 BuildMI(*MBB, IP, X86::MOV8rr, 1, RealDestReg).addReg(X86::AL);
1310 // Move the upper half of the value as well.
1311 BuildMI(*MBB, IP, Opcode, 2,DestReg+1).addReg(TrueReg+1).addReg(FalseReg+1);
1318 /// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
1319 /// operand, in the specified target register.
1321 void X86ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
1322 bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
1324 Value *Val = VR.Val;
1325 const Type *Ty = VR.Ty;
1327 if (Constant *C = dyn_cast<Constant>(Val)) {
1328 Val = ConstantExpr::getCast(C, Type::IntTy);
1332 // If this is a simple constant, just emit a MOVri directly to avoid the
1334 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
1335 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
1336 BuildMI(BB, X86::MOV32ri, 1, targetReg).addImm(TheVal);
1341 // Make sure we have the register number for this value...
1342 unsigned Reg = Val ? getReg(Val) : VR.Reg;
1344 switch (getClassB(Ty)) {
1346 // Extend value into target register (8->32)
1348 BuildMI(BB, X86::MOVZX32rr8, 1, targetReg).addReg(Reg);
1350 BuildMI(BB, X86::MOVSX32rr8, 1, targetReg).addReg(Reg);
1353 // Extend value into target register (16->32)
1355 BuildMI(BB, X86::MOVZX32rr16, 1, targetReg).addReg(Reg);
1357 BuildMI(BB, X86::MOVSX32rr16, 1, targetReg).addReg(Reg);
1360 // Move value into target register (32->32)
1361 BuildMI(BB, X86::MOV32rr, 1, targetReg).addReg(Reg);
1364 assert(0 && "Unpromotable operand class in promote32");
1368 /// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
1369 /// we have the following possibilities:
1371 /// ret void: No return value, simply emit a 'ret' instruction
1372 /// ret sbyte, ubyte : Extend value into EAX and return
1373 /// ret short, ushort: Extend value into EAX and return
1374 /// ret int, uint : Move value into EAX and return
1375 /// ret pointer : Move value into EAX and return
1376 /// ret long, ulong : Move value into EAX/EDX and return
1377 /// ret float/double : Top of FP stack
1379 void X86ISel::visitReturnInst(ReturnInst &I) {
1380 if (I.getNumOperands() == 0) {
1381 BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
1385 Value *RetVal = I.getOperand(0);
1386 switch (getClassB(RetVal->getType())) {
1387 case cByte: // integral return values: extend or move into EAX and return
1390 promote32(X86::EAX, ValueRecord(RetVal));
1391 // Declare that EAX is live on exit
1392 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP);
1394 case cFP: { // Floats & Doubles: Return in ST(0)
1395 unsigned RetReg = getReg(RetVal);
1396 BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg);
1397 // Declare that top-of-stack is live on exit
1398 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP);
1402 unsigned RetReg = getReg(RetVal);
1403 BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(RetReg);
1404 BuildMI(BB, X86::MOV32rr, 1, X86::EDX).addReg(RetReg+1);
1405 // Declare that EAX & EDX are live on exit
1406 BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX)
1411 visitInstruction(I);
1413 // Emit a 'ret' instruction
1414 BuildMI(BB, X86::RET, 0);
1417 // getBlockAfter - Return the basic block which occurs lexically after the
1419 static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
1420 Function::iterator I = BB; ++I; // Get iterator to next block
1421 return I != BB->getParent()->end() ? &*I : 0;
1424 /// visitBranchInst - Handle conditional and unconditional branches here. Note
1425 /// that since code layout is frozen at this point, that if we are trying to
1426 /// jump to a block that is the immediate successor of the current block, we can
1427 /// just make a fall-through (but we don't currently).
1429 void X86ISel::visitBranchInst(BranchInst &BI) {
1430 // Update machine-CFG edges
1431 BB->addSuccessor (MBBMap[BI.getSuccessor(0)]);
1432 if (BI.isConditional())
1433 BB->addSuccessor (MBBMap[BI.getSuccessor(1)]);
1435 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
1437 if (!BI.isConditional()) { // Unconditional branch?
1438 if (BI.getSuccessor(0) != NextBB)
1439 BuildMI(BB, X86::JMP, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1443 // See if we can fold the setcc into the branch itself...
1444 SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
1446 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
1447 // computed some other way...
1448 unsigned condReg = getReg(BI.getCondition());
1449 BuildMI(BB, X86::TEST8rr, 2).addReg(condReg).addReg(condReg);
1450 if (BI.getSuccessor(1) == NextBB) {
1451 if (BI.getSuccessor(0) != NextBB)
1452 BuildMI(BB, X86::JNE, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1454 BuildMI(BB, X86::JE, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
1456 if (BI.getSuccessor(0) != NextBB)
1457 BuildMI(BB, X86::JMP, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1462 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
1463 MachineBasicBlock::iterator MII = BB->end();
1464 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
1466 const Type *CompTy = SCI->getOperand(0)->getType();
1467 bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
1470 // LLVM -> X86 signed X86 unsigned
1471 // ----- ---------- ------------
1479 // js // Used by comparison with 0 optimization
1482 static const unsigned OpcodeTab[2][8] = {
1483 { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE, 0, 0 },
1484 { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE,
1485 X86::JS, X86::JNS },
1488 if (BI.getSuccessor(0) != NextBB) {
1489 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1)
1490 .addMBB(MBBMap[BI.getSuccessor(0)]);
1491 if (BI.getSuccessor(1) != NextBB)
1492 BuildMI(BB, X86::JMP, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
1494 // Change to the inverse condition...
1495 if (BI.getSuccessor(1) != NextBB) {
1497 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1)
1498 .addMBB(MBBMap[BI.getSuccessor(1)]);
1504 /// doCall - This emits an abstract call instruction, setting up the arguments
1505 /// and the return value as appropriate. For the actual function call itself,
1506 /// it inserts the specified CallMI instruction into the stream.
1508 void X86ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
1509 const std::vector<ValueRecord> &Args) {
1510 // Count how many bytes are to be pushed on the stack...
1511 unsigned NumBytes = 0;
1513 if (!Args.empty()) {
1514 for (unsigned i = 0, e = Args.size(); i != e; ++i)
1515 switch (getClassB(Args[i].Ty)) {
1516 case cByte: case cShort: case cInt:
1517 NumBytes += 4; break;
1519 NumBytes += 8; break;
1521 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
1523 default: assert(0 && "Unknown class!");
1526 // Adjust the stack pointer for the new arguments...
1527 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
1529 // Arguments go on the stack in reverse order, as specified by the ABI.
1530 unsigned ArgOffset = 0;
1531 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1533 switch (getClassB(Args[i].Ty)) {
1535 if (Args[i].Val && isa<ConstantBool>(Args[i].Val)) {
1536 addRegOffset(BuildMI(BB, X86::MOV32mi, 5), X86::ESP, ArgOffset)
1537 .addImm(Args[i].Val == ConstantBool::True);
1542 if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
1543 // Zero/Sign extend constant, then stuff into memory.
1544 ConstantInt *Val = cast<ConstantInt>(Args[i].Val);
1545 Val = cast<ConstantInt>(ConstantExpr::getCast(Val, Type::IntTy));
1546 addRegOffset(BuildMI(BB, X86::MOV32mi, 5), X86::ESP, ArgOffset)
1547 .addImm(Val->getRawValue() & 0xFFFFFFFF);
1549 // Promote arg to 32 bits wide into a temporary register...
1550 ArgReg = makeAnotherReg(Type::UIntTy);
1551 promote32(ArgReg, Args[i]);
1552 addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
1553 X86::ESP, ArgOffset).addReg(ArgReg);
1557 if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
1558 unsigned Val = cast<ConstantInt>(Args[i].Val)->getRawValue();
1559 addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
1560 X86::ESP, ArgOffset).addImm(Val);
1561 } else if (Args[i].Val && isa<ConstantPointerNull>(Args[i].Val)) {
1562 addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
1563 X86::ESP, ArgOffset).addImm(0);
1565 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1566 addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
1567 X86::ESP, ArgOffset).addReg(ArgReg);
1571 if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
1572 uint64_t Val = cast<ConstantInt>(Args[i].Val)->getRawValue();
1573 addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
1574 X86::ESP, ArgOffset).addImm(Val & ~0U);
1575 addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
1576 X86::ESP, ArgOffset+4).addImm(Val >> 32ULL);
1578 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1579 addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
1580 X86::ESP, ArgOffset).addReg(ArgReg);
1581 addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
1582 X86::ESP, ArgOffset+4).addReg(ArgReg+1);
1584 ArgOffset += 4; // 8 byte entry, not 4.
1588 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1589 if (Args[i].Ty == Type::FloatTy) {
1590 addRegOffset(BuildMI(BB, X86::FST32m, 5),
1591 X86::ESP, ArgOffset).addReg(ArgReg);
1593 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
1594 addRegOffset(BuildMI(BB, X86::FST64m, 5),
1595 X86::ESP, ArgOffset).addReg(ArgReg);
1596 ArgOffset += 4; // 8 byte entry, not 4.
1600 default: assert(0 && "Unknown class!");
1605 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(0);
1608 BB->push_back(CallMI);
1610 BuildMI(BB, X86::ADJCALLSTACKUP, 1).addImm(NumBytes);
1612 // If there is a return value, scavenge the result from the location the call
1615 if (Ret.Ty != Type::VoidTy) {
1616 unsigned DestClass = getClassB(Ret.Ty);
1617 switch (DestClass) {
1621 // Integral results are in %eax, or the appropriate portion
1623 static const unsigned regRegMove[] = {
1624 X86::MOV8rr, X86::MOV16rr, X86::MOV32rr
1626 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
1627 BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]);
1630 case cFP: // Floating-point return values live in %ST(0)
1631 BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg);
1633 case cLong: // Long values are left in EDX:EAX
1634 BuildMI(BB, X86::MOV32rr, 1, Ret.Reg).addReg(X86::EAX);
1635 BuildMI(BB, X86::MOV32rr, 1, Ret.Reg+1).addReg(X86::EDX);
1637 default: assert(0 && "Unknown class!");
1643 /// visitCallInst - Push args on stack and do a procedure call instruction.
1644 void X86ISel::visitCallInst(CallInst &CI) {
1645 MachineInstr *TheCall;
1646 if (Function *F = CI.getCalledFunction()) {
1647 // Is it an intrinsic function call?
1648 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
1649 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1653 // Emit a CALL instruction with PC-relative displacement.
1654 TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true);
1655 } else { // Emit an indirect call...
1656 unsigned Reg = getReg(CI.getCalledValue());
1657 TheCall = BuildMI(X86::CALL32r, 1).addReg(Reg);
1660 std::vector<ValueRecord> Args;
1661 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
1662 Args.push_back(ValueRecord(CI.getOperand(i)));
1664 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
1665 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
1668 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1669 /// function, lowering any calls to unknown intrinsic functions into the
1670 /// equivalent LLVM code.
1672 void X86ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
1673 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1674 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1675 if (CallInst *CI = dyn_cast<CallInst>(I++))
1676 if (Function *F = CI->getCalledFunction())
1677 switch (F->getIntrinsicID()) {
1678 case Intrinsic::not_intrinsic:
1679 case Intrinsic::vastart:
1680 case Intrinsic::vacopy:
1681 case Intrinsic::vaend:
1682 case Intrinsic::returnaddress:
1683 case Intrinsic::frameaddress:
1684 case Intrinsic::memcpy:
1685 case Intrinsic::memset:
1686 case Intrinsic::isunordered:
1687 case Intrinsic::readport:
1688 case Intrinsic::writeport:
1689 // We directly implement these intrinsics
1691 case Intrinsic::readio: {
1692 // On X86, memory operations are in-order. Lower this intrinsic
1693 // into a volatile load.
1694 Instruction *Before = CI->getPrev();
1695 LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
1696 CI->replaceAllUsesWith(LI);
1697 BB->getInstList().erase(CI);
1700 case Intrinsic::writeio: {
1701 // On X86, memory operations are in-order. Lower this intrinsic
1702 // into a volatile store.
1703 Instruction *Before = CI->getPrev();
1704 StoreInst *LI = new StoreInst(CI->getOperand(1),
1705 CI->getOperand(2), true, CI);
1706 CI->replaceAllUsesWith(LI);
1707 BB->getInstList().erase(CI);
1711 // All other intrinsic calls we must lower.
1712 Instruction *Before = CI->getPrev();
1713 TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
1714 if (Before) { // Move iterator to instruction after call
1722 void X86ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
1723 unsigned TmpReg1, TmpReg2;
1725 case Intrinsic::vastart:
1726 // Get the address of the first vararg value...
1727 TmpReg1 = getReg(CI);
1728 addFrameReference(BuildMI(BB, X86::LEA32r, 5, TmpReg1), VarArgsFrameIndex);
1731 case Intrinsic::vacopy:
1732 TmpReg1 = getReg(CI);
1733 TmpReg2 = getReg(CI.getOperand(1));
1734 BuildMI(BB, X86::MOV32rr, 1, TmpReg1).addReg(TmpReg2);
1736 case Intrinsic::vaend: return; // Noop on X86
1738 case Intrinsic::returnaddress:
1739 case Intrinsic::frameaddress:
1740 TmpReg1 = getReg(CI);
1741 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
1742 if (ID == Intrinsic::returnaddress) {
1743 // Just load the return address
1744 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, TmpReg1),
1745 ReturnAddressIndex);
1747 addFrameReference(BuildMI(BB, X86::LEA32r, 4, TmpReg1),
1748 ReturnAddressIndex, -4);
1751 // Values other than zero are not implemented yet.
1752 BuildMI(BB, X86::MOV32ri, 1, TmpReg1).addImm(0);
1756 case Intrinsic::isunordered:
1757 TmpReg1 = getReg(CI.getOperand(1));
1758 TmpReg2 = getReg(CI.getOperand(2));
1759 emitUCOMr(BB, BB->end(), TmpReg2, TmpReg1);
1760 TmpReg2 = getReg(CI);
1761 BuildMI(BB, X86::SETPr, 0, TmpReg2);
1764 case Intrinsic::memcpy: {
1765 assert(CI.getNumOperands() == 5 && "Illegal llvm.memcpy call!");
1767 if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) {
1768 Align = AlignC->getRawValue();
1769 if (Align == 0) Align = 1;
1772 // Turn the byte code into # iterations
1775 switch (Align & 3) {
1776 case 2: // WORD aligned
1777 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
1778 CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2));
1780 CountReg = makeAnotherReg(Type::IntTy);
1781 unsigned ByteReg = getReg(CI.getOperand(3));
1782 BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1);
1784 Opcode = X86::REP_MOVSW;
1786 case 0: // DWORD aligned
1787 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
1788 CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4));
1790 CountReg = makeAnotherReg(Type::IntTy);
1791 unsigned ByteReg = getReg(CI.getOperand(3));
1792 BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2);
1794 Opcode = X86::REP_MOVSD;
1796 default: // BYTE aligned
1797 CountReg = getReg(CI.getOperand(3));
1798 Opcode = X86::REP_MOVSB;
1802 // No matter what the alignment is, we put the source in ESI, the
1803 // destination in EDI, and the count in ECX.
1804 TmpReg1 = getReg(CI.getOperand(1));
1805 TmpReg2 = getReg(CI.getOperand(2));
1806 BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg);
1807 BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1);
1808 BuildMI(BB, X86::MOV32rr, 1, X86::ESI).addReg(TmpReg2);
1809 BuildMI(BB, Opcode, 0);
1812 case Intrinsic::memset: {
1813 assert(CI.getNumOperands() == 5 && "Illegal llvm.memset call!");
1815 if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) {
1816 Align = AlignC->getRawValue();
1817 if (Align == 0) Align = 1;
1820 // Turn the byte code into # iterations
1823 if (ConstantInt *ValC = dyn_cast<ConstantInt>(CI.getOperand(2))) {
1824 unsigned Val = ValC->getRawValue() & 255;
1826 // If the value is a constant, then we can potentially use larger copies.
1827 switch (Align & 3) {
1828 case 2: // WORD aligned
1829 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
1830 CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2));
1832 CountReg = makeAnotherReg(Type::IntTy);
1833 unsigned ByteReg = getReg(CI.getOperand(3));
1834 BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1);
1836 BuildMI(BB, X86::MOV16ri, 1, X86::AX).addImm((Val << 8) | Val);
1837 Opcode = X86::REP_STOSW;
1839 case 0: // DWORD aligned
1840 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
1841 CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4));
1843 CountReg = makeAnotherReg(Type::IntTy);
1844 unsigned ByteReg = getReg(CI.getOperand(3));
1845 BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2);
1847 Val = (Val << 8) | Val;
1848 BuildMI(BB, X86::MOV32ri, 1, X86::EAX).addImm((Val << 16) | Val);
1849 Opcode = X86::REP_STOSD;
1851 default: // BYTE aligned
1852 CountReg = getReg(CI.getOperand(3));
1853 BuildMI(BB, X86::MOV8ri, 1, X86::AL).addImm(Val);
1854 Opcode = X86::REP_STOSB;
1858 // If it's not a constant value we are storing, just fall back. We could
1859 // try to be clever to form 16 bit and 32 bit values, but we don't yet.
1860 unsigned ValReg = getReg(CI.getOperand(2));
1861 BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg);
1862 CountReg = getReg(CI.getOperand(3));
1863 Opcode = X86::REP_STOSB;
1866 // No matter what the alignment is, we put the source in ESI, the
1867 // destination in EDI, and the count in ECX.
1868 TmpReg1 = getReg(CI.getOperand(1));
1869 //TmpReg2 = getReg(CI.getOperand(2));
1870 BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg);
1871 BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1);
1872 BuildMI(BB, Opcode, 0);
1876 case Intrinsic::readport: {
1877 // First, determine that the size of the operand falls within the acceptable
1878 // range for this architecture.
1880 if (getClassB(CI.getOperand(1)->getType()) != cShort) {
1881 std::cerr << "llvm.readport: Address size is not 16 bits\n";
1885 // Now, move the I/O port address into the DX register and use the IN
1886 // instruction to get the input data.
1888 unsigned Class = getClass(CI.getCalledFunction()->getReturnType());
1889 unsigned DestReg = getReg(CI);
1891 // If the port is a single-byte constant, use the immediate form.
1892 if (ConstantInt *C = dyn_cast<ConstantInt>(CI.getOperand(1)))
1893 if ((C->getRawValue() & 255) == C->getRawValue()) {
1896 BuildMI(BB, X86::IN8ri, 1).addImm((unsigned char)C->getRawValue());
1897 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AL);
1900 BuildMI(BB, X86::IN16ri, 1).addImm((unsigned char)C->getRawValue());
1901 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AX);
1904 BuildMI(BB, X86::IN32ri, 1).addImm((unsigned char)C->getRawValue());
1905 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::EAX);
1910 unsigned Reg = getReg(CI.getOperand(1));
1911 BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Reg);
1914 BuildMI(BB, X86::IN8rr, 0);
1915 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AL);
1918 BuildMI(BB, X86::IN16rr, 0);
1919 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AX);
1922 BuildMI(BB, X86::IN32rr, 0);
1923 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::EAX);
1926 std::cerr << "Cannot do input on this data type";
1932 case Intrinsic::writeport: {
1933 // First, determine that the size of the operand falls within the
1934 // acceptable range for this architecture.
1935 if (getClass(CI.getOperand(2)->getType()) != cShort) {
1936 std::cerr << "llvm.writeport: Address size is not 16 bits\n";
1940 unsigned Class = getClassB(CI.getOperand(1)->getType());
1941 unsigned ValReg = getReg(CI.getOperand(1));
1944 BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg);
1947 BuildMI(BB, X86::MOV16rr, 1, X86::AX).addReg(ValReg);
1950 BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(ValReg);
1953 std::cerr << "llvm.writeport: invalid data type for X86 target";
1958 // If the port is a single-byte constant, use the immediate form.
1959 if (ConstantInt *C = dyn_cast<ConstantInt>(CI.getOperand(2)))
1960 if ((C->getRawValue() & 255) == C->getRawValue()) {
1961 static const unsigned O[] = { X86::OUT8ir, X86::OUT16ir, X86::OUT32ir };
1962 BuildMI(BB, O[Class], 1).addImm((unsigned char)C->getRawValue());
1966 // Otherwise, move the I/O port address into the DX register and the value
1967 // to write into the AL/AX/EAX register.
1968 static const unsigned Opc[] = { X86::OUT8rr, X86::OUT16rr, X86::OUT32rr };
1969 unsigned Reg = getReg(CI.getOperand(2));
1970 BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Reg);
1971 BuildMI(BB, Opc[Class], 0);
1975 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
1979 static bool isSafeToFoldLoadIntoInstruction(LoadInst &LI, Instruction &User) {
1980 if (LI.getParent() != User.getParent())
1982 BasicBlock::iterator It = &LI;
1983 // Check all of the instructions between the load and the user. We should
1984 // really use alias analysis here, but for now we just do something simple.
1985 for (++It; It != BasicBlock::iterator(&User); ++It) {
1986 switch (It->getOpcode()) {
1987 case Instruction::Free:
1988 case Instruction::Store:
1989 case Instruction::Call:
1990 case Instruction::Invoke:
1992 case Instruction::Load:
1993 if (cast<LoadInst>(It)->isVolatile() && LI.isVolatile())
2001 /// visitSimpleBinary - Implement simple binary operators for integral types...
2002 /// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
2005 void X86ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
2006 unsigned DestReg = getReg(B);
2007 MachineBasicBlock::iterator MI = BB->end();
2008 Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
2009 unsigned Class = getClassB(B.getType());
2011 // If this is AND X, C, and it is only used by a setcc instruction, it will
2012 // be folded. There is no need to emit this instruction.
2013 if (B.hasOneUse() && OperatorClass == 2 && isa<ConstantInt>(Op1))
2014 if (Class == cByte || Class == cShort || Class == cInt) {
2015 Instruction *Use = cast<Instruction>(B.use_back());
2016 if (isa<SetCondInst>(Use) &&
2017 Use->getOperand(1) == Constant::getNullValue(B.getType())) {
2018 switch (getSetCCNumber(Use->getOpcode())) {
2023 if (B.getType()->isSigned()) return;
2028 // Special case: op Reg, load [mem]
2029 if (isa<LoadInst>(Op0) && !isa<LoadInst>(Op1) && Class != cLong &&
2031 isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op0), B))
2032 if (!B.swapOperands())
2033 std::swap(Op0, Op1); // Make sure any loads are in the RHS.
2035 if (isa<LoadInst>(Op1) && Class != cLong && Op1->hasOneUse() &&
2036 isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op1), B)) {
2040 static const unsigned OpcodeTab[][3] = {
2041 // Arithmetic operators
2042 { X86::ADD8rm, X86::ADD16rm, X86::ADD32rm }, // ADD
2043 { X86::SUB8rm, X86::SUB16rm, X86::SUB32rm }, // SUB
2045 // Bitwise operators
2046 { X86::AND8rm, X86::AND16rm, X86::AND32rm }, // AND
2047 { X86:: OR8rm, X86:: OR16rm, X86:: OR32rm }, // OR
2048 { X86::XOR8rm, X86::XOR16rm, X86::XOR32rm }, // XOR
2050 Opcode = OpcodeTab[OperatorClass][Class];
2052 static const unsigned OpcodeTab[][2] = {
2053 { X86::FADD32m, X86::FADD64m }, // ADD
2054 { X86::FSUB32m, X86::FSUB64m }, // SUB
2056 const Type *Ty = Op0->getType();
2057 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
2058 Opcode = OpcodeTab[OperatorClass][Ty == Type::DoubleTy];
2061 unsigned Op0r = getReg(Op0);
2062 if (AllocaInst *AI =
2063 dyn_castFixedAlloca(cast<LoadInst>(Op1)->getOperand(0))) {
2064 unsigned FI = getFixedSizedAllocaFI(AI);
2065 addFrameReference(BuildMI(BB, Opcode, 5, DestReg).addReg(Op0r), FI);
2069 getAddressingMode(cast<LoadInst>(Op1)->getOperand(0), AM);
2071 addFullAddress(BuildMI(BB, Opcode, 5, DestReg).addReg(Op0r), AM);
2076 // If this is a floating point subtract, check to see if we can fold the first
2078 if (Class == cFP && OperatorClass == 1 &&
2079 isa<LoadInst>(Op0) &&
2080 isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op0), B)) {
2081 const Type *Ty = Op0->getType();
2082 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
2083 unsigned Opcode = Ty == Type::FloatTy ? X86::FSUBR32m : X86::FSUBR64m;
2085 unsigned Op1r = getReg(Op1);
2086 if (AllocaInst *AI =
2087 dyn_castFixedAlloca(cast<LoadInst>(Op0)->getOperand(0))) {
2088 unsigned FI = getFixedSizedAllocaFI(AI);
2089 addFrameReference(BuildMI(BB, Opcode, 5, DestReg).addReg(Op1r), FI);
2092 getAddressingMode(cast<LoadInst>(Op0)->getOperand(0), AM);
2094 addFullAddress(BuildMI(BB, Opcode, 5, DestReg).addReg(Op1r), AM);
2099 emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
2103 /// emitBinaryFPOperation - This method handles emission of floating point
2104 /// Add (0), Sub (1), Mul (2), and Div (3) operations.
2105 void X86ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
2106 MachineBasicBlock::iterator IP,
2107 Value *Op0, Value *Op1,
2108 unsigned OperatorClass, unsigned DestReg) {
2109 // Special case: op Reg, <const fp>
2110 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1))
2111 if (!Op1C->isExactlyValue(+0.0) && !Op1C->isExactlyValue(+1.0)) {
2112 // Create a constant pool entry for this constant.
2113 MachineConstantPool *CP = F->getConstantPool();
2114 unsigned CPI = CP->getConstantPoolIndex(Op1C);
2115 const Type *Ty = Op1->getType();
2117 static const unsigned OpcodeTab[][4] = {
2118 { X86::FADD32m, X86::FSUB32m, X86::FMUL32m, X86::FDIV32m }, // Float
2119 { X86::FADD64m, X86::FSUB64m, X86::FMUL64m, X86::FDIV64m }, // Double
2122 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
2123 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
2124 unsigned Op0r = getReg(Op0, BB, IP);
2125 addConstantPoolReference(BuildMI(*BB, IP, Opcode, 5,
2126 DestReg).addReg(Op0r), CPI);
2130 // Special case: R1 = op <const fp>, R2
2131 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op0))
2132 if (CFP->isExactlyValue(-0.0) && OperatorClass == 1) {
2134 unsigned op1Reg = getReg(Op1, BB, IP);
2135 BuildMI(*BB, IP, X86::FCHS, 1, DestReg).addReg(op1Reg);
2137 } else if (!CFP->isExactlyValue(+0.0) && !CFP->isExactlyValue(+1.0)) {
2138 // R1 = op CST, R2 --> R1 = opr R2, CST
2140 // Create a constant pool entry for this constant.
2141 MachineConstantPool *CP = F->getConstantPool();
2142 unsigned CPI = CP->getConstantPoolIndex(CFP);
2143 const Type *Ty = CFP->getType();
2145 static const unsigned OpcodeTab[][4] = {
2146 { X86::FADD32m, X86::FSUBR32m, X86::FMUL32m, X86::FDIVR32m }, // Float
2147 { X86::FADD64m, X86::FSUBR64m, X86::FMUL64m, X86::FDIVR64m }, // Double
2150 assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
2151 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
2152 unsigned Op1r = getReg(Op1, BB, IP);
2153 addConstantPoolReference(BuildMI(*BB, IP, Opcode, 5,
2154 DestReg).addReg(Op1r), CPI);
2159 static const unsigned OpcodeTab[4] = {
2160 X86::FpADD, X86::FpSUB, X86::FpMUL, X86::FpDIV
2163 unsigned Opcode = OpcodeTab[OperatorClass];
2164 unsigned Op0r = getReg(Op0, BB, IP);
2165 unsigned Op1r = getReg(Op1, BB, IP);
2166 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
2169 /// emitSimpleBinaryOperation - Implement simple binary operators for integral
2170 /// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
2173 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
2174 /// and constant expression support.
2176 void X86ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
2177 MachineBasicBlock::iterator IP,
2178 Value *Op0, Value *Op1,
2179 unsigned OperatorClass,
2181 unsigned Class = getClassB(Op0->getType());
2184 assert(OperatorClass < 2 && "No logical ops for FP!");
2185 emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
2189 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
2190 if (OperatorClass == 1) {
2191 static unsigned const NEGTab[] = {
2192 X86::NEG8r, X86::NEG16r, X86::NEG32r, 0, X86::NEG32r
2195 // sub 0, X -> neg X
2196 if (CI->isNullValue()) {
2197 unsigned op1Reg = getReg(Op1, MBB, IP);
2198 BuildMI(*MBB, IP, NEGTab[Class], 1, DestReg).addReg(op1Reg);
2200 if (Class == cLong) {
2201 // We just emitted: Dl = neg Sl
2202 // Now emit : T = addc Sh, 0
2204 unsigned T = makeAnotherReg(Type::IntTy);
2205 BuildMI(*MBB, IP, X86::ADC32ri, 2, T).addReg(op1Reg+1).addImm(0);
2206 BuildMI(*MBB, IP, X86::NEG32r, 1, DestReg+1).addReg(T);
2209 } else if (Op1->hasOneUse() && Class != cLong) {
2210 // sub C, X -> tmp = neg X; DestReg = add tmp, C. This is better
2211 // than copying C into a temporary register, because of register
2212 // pressure (tmp and destreg can share a register.
2213 static unsigned const ADDRITab[] = {
2214 X86::ADD8ri, X86::ADD16ri, X86::ADD32ri, 0, X86::ADD32ri
2216 unsigned op1Reg = getReg(Op1, MBB, IP);
2217 unsigned Tmp = makeAnotherReg(Op0->getType());
2218 BuildMI(*MBB, IP, NEGTab[Class], 1, Tmp).addReg(op1Reg);
2219 BuildMI(*MBB, IP, ADDRITab[Class], 2,
2220 DestReg).addReg(Tmp).addImm(CI->getRawValue());
2225 // Special case: op Reg, <const int>
2226 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
2227 unsigned Op0r = getReg(Op0, MBB, IP);
2229 // xor X, -1 -> not X
2230 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
2231 static unsigned const NOTTab[] = {
2232 X86::NOT8r, X86::NOT16r, X86::NOT32r, 0, X86::NOT32r
2234 BuildMI(*MBB, IP, NOTTab[Class], 1, DestReg).addReg(Op0r);
2235 if (Class == cLong) // Invert the top part too
2236 BuildMI(*MBB, IP, X86::NOT32r, 1, DestReg+1).addReg(Op0r+1);
2240 // add X, -1 -> dec X
2241 if (OperatorClass == 0 && Op1C->isAllOnesValue() && Class != cLong) {
2242 // Note that we can't use dec for 64-bit decrements, because it does not
2243 // set the carry flag!
2244 static unsigned const DECTab[] = { X86::DEC8r, X86::DEC16r, X86::DEC32r };
2245 BuildMI(*MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
2249 // add X, 1 -> inc X
2250 if (OperatorClass == 0 && Op1C->equalsInt(1) && Class != cLong) {
2251 // Note that we can't use inc for 64-bit increments, because it does not
2252 // set the carry flag!
2253 static unsigned const INCTab[] = { X86::INC8r, X86::INC16r, X86::INC32r };
2254 BuildMI(*MBB, IP, INCTab[Class], 1, DestReg).addReg(Op0r);
2258 static const unsigned OpcodeTab[][5] = {
2259 // Arithmetic operators
2260 { X86::ADD8ri, X86::ADD16ri, X86::ADD32ri, 0, X86::ADD32ri }, // ADD
2261 { X86::SUB8ri, X86::SUB16ri, X86::SUB32ri, 0, X86::SUB32ri }, // SUB
2263 // Bitwise operators
2264 { X86::AND8ri, X86::AND16ri, X86::AND32ri, 0, X86::AND32ri }, // AND
2265 { X86:: OR8ri, X86:: OR16ri, X86:: OR32ri, 0, X86::OR32ri }, // OR
2266 { X86::XOR8ri, X86::XOR16ri, X86::XOR32ri, 0, X86::XOR32ri }, // XOR
2269 unsigned Opcode = OpcodeTab[OperatorClass][Class];
2270 unsigned Op1l = cast<ConstantInt>(Op1C)->getRawValue();
2272 if (Class != cLong) {
2273 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addImm(Op1l);
2277 // If this is a long value and the high or low bits have a special
2278 // property, emit some special cases.
2279 unsigned Op1h = cast<ConstantInt>(Op1C)->getRawValue() >> 32LL;
2281 // If the constant is zero in the low 32-bits, just copy the low part
2282 // across and apply the normal 32-bit operation to the high parts. There
2283 // will be no carry or borrow into the top.
2285 if (OperatorClass != 2) // All but and...
2286 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg).addReg(Op0r);
2288 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
2289 BuildMI(*MBB, IP, OpcodeTab[OperatorClass][cLong], 2, DestReg+1)
2290 .addReg(Op0r+1).addImm(Op1h);
2294 // If this is a logical operation and the top 32-bits are zero, just
2295 // operate on the lower 32.
2296 if (Op1h == 0 && OperatorClass > 1) {
2297 BuildMI(*MBB, IP, OpcodeTab[OperatorClass][cLong], 2, DestReg)
2298 .addReg(Op0r).addImm(Op1l);
2299 if (OperatorClass != 2) // All but and
2300 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(Op0r+1);
2302 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
2306 // TODO: We could handle lots of other special cases here, such as AND'ing
2307 // with 0xFFFFFFFF00000000 -> noop, etc.
2309 // Otherwise, code generate the full operation with a constant.
2310 static const unsigned TopTab[] = {
2311 X86::ADC32ri, X86::SBB32ri, X86::AND32ri, X86::OR32ri, X86::XOR32ri
2314 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addImm(Op1l);
2315 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1)
2316 .addReg(Op0r+1).addImm(Op1h);
2320 // Finally, handle the general case now.
2321 static const unsigned OpcodeTab[][5] = {
2322 // Arithmetic operators
2323 { X86::ADD8rr, X86::ADD16rr, X86::ADD32rr, 0, X86::ADD32rr }, // ADD
2324 { X86::SUB8rr, X86::SUB16rr, X86::SUB32rr, 0, X86::SUB32rr }, // SUB
2326 // Bitwise operators
2327 { X86::AND8rr, X86::AND16rr, X86::AND32rr, 0, X86::AND32rr }, // AND
2328 { X86:: OR8rr, X86:: OR16rr, X86:: OR32rr, 0, X86:: OR32rr }, // OR
2329 { X86::XOR8rr, X86::XOR16rr, X86::XOR32rr, 0, X86::XOR32rr }, // XOR
2332 unsigned Opcode = OpcodeTab[OperatorClass][Class];
2333 unsigned Op0r = getReg(Op0, MBB, IP);
2334 unsigned Op1r = getReg(Op1, MBB, IP);
2335 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
2337 if (Class == cLong) { // Handle the upper 32 bits of long values...
2338 static const unsigned TopTab[] = {
2339 X86::ADC32rr, X86::SBB32rr, X86::AND32rr, X86::OR32rr, X86::XOR32rr
2341 BuildMI(*MBB, IP, TopTab[OperatorClass], 2,
2342 DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
2346 /// doMultiply - Emit appropriate instructions to multiply together the
2347 /// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
2348 /// result should be given as DestTy.
2350 void X86ISel::doMultiply(MachineBasicBlock *MBB,
2351 MachineBasicBlock::iterator MBBI,
2352 unsigned DestReg, const Type *DestTy,
2353 unsigned op0Reg, unsigned op1Reg) {
2354 unsigned Class = getClass(DestTy);
2358 BuildMI(*MBB, MBBI, Class == cInt ? X86::IMUL32rr:X86::IMUL16rr, 2, DestReg)
2359 .addReg(op0Reg).addReg(op1Reg);
2362 // Must use the MUL instruction, which forces use of AL...
2363 BuildMI(*MBB, MBBI, X86::MOV8rr, 1, X86::AL).addReg(op0Reg);
2364 BuildMI(*MBB, MBBI, X86::MUL8r, 1).addReg(op1Reg);
2365 BuildMI(*MBB, MBBI, X86::MOV8rr, 1, DestReg).addReg(X86::AL);
2368 case cLong: assert(0 && "doMultiply cannot operate on LONG values!");
2372 // ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
2373 // returns zero when the input is not exactly a power of two.
2374 static unsigned ExactLog2(unsigned Val) {
2375 if (Val == 0 || (Val & (Val-1))) return 0;
2385 /// doMultiplyConst - This function is specialized to efficiently codegen an 8,
2386 /// 16, or 32-bit integer multiply by a constant.
2387 void X86ISel::doMultiplyConst(MachineBasicBlock *MBB,
2388 MachineBasicBlock::iterator IP,
2389 unsigned DestReg, const Type *DestTy,
2390 unsigned op0Reg, unsigned ConstRHS) {
2391 static const unsigned MOVrrTab[] = {X86::MOV8rr, X86::MOV16rr, X86::MOV32rr};
2392 static const unsigned MOVriTab[] = {X86::MOV8ri, X86::MOV16ri, X86::MOV32ri};
2393 static const unsigned ADDrrTab[] = {X86::ADD8rr, X86::ADD16rr, X86::ADD32rr};
2394 static const unsigned NEGrTab[] = {X86::NEG8r , X86::NEG16r , X86::NEG32r };
2396 unsigned Class = getClass(DestTy);
2399 // Handle special cases here.
2402 TmpReg = makeAnotherReg(DestTy);
2403 BuildMI(*MBB, IP, NEGrTab[Class], 1, TmpReg).addReg(op0Reg);
2404 BuildMI(*MBB, IP, ADDrrTab[Class], 1,DestReg).addReg(TmpReg).addReg(TmpReg);
2407 BuildMI(*MBB, IP, NEGrTab[Class], 1, DestReg).addReg(op0Reg);
2410 BuildMI(*MBB, IP, MOVriTab[Class], 1, DestReg).addImm(0);
2413 BuildMI(*MBB, IP, MOVrrTab[Class], 1, DestReg).addReg(op0Reg);
2416 BuildMI(*MBB, IP, ADDrrTab[Class], 1,DestReg).addReg(op0Reg).addReg(op0Reg);
2421 if (Class == cInt) {
2423 AM.BaseType = X86AddressMode::RegBase;
2424 AM.Base.Reg = op0Reg;
2425 AM.Scale = ConstRHS-1;
2426 AM.IndexReg = op0Reg;
2428 addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, DestReg), AM);
2434 if (Class == cInt) {
2435 TmpReg = makeAnotherReg(DestTy);
2437 AM.BaseType = X86AddressMode::RegBase;
2438 AM.Base.Reg = op0Reg;
2439 AM.Scale = -ConstRHS-1;
2440 AM.IndexReg = op0Reg;
2442 addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, TmpReg), AM);
2443 BuildMI(*MBB, IP, NEGrTab[Class], 1, DestReg).addReg(TmpReg);
2448 // If the element size is exactly a power of 2, use a shift to get it.
2449 if (unsigned Shift = ExactLog2(ConstRHS)) {
2451 default: assert(0 && "Unknown class for this function!");
2453 BuildMI(*MBB, IP, X86::SHL8ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
2456 BuildMI(*MBB, IP, X86::SHL16ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
2459 BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
2464 // If the element size is a negative power of 2, use a shift/neg to get it.
2465 if (unsigned Shift = ExactLog2(-ConstRHS)) {
2466 TmpReg = makeAnotherReg(DestTy);
2467 BuildMI(*MBB, IP, NEGrTab[Class], 1, TmpReg).addReg(op0Reg);
2469 default: assert(0 && "Unknown class for this function!");
2471 BuildMI(*MBB, IP, X86::SHL8ri,2, DestReg).addReg(TmpReg).addImm(Shift-1);
2474 BuildMI(*MBB, IP, X86::SHL16ri,2, DestReg).addReg(TmpReg).addImm(Shift-1);
2477 BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(TmpReg).addImm(Shift-1);
2482 if (Class == cShort) {
2483 BuildMI(*MBB, IP, X86::IMUL16rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS);
2485 } else if (Class == cInt) {
2486 BuildMI(*MBB, IP, X86::IMUL32rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS);
2490 // Most general case, emit a normal multiply...
2491 TmpReg = makeAnotherReg(DestTy);
2492 BuildMI(*MBB, IP, MOVriTab[Class], 1, TmpReg).addImm(ConstRHS);
2494 // Emit a MUL to multiply the register holding the index by
2495 // elementSize, putting the result in OffsetReg.
2496 doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg);
2499 /// visitMul - Multiplies are not simple binary operators because they must deal
2500 /// with the EAX register explicitly.
2502 void X86ISel::visitMul(BinaryOperator &I) {
2503 unsigned ResultReg = getReg(I);
2505 Value *Op0 = I.getOperand(0);
2506 Value *Op1 = I.getOperand(1);
2508 // Fold loads into floating point multiplies.
2509 if (getClass(Op0->getType()) == cFP) {
2510 if (isa<LoadInst>(Op0) && !isa<LoadInst>(Op1))
2511 if (!I.swapOperands())
2512 std::swap(Op0, Op1); // Make sure any loads are in the RHS.
2513 if (LoadInst *LI = dyn_cast<LoadInst>(Op1))
2514 if (isSafeToFoldLoadIntoInstruction(*LI, I)) {
2515 const Type *Ty = Op0->getType();
2516 assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
2517 unsigned Opcode = Ty == Type::FloatTy ? X86::FMUL32m : X86::FMUL64m;
2519 unsigned Op0r = getReg(Op0);
2520 if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) {
2521 unsigned FI = getFixedSizedAllocaFI(AI);
2522 addFrameReference(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), FI);
2525 getAddressingMode(LI->getOperand(0), AM);
2527 addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), AM);
2533 MachineBasicBlock::iterator IP = BB->end();
2534 emitMultiply(BB, IP, Op0, Op1, ResultReg);
2537 void X86ISel::emitMultiply(MachineBasicBlock *MBB,
2538 MachineBasicBlock::iterator IP,
2539 Value *Op0, Value *Op1, unsigned DestReg) {
2540 MachineBasicBlock &BB = *MBB;
2541 TypeClass Class = getClass(Op0->getType());
2543 // Simple scalar multiply?
2544 unsigned Op0Reg = getReg(Op0, &BB, IP);
2549 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2550 unsigned Val = (unsigned)CI->getRawValue(); // Isn't a 64-bit constant
2551 doMultiplyConst(&BB, IP, DestReg, Op0->getType(), Op0Reg, Val);
2553 unsigned Op1Reg = getReg(Op1, &BB, IP);
2554 doMultiply(&BB, IP, DestReg, Op1->getType(), Op0Reg, Op1Reg);
2558 emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
2564 // Long value. We have to do things the hard way...
2565 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2566 unsigned CLow = CI->getRawValue();
2567 unsigned CHi = CI->getRawValue() >> 32;
2570 // If the low part of the constant is all zeros, things are simple.
2571 BuildMI(BB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
2572 doMultiplyConst(&BB, IP, DestReg+1, Type::UIntTy, Op0Reg, CHi);
2576 // Multiply the two low parts... capturing carry into EDX
2577 unsigned OverflowReg = 0;
2579 BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(Op0Reg);
2581 unsigned Op1RegL = makeAnotherReg(Type::UIntTy);
2582 OverflowReg = makeAnotherReg(Type::UIntTy);
2583 BuildMI(BB, IP, X86::MOV32ri, 1, Op1RegL).addImm(CLow);
2584 BuildMI(BB, IP, X86::MOV32rr, 1, X86::EAX).addReg(Op0Reg);
2585 BuildMI(BB, IP, X86::MUL32r, 1).addReg(Op1RegL); // AL*BL
2587 BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(X86::EAX); // AL*BL
2588 BuildMI(BB, IP, X86::MOV32rr, 1,
2589 OverflowReg).addReg(X86::EDX); // AL*BL >> 32
2592 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
2593 doMultiplyConst(&BB, IP, AHBLReg, Type::UIntTy, Op0Reg+1, CLow);
2595 unsigned AHBLplusOverflowReg;
2597 AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
2598 BuildMI(BB, IP, X86::ADD32rr, 2, // AH*BL+(AL*BL >> 32)
2599 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
2601 AHBLplusOverflowReg = AHBLReg;
2605 BuildMI(BB, IP, X86::MOV32rr, 1, DestReg+1).addReg(AHBLplusOverflowReg);
2607 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
2608 doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi);
2610 BuildMI(BB, IP, X86::ADD32rr, 2, // AL*BH + AH*BL + (AL*BL >> 32)
2611 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
2616 // General 64x64 multiply
2618 unsigned Op1Reg = getReg(Op1, &BB, IP);
2619 // Multiply the two low parts... capturing carry into EDX
2620 BuildMI(BB, IP, X86::MOV32rr, 1, X86::EAX).addReg(Op0Reg);
2621 BuildMI(BB, IP, X86::MUL32r, 1).addReg(Op1Reg); // AL*BL
2623 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
2624 BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(X86::EAX); // AL*BL
2625 BuildMI(BB, IP, X86::MOV32rr, 1,
2626 OverflowReg).addReg(X86::EDX); // AL*BL >> 32
2628 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
2629 BuildMI(BB, IP, X86::IMUL32rr, 2,
2630 AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
2632 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
2633 BuildMI(BB, IP, X86::ADD32rr, 2, // AH*BL+(AL*BL >> 32)
2634 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
2636 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
2637 BuildMI(BB, IP, X86::IMUL32rr, 2,
2638 ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
2640 BuildMI(BB, IP, X86::ADD32rr, 2, // AL*BH + AH*BL + (AL*BL >> 32)
2641 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
2645 /// visitDivRem - Handle division and remainder instructions... these
2646 /// instruction both require the same instructions to be generated, they just
2647 /// select the result from a different register. Note that both of these
2648 /// instructions work differently for signed and unsigned operands.
2650 void X86ISel::visitDivRem(BinaryOperator &I) {
2651 unsigned ResultReg = getReg(I);
2652 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2654 // Fold loads into floating point divides.
2655 if (getClass(Op0->getType()) == cFP) {
2656 if (LoadInst *LI = dyn_cast<LoadInst>(Op1))
2657 if (isSafeToFoldLoadIntoInstruction(*LI, I)) {
2658 const Type *Ty = Op0->getType();
2659 assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
2660 unsigned Opcode = Ty == Type::FloatTy ? X86::FDIV32m : X86::FDIV64m;
2662 unsigned Op0r = getReg(Op0);
2663 if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) {
2664 unsigned FI = getFixedSizedAllocaFI(AI);
2665 addFrameReference(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), FI);
2668 getAddressingMode(LI->getOperand(0), AM);
2670 addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), AM);
2675 if (LoadInst *LI = dyn_cast<LoadInst>(Op0))
2676 if (isSafeToFoldLoadIntoInstruction(*LI, I)) {
2677 const Type *Ty = Op0->getType();
2678 assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
2679 unsigned Opcode = Ty == Type::FloatTy ? X86::FDIVR32m : X86::FDIVR64m;
2681 unsigned Op1r = getReg(Op1);
2682 if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) {
2683 unsigned FI = getFixedSizedAllocaFI(AI);
2684 addFrameReference(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op1r), FI);
2687 getAddressingMode(LI->getOperand(0), AM);
2688 addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op1r), AM);
2695 MachineBasicBlock::iterator IP = BB->end();
2696 emitDivRemOperation(BB, IP, Op0, Op1,
2697 I.getOpcode() == Instruction::Div, ResultReg);
2700 void X86ISel::emitDivRemOperation(MachineBasicBlock *BB,
2701 MachineBasicBlock::iterator IP,
2702 Value *Op0, Value *Op1, bool isDiv,
2703 unsigned ResultReg) {
2704 const Type *Ty = Op0->getType();
2705 unsigned Class = getClass(Ty);
2707 case cFP: // Floating point divide
2709 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
2711 } else { // Floating point remainder...
2712 unsigned Op0Reg = getReg(Op0, BB, IP);
2713 unsigned Op1Reg = getReg(Op1, BB, IP);
2714 MachineInstr *TheCall =
2715 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true);
2716 std::vector<ValueRecord> Args;
2717 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
2718 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
2719 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
2723 static const char *FnName[] =
2724 { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
2725 unsigned Op0Reg = getReg(Op0, BB, IP);
2726 unsigned Op1Reg = getReg(Op1, BB, IP);
2727 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
2728 MachineInstr *TheCall =
2729 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true);
2731 std::vector<ValueRecord> Args;
2732 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
2733 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
2734 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
2737 case cByte: case cShort: case cInt:
2738 break; // Small integrals, handled below...
2739 default: assert(0 && "Unknown class!");
2742 static const unsigned MovOpcode[]={ X86::MOV8rr, X86::MOV16rr, X86::MOV32rr };
2743 static const unsigned NEGOpcode[]={ X86::NEG8r, X86::NEG16r, X86::NEG32r };
2744 static const unsigned SAROpcode[]={ X86::SAR8ri, X86::SAR16ri, X86::SAR32ri };
2745 static const unsigned SHROpcode[]={ X86::SHR8ri, X86::SHR16ri, X86::SHR32ri };
2746 static const unsigned ADDOpcode[]={ X86::ADD8rr, X86::ADD16rr, X86::ADD32rr };
2748 // Special case signed division by power of 2.
2749 if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1))
2751 assert(Class != cLong && "This doesn't handle 64-bit divides!");
2752 int V = CI->getValue();
2754 if (V == 1) { // X /s 1 => X
2755 unsigned Op0Reg = getReg(Op0, BB, IP);
2756 BuildMI(*BB, IP, MovOpcode[Class], 1, ResultReg).addReg(Op0Reg);
2760 if (V == -1) { // X /s -1 => -X
2761 unsigned Op0Reg = getReg(Op0, BB, IP);
2762 BuildMI(*BB, IP, NEGOpcode[Class], 1, ResultReg).addReg(Op0Reg);
2766 if (V == 2 || V == -2) { // X /s 2
2767 static const unsigned CMPOpcode[] = {
2768 X86::CMP8ri, X86::CMP16ri, X86::CMP32ri
2770 static const unsigned SBBOpcode[] = {
2771 X86::SBB8ri, X86::SBB16ri, X86::SBB32ri
2773 unsigned Op0Reg = getReg(Op0, BB, IP);
2774 unsigned SignBit = 1 << (CI->getType()->getPrimitiveSize()*8-1);
2775 BuildMI(*BB, IP, CMPOpcode[Class], 2).addReg(Op0Reg).addImm(SignBit);
2777 unsigned TmpReg = makeAnotherReg(Op0->getType());
2778 BuildMI(*BB, IP, SBBOpcode[Class], 2, TmpReg).addReg(Op0Reg).addImm(-1);
2780 unsigned TmpReg2 = V == 2 ? ResultReg : makeAnotherReg(Op0->getType());
2781 BuildMI(*BB, IP, SAROpcode[Class], 2, TmpReg2).addReg(TmpReg).addImm(1);
2783 BuildMI(*BB, IP, NEGOpcode[Class], 1, ResultReg).addReg(TmpReg2);
2789 if (V < 0) { // Not a positive power of 2?
2791 isNeg = true; // Maybe it's a negative power of 2.
2793 if (unsigned Log = ExactLog2(V)) {
2795 unsigned Op0Reg = getReg(Op0, BB, IP);
2796 unsigned TmpReg = makeAnotherReg(Op0->getType());
2797 BuildMI(*BB, IP, SAROpcode[Class], 2, TmpReg)
2798 .addReg(Op0Reg).addImm(Log-1);
2799 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
2800 BuildMI(*BB, IP, SHROpcode[Class], 2, TmpReg2)
2801 .addReg(TmpReg).addImm(32-Log);
2802 unsigned TmpReg3 = makeAnotherReg(Op0->getType());
2803 BuildMI(*BB, IP, ADDOpcode[Class], 2, TmpReg3)
2804 .addReg(Op0Reg).addReg(TmpReg2);
2806 unsigned TmpReg4 = isNeg ? makeAnotherReg(Op0->getType()) : ResultReg;
2807 BuildMI(*BB, IP, SAROpcode[Class], 2, TmpReg4)
2808 .addReg(TmpReg3).addImm(Log);
2810 BuildMI(*BB, IP, NEGOpcode[Class], 1, ResultReg).addReg(TmpReg4);
2814 assert(Class != cLong && "This doesn't handle 64-bit remainder!");
2815 int V = CI->getValue();
2817 if (V == 2 || V == -2) { // X % 2, X % -2
2818 static const unsigned SExtOpcode[] = { X86::CBW, X86::CWD, X86::CDQ };
2819 static const unsigned BaseReg[] = { X86::AL , X86::AX , X86::EAX };
2820 static const unsigned SExtReg[] = { X86::AH , X86::DX , X86::EDX };
2821 static const unsigned ANDOpcode[] = {
2822 X86::AND8ri, X86::AND16ri, X86::AND32ri
2824 static const unsigned XOROpcode[] = {
2825 X86::XOR8rr, X86::XOR16rr, X86::XOR32rr
2827 static const unsigned SUBOpcode[] = {
2828 X86::SUB8rr, X86::SUB16rr, X86::SUB32rr
2831 // Sign extend result into reg of -1 or 0.
2832 unsigned Op0Reg = getReg(Op0, BB, IP);
2833 BuildMI(*BB, IP, MovOpcode[Class], 1, BaseReg[Class]).addReg(Op0Reg);
2834 BuildMI(*BB, IP, SExtOpcode[Class], 0);
2835 unsigned TmpReg0 = makeAnotherReg(Op0->getType());
2836 BuildMI(*BB, IP, MovOpcode[Class], 1, TmpReg0).addReg(SExtReg[Class]);
2838 unsigned TmpReg1 = makeAnotherReg(Op0->getType());
2839 BuildMI(*BB, IP, ANDOpcode[Class], 2, TmpReg1).addReg(Op0Reg).addImm(1);
2841 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
2842 BuildMI(*BB, IP, XOROpcode[Class], 2,
2843 TmpReg2).addReg(TmpReg1).addReg(TmpReg0);
2844 BuildMI(*BB, IP, SUBOpcode[Class], 2,
2845 ResultReg).addReg(TmpReg2).addReg(TmpReg0);
2850 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
2851 static const unsigned ClrOpcode[]={ X86::MOV8ri, X86::MOV16ri, X86::MOV32ri };
2852 static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
2854 static const unsigned DivOpcode[][4] = {
2855 { X86::DIV8r , X86::DIV16r , X86::DIV32r , 0 }, // Unsigned division
2856 { X86::IDIV8r, X86::IDIV16r, X86::IDIV32r, 0 }, // Signed division
2859 unsigned Reg = Regs[Class];
2860 unsigned ExtReg = ExtRegs[Class];
2862 // Put the first operand into one of the A registers...
2863 unsigned Op0Reg = getReg(Op0, BB, IP);
2864 unsigned Op1Reg = getReg(Op1, BB, IP);
2865 BuildMI(*BB, IP, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
2867 if (Ty->isSigned()) {
2868 // Emit a sign extension instruction...
2869 unsigned ShiftResult = makeAnotherReg(Op0->getType());
2870 BuildMI(*BB, IP, SAROpcode[Class], 2,ShiftResult).addReg(Op0Reg).addImm(31);
2871 BuildMI(*BB, IP, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult);
2873 // Emit the appropriate divide or remainder instruction...
2874 BuildMI(*BB, IP, DivOpcode[1][Class], 1).addReg(Op1Reg);
2876 // If unsigned, emit a zeroing instruction... (reg = 0)
2877 BuildMI(*BB, IP, ClrOpcode[Class], 2, ExtReg).addImm(0);
2879 // Emit the appropriate divide or remainder instruction...
2880 BuildMI(*BB, IP, DivOpcode[0][Class], 1).addReg(Op1Reg);
2883 // Figure out which register we want to pick the result out of...
2884 unsigned DestReg = isDiv ? Reg : ExtReg;
2886 // Put the result into the destination register...
2887 BuildMI(*BB, IP, MovOpcode[Class], 1, ResultReg).addReg(DestReg);
2891 /// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
2892 /// for constant immediate shift values, and for constant immediate
2893 /// shift values equal to 1. Even the general case is sort of special,
2894 /// because the shift amount has to be in CL, not just any old register.
2896 void X86ISel::visitShiftInst(ShiftInst &I) {
2897 MachineBasicBlock::iterator IP = BB->end ();
2898 emitShiftOperation (BB, IP, I.getOperand (0), I.getOperand (1),
2899 I.getOpcode () == Instruction::Shl, I.getType (),
2903 /// Emit code for a 'SHLD DestReg, Op0, Op1, Amt' operation, where Amt is a
2905 void X86ISel::doSHLDConst(MachineBasicBlock *MBB,
2906 MachineBasicBlock::iterator IP,
2907 unsigned DestReg, unsigned Op0Reg, unsigned Op1Reg,
2909 // SHLD is a very inefficient operation on every processor, try to do
2910 // somethign simpler for common values of 'Amt'.
2912 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg).addReg(Op0Reg);
2913 } else if (Amt == 1) {
2914 unsigned Tmp = makeAnotherReg(Type::UIntTy);
2915 BuildMI(*MBB, IP, X86::ADD32rr, 2, Tmp).addReg(Op1Reg).addReg(Op1Reg);
2916 BuildMI(*MBB, IP, X86::ADC32rr, 2, DestReg).addReg(Op0Reg).addReg(Op0Reg);
2917 } else if (Amt == 2 || Amt == 3) {
2918 // On the P4 and Athlon it is cheaper to replace shld ..., 2|3 with a
2919 // shift/lea pair. NOTE: This should not be done on the P6 family!
2920 unsigned Tmp = makeAnotherReg(Type::UIntTy);
2921 BuildMI(*MBB, IP, X86::SHR32ri, 2, Tmp).addReg(Op1Reg).addImm(32-Amt);
2923 AM.BaseType = X86AddressMode::RegBase;
2925 AM.Scale = 1 << Amt;
2926 AM.IndexReg = Op0Reg;
2928 addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 4, DestReg), AM);
2930 // NOTE: It is always cheaper on the P4 to emit SHLD as two shifts and an OR
2931 // than it is to emit a real SHLD.
2933 BuildMI(*MBB, IP, X86::SHLD32rri8, 3,
2934 DestReg).addReg(Op0Reg).addReg(Op1Reg).addImm(Amt);
2938 /// emitShiftOperation - Common code shared between visitShiftInst and
2939 /// constant expression support.
2940 void X86ISel::emitShiftOperation(MachineBasicBlock *MBB,
2941 MachineBasicBlock::iterator IP,
2942 Value *Op, Value *ShiftAmount,
2943 bool isLeftShift, const Type *ResultTy,
2945 unsigned SrcReg = getReg (Op, MBB, IP);
2946 bool isSigned = ResultTy->isSigned ();
2947 unsigned Class = getClass (ResultTy);
2949 static const unsigned ConstantOperand[][3] = {
2950 { X86::SHR8ri, X86::SHR16ri, X86::SHR32ri }, // SHR
2951 { X86::SAR8ri, X86::SAR16ri, X86::SAR32ri }, // SAR
2952 { X86::SHL8ri, X86::SHL16ri, X86::SHL32ri }, // SHL
2953 { X86::SHL8ri, X86::SHL16ri, X86::SHL32ri }, // SAL = SHL
2956 static const unsigned NonConstantOperand[][3] = {
2957 { X86::SHR8rCL, X86::SHR16rCL, X86::SHR32rCL }, // SHR
2958 { X86::SAR8rCL, X86::SAR16rCL, X86::SAR32rCL }, // SAR
2959 { X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL }, // SHL
2960 { X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL }, // SAL = SHL
2963 // Longs, as usual, are handled specially.
2964 if (Class == cLong) {
2965 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2966 unsigned Amount = CUI->getValue();
2967 if (Amount == 1 && isLeftShift) { // X << 1 == X+X
2968 BuildMI(*MBB, IP, X86::ADD32rr, 2,
2969 DestReg).addReg(SrcReg).addReg(SrcReg);
2970 BuildMI(*MBB, IP, X86::ADC32rr, 2,
2971 DestReg+1).addReg(SrcReg+1).addReg(SrcReg+1);
2972 } else if (Amount < 32) {
2973 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
2975 doSHLDConst(MBB, IP, DestReg+1, SrcReg+1, SrcReg, Amount);
2976 BuildMI(*MBB, IP, Opc[2], 2, DestReg).addReg(SrcReg).addImm(Amount);
2978 BuildMI(*MBB, IP, X86::SHRD32rri8, 3,
2979 DestReg).addReg(SrcReg ).addReg(SrcReg+1).addImm(Amount);
2980 BuildMI(*MBB, IP, Opc[2],2,DestReg+1).addReg(SrcReg+1).addImm(Amount);
2982 } else if (Amount == 32) {
2984 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(SrcReg);
2985 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
2987 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg+1);
2989 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
2991 BuildMI(*MBB, IP, X86::SAR32ri, 2,
2992 DestReg+1).addReg(SrcReg).addImm(31);
2995 } else { // Shifting more than 32 bits
2998 BuildMI(*MBB, IP, X86::SHL32ri, 2,
2999 DestReg + 1).addReg(SrcReg).addImm(Amount);
3000 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
3002 BuildMI(*MBB, IP, isSigned ? X86::SAR32ri : X86::SHR32ri, 2,
3003 DestReg).addReg(SrcReg+1).addImm(Amount);
3004 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
3008 unsigned TmpReg = makeAnotherReg(Type::IntTy);
3009 if (!isLeftShift && isSigned) {
3010 // If this is a SHR of a Long, then we need to do funny sign extension
3011 // stuff. TmpReg gets the value to use as the high-part if we are
3012 // shifting more than 32 bits.
3013 BuildMI(*MBB, IP, X86::SAR32ri, 2, TmpReg).addReg(SrcReg).addImm(31);
3015 // Other shifts use a fixed zero value if the shift is more than 32
3017 BuildMI(*MBB, IP, X86::MOV32ri, 1, TmpReg).addImm(0);
3020 // Initialize CL with the shift amount...
3021 unsigned ShiftAmountReg = getReg(ShiftAmount, MBB, IP);
3022 BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg);
3024 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
3025 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
3027 // TmpReg2 = shld inHi, inLo
3028 BuildMI(*MBB, IP, X86::SHLD32rrCL,2,TmpReg2).addReg(SrcReg+1)
3030 // TmpReg3 = shl inLo, CL
3031 BuildMI(*MBB, IP, X86::SHL32rCL, 1, TmpReg3).addReg(SrcReg);
3033 // Set the flags to indicate whether the shift was by more than 32 bits.
3034 BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32);
3036 // DestHi = (>32) ? TmpReg3 : TmpReg2;
3037 BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
3038 DestReg+1).addReg(TmpReg2).addReg(TmpReg3);
3039 // DestLo = (>32) ? TmpReg : TmpReg3;
3040 BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
3041 DestReg).addReg(TmpReg3).addReg(TmpReg);
3043 // TmpReg2 = shrd inLo, inHi
3044 BuildMI(*MBB, IP, X86::SHRD32rrCL,2,TmpReg2).addReg(SrcReg)
3046 // TmpReg3 = s[ah]r inHi, CL
3047 BuildMI(*MBB, IP, isSigned ? X86::SAR32rCL : X86::SHR32rCL, 1, TmpReg3)
3050 // Set the flags to indicate whether the shift was by more than 32 bits.
3051 BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32);
3053 // DestLo = (>32) ? TmpReg3 : TmpReg2;
3054 BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
3055 DestReg).addReg(TmpReg2).addReg(TmpReg3);
3057 // DestHi = (>32) ? TmpReg : TmpReg3;
3058 BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
3059 DestReg+1).addReg(TmpReg3).addReg(TmpReg);
3065 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
3066 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
3067 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
3069 if (CUI->getValue() == 1 && isLeftShift) { // X << 1 -> X+X
3070 static const int AddOpC[] = { X86::ADD8rr, X86::ADD16rr, X86::ADD32rr };
3071 BuildMI(*MBB, IP, AddOpC[Class], 2,DestReg).addReg(SrcReg).addReg(SrcReg);
3073 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
3074 BuildMI(*MBB, IP, Opc[Class], 2,
3075 DestReg).addReg(SrcReg).addImm(CUI->getValue());
3077 } else { // The shift amount is non-constant.
3078 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
3079 BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg);
3081 const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned];
3082 BuildMI(*MBB, IP, Opc[Class], 1, DestReg).addReg(SrcReg);
3087 /// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
3088 /// instruction. The load and store instructions are the only place where we
3089 /// need to worry about the memory layout of the target machine.
3091 void X86ISel::visitLoadInst(LoadInst &I) {
3092 // Check to see if this load instruction is going to be folded into a binary
3093 // instruction, like add. If so, we don't want to emit it. Wouldn't a real
3094 // pattern matching instruction selector be nice?
3095 unsigned Class = getClassB(I.getType());
3096 if (I.hasOneUse()) {
3097 Instruction *User = cast<Instruction>(I.use_back());
3098 switch (User->getOpcode()) {
3099 case Instruction::Cast:
3100 // If this is a cast from a signed-integer type to a floating point type,
3101 // fold the cast here.
3102 if (getClassB(User->getType()) == cFP &&
3103 (I.getType() == Type::ShortTy || I.getType() == Type::IntTy ||
3104 I.getType() == Type::LongTy)) {
3105 unsigned DestReg = getReg(User);
3106 static const unsigned Opcode[] = {
3107 0/*BYTE*/, X86::FILD16m, X86::FILD32m, 0/*FP*/, X86::FILD64m
3110 if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
3111 unsigned FI = getFixedSizedAllocaFI(AI);
3112 addFrameReference(BuildMI(BB, Opcode[Class], 4, DestReg), FI);
3115 getAddressingMode(I.getOperand(0), AM);
3116 addFullAddress(BuildMI(BB, Opcode[Class], 4, DestReg), AM);
3124 case Instruction::Add:
3125 case Instruction::Sub:
3126 case Instruction::And:
3127 case Instruction::Or:
3128 case Instruction::Xor:
3129 if (Class == cLong) User = 0;
3131 case Instruction::Mul:
3132 case Instruction::Div:
3133 if (Class != cFP) User = 0;
3134 break; // Folding only implemented for floating point.
3135 default: User = 0; break;
3139 // Okay, we found a user. If the load is the first operand and there is
3140 // no second operand load, reverse the operand ordering. Note that this
3141 // can fail for a subtract (ie, no change will be made).
3142 bool Swapped = false;
3143 if (!isa<LoadInst>(User->getOperand(1)))
3144 Swapped = !cast<BinaryOperator>(User)->swapOperands();
3146 // Okay, now that everything is set up, if this load is used by the second
3147 // operand, and if there are no instructions that invalidate the load
3148 // before the binary operator, eliminate the load.
3149 if (User->getOperand(1) == &I &&
3150 isSafeToFoldLoadIntoInstruction(I, *User))
3151 return; // Eliminate the load!
3153 // If this is a floating point sub or div, we won't be able to swap the
3154 // operands, but we will still be able to eliminate the load.
3155 if (Class == cFP && User->getOperand(0) == &I &&
3156 !isa<LoadInst>(User->getOperand(1)) &&
3157 (User->getOpcode() == Instruction::Sub ||
3158 User->getOpcode() == Instruction::Div) &&
3159 isSafeToFoldLoadIntoInstruction(I, *User))
3160 return; // Eliminate the load!
3162 // If we swapped the operands to the instruction, but couldn't fold the
3163 // load anyway, swap them back. We don't want to break add X, int
3165 if (Swapped) cast<BinaryOperator>(User)->swapOperands();
3169 static const unsigned Opcodes[] = {
3170 X86::MOV8rm, X86::MOV16rm, X86::MOV32rm, X86::FLD32m, X86::MOV32rm
3172 unsigned Opcode = Opcodes[Class];
3173 if (I.getType() == Type::DoubleTy) Opcode = X86::FLD64m;
3175 unsigned DestReg = getReg(I);
3177 if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
3178 unsigned FI = getFixedSizedAllocaFI(AI);
3179 if (Class == cLong) {
3180 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, DestReg), FI);
3181 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), FI, 4);
3183 addFrameReference(BuildMI(BB, Opcode, 4, DestReg), FI);
3187 getAddressingMode(I.getOperand(0), AM);
3189 if (Class == cLong) {
3190 addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg), AM);
3192 addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), AM);
3194 addFullAddress(BuildMI(BB, Opcode, 4, DestReg), AM);
3199 /// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
3202 void X86ISel::visitStoreInst(StoreInst &I) {
3204 getAddressingMode(I.getOperand(1), AM);
3206 const Type *ValTy = I.getOperand(0)->getType();
3207 unsigned Class = getClassB(ValTy);
3209 if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(0))) {
3210 uint64_t Val = CI->getRawValue();
3211 if (Class == cLong) {
3212 addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(Val & ~0U);
3214 addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(Val>>32);
3216 static const unsigned Opcodes[] = {
3217 X86::MOV8mi, X86::MOV16mi, X86::MOV32mi
3219 unsigned Opcode = Opcodes[Class];
3220 addFullAddress(BuildMI(BB, Opcode, 5), AM).addImm(Val);
3222 } else if (isa<ConstantPointerNull>(I.getOperand(0))) {
3223 addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(0);
3224 } else if (ConstantBool *CB = dyn_cast<ConstantBool>(I.getOperand(0))) {
3225 addFullAddress(BuildMI(BB, X86::MOV8mi, 5), AM).addImm(CB->getValue());
3226 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) {
3227 // Store constant FP values with integer instructions to avoid having to
3228 // load the constants from the constant pool then do a store.
3229 if (CFP->getType() == Type::FloatTy) {
3234 V.F = CFP->getValue();
3235 addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(V.I);
3241 V.F = CFP->getValue();
3242 addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm((unsigned)V.I);
3244 addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(
3245 unsigned(V.I >> 32));
3248 } else if (Class == cLong) {
3249 unsigned ValReg = getReg(I.getOperand(0));
3250 addFullAddress(BuildMI(BB, X86::MOV32mr, 5), AM).addReg(ValReg);
3252 addFullAddress(BuildMI(BB, X86::MOV32mr, 5), AM).addReg(ValReg+1);
3254 // FIXME: stop emitting these two instructions:
3255 // movl $global,%eax
3257 // when one instruction will suffice. That includes when the global
3258 // has an offset applied to it.
3259 unsigned ValReg = getReg(I.getOperand(0));
3260 static const unsigned Opcodes[] = {
3261 X86::MOV8mr, X86::MOV16mr, X86::MOV32mr, X86::FST32m
3263 unsigned Opcode = Opcodes[Class];
3264 if (ValTy == Type::DoubleTy) Opcode = X86::FST64m;
3266 addFullAddress(BuildMI(BB, Opcode, 1+4), AM).addReg(ValReg);
3271 /// visitCastInst - Here we have various kinds of copying with or without sign
3272 /// extension going on.
3274 void X86ISel::visitCastInst(CastInst &CI) {
3275 Value *Op = CI.getOperand(0);
3277 unsigned SrcClass = getClassB(Op->getType());
3278 unsigned DestClass = getClassB(CI.getType());
3279 // Noop casts are not emitted: getReg will return the source operand as the
3280 // register to use for any uses of the noop cast.
3281 if (DestClass == SrcClass) {
3282 // The only detail in this plan is that casts from double -> float are
3283 // truncating operations that we have to codegen through memory (despite
3284 // the fact that the source/dest registers are the same class).
3285 if (CI.getType() != Type::FloatTy || Op->getType() != Type::DoubleTy)
3289 // If this is a cast from a 32-bit integer to a Long type, and the only uses
3290 // of the case are GEP instructions, then the cast does not need to be
3291 // generated explicitly, it will be folded into the GEP.
3292 if (DestClass == cLong && SrcClass == cInt) {
3293 bool AllUsesAreGEPs = true;
3294 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
3295 if (!isa<GetElementPtrInst>(*I)) {
3296 AllUsesAreGEPs = false;
3300 // No need to codegen this cast if all users are getelementptr instrs...
3301 if (AllUsesAreGEPs) return;
3304 // If this cast converts a load from a short,int, or long integer to a FP
3305 // value, we will have folded this cast away.
3306 if (DestClass == cFP && isa<LoadInst>(Op) && Op->hasOneUse() &&
3307 (Op->getType() == Type::ShortTy || Op->getType() == Type::IntTy ||
3308 Op->getType() == Type::LongTy))
3312 unsigned DestReg = getReg(CI);
3313 MachineBasicBlock::iterator MI = BB->end();
3314 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
3317 /// emitCastOperation - Common code shared between visitCastInst and constant
3318 /// expression cast support.
3320 void X86ISel::emitCastOperation(MachineBasicBlock *BB,
3321 MachineBasicBlock::iterator IP,
3322 Value *Src, const Type *DestTy,
3324 const Type *SrcTy = Src->getType();
3325 unsigned SrcClass = getClassB(SrcTy);
3326 unsigned DestClass = getClassB(DestTy);
3327 unsigned SrcReg = getReg(Src, BB, IP);
3329 // Implement casts to bool by using compare on the operand followed by set if
3330 // not zero on the result.
3331 if (DestTy == Type::BoolTy) {
3334 BuildMI(*BB, IP, X86::TEST8rr, 2).addReg(SrcReg).addReg(SrcReg);
3337 BuildMI(*BB, IP, X86::TEST16rr, 2).addReg(SrcReg).addReg(SrcReg);
3340 BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg).addReg(SrcReg);
3343 unsigned TmpReg = makeAnotherReg(Type::IntTy);
3344 BuildMI(*BB, IP, X86::OR32rr, 2, TmpReg).addReg(SrcReg).addReg(SrcReg+1);
3348 BuildMI(*BB, IP, X86::FTST, 1).addReg(SrcReg);
3349 BuildMI(*BB, IP, X86::FNSTSW8r, 0);
3350 BuildMI(*BB, IP, X86::SAHF, 1);
3354 // If the zero flag is not set, then the value is true, set the byte to
3356 BuildMI(*BB, IP, X86::SETNEr, 1, DestReg);
3360 static const unsigned RegRegMove[] = {
3361 X86::MOV8rr, X86::MOV16rr, X86::MOV32rr, X86::FpMOV, X86::MOV32rr
3364 // Implement casts between values of the same type class (as determined by
3365 // getClass) by using a register-to-register move.
3366 if (SrcClass == DestClass) {
3367 if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) {
3368 BuildMI(*BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg);
3369 } else if (SrcClass == cFP) {
3370 if (SrcTy == Type::FloatTy) { // double -> float
3371 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
3372 BuildMI(*BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg);
3373 } else { // float -> double
3374 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
3375 "Unknown cFP member!");
3376 // Truncate from double to float by storing to memory as short, then
3378 unsigned FltAlign = TM.getTargetData().getFloatAlignment();
3379 int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign);
3380 addFrameReference(BuildMI(*BB, IP, X86::FST32m, 5), FrameIdx).addReg(SrcReg);
3381 addFrameReference(BuildMI(*BB, IP, X86::FLD32m, 5, DestReg), FrameIdx);
3383 } else if (SrcClass == cLong) {
3384 BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg);
3385 BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg+1).addReg(SrcReg+1);
3387 assert(0 && "Cannot handle this type of cast instruction!");
3393 // Handle cast of SMALLER int to LARGER int using a move with sign extension
3394 // or zero extension, depending on whether the source type was signed.
3395 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
3396 SrcClass < DestClass) {
3397 bool isLong = DestClass == cLong;
3398 if (isLong) DestClass = cInt;
3400 static const unsigned Opc[][4] = {
3401 { X86::MOVSX16rr8, X86::MOVSX32rr8, X86::MOVSX32rr16, X86::MOV32rr }, // s
3402 { X86::MOVZX16rr8, X86::MOVZX32rr8, X86::MOVZX32rr16, X86::MOV32rr } // u
3405 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
3406 BuildMI(*BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1,
3407 DestReg).addReg(SrcReg);
3409 if (isLong) { // Handle upper 32 bits as appropriate...
3410 if (isUnsigned) // Zero out top bits...
3411 BuildMI(*BB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
3412 else // Sign extend bottom half...
3413 BuildMI(*BB, IP, X86::SAR32ri, 2, DestReg+1).addReg(DestReg).addImm(31);
3418 // Special case long -> int ...
3419 if (SrcClass == cLong && DestClass == cInt) {
3420 BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg);
3424 // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a
3425 // move out of AX or AL.
3426 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
3427 && SrcClass > DestClass) {
3428 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX };
3429 BuildMI(*BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg);
3430 BuildMI(*BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]);
3434 // Handle casts from integer to floating point now...
3435 if (DestClass == cFP) {
3436 // Promote the integer to a type supported by FLD. We do this because there
3437 // are no unsigned FLD instructions, so we must promote an unsigned value to
3438 // a larger signed value, then use FLD on the larger value.
3440 const Type *PromoteType = 0;
3441 unsigned PromoteOpcode = 0;
3442 unsigned RealDestReg = DestReg;
3443 switch (SrcTy->getTypeID()) {
3444 case Type::BoolTyID:
3445 case Type::SByteTyID:
3446 // We don't have the facilities for directly loading byte sized data from
3447 // memory (even signed). Promote it to 16 bits.
3448 PromoteType = Type::ShortTy;
3449 PromoteOpcode = X86::MOVSX16rr8;
3451 case Type::UByteTyID:
3452 PromoteType = Type::ShortTy;
3453 PromoteOpcode = X86::MOVZX16rr8;
3455 case Type::UShortTyID:
3456 PromoteType = Type::IntTy;
3457 PromoteOpcode = X86::MOVZX32rr16;
3459 case Type::ULongTyID:
3460 case Type::UIntTyID:
3461 // Don't fild into the read destination.
3462 DestReg = makeAnotherReg(Type::DoubleTy);
3464 default: // No promotion needed...
3469 unsigned TmpReg = makeAnotherReg(PromoteType);
3470 BuildMI(*BB, IP, PromoteOpcode, 1, TmpReg).addReg(SrcReg);
3471 SrcTy = PromoteType;
3472 SrcClass = getClass(PromoteType);
3476 // Spill the integer to memory and reload it from there...
3478 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
3480 if (SrcClass == cLong) {
3481 addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5),
3482 FrameIdx).addReg(SrcReg);
3483 addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5),
3484 FrameIdx, 4).addReg(SrcReg+1);
3486 static const unsigned Op1[] = { X86::MOV8mr, X86::MOV16mr, X86::MOV32mr };
3487 addFrameReference(BuildMI(*BB, IP, Op1[SrcClass], 5),
3488 FrameIdx).addReg(SrcReg);
3491 static const unsigned Op2[] =
3492 { 0/*byte*/, X86::FILD16m, X86::FILD32m, 0/*FP*/, X86::FILD64m };
3493 addFrameReference(BuildMI(*BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx);
3495 if (SrcTy == Type::UIntTy) {
3496 // If this is a cast from uint -> double, we need to be careful about if
3497 // the "sign" bit is set. If so, we don't want to make a negative number,
3498 // we want to make a positive number. Emit code to add an offset if the
3501 // Compute whether the sign bit is set by shifting the reg right 31 bits.
3502 unsigned IsNeg = makeAnotherReg(Type::IntTy);
3503 BuildMI(BB, X86::SHR32ri, 2, IsNeg).addReg(SrcReg).addImm(31);
3505 // Create a CP value that has the offset in one word and 0 in the other.
3506 static ConstantInt *TheOffset = ConstantUInt::get(Type::ULongTy,
3507 0x4f80000000000000ULL);
3508 unsigned CPI = F->getConstantPool()->getConstantPoolIndex(TheOffset);
3509 BuildMI(BB, X86::FADD32m, 5, RealDestReg).addReg(DestReg)
3510 .addConstantPoolIndex(CPI).addZImm(4).addReg(IsNeg).addSImm(0);
3512 } else if (SrcTy == Type::ULongTy) {
3513 // We need special handling for unsigned 64-bit integer sources. If the
3514 // input number has the "sign bit" set, then we loaded it incorrectly as a
3515 // negative 64-bit number. In this case, add an offset value.
3517 // Emit a test instruction to see if the dynamic input value was signed.
3518 BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg+1).addReg(SrcReg+1);
3520 // If the sign bit is set, get a pointer to an offset, otherwise get a
3521 // pointer to a zero.
3522 MachineConstantPool *CP = F->getConstantPool();
3523 unsigned Zero = makeAnotherReg(Type::IntTy);
3524 Constant *Null = Constant::getNullValue(Type::UIntTy);
3525 addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Zero),
3526 CP->getConstantPoolIndex(Null));
3527 unsigned Offset = makeAnotherReg(Type::IntTy);
3528 Constant *OffsetCst = ConstantUInt::get(Type::UIntTy, 0x5f800000);
3530 addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Offset),
3531 CP->getConstantPoolIndex(OffsetCst));
3532 unsigned Addr = makeAnotherReg(Type::IntTy);
3533 BuildMI(*BB, IP, X86::CMOVS32rr, 2, Addr).addReg(Zero).addReg(Offset);
3535 // Load the constant for an add. FIXME: this could make an 'fadd' that
3536 // reads directly from memory, but we don't support these yet.
3537 unsigned ConstReg = makeAnotherReg(Type::DoubleTy);
3538 addDirectMem(BuildMI(*BB, IP, X86::FLD32m, 4, ConstReg), Addr);
3540 BuildMI(*BB, IP, X86::FpADD, 2, RealDestReg)
3541 .addReg(ConstReg).addReg(DestReg);
3547 // Handle casts from floating point to integer now...
3548 if (SrcClass == cFP) {
3549 // Change the floating point control register to use "round towards zero"
3550 // mode when truncating to an integer value.
3552 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
3553 addFrameReference(BuildMI(*BB, IP, X86::FNSTCW16m, 4), CWFrameIdx);
3555 // Load the old value of the high byte of the control word...
3556 unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy);
3557 addFrameReference(BuildMI(*BB, IP, X86::MOV8rm, 4, HighPartOfCW),
3560 // Set the high part to be round to zero...
3561 addFrameReference(BuildMI(*BB, IP, X86::MOV8mi, 5),
3562 CWFrameIdx, 1).addImm(12);
3564 // Reload the modified control word now...
3565 addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx);
3567 // Restore the memory image of control word to original value
3568 addFrameReference(BuildMI(*BB, IP, X86::MOV8mr, 5),
3569 CWFrameIdx, 1).addReg(HighPartOfCW);
3571 // We don't have the facilities for directly storing byte sized data to
3572 // memory. Promote it to 16 bits. We also must promote unsigned values to
3573 // larger classes because we only have signed FP stores.
3574 unsigned StoreClass = DestClass;
3575 const Type *StoreTy = DestTy;
3576 if (StoreClass == cByte || DestTy->isUnsigned())
3577 switch (StoreClass) {
3578 case cByte: StoreTy = Type::ShortTy; StoreClass = cShort; break;
3579 case cShort: StoreTy = Type::IntTy; StoreClass = cInt; break;
3580 case cInt: StoreTy = Type::LongTy; StoreClass = cLong; break;
3581 // The following treatment of cLong may not be perfectly right,
3582 // but it survives chains of casts of the form
3583 // double->ulong->double.
3584 case cLong: StoreTy = Type::LongTy; StoreClass = cLong; break;
3585 default: assert(0 && "Unknown store class!");
3588 // Spill the integer to memory and reload it from there...
3590 F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData());
3592 static const unsigned Op1[] =
3593 { 0, X86::FIST16m, X86::FIST32m, 0, X86::FISTP64m };
3594 addFrameReference(BuildMI(*BB, IP, Op1[StoreClass], 5),
3595 FrameIdx).addReg(SrcReg);
3597 if (DestClass == cLong) {
3598 addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg), FrameIdx);
3599 addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg+1),
3602 static const unsigned Op2[] = { X86::MOV8rm, X86::MOV16rm, X86::MOV32rm };
3603 addFrameReference(BuildMI(*BB, IP, Op2[DestClass], 4, DestReg), FrameIdx);
3606 // Reload the original control word now...
3607 addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx);
3611 // Anything we haven't handled already, we can't (yet) handle at all.
3612 assert(0 && "Unhandled cast instruction!");
3616 /// visitVANextInst - Implement the va_next instruction...
3618 void X86ISel::visitVANextInst(VANextInst &I) {
3619 unsigned VAList = getReg(I.getOperand(0));
3620 unsigned DestReg = getReg(I);
3623 switch (I.getArgType()->getTypeID()) {
3626 assert(0 && "Error: bad type for va_next instruction!");
3628 case Type::PointerTyID:
3629 case Type::UIntTyID:
3633 case Type::ULongTyID:
3634 case Type::LongTyID:
3635 case Type::DoubleTyID:
3640 // Increment the VAList pointer...
3641 BuildMI(BB, X86::ADD32ri, 2, DestReg).addReg(VAList).addImm(Size);
3644 void X86ISel::visitVAArgInst(VAArgInst &I) {
3645 unsigned VAList = getReg(I.getOperand(0));
3646 unsigned DestReg = getReg(I);
3648 switch (I.getType()->getTypeID()) {
3651 assert(0 && "Error: bad type for va_next instruction!");
3653 case Type::PointerTyID:
3654 case Type::UIntTyID:
3656 addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList);
3658 case Type::ULongTyID:
3659 case Type::LongTyID:
3660 addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList);
3661 addRegOffset(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), VAList, 4);
3663 case Type::DoubleTyID:
3664 addDirectMem(BuildMI(BB, X86::FLD64m, 4, DestReg), VAList);
3669 /// visitGetElementPtrInst - instruction-select GEP instructions
3671 void X86ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
3672 // If this GEP instruction will be folded into all of its users, we don't need
3673 // to explicitly calculate it!
3675 if (isGEPFoldable(0, I.getOperand(0), I.op_begin()+1, I.op_end(), AM)) {
3676 // Check all of the users of the instruction to see if they are loads and
3678 bool AllWillFold = true;
3679 for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI)
3680 if (cast<Instruction>(*UI)->getOpcode() != Instruction::Load)
3681 if (cast<Instruction>(*UI)->getOpcode() != Instruction::Store ||
3682 cast<Instruction>(*UI)->getOperand(0) == &I) {
3683 AllWillFold = false;
3687 // If the instruction is foldable, and will be folded into all users, don't
3689 if (AllWillFold) return;
3692 unsigned outputReg = getReg(I);
3693 emitGEPOperation(BB, BB->end(), I.getOperand(0),
3694 I.op_begin()+1, I.op_end(), outputReg);
3697 /// getGEPIndex - Inspect the getelementptr operands specified with GEPOps and
3698 /// GEPTypes (the derived types being stepped through at each level). On return
3699 /// from this function, if some indexes of the instruction are representable as
3700 /// an X86 lea instruction, the machine operands are put into the Ops
3701 /// instruction and the consumed indexes are poped from the GEPOps/GEPTypes
3702 /// lists. Otherwise, GEPOps.size() is returned. If this returns a an
3703 /// addressing mode that only partially consumes the input, the BaseReg input of
3704 /// the addressing mode must be left free.
3706 /// Note that there is one fewer entry in GEPTypes than there is in GEPOps.
3708 void X86ISel::getGEPIndex(MachineBasicBlock *MBB,
3709 MachineBasicBlock::iterator IP,
3710 std::vector<Value*> &GEPOps,
3711 std::vector<const Type*> &GEPTypes,
3712 X86AddressMode &AM) {
3713 const TargetData &TD = TM.getTargetData();
3715 // Clear out the state we are working with...
3716 AM.BaseType = X86AddressMode::RegBase;
3717 AM.Base.Reg = 0; // No base register
3718 AM.Scale = 1; // Unit scale
3719 AM.IndexReg = 0; // No index register
3720 AM.Disp = 0; // No displacement
3722 // While there are GEP indexes that can be folded into the current address,
3723 // keep processing them.
3724 while (!GEPTypes.empty()) {
3725 if (const StructType *StTy = dyn_cast<StructType>(GEPTypes.back())) {
3726 // It's a struct access. CUI is the index into the structure,
3727 // which names the field. This index must have unsigned type.
3728 const ConstantUInt *CUI = cast<ConstantUInt>(GEPOps.back());
3730 // Use the TargetData structure to pick out what the layout of the
3731 // structure is in memory. Since the structure index must be constant, we
3732 // can get its value and use it to find the right byte offset from the
3733 // StructLayout class's list of structure member offsets.
3734 AM.Disp += TD.getStructLayout(StTy)->MemberOffsets[CUI->getValue()];
3735 GEPOps.pop_back(); // Consume a GEP operand
3736 GEPTypes.pop_back();
3738 // It's an array or pointer access: [ArraySize x ElementType].
3739 const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
3740 Value *idx = GEPOps.back();
3742 // idx is the index into the array. Unlike with structure
3743 // indices, we may not know its actual value at code-generation
3746 // If idx is a constant, fold it into the offset.
3747 unsigned TypeSize = TD.getTypeSize(SqTy->getElementType());
3748 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
3749 AM.Disp += TypeSize*CSI->getValue();
3750 } else if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(idx)) {
3751 AM.Disp += TypeSize*CUI->getValue();
3753 // If the index reg is already taken, we can't handle this index.
3754 if (AM.IndexReg) return;
3756 // If this is a size that we can handle, then add the index as
3758 case 1: case 2: case 4: case 8:
3759 // These are all acceptable scales on X86.
3760 AM.Scale = TypeSize;
3763 // Otherwise, we can't handle this scale
3767 if (CastInst *CI = dyn_cast<CastInst>(idx))
3768 if (CI->getOperand(0)->getType() == Type::IntTy ||
3769 CI->getOperand(0)->getType() == Type::UIntTy)
3770 idx = CI->getOperand(0);
3772 AM.IndexReg = MBB ? getReg(idx, MBB, IP) : 1;
3775 GEPOps.pop_back(); // Consume a GEP operand
3776 GEPTypes.pop_back();
3780 // GEPTypes is empty, which means we have a single operand left. Set it as
3781 // the base register.
3783 assert(AM.Base.Reg == 0);
3785 if (AllocaInst *AI = dyn_castFixedAlloca(GEPOps.back())) {
3786 AM.BaseType = X86AddressMode::FrameIndexBase;
3787 AM.Base.FrameIndex = getFixedSizedAllocaFI(AI);
3792 if (GlobalValue *GV = dyn_cast<GlobalValue>(GEPOps.back())) {
3798 AM.Base.Reg = MBB ? getReg(GEPOps[0], MBB, IP) : 1;
3799 GEPOps.pop_back(); // Consume the last GEP operand
3803 /// isGEPFoldable - Return true if the specified GEP can be completely
3804 /// folded into the addressing mode of a load/store or lea instruction.
3805 bool X86ISel::isGEPFoldable(MachineBasicBlock *MBB,
3806 Value *Src, User::op_iterator IdxBegin,
3807 User::op_iterator IdxEnd, X86AddressMode &AM) {
3809 std::vector<Value*> GEPOps;
3810 GEPOps.resize(IdxEnd-IdxBegin+1);
3812 std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
3814 std::vector<const Type*>
3815 GEPTypes(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
3816 gep_type_end(Src->getType(), IdxBegin, IdxEnd));
3818 MachineBasicBlock::iterator IP;
3819 if (MBB) IP = MBB->end();
3820 getGEPIndex(MBB, IP, GEPOps, GEPTypes, AM);
3822 // We can fold it away iff the getGEPIndex call eliminated all operands.
3823 return GEPOps.empty();
3826 void X86ISel::emitGEPOperation(MachineBasicBlock *MBB,
3827 MachineBasicBlock::iterator IP,
3828 Value *Src, User::op_iterator IdxBegin,
3829 User::op_iterator IdxEnd, unsigned TargetReg) {
3830 const TargetData &TD = TM.getTargetData();
3832 // If this is a getelementptr null, with all constant integer indices, just
3833 // replace it with TargetReg = 42.
3834 if (isa<ConstantPointerNull>(Src)) {
3835 User::op_iterator I = IdxBegin;
3836 for (; I != IdxEnd; ++I)
3837 if (!isa<ConstantInt>(*I))
3839 if (I == IdxEnd) { // All constant indices
3840 unsigned Offset = TD.getIndexedOffset(Src->getType(),
3841 std::vector<Value*>(IdxBegin, IdxEnd));
3842 BuildMI(*MBB, IP, X86::MOV32ri, 1, TargetReg).addImm(Offset);
3847 std::vector<Value*> GEPOps;
3848 GEPOps.resize(IdxEnd-IdxBegin+1);
3850 std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
3852 std::vector<const Type*> GEPTypes;
3853 GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
3854 gep_type_end(Src->getType(), IdxBegin, IdxEnd));
3856 // Keep emitting instructions until we consume the entire GEP instruction.
3857 while (!GEPOps.empty()) {
3858 unsigned OldSize = GEPOps.size();
3860 getGEPIndex(MBB, IP, GEPOps, GEPTypes, AM);
3862 if (GEPOps.size() != OldSize) {
3863 // getGEPIndex consumed some of the input. Build an LEA instruction here.
3864 unsigned NextTarget = 0;
3865 if (!GEPOps.empty()) {
3866 assert(AM.Base.Reg == 0 &&
3867 "getGEPIndex should have left the base register open for chaining!");
3868 NextTarget = AM.Base.Reg = makeAnotherReg(Type::UIntTy);
3871 if (AM.BaseType == X86AddressMode::RegBase &&
3872 AM.IndexReg == 0 && AM.Disp == 0 && !AM.GV)
3873 BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(AM.Base.Reg);
3874 else if (AM.BaseType == X86AddressMode::RegBase && AM.Base.Reg == 0 &&
3875 AM.IndexReg == 0 && AM.Disp == 0)
3876 BuildMI(*MBB, IP, X86::MOV32ri, 1, TargetReg).addGlobalAddress(AM.GV);
3878 addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, TargetReg), AM);
3880 TargetReg = NextTarget;
3881 } else if (GEPTypes.empty()) {
3882 // The getGEPIndex operation didn't want to build an LEA. Check to see if
3883 // all operands are consumed but the base pointer. If so, just load it
3884 // into the register.
3885 if (GlobalValue *GV = dyn_cast<GlobalValue>(GEPOps[0])) {
3886 BuildMI(*MBB, IP, X86::MOV32ri, 1, TargetReg).addGlobalAddress(GV);
3888 unsigned BaseReg = getReg(GEPOps[0], MBB, IP);
3889 BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(BaseReg);
3891 break; // we are now done
3894 // It's an array or pointer access: [ArraySize x ElementType].
3895 const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
3896 Value *idx = GEPOps.back();
3897 GEPOps.pop_back(); // Consume a GEP operand
3898 GEPTypes.pop_back();
3900 // Many GEP instructions use a [cast (int/uint) to LongTy] as their
3901 // operand on X86. Handle this case directly now...
3902 if (CastInst *CI = dyn_cast<CastInst>(idx))
3903 if (CI->getOperand(0)->getType() == Type::IntTy ||
3904 CI->getOperand(0)->getType() == Type::UIntTy)
3905 idx = CI->getOperand(0);
3907 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
3908 // must find the size of the pointed-to type (Not coincidentally, the next
3909 // type is the type of the elements in the array).
3910 const Type *ElTy = SqTy->getElementType();
3911 unsigned elementSize = TD.getTypeSize(ElTy);
3913 // If idxReg is a constant, we don't need to perform the multiply!
3914 if (ConstantInt *CSI = dyn_cast<ConstantInt>(idx)) {
3915 if (!CSI->isNullValue()) {
3916 unsigned Offset = elementSize*CSI->getRawValue();
3917 unsigned Reg = makeAnotherReg(Type::UIntTy);
3918 BuildMI(*MBB, IP, X86::ADD32ri, 2, TargetReg)
3919 .addReg(Reg).addImm(Offset);
3920 --IP; // Insert the next instruction before this one.
3921 TargetReg = Reg; // Codegen the rest of the GEP into this
3923 } else if (elementSize == 1) {
3924 // If the element size is 1, we don't have to multiply, just add
3925 unsigned idxReg = getReg(idx, MBB, IP);
3926 unsigned Reg = makeAnotherReg(Type::UIntTy);
3927 BuildMI(*MBB, IP, X86::ADD32rr, 2,TargetReg).addReg(Reg).addReg(idxReg);
3928 --IP; // Insert the next instruction before this one.
3929 TargetReg = Reg; // Codegen the rest of the GEP into this
3931 unsigned idxReg = getReg(idx, MBB, IP);
3932 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
3934 // Make sure we can back the iterator up to point to the first
3935 // instruction emitted.
3936 MachineBasicBlock::iterator BeforeIt = IP;
3937 if (IP == MBB->begin())
3938 BeforeIt = MBB->end();
3941 doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
3943 // Emit an ADD to add OffsetReg to the basePtr.
3944 unsigned Reg = makeAnotherReg(Type::UIntTy);
3945 BuildMI(*MBB, IP, X86::ADD32rr, 2, TargetReg)
3946 .addReg(Reg).addReg(OffsetReg);
3948 // Step to the first instruction of the multiply.
3949 if (BeforeIt == MBB->end())
3954 TargetReg = Reg; // Codegen the rest of the GEP into this
3960 /// visitAllocaInst - If this is a fixed size alloca, allocate space from the
3961 /// frame manager, otherwise do it the hard way.
3963 void X86ISel::visitAllocaInst(AllocaInst &I) {
3964 // If this is a fixed size alloca in the entry block for the function, we
3965 // statically stack allocate the space, so we don't need to do anything here.
3967 if (dyn_castFixedAlloca(&I)) return;
3969 // Find the data size of the alloca inst's getAllocatedType.
3970 const Type *Ty = I.getAllocatedType();
3971 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
3973 // Create a register to hold the temporary result of multiplying the type size
3974 // constant by the variable amount.
3975 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
3976 unsigned SrcReg1 = getReg(I.getArraySize());
3978 // TotalSizeReg = mul <numelements>, <TypeSize>
3979 MachineBasicBlock::iterator MBBI = BB->end();
3980 doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
3982 // AddedSize = add <TotalSizeReg>, 15
3983 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
3984 BuildMI(BB, X86::ADD32ri, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15);
3986 // AlignedSize = and <AddedSize>, ~15
3987 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
3988 BuildMI(BB, X86::AND32ri, 2, AlignedSize).addReg(AddedSizeReg).addImm(~15);
3990 // Subtract size from stack pointer, thereby allocating some space.
3991 BuildMI(BB, X86::SUB32rr, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize);
3993 // Put a pointer to the space into the result register, by copying
3994 // the stack pointer.
3995 BuildMI(BB, X86::MOV32rr, 1, getReg(I)).addReg(X86::ESP);
3997 // Inform the Frame Information that we have just allocated a variable-sized
3999 F->getFrameInfo()->CreateVariableSizedObject();
4002 /// visitMallocInst - Malloc instructions are code generated into direct calls
4003 /// to the library malloc.
4005 void X86ISel::visitMallocInst(MallocInst &I) {
4006 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
4009 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
4010 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
4012 Arg = makeAnotherReg(Type::UIntTy);
4013 unsigned Op0Reg = getReg(I.getOperand(0));
4014 MachineBasicBlock::iterator MBBI = BB->end();
4015 doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
4018 std::vector<ValueRecord> Args;
4019 Args.push_back(ValueRecord(Arg, Type::UIntTy));
4020 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
4021 1).addExternalSymbol("malloc", true);
4022 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
4026 /// visitFreeInst - Free instructions are code gen'd to call the free libc
4029 void X86ISel::visitFreeInst(FreeInst &I) {
4030 std::vector<ValueRecord> Args;
4031 Args.push_back(ValueRecord(I.getOperand(0)));
4032 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
4033 1).addExternalSymbol("free", true);
4034 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
4037 /// createX86SimpleInstructionSelector - This pass converts an LLVM function
4038 /// into a machine code representation is a very simple peep-hole fashion. The
4039 /// generated code sucks but the implementation is nice and simple.
4041 FunctionPass *llvm::createX86SimpleInstructionSelector(TargetMachine &TM) {
4042 return new X86ISel(TM);