1 //===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines a simple peephole instruction selector for the x86 target
12 //===----------------------------------------------------------------------===//
15 #include "X86InstrBuilder.h"
16 #include "X86InstrInfo.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/Function.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/IntrinsicLowering.h"
22 #include "llvm/Pass.h"
23 #include "llvm/CodeGen/MachineConstantPool.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/SSARegMap.h"
27 #include "llvm/Target/MRegisterInfo.h"
28 #include "llvm/Target/TargetMachine.h"
29 #include "llvm/Support/GetElementPtrTypeIterator.h"
30 #include "llvm/Support/InstVisitor.h"
31 #include "Support/Statistic.h"
36 NumFPKill("x86-codegen", "Number of FP_REG_KILL instructions added");
38 /// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
42 cByte, cShort, cInt, cFP, cLong
46 /// getClass - Turn a primitive type into a "class" number which is based on the
47 /// size of the type, and whether or not it is floating point.
49 static inline TypeClass getClass(const Type *Ty) {
50 switch (Ty->getPrimitiveID()) {
52 case Type::UByteTyID: return cByte; // Byte operands are class #0
54 case Type::UShortTyID: return cShort; // Short operands are class #1
57 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
60 case Type::DoubleTyID: return cFP; // Floating Point is #3
63 case Type::ULongTyID: return cLong; // Longs are class #4
65 assert(0 && "Invalid type to getClass!");
66 return cByte; // not reached
70 // getClassB - Just like getClass, but treat boolean values as bytes.
71 static inline TypeClass getClassB(const Type *Ty) {
72 if (Ty == Type::BoolTy) return cByte;
77 struct ISel : public FunctionPass, InstVisitor<ISel> {
79 MachineFunction *F; // The function we are compiling into
80 MachineBasicBlock *BB; // The current MBB we are compiling
81 int VarArgsFrameIndex; // FrameIndex for start of varargs area
82 int ReturnAddressIndex; // FrameIndex for the return address
84 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
86 // MBBMap - Mapping between LLVM BB -> Machine BB
87 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
89 // AllocaMap - Mapping from fixed sized alloca instructions to the
90 // FrameIndex for the alloca.
91 std::map<AllocaInst*, unsigned> AllocaMap;
93 ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
95 /// runOnFunction - Top level implementation of instruction selection for
96 /// the entire function.
98 bool runOnFunction(Function &Fn) {
99 // First pass over the function, lower any unknown intrinsic functions
100 // with the IntrinsicLowering class.
101 LowerUnknownIntrinsicFunctionCalls(Fn);
103 F = &MachineFunction::construct(&Fn, TM);
105 // Create all of the machine basic blocks for the function...
106 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
107 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
111 // Set up a frame object for the return address. This is used by the
112 // llvm.returnaddress & llvm.frameaddress intrinisics.
113 ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4);
115 // Copy incoming arguments off of the stack...
116 LoadArgumentsToVirtualRegs(Fn);
118 // Instruction select everything except PHI nodes
121 // Select the PHI nodes
124 // Insert the FP_REG_KILL instructions into blocks that need them.
131 // We always build a machine code representation for the function
135 virtual const char *getPassName() const {
136 return "X86 Simple Instruction Selection";
139 /// visitBasicBlock - This method is called when we are visiting a new basic
140 /// block. This simply creates a new MachineBasicBlock to emit code into
141 /// and adds it to the current MachineFunction. Subsequent visit* for
142 /// instructions will be invoked for all instructions in the basic block.
144 void visitBasicBlock(BasicBlock &LLVM_BB) {
145 BB = MBBMap[&LLVM_BB];
148 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
149 /// function, lowering any calls to unknown intrinsic functions into the
150 /// equivalent LLVM code.
152 void LowerUnknownIntrinsicFunctionCalls(Function &F);
154 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
155 /// from the stack into virtual registers.
157 void LoadArgumentsToVirtualRegs(Function &F);
159 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
160 /// because we have to generate our sources into the source basic blocks,
161 /// not the current one.
163 void SelectPHINodes();
165 /// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks
166 /// that need them. This only occurs due to the floating point stackifier
167 /// not being aggressive enough to handle arbitrary global stackification.
169 void InsertFPRegKills();
171 // Visitation methods for various instructions. These methods simply emit
172 // fixed X86 code for each instruction.
175 // Control flow operators
176 void visitReturnInst(ReturnInst &RI);
177 void visitBranchInst(BranchInst &BI);
183 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
184 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
186 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
187 const std::vector<ValueRecord> &Args);
188 void visitCallInst(CallInst &I);
189 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
191 // Arithmetic operators
192 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
193 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
194 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
195 void visitMul(BinaryOperator &B);
197 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
198 void visitRem(BinaryOperator &B) { visitDivRem(B); }
199 void visitDivRem(BinaryOperator &B);
202 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
203 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
204 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
206 // Comparison operators...
207 void visitSetCondInst(SetCondInst &I);
208 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
209 MachineBasicBlock *MBB,
210 MachineBasicBlock::iterator MBBI);
211 void visitSelectInst(SelectInst &SI);
214 // Memory Instructions
215 void visitLoadInst(LoadInst &I);
216 void visitStoreInst(StoreInst &I);
217 void visitGetElementPtrInst(GetElementPtrInst &I);
218 void visitAllocaInst(AllocaInst &I);
219 void visitMallocInst(MallocInst &I);
220 void visitFreeInst(FreeInst &I);
223 void visitShiftInst(ShiftInst &I);
224 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
225 void visitCastInst(CastInst &I);
226 void visitVANextInst(VANextInst &I);
227 void visitVAArgInst(VAArgInst &I);
229 void visitInstruction(Instruction &I) {
230 std::cerr << "Cannot instruction select: " << I;
234 /// promote32 - Make a value 32-bits wide, and put it somewhere.
236 void promote32(unsigned targetReg, const ValueRecord &VR);
238 /// getAddressingMode - Get the addressing mode to use to address the
239 /// specified value. The returned value should be used with addFullAddress.
240 void getAddressingMode(Value *Addr, unsigned &BaseReg, unsigned &Scale,
241 unsigned &IndexReg, unsigned &Disp);
244 /// getGEPIndex - This is used to fold GEP instructions into X86 addressing
246 void getGEPIndex(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
247 std::vector<Value*> &GEPOps,
248 std::vector<const Type*> &GEPTypes, unsigned &BaseReg,
249 unsigned &Scale, unsigned &IndexReg, unsigned &Disp);
251 /// isGEPFoldable - Return true if the specified GEP can be completely
252 /// folded into the addressing mode of a load/store or lea instruction.
253 bool isGEPFoldable(MachineBasicBlock *MBB,
254 Value *Src, User::op_iterator IdxBegin,
255 User::op_iterator IdxEnd, unsigned &BaseReg,
256 unsigned &Scale, unsigned &IndexReg, unsigned &Disp);
258 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
259 /// constant expression GEP support.
261 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
262 Value *Src, User::op_iterator IdxBegin,
263 User::op_iterator IdxEnd, unsigned TargetReg);
265 /// emitCastOperation - Common code shared between visitCastInst and
266 /// constant expression cast support.
268 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
269 Value *Src, const Type *DestTy, unsigned TargetReg);
271 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
272 /// and constant expression support.
274 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
275 MachineBasicBlock::iterator IP,
276 Value *Op0, Value *Op1,
277 unsigned OperatorClass, unsigned TargetReg);
279 /// emitBinaryFPOperation - This method handles emission of floating point
280 /// Add (0), Sub (1), Mul (2), and Div (3) operations.
281 void emitBinaryFPOperation(MachineBasicBlock *BB,
282 MachineBasicBlock::iterator IP,
283 Value *Op0, Value *Op1,
284 unsigned OperatorClass, unsigned TargetReg);
286 void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
287 Value *Op0, Value *Op1, unsigned TargetReg);
289 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
290 unsigned DestReg, const Type *DestTy,
291 unsigned Op0Reg, unsigned Op1Reg);
292 void doMultiplyConst(MachineBasicBlock *MBB,
293 MachineBasicBlock::iterator MBBI,
294 unsigned DestReg, const Type *DestTy,
295 unsigned Op0Reg, unsigned Op1Val);
297 void emitDivRemOperation(MachineBasicBlock *BB,
298 MachineBasicBlock::iterator IP,
299 Value *Op0, Value *Op1, bool isDiv,
302 /// emitSetCCOperation - Common code shared between visitSetCondInst and
303 /// constant expression support.
305 void emitSetCCOperation(MachineBasicBlock *BB,
306 MachineBasicBlock::iterator IP,
307 Value *Op0, Value *Op1, unsigned Opcode,
310 /// emitShiftOperation - Common code shared between visitShiftInst and
311 /// constant expression support.
313 void emitShiftOperation(MachineBasicBlock *MBB,
314 MachineBasicBlock::iterator IP,
315 Value *Op, Value *ShiftAmount, bool isLeftShift,
316 const Type *ResultTy, unsigned DestReg);
318 /// emitSelectOperation - Common code shared between visitSelectInst and the
319 /// constant expression support.
320 void emitSelectOperation(MachineBasicBlock *MBB,
321 MachineBasicBlock::iterator IP,
322 Value *Cond, Value *TrueVal, Value *FalseVal,
325 /// copyConstantToRegister - Output the instructions required to put the
326 /// specified constant into the specified register.
328 void copyConstantToRegister(MachineBasicBlock *MBB,
329 MachineBasicBlock::iterator MBBI,
330 Constant *C, unsigned Reg);
332 /// makeAnotherReg - This method returns the next register number we haven't
335 /// Long values are handled somewhat specially. They are always allocated
336 /// as pairs of 32 bit integer values. The register number returned is the
337 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
338 /// of the long value.
340 unsigned makeAnotherReg(const Type *Ty) {
341 assert(dynamic_cast<const X86RegisterInfo*>(TM.getRegisterInfo()) &&
342 "Current target doesn't have X86 reg info??");
343 const X86RegisterInfo *MRI =
344 static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
345 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
346 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
347 // Create the lower part
348 F->getSSARegMap()->createVirtualRegister(RC);
349 // Create the upper part.
350 return F->getSSARegMap()->createVirtualRegister(RC)-1;
353 // Add the mapping of regnumber => reg class to MachineFunction
354 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
355 return F->getSSARegMap()->createVirtualRegister(RC);
358 /// getReg - This method turns an LLVM value into a register number.
360 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
361 unsigned getReg(Value *V) {
362 // Just append to the end of the current bb.
363 MachineBasicBlock::iterator It = BB->end();
364 return getReg(V, BB, It);
366 unsigned getReg(Value *V, MachineBasicBlock *MBB,
367 MachineBasicBlock::iterator IPt);
369 /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
370 /// that is to be statically allocated with the initial stack frame
372 unsigned getFixedSizedAllocaFI(AllocaInst *AI);
376 /// dyn_castFixedAlloca - If the specified value is a fixed size alloca
377 /// instruction in the entry block, return it. Otherwise, return a null
379 static AllocaInst *dyn_castFixedAlloca(Value *V) {
380 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
381 BasicBlock *BB = AI->getParent();
382 if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
388 /// getReg - This method turns an LLVM value into a register number.
390 unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
391 MachineBasicBlock::iterator IPt) {
392 // If this operand is a constant, emit the code to copy the constant into
393 // the register here...
395 if (Constant *C = dyn_cast<Constant>(V)) {
396 unsigned Reg = makeAnotherReg(V->getType());
397 copyConstantToRegister(MBB, IPt, C, Reg);
399 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
400 unsigned Reg = makeAnotherReg(V->getType());
401 // Move the address of the global into the register
402 BuildMI(*MBB, IPt, X86::MOV32ri, 1, Reg).addGlobalAddress(GV);
404 } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
405 // Do not emit noop casts at all.
406 if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType()))
407 return getReg(CI->getOperand(0), MBB, IPt);
408 } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
409 // If the alloca address couldn't be folded into the instruction addressing,
410 // emit an explicit LEA as appropriate.
411 unsigned Reg = makeAnotherReg(V->getType());
412 unsigned FI = getFixedSizedAllocaFI(AI);
413 addFrameReference(BuildMI(*MBB, IPt, X86::LEA32r, 4, Reg), FI);
417 unsigned &Reg = RegMap[V];
419 Reg = makeAnotherReg(V->getType());
426 /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
427 /// that is to be statically allocated with the initial stack frame
429 unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
430 // Already computed this?
431 std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
432 if (I != AllocaMap.end() && I->first == AI) return I->second;
434 const Type *Ty = AI->getAllocatedType();
435 ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
436 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
437 TySize *= CUI->getValue(); // Get total allocated size...
438 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
440 // Create a new stack object using the frame manager...
441 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
442 AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
447 /// copyConstantToRegister - Output the instructions required to put the
448 /// specified constant into the specified register.
450 void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
451 MachineBasicBlock::iterator IP,
452 Constant *C, unsigned R) {
453 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
455 switch (CE->getOpcode()) {
456 case Instruction::GetElementPtr:
457 emitGEPOperation(MBB, IP, CE->getOperand(0),
458 CE->op_begin()+1, CE->op_end(), R);
460 case Instruction::Cast:
461 emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
464 case Instruction::Xor: ++Class; // FALL THROUGH
465 case Instruction::Or: ++Class; // FALL THROUGH
466 case Instruction::And: ++Class; // FALL THROUGH
467 case Instruction::Sub: ++Class; // FALL THROUGH
468 case Instruction::Add:
469 emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
473 case Instruction::Mul:
474 emitMultiply(MBB, IP, CE->getOperand(0), CE->getOperand(1), R);
477 case Instruction::Div:
478 case Instruction::Rem:
479 emitDivRemOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
480 CE->getOpcode() == Instruction::Div, R);
483 case Instruction::SetNE:
484 case Instruction::SetEQ:
485 case Instruction::SetLT:
486 case Instruction::SetGT:
487 case Instruction::SetLE:
488 case Instruction::SetGE:
489 emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
493 case Instruction::Shl:
494 case Instruction::Shr:
495 emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
496 CE->getOpcode() == Instruction::Shl, CE->getType(), R);
499 case Instruction::Select:
500 emitSelectOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
501 CE->getOperand(2), R);
505 std::cerr << "Offending expr: " << C << "\n";
506 assert(0 && "Constant expression not yet handled!\n");
510 if (C->getType()->isIntegral()) {
511 unsigned Class = getClassB(C->getType());
513 if (Class == cLong) {
514 // Copy the value into the register pair.
515 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
516 BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(Val & 0xFFFFFFFF);
517 BuildMI(*MBB, IP, X86::MOV32ri, 1, R+1).addImm(Val >> 32);
521 assert(Class <= cInt && "Type not handled yet!");
523 static const unsigned IntegralOpcodeTab[] = {
524 X86::MOV8ri, X86::MOV16ri, X86::MOV32ri
527 if (C->getType() == Type::BoolTy) {
528 BuildMI(*MBB, IP, X86::MOV8ri, 1, R).addImm(C == ConstantBool::True);
530 ConstantInt *CI = cast<ConstantInt>(C);
531 BuildMI(*MBB, IP, IntegralOpcodeTab[Class],1,R).addImm(CI->getRawValue());
533 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
534 if (CFP->isExactlyValue(+0.0))
535 BuildMI(*MBB, IP, X86::FLD0, 0, R);
536 else if (CFP->isExactlyValue(+1.0))
537 BuildMI(*MBB, IP, X86::FLD1, 0, R);
539 // Otherwise we need to spill the constant to memory...
540 MachineConstantPool *CP = F->getConstantPool();
541 unsigned CPI = CP->getConstantPoolIndex(CFP);
542 const Type *Ty = CFP->getType();
544 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
545 unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLD32m : X86::FLD64m;
546 addConstantPoolReference(BuildMI(*MBB, IP, LoadOpcode, 4, R), CPI);
549 } else if (isa<ConstantPointerNull>(C)) {
550 // Copy zero (null pointer) to the register.
551 BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(0);
552 } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
553 BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addGlobalAddress(CPR->getValue());
555 std::cerr << "Offending constant: " << C << "\n";
556 assert(0 && "Type not handled yet!");
560 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
561 /// the stack into virtual registers.
563 void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
564 // Emit instructions to load the arguments... On entry to a function on the
565 // X86, the stack frame looks like this:
567 // [ESP] -- return address
568 // [ESP + 4] -- first argument (leftmost lexically)
569 // [ESP + 8] -- second argument, if first argument is four bytes in size
572 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
573 MachineFrameInfo *MFI = F->getFrameInfo();
575 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
576 bool ArgLive = !I->use_empty();
577 unsigned Reg = ArgLive ? getReg(*I) : 0;
578 int FI; // Frame object index
580 switch (getClassB(I->getType())) {
583 FI = MFI->CreateFixedObject(1, ArgOffset);
584 addFrameReference(BuildMI(BB, X86::MOV8rm, 4, Reg), FI);
589 FI = MFI->CreateFixedObject(2, ArgOffset);
590 addFrameReference(BuildMI(BB, X86::MOV16rm, 4, Reg), FI);
595 FI = MFI->CreateFixedObject(4, ArgOffset);
596 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI);
601 FI = MFI->CreateFixedObject(8, ArgOffset);
602 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI);
603 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg+1), FI, 4);
605 ArgOffset += 4; // longs require 4 additional bytes
610 if (I->getType() == Type::FloatTy) {
611 Opcode = X86::FLD32m;
612 FI = MFI->CreateFixedObject(4, ArgOffset);
614 Opcode = X86::FLD64m;
615 FI = MFI->CreateFixedObject(8, ArgOffset);
617 addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI);
619 if (I->getType() == Type::DoubleTy)
620 ArgOffset += 4; // doubles require 4 additional bytes
623 assert(0 && "Unhandled argument type!");
625 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
628 // If the function takes variable number of arguments, add a frame offset for
629 // the start of the first vararg value... this is used to expand
631 if (Fn.getFunctionType()->isVarArg())
632 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
636 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
637 /// because we have to generate our sources into the source basic blocks, not
640 void ISel::SelectPHINodes() {
641 const TargetInstrInfo &TII = TM.getInstrInfo();
642 const Function &LF = *F->getFunction(); // The LLVM function...
643 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
644 const BasicBlock *BB = I;
645 MachineBasicBlock &MBB = *MBBMap[I];
647 // Loop over all of the PHI nodes in the LLVM basic block...
648 MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
649 for (BasicBlock::const_iterator I = BB->begin();
650 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
652 // Create a new machine instr PHI node, and insert it.
653 unsigned PHIReg = getReg(*PN);
654 MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
655 X86::PHI, PN->getNumOperands(), PHIReg);
657 MachineInstr *LongPhiMI = 0;
658 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
659 LongPhiMI = BuildMI(MBB, PHIInsertPoint,
660 X86::PHI, PN->getNumOperands(), PHIReg+1);
662 // PHIValues - Map of blocks to incoming virtual registers. We use this
663 // so that we only initialize one incoming value for a particular block,
664 // even if the block has multiple entries in the PHI node.
666 std::map<MachineBasicBlock*, unsigned> PHIValues;
668 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
669 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
671 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
672 PHIValues.lower_bound(PredMBB);
674 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
675 // We already inserted an initialization of the register for this
676 // predecessor. Recycle it.
677 ValReg = EntryIt->second;
680 // Get the incoming value into a virtual register.
682 Value *Val = PN->getIncomingValue(i);
684 // If this is a constant or GlobalValue, we may have to insert code
685 // into the basic block to compute it into a virtual register.
686 if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
687 isa<GlobalValue>(Val)) {
688 // Simple constants get emitted at the end of the basic block,
689 // before any terminator instructions. We "know" that the code to
690 // move a constant into a register will never clobber any flags.
691 ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
693 // Because we don't want to clobber any values which might be in
694 // physical registers with the computation of this constant (which
695 // might be arbitrarily complex if it is a constant expression),
696 // just insert the computation at the top of the basic block.
697 MachineBasicBlock::iterator PI = PredMBB->begin();
699 // Skip over any PHI nodes though!
700 while (PI != PredMBB->end() && PI->getOpcode() == X86::PHI)
703 ValReg = getReg(Val, PredMBB, PI);
706 // Remember that we inserted a value for this PHI for this predecessor
707 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
710 PhiMI->addRegOperand(ValReg);
711 PhiMI->addMachineBasicBlockOperand(PredMBB);
713 LongPhiMI->addRegOperand(ValReg+1);
714 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
718 // Now that we emitted all of the incoming values for the PHI node, make
719 // sure to reposition the InsertPoint after the PHI that we just added.
720 // This is needed because we might have inserted a constant into this
721 // block, right after the PHI's which is before the old insert point!
722 PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
728 /// RequiresFPRegKill - The floating point stackifier pass cannot insert
729 /// compensation code on critical edges. As such, it requires that we kill all
730 /// FP registers on the exit from any blocks that either ARE critical edges, or
731 /// branch to a block that has incoming critical edges.
733 /// Note that this kill instruction will eventually be eliminated when
734 /// restrictions in the stackifier are relaxed.
736 static bool RequiresFPRegKill(const MachineBasicBlock *MBB) {
738 const BasicBlock *BB = MBB->getBasicBlock ();
739 for (succ_const_iterator SI = succ_begin(BB), E = succ_end(BB); SI!=E; ++SI) {
740 const BasicBlock *Succ = *SI;
741 pred_const_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
742 ++PI; // Block have at least one predecessory
743 if (PI != PE) { // If it has exactly one, this isn't crit edge
744 // If this block has more than one predecessor, check all of the
745 // predecessors to see if they have multiple successors. If so, then the
746 // block we are analyzing needs an FPRegKill.
747 for (PI = pred_begin(Succ); PI != PE; ++PI) {
748 const BasicBlock *Pred = *PI;
749 succ_const_iterator SI2 = succ_begin(Pred);
750 ++SI2; // There must be at least one successor of this block.
751 if (SI2 != succ_end(Pred))
752 return true; // Yes, we must insert the kill on this edge.
756 // If we got this far, there is no need to insert the kill instruction.
763 // InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks that
764 // need them. This only occurs due to the floating point stackifier not being
765 // aggressive enough to handle arbitrary global stackification.
767 // Currently we insert an FP_REG_KILL instruction into each block that uses or
768 // defines a floating point virtual register.
770 // When the global register allocators (like linear scan) finally update live
771 // variable analysis, we can keep floating point values in registers across
772 // portions of the CFG that do not involve critical edges. This will be a big
773 // win, but we are waiting on the global allocators before we can do this.
775 // With a bit of work, the floating point stackifier pass can be enhanced to
776 // break critical edges as needed (to make a place to put compensation code),
777 // but this will require some infrastructure improvements as well.
779 void ISel::InsertFPRegKills() {
780 SSARegMap &RegMap = *F->getSSARegMap();
782 for (MachineFunction::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
783 for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
784 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
785 MachineOperand& MO = I->getOperand(i);
786 if (MO.isRegister() && MO.getReg()) {
787 unsigned Reg = MO.getReg();
788 if (MRegisterInfo::isVirtualRegister(Reg))
789 if (RegMap.getRegClass(Reg)->getSize() == 10)
793 // If we haven't found an FP register use or def in this basic block, check
794 // to see if any of our successors has an FP PHI node, which will cause a
795 // copy to be inserted into this block.
796 for (MachineBasicBlock::const_succ_iterator SI = BB->succ_begin(),
797 SE = BB->succ_end(); SI != SE; ++SI) {
798 MachineBasicBlock *SBB = *SI;
799 for (MachineBasicBlock::iterator I = SBB->begin();
800 I != SBB->end() && I->getOpcode() == X86::PHI; ++I) {
801 if (RegMap.getRegClass(I->getOperand(0).getReg())->getSize() == 10)
807 // Okay, this block uses an FP register. If the block has successors (ie,
808 // it's not an unwind/return), insert the FP_REG_KILL instruction.
809 if (BB->succ_size () && RequiresFPRegKill(BB)) {
810 BuildMI(*BB, BB->getFirstTerminator(), X86::FP_REG_KILL, 0);
817 // canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
818 // it into the conditional branch or select instruction which is the only user
819 // of the cc instruction. This is the case if the conditional branch is the
820 // only user of the setcc, and if the setcc is in the same basic block as the
821 // conditional branch. We also don't handle long arguments below, so we reject
822 // them here as well.
824 static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
825 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
826 if (SCI->hasOneUse()) {
827 Instruction *User = cast<Instruction>(SCI->use_back());
828 if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
829 SCI->getParent() == User->getParent() &&
830 (getClassB(SCI->getOperand(0)->getType()) != cLong ||
831 SCI->getOpcode() == Instruction::SetEQ ||
832 SCI->getOpcode() == Instruction::SetNE))
838 // Return a fixed numbering for setcc instructions which does not depend on the
839 // order of the opcodes.
841 static unsigned getSetCCNumber(unsigned Opcode) {
843 default: assert(0 && "Unknown setcc instruction!");
844 case Instruction::SetEQ: return 0;
845 case Instruction::SetNE: return 1;
846 case Instruction::SetLT: return 2;
847 case Instruction::SetGE: return 3;
848 case Instruction::SetGT: return 4;
849 case Instruction::SetLE: return 5;
853 // LLVM -> X86 signed X86 unsigned
854 // ----- ---------- ------------
855 // seteq -> sete sete
856 // setne -> setne setne
857 // setlt -> setl setb
858 // setge -> setge setae
859 // setgt -> setg seta
860 // setle -> setle setbe
862 // sets // Used by comparison with 0 optimization
864 static const unsigned SetCCOpcodeTab[2][8] = {
865 { X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr,
867 { X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr,
868 X86::SETSr, X86::SETNSr },
871 // EmitComparison - This function emits a comparison of the two operands,
872 // returning the extended setcc code to use.
873 unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
874 MachineBasicBlock *MBB,
875 MachineBasicBlock::iterator IP) {
876 // The arguments are already supposed to be of the same type.
877 const Type *CompTy = Op0->getType();
878 unsigned Class = getClassB(CompTy);
879 unsigned Op0r = getReg(Op0, MBB, IP);
881 // Special case handling of: cmp R, i
882 if (isa<ConstantPointerNull>(Op1)) {
883 if (OpNum < 2) // seteq/setne -> test
884 BuildMI(*MBB, IP, X86::TEST32rr, 2).addReg(Op0r).addReg(Op0r);
886 BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r).addImm(0);
889 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
890 if (Class == cByte || Class == cShort || Class == cInt) {
891 unsigned Op1v = CI->getRawValue();
893 // Mask off any upper bits of the constant, if there are any...
894 Op1v &= (1ULL << (8 << Class)) - 1;
896 // If this is a comparison against zero, emit more efficient code. We
897 // can't handle unsigned comparisons against zero unless they are == or
898 // !=. These should have been strength reduced already anyway.
899 if (Op1v == 0 && (CompTy->isSigned() || OpNum < 2)) {
900 static const unsigned TESTTab[] = {
901 X86::TEST8rr, X86::TEST16rr, X86::TEST32rr
903 BuildMI(*MBB, IP, TESTTab[Class], 2).addReg(Op0r).addReg(Op0r);
905 if (OpNum == 2) return 6; // Map jl -> js
906 if (OpNum == 3) return 7; // Map jg -> jns
910 static const unsigned CMPTab[] = {
911 X86::CMP8ri, X86::CMP16ri, X86::CMP32ri
914 BuildMI(*MBB, IP, CMPTab[Class], 2).addReg(Op0r).addImm(Op1v);
917 assert(Class == cLong && "Unknown integer class!");
918 unsigned LowCst = CI->getRawValue();
919 unsigned HiCst = CI->getRawValue() >> 32;
920 if (OpNum < 2) { // seteq, setne
921 unsigned LoTmp = Op0r;
923 LoTmp = makeAnotherReg(Type::IntTy);
924 BuildMI(*MBB, IP, X86::XOR32ri, 2, LoTmp).addReg(Op0r).addImm(LowCst);
926 unsigned HiTmp = Op0r+1;
928 HiTmp = makeAnotherReg(Type::IntTy);
929 BuildMI(*MBB, IP, X86::XOR32ri, 2,HiTmp).addReg(Op0r+1).addImm(HiCst);
931 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
932 BuildMI(*MBB, IP, X86::OR32rr, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
935 // Emit a sequence of code which compares the high and low parts once
936 // each, then uses a conditional move to handle the overflow case. For
937 // example, a setlt for long would generate code like this:
939 // AL = lo(op1) < lo(op2) // Always unsigned comparison
940 // BL = hi(op1) < hi(op2) // Signedness depends on operands
941 // dest = hi(op1) == hi(op2) ? BL : AL;
944 // FIXME: This would be much better if we had hierarchical register
945 // classes! Until then, hardcode registers so that we can deal with
946 // their aliases (because we don't have conditional byte moves).
948 BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r).addImm(LowCst);
949 BuildMI(*MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
950 BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r+1).addImm(HiCst);
951 BuildMI(*MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0,X86::BL);
952 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
953 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
954 BuildMI(*MBB, IP, X86::CMOVE16rr, 2, X86::BX).addReg(X86::BX)
956 // NOTE: visitSetCondInst knows that the value is dumped into the BL
957 // register at this point for long values...
963 // Special case handling of comparison against +/- 0.0
964 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op1))
965 if (CFP->isExactlyValue(+0.0) || CFP->isExactlyValue(-0.0)) {
966 BuildMI(*MBB, IP, X86::FTST, 1).addReg(Op0r);
967 BuildMI(*MBB, IP, X86::FNSTSW8r, 0);
968 BuildMI(*MBB, IP, X86::SAHF, 1);
972 unsigned Op1r = getReg(Op1, MBB, IP);
974 default: assert(0 && "Unknown type class!");
975 // Emit: cmp <var1>, <var2> (do the comparison). We can
976 // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
979 BuildMI(*MBB, IP, X86::CMP8rr, 2).addReg(Op0r).addReg(Op1r);
982 BuildMI(*MBB, IP, X86::CMP16rr, 2).addReg(Op0r).addReg(Op1r);
985 BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r);
988 if (0) { // for processors prior to the P6
989 BuildMI(*MBB, IP, X86::FpUCOM, 2).addReg(Op0r).addReg(Op1r);
990 BuildMI(*MBB, IP, X86::FNSTSW8r, 0);
991 BuildMI(*MBB, IP, X86::SAHF, 1);
993 BuildMI(*MBB, IP, X86::FpUCOMI, 2).addReg(Op0r).addReg(Op1r);
998 if (OpNum < 2) { // seteq, setne
999 unsigned LoTmp = makeAnotherReg(Type::IntTy);
1000 unsigned HiTmp = makeAnotherReg(Type::IntTy);
1001 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
1002 BuildMI(*MBB, IP, X86::XOR32rr, 2, LoTmp).addReg(Op0r).addReg(Op1r);
1003 BuildMI(*MBB, IP, X86::XOR32rr, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
1004 BuildMI(*MBB, IP, X86::OR32rr, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
1005 break; // Allow the sete or setne to be generated from flags set by OR
1007 // Emit a sequence of code which compares the high and low parts once
1008 // each, then uses a conditional move to handle the overflow case. For
1009 // example, a setlt for long would generate code like this:
1011 // AL = lo(op1) < lo(op2) // Signedness depends on operands
1012 // BL = hi(op1) < hi(op2) // Always unsigned comparison
1013 // dest = hi(op1) == hi(op2) ? BL : AL;
1016 // FIXME: This would be much better if we had hierarchical register
1017 // classes! Until then, hardcode registers so that we can deal with their
1018 // aliases (because we don't have conditional byte moves).
1020 BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r);
1021 BuildMI(*MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
1022 BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r+1).addReg(Op1r+1);
1023 BuildMI(*MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0, X86::BL);
1024 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
1025 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
1026 BuildMI(*MBB, IP, X86::CMOVE16rr, 2, X86::BX).addReg(X86::BX)
1028 // NOTE: visitSetCondInst knows that the value is dumped into the BL
1029 // register at this point for long values...
1036 /// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
1037 /// register, then move it to wherever the result should be.
1039 void ISel::visitSetCondInst(SetCondInst &I) {
1040 if (canFoldSetCCIntoBranchOrSelect(&I))
1041 return; // Fold this into a branch or select.
1043 unsigned DestReg = getReg(I);
1044 MachineBasicBlock::iterator MII = BB->end();
1045 emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(),
1049 /// emitSetCCOperation - Common code shared between visitSetCondInst and
1050 /// constant expression support.
1052 void ISel::emitSetCCOperation(MachineBasicBlock *MBB,
1053 MachineBasicBlock::iterator IP,
1054 Value *Op0, Value *Op1, unsigned Opcode,
1055 unsigned TargetReg) {
1056 unsigned OpNum = getSetCCNumber(Opcode);
1057 OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP);
1059 const Type *CompTy = Op0->getType();
1060 unsigned CompClass = getClassB(CompTy);
1061 bool isSigned = CompTy->isSigned() && CompClass != cFP;
1063 if (CompClass != cLong || OpNum < 2) {
1064 // Handle normal comparisons with a setcc instruction...
1065 BuildMI(*MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, TargetReg);
1067 // Handle long comparisons by copying the value which is already in BL into
1068 // the register we want...
1069 BuildMI(*MBB, IP, X86::MOV8rr, 1, TargetReg).addReg(X86::BL);
1073 void ISel::visitSelectInst(SelectInst &SI) {
1074 unsigned DestReg = getReg(SI);
1075 MachineBasicBlock::iterator MII = BB->end();
1076 emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
1077 SI.getFalseValue(), DestReg);
1080 /// emitSelect - Common code shared between visitSelectInst and the constant
1081 /// expression support.
1082 void ISel::emitSelectOperation(MachineBasicBlock *MBB,
1083 MachineBasicBlock::iterator IP,
1084 Value *Cond, Value *TrueVal, Value *FalseVal,
1086 unsigned SelectClass = getClassB(TrueVal->getType());
1088 // We don't support 8-bit conditional moves. If we have incoming constants,
1089 // transform them into 16-bit constants to avoid having a run-time conversion.
1090 if (SelectClass == cByte) {
1091 if (Constant *T = dyn_cast<Constant>(TrueVal))
1092 TrueVal = ConstantExpr::getCast(T, Type::ShortTy);
1093 if (Constant *F = dyn_cast<Constant>(FalseVal))
1094 FalseVal = ConstantExpr::getCast(F, Type::ShortTy);
1097 unsigned TrueReg = getReg(TrueVal, MBB, IP);
1098 unsigned FalseReg = getReg(FalseVal, MBB, IP);
1099 if (TrueReg == FalseReg) {
1100 static const unsigned Opcode[] = {
1101 X86::MOV8rr, X86::MOV16rr, X86::MOV32rr, X86::FpMOV, X86::MOV32rr
1103 BuildMI(*MBB, IP, Opcode[SelectClass], 1, DestReg).addReg(TrueReg);
1104 if (SelectClass == cLong)
1105 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(TrueReg+1);
1110 if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) {
1111 // We successfully folded the setcc into the select instruction.
1113 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
1114 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), MBB,
1117 const Type *CompTy = SCI->getOperand(0)->getType();
1118 bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
1120 // LLVM -> X86 signed X86 unsigned
1121 // ----- ---------- ------------
1122 // seteq -> cmovNE cmovNE
1123 // setne -> cmovE cmovE
1124 // setlt -> cmovGE cmovAE
1125 // setge -> cmovL cmovB
1126 // setgt -> cmovLE cmovBE
1127 // setle -> cmovG cmovA
1129 // cmovNS // Used by comparison with 0 optimization
1132 switch (SelectClass) {
1133 default: assert(0 && "Unknown value class!");
1135 // Annoyingly, we don't have a full set of floating point conditional
1137 static const unsigned OpcodeTab[2][8] = {
1138 { X86::FCMOVNE, X86::FCMOVE, X86::FCMOVAE, X86::FCMOVB,
1139 X86::FCMOVBE, X86::FCMOVA, 0, 0 },
1140 { X86::FCMOVNE, X86::FCMOVE, 0, 0, 0, 0, 0, 0 },
1142 Opcode = OpcodeTab[isSigned][OpNum];
1144 // If opcode == 0, we hit a case that we don't support. Output a setcc
1145 // and compare the result against zero.
1147 unsigned CompClass = getClassB(CompTy);
1149 if (CompClass != cLong || OpNum < 2) {
1150 CondReg = makeAnotherReg(Type::BoolTy);
1151 // Handle normal comparisons with a setcc instruction...
1152 BuildMI(*MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, CondReg);
1154 // Long comparisons end up in the BL register.
1158 BuildMI(*MBB, IP, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg);
1159 Opcode = X86::FCMOVE;
1165 static const unsigned OpcodeTab[2][8] = {
1166 { X86::CMOVNE16rr, X86::CMOVE16rr, X86::CMOVAE16rr, X86::CMOVB16rr,
1167 X86::CMOVBE16rr, X86::CMOVA16rr, 0, 0 },
1168 { X86::CMOVNE16rr, X86::CMOVE16rr, X86::CMOVGE16rr, X86::CMOVL16rr,
1169 X86::CMOVLE16rr, X86::CMOVG16rr, X86::CMOVNS16rr, X86::CMOVS16rr },
1171 Opcode = OpcodeTab[isSigned][OpNum];
1176 static const unsigned OpcodeTab[2][8] = {
1177 { X86::CMOVNE32rr, X86::CMOVE32rr, X86::CMOVAE32rr, X86::CMOVB32rr,
1178 X86::CMOVBE32rr, X86::CMOVA32rr, 0, 0 },
1179 { X86::CMOVNE32rr, X86::CMOVE32rr, X86::CMOVGE32rr, X86::CMOVL32rr,
1180 X86::CMOVLE32rr, X86::CMOVG32rr, X86::CMOVNS32rr, X86::CMOVS32rr },
1182 Opcode = OpcodeTab[isSigned][OpNum];
1187 // Get the value being branched on, and use it to set the condition codes.
1188 unsigned CondReg = getReg(Cond, MBB, IP);
1189 BuildMI(*MBB, IP, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg);
1190 switch (SelectClass) {
1191 default: assert(0 && "Unknown value class!");
1192 case cFP: Opcode = X86::FCMOVE; break;
1194 case cShort: Opcode = X86::CMOVE16rr; break;
1196 case cLong: Opcode = X86::CMOVE32rr; break;
1200 unsigned RealDestReg = DestReg;
1203 // Annoyingly enough, X86 doesn't HAVE 8-bit conditional moves. Because of
1204 // this, we have to promote the incoming values to 16 bits, perform a 16-bit
1205 // cmove, then truncate the result.
1206 if (SelectClass == cByte) {
1207 DestReg = makeAnotherReg(Type::ShortTy);
1208 if (getClassB(TrueVal->getType()) == cByte) {
1209 // Promote the true value, by storing it into AL, and reading from AX.
1210 BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::AL).addReg(TrueReg);
1211 BuildMI(*MBB, IP, X86::MOV8ri, 1, X86::AH).addImm(0);
1212 TrueReg = makeAnotherReg(Type::ShortTy);
1213 BuildMI(*MBB, IP, X86::MOV16rr, 1, TrueReg).addReg(X86::AX);
1215 if (getClassB(FalseVal->getType()) == cByte) {
1216 // Promote the true value, by storing it into CL, and reading from CX.
1217 BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(FalseReg);
1218 BuildMI(*MBB, IP, X86::MOV8ri, 1, X86::CH).addImm(0);
1219 FalseReg = makeAnotherReg(Type::ShortTy);
1220 BuildMI(*MBB, IP, X86::MOV16rr, 1, FalseReg).addReg(X86::CX);
1224 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(TrueReg).addReg(FalseReg);
1226 switch (SelectClass) {
1228 // We did the computation with 16-bit registers. Truncate back to our
1229 // result by copying into AX then copying out AL.
1230 BuildMI(*MBB, IP, X86::MOV16rr, 1, X86::AX).addReg(DestReg);
1231 BuildMI(*MBB, IP, X86::MOV8rr, 1, RealDestReg).addReg(X86::AL);
1234 // Move the upper half of the value as well.
1235 BuildMI(*MBB, IP, Opcode, 2,DestReg+1).addReg(TrueReg+1).addReg(FalseReg+1);
1242 /// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
1243 /// operand, in the specified target register.
1245 void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
1246 bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
1248 Value *Val = VR.Val;
1249 const Type *Ty = VR.Ty;
1251 if (Constant *C = dyn_cast<Constant>(Val)) {
1252 Val = ConstantExpr::getCast(C, Type::IntTy);
1256 // If this is a simple constant, just emit a MOVri directly to avoid the
1258 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
1259 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
1260 BuildMI(BB, X86::MOV32ri, 1, targetReg).addImm(TheVal);
1265 // Make sure we have the register number for this value...
1266 unsigned Reg = Val ? getReg(Val) : VR.Reg;
1268 switch (getClassB(Ty)) {
1270 // Extend value into target register (8->32)
1272 BuildMI(BB, X86::MOVZX32rr8, 1, targetReg).addReg(Reg);
1274 BuildMI(BB, X86::MOVSX32rr8, 1, targetReg).addReg(Reg);
1277 // Extend value into target register (16->32)
1279 BuildMI(BB, X86::MOVZX32rr16, 1, targetReg).addReg(Reg);
1281 BuildMI(BB, X86::MOVSX32rr16, 1, targetReg).addReg(Reg);
1284 // Move value into target register (32->32)
1285 BuildMI(BB, X86::MOV32rr, 1, targetReg).addReg(Reg);
1288 assert(0 && "Unpromotable operand class in promote32");
1292 /// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
1293 /// we have the following possibilities:
1295 /// ret void: No return value, simply emit a 'ret' instruction
1296 /// ret sbyte, ubyte : Extend value into EAX and return
1297 /// ret short, ushort: Extend value into EAX and return
1298 /// ret int, uint : Move value into EAX and return
1299 /// ret pointer : Move value into EAX and return
1300 /// ret long, ulong : Move value into EAX/EDX and return
1301 /// ret float/double : Top of FP stack
1303 void ISel::visitReturnInst(ReturnInst &I) {
1304 if (I.getNumOperands() == 0) {
1305 BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
1309 Value *RetVal = I.getOperand(0);
1310 switch (getClassB(RetVal->getType())) {
1311 case cByte: // integral return values: extend or move into EAX and return
1314 promote32(X86::EAX, ValueRecord(RetVal));
1315 // Declare that EAX is live on exit
1316 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP);
1318 case cFP: { // Floats & Doubles: Return in ST(0)
1319 unsigned RetReg = getReg(RetVal);
1320 BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg);
1321 // Declare that top-of-stack is live on exit
1322 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP);
1326 unsigned RetReg = getReg(RetVal);
1327 BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(RetReg);
1328 BuildMI(BB, X86::MOV32rr, 1, X86::EDX).addReg(RetReg+1);
1329 // Declare that EAX & EDX are live on exit
1330 BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX)
1335 visitInstruction(I);
1337 // Emit a 'ret' instruction
1338 BuildMI(BB, X86::RET, 0);
1341 // getBlockAfter - Return the basic block which occurs lexically after the
1343 static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
1344 Function::iterator I = BB; ++I; // Get iterator to next block
1345 return I != BB->getParent()->end() ? &*I : 0;
1348 /// visitBranchInst - Handle conditional and unconditional branches here. Note
1349 /// that since code layout is frozen at this point, that if we are trying to
1350 /// jump to a block that is the immediate successor of the current block, we can
1351 /// just make a fall-through (but we don't currently).
1353 void ISel::visitBranchInst(BranchInst &BI) {
1354 // Update machine-CFG edges
1355 BB->addSuccessor (MBBMap[BI.getSuccessor(0)]);
1356 if (BI.isConditional())
1357 BB->addSuccessor (MBBMap[BI.getSuccessor(1)]);
1359 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
1361 if (!BI.isConditional()) { // Unconditional branch?
1362 if (BI.getSuccessor(0) != NextBB)
1363 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
1367 // See if we can fold the setcc into the branch itself...
1368 SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
1370 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
1371 // computed some other way...
1372 unsigned condReg = getReg(BI.getCondition());
1373 BuildMI(BB, X86::TEST8rr, 2).addReg(condReg).addReg(condReg);
1374 if (BI.getSuccessor(1) == NextBB) {
1375 if (BI.getSuccessor(0) != NextBB)
1376 BuildMI(BB, X86::JNE, 1).addPCDisp(BI.getSuccessor(0));
1378 BuildMI(BB, X86::JE, 1).addPCDisp(BI.getSuccessor(1));
1380 if (BI.getSuccessor(0) != NextBB)
1381 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
1386 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
1387 MachineBasicBlock::iterator MII = BB->end();
1388 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
1390 const Type *CompTy = SCI->getOperand(0)->getType();
1391 bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
1394 // LLVM -> X86 signed X86 unsigned
1395 // ----- ---------- ------------
1403 // js // Used by comparison with 0 optimization
1406 static const unsigned OpcodeTab[2][8] = {
1407 { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE, 0, 0 },
1408 { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE,
1409 X86::JS, X86::JNS },
1412 if (BI.getSuccessor(0) != NextBB) {
1413 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(0));
1414 if (BI.getSuccessor(1) != NextBB)
1415 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(1));
1417 // Change to the inverse condition...
1418 if (BI.getSuccessor(1) != NextBB) {
1420 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(1));
1426 /// doCall - This emits an abstract call instruction, setting up the arguments
1427 /// and the return value as appropriate. For the actual function call itself,
1428 /// it inserts the specified CallMI instruction into the stream.
1430 void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
1431 const std::vector<ValueRecord> &Args) {
1433 // Count how many bytes are to be pushed on the stack...
1434 unsigned NumBytes = 0;
1436 if (!Args.empty()) {
1437 for (unsigned i = 0, e = Args.size(); i != e; ++i)
1438 switch (getClassB(Args[i].Ty)) {
1439 case cByte: case cShort: case cInt:
1440 NumBytes += 4; break;
1442 NumBytes += 8; break;
1444 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
1446 default: assert(0 && "Unknown class!");
1449 // Adjust the stack pointer for the new arguments...
1450 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
1452 // Arguments go on the stack in reverse order, as specified by the ABI.
1453 unsigned ArgOffset = 0;
1454 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1456 switch (getClassB(Args[i].Ty)) {
1458 if (Args[i].Val && isa<ConstantBool>(Args[i].Val)) {
1459 addRegOffset(BuildMI(BB, X86::MOV32mi, 5), X86::ESP, ArgOffset)
1460 .addImm(Args[i].Val == ConstantBool::True);
1465 if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
1466 // Zero/Sign extend constant, then stuff into memory.
1467 ConstantInt *Val = cast<ConstantInt>(Args[i].Val);
1468 Val = cast<ConstantInt>(ConstantExpr::getCast(Val, Type::IntTy));
1469 addRegOffset(BuildMI(BB, X86::MOV32mi, 5), X86::ESP, ArgOffset)
1470 .addImm(Val->getRawValue() & 0xFFFFFFFF);
1472 // Promote arg to 32 bits wide into a temporary register...
1473 ArgReg = makeAnotherReg(Type::UIntTy);
1474 promote32(ArgReg, Args[i]);
1475 addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
1476 X86::ESP, ArgOffset).addReg(ArgReg);
1480 if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
1481 unsigned Val = cast<ConstantInt>(Args[i].Val)->getRawValue();
1482 addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
1483 X86::ESP, ArgOffset).addImm(Val);
1485 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1486 addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
1487 X86::ESP, ArgOffset).addReg(ArgReg);
1491 if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
1492 uint64_t Val = cast<ConstantInt>(Args[i].Val)->getRawValue();
1493 addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
1494 X86::ESP, ArgOffset).addImm(Val & ~0U);
1495 addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
1496 X86::ESP, ArgOffset+4).addImm(Val >> 32ULL);
1498 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1499 addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
1500 X86::ESP, ArgOffset).addReg(ArgReg);
1501 addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
1502 X86::ESP, ArgOffset+4).addReg(ArgReg+1);
1504 ArgOffset += 4; // 8 byte entry, not 4.
1508 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1509 if (Args[i].Ty == Type::FloatTy) {
1510 addRegOffset(BuildMI(BB, X86::FST32m, 5),
1511 X86::ESP, ArgOffset).addReg(ArgReg);
1513 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
1514 addRegOffset(BuildMI(BB, X86::FST64m, 5),
1515 X86::ESP, ArgOffset).addReg(ArgReg);
1516 ArgOffset += 4; // 8 byte entry, not 4.
1520 default: assert(0 && "Unknown class!");
1525 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(0);
1528 BB->push_back(CallMI);
1530 BuildMI(BB, X86::ADJCALLSTACKUP, 1).addImm(NumBytes);
1532 // If there is a return value, scavenge the result from the location the call
1535 if (Ret.Ty != Type::VoidTy) {
1536 unsigned DestClass = getClassB(Ret.Ty);
1537 switch (DestClass) {
1541 // Integral results are in %eax, or the appropriate portion
1543 static const unsigned regRegMove[] = {
1544 X86::MOV8rr, X86::MOV16rr, X86::MOV32rr
1546 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
1547 BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]);
1550 case cFP: // Floating-point return values live in %ST(0)
1551 BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg);
1553 case cLong: // Long values are left in EDX:EAX
1554 BuildMI(BB, X86::MOV32rr, 1, Ret.Reg).addReg(X86::EAX);
1555 BuildMI(BB, X86::MOV32rr, 1, Ret.Reg+1).addReg(X86::EDX);
1557 default: assert(0 && "Unknown class!");
1563 /// visitCallInst - Push args on stack and do a procedure call instruction.
1564 void ISel::visitCallInst(CallInst &CI) {
1565 MachineInstr *TheCall;
1566 if (Function *F = CI.getCalledFunction()) {
1567 // Is it an intrinsic function call?
1568 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
1569 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1573 // Emit a CALL instruction with PC-relative displacement.
1574 TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true);
1575 } else { // Emit an indirect call...
1576 unsigned Reg = getReg(CI.getCalledValue());
1577 TheCall = BuildMI(X86::CALL32r, 1).addReg(Reg);
1580 std::vector<ValueRecord> Args;
1581 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
1582 Args.push_back(ValueRecord(CI.getOperand(i)));
1584 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
1585 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
1589 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1590 /// function, lowering any calls to unknown intrinsic functions into the
1591 /// equivalent LLVM code.
1593 void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
1594 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1595 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1596 if (CallInst *CI = dyn_cast<CallInst>(I++))
1597 if (Function *F = CI->getCalledFunction())
1598 switch (F->getIntrinsicID()) {
1599 case Intrinsic::not_intrinsic:
1600 case Intrinsic::vastart:
1601 case Intrinsic::vacopy:
1602 case Intrinsic::vaend:
1603 case Intrinsic::returnaddress:
1604 case Intrinsic::frameaddress:
1605 case Intrinsic::memcpy:
1606 case Intrinsic::memset:
1607 case Intrinsic::readport:
1608 case Intrinsic::writeport:
1609 // We directly implement these intrinsics
1611 case Intrinsic::readio: {
1612 // On X86, memory operations are in-order. Lower this intrinsic
1613 // into a volatile load.
1614 Instruction *Before = CI->getPrev();
1615 LoadInst * LI = new LoadInst (CI->getOperand(1), "", true, CI);
1616 CI->replaceAllUsesWith (LI);
1617 BB->getInstList().erase (CI);
1620 case Intrinsic::writeio: {
1621 // On X86, memory operations are in-order. Lower this intrinsic
1622 // into a volatile store.
1623 Instruction *Before = CI->getPrev();
1624 StoreInst * LI = new StoreInst (CI->getOperand(1),
1625 CI->getOperand(2), true, CI);
1626 CI->replaceAllUsesWith (LI);
1627 BB->getInstList().erase (CI);
1631 // All other intrinsic calls we must lower.
1632 Instruction *Before = CI->getPrev();
1633 TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
1634 if (Before) { // Move iterator to instruction after call
1643 void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
1644 unsigned TmpReg1, TmpReg2;
1646 case Intrinsic::vastart:
1647 // Get the address of the first vararg value...
1648 TmpReg1 = getReg(CI);
1649 addFrameReference(BuildMI(BB, X86::LEA32r, 5, TmpReg1), VarArgsFrameIndex);
1652 case Intrinsic::vacopy:
1653 TmpReg1 = getReg(CI);
1654 TmpReg2 = getReg(CI.getOperand(1));
1655 BuildMI(BB, X86::MOV32rr, 1, TmpReg1).addReg(TmpReg2);
1657 case Intrinsic::vaend: return; // Noop on X86
1659 case Intrinsic::returnaddress:
1660 case Intrinsic::frameaddress:
1661 TmpReg1 = getReg(CI);
1662 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
1663 if (ID == Intrinsic::returnaddress) {
1664 // Just load the return address
1665 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, TmpReg1),
1666 ReturnAddressIndex);
1668 addFrameReference(BuildMI(BB, X86::LEA32r, 4, TmpReg1),
1669 ReturnAddressIndex, -4);
1672 // Values other than zero are not implemented yet.
1673 BuildMI(BB, X86::MOV32ri, 1, TmpReg1).addImm(0);
1677 case Intrinsic::memcpy: {
1678 assert(CI.getNumOperands() == 5 && "Illegal llvm.memcpy call!");
1680 if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) {
1681 Align = AlignC->getRawValue();
1682 if (Align == 0) Align = 1;
1685 // Turn the byte code into # iterations
1688 switch (Align & 3) {
1689 case 2: // WORD aligned
1690 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
1691 CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2));
1693 CountReg = makeAnotherReg(Type::IntTy);
1694 unsigned ByteReg = getReg(CI.getOperand(3));
1695 BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1);
1697 Opcode = X86::REP_MOVSW;
1699 case 0: // DWORD aligned
1700 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
1701 CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4));
1703 CountReg = makeAnotherReg(Type::IntTy);
1704 unsigned ByteReg = getReg(CI.getOperand(3));
1705 BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2);
1707 Opcode = X86::REP_MOVSD;
1709 default: // BYTE aligned
1710 CountReg = getReg(CI.getOperand(3));
1711 Opcode = X86::REP_MOVSB;
1715 // No matter what the alignment is, we put the source in ESI, the
1716 // destination in EDI, and the count in ECX.
1717 TmpReg1 = getReg(CI.getOperand(1));
1718 TmpReg2 = getReg(CI.getOperand(2));
1719 BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg);
1720 BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1);
1721 BuildMI(BB, X86::MOV32rr, 1, X86::ESI).addReg(TmpReg2);
1722 BuildMI(BB, Opcode, 0);
1725 case Intrinsic::memset: {
1726 assert(CI.getNumOperands() == 5 && "Illegal llvm.memset call!");
1728 if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) {
1729 Align = AlignC->getRawValue();
1730 if (Align == 0) Align = 1;
1733 // Turn the byte code into # iterations
1736 if (ConstantInt *ValC = dyn_cast<ConstantInt>(CI.getOperand(2))) {
1737 unsigned Val = ValC->getRawValue() & 255;
1739 // If the value is a constant, then we can potentially use larger copies.
1740 switch (Align & 3) {
1741 case 2: // WORD aligned
1742 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
1743 CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2));
1745 CountReg = makeAnotherReg(Type::IntTy);
1746 unsigned ByteReg = getReg(CI.getOperand(3));
1747 BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1);
1749 BuildMI(BB, X86::MOV16ri, 1, X86::AX).addImm((Val << 8) | Val);
1750 Opcode = X86::REP_STOSW;
1752 case 0: // DWORD aligned
1753 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
1754 CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4));
1756 CountReg = makeAnotherReg(Type::IntTy);
1757 unsigned ByteReg = getReg(CI.getOperand(3));
1758 BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2);
1760 Val = (Val << 8) | Val;
1761 BuildMI(BB, X86::MOV32ri, 1, X86::EAX).addImm((Val << 16) | Val);
1762 Opcode = X86::REP_STOSD;
1764 default: // BYTE aligned
1765 CountReg = getReg(CI.getOperand(3));
1766 BuildMI(BB, X86::MOV8ri, 1, X86::AL).addImm(Val);
1767 Opcode = X86::REP_STOSB;
1771 // If it's not a constant value we are storing, just fall back. We could
1772 // try to be clever to form 16 bit and 32 bit values, but we don't yet.
1773 unsigned ValReg = getReg(CI.getOperand(2));
1774 BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg);
1775 CountReg = getReg(CI.getOperand(3));
1776 Opcode = X86::REP_STOSB;
1779 // No matter what the alignment is, we put the source in ESI, the
1780 // destination in EDI, and the count in ECX.
1781 TmpReg1 = getReg(CI.getOperand(1));
1782 //TmpReg2 = getReg(CI.getOperand(2));
1783 BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg);
1784 BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1);
1785 BuildMI(BB, Opcode, 0);
1789 case Intrinsic::readport: {
1790 // First, determine that the size of the operand falls within the acceptable
1791 // range for this architecture.
1793 if (getClassB(CI.getOperand(1)->getType()) != cShort) {
1794 std::cerr << "llvm.readport: Address size is not 16 bits\n";
1798 // Now, move the I/O port address into the DX register and use the IN
1799 // instruction to get the input data.
1801 unsigned Class = getClass(CI.getCalledFunction()->getReturnType());
1802 unsigned DestReg = getReg(CI);
1804 // If the port is a single-byte constant, use the immediate form.
1805 if (ConstantInt *C = dyn_cast<ConstantInt>(CI.getOperand(1)))
1806 if ((C->getRawValue() & 255) == C->getRawValue()) {
1809 BuildMI(BB, X86::IN8ri, 1).addImm((unsigned char)C->getRawValue());
1810 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AL);
1813 BuildMI(BB, X86::IN16ri, 1).addImm((unsigned char)C->getRawValue());
1814 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AX);
1817 BuildMI(BB, X86::IN32ri, 1).addImm((unsigned char)C->getRawValue());
1818 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::EAX);
1823 unsigned Reg = getReg(CI.getOperand(1));
1824 BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Reg);
1827 BuildMI(BB, X86::IN8rr, 0);
1828 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AL);
1831 BuildMI(BB, X86::IN16rr, 0);
1832 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AX);
1835 BuildMI(BB, X86::IN32rr, 0);
1836 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::EAX);
1839 std::cerr << "Cannot do input on this data type";
1845 case Intrinsic::writeport: {
1846 // First, determine that the size of the operand falls within the
1847 // acceptable range for this architecture.
1848 if (getClass(CI.getOperand(2)->getType()) != cShort) {
1849 std::cerr << "llvm.writeport: Address size is not 16 bits\n";
1853 unsigned Class = getClassB(CI.getOperand(1)->getType());
1854 unsigned ValReg = getReg(CI.getOperand(1));
1857 BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg);
1860 BuildMI(BB, X86::MOV16rr, 1, X86::AX).addReg(ValReg);
1863 BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(ValReg);
1866 std::cerr << "llvm.writeport: invalid data type for X86 target";
1871 // If the port is a single-byte constant, use the immediate form.
1872 if (ConstantInt *C = dyn_cast<ConstantInt>(CI.getOperand(2)))
1873 if ((C->getRawValue() & 255) == C->getRawValue()) {
1874 static const unsigned O[] = { X86::OUT8ir, X86::OUT16ir, X86::OUT32ir };
1875 BuildMI(BB, O[Class], 1).addImm((unsigned char)C->getRawValue());
1879 // Otherwise, move the I/O port address into the DX register and the value
1880 // to write into the AL/AX/EAX register.
1881 static const unsigned Opc[] = { X86::OUT8rr, X86::OUT16rr, X86::OUT32rr };
1882 unsigned Reg = getReg(CI.getOperand(2));
1883 BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Reg);
1884 BuildMI(BB, Opc[Class], 0);
1888 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
1892 static bool isSafeToFoldLoadIntoInstruction(LoadInst &LI, Instruction &User) {
1893 if (LI.getParent() != User.getParent())
1895 BasicBlock::iterator It = &LI;
1896 // Check all of the instructions between the load and the user. We should
1897 // really use alias analysis here, but for now we just do something simple.
1898 for (++It; It != BasicBlock::iterator(&User); ++It) {
1899 switch (It->getOpcode()) {
1900 case Instruction::Free:
1901 case Instruction::Store:
1902 case Instruction::Call:
1903 case Instruction::Invoke:
1905 case Instruction::Load:
1906 if (cast<LoadInst>(It)->isVolatile() && LI.isVolatile())
1914 /// visitSimpleBinary - Implement simple binary operators for integral types...
1915 /// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1918 void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
1919 unsigned DestReg = getReg(B);
1920 MachineBasicBlock::iterator MI = BB->end();
1921 Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
1922 unsigned Class = getClassB(B.getType());
1924 // Special case: op Reg, load [mem]
1925 if (isa<LoadInst>(Op0) && !isa<LoadInst>(Op1) && Class != cLong &&
1926 isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op0), B))
1927 if (!B.swapOperands())
1928 std::swap(Op0, Op1); // Make sure any loads are in the RHS.
1930 if (isa<LoadInst>(Op1) && Class != cLong &&
1931 isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op1), B)) {
1935 static const unsigned OpcodeTab[][3] = {
1936 // Arithmetic operators
1937 { X86::ADD8rm, X86::ADD16rm, X86::ADD32rm }, // ADD
1938 { X86::SUB8rm, X86::SUB16rm, X86::SUB32rm }, // SUB
1940 // Bitwise operators
1941 { X86::AND8rm, X86::AND16rm, X86::AND32rm }, // AND
1942 { X86:: OR8rm, X86:: OR16rm, X86:: OR32rm }, // OR
1943 { X86::XOR8rm, X86::XOR16rm, X86::XOR32rm }, // XOR
1945 Opcode = OpcodeTab[OperatorClass][Class];
1947 static const unsigned OpcodeTab[][2] = {
1948 { X86::FADD32m, X86::FADD64m }, // ADD
1949 { X86::FSUB32m, X86::FSUB64m }, // SUB
1951 const Type *Ty = Op0->getType();
1952 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
1953 Opcode = OpcodeTab[OperatorClass][Ty == Type::DoubleTy];
1956 unsigned BaseReg, Scale, IndexReg, Disp;
1957 getAddressingMode(cast<LoadInst>(Op1)->getOperand(0), BaseReg,
1958 Scale, IndexReg, Disp);
1960 unsigned Op0r = getReg(Op0);
1961 addFullAddress(BuildMI(BB, Opcode, 2, DestReg).addReg(Op0r),
1962 BaseReg, Scale, IndexReg, Disp);
1966 // If this is a floating point subtract, check to see if we can fold the first
1968 if (Class == cFP && OperatorClass == 1 &&
1969 isa<LoadInst>(Op0) &&
1970 isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op0), B)) {
1971 const Type *Ty = Op0->getType();
1972 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
1973 unsigned Opcode = Ty == Type::FloatTy ? X86::FSUBR32m : X86::FSUBR64m;
1975 unsigned BaseReg, Scale, IndexReg, Disp;
1976 getAddressingMode(cast<LoadInst>(Op0)->getOperand(0), BaseReg,
1977 Scale, IndexReg, Disp);
1979 unsigned Op1r = getReg(Op1);
1980 addFullAddress(BuildMI(BB, Opcode, 2, DestReg).addReg(Op1r),
1981 BaseReg, Scale, IndexReg, Disp);
1985 emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
1989 /// emitBinaryFPOperation - This method handles emission of floating point
1990 /// Add (0), Sub (1), Mul (2), and Div (3) operations.
1991 void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
1992 MachineBasicBlock::iterator IP,
1993 Value *Op0, Value *Op1,
1994 unsigned OperatorClass, unsigned DestReg) {
1996 // Special case: op Reg, <const fp>
1997 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1))
1998 if (!Op1C->isExactlyValue(+0.0) && !Op1C->isExactlyValue(+1.0)) {
1999 // Create a constant pool entry for this constant.
2000 MachineConstantPool *CP = F->getConstantPool();
2001 unsigned CPI = CP->getConstantPoolIndex(Op1C);
2002 const Type *Ty = Op1->getType();
2004 static const unsigned OpcodeTab[][4] = {
2005 { X86::FADD32m, X86::FSUB32m, X86::FMUL32m, X86::FDIV32m }, // Float
2006 { X86::FADD64m, X86::FSUB64m, X86::FMUL64m, X86::FDIV64m }, // Double
2009 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
2010 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
2011 unsigned Op0r = getReg(Op0, BB, IP);
2012 addConstantPoolReference(BuildMI(*BB, IP, Opcode, 5,
2013 DestReg).addReg(Op0r), CPI);
2017 // Special case: R1 = op <const fp>, R2
2018 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op0))
2019 if (CFP->isExactlyValue(-0.0) && OperatorClass == 1) {
2021 unsigned op1Reg = getReg(Op1, BB, IP);
2022 BuildMI(*BB, IP, X86::FCHS, 1, DestReg).addReg(op1Reg);
2024 } else if (!CFP->isExactlyValue(+0.0) && !CFP->isExactlyValue(+1.0)) {
2025 // R1 = op CST, R2 --> R1 = opr R2, CST
2027 // Create a constant pool entry for this constant.
2028 MachineConstantPool *CP = F->getConstantPool();
2029 unsigned CPI = CP->getConstantPoolIndex(CFP);
2030 const Type *Ty = CFP->getType();
2032 static const unsigned OpcodeTab[][4] = {
2033 { X86::FADD32m, X86::FSUBR32m, X86::FMUL32m, X86::FDIVR32m }, // Float
2034 { X86::FADD64m, X86::FSUBR64m, X86::FMUL64m, X86::FDIVR64m }, // Double
2037 assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
2038 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
2039 unsigned Op1r = getReg(Op1, BB, IP);
2040 addConstantPoolReference(BuildMI(*BB, IP, Opcode, 5,
2041 DestReg).addReg(Op1r), CPI);
2046 static const unsigned OpcodeTab[4] = {
2047 X86::FpADD, X86::FpSUB, X86::FpMUL, X86::FpDIV
2050 unsigned Opcode = OpcodeTab[OperatorClass];
2051 unsigned Op0r = getReg(Op0, BB, IP);
2052 unsigned Op1r = getReg(Op1, BB, IP);
2053 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
2056 /// emitSimpleBinaryOperation - Implement simple binary operators for integral
2057 /// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
2060 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
2061 /// and constant expression support.
2063 void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
2064 MachineBasicBlock::iterator IP,
2065 Value *Op0, Value *Op1,
2066 unsigned OperatorClass, unsigned DestReg) {
2067 unsigned Class = getClassB(Op0->getType());
2070 assert(OperatorClass < 2 && "No logical ops for FP!");
2071 emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
2075 // sub 0, X -> neg X
2076 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
2077 if (OperatorClass == 1 && CI->isNullValue()) {
2078 unsigned op1Reg = getReg(Op1, MBB, IP);
2079 static unsigned const NEGTab[] = {
2080 X86::NEG8r, X86::NEG16r, X86::NEG32r, 0, X86::NEG32r
2082 BuildMI(*MBB, IP, NEGTab[Class], 1, DestReg).addReg(op1Reg);
2084 if (Class == cLong) {
2085 // We just emitted: Dl = neg Sl
2086 // Now emit : T = addc Sh, 0
2088 unsigned T = makeAnotherReg(Type::IntTy);
2089 BuildMI(*MBB, IP, X86::ADC32ri, 2, T).addReg(op1Reg+1).addImm(0);
2090 BuildMI(*MBB, IP, X86::NEG32r, 1, DestReg+1).addReg(T);
2095 // Special case: op Reg, <const int>
2096 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
2097 unsigned Op0r = getReg(Op0, MBB, IP);
2099 // xor X, -1 -> not X
2100 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
2101 static unsigned const NOTTab[] = {
2102 X86::NOT8r, X86::NOT16r, X86::NOT32r, 0, X86::NOT32r
2104 BuildMI(*MBB, IP, NOTTab[Class], 1, DestReg).addReg(Op0r);
2105 if (Class == cLong) // Invert the top part too
2106 BuildMI(*MBB, IP, X86::NOT32r, 1, DestReg+1).addReg(Op0r+1);
2110 // add X, -1 -> dec X
2111 if (OperatorClass == 0 && Op1C->isAllOnesValue() && Class != cLong) {
2112 // Note that we can't use dec for 64-bit decrements, because it does not
2113 // set the carry flag!
2114 static unsigned const DECTab[] = { X86::DEC8r, X86::DEC16r, X86::DEC32r };
2115 BuildMI(*MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
2119 // add X, 1 -> inc X
2120 if (OperatorClass == 0 && Op1C->equalsInt(1) && Class != cLong) {
2121 // Note that we can't use inc for 64-bit increments, because it does not
2122 // set the carry flag!
2123 static unsigned const INCTab[] = { X86::INC8r, X86::INC16r, X86::INC32r };
2124 BuildMI(*MBB, IP, INCTab[Class], 1, DestReg).addReg(Op0r);
2128 static const unsigned OpcodeTab[][5] = {
2129 // Arithmetic operators
2130 { X86::ADD8ri, X86::ADD16ri, X86::ADD32ri, 0, X86::ADD32ri }, // ADD
2131 { X86::SUB8ri, X86::SUB16ri, X86::SUB32ri, 0, X86::SUB32ri }, // SUB
2133 // Bitwise operators
2134 { X86::AND8ri, X86::AND16ri, X86::AND32ri, 0, X86::AND32ri }, // AND
2135 { X86:: OR8ri, X86:: OR16ri, X86:: OR32ri, 0, X86::OR32ri }, // OR
2136 { X86::XOR8ri, X86::XOR16ri, X86::XOR32ri, 0, X86::XOR32ri }, // XOR
2139 unsigned Opcode = OpcodeTab[OperatorClass][Class];
2140 unsigned Op1l = cast<ConstantInt>(Op1C)->getRawValue();
2142 if (Class != cLong) {
2143 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addImm(Op1l);
2147 // If this is a long value and the high or low bits have a special
2148 // property, emit some special cases.
2149 unsigned Op1h = cast<ConstantInt>(Op1C)->getRawValue() >> 32LL;
2151 // If the constant is zero in the low 32-bits, just copy the low part
2152 // across and apply the normal 32-bit operation to the high parts. There
2153 // will be no carry or borrow into the top.
2155 if (OperatorClass != 2) // All but and...
2156 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg).addReg(Op0r);
2158 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
2159 BuildMI(*MBB, IP, OpcodeTab[OperatorClass][cLong], 2, DestReg+1)
2160 .addReg(Op0r+1).addImm(Op1h);
2164 // If this is a logical operation and the top 32-bits are zero, just
2165 // operate on the lower 32.
2166 if (Op1h == 0 && OperatorClass > 1) {
2167 BuildMI(*MBB, IP, OpcodeTab[OperatorClass][cLong], 2, DestReg)
2168 .addReg(Op0r).addImm(Op1l);
2169 if (OperatorClass != 2) // All but and
2170 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(Op0r+1);
2172 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
2176 // TODO: We could handle lots of other special cases here, such as AND'ing
2177 // with 0xFFFFFFFF00000000 -> noop, etc.
2179 // Otherwise, code generate the full operation with a constant.
2180 static const unsigned TopTab[] = {
2181 X86::ADC32ri, X86::SBB32ri, X86::AND32ri, X86::OR32ri, X86::XOR32ri
2184 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addImm(Op1l);
2185 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1)
2186 .addReg(Op0r+1).addImm(Op1h);
2190 // Finally, handle the general case now.
2191 static const unsigned OpcodeTab[][5] = {
2192 // Arithmetic operators
2193 { X86::ADD8rr, X86::ADD16rr, X86::ADD32rr, 0, X86::ADD32rr }, // ADD
2194 { X86::SUB8rr, X86::SUB16rr, X86::SUB32rr, 0, X86::SUB32rr }, // SUB
2196 // Bitwise operators
2197 { X86::AND8rr, X86::AND16rr, X86::AND32rr, 0, X86::AND32rr }, // AND
2198 { X86:: OR8rr, X86:: OR16rr, X86:: OR32rr, 0, X86:: OR32rr }, // OR
2199 { X86::XOR8rr, X86::XOR16rr, X86::XOR32rr, 0, X86::XOR32rr }, // XOR
2202 unsigned Opcode = OpcodeTab[OperatorClass][Class];
2203 unsigned Op0r = getReg(Op0, MBB, IP);
2204 unsigned Op1r = getReg(Op1, MBB, IP);
2205 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
2207 if (Class == cLong) { // Handle the upper 32 bits of long values...
2208 static const unsigned TopTab[] = {
2209 X86::ADC32rr, X86::SBB32rr, X86::AND32rr, X86::OR32rr, X86::XOR32rr
2211 BuildMI(*MBB, IP, TopTab[OperatorClass], 2,
2212 DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
2216 /// doMultiply - Emit appropriate instructions to multiply together the
2217 /// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
2218 /// result should be given as DestTy.
2220 void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
2221 unsigned DestReg, const Type *DestTy,
2222 unsigned op0Reg, unsigned op1Reg) {
2223 unsigned Class = getClass(DestTy);
2227 BuildMI(*MBB, MBBI, Class == cInt ? X86::IMUL32rr:X86::IMUL16rr, 2, DestReg)
2228 .addReg(op0Reg).addReg(op1Reg);
2231 // Must use the MUL instruction, which forces use of AL...
2232 BuildMI(*MBB, MBBI, X86::MOV8rr, 1, X86::AL).addReg(op0Reg);
2233 BuildMI(*MBB, MBBI, X86::MUL8r, 1).addReg(op1Reg);
2234 BuildMI(*MBB, MBBI, X86::MOV8rr, 1, DestReg).addReg(X86::AL);
2237 case cLong: assert(0 && "doMultiply cannot operate on LONG values!");
2241 // ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
2242 // returns zero when the input is not exactly a power of two.
2243 static unsigned ExactLog2(unsigned Val) {
2244 if (Val == 0 || (Val & (Val-1))) return 0;
2254 /// doMultiplyConst - This function is specialized to efficiently codegen an 8,
2255 /// 16, or 32-bit integer multiply by a constant.
2256 void ISel::doMultiplyConst(MachineBasicBlock *MBB,
2257 MachineBasicBlock::iterator IP,
2258 unsigned DestReg, const Type *DestTy,
2259 unsigned op0Reg, unsigned ConstRHS) {
2260 static const unsigned MOVrrTab[] = {X86::MOV8rr, X86::MOV16rr, X86::MOV32rr};
2261 static const unsigned MOVriTab[] = {X86::MOV8ri, X86::MOV16ri, X86::MOV32ri};
2262 static const unsigned ADDrrTab[] = {X86::ADD8rr, X86::ADD16rr, X86::ADD32rr};
2264 unsigned Class = getClass(DestTy);
2266 // Handle special cases here.
2269 BuildMI(*MBB, IP, MOVriTab[Class], 1, DestReg).addImm(0);
2272 BuildMI(*MBB, IP, MOVrrTab[Class], 1, DestReg).addReg(op0Reg);
2275 BuildMI(*MBB, IP, ADDrrTab[Class], 1,DestReg).addReg(op0Reg).addReg(op0Reg);
2280 if (Class == cInt) {
2281 addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, DestReg),
2282 op0Reg, ConstRHS-1, op0Reg, 0);
2287 // If the element size is exactly a power of 2, use a shift to get it.
2288 if (unsigned Shift = ExactLog2(ConstRHS)) {
2290 default: assert(0 && "Unknown class for this function!");
2292 BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
2295 BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
2298 BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
2303 if (Class == cShort) {
2304 BuildMI(*MBB, IP, X86::IMUL16rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS);
2306 } else if (Class == cInt) {
2307 BuildMI(*MBB, IP, X86::IMUL32rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS);
2311 // Most general case, emit a normal multiply...
2312 unsigned TmpReg = makeAnotherReg(DestTy);
2313 BuildMI(*MBB, IP, MOVriTab[Class], 1, TmpReg).addImm(ConstRHS);
2315 // Emit a MUL to multiply the register holding the index by
2316 // elementSize, putting the result in OffsetReg.
2317 doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg);
2320 /// visitMul - Multiplies are not simple binary operators because they must deal
2321 /// with the EAX register explicitly.
2323 void ISel::visitMul(BinaryOperator &I) {
2324 unsigned ResultReg = getReg(I);
2326 Value *Op0 = I.getOperand(0);
2327 Value *Op1 = I.getOperand(1);
2329 // Fold loads into floating point multiplies.
2330 if (getClass(Op0->getType()) == cFP) {
2331 if (isa<LoadInst>(Op0) && !isa<LoadInst>(Op1))
2332 if (!I.swapOperands())
2333 std::swap(Op0, Op1); // Make sure any loads are in the RHS.
2334 if (LoadInst *LI = dyn_cast<LoadInst>(Op1))
2335 if (isSafeToFoldLoadIntoInstruction(*LI, I)) {
2336 const Type *Ty = Op0->getType();
2337 assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
2338 unsigned Opcode = Ty == Type::FloatTy ? X86::FMUL32m : X86::FMUL64m;
2340 unsigned BaseReg, Scale, IndexReg, Disp;
2341 getAddressingMode(LI->getOperand(0), BaseReg,
2342 Scale, IndexReg, Disp);
2344 unsigned Op0r = getReg(Op0);
2345 addFullAddress(BuildMI(BB, Opcode, 2, ResultReg).addReg(Op0r),
2346 BaseReg, Scale, IndexReg, Disp);
2351 MachineBasicBlock::iterator IP = BB->end();
2352 emitMultiply(BB, IP, Op0, Op1, ResultReg);
2355 void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
2356 Value *Op0, Value *Op1, unsigned DestReg) {
2357 MachineBasicBlock &BB = *MBB;
2358 TypeClass Class = getClass(Op0->getType());
2360 // Simple scalar multiply?
2361 unsigned Op0Reg = getReg(Op0, &BB, IP);
2366 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2367 unsigned Val = (unsigned)CI->getRawValue(); // Isn't a 64-bit constant
2368 doMultiplyConst(&BB, IP, DestReg, Op0->getType(), Op0Reg, Val);
2370 unsigned Op1Reg = getReg(Op1, &BB, IP);
2371 doMultiply(&BB, IP, DestReg, Op1->getType(), Op0Reg, Op1Reg);
2375 emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
2381 // Long value. We have to do things the hard way...
2382 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2383 unsigned CLow = CI->getRawValue();
2384 unsigned CHi = CI->getRawValue() >> 32;
2387 // If the low part of the constant is all zeros, things are simple.
2388 BuildMI(BB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
2389 doMultiplyConst(&BB, IP, DestReg+1, Type::UIntTy, Op0Reg, CHi);
2393 // Multiply the two low parts... capturing carry into EDX
2394 unsigned OverflowReg = 0;
2396 BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(Op0Reg);
2398 unsigned Op1RegL = makeAnotherReg(Type::UIntTy);
2399 OverflowReg = makeAnotherReg(Type::UIntTy);
2400 BuildMI(BB, IP, X86::MOV32ri, 1, Op1RegL).addImm(CLow);
2401 BuildMI(BB, IP, X86::MOV32rr, 1, X86::EAX).addReg(Op0Reg);
2402 BuildMI(BB, IP, X86::MUL32r, 1).addReg(Op1RegL); // AL*BL
2404 BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(X86::EAX); // AL*BL
2405 BuildMI(BB, IP, X86::MOV32rr, 1,
2406 OverflowReg).addReg(X86::EDX); // AL*BL >> 32
2409 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
2410 doMultiplyConst(&BB, IP, AHBLReg, Type::UIntTy, Op0Reg+1, CLow);
2412 unsigned AHBLplusOverflowReg;
2414 AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
2415 BuildMI(BB, IP, X86::ADD32rr, 2, // AH*BL+(AL*BL >> 32)
2416 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
2418 AHBLplusOverflowReg = AHBLReg;
2422 BuildMI(BB, IP, X86::MOV32rr, 1, DestReg+1).addReg(AHBLplusOverflowReg);
2424 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
2425 doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi);
2427 BuildMI(BB, IP, X86::ADD32rr, 2, // AL*BH + AH*BL + (AL*BL >> 32)
2428 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
2433 // General 64x64 multiply
2435 unsigned Op1Reg = getReg(Op1, &BB, IP);
2436 // Multiply the two low parts... capturing carry into EDX
2437 BuildMI(BB, IP, X86::MOV32rr, 1, X86::EAX).addReg(Op0Reg);
2438 BuildMI(BB, IP, X86::MUL32r, 1).addReg(Op1Reg); // AL*BL
2440 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
2441 BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(X86::EAX); // AL*BL
2442 BuildMI(BB, IP, X86::MOV32rr, 1,
2443 OverflowReg).addReg(X86::EDX); // AL*BL >> 32
2445 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
2446 BuildMI(BB, IP, X86::IMUL32rr, 2,
2447 AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
2449 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
2450 BuildMI(BB, IP, X86::ADD32rr, 2, // AH*BL+(AL*BL >> 32)
2451 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
2453 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
2454 BuildMI(BB, IP, X86::IMUL32rr, 2,
2455 ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
2457 BuildMI(BB, IP, X86::ADD32rr, 2, // AL*BH + AH*BL + (AL*BL >> 32)
2458 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
2462 /// visitDivRem - Handle division and remainder instructions... these
2463 /// instruction both require the same instructions to be generated, they just
2464 /// select the result from a different register. Note that both of these
2465 /// instructions work differently for signed and unsigned operands.
2467 void ISel::visitDivRem(BinaryOperator &I) {
2468 unsigned ResultReg = getReg(I);
2469 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2471 // Fold loads into floating point divides.
2472 if (getClass(Op0->getType()) == cFP) {
2473 if (LoadInst *LI = dyn_cast<LoadInst>(Op1))
2474 if (isSafeToFoldLoadIntoInstruction(*LI, I)) {
2475 const Type *Ty = Op0->getType();
2476 assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
2477 unsigned Opcode = Ty == Type::FloatTy ? X86::FDIV32m : X86::FDIV64m;
2479 unsigned BaseReg, Scale, IndexReg, Disp;
2480 getAddressingMode(LI->getOperand(0), BaseReg,
2481 Scale, IndexReg, Disp);
2483 unsigned Op0r = getReg(Op0);
2484 addFullAddress(BuildMI(BB, Opcode, 2, ResultReg).addReg(Op0r),
2485 BaseReg, Scale, IndexReg, Disp);
2489 if (LoadInst *LI = dyn_cast<LoadInst>(Op0))
2490 if (isSafeToFoldLoadIntoInstruction(*LI, I)) {
2491 const Type *Ty = Op0->getType();
2492 assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
2493 unsigned Opcode = Ty == Type::FloatTy ? X86::FDIVR32m : X86::FDIVR64m;
2495 unsigned BaseReg, Scale, IndexReg, Disp;
2496 getAddressingMode(LI->getOperand(0), BaseReg,
2497 Scale, IndexReg, Disp);
2499 unsigned Op1r = getReg(Op1);
2500 addFullAddress(BuildMI(BB, Opcode, 2, ResultReg).addReg(Op1r),
2501 BaseReg, Scale, IndexReg, Disp);
2507 MachineBasicBlock::iterator IP = BB->end();
2508 emitDivRemOperation(BB, IP, Op0, Op1,
2509 I.getOpcode() == Instruction::Div, ResultReg);
2512 void ISel::emitDivRemOperation(MachineBasicBlock *BB,
2513 MachineBasicBlock::iterator IP,
2514 Value *Op0, Value *Op1, bool isDiv,
2515 unsigned ResultReg) {
2516 const Type *Ty = Op0->getType();
2517 unsigned Class = getClass(Ty);
2519 case cFP: // Floating point divide
2521 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
2523 } else { // Floating point remainder...
2524 unsigned Op0Reg = getReg(Op0, BB, IP);
2525 unsigned Op1Reg = getReg(Op1, BB, IP);
2526 MachineInstr *TheCall =
2527 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true);
2528 std::vector<ValueRecord> Args;
2529 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
2530 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
2531 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
2535 static const char *FnName[] =
2536 { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
2537 unsigned Op0Reg = getReg(Op0, BB, IP);
2538 unsigned Op1Reg = getReg(Op1, BB, IP);
2539 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
2540 MachineInstr *TheCall =
2541 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true);
2543 std::vector<ValueRecord> Args;
2544 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
2545 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
2546 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
2549 case cByte: case cShort: case cInt:
2550 break; // Small integrals, handled below...
2551 default: assert(0 && "Unknown class!");
2554 static const unsigned MovOpcode[]={ X86::MOV8rr, X86::MOV16rr, X86::MOV32rr };
2555 static const unsigned NEGOpcode[] = { X86::NEG8r, X86::NEG16r, X86::NEG32r };
2556 static const unsigned SAROpcode[]={ X86::SAR8ri, X86::SAR16ri, X86::SAR32ri };
2557 static const unsigned SHROpcode[]={ X86::SHR8ri, X86::SHR16ri, X86::SHR32ri };
2558 static const unsigned ADDOpcode[]={ X86::ADD8rr, X86::ADD16rr, X86::ADD32rr };
2560 // Special case signed division by power of 2.
2562 if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
2563 assert(Class != cLong && "This doesn't handle 64-bit divides!");
2564 int V = CI->getValue();
2566 if (V == 1) { // X /s 1 => X
2567 unsigned Op0Reg = getReg(Op0, BB, IP);
2568 BuildMI(*BB, IP, MovOpcode[Class], 1, ResultReg).addReg(Op0Reg);
2572 if (V == -1) { // X /s -1 => -X
2573 unsigned Op0Reg = getReg(Op0, BB, IP);
2574 BuildMI(*BB, IP, NEGOpcode[Class], 1, ResultReg).addReg(Op0Reg);
2579 if (V < 0) { // Not a positive power of 2?
2581 isNeg = true; // Maybe it's a negative power of 2.
2583 if (unsigned Log = ExactLog2(V)) {
2585 unsigned Op0Reg = getReg(Op0, BB, IP);
2586 unsigned TmpReg = makeAnotherReg(Op0->getType());
2588 BuildMI(*BB, IP, SAROpcode[Class], 2, TmpReg)
2589 .addReg(Op0Reg).addImm(Log-1);
2591 BuildMI(*BB, IP, MovOpcode[Class], 1, TmpReg).addReg(Op0Reg);
2592 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
2593 BuildMI(*BB, IP, SHROpcode[Class], 2, TmpReg2)
2594 .addReg(TmpReg).addImm(32-Log);
2595 unsigned TmpReg3 = makeAnotherReg(Op0->getType());
2596 BuildMI(*BB, IP, ADDOpcode[Class], 2, TmpReg3)
2597 .addReg(Op0Reg).addReg(TmpReg2);
2599 unsigned TmpReg4 = isNeg ? makeAnotherReg(Op0->getType()) : ResultReg;
2600 BuildMI(*BB, IP, SAROpcode[Class], 2, TmpReg4)
2601 .addReg(Op0Reg).addImm(Log);
2603 BuildMI(*BB, IP, NEGOpcode[Class], 1, ResultReg).addReg(TmpReg4);
2608 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
2609 static const unsigned ClrOpcode[]={ X86::MOV8ri, X86::MOV16ri, X86::MOV32ri };
2610 static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
2612 static const unsigned DivOpcode[][4] = {
2613 { X86::DIV8r , X86::DIV16r , X86::DIV32r , 0 }, // Unsigned division
2614 { X86::IDIV8r, X86::IDIV16r, X86::IDIV32r, 0 }, // Signed division
2617 unsigned Reg = Regs[Class];
2618 unsigned ExtReg = ExtRegs[Class];
2620 // Put the first operand into one of the A registers...
2621 unsigned Op0Reg = getReg(Op0, BB, IP);
2622 unsigned Op1Reg = getReg(Op1, BB, IP);
2623 BuildMI(*BB, IP, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
2625 if (Ty->isSigned()) {
2626 // Emit a sign extension instruction...
2627 unsigned ShiftResult = makeAnotherReg(Op0->getType());
2628 BuildMI(*BB, IP, SAROpcode[Class], 2,ShiftResult).addReg(Op0Reg).addImm(31);
2629 BuildMI(*BB, IP, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult);
2631 // Emit the appropriate divide or remainder instruction...
2632 BuildMI(*BB, IP, DivOpcode[1][Class], 1).addReg(Op1Reg);
2634 // If unsigned, emit a zeroing instruction... (reg = 0)
2635 BuildMI(*BB, IP, ClrOpcode[Class], 2, ExtReg).addImm(0);
2637 // Emit the appropriate divide or remainder instruction...
2638 BuildMI(*BB, IP, DivOpcode[0][Class], 1).addReg(Op1Reg);
2641 // Figure out which register we want to pick the result out of...
2642 unsigned DestReg = isDiv ? Reg : ExtReg;
2644 // Put the result into the destination register...
2645 BuildMI(*BB, IP, MovOpcode[Class], 1, ResultReg).addReg(DestReg);
2649 /// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
2650 /// for constant immediate shift values, and for constant immediate
2651 /// shift values equal to 1. Even the general case is sort of special,
2652 /// because the shift amount has to be in CL, not just any old register.
2654 void ISel::visitShiftInst(ShiftInst &I) {
2655 MachineBasicBlock::iterator IP = BB->end ();
2656 emitShiftOperation (BB, IP, I.getOperand (0), I.getOperand (1),
2657 I.getOpcode () == Instruction::Shl, I.getType (),
2661 /// emitShiftOperation - Common code shared between visitShiftInst and
2662 /// constant expression support.
2663 void ISel::emitShiftOperation(MachineBasicBlock *MBB,
2664 MachineBasicBlock::iterator IP,
2665 Value *Op, Value *ShiftAmount, bool isLeftShift,
2666 const Type *ResultTy, unsigned DestReg) {
2667 unsigned SrcReg = getReg (Op, MBB, IP);
2668 bool isSigned = ResultTy->isSigned ();
2669 unsigned Class = getClass (ResultTy);
2671 static const unsigned ConstantOperand[][4] = {
2672 { X86::SHR8ri, X86::SHR16ri, X86::SHR32ri, X86::SHRD32rri8 }, // SHR
2673 { X86::SAR8ri, X86::SAR16ri, X86::SAR32ri, X86::SHRD32rri8 }, // SAR
2674 { X86::SHL8ri, X86::SHL16ri, X86::SHL32ri, X86::SHLD32rri8 }, // SHL
2675 { X86::SHL8ri, X86::SHL16ri, X86::SHL32ri, X86::SHLD32rri8 }, // SAL = SHL
2678 static const unsigned NonConstantOperand[][4] = {
2679 { X86::SHR8rCL, X86::SHR16rCL, X86::SHR32rCL }, // SHR
2680 { X86::SAR8rCL, X86::SAR16rCL, X86::SAR32rCL }, // SAR
2681 { X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL }, // SHL
2682 { X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL }, // SAL = SHL
2685 // Longs, as usual, are handled specially...
2686 if (Class == cLong) {
2687 // If we have a constant shift, we can generate much more efficient code
2688 // than otherwise...
2690 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2691 unsigned Amount = CUI->getValue();
2693 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
2695 BuildMI(*MBB, IP, Opc[3], 3,
2696 DestReg+1).addReg(SrcReg+1).addReg(SrcReg).addImm(Amount);
2697 BuildMI(*MBB, IP, Opc[2], 2, DestReg).addReg(SrcReg).addImm(Amount);
2699 BuildMI(*MBB, IP, Opc[3], 3,
2700 DestReg).addReg(SrcReg ).addReg(SrcReg+1).addImm(Amount);
2701 BuildMI(*MBB, IP, Opc[2],2,DestReg+1).addReg(SrcReg+1).addImm(Amount);
2703 } else { // Shifting more than 32 bits
2707 BuildMI(*MBB, IP, X86::SHL32ri, 2,
2708 DestReg + 1).addReg(SrcReg).addImm(Amount);
2710 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(SrcReg);
2712 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
2715 BuildMI(*MBB, IP, isSigned ? X86::SAR32ri : X86::SHR32ri, 2,
2716 DestReg).addReg(SrcReg+1).addImm(Amount);
2718 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg+1);
2720 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
2724 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2726 if (!isLeftShift && isSigned) {
2727 // If this is a SHR of a Long, then we need to do funny sign extension
2728 // stuff. TmpReg gets the value to use as the high-part if we are
2729 // shifting more than 32 bits.
2730 BuildMI(*MBB, IP, X86::SAR32ri, 2, TmpReg).addReg(SrcReg).addImm(31);
2732 // Other shifts use a fixed zero value if the shift is more than 32
2734 BuildMI(*MBB, IP, X86::MOV32ri, 1, TmpReg).addImm(0);
2737 // Initialize CL with the shift amount...
2738 unsigned ShiftAmountReg = getReg(ShiftAmount, MBB, IP);
2739 BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg);
2741 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
2742 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
2744 // TmpReg2 = shld inHi, inLo
2745 BuildMI(*MBB, IP, X86::SHLD32rrCL,2,TmpReg2).addReg(SrcReg+1)
2747 // TmpReg3 = shl inLo, CL
2748 BuildMI(*MBB, IP, X86::SHL32rCL, 1, TmpReg3).addReg(SrcReg);
2750 // Set the flags to indicate whether the shift was by more than 32 bits.
2751 BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32);
2753 // DestHi = (>32) ? TmpReg3 : TmpReg2;
2754 BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
2755 DestReg+1).addReg(TmpReg2).addReg(TmpReg3);
2756 // DestLo = (>32) ? TmpReg : TmpReg3;
2757 BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
2758 DestReg).addReg(TmpReg3).addReg(TmpReg);
2760 // TmpReg2 = shrd inLo, inHi
2761 BuildMI(*MBB, IP, X86::SHRD32rrCL,2,TmpReg2).addReg(SrcReg)
2763 // TmpReg3 = s[ah]r inHi, CL
2764 BuildMI(*MBB, IP, isSigned ? X86::SAR32rCL : X86::SHR32rCL, 1, TmpReg3)
2767 // Set the flags to indicate whether the shift was by more than 32 bits.
2768 BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32);
2770 // DestLo = (>32) ? TmpReg3 : TmpReg2;
2771 BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
2772 DestReg).addReg(TmpReg2).addReg(TmpReg3);
2774 // DestHi = (>32) ? TmpReg : TmpReg3;
2775 BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
2776 DestReg+1).addReg(TmpReg3).addReg(TmpReg);
2782 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2783 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
2784 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
2786 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
2787 BuildMI(*MBB, IP, Opc[Class], 2,
2788 DestReg).addReg(SrcReg).addImm(CUI->getValue());
2789 } else { // The shift amount is non-constant.
2790 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2791 BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg);
2793 const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned];
2794 BuildMI(*MBB, IP, Opc[Class], 1, DestReg).addReg(SrcReg);
2799 void ISel::getAddressingMode(Value *Addr, unsigned &BaseReg, unsigned &Scale,
2800 unsigned &IndexReg, unsigned &Disp) {
2801 BaseReg = 0; Scale = 1; IndexReg = 0; Disp = 0;
2802 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr)) {
2803 if (isGEPFoldable(BB, GEP->getOperand(0), GEP->op_begin()+1, GEP->op_end(),
2804 BaseReg, Scale, IndexReg, Disp))
2806 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
2807 if (CE->getOpcode() == Instruction::GetElementPtr)
2808 if (isGEPFoldable(BB, CE->getOperand(0), CE->op_begin()+1, CE->op_end(),
2809 BaseReg, Scale, IndexReg, Disp))
2813 // If it's not foldable, reset addr mode.
2814 BaseReg = getReg(Addr);
2815 Scale = 1; IndexReg = 0; Disp = 0;
2819 /// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
2820 /// instruction. The load and store instructions are the only place where we
2821 /// need to worry about the memory layout of the target machine.
2823 void ISel::visitLoadInst(LoadInst &I) {
2824 // Check to see if this load instruction is going to be folded into a binary
2825 // instruction, like add. If so, we don't want to emit it. Wouldn't a real
2826 // pattern matching instruction selector be nice?
2827 unsigned Class = getClassB(I.getType());
2828 if (I.hasOneUse()) {
2829 Instruction *User = cast<Instruction>(I.use_back());
2830 switch (User->getOpcode()) {
2831 case Instruction::Cast:
2832 // If this is a cast from a signed-integer type to a floating point type,
2833 // fold the cast here.
2834 if (getClass(User->getType()) == cFP &&
2835 (I.getType() == Type::ShortTy || I.getType() == Type::IntTy ||
2836 I.getType() == Type::LongTy)) {
2837 unsigned DestReg = getReg(User);
2838 static const unsigned Opcode[] = {
2839 0/*BYTE*/, X86::FILD16m, X86::FILD32m, 0/*FP*/, X86::FILD64m
2841 unsigned BaseReg = 0, Scale = 1, IndexReg = 0, Disp = 0;
2842 getAddressingMode(I.getOperand(0), BaseReg, Scale, IndexReg, Disp);
2843 addFullAddress(BuildMI(BB, Opcode[Class], 5, DestReg),
2844 BaseReg, Scale, IndexReg, Disp);
2851 case Instruction::Add:
2852 case Instruction::Sub:
2853 case Instruction::And:
2854 case Instruction::Or:
2855 case Instruction::Xor:
2856 if (Class == cLong) User = 0;
2858 case Instruction::Mul:
2859 case Instruction::Div:
2860 if (Class != cFP) User = 0;
2861 break; // Folding only implemented for floating point.
2862 default: User = 0; break;
2866 // Okay, we found a user. If the load is the first operand and there is
2867 // no second operand load, reverse the operand ordering. Note that this
2868 // can fail for a subtract (ie, no change will be made).
2869 if (!isa<LoadInst>(User->getOperand(1)))
2870 cast<BinaryOperator>(User)->swapOperands();
2872 // Okay, now that everything is set up, if this load is used by the second
2873 // operand, and if there are no instructions that invalidate the load
2874 // before the binary operator, eliminate the load.
2875 if (User->getOperand(1) == &I &&
2876 isSafeToFoldLoadIntoInstruction(I, *User))
2877 return; // Eliminate the load!
2879 // If this is a floating point sub or div, we won't be able to swap the
2880 // operands, but we will still be able to eliminate the load.
2881 if (Class == cFP && User->getOperand(0) == &I &&
2882 !isa<LoadInst>(User->getOperand(1)) &&
2883 (User->getOpcode() == Instruction::Sub ||
2884 User->getOpcode() == Instruction::Div) &&
2885 isSafeToFoldLoadIntoInstruction(I, *User))
2886 return; // Eliminate the load!
2890 unsigned DestReg = getReg(I);
2891 unsigned BaseReg = 0, Scale = 1, IndexReg = 0, Disp = 0;
2892 getAddressingMode(I.getOperand(0), BaseReg, Scale, IndexReg, Disp);
2894 if (Class == cLong) {
2895 addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg),
2896 BaseReg, Scale, IndexReg, Disp);
2897 addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg+1),
2898 BaseReg, Scale, IndexReg, Disp+4);
2902 static const unsigned Opcodes[] = {
2903 X86::MOV8rm, X86::MOV16rm, X86::MOV32rm, X86::FLD32m
2905 unsigned Opcode = Opcodes[Class];
2906 if (I.getType() == Type::DoubleTy) Opcode = X86::FLD64m;
2907 addFullAddress(BuildMI(BB, Opcode, 4, DestReg),
2908 BaseReg, Scale, IndexReg, Disp);
2911 /// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
2914 void ISel::visitStoreInst(StoreInst &I) {
2915 unsigned BaseReg, Scale, IndexReg, Disp;
2916 getAddressingMode(I.getOperand(1), BaseReg, Scale, IndexReg, Disp);
2918 const Type *ValTy = I.getOperand(0)->getType();
2919 unsigned Class = getClassB(ValTy);
2921 if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(0))) {
2922 uint64_t Val = CI->getRawValue();
2923 if (Class == cLong) {
2924 addFullAddress(BuildMI(BB, X86::MOV32mi, 5),
2925 BaseReg, Scale, IndexReg, Disp).addImm(Val & ~0U);
2926 addFullAddress(BuildMI(BB, X86::MOV32mi, 5),
2927 BaseReg, Scale, IndexReg, Disp+4).addImm(Val>>32);
2929 static const unsigned Opcodes[] = {
2930 X86::MOV8mi, X86::MOV16mi, X86::MOV32mi
2932 unsigned Opcode = Opcodes[Class];
2933 addFullAddress(BuildMI(BB, Opcode, 5),
2934 BaseReg, Scale, IndexReg, Disp).addImm(Val);
2936 } else if (ConstantBool *CB = dyn_cast<ConstantBool>(I.getOperand(0))) {
2937 addFullAddress(BuildMI(BB, X86::MOV8mi, 5),
2938 BaseReg, Scale, IndexReg, Disp).addImm(CB->getValue());
2939 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) {
2940 // Store constant FP values with integer instructions to avoid having to
2941 // load the constants from the constant pool then do a store.
2942 if (CFP->getType() == Type::FloatTy) {
2947 V.F = CFP->getValue();
2948 addFullAddress(BuildMI(BB, X86::MOV32mi, 5),
2949 BaseReg, Scale, IndexReg, Disp).addImm(V.I);
2955 V.F = CFP->getValue();
2956 addFullAddress(BuildMI(BB, X86::MOV32mi, 5),
2957 BaseReg, Scale, IndexReg, Disp).addImm((unsigned)V.I);
2958 addFullAddress(BuildMI(BB, X86::MOV32mi, 5),
2959 BaseReg, Scale, IndexReg, Disp+4).addImm(
2960 unsigned(V.I >> 32));
2963 } else if (Class == cLong) {
2964 unsigned ValReg = getReg(I.getOperand(0));
2965 addFullAddress(BuildMI(BB, X86::MOV32mr, 5),
2966 BaseReg, Scale, IndexReg, Disp).addReg(ValReg);
2967 addFullAddress(BuildMI(BB, X86::MOV32mr, 5),
2968 BaseReg, Scale, IndexReg, Disp+4).addReg(ValReg+1);
2970 unsigned ValReg = getReg(I.getOperand(0));
2971 static const unsigned Opcodes[] = {
2972 X86::MOV8mr, X86::MOV16mr, X86::MOV32mr, X86::FST32m
2974 unsigned Opcode = Opcodes[Class];
2975 if (ValTy == Type::DoubleTy) Opcode = X86::FST64m;
2976 addFullAddress(BuildMI(BB, Opcode, 1+4),
2977 BaseReg, Scale, IndexReg, Disp).addReg(ValReg);
2982 /// visitCastInst - Here we have various kinds of copying with or without sign
2983 /// extension going on.
2985 void ISel::visitCastInst(CastInst &CI) {
2986 Value *Op = CI.getOperand(0);
2988 unsigned SrcClass = getClassB(Op->getType());
2989 unsigned DestClass = getClassB(CI.getType());
2990 // Noop casts are not emitted: getReg will return the source operand as the
2991 // register to use for any uses of the noop cast.
2992 if (DestClass == SrcClass)
2995 // If this is a cast from a 32-bit integer to a Long type, and the only uses
2996 // of the case are GEP instructions, then the cast does not need to be
2997 // generated explicitly, it will be folded into the GEP.
2998 if (DestClass == cLong && SrcClass == cInt) {
2999 bool AllUsesAreGEPs = true;
3000 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
3001 if (!isa<GetElementPtrInst>(*I)) {
3002 AllUsesAreGEPs = false;
3006 // No need to codegen this cast if all users are getelementptr instrs...
3007 if (AllUsesAreGEPs) return;
3010 // If this cast converts a load from a short,int, or long integer to a FP
3011 // value, we will have folded this cast away.
3012 if (DestClass == cFP && isa<LoadInst>(Op) && Op->hasOneUse() &&
3013 (Op->getType() == Type::ShortTy || Op->getType() == Type::IntTy ||
3014 Op->getType() == Type::LongTy))
3018 unsigned DestReg = getReg(CI);
3019 MachineBasicBlock::iterator MI = BB->end();
3020 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
3023 /// emitCastOperation - Common code shared between visitCastInst and constant
3024 /// expression cast support.
3026 void ISel::emitCastOperation(MachineBasicBlock *BB,
3027 MachineBasicBlock::iterator IP,
3028 Value *Src, const Type *DestTy,
3030 const Type *SrcTy = Src->getType();
3031 unsigned SrcClass = getClassB(SrcTy);
3032 unsigned DestClass = getClassB(DestTy);
3033 unsigned SrcReg = getReg(Src, BB, IP);
3035 // Implement casts to bool by using compare on the operand followed by set if
3036 // not zero on the result.
3037 if (DestTy == Type::BoolTy) {
3040 BuildMI(*BB, IP, X86::TEST8rr, 2).addReg(SrcReg).addReg(SrcReg);
3043 BuildMI(*BB, IP, X86::TEST16rr, 2).addReg(SrcReg).addReg(SrcReg);
3046 BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg).addReg(SrcReg);
3049 unsigned TmpReg = makeAnotherReg(Type::IntTy);
3050 BuildMI(*BB, IP, X86::OR32rr, 2, TmpReg).addReg(SrcReg).addReg(SrcReg+1);
3054 BuildMI(*BB, IP, X86::FTST, 1).addReg(SrcReg);
3055 BuildMI(*BB, IP, X86::FNSTSW8r, 0);
3056 BuildMI(*BB, IP, X86::SAHF, 1);
3060 // If the zero flag is not set, then the value is true, set the byte to
3062 BuildMI(*BB, IP, X86::SETNEr, 1, DestReg);
3066 static const unsigned RegRegMove[] = {
3067 X86::MOV8rr, X86::MOV16rr, X86::MOV32rr, X86::FpMOV, X86::MOV32rr
3070 // Implement casts between values of the same type class (as determined by
3071 // getClass) by using a register-to-register move.
3072 if (SrcClass == DestClass) {
3073 if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) {
3074 BuildMI(*BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg);
3075 } else if (SrcClass == cFP) {
3076 if (SrcTy == Type::FloatTy) { // double -> float
3077 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
3078 BuildMI(*BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg);
3079 } else { // float -> double
3080 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
3081 "Unknown cFP member!");
3082 // Truncate from double to float by storing to memory as short, then
3084 unsigned FltAlign = TM.getTargetData().getFloatAlignment();
3085 int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign);
3086 addFrameReference(BuildMI(*BB, IP, X86::FST32m, 5), FrameIdx).addReg(SrcReg);
3087 addFrameReference(BuildMI(*BB, IP, X86::FLD32m, 5, DestReg), FrameIdx);
3089 } else if (SrcClass == cLong) {
3090 BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg);
3091 BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg+1).addReg(SrcReg+1);
3093 assert(0 && "Cannot handle this type of cast instruction!");
3099 // Handle cast of SMALLER int to LARGER int using a move with sign extension
3100 // or zero extension, depending on whether the source type was signed.
3101 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
3102 SrcClass < DestClass) {
3103 bool isLong = DestClass == cLong;
3104 if (isLong) DestClass = cInt;
3106 static const unsigned Opc[][4] = {
3107 { X86::MOVSX16rr8, X86::MOVSX32rr8, X86::MOVSX32rr16, X86::MOV32rr }, // s
3108 { X86::MOVZX16rr8, X86::MOVZX32rr8, X86::MOVZX32rr16, X86::MOV32rr } // u
3111 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
3112 BuildMI(*BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1,
3113 DestReg).addReg(SrcReg);
3115 if (isLong) { // Handle upper 32 bits as appropriate...
3116 if (isUnsigned) // Zero out top bits...
3117 BuildMI(*BB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
3118 else // Sign extend bottom half...
3119 BuildMI(*BB, IP, X86::SAR32ri, 2, DestReg+1).addReg(DestReg).addImm(31);
3124 // Special case long -> int ...
3125 if (SrcClass == cLong && DestClass == cInt) {
3126 BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg);
3130 // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a
3131 // move out of AX or AL.
3132 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
3133 && SrcClass > DestClass) {
3134 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX };
3135 BuildMI(*BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg);
3136 BuildMI(*BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]);
3140 // Handle casts from integer to floating point now...
3141 if (DestClass == cFP) {
3142 // Promote the integer to a type supported by FLD. We do this because there
3143 // are no unsigned FLD instructions, so we must promote an unsigned value to
3144 // a larger signed value, then use FLD on the larger value.
3146 const Type *PromoteType = 0;
3147 unsigned PromoteOpcode = 0;
3148 unsigned RealDestReg = DestReg;
3149 switch (SrcTy->getPrimitiveID()) {
3150 case Type::BoolTyID:
3151 case Type::SByteTyID:
3152 // We don't have the facilities for directly loading byte sized data from
3153 // memory (even signed). Promote it to 16 bits.
3154 PromoteType = Type::ShortTy;
3155 PromoteOpcode = X86::MOVSX16rr8;
3157 case Type::UByteTyID:
3158 PromoteType = Type::ShortTy;
3159 PromoteOpcode = X86::MOVZX16rr8;
3161 case Type::UShortTyID:
3162 PromoteType = Type::IntTy;
3163 PromoteOpcode = X86::MOVZX32rr16;
3165 case Type::UIntTyID: {
3166 // Make a 64 bit temporary... and zero out the top of it...
3167 unsigned TmpReg = makeAnotherReg(Type::LongTy);
3168 BuildMI(*BB, IP, X86::MOV32rr, 1, TmpReg).addReg(SrcReg);
3169 BuildMI(*BB, IP, X86::MOV32ri, 1, TmpReg+1).addImm(0);
3170 SrcTy = Type::LongTy;
3175 case Type::ULongTyID:
3176 // Don't fild into the read destination.
3177 DestReg = makeAnotherReg(Type::DoubleTy);
3179 default: // No promotion needed...
3184 unsigned TmpReg = makeAnotherReg(PromoteType);
3185 BuildMI(*BB, IP, PromoteOpcode, 1, TmpReg).addReg(SrcReg);
3186 SrcTy = PromoteType;
3187 SrcClass = getClass(PromoteType);
3191 // Spill the integer to memory and reload it from there...
3193 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
3195 if (SrcClass == cLong) {
3196 addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5),
3197 FrameIdx).addReg(SrcReg);
3198 addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5),
3199 FrameIdx, 4).addReg(SrcReg+1);
3201 static const unsigned Op1[] = { X86::MOV8mr, X86::MOV16mr, X86::MOV32mr };
3202 addFrameReference(BuildMI(*BB, IP, Op1[SrcClass], 5),
3203 FrameIdx).addReg(SrcReg);
3206 static const unsigned Op2[] =
3207 { 0/*byte*/, X86::FILD16m, X86::FILD32m, 0/*FP*/, X86::FILD64m };
3208 addFrameReference(BuildMI(*BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx);
3210 // We need special handling for unsigned 64-bit integer sources. If the
3211 // input number has the "sign bit" set, then we loaded it incorrectly as a
3212 // negative 64-bit number. In this case, add an offset value.
3213 if (SrcTy == Type::ULongTy) {
3214 // Emit a test instruction to see if the dynamic input value was signed.
3215 BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg+1).addReg(SrcReg+1);
3217 // If the sign bit is set, get a pointer to an offset, otherwise get a
3218 // pointer to a zero.
3219 MachineConstantPool *CP = F->getConstantPool();
3220 unsigned Zero = makeAnotherReg(Type::IntTy);
3221 Constant *Null = Constant::getNullValue(Type::UIntTy);
3222 addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Zero),
3223 CP->getConstantPoolIndex(Null));
3224 unsigned Offset = makeAnotherReg(Type::IntTy);
3225 Constant *OffsetCst = ConstantUInt::get(Type::UIntTy, 0x5f800000);
3227 addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Offset),
3228 CP->getConstantPoolIndex(OffsetCst));
3229 unsigned Addr = makeAnotherReg(Type::IntTy);
3230 BuildMI(*BB, IP, X86::CMOVS32rr, 2, Addr).addReg(Zero).addReg(Offset);
3232 // Load the constant for an add. FIXME: this could make an 'fadd' that
3233 // reads directly from memory, but we don't support these yet.
3234 unsigned ConstReg = makeAnotherReg(Type::DoubleTy);
3235 addDirectMem(BuildMI(*BB, IP, X86::FLD32m, 4, ConstReg), Addr);
3237 BuildMI(*BB, IP, X86::FpADD, 2, RealDestReg)
3238 .addReg(ConstReg).addReg(DestReg);
3244 // Handle casts from floating point to integer now...
3245 if (SrcClass == cFP) {
3246 // Change the floating point control register to use "round towards zero"
3247 // mode when truncating to an integer value.
3249 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
3250 addFrameReference(BuildMI(*BB, IP, X86::FNSTCW16m, 4), CWFrameIdx);
3252 // Load the old value of the high byte of the control word...
3253 unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy);
3254 addFrameReference(BuildMI(*BB, IP, X86::MOV8rm, 4, HighPartOfCW),
3257 // Set the high part to be round to zero...
3258 addFrameReference(BuildMI(*BB, IP, X86::MOV8mi, 5),
3259 CWFrameIdx, 1).addImm(12);
3261 // Reload the modified control word now...
3262 addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx);
3264 // Restore the memory image of control word to original value
3265 addFrameReference(BuildMI(*BB, IP, X86::MOV8mr, 5),
3266 CWFrameIdx, 1).addReg(HighPartOfCW);
3268 // We don't have the facilities for directly storing byte sized data to
3269 // memory. Promote it to 16 bits. We also must promote unsigned values to
3270 // larger classes because we only have signed FP stores.
3271 unsigned StoreClass = DestClass;
3272 const Type *StoreTy = DestTy;
3273 if (StoreClass == cByte || DestTy->isUnsigned())
3274 switch (StoreClass) {
3275 case cByte: StoreTy = Type::ShortTy; StoreClass = cShort; break;
3276 case cShort: StoreTy = Type::IntTy; StoreClass = cInt; break;
3277 case cInt: StoreTy = Type::LongTy; StoreClass = cLong; break;
3278 // The following treatment of cLong may not be perfectly right,
3279 // but it survives chains of casts of the form
3280 // double->ulong->double.
3281 case cLong: StoreTy = Type::LongTy; StoreClass = cLong; break;
3282 default: assert(0 && "Unknown store class!");
3285 // Spill the integer to memory and reload it from there...
3287 F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData());
3289 static const unsigned Op1[] =
3290 { 0, X86::FIST16m, X86::FIST32m, 0, X86::FISTP64m };
3291 addFrameReference(BuildMI(*BB, IP, Op1[StoreClass], 5),
3292 FrameIdx).addReg(SrcReg);
3294 if (DestClass == cLong) {
3295 addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg), FrameIdx);
3296 addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg+1),
3299 static const unsigned Op2[] = { X86::MOV8rm, X86::MOV16rm, X86::MOV32rm };
3300 addFrameReference(BuildMI(*BB, IP, Op2[DestClass], 4, DestReg), FrameIdx);
3303 // Reload the original control word now...
3304 addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx);
3308 // Anything we haven't handled already, we can't (yet) handle at all.
3309 assert(0 && "Unhandled cast instruction!");
3313 /// visitVANextInst - Implement the va_next instruction...
3315 void ISel::visitVANextInst(VANextInst &I) {
3316 unsigned VAList = getReg(I.getOperand(0));
3317 unsigned DestReg = getReg(I);
3320 switch (I.getArgType()->getPrimitiveID()) {
3323 assert(0 && "Error: bad type for va_next instruction!");
3325 case Type::PointerTyID:
3326 case Type::UIntTyID:
3330 case Type::ULongTyID:
3331 case Type::LongTyID:
3332 case Type::DoubleTyID:
3337 // Increment the VAList pointer...
3338 BuildMI(BB, X86::ADD32ri, 2, DestReg).addReg(VAList).addImm(Size);
3341 void ISel::visitVAArgInst(VAArgInst &I) {
3342 unsigned VAList = getReg(I.getOperand(0));
3343 unsigned DestReg = getReg(I);
3345 switch (I.getType()->getPrimitiveID()) {
3348 assert(0 && "Error: bad type for va_next instruction!");
3350 case Type::PointerTyID:
3351 case Type::UIntTyID:
3353 addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList);
3355 case Type::ULongTyID:
3356 case Type::LongTyID:
3357 addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList);
3358 addRegOffset(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), VAList, 4);
3360 case Type::DoubleTyID:
3361 addDirectMem(BuildMI(BB, X86::FLD64m, 4, DestReg), VAList);
3366 /// visitGetElementPtrInst - instruction-select GEP instructions
3368 void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
3369 // If this GEP instruction will be folded into all of its users, we don't need
3370 // to explicitly calculate it!
3371 unsigned A, B, C, D;
3372 if (isGEPFoldable(0, I.getOperand(0), I.op_begin()+1, I.op_end(), A,B,C,D)) {
3373 // Check all of the users of the instruction to see if they are loads and
3375 bool AllWillFold = true;
3376 for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI)
3377 if (cast<Instruction>(*UI)->getOpcode() != Instruction::Load)
3378 if (cast<Instruction>(*UI)->getOpcode() != Instruction::Store ||
3379 cast<Instruction>(*UI)->getOperand(0) == &I) {
3380 AllWillFold = false;
3384 // If the instruction is foldable, and will be folded into all users, don't
3386 if (AllWillFold) return;
3389 unsigned outputReg = getReg(I);
3390 emitGEPOperation(BB, BB->end(), I.getOperand(0),
3391 I.op_begin()+1, I.op_end(), outputReg);
3394 /// getGEPIndex - Inspect the getelementptr operands specified with GEPOps and
3395 /// GEPTypes (the derived types being stepped through at each level). On return
3396 /// from this function, if some indexes of the instruction are representable as
3397 /// an X86 lea instruction, the machine operands are put into the Ops
3398 /// instruction and the consumed indexes are poped from the GEPOps/GEPTypes
3399 /// lists. Otherwise, GEPOps.size() is returned. If this returns a an
3400 /// addressing mode that only partially consumes the input, the BaseReg input of
3401 /// the addressing mode must be left free.
3403 /// Note that there is one fewer entry in GEPTypes than there is in GEPOps.
3405 void ISel::getGEPIndex(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
3406 std::vector<Value*> &GEPOps,
3407 std::vector<const Type*> &GEPTypes, unsigned &BaseReg,
3408 unsigned &Scale, unsigned &IndexReg, unsigned &Disp) {
3409 const TargetData &TD = TM.getTargetData();
3411 // Clear out the state we are working with...
3412 BaseReg = 0; // No base register
3413 Scale = 1; // Unit scale
3414 IndexReg = 0; // No index register
3415 Disp = 0; // No displacement
3417 // While there are GEP indexes that can be folded into the current address,
3418 // keep processing them.
3419 while (!GEPTypes.empty()) {
3420 if (const StructType *StTy = dyn_cast<StructType>(GEPTypes.back())) {
3421 // It's a struct access. CUI is the index into the structure,
3422 // which names the field. This index must have unsigned type.
3423 const ConstantUInt *CUI = cast<ConstantUInt>(GEPOps.back());
3425 // Use the TargetData structure to pick out what the layout of the
3426 // structure is in memory. Since the structure index must be constant, we
3427 // can get its value and use it to find the right byte offset from the
3428 // StructLayout class's list of structure member offsets.
3429 Disp += TD.getStructLayout(StTy)->MemberOffsets[CUI->getValue()];
3430 GEPOps.pop_back(); // Consume a GEP operand
3431 GEPTypes.pop_back();
3433 // It's an array or pointer access: [ArraySize x ElementType].
3434 const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
3435 Value *idx = GEPOps.back();
3437 // idx is the index into the array. Unlike with structure
3438 // indices, we may not know its actual value at code-generation
3441 // If idx is a constant, fold it into the offset.
3442 unsigned TypeSize = TD.getTypeSize(SqTy->getElementType());
3443 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
3444 Disp += TypeSize*CSI->getValue();
3445 } else if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(idx)) {
3446 Disp += TypeSize*CUI->getValue();
3448 // If the index reg is already taken, we can't handle this index.
3449 if (IndexReg) return;
3451 // If this is a size that we can handle, then add the index as
3453 case 1: case 2: case 4: case 8:
3454 // These are all acceptable scales on X86.
3458 // Otherwise, we can't handle this scale
3462 if (CastInst *CI = dyn_cast<CastInst>(idx))
3463 if (CI->getOperand(0)->getType() == Type::IntTy ||
3464 CI->getOperand(0)->getType() == Type::UIntTy)
3465 idx = CI->getOperand(0);
3467 IndexReg = MBB ? getReg(idx, MBB, IP) : 1;
3470 GEPOps.pop_back(); // Consume a GEP operand
3471 GEPTypes.pop_back();
3475 // GEPTypes is empty, which means we have a single operand left. See if we
3476 // can set it as the base register.
3478 // FIXME: When addressing modes are more powerful/correct, we could load
3479 // global addresses directly as 32-bit immediates.
3480 assert(BaseReg == 0);
3481 BaseReg = MBB ? getReg(GEPOps[0], MBB, IP) : 1;
3482 GEPOps.pop_back(); // Consume the last GEP operand
3486 /// isGEPFoldable - Return true if the specified GEP can be completely
3487 /// folded into the addressing mode of a load/store or lea instruction.
3488 bool ISel::isGEPFoldable(MachineBasicBlock *MBB,
3489 Value *Src, User::op_iterator IdxBegin,
3490 User::op_iterator IdxEnd, unsigned &BaseReg,
3491 unsigned &Scale, unsigned &IndexReg, unsigned &Disp) {
3492 if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Src))
3493 Src = CPR->getValue();
3495 std::vector<Value*> GEPOps;
3496 GEPOps.resize(IdxEnd-IdxBegin+1);
3498 std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
3500 std::vector<const Type*> GEPTypes;
3501 GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
3502 gep_type_end(Src->getType(), IdxBegin, IdxEnd));
3504 MachineBasicBlock::iterator IP;
3505 if (MBB) IP = MBB->end();
3506 getGEPIndex(MBB, IP, GEPOps, GEPTypes, BaseReg, Scale, IndexReg, Disp);
3508 // We can fold it away iff the getGEPIndex call eliminated all operands.
3509 return GEPOps.empty();
3512 void ISel::emitGEPOperation(MachineBasicBlock *MBB,
3513 MachineBasicBlock::iterator IP,
3514 Value *Src, User::op_iterator IdxBegin,
3515 User::op_iterator IdxEnd, unsigned TargetReg) {
3516 const TargetData &TD = TM.getTargetData();
3517 if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Src))
3518 Src = CPR->getValue();
3520 std::vector<Value*> GEPOps;
3521 GEPOps.resize(IdxEnd-IdxBegin+1);
3523 std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
3525 std::vector<const Type*> GEPTypes;
3526 GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
3527 gep_type_end(Src->getType(), IdxBegin, IdxEnd));
3529 // Keep emitting instructions until we consume the entire GEP instruction.
3530 while (!GEPOps.empty()) {
3531 unsigned OldSize = GEPOps.size();
3532 unsigned BaseReg, Scale, IndexReg, Disp;
3533 getGEPIndex(MBB, IP, GEPOps, GEPTypes, BaseReg, Scale, IndexReg, Disp);
3535 if (GEPOps.size() != OldSize) {
3536 // getGEPIndex consumed some of the input. Build an LEA instruction here.
3537 unsigned NextTarget = 0;
3538 if (!GEPOps.empty()) {
3539 assert(BaseReg == 0 &&
3540 "getGEPIndex should have left the base register open for chaining!");
3541 NextTarget = BaseReg = makeAnotherReg(Type::UIntTy);
3544 if (IndexReg == 0 && Disp == 0)
3545 BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(BaseReg);
3547 addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, TargetReg),
3548 BaseReg, Scale, IndexReg, Disp);
3550 TargetReg = NextTarget;
3551 } else if (GEPTypes.empty()) {
3552 // The getGEPIndex operation didn't want to build an LEA. Check to see if
3553 // all operands are consumed but the base pointer. If so, just load it
3554 // into the register.
3555 if (GlobalValue *GV = dyn_cast<GlobalValue>(GEPOps[0])) {
3556 BuildMI(*MBB, IP, X86::MOV32ri, 1, TargetReg).addGlobalAddress(GV);
3558 unsigned BaseReg = getReg(GEPOps[0], MBB, IP);
3559 BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(BaseReg);
3561 break; // we are now done
3564 // It's an array or pointer access: [ArraySize x ElementType].
3565 const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
3566 Value *idx = GEPOps.back();
3567 GEPOps.pop_back(); // Consume a GEP operand
3568 GEPTypes.pop_back();
3570 // Many GEP instructions use a [cast (int/uint) to LongTy] as their
3571 // operand on X86. Handle this case directly now...
3572 if (CastInst *CI = dyn_cast<CastInst>(idx))
3573 if (CI->getOperand(0)->getType() == Type::IntTy ||
3574 CI->getOperand(0)->getType() == Type::UIntTy)
3575 idx = CI->getOperand(0);
3577 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
3578 // must find the size of the pointed-to type (Not coincidentally, the next
3579 // type is the type of the elements in the array).
3580 const Type *ElTy = SqTy->getElementType();
3581 unsigned elementSize = TD.getTypeSize(ElTy);
3583 // If idxReg is a constant, we don't need to perform the multiply!
3584 if (ConstantInt *CSI = dyn_cast<ConstantInt>(idx)) {
3585 if (!CSI->isNullValue()) {
3586 unsigned Offset = elementSize*CSI->getRawValue();
3587 unsigned Reg = makeAnotherReg(Type::UIntTy);
3588 BuildMI(*MBB, IP, X86::ADD32ri, 2, TargetReg)
3589 .addReg(Reg).addImm(Offset);
3590 --IP; // Insert the next instruction before this one.
3591 TargetReg = Reg; // Codegen the rest of the GEP into this
3593 } else if (elementSize == 1) {
3594 // If the element size is 1, we don't have to multiply, just add
3595 unsigned idxReg = getReg(idx, MBB, IP);
3596 unsigned Reg = makeAnotherReg(Type::UIntTy);
3597 BuildMI(*MBB, IP, X86::ADD32rr, 2,TargetReg).addReg(Reg).addReg(idxReg);
3598 --IP; // Insert the next instruction before this one.
3599 TargetReg = Reg; // Codegen the rest of the GEP into this
3601 unsigned idxReg = getReg(idx, MBB, IP);
3602 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
3604 // Make sure we can back the iterator up to point to the first
3605 // instruction emitted.
3606 MachineBasicBlock::iterator BeforeIt = IP;
3607 if (IP == MBB->begin())
3608 BeforeIt = MBB->end();
3611 doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
3613 // Emit an ADD to add OffsetReg to the basePtr.
3614 unsigned Reg = makeAnotherReg(Type::UIntTy);
3615 BuildMI(*MBB, IP, X86::ADD32rr, 2, TargetReg)
3616 .addReg(Reg).addReg(OffsetReg);
3618 // Step to the first instruction of the multiply.
3619 if (BeforeIt == MBB->end())
3624 TargetReg = Reg; // Codegen the rest of the GEP into this
3631 /// visitAllocaInst - If this is a fixed size alloca, allocate space from the
3632 /// frame manager, otherwise do it the hard way.
3634 void ISel::visitAllocaInst(AllocaInst &I) {
3635 if (dyn_castFixedAlloca(&I)) return;
3637 // Find the data size of the alloca inst's getAllocatedType.
3638 const Type *Ty = I.getAllocatedType();
3639 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
3641 // Create a register to hold the temporary result of multiplying the type size
3642 // constant by the variable amount.
3643 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
3644 unsigned SrcReg1 = getReg(I.getArraySize());
3646 // TotalSizeReg = mul <numelements>, <TypeSize>
3647 MachineBasicBlock::iterator MBBI = BB->end();
3648 doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
3650 // AddedSize = add <TotalSizeReg>, 15
3651 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
3652 BuildMI(BB, X86::ADD32ri, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15);
3654 // AlignedSize = and <AddedSize>, ~15
3655 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
3656 BuildMI(BB, X86::AND32ri, 2, AlignedSize).addReg(AddedSizeReg).addImm(~15);
3658 // Subtract size from stack pointer, thereby allocating some space.
3659 BuildMI(BB, X86::SUB32rr, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize);
3661 // Put a pointer to the space into the result register, by copying
3662 // the stack pointer.
3663 BuildMI(BB, X86::MOV32rr, 1, getReg(I)).addReg(X86::ESP);
3665 // Inform the Frame Information that we have just allocated a variable-sized
3667 F->getFrameInfo()->CreateVariableSizedObject();
3670 /// visitMallocInst - Malloc instructions are code generated into direct calls
3671 /// to the library malloc.
3673 void ISel::visitMallocInst(MallocInst &I) {
3674 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
3677 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
3678 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
3680 Arg = makeAnotherReg(Type::UIntTy);
3681 unsigned Op0Reg = getReg(I.getOperand(0));
3682 MachineBasicBlock::iterator MBBI = BB->end();
3683 doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
3686 std::vector<ValueRecord> Args;
3687 Args.push_back(ValueRecord(Arg, Type::UIntTy));
3688 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
3689 1).addExternalSymbol("malloc", true);
3690 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
3694 /// visitFreeInst - Free instructions are code gen'd to call the free libc
3697 void ISel::visitFreeInst(FreeInst &I) {
3698 std::vector<ValueRecord> Args;
3699 Args.push_back(ValueRecord(I.getOperand(0)));
3700 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
3701 1).addExternalSymbol("free", true);
3702 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
3705 /// createX86SimpleInstructionSelector - This pass converts an LLVM function
3706 /// into a machine code representation is a very simple peep-hole fashion. The
3707 /// generated code sucks but the implementation is nice and simple.
3709 FunctionPass *llvm::createX86SimpleInstructionSelector(TargetMachine &TM) {
3710 return new ISel(TM);