Revert "reimplement the second half of the or/add optimization. We should now",
[oota-llvm.git] / lib / Target / X86 / X86InstrCompiler.td
1 //===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
2 // 
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 // 
8 //===----------------------------------------------------------------------===//
9 //
10 // This file describes the various pseudo instructions used by the compiler,
11 // as well as Pat patterns used during instruction selection.
12 //
13 //===----------------------------------------------------------------------===//
14
15 //===----------------------------------------------------------------------===//
16 // Pattern Matching Support
17
18 def GetLo32XForm : SDNodeXForm<imm, [{
19   // Transformation function: get the low 32 bits.
20   return getI32Imm((unsigned)N->getZExtValue());
21 }]>;
22
23
24 //===----------------------------------------------------------------------===//
25 // Random Pseudo Instructions.
26
27 // PIC base construction.  This expands to code that looks like this:
28 //     call  $next_inst
29 //     popl %destreg"
30 let neverHasSideEffects = 1, isNotDuplicable = 1, Uses = [ESP] in
31   def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
32                       "", []>;
33
34
35 // ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
36 // a stack adjustment and the codegen must know that they may modify the stack
37 // pointer before prolog-epilog rewriting occurs.
38 // Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
39 // sub / add which can clobber EFLAGS.
40 let Defs = [ESP, EFLAGS], Uses = [ESP] in {
41 def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt),
42                            "#ADJCALLSTACKDOWN",
43                            [(X86callseq_start timm:$amt)]>,
44                           Requires<[In32BitMode]>;
45 def ADJCALLSTACKUP32   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
46                            "#ADJCALLSTACKUP",
47                            [(X86callseq_end timm:$amt1, timm:$amt2)]>,
48                           Requires<[In32BitMode]>;
49 }
50
51 // ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
52 // a stack adjustment and the codegen must know that they may modify the stack
53 // pointer before prolog-epilog rewriting occurs.
54 // Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
55 // sub / add which can clobber EFLAGS.
56 let Defs = [RSP, EFLAGS], Uses = [RSP] in {
57 def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt),
58                            "#ADJCALLSTACKDOWN",
59                            [(X86callseq_start timm:$amt)]>,
60                           Requires<[In64BitMode]>;
61 def ADJCALLSTACKUP64   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
62                            "#ADJCALLSTACKUP",
63                            [(X86callseq_end timm:$amt1, timm:$amt2)]>,
64                           Requires<[In64BitMode]>;
65 }
66
67
68
69 // x86-64 va_start lowering magic.
70 let usesCustomInserter = 1 in {
71 def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
72                               (outs),
73                               (ins GR8:$al,
74                                    i64imm:$regsavefi, i64imm:$offset,
75                                    variable_ops),
76                               "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
77                               [(X86vastart_save_xmm_regs GR8:$al,
78                                                          imm:$regsavefi,
79                                                          imm:$offset)]>;
80
81 // Dynamic stack allocation yields _alloca call for Cygwin/Mingw targets.  Calls
82 // to _alloca is needed to probe the stack when allocating more than 4k bytes in
83 // one go. Touching the stack at 4K increments is necessary to ensure that the
84 // guard pages used by the OS virtual memory manager are allocated in correct
85 // sequence.
86 // The main point of having separate instruction are extra unmodelled effects
87 // (compared to ordinary calls) like stack pointer change.
88
89 let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
90   def MINGW_ALLOCA : I<0, Pseudo, (outs), (ins),
91                        "# dynamic stack allocation",
92                        [(X86MingwAlloca)]>;
93 }
94
95
96
97 //===----------------------------------------------------------------------===//
98 // EH Pseudo Instructions
99 //
100 let isTerminator = 1, isReturn = 1, isBarrier = 1,
101     hasCtrlDep = 1, isCodeGenOnly = 1 in {
102 def EH_RETURN   : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
103                     "ret\t#eh_return, addr: $addr",
104                     [(X86ehret GR32:$addr)]>;
105
106 }
107
108 let isTerminator = 1, isReturn = 1, isBarrier = 1,
109     hasCtrlDep = 1, isCodeGenOnly = 1 in {
110 def EH_RETURN64   : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
111                      "ret\t#eh_return, addr: $addr",
112                      [(X86ehret GR64:$addr)]>;
113
114 }
115
116 //===----------------------------------------------------------------------===//
117 // Alias Instructions
118 //===----------------------------------------------------------------------===//
119
120 // Alias instructions that map movr0 to xor.
121 // FIXME: remove when we can teach regalloc that xor reg, reg is ok.
122 // FIXME: Set encoding to pseudo.
123 let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
124     isCodeGenOnly = 1 in {
125 def MOV8r0   : I<0x30, MRMInitReg, (outs GR8 :$dst), (ins), "",
126                  [(set GR8:$dst, 0)]>;
127
128 // We want to rewrite MOV16r0 in terms of MOV32r0, because it's a smaller
129 // encoding and avoids a partial-register update sometimes, but doing so
130 // at isel time interferes with rematerialization in the current register
131 // allocator. For now, this is rewritten when the instruction is lowered
132 // to an MCInst.
133 def MOV16r0   : I<0x31, MRMInitReg, (outs GR16:$dst), (ins),
134                  "",
135                  [(set GR16:$dst, 0)]>, OpSize;
136                  
137 // FIXME: Set encoding to pseudo.
138 def MOV32r0  : I<0x31, MRMInitReg, (outs GR32:$dst), (ins), "",
139                  [(set GR32:$dst, 0)]>;
140 }
141
142 // We want to rewrite MOV64r0 in terms of MOV32r0, because it's sometimes a
143 // smaller encoding, but doing so at isel time interferes with rematerialization
144 // in the current register allocator. For now, this is rewritten when the
145 // instruction is lowered to an MCInst.
146 // FIXME: AddedComplexity gives this a higher priority than MOV64ri32. Remove
147 // when we have a better way to specify isel priority.
148 let Defs = [EFLAGS],
149     AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1 in
150 def MOV64r0   : I<0x31, MRMInitReg, (outs GR64:$dst), (ins), "",
151                  [(set GR64:$dst, 0)]>;
152
153 // Materialize i64 constant where top 32-bits are zero. This could theoretically
154 // use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
155 // that would make it more difficult to rematerialize.
156 let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1 in
157 def MOV64ri64i32 : Ii32<0xB8, AddRegFrm, (outs GR64:$dst), (ins i64i32imm:$src),
158                         "", [(set GR64:$dst, i64immZExt32:$src)]>;
159
160
161 // Use sbb to materialize carry bit.
162 let Uses = [EFLAGS], Defs = [EFLAGS], isCodeGenOnly = 1 in {
163 // FIXME: These are pseudo ops that should be replaced with Pat<> patterns.
164 // However, Pat<> can't replicate the destination reg into the inputs of the
165 // result.
166 // FIXME: Change these to have encoding Pseudo when X86MCCodeEmitter replaces
167 // X86CodeEmitter.
168 def SETB_C8r : I<0x18, MRMInitReg, (outs GR8:$dst), (ins), "",
169                  [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
170 def SETB_C16r : I<0x19, MRMInitReg, (outs GR16:$dst), (ins), "",
171                  [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>,
172                 OpSize;
173 def SETB_C32r : I<0x19, MRMInitReg, (outs GR32:$dst), (ins), "",
174                  [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
175 def SETB_C64r : RI<0x19, MRMInitReg, (outs GR64:$dst), (ins), "",
176                  [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
177 } // isCodeGenOnly
178
179
180 def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
181           (SETB_C64r)>;
182
183              
184 //===----------------------------------------------------------------------===//
185 // String Pseudo Instructions
186 //
187 let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
188 def REP_MOVSB : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
189                   [(X86rep_movs i8)]>, REP;
190 def REP_MOVSW : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
191                   [(X86rep_movs i16)]>, REP, OpSize;
192 def REP_MOVSD : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
193                   [(X86rep_movs i32)]>, REP;
194 }
195
196 let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in
197 def REP_MOVSQ : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}",
198                    [(X86rep_movs i64)]>, REP;
199                    
200
201 // FIXME: Should use "(X86rep_stos AL)" as the pattern.
202 let Defs = [ECX,EDI], Uses = [AL,ECX,EDI], isCodeGenOnly = 1 in
203 def REP_STOSB : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
204                   [(X86rep_stos i8)]>, REP;
205 let Defs = [ECX,EDI], Uses = [AX,ECX,EDI], isCodeGenOnly = 1 in
206 def REP_STOSW : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
207                   [(X86rep_stos i16)]>, REP, OpSize;
208 let Defs = [ECX,EDI], Uses = [EAX,ECX,EDI], isCodeGenOnly = 1 in
209 def REP_STOSD : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
210                   [(X86rep_stos i32)]>, REP;
211
212 let Defs = [RCX,RDI], Uses = [RAX,RCX,RDI], isCodeGenOnly = 1 in
213 def REP_STOSQ : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}",
214                    [(X86rep_stos i64)]>, REP;
215
216
217 //===----------------------------------------------------------------------===//
218 // Thread Local Storage Instructions
219 //
220
221 // ELF TLS Support
222 // All calls clobber the non-callee saved registers. ESP is marked as
223 // a use to prevent stack-pointer assignments that appear immediately
224 // before calls from potentially appearing dead.
225 let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0,
226             MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
227             XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
228             XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
229     Uses = [ESP] in
230 def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
231                   "leal\t$sym, %eax; "
232                   "call\t___tls_get_addr@PLT",
233                   [(X86tlsaddr tls32addr:$sym)]>,
234                   Requires<[In32BitMode]>;
235
236 // All calls clobber the non-callee saved registers. RSP is marked as
237 // a use to prevent stack-pointer assignments that appear immediately
238 // before calls from potentially appearing dead.
239 let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
240             FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, ST1,
241             MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
242             XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
243             XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
244     Uses = [RSP] in
245 def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
246                    ".byte\t0x66; "
247                    "leaq\t$sym(%rip), %rdi; "
248                    ".word\t0x6666; "
249                    "rex64; "
250                    "call\t__tls_get_addr@PLT",
251                   [(X86tlsaddr tls64addr:$sym)]>,
252                   Requires<[In64BitMode]>;
253
254 // Darwin TLS Support
255 // For i386, the address of the thunk is passed on the stack, on return the 
256 // address of the variable is in %eax.  %ecx is trashed during the function 
257 // call.  All other registers are preserved.
258 let Defs = [EAX, ECX],
259     Uses = [ESP],
260     usesCustomInserter = 1 in
261 def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
262                 "# TLSCall_32",
263                 [(X86TLSCall addr:$sym)]>,
264                 Requires<[In32BitMode]>;
265
266 // For x86_64, the address of the thunk is passed in %rdi, on return 
267 // the address of the variable is in %rax.  All other registers are preserved.
268 let Defs = [RAX],
269     Uses = [RDI],
270     usesCustomInserter = 1 in
271 def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
272                   "# TLSCall_64",
273                   [(X86TLSCall addr:$sym)]>,
274                   Requires<[In64BitMode]>;
275
276
277 //===----------------------------------------------------------------------===//
278 // Conditional Move Pseudo Instructions
279
280 let Constraints = "$src1 = $dst" in {
281
282 // Conditional moves
283 let Uses = [EFLAGS] in {
284
285 // X86 doesn't have 8-bit conditional moves. Use a customInserter to
286 // emit control flow. An alternative to this is to mark i8 SELECT as Promote,
287 // however that requires promoting the operands, and can induce additional
288 // i8 register pressure. Note that CMOV_GR8 is conservatively considered to
289 // clobber EFLAGS, because if one of the operands is zero, the expansion
290 // could involve an xor.
291 let usesCustomInserter = 1, Constraints = "", Defs = [EFLAGS] in {
292 def CMOV_GR8 : I<0, Pseudo,
293                  (outs GR8:$dst), (ins GR8:$src1, GR8:$src2, i8imm:$cond),
294                  "#CMOV_GR8 PSEUDO!",
295                  [(set GR8:$dst, (X86cmov GR8:$src1, GR8:$src2,
296                                           imm:$cond, EFLAGS))]>;
297
298 let Predicates = [NoCMov] in {
299 def CMOV_GR32 : I<0, Pseudo,
300                     (outs GR32:$dst), (ins GR32:$src1, GR32:$src2, i8imm:$cond),
301                     "#CMOV_GR32* PSEUDO!",
302                     [(set GR32:$dst,
303                       (X86cmov GR32:$src1, GR32:$src2, imm:$cond, EFLAGS))]>;
304 def CMOV_GR16 : I<0, Pseudo,
305                     (outs GR16:$dst), (ins GR16:$src1, GR16:$src2, i8imm:$cond),
306                     "#CMOV_GR16* PSEUDO!",
307                     [(set GR16:$dst,
308                       (X86cmov GR16:$src1, GR16:$src2, imm:$cond, EFLAGS))]>;
309 def CMOV_RFP32 : I<0, Pseudo,
310                     (outs RFP32:$dst),
311                     (ins RFP32:$src1, RFP32:$src2, i8imm:$cond),
312                     "#CMOV_RFP32 PSEUDO!",
313                     [(set RFP32:$dst,
314                       (X86cmov RFP32:$src1, RFP32:$src2, imm:$cond,
315                                                   EFLAGS))]>;
316 def CMOV_RFP64 : I<0, Pseudo,
317                     (outs RFP64:$dst),
318                     (ins RFP64:$src1, RFP64:$src2, i8imm:$cond),
319                     "#CMOV_RFP64 PSEUDO!",
320                     [(set RFP64:$dst,
321                       (X86cmov RFP64:$src1, RFP64:$src2, imm:$cond,
322                                                   EFLAGS))]>;
323 def CMOV_RFP80 : I<0, Pseudo,
324                     (outs RFP80:$dst),
325                     (ins RFP80:$src1, RFP80:$src2, i8imm:$cond),
326                     "#CMOV_RFP80 PSEUDO!",
327                     [(set RFP80:$dst,
328                       (X86cmov RFP80:$src1, RFP80:$src2, imm:$cond,
329                                                   EFLAGS))]>;
330 } // Predicates = [NoCMov]
331 } // UsesCustomInserter = 1, Constraints = "", Defs = [EFLAGS] 
332 } // Uses = [EFLAGS]
333
334 } // Constraints = "$src1 = $dst" in
335
336
337 //===----------------------------------------------------------------------===//
338 // Atomic Instruction Pseudo Instructions
339 //===----------------------------------------------------------------------===//
340
341 // Atomic exchange, and, or, xor
342 let Constraints = "$val = $dst", Defs = [EFLAGS],
343                   usesCustomInserter = 1 in {
344                   
345 def ATOMAND8 : I<0, Pseudo, (outs GR8:$dst),(ins i8mem:$ptr, GR8:$val),
346                "#ATOMAND8 PSEUDO!", 
347                [(set GR8:$dst, (atomic_load_and_8 addr:$ptr, GR8:$val))]>;
348 def ATOMOR8 : I<0, Pseudo, (outs GR8:$dst),(ins i8mem:$ptr, GR8:$val),
349                "#ATOMOR8 PSEUDO!", 
350                [(set GR8:$dst, (atomic_load_or_8 addr:$ptr, GR8:$val))]>;
351 def ATOMXOR8 : I<0, Pseudo,(outs GR8:$dst),(ins i8mem:$ptr, GR8:$val),
352                "#ATOMXOR8 PSEUDO!", 
353                [(set GR8:$dst, (atomic_load_xor_8 addr:$ptr, GR8:$val))]>;
354 def ATOMNAND8 : I<0, Pseudo,(outs GR8:$dst),(ins i8mem:$ptr, GR8:$val),
355                "#ATOMNAND8 PSEUDO!", 
356                [(set GR8:$dst, (atomic_load_nand_8 addr:$ptr, GR8:$val))]>;
357
358 def ATOMAND16 : I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
359                "#ATOMAND16 PSEUDO!", 
360                [(set GR16:$dst, (atomic_load_and_16 addr:$ptr, GR16:$val))]>;
361 def ATOMOR16 : I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
362                "#ATOMOR16 PSEUDO!", 
363                [(set GR16:$dst, (atomic_load_or_16 addr:$ptr, GR16:$val))]>;
364 def ATOMXOR16 : I<0, Pseudo,(outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
365                "#ATOMXOR16 PSEUDO!", 
366                [(set GR16:$dst, (atomic_load_xor_16 addr:$ptr, GR16:$val))]>;
367 def ATOMNAND16 : I<0, Pseudo,(outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
368                "#ATOMNAND16 PSEUDO!", 
369                [(set GR16:$dst, (atomic_load_nand_16 addr:$ptr, GR16:$val))]>;
370 def ATOMMIN16: I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$ptr, GR16:$val),
371                "#ATOMMIN16 PSEUDO!", 
372                [(set GR16:$dst, (atomic_load_min_16 addr:$ptr, GR16:$val))]>;
373 def ATOMMAX16: I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
374                "#ATOMMAX16 PSEUDO!", 
375                [(set GR16:$dst, (atomic_load_max_16 addr:$ptr, GR16:$val))]>;
376 def ATOMUMIN16: I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
377                "#ATOMUMIN16 PSEUDO!", 
378                [(set GR16:$dst, (atomic_load_umin_16 addr:$ptr, GR16:$val))]>;
379 def ATOMUMAX16: I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
380                "#ATOMUMAX16 PSEUDO!", 
381                [(set GR16:$dst, (atomic_load_umax_16 addr:$ptr, GR16:$val))]>;
382
383
384 def ATOMAND32 : I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
385                "#ATOMAND32 PSEUDO!", 
386                [(set GR32:$dst, (atomic_load_and_32 addr:$ptr, GR32:$val))]>;
387 def ATOMOR32 : I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
388                "#ATOMOR32 PSEUDO!", 
389                [(set GR32:$dst, (atomic_load_or_32 addr:$ptr, GR32:$val))]>;
390 def ATOMXOR32 : I<0, Pseudo,(outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
391                "#ATOMXOR32 PSEUDO!", 
392                [(set GR32:$dst, (atomic_load_xor_32 addr:$ptr, GR32:$val))]>;
393 def ATOMNAND32 : I<0, Pseudo,(outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
394                "#ATOMNAND32 PSEUDO!", 
395                [(set GR32:$dst, (atomic_load_nand_32 addr:$ptr, GR32:$val))]>;
396 def ATOMMIN32: I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$ptr, GR32:$val),
397                "#ATOMMIN32 PSEUDO!", 
398                [(set GR32:$dst, (atomic_load_min_32 addr:$ptr, GR32:$val))]>;
399 def ATOMMAX32: I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
400                "#ATOMMAX32 PSEUDO!", 
401                [(set GR32:$dst, (atomic_load_max_32 addr:$ptr, GR32:$val))]>;
402 def ATOMUMIN32: I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
403                "#ATOMUMIN32 PSEUDO!", 
404                [(set GR32:$dst, (atomic_load_umin_32 addr:$ptr, GR32:$val))]>;
405 def ATOMUMAX32: I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
406                "#ATOMUMAX32 PSEUDO!", 
407                [(set GR32:$dst, (atomic_load_umax_32 addr:$ptr, GR32:$val))]>;
408
409
410                   
411 def ATOMAND64 : I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
412                "#ATOMAND64 PSEUDO!", 
413                [(set GR64:$dst, (atomic_load_and_64 addr:$ptr, GR64:$val))]>;
414 def ATOMOR64 : I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
415                "#ATOMOR64 PSEUDO!", 
416                [(set GR64:$dst, (atomic_load_or_64 addr:$ptr, GR64:$val))]>;
417 def ATOMXOR64 : I<0, Pseudo,(outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
418                "#ATOMXOR64 PSEUDO!", 
419                [(set GR64:$dst, (atomic_load_xor_64 addr:$ptr, GR64:$val))]>;
420 def ATOMNAND64 : I<0, Pseudo,(outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
421                "#ATOMNAND64 PSEUDO!", 
422                [(set GR64:$dst, (atomic_load_nand_64 addr:$ptr, GR64:$val))]>;
423 def ATOMMIN64: I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$ptr, GR64:$val),
424                "#ATOMMIN64 PSEUDO!", 
425                [(set GR64:$dst, (atomic_load_min_64 addr:$ptr, GR64:$val))]>;
426 def ATOMMAX64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
427                "#ATOMMAX64 PSEUDO!", 
428                [(set GR64:$dst, (atomic_load_max_64 addr:$ptr, GR64:$val))]>;
429 def ATOMUMIN64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
430                "#ATOMUMIN64 PSEUDO!", 
431                [(set GR64:$dst, (atomic_load_umin_64 addr:$ptr, GR64:$val))]>;
432 def ATOMUMAX64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
433                "#ATOMUMAX64 PSEUDO!", 
434                [(set GR64:$dst, (atomic_load_umax_64 addr:$ptr, GR64:$val))]>;
435 }
436
437 let Constraints = "$val1 = $dst1, $val2 = $dst2", 
438                   Defs = [EFLAGS, EAX, EBX, ECX, EDX],
439                   Uses = [EAX, EBX, ECX, EDX],
440                   mayLoad = 1, mayStore = 1,
441                   usesCustomInserter = 1 in {
442 def ATOMAND6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
443                                (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
444                "#ATOMAND6432 PSEUDO!", []>;
445 def ATOMOR6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
446                                (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
447                "#ATOMOR6432 PSEUDO!", []>;
448 def ATOMXOR6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
449                                (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
450                "#ATOMXOR6432 PSEUDO!", []>;
451 def ATOMNAND6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
452                                (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
453                "#ATOMNAND6432 PSEUDO!", []>;
454 def ATOMADD6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
455                                (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
456                "#ATOMADD6432 PSEUDO!", []>;
457 def ATOMSUB6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
458                                (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
459                "#ATOMSUB6432 PSEUDO!", []>;
460 def ATOMSWAP6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
461                                (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
462                "#ATOMSWAP6432 PSEUDO!", []>;
463 }
464
465 //===----------------------------------------------------------------------===//
466 // Normal-Instructions-With-Lock-Prefix Pseudo Instructions
467 //===----------------------------------------------------------------------===//
468
469 // FIXME: Use normal instructions and add lock prefix dynamically.
470
471 // Memory barriers
472
473 // TODO: Get this to fold the constant into the instruction.           
474 def OR32mrLocked  : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero),
475                       "lock\n\t"
476                       "or{l}\t{$zero, $dst|$dst, $zero}",
477                       []>, Requires<[In32BitMode]>, LOCK;
478
479 let hasSideEffects = 1 in
480 def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
481                      "#MEMBARRIER",
482                      [(X86MemBarrier)]>, Requires<[HasSSE2]>;
483
484 // TODO: Get this to fold the constant into the instruction.           
485 let hasSideEffects = 1, Defs = [ESP] in
486 def Int_MemBarrierNoSSE64  : RI<0x09, MRM1r, (outs), (ins GR64:$zero),
487                            "lock\n\t"
488                            "or{q}\t{$zero, (%rsp)|(%rsp), $zero}",
489                            [(X86MemBarrierNoSSE GR64:$zero)]>,
490                            Requires<[In64BitMode]>, LOCK;
491
492
493 // Optimized codegen when the non-memory output is not used.
494 let Defs = [EFLAGS], mayLoad = 1, mayStore = 1 in {
495 def LOCK_ADD8mr  : I<0x00, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
496                     "lock\n\t"
497                     "add{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
498 def LOCK_ADD16mr  : I<0x01, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
499                     "lock\n\t"
500                     "add{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
501 def LOCK_ADD32mr  : I<0x01, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
502                     "lock\n\t"
503                     "add{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
504 def LOCK_ADD64mr : RI<0x01, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
505                       "lock\n\t"
506                       "add{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
507                       
508 def LOCK_ADD8mi   : Ii8<0x80, MRM0m, (outs), (ins i8mem :$dst, i8imm :$src2),
509                     "lock\n\t"
510                     "add{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
511 def LOCK_ADD16mi  : Ii16<0x81, MRM0m, (outs), (ins i16mem:$dst, i16imm:$src2),
512                     "lock\n\t"
513                      "add{w}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
514 def LOCK_ADD32mi  : Ii32<0x81, MRM0m, (outs), (ins i32mem:$dst, i32imm:$src2),
515                     "lock\n\t"
516                     "add{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
517 def LOCK_ADD64mi32 : RIi32<0x81, MRM0m, (outs),
518                                         (ins i64mem:$dst, i64i32imm :$src2),
519                       "lock\n\t"
520                       "add{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
521
522 def LOCK_ADD16mi8 : Ii8<0x83, MRM0m, (outs), (ins i16mem:$dst, i16i8imm :$src2),
523                     "lock\n\t"
524                     "add{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
525 def LOCK_ADD32mi8 : Ii8<0x83, MRM0m, (outs), (ins i32mem:$dst, i32i8imm :$src2),
526                     "lock\n\t"
527                     "add{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
528 def LOCK_ADD64mi8 : RIi8<0x83, MRM0m, (outs),
529                                       (ins i64mem:$dst, i64i8imm :$src2),
530                     "lock\n\t"
531                     "add{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
532
533 def LOCK_SUB8mr   : I<0x28, MRMDestMem, (outs), (ins i8mem :$dst, GR8 :$src2),
534                     "lock\n\t"
535                     "sub{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
536 def LOCK_SUB16mr  : I<0x29, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
537                     "lock\n\t"
538                     "sub{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
539 def LOCK_SUB32mr  : I<0x29, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2), 
540                     "lock\n\t"
541                     "sub{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
542 def LOCK_SUB64mr : RI<0x29, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2), 
543                       "lock\n\t"
544                       "sub{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
545
546
547 def LOCK_SUB8mi   : Ii8<0x80, MRM5m, (outs), (ins i8mem :$dst, i8imm:$src2), 
548                     "lock\n\t"
549                     "sub{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
550 def LOCK_SUB16mi  : Ii16<0x81, MRM5m, (outs), (ins i16mem:$dst, i16imm:$src2), 
551                     "lock\n\t"
552                     "sub{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
553 def LOCK_SUB32mi  : Ii32<0x81, MRM5m, (outs), (ins i32mem:$dst, i32imm:$src2), 
554                     "lock\n\t"
555                      "sub{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
556 def LOCK_SUB64mi32 : RIi32<0x81, MRM5m, (outs),
557                                         (ins i64mem:$dst, i64i32imm:$src2),
558                       "lock\n\t"
559                       "sub{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
560
561
562 def LOCK_SUB16mi8 : Ii8<0x83, MRM5m, (outs), (ins i16mem:$dst, i16i8imm :$src2),
563                     "lock\n\t"
564                      "sub{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
565 def LOCK_SUB32mi8 : Ii8<0x83, MRM5m, (outs), (ins i32mem:$dst, i32i8imm :$src2),
566                     "lock\n\t"
567                      "sub{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
568 def LOCK_SUB64mi8 : RIi8<0x83, MRM5m, (outs),
569                                       (ins i64mem:$dst, i64i8imm :$src2), 
570                       "lock\n\t"
571                       "sub{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
572
573 def LOCK_INC8m  : I<0xFE, MRM0m, (outs), (ins i8mem :$dst),
574                     "lock\n\t"
575                     "inc{b}\t$dst", []>, LOCK;
576 def LOCK_INC16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst),
577                     "lock\n\t"
578                     "inc{w}\t$dst", []>, OpSize, LOCK;
579 def LOCK_INC32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst),
580                     "lock\n\t"
581                     "inc{l}\t$dst", []>, LOCK;
582 def LOCK_INC64m : RI<0xFF, MRM0m, (outs), (ins i64mem:$dst),
583                      "lock\n\t"
584                      "inc{q}\t$dst", []>, LOCK;
585
586 def LOCK_DEC8m  : I<0xFE, MRM1m, (outs), (ins i8mem :$dst),
587                     "lock\n\t"
588                     "dec{b}\t$dst", []>, LOCK;
589 def LOCK_DEC16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst),
590                     "lock\n\t"
591                     "dec{w}\t$dst", []>, OpSize, LOCK;
592 def LOCK_DEC32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst),
593                     "lock\n\t"
594                     "dec{l}\t$dst", []>, LOCK;
595 def LOCK_DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst),
596                       "lock\n\t"
597                       "dec{q}\t$dst", []>, LOCK;
598 }
599
600 // Atomic compare and swap.
601 let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX] in {
602 def LCMPXCHG8B : I<0xC7, MRM1m, (outs), (ins i64mem:$ptr),
603                "lock\n\t"
604                "cmpxchg8b\t$ptr",
605                [(X86cas8 addr:$ptr)]>, TB, LOCK;
606 }
607 let Defs = [AL, EFLAGS], Uses = [AL] in {
608 def LCMPXCHG8 : I<0xB0, MRMDestMem, (outs), (ins i8mem:$ptr, GR8:$swap),
609                "lock\n\t"
610                "cmpxchg{b}\t{$swap, $ptr|$ptr, $swap}",
611                [(X86cas addr:$ptr, GR8:$swap, 1)]>, TB, LOCK;
612 }
613
614 let Defs = [AX, EFLAGS], Uses = [AX] in {
615 def LCMPXCHG16 : I<0xB1, MRMDestMem, (outs), (ins i16mem:$ptr, GR16:$swap),
616                "lock\n\t"
617                "cmpxchg{w}\t{$swap, $ptr|$ptr, $swap}",
618                [(X86cas addr:$ptr, GR16:$swap, 2)]>, TB, OpSize, LOCK;
619 }
620
621 let Defs = [EAX, EFLAGS], Uses = [EAX] in {
622 def LCMPXCHG32 : I<0xB1, MRMDestMem, (outs), (ins i32mem:$ptr, GR32:$swap),
623                "lock\n\t"
624                "cmpxchg{l}\t{$swap, $ptr|$ptr, $swap}",
625                [(X86cas addr:$ptr, GR32:$swap, 4)]>, TB, LOCK;
626 }
627
628 let Defs = [RAX, EFLAGS], Uses = [RAX] in {
629 def LCMPXCHG64 : RI<0xB1, MRMDestMem, (outs), (ins i64mem:$ptr, GR64:$swap),
630                "lock\n\t"
631                "cmpxchgq\t$swap,$ptr",
632                [(X86cas addr:$ptr, GR64:$swap, 8)]>, TB, LOCK;
633 }
634
635 // Atomic exchange and add
636 let Constraints = "$val = $dst", Defs = [EFLAGS] in {
637 def LXADD8  : I<0xC0, MRMSrcMem, (outs GR8:$dst), (ins GR8:$val, i8mem:$ptr),
638                "lock\n\t"
639                "xadd{b}\t{$val, $ptr|$ptr, $val}",
640                [(set GR8:$dst, (atomic_load_add_8 addr:$ptr, GR8:$val))]>,
641                 TB, LOCK;
642 def LXADD16 : I<0xC1, MRMSrcMem, (outs GR16:$dst), (ins GR16:$val, i16mem:$ptr),
643                "lock\n\t"
644                "xadd{w}\t{$val, $ptr|$ptr, $val}",
645                [(set GR16:$dst, (atomic_load_add_16 addr:$ptr, GR16:$val))]>,
646                 TB, OpSize, LOCK;
647 def LXADD32 : I<0xC1, MRMSrcMem, (outs GR32:$dst), (ins GR32:$val, i32mem:$ptr),
648                "lock\n\t"
649                "xadd{l}\t{$val, $ptr|$ptr, $val}",
650                [(set GR32:$dst, (atomic_load_add_32 addr:$ptr, GR32:$val))]>,
651                 TB, LOCK;
652 def LXADD64 : RI<0xC1, MRMSrcMem, (outs GR64:$dst), (ins GR64:$val,i64mem:$ptr),
653                "lock\n\t"
654                "xadd\t$val, $ptr",
655                [(set GR64:$dst, (atomic_load_add_64 addr:$ptr, GR64:$val))]>,
656                 TB, LOCK;
657 }
658
659 //===----------------------------------------------------------------------===//
660 // Conditional Move Pseudo Instructions.
661 //===----------------------------------------------------------------------===//
662
663
664 // CMOV* - Used to implement the SSE SELECT DAG operation.  Expanded after
665 // instruction selection into a branch sequence.
666 let Uses = [EFLAGS], usesCustomInserter = 1 in {
667   def CMOV_FR32 : I<0, Pseudo,
668                     (outs FR32:$dst), (ins FR32:$t, FR32:$f, i8imm:$cond),
669                     "#CMOV_FR32 PSEUDO!",
670                     [(set FR32:$dst, (X86cmov FR32:$t, FR32:$f, imm:$cond,
671                                                   EFLAGS))]>;
672   def CMOV_FR64 : I<0, Pseudo,
673                     (outs FR64:$dst), (ins FR64:$t, FR64:$f, i8imm:$cond),
674                     "#CMOV_FR64 PSEUDO!",
675                     [(set FR64:$dst, (X86cmov FR64:$t, FR64:$f, imm:$cond,
676                                                   EFLAGS))]>;
677   def CMOV_V4F32 : I<0, Pseudo,
678                     (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
679                     "#CMOV_V4F32 PSEUDO!",
680                     [(set VR128:$dst,
681                       (v4f32 (X86cmov VR128:$t, VR128:$f, imm:$cond,
682                                           EFLAGS)))]>;
683   def CMOV_V2F64 : I<0, Pseudo,
684                     (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
685                     "#CMOV_V2F64 PSEUDO!",
686                     [(set VR128:$dst,
687                       (v2f64 (X86cmov VR128:$t, VR128:$f, imm:$cond,
688                                           EFLAGS)))]>;
689   def CMOV_V2I64 : I<0, Pseudo,
690                     (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
691                     "#CMOV_V2I64 PSEUDO!",
692                     [(set VR128:$dst,
693                       (v2i64 (X86cmov VR128:$t, VR128:$f, imm:$cond,
694                                           EFLAGS)))]>;
695 }
696
697
698 //===----------------------------------------------------------------------===//
699 // DAG Pattern Matching Rules
700 //===----------------------------------------------------------------------===//
701
702 // ConstantPool GlobalAddress, ExternalSymbol, and JumpTable
703 def : Pat<(i32 (X86Wrapper tconstpool  :$dst)), (MOV32ri tconstpool  :$dst)>;
704 def : Pat<(i32 (X86Wrapper tjumptable  :$dst)), (MOV32ri tjumptable  :$dst)>;
705 def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>;
706 def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>;
707 def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>;
708 def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>;
709
710 def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)),
711           (ADD32ri GR32:$src1, tconstpool:$src2)>;
712 def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)),
713           (ADD32ri GR32:$src1, tjumptable:$src2)>;
714 def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)),
715           (ADD32ri GR32:$src1, tglobaladdr:$src2)>;
716 def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)),
717           (ADD32ri GR32:$src1, texternalsym:$src2)>;
718 def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)),
719           (ADD32ri GR32:$src1, tblockaddress:$src2)>;
720
721 def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst),
722           (MOV32mi addr:$dst, tglobaladdr:$src)>;
723 def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst),
724           (MOV32mi addr:$dst, texternalsym:$src)>;
725 def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst),
726           (MOV32mi addr:$dst, tblockaddress:$src)>;
727
728
729
730 // ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small
731 // code model mode, should use 'movabs'.  FIXME: This is really a hack, the
732 //  'movabs' predicate should handle this sort of thing.
733 def : Pat<(i64 (X86Wrapper tconstpool  :$dst)),
734           (MOV64ri tconstpool  :$dst)>, Requires<[FarData]>;
735 def : Pat<(i64 (X86Wrapper tjumptable  :$dst)),
736           (MOV64ri tjumptable  :$dst)>, Requires<[FarData]>;
737 def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
738           (MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>;
739 def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
740           (MOV64ri texternalsym:$dst)>, Requires<[FarData]>;
741 def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
742           (MOV64ri tblockaddress:$dst)>, Requires<[FarData]>;
743
744 // In static codegen with small code model, we can get the address of a label
745 // into a register with 'movl'.  FIXME: This is a hack, the 'imm' predicate of
746 // the MOV64ri64i32 should accept these.
747 def : Pat<(i64 (X86Wrapper tconstpool  :$dst)),
748           (MOV64ri64i32 tconstpool  :$dst)>, Requires<[SmallCode]>;
749 def : Pat<(i64 (X86Wrapper tjumptable  :$dst)),
750           (MOV64ri64i32 tjumptable  :$dst)>, Requires<[SmallCode]>;
751 def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
752           (MOV64ri64i32 tglobaladdr :$dst)>, Requires<[SmallCode]>;
753 def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
754           (MOV64ri64i32 texternalsym:$dst)>, Requires<[SmallCode]>;
755 def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
756           (MOV64ri64i32 tblockaddress:$dst)>, Requires<[SmallCode]>;
757
758 // In kernel code model, we can get the address of a label
759 // into a register with 'movq'.  FIXME: This is a hack, the 'imm' predicate of
760 // the MOV64ri32 should accept these.
761 def : Pat<(i64 (X86Wrapper tconstpool  :$dst)),
762           (MOV64ri32 tconstpool  :$dst)>, Requires<[KernelCode]>;
763 def : Pat<(i64 (X86Wrapper tjumptable  :$dst)),
764           (MOV64ri32 tjumptable  :$dst)>, Requires<[KernelCode]>;
765 def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
766           (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
767 def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
768           (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
769 def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
770           (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;
771
772 // If we have small model and -static mode, it is safe to store global addresses
773 // directly as immediates.  FIXME: This is really a hack, the 'imm' predicate
774 // for MOV64mi32 should handle this sort of thing.
775 def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
776           (MOV64mi32 addr:$dst, tconstpool:$src)>,
777           Requires<[NearData, IsStatic]>;
778 def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
779           (MOV64mi32 addr:$dst, tjumptable:$src)>,
780           Requires<[NearData, IsStatic]>;
781 def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
782           (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
783           Requires<[NearData, IsStatic]>;
784 def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
785           (MOV64mi32 addr:$dst, texternalsym:$src)>,
786           Requires<[NearData, IsStatic]>;
787 def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
788           (MOV64mi32 addr:$dst, tblockaddress:$src)>,
789           Requires<[NearData, IsStatic]>;
790
791
792
793 // Calls
794
795 // tls has some funny stuff here...
796 // This corresponds to movabs $foo@tpoff, %rax
797 def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
798           (MOV64ri tglobaltlsaddr :$dst)>;
799 // This corresponds to add $foo@tpoff, %rax
800 def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
801           (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;
802 // This corresponds to mov foo@tpoff(%rbx), %eax
803 def : Pat<(load (i64 (X86Wrapper tglobaltlsaddr :$dst))),
804           (MOV64rm tglobaltlsaddr :$dst)>;
805
806
807 // Direct PC relative function call for small code model. 32-bit displacement
808 // sign extended to 64-bit.
809 def : Pat<(X86call (i64 tglobaladdr:$dst)),
810           (CALL64pcrel32 tglobaladdr:$dst)>, Requires<[NotWin64]>;
811 def : Pat<(X86call (i64 texternalsym:$dst)),
812           (CALL64pcrel32 texternalsym:$dst)>, Requires<[NotWin64]>;
813
814 def : Pat<(X86call (i64 tglobaladdr:$dst)),
815           (WINCALL64pcrel32 tglobaladdr:$dst)>, Requires<[IsWin64]>;
816 def : Pat<(X86call (i64 texternalsym:$dst)),
817           (WINCALL64pcrel32 texternalsym:$dst)>, Requires<[IsWin64]>;
818
819 // tailcall stuff
820 def : Pat<(X86tcret GR32_TC:$dst, imm:$off),
821           (TCRETURNri GR32_TC:$dst, imm:$off)>,
822           Requires<[In32BitMode]>;
823
824 // FIXME: This is disabled for 32-bit PIC mode because the global base
825 // register which is part of the address mode may be assigned a 
826 // callee-saved register.
827 def : Pat<(X86tcret (load addr:$dst), imm:$off),
828           (TCRETURNmi addr:$dst, imm:$off)>,
829           Requires<[In32BitMode, IsNotPIC]>;
830
831 def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
832           (TCRETURNdi texternalsym:$dst, imm:$off)>,
833           Requires<[In32BitMode]>;
834
835 def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
836           (TCRETURNdi texternalsym:$dst, imm:$off)>,
837           Requires<[In32BitMode]>;
838
839 def : Pat<(X86tcret GR64_TC:$dst, imm:$off),
840           (TCRETURNri64 GR64_TC:$dst, imm:$off)>,
841           Requires<[In64BitMode]>;
842
843 def : Pat<(X86tcret (load addr:$dst), imm:$off),
844           (TCRETURNmi64 addr:$dst, imm:$off)>,
845           Requires<[In64BitMode]>;
846
847 def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
848           (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>,
849           Requires<[In64BitMode]>;
850
851 def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
852           (TCRETURNdi64 texternalsym:$dst, imm:$off)>,
853           Requires<[In64BitMode]>;
854
855 // Normal calls, with various flavors of addresses.
856 def : Pat<(X86call (i32 tglobaladdr:$dst)),
857           (CALLpcrel32 tglobaladdr:$dst)>;
858 def : Pat<(X86call (i32 texternalsym:$dst)),
859           (CALLpcrel32 texternalsym:$dst)>;
860 def : Pat<(X86call (i32 imm:$dst)),
861           (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;
862
863 // X86 specific add which produces a flag.
864 def : Pat<(addc GR32:$src1, GR32:$src2),
865           (ADD32rr GR32:$src1, GR32:$src2)>;
866 def : Pat<(addc GR32:$src1, (load addr:$src2)),
867           (ADD32rm GR32:$src1, addr:$src2)>;
868 def : Pat<(addc GR32:$src1, imm:$src2),
869           (ADD32ri GR32:$src1, imm:$src2)>;
870 def : Pat<(addc GR32:$src1, i32immSExt8:$src2),
871           (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
872
873 def : Pat<(addc GR64:$src1, GR64:$src2),
874           (ADD64rr GR64:$src1, GR64:$src2)>;
875 def : Pat<(addc GR64:$src1, (load addr:$src2)),
876           (ADD64rm GR64:$src1, addr:$src2)>;
877 def : Pat<(addc GR64:$src1, i64immSExt8:$src2),
878           (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
879 def : Pat<(addc GR64:$src1, i64immSExt32:$src2),
880           (ADD64ri32 GR64:$src1, imm:$src2)>;
881
882 def : Pat<(subc GR32:$src1, GR32:$src2),
883           (SUB32rr GR32:$src1, GR32:$src2)>;
884 def : Pat<(subc GR32:$src1, (load addr:$src2)),
885           (SUB32rm GR32:$src1, addr:$src2)>;
886 def : Pat<(subc GR32:$src1, imm:$src2),
887           (SUB32ri GR32:$src1, imm:$src2)>;
888 def : Pat<(subc GR32:$src1, i32immSExt8:$src2),
889           (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
890
891 def : Pat<(subc GR64:$src1, GR64:$src2),
892           (SUB64rr GR64:$src1, GR64:$src2)>;
893 def : Pat<(subc GR64:$src1, (load addr:$src2)),
894           (SUB64rm GR64:$src1, addr:$src2)>;
895 def : Pat<(subc GR64:$src1, i64immSExt8:$src2),
896           (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
897 def : Pat<(subc GR64:$src1, imm:$src2),
898           (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
899
900 // Comparisons.
901
902 // TEST R,R is smaller than CMP R,0
903 def : Pat<(X86cmp GR8:$src1, 0),
904           (TEST8rr GR8:$src1, GR8:$src1)>;
905 def : Pat<(X86cmp GR16:$src1, 0),
906           (TEST16rr GR16:$src1, GR16:$src1)>;
907 def : Pat<(X86cmp GR32:$src1, 0),
908           (TEST32rr GR32:$src1, GR32:$src1)>;
909 def : Pat<(X86cmp GR64:$src1, 0),
910           (TEST64rr GR64:$src1, GR64:$src1)>;
911
912 // Conditional moves with folded loads with operands swapped and conditions
913 // inverted.
914 multiclass CMOVmr<PatLeaf InvertedCond, Instruction Inst16, Instruction Inst32,
915                   Instruction Inst64> {
916   def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS),
917             (Inst16 GR16:$src2, addr:$src1)>;
918   def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS),
919             (Inst32 GR32:$src2, addr:$src1)>;
920   def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS),
921             (Inst64 GR64:$src2, addr:$src1)>;
922 }
923
924 defm : CMOVmr<X86_COND_B , CMOVAE16rm, CMOVAE32rm, CMOVAE64rm>;
925 defm : CMOVmr<X86_COND_AE, CMOVB16rm , CMOVB32rm , CMOVB64rm>;
926 defm : CMOVmr<X86_COND_E , CMOVNE16rm, CMOVNE32rm, CMOVNE64rm>;
927 defm : CMOVmr<X86_COND_NE, CMOVE16rm , CMOVE32rm , CMOVE64rm>;
928 defm : CMOVmr<X86_COND_BE, CMOVA16rm , CMOVA32rm , CMOVA64rm>;
929 defm : CMOVmr<X86_COND_A , CMOVBE16rm, CMOVBE32rm, CMOVBE64rm>;
930 defm : CMOVmr<X86_COND_L , CMOVGE16rm, CMOVGE32rm, CMOVGE64rm>;
931 defm : CMOVmr<X86_COND_GE, CMOVL16rm , CMOVL32rm , CMOVL64rm>;
932 defm : CMOVmr<X86_COND_LE, CMOVG16rm , CMOVG32rm , CMOVG64rm>;
933 defm : CMOVmr<X86_COND_G , CMOVLE16rm, CMOVLE32rm, CMOVLE64rm>;
934 defm : CMOVmr<X86_COND_P , CMOVNP16rm, CMOVNP32rm, CMOVNP64rm>;
935 defm : CMOVmr<X86_COND_NP, CMOVP16rm , CMOVP32rm , CMOVP64rm>;
936 defm : CMOVmr<X86_COND_S , CMOVNS16rm, CMOVNS32rm, CMOVNS64rm>;
937 defm : CMOVmr<X86_COND_NS, CMOVS16rm , CMOVS32rm , CMOVS64rm>;
938 defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>;
939 defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>;
940
941 // zextload bool -> zextload byte
942 def : Pat<(zextloadi8i1  addr:$src), (MOV8rm     addr:$src)>;
943 def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
944 def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
945 def : Pat<(zextloadi64i1 addr:$src), (MOVZX64rm8 addr:$src)>;
946
947 // extload bool -> extload byte
948 // When extloading from 16-bit and smaller memory locations into 64-bit 
949 // registers, use zero-extending loads so that the entire 64-bit register is 
950 // defined, avoiding partial-register updates.
951
952 def : Pat<(extloadi8i1 addr:$src),   (MOV8rm      addr:$src)>;
953 def : Pat<(extloadi16i1 addr:$src),  (MOVZX16rm8  addr:$src)>;
954 def : Pat<(extloadi32i1 addr:$src),  (MOVZX32rm8  addr:$src)>;
955 def : Pat<(extloadi16i8 addr:$src),  (MOVZX16rm8  addr:$src)>;
956 def : Pat<(extloadi32i8 addr:$src),  (MOVZX32rm8  addr:$src)>;
957 def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
958
959 def : Pat<(extloadi64i1 addr:$src),  (MOVZX64rm8  addr:$src)>;
960 def : Pat<(extloadi64i8 addr:$src),  (MOVZX64rm8  addr:$src)>;
961 def : Pat<(extloadi64i16 addr:$src), (MOVZX64rm16 addr:$src)>;
962 // For other extloads, use subregs, since the high contents of the register are
963 // defined after an extload.
964 def : Pat<(extloadi64i32 addr:$src),
965           (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src),
966                          sub_32bit)>;
967
968 // anyext. Define these to do an explicit zero-extend to
969 // avoid partial-register updates.
970 def : Pat<(i16 (anyext GR8 :$src)), (MOVZX16rr8  GR8 :$src)>;
971 def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8  GR8 :$src)>;
972
973 // Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
974 def : Pat<(i32 (anyext GR16:$src)),
975           (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;
976
977 def : Pat<(i64 (anyext GR8 :$src)), (MOVZX64rr8  GR8  :$src)>;
978 def : Pat<(i64 (anyext GR16:$src)), (MOVZX64rr16 GR16 :$src)>;
979 def : Pat<(i64 (anyext GR32:$src)),
980           (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
981
982
983 // Any instruction that defines a 32-bit result leaves the high half of the
984 // register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
985 // be copying from a truncate. And x86's cmov doesn't do anything if the
986 // condition is false. But any other 32-bit operation will zero-extend
987 // up to 64 bits.
988 def def32 : PatLeaf<(i32 GR32:$src), [{
989   return N->getOpcode() != ISD::TRUNCATE &&
990          N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
991          N->getOpcode() != ISD::CopyFromReg &&
992          N->getOpcode() != X86ISD::CMOV;
993 }]>;
994
995 // In the case of a 32-bit def that is known to implicitly zero-extend,
996 // we can use a SUBREG_TO_REG.
997 def : Pat<(i64 (zext def32:$src)),
998           (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
999
1000 //===----------------------------------------------------------------------===//
1001 // Pattern match OR as ADD
1002 //===----------------------------------------------------------------------===//
1003
1004 // If safe, we prefer to pattern match OR as ADD at isel time. ADD can be
1005 // 3-addressified into an LEA instruction to avoid copies.  However, we also
1006 // want to finally emit these instructions as an or at the end of the code
1007 // generator to make the generated code easier to read.  To do this, we select
1008 // into "disjoint bits" pseudo ops.
1009
1010 // Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero.
1011 def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
1012   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
1013     return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue());
1014
1015   unsigned BitWidth = N->getValueType(0).getScalarType().getSizeInBits();
1016   APInt Mask = APInt::getAllOnesValue(BitWidth);
1017   APInt KnownZero0, KnownOne0;
1018   CurDAG->ComputeMaskedBits(N->getOperand(0), Mask, KnownZero0, KnownOne0, 0);
1019   APInt KnownZero1, KnownOne1;
1020   CurDAG->ComputeMaskedBits(N->getOperand(1), Mask, KnownZero1, KnownOne1, 0);
1021   return (~KnownZero0 & ~KnownZero1) == 0;
1022 }]>;
1023
1024
1025 // (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
1026 let AddedComplexity = 5 in { // Try this before the selecting to OR
1027
1028 let isCommutable = 1, isConvertibleToThreeAddress = 1,
1029     Constraints = "$src1 = $dst" in {
1030 def ADD16rr_DB  : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
1031                     "", // orw/addw REG, REG
1032                     [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>;
1033 def ADD32rr_DB  : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
1034                     "", // orl/addl REG, REG
1035                     [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>;
1036 def ADD64rr_DB  : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
1037                     "", // orq/addq REG, REG
1038                     [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>;
1039 }
1040
1041 def : Pat<(or_is_add GR16:$src1, imm:$src2),
1042           (ADD16ri GR16:$src1, imm:$src2)>;
1043 def : Pat<(or_is_add GR32:$src1, imm:$src2),
1044           (ADD32ri GR32:$src1, imm:$src2)>;
1045 def : Pat<(or_is_add GR64:$src1, i64immSExt32:$src2),
1046           (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
1047           
1048 def : Pat<(or_is_add GR16:$src1, i16immSExt8:$src2),
1049           (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
1050 def : Pat<(or_is_add GR32:$src1, i32immSExt8:$src2),
1051           (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
1052 def : Pat<(or_is_add GR64:$src1, i64immSExt8:$src2),
1053           (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
1054 } // AddedComplexity
1055
1056
1057 //===----------------------------------------------------------------------===//
1058 // Some peepholes
1059 //===----------------------------------------------------------------------===//
1060
1061 // Odd encoding trick: -128 fits into an 8-bit immediate field while
1062 // +128 doesn't, so in this special case use a sub instead of an add.
1063 def : Pat<(add GR16:$src1, 128),
1064           (SUB16ri8 GR16:$src1, -128)>;
1065 def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
1066           (SUB16mi8 addr:$dst, -128)>;
1067
1068 def : Pat<(add GR32:$src1, 128),
1069           (SUB32ri8 GR32:$src1, -128)>;
1070 def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
1071           (SUB32mi8 addr:$dst, -128)>;
1072
1073 def : Pat<(add GR64:$src1, 128),
1074           (SUB64ri8 GR64:$src1, -128)>;
1075 def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
1076           (SUB64mi8 addr:$dst, -128)>;
1077
1078 // The same trick applies for 32-bit immediate fields in 64-bit
1079 // instructions.
1080 def : Pat<(add GR64:$src1, 0x0000000080000000),
1081           (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
1082 def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst),
1083           (SUB64mi32 addr:$dst, 0xffffffff80000000)>;
1084
1085 // Use a 32-bit and with implicit zero-extension instead of a 64-bit and if it
1086 // has an immediate with at least 32 bits of leading zeros, to avoid needing to
1087 // materialize that immediate in a register first.
1088 def : Pat<(and GR64:$src, i64immZExt32:$imm),
1089           (SUBREG_TO_REG
1090             (i64 0),
1091             (AND32ri
1092               (EXTRACT_SUBREG GR64:$src, sub_32bit),
1093               (i32 (GetLo32XForm imm:$imm))),
1094             sub_32bit)>;
1095
1096
1097 // r & (2^16-1) ==> movz
1098 def : Pat<(and GR32:$src1, 0xffff),
1099           (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
1100 // r & (2^8-1) ==> movz
1101 def : Pat<(and GR32:$src1, 0xff),
1102           (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1, 
1103                                                              GR32_ABCD)),
1104                                       sub_8bit))>,
1105       Requires<[In32BitMode]>;
1106 // r & (2^8-1) ==> movz
1107 def : Pat<(and GR16:$src1, 0xff),
1108           (MOVZX16rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src1, 
1109                                                              GR16_ABCD)),
1110                                       sub_8bit))>,
1111       Requires<[In32BitMode]>;
1112
1113 // r & (2^32-1) ==> movz
1114 def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
1115           (MOVZX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
1116 // r & (2^16-1) ==> movz
1117 def : Pat<(and GR64:$src, 0xffff),
1118           (MOVZX64rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit)))>;
1119 // r & (2^8-1) ==> movz
1120 def : Pat<(and GR64:$src, 0xff),
1121           (MOVZX64rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit)))>;
1122 // r & (2^8-1) ==> movz
1123 def : Pat<(and GR32:$src1, 0xff),
1124            (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>,
1125       Requires<[In64BitMode]>;
1126 // r & (2^8-1) ==> movz
1127 def : Pat<(and GR16:$src1, 0xff),
1128            (MOVZX16rr8 (i8 (EXTRACT_SUBREG GR16:$src1, sub_8bit)))>,
1129       Requires<[In64BitMode]>;
1130
1131
1132 // sext_inreg patterns
1133 def : Pat<(sext_inreg GR32:$src, i16),
1134           (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
1135 def : Pat<(sext_inreg GR32:$src, i8),
1136           (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, 
1137                                                              GR32_ABCD)),
1138                                       sub_8bit))>,
1139       Requires<[In32BitMode]>;
1140 def : Pat<(sext_inreg GR16:$src, i8),
1141           (MOVSX16rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, 
1142                                                              GR16_ABCD)),
1143                                       sub_8bit))>,
1144       Requires<[In32BitMode]>;
1145
1146 def : Pat<(sext_inreg GR64:$src, i32),
1147           (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
1148 def : Pat<(sext_inreg GR64:$src, i16),
1149           (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
1150 def : Pat<(sext_inreg GR64:$src, i8),
1151           (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
1152 def : Pat<(sext_inreg GR32:$src, i8),
1153           (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>,
1154       Requires<[In64BitMode]>;
1155 def : Pat<(sext_inreg GR16:$src, i8),
1156           (MOVSX16rr8 (i8 (EXTRACT_SUBREG GR16:$src, sub_8bit)))>,
1157       Requires<[In64BitMode]>;
1158
1159
1160 // trunc patterns
1161 def : Pat<(i16 (trunc GR32:$src)),
1162           (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
1163 def : Pat<(i8 (trunc GR32:$src)),
1164           (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1165                           sub_8bit)>,
1166       Requires<[In32BitMode]>;
1167 def : Pat<(i8 (trunc GR16:$src)),
1168           (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1169                           sub_8bit)>,
1170       Requires<[In32BitMode]>;
1171 def : Pat<(i32 (trunc GR64:$src)),
1172           (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
1173 def : Pat<(i16 (trunc GR64:$src)),
1174           (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
1175 def : Pat<(i8 (trunc GR64:$src)),
1176           (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
1177 def : Pat<(i8 (trunc GR32:$src)),
1178           (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
1179       Requires<[In64BitMode]>;
1180 def : Pat<(i8 (trunc GR16:$src)),
1181           (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
1182       Requires<[In64BitMode]>;
1183
1184 // h-register tricks
1185 def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
1186           (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1187                           sub_8bit_hi)>,
1188       Requires<[In32BitMode]>;
1189 def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
1190           (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1191                           sub_8bit_hi)>,
1192       Requires<[In32BitMode]>;
1193 def : Pat<(srl GR16:$src, (i8 8)),
1194           (EXTRACT_SUBREG
1195             (MOVZX32rr8
1196               (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1197                               sub_8bit_hi)),
1198             sub_16bit)>,
1199       Requires<[In32BitMode]>;
1200 def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1201           (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, 
1202                                                              GR16_ABCD)),
1203                                       sub_8bit_hi))>,
1204       Requires<[In32BitMode]>;
1205 def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1206           (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, 
1207                                                              GR16_ABCD)),
1208                                       sub_8bit_hi))>,
1209       Requires<[In32BitMode]>;
1210 def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1211           (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, 
1212                                                              GR32_ABCD)),
1213                                       sub_8bit_hi))>,
1214       Requires<[In32BitMode]>;
1215 def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1216           (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, 
1217                                                              GR32_ABCD)),
1218                                       sub_8bit_hi))>,
1219       Requires<[In32BitMode]>;
1220       
1221 // h-register tricks.
1222 // For now, be conservative on x86-64 and use an h-register extract only if the
1223 // value is immediately zero-extended or stored, which are somewhat common
1224 // cases. This uses a bunch of code to prevent a register requiring a REX prefix
1225 // from being allocated in the same instruction as the h register, as there's
1226 // currently no way to describe this requirement to the register allocator.
1227
1228 // h-register extract and zero-extend.
1229 def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
1230           (SUBREG_TO_REG
1231             (i64 0),
1232             (MOVZX32_NOREXrr8
1233               (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1234                               sub_8bit_hi)),
1235             sub_32bit)>;
1236 def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1237           (MOVZX32_NOREXrr8
1238             (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1239                             sub_8bit_hi))>,
1240       Requires<[In64BitMode]>;
1241 def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1242           (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, 
1243                                                                    GR32_ABCD)),
1244                                              sub_8bit_hi))>,
1245       Requires<[In64BitMode]>;
1246 def : Pat<(srl GR16:$src, (i8 8)),
1247           (EXTRACT_SUBREG
1248             (MOVZX32_NOREXrr8
1249               (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1250                               sub_8bit_hi)),
1251             sub_16bit)>,
1252       Requires<[In64BitMode]>;
1253 def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1254           (MOVZX32_NOREXrr8
1255             (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1256                             sub_8bit_hi))>,
1257       Requires<[In64BitMode]>;
1258 def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1259           (MOVZX32_NOREXrr8
1260             (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1261                             sub_8bit_hi))>,
1262       Requires<[In64BitMode]>;
1263 def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
1264           (SUBREG_TO_REG
1265             (i64 0),
1266             (MOVZX32_NOREXrr8
1267               (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1268                               sub_8bit_hi)),
1269             sub_32bit)>;
1270 def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
1271           (SUBREG_TO_REG
1272             (i64 0),
1273             (MOVZX32_NOREXrr8
1274               (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1275                               sub_8bit_hi)),
1276             sub_32bit)>;
1277
1278 // h-register extract and store.
1279 def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
1280           (MOV8mr_NOREX
1281             addr:$dst,
1282             (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1283                             sub_8bit_hi))>;
1284 def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
1285           (MOV8mr_NOREX
1286             addr:$dst,
1287             (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1288                             sub_8bit_hi))>,
1289       Requires<[In64BitMode]>;
1290 def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
1291           (MOV8mr_NOREX
1292             addr:$dst,
1293             (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1294                             sub_8bit_hi))>,
1295       Requires<[In64BitMode]>;
1296       
1297       
1298 // (shl x, 1) ==> (add x, x)
1299 def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr  GR8 :$src1, GR8 :$src1)>;
1300 def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
1301 def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
1302 def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
1303
1304 // (shl x (and y, 31)) ==> (shl x, y)
1305 def : Pat<(shl GR8:$src1, (and CL, 31)),
1306           (SHL8rCL GR8:$src1)>;
1307 def : Pat<(shl GR16:$src1, (and CL, 31)),
1308           (SHL16rCL GR16:$src1)>;
1309 def : Pat<(shl GR32:$src1, (and CL, 31)),
1310           (SHL32rCL GR32:$src1)>;
1311 def : Pat<(store (shl (loadi8 addr:$dst), (and CL, 31)), addr:$dst),
1312           (SHL8mCL addr:$dst)>;
1313 def : Pat<(store (shl (loadi16 addr:$dst), (and CL, 31)), addr:$dst),
1314           (SHL16mCL addr:$dst)>;
1315 def : Pat<(store (shl (loadi32 addr:$dst), (and CL, 31)), addr:$dst),
1316           (SHL32mCL addr:$dst)>;
1317
1318 def : Pat<(srl GR8:$src1, (and CL, 31)),
1319           (SHR8rCL GR8:$src1)>;
1320 def : Pat<(srl GR16:$src1, (and CL, 31)),
1321           (SHR16rCL GR16:$src1)>;
1322 def : Pat<(srl GR32:$src1, (and CL, 31)),
1323           (SHR32rCL GR32:$src1)>;
1324 def : Pat<(store (srl (loadi8 addr:$dst), (and CL, 31)), addr:$dst),
1325           (SHR8mCL addr:$dst)>;
1326 def : Pat<(store (srl (loadi16 addr:$dst), (and CL, 31)), addr:$dst),
1327           (SHR16mCL addr:$dst)>;
1328 def : Pat<(store (srl (loadi32 addr:$dst), (and CL, 31)), addr:$dst),
1329           (SHR32mCL addr:$dst)>;
1330
1331 def : Pat<(sra GR8:$src1, (and CL, 31)),
1332           (SAR8rCL GR8:$src1)>;
1333 def : Pat<(sra GR16:$src1, (and CL, 31)),
1334           (SAR16rCL GR16:$src1)>;
1335 def : Pat<(sra GR32:$src1, (and CL, 31)),
1336           (SAR32rCL GR32:$src1)>;
1337 def : Pat<(store (sra (loadi8 addr:$dst), (and CL, 31)), addr:$dst),
1338           (SAR8mCL addr:$dst)>;
1339 def : Pat<(store (sra (loadi16 addr:$dst), (and CL, 31)), addr:$dst),
1340           (SAR16mCL addr:$dst)>;
1341 def : Pat<(store (sra (loadi32 addr:$dst), (and CL, 31)), addr:$dst),
1342           (SAR32mCL addr:$dst)>;
1343
1344 // (shl x (and y, 63)) ==> (shl x, y)
1345 def : Pat<(shl GR64:$src1, (and CL, 63)),
1346           (SHL64rCL GR64:$src1)>;
1347 def : Pat<(store (shl (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1348           (SHL64mCL addr:$dst)>;
1349
1350 def : Pat<(srl GR64:$src1, (and CL, 63)),
1351           (SHR64rCL GR64:$src1)>;
1352 def : Pat<(store (srl (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1353           (SHR64mCL addr:$dst)>;
1354
1355 def : Pat<(sra GR64:$src1, (and CL, 63)),
1356           (SAR64rCL GR64:$src1)>;
1357 def : Pat<(store (sra (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1358           (SAR64mCL addr:$dst)>;
1359
1360
1361 // (anyext (setcc_carry)) -> (setcc_carry)
1362 def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1363           (SETB_C16r)>;
1364 def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1365           (SETB_C32r)>;
1366 def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))),
1367           (SETB_C32r)>;
1368
1369
1370
1371
1372 //===----------------------------------------------------------------------===//
1373 // EFLAGS-defining Patterns
1374 //===----------------------------------------------------------------------===//
1375
1376 // add reg, reg
1377 def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr  GR8 :$src1, GR8 :$src2)>;
1378 def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
1379 def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
1380
1381 // add reg, mem
1382 def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
1383           (ADD8rm GR8:$src1, addr:$src2)>;
1384 def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
1385           (ADD16rm GR16:$src1, addr:$src2)>;
1386 def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
1387           (ADD32rm GR32:$src1, addr:$src2)>;
1388
1389 // add reg, imm
1390 def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri  GR8:$src1 , imm:$src2)>;
1391 def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
1392 def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
1393 def : Pat<(add GR16:$src1, i16immSExt8:$src2),
1394           (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
1395 def : Pat<(add GR32:$src1, i32immSExt8:$src2),
1396           (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
1397
1398 // sub reg, reg
1399 def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr  GR8 :$src1, GR8 :$src2)>;
1400 def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
1401 def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
1402
1403 // sub reg, mem
1404 def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
1405           (SUB8rm GR8:$src1, addr:$src2)>;
1406 def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
1407           (SUB16rm GR16:$src1, addr:$src2)>;
1408 def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
1409           (SUB32rm GR32:$src1, addr:$src2)>;
1410
1411 // sub reg, imm
1412 def : Pat<(sub GR8:$src1, imm:$src2),
1413           (SUB8ri GR8:$src1, imm:$src2)>;
1414 def : Pat<(sub GR16:$src1, imm:$src2),
1415           (SUB16ri GR16:$src1, imm:$src2)>;
1416 def : Pat<(sub GR32:$src1, imm:$src2),
1417           (SUB32ri GR32:$src1, imm:$src2)>;
1418 def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
1419           (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
1420 def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
1421           (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
1422
1423 // mul reg, reg
1424 def : Pat<(mul GR16:$src1, GR16:$src2),
1425           (IMUL16rr GR16:$src1, GR16:$src2)>;
1426 def : Pat<(mul GR32:$src1, GR32:$src2),
1427           (IMUL32rr GR32:$src1, GR32:$src2)>;
1428
1429 // mul reg, mem
1430 def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
1431           (IMUL16rm GR16:$src1, addr:$src2)>;
1432 def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
1433           (IMUL32rm GR32:$src1, addr:$src2)>;
1434
1435 // mul reg, imm
1436 def : Pat<(mul GR16:$src1, imm:$src2),
1437           (IMUL16rri GR16:$src1, imm:$src2)>;
1438 def : Pat<(mul GR32:$src1, imm:$src2),
1439           (IMUL32rri GR32:$src1, imm:$src2)>;
1440 def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
1441           (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
1442 def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
1443           (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
1444
1445 // reg = mul mem, imm
1446 def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
1447           (IMUL16rmi addr:$src1, imm:$src2)>;
1448 def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
1449           (IMUL32rmi addr:$src1, imm:$src2)>;
1450 def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
1451           (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
1452 def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
1453           (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
1454
1455 // Optimize multiply by 2 with EFLAGS result.
1456 let AddedComplexity = 2 in {
1457 def : Pat<(X86smul_flag GR16:$src1, 2), (ADD16rr GR16:$src1, GR16:$src1)>;
1458 def : Pat<(X86smul_flag GR32:$src1, 2), (ADD32rr GR32:$src1, GR32:$src1)>;
1459 }
1460
1461 // Patterns for nodes that do not produce flags, for instructions that do.
1462
1463 // addition
1464 def : Pat<(add GR64:$src1, GR64:$src2),
1465           (ADD64rr GR64:$src1, GR64:$src2)>;
1466 def : Pat<(add GR64:$src1, i64immSExt8:$src2),
1467           (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
1468 def : Pat<(add GR64:$src1, i64immSExt32:$src2),
1469           (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
1470 def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
1471           (ADD64rm GR64:$src1, addr:$src2)>;
1472
1473 // subtraction
1474 def : Pat<(sub GR64:$src1, GR64:$src2),
1475           (SUB64rr GR64:$src1, GR64:$src2)>;
1476 def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
1477           (SUB64rm GR64:$src1, addr:$src2)>;
1478 def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
1479           (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
1480 def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
1481           (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
1482
1483 // Multiply
1484 def : Pat<(mul GR64:$src1, GR64:$src2),
1485           (IMUL64rr GR64:$src1, GR64:$src2)>;
1486 def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
1487           (IMUL64rm GR64:$src1, addr:$src2)>;
1488 def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
1489           (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
1490 def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
1491           (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
1492 def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
1493           (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
1494 def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
1495           (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
1496
1497 // Increment reg.
1498 def : Pat<(add GR8 :$src, 1), (INC8r     GR8 :$src)>;
1499 def : Pat<(add GR16:$src, 1), (INC16r    GR16:$src)>, Requires<[In32BitMode]>;
1500 def : Pat<(add GR16:$src, 1), (INC64_16r GR16:$src)>, Requires<[In64BitMode]>;
1501 def : Pat<(add GR32:$src, 1), (INC32r    GR32:$src)>, Requires<[In32BitMode]>;
1502 def : Pat<(add GR32:$src, 1), (INC64_32r GR32:$src)>, Requires<[In64BitMode]>;
1503 def : Pat<(add GR64:$src, 1), (INC64r    GR64:$src)>;
1504
1505 // Decrement reg.
1506 def : Pat<(add GR8 :$src, -1), (DEC8r     GR8 :$src)>;
1507 def : Pat<(add GR16:$src, -1), (DEC16r    GR16:$src)>, Requires<[In32BitMode]>;
1508 def : Pat<(add GR16:$src, -1), (DEC64_16r GR16:$src)>, Requires<[In64BitMode]>;
1509 def : Pat<(add GR32:$src, -1), (DEC32r    GR32:$src)>, Requires<[In32BitMode]>;
1510 def : Pat<(add GR32:$src, -1), (DEC64_32r GR32:$src)>, Requires<[In64BitMode]>;
1511 def : Pat<(add GR64:$src, -1), (DEC64r    GR64:$src)>;
1512
1513 // or reg/reg.
1514 def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr  GR8 :$src1, GR8 :$src2)>;
1515 def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
1516 def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
1517 def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;
1518
1519 // or reg/mem
1520 def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
1521           (OR8rm GR8:$src1, addr:$src2)>;
1522 def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
1523           (OR16rm GR16:$src1, addr:$src2)>;
1524 def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
1525           (OR32rm GR32:$src1, addr:$src2)>;
1526 def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
1527           (OR64rm GR64:$src1, addr:$src2)>;
1528
1529 // or reg/imm
1530 def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri  GR8 :$src1, imm:$src2)>;
1531 def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
1532 def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
1533 def : Pat<(or GR16:$src1, i16immSExt8:$src2),
1534           (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1535 def : Pat<(or GR32:$src1, i32immSExt8:$src2),
1536           (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1537 def : Pat<(or GR64:$src1, i64immSExt8:$src2),
1538           (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1539 def : Pat<(or GR64:$src1, i64immSExt32:$src2),
1540           (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1541
1542 // xor reg/reg
1543 def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr  GR8 :$src1, GR8 :$src2)>;
1544 def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
1545 def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
1546 def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;
1547
1548 // xor reg/mem
1549 def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
1550           (XOR8rm GR8:$src1, addr:$src2)>;
1551 def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
1552           (XOR16rm GR16:$src1, addr:$src2)>;
1553 def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
1554           (XOR32rm GR32:$src1, addr:$src2)>;
1555 def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
1556           (XOR64rm GR64:$src1, addr:$src2)>;
1557
1558 // xor reg/imm
1559 def : Pat<(xor GR8:$src1, imm:$src2),
1560           (XOR8ri GR8:$src1, imm:$src2)>;
1561 def : Pat<(xor GR16:$src1, imm:$src2),
1562           (XOR16ri GR16:$src1, imm:$src2)>;
1563 def : Pat<(xor GR32:$src1, imm:$src2),
1564           (XOR32ri GR32:$src1, imm:$src2)>;
1565 def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
1566           (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1567 def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
1568           (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1569 def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
1570           (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1571 def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
1572           (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1573
1574 // and reg/reg
1575 def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr  GR8 :$src1, GR8 :$src2)>;
1576 def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
1577 def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
1578 def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;
1579
1580 // and reg/mem
1581 def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
1582           (AND8rm GR8:$src1, addr:$src2)>;
1583 def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
1584           (AND16rm GR16:$src1, addr:$src2)>;
1585 def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
1586           (AND32rm GR32:$src1, addr:$src2)>;
1587 def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
1588           (AND64rm GR64:$src1, addr:$src2)>;
1589
1590 // and reg/imm
1591 def : Pat<(and GR8:$src1, imm:$src2),
1592           (AND8ri GR8:$src1, imm:$src2)>;
1593 def : Pat<(and GR16:$src1, imm:$src2),
1594           (AND16ri GR16:$src1, imm:$src2)>;
1595 def : Pat<(and GR32:$src1, imm:$src2),
1596           (AND32ri GR32:$src1, imm:$src2)>;
1597 def : Pat<(and GR16:$src1, i16immSExt8:$src2),
1598           (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
1599 def : Pat<(and GR32:$src1, i32immSExt8:$src2),
1600           (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
1601 def : Pat<(and GR64:$src1, i64immSExt8:$src2),
1602           (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
1603 def : Pat<(and GR64:$src1, i64immSExt32:$src2),
1604           (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;
1605