Remove an invalid and unnecessary Pat pattern from the X86 backend:
[oota-llvm.git] / lib / Target / X86 / X86InstrCompiler.td
1 //===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file describes the various pseudo instructions used by the compiler,
11 // as well as Pat patterns used during instruction selection.
12 //
13 //===----------------------------------------------------------------------===//
14
15 //===----------------------------------------------------------------------===//
16 // Pattern Matching Support
17
18 def GetLo32XForm : SDNodeXForm<imm, [{
19   // Transformation function: get the low 32 bits.
20   return getI32Imm((unsigned)N->getZExtValue());
21 }]>;
22
23 def GetLo8XForm : SDNodeXForm<imm, [{
24   // Transformation function: get the low 8 bits.
25   return getI8Imm((uint8_t)N->getZExtValue());
26 }]>;
27
28
29 //===----------------------------------------------------------------------===//
30 // Random Pseudo Instructions.
31
32 // PIC base construction.  This expands to code that looks like this:
33 //     call  $next_inst
34 //     popl %destreg"
35 let neverHasSideEffects = 1, isNotDuplicable = 1, Uses = [ESP] in
36   def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
37                       "", []>;
38
39
40 // ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
41 // a stack adjustment and the codegen must know that they may modify the stack
42 // pointer before prolog-epilog rewriting occurs.
43 // Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
44 // sub / add which can clobber EFLAGS.
45 let Defs = [ESP, EFLAGS], Uses = [ESP] in {
46 def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt),
47                            "#ADJCALLSTACKDOWN",
48                            [(X86callseq_start timm:$amt)]>,
49                           Requires<[In32BitMode]>;
50 def ADJCALLSTACKUP32   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
51                            "#ADJCALLSTACKUP",
52                            [(X86callseq_end timm:$amt1, timm:$amt2)]>,
53                           Requires<[In32BitMode]>;
54 }
55
56 // ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
57 // a stack adjustment and the codegen must know that they may modify the stack
58 // pointer before prolog-epilog rewriting occurs.
59 // Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
60 // sub / add which can clobber EFLAGS.
61 let Defs = [RSP, EFLAGS], Uses = [RSP] in {
62 def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt),
63                            "#ADJCALLSTACKDOWN",
64                            [(X86callseq_start timm:$amt)]>,
65                           Requires<[In64BitMode]>;
66 def ADJCALLSTACKUP64   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
67                            "#ADJCALLSTACKUP",
68                            [(X86callseq_end timm:$amt1, timm:$amt2)]>,
69                           Requires<[In64BitMode]>;
70 }
71
72
73
74 // x86-64 va_start lowering magic.
75 let usesCustomInserter = 1 in {
76 def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
77                               (outs),
78                               (ins GR8:$al,
79                                    i64imm:$regsavefi, i64imm:$offset,
80                                    variable_ops),
81                               "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
82                               [(X86vastart_save_xmm_regs GR8:$al,
83                                                          imm:$regsavefi,
84                                                          imm:$offset)]>;
85
86 // The VAARG_64 pseudo-instruction takes the address of the va_list,
87 // and places the address of the next argument into a register.
88 let Defs = [EFLAGS] in
89 def VAARG_64 : I<0, Pseudo,
90                  (outs GR64:$dst),
91                  (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
92                  "#VAARG_64 $dst, $ap, $size, $mode, $align",
93                  [(set GR64:$dst,
94                     (X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)),
95                   (implicit EFLAGS)]>;
96
97 // Dynamic stack allocation yields a _chkstk or _alloca call for all Windows
98 // targets.  These calls are needed to probe the stack when allocating more than
99 // 4k bytes in one go. Touching the stack at 4K increments is necessary to
100 // ensure that the guard pages used by the OS virtual memory manager are
101 // allocated in correct sequence.
102 // The main point of having separate instruction are extra unmodelled effects
103 // (compared to ordinary calls) like stack pointer change.
104
105 let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
106   def WIN_ALLOCA : I<0, Pseudo, (outs), (ins),
107                      "# dynamic stack allocation",
108                      [(X86WinAlloca)]>;
109
110 // When using segmented stacks these are lowered into instructions which first
111 // check if the current stacklet has enough free memory. If it does, memory is
112 // allocated by bumping the stack pointer. Otherwise memory is allocated from 
113 // the heap.
114
115 let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
116 def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size),
117                       "# variable sized alloca for segmented stacks",
118                       [(set GR32:$dst,
119                          (X86SegAlloca GR32:$size))]>,
120                     Requires<[In32BitMode]>;
121
122 let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
123 def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
124                       "# variable sized alloca for segmented stacks",
125                       [(set GR64:$dst,
126                          (X86SegAlloca GR64:$size))]>,
127                     Requires<[In64BitMode]>;
128 }
129
130 // The MSVC runtime contains an _ftol2 routine for converting floating-point
131 // to integer values. It has a strange calling convention: the input is
132 // popped from the x87 stack, and the return value is given in EDX:EAX. No
133 // other registers (aside from flags) are touched.
134 // Microsoft toolchains do not support 80-bit precision, so a WIN_FTOL_80
135 // variant is unnecessary.
136
137 let Defs = [EAX, EDX, EFLAGS], FPForm = SpecialFP in {
138   def WIN_FTOL_32 : I<0, Pseudo, (outs), (ins RFP32:$src),
139                       "# win32 fptoui",
140                       [(X86WinFTOL RFP32:$src)]>,
141                     Requires<[In32BitMode]>;
142
143   def WIN_FTOL_64 : I<0, Pseudo, (outs), (ins RFP64:$src),
144                       "# win32 fptoui",
145                       [(X86WinFTOL RFP64:$src)]>,
146                     Requires<[In32BitMode]>;
147 }
148
149 //===----------------------------------------------------------------------===//
150 // EH Pseudo Instructions
151 //
152 let isTerminator = 1, isReturn = 1, isBarrier = 1,
153     hasCtrlDep = 1, isCodeGenOnly = 1 in {
154 def EH_RETURN   : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
155                     "ret\t#eh_return, addr: $addr",
156                     [(X86ehret GR32:$addr)], IIC_RET>;
157
158 }
159
160 let isTerminator = 1, isReturn = 1, isBarrier = 1,
161     hasCtrlDep = 1, isCodeGenOnly = 1 in {
162 def EH_RETURN64   : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
163                      "ret\t#eh_return, addr: $addr",
164                      [(X86ehret GR64:$addr)], IIC_RET>;
165
166 }
167
168 let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
169     usesCustomInserter = 1 in {
170   def EH_SjLj_SetJmp32  : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf),
171                             "#EH_SJLJ_SETJMP32",
172                             [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
173                           Requires<[In32BitMode]>;
174   def EH_SjLj_SetJmp64  : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf),
175                             "#EH_SJLJ_SETJMP64",
176                             [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
177                           Requires<[In64BitMode]>;
178   let isTerminator = 1 in {
179   def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf),
180                             "#EH_SJLJ_LONGJMP32",
181                             [(X86eh_sjlj_longjmp addr:$buf)]>,
182                           Requires<[In32BitMode]>;
183   def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf),
184                             "#EH_SJLJ_LONGJMP64",
185                             [(X86eh_sjlj_longjmp addr:$buf)]>,
186                           Requires<[In64BitMode]>;
187   }
188 }
189
190 let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in {
191   def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst),
192                         "#EH_SjLj_Setup\t$dst", []>;
193 }
194
195 //===----------------------------------------------------------------------===//
196 // Pseudo instructions used by segmented stacks.
197 //
198
199 // This is lowered into a RET instruction by MCInstLower.  We need
200 // this so that we don't have to have a MachineBasicBlock which ends
201 // with a RET and also has successors.
202 let isPseudo = 1 in {
203 def MORESTACK_RET: I<0, Pseudo, (outs), (ins),
204                           "", []>;
205
206 // This instruction is lowered to a RET followed by a MOV.  The two
207 // instructions are not generated on a higher level since then the
208 // verifier sees a MachineBasicBlock ending with a non-terminator.
209 def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins),
210                                   "", []>;
211 }
212
213 //===----------------------------------------------------------------------===//
214 // Alias Instructions
215 //===----------------------------------------------------------------------===//
216
217 // Alias instructions that map movr0 to xor.
218 // FIXME: remove when we can teach regalloc that xor reg, reg is ok.
219 // FIXME: Set encoding to pseudo.
220 let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
221     isCodeGenOnly = 1 in {
222 def MOV8r0   : I<0x30, MRMInitReg, (outs GR8 :$dst), (ins), "",
223                  [(set GR8:$dst, 0)], IIC_ALU_NONMEM>;
224
225 // We want to rewrite MOV16r0 in terms of MOV32r0, because it's a smaller
226 // encoding and avoids a partial-register update sometimes, but doing so
227 // at isel time interferes with rematerialization in the current register
228 // allocator. For now, this is rewritten when the instruction is lowered
229 // to an MCInst.
230 def MOV16r0   : I<0x31, MRMInitReg, (outs GR16:$dst), (ins),
231                  "",
232                  [(set GR16:$dst, 0)], IIC_ALU_NONMEM>, OpSize;
233
234 // FIXME: Set encoding to pseudo.
235 def MOV32r0  : I<0x31, MRMInitReg, (outs GR32:$dst), (ins), "",
236                  [(set GR32:$dst, 0)], IIC_ALU_NONMEM>;
237 }
238
239 // We want to rewrite MOV64r0 in terms of MOV32r0, because it's sometimes a
240 // smaller encoding, but doing so at isel time interferes with rematerialization
241 // in the current register allocator. For now, this is rewritten when the
242 // instruction is lowered to an MCInst.
243 // FIXME: AddedComplexity gives this a higher priority than MOV64ri32. Remove
244 // when we have a better way to specify isel priority.
245 let Defs = [EFLAGS], isCodeGenOnly=1,
246     AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1 in
247 def MOV64r0   : I<0x31, MRMInitReg, (outs GR64:$dst), (ins), "",
248                  [(set GR64:$dst, 0)], IIC_ALU_NONMEM>;
249
250 // Materialize i64 constant where top 32-bits are zero. This could theoretically
251 // use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
252 // that would make it more difficult to rematerialize.
253 let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1,
254     isCodeGenOnly = 1 in
255 def MOV64ri64i32 : Ii32<0xB8, AddRegFrm, (outs GR64:$dst), (ins i64i32imm:$src),
256                         "", [(set GR64:$dst, i64immZExt32:$src)],
257                         IIC_ALU_NONMEM>;
258
259 // Use sbb to materialize carry bit.
260 let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1 in {
261 // FIXME: These are pseudo ops that should be replaced with Pat<> patterns.
262 // However, Pat<> can't replicate the destination reg into the inputs of the
263 // result.
264 def SETB_C8r : I<0, Pseudo, (outs GR8:$dst), (ins), "",
265                  [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
266 def SETB_C16r : I<0, Pseudo, (outs GR16:$dst), (ins), "",
267                  [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
268 def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "",
269                  [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
270 def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "",
271                  [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
272 } // isCodeGenOnly
273
274
275 def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
276           (SETB_C16r)>;
277 def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
278           (SETB_C32r)>;
279 def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
280           (SETB_C64r)>;
281
282 def : Pat<(i16 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
283           (SETB_C16r)>;
284 def : Pat<(i32 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
285           (SETB_C32r)>;
286 def : Pat<(i64 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
287           (SETB_C64r)>;
288
289 // We canonicalize 'setb' to "(and (sbb reg,reg), 1)" on the hope that the and
290 // will be eliminated and that the sbb can be extended up to a wider type.  When
291 // this happens, it is great.  However, if we are left with an 8-bit sbb and an
292 // and, we might as well just match it as a setb.
293 def : Pat<(and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1),
294           (SETBr)>;
295
296 // (add OP, SETB) -> (adc OP, 0)
297 def : Pat<(add (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR8:$op),
298           (ADC8ri GR8:$op, 0)>;
299 def : Pat<(add (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR32:$op),
300           (ADC32ri8 GR32:$op, 0)>;
301 def : Pat<(add (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR64:$op),
302           (ADC64ri8 GR64:$op, 0)>;
303
304 // (sub OP, SETB) -> (sbb OP, 0)
305 def : Pat<(sub GR8:$op, (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
306           (SBB8ri GR8:$op, 0)>;
307 def : Pat<(sub GR32:$op, (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
308           (SBB32ri8 GR32:$op, 0)>;
309 def : Pat<(sub GR64:$op, (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
310           (SBB64ri8 GR64:$op, 0)>;
311
312 // (sub OP, SETCC_CARRY) -> (adc OP, 0)
313 def : Pat<(sub GR8:$op, (i8 (X86setcc_c X86_COND_B, EFLAGS))),
314           (ADC8ri GR8:$op, 0)>;
315 def : Pat<(sub GR32:$op, (i32 (X86setcc_c X86_COND_B, EFLAGS))),
316           (ADC32ri8 GR32:$op, 0)>;
317 def : Pat<(sub GR64:$op, (i64 (X86setcc_c X86_COND_B, EFLAGS))),
318           (ADC64ri8 GR64:$op, 0)>;
319
320 //===----------------------------------------------------------------------===//
321 // String Pseudo Instructions
322 //
323 let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
324 def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
325                     [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
326                    Requires<[In32BitMode]>;
327 def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
328                     [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize,
329                    Requires<[In32BitMode]>;
330 def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
331                     [(X86rep_movs i32)], IIC_REP_MOVS>, REP,
332                    Requires<[In32BitMode]>;
333 }
334
335 let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in {
336 def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
337                     [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
338                    Requires<[In64BitMode]>;
339 def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
340                     [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize,
341                    Requires<[In64BitMode]>;
342 def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
343                     [(X86rep_movs i32)], IIC_REP_MOVS>, REP,
344                    Requires<[In64BitMode]>;
345 def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}",
346                     [(X86rep_movs i64)], IIC_REP_MOVS>, REP,
347                    Requires<[In64BitMode]>;
348 }
349
350 // FIXME: Should use "(X86rep_stos AL)" as the pattern.
351 let Defs = [ECX,EDI], isCodeGenOnly = 1 in {
352   let Uses = [AL,ECX,EDI] in
353   def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
354                       [(X86rep_stos i8)], IIC_REP_STOS>, REP,
355                      Requires<[In32BitMode]>;
356   let Uses = [AX,ECX,EDI] in
357   def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
358                       [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize,
359                      Requires<[In32BitMode]>;
360   let Uses = [EAX,ECX,EDI] in
361   def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
362                       [(X86rep_stos i32)], IIC_REP_STOS>, REP,
363                      Requires<[In32BitMode]>;
364 }
365
366 let Defs = [RCX,RDI], isCodeGenOnly = 1 in {
367   let Uses = [AL,RCX,RDI] in
368   def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
369                       [(X86rep_stos i8)], IIC_REP_STOS>, REP,
370                      Requires<[In64BitMode]>;
371   let Uses = [AX,RCX,RDI] in
372   def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
373                       [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize,
374                      Requires<[In64BitMode]>;
375   let Uses = [RAX,RCX,RDI] in
376   def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
377                       [(X86rep_stos i32)], IIC_REP_STOS>, REP,
378                      Requires<[In64BitMode]>;
379  
380   let Uses = [RAX,RCX,RDI] in
381   def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}",
382                       [(X86rep_stos i64)], IIC_REP_STOS>, REP,
383                      Requires<[In64BitMode]>;
384 }
385
386 //===----------------------------------------------------------------------===//
387 // Thread Local Storage Instructions
388 //
389
390 // ELF TLS Support
391 // All calls clobber the non-callee saved registers. ESP is marked as
392 // a use to prevent stack-pointer assignments that appear immediately
393 // before calls from potentially appearing dead.
394 let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0,
395             MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
396             XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
397             XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
398     Uses = [ESP] in {
399 def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
400                   "# TLS_addr32",
401                   [(X86tlsaddr tls32addr:$sym)]>,
402                   Requires<[In32BitMode]>;
403 def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
404                   "# TLS_base_addr32",
405                   [(X86tlsbaseaddr tls32baseaddr:$sym)]>,
406                   Requires<[In32BitMode]>;
407 }
408
409 // All calls clobber the non-callee saved registers. RSP is marked as
410 // a use to prevent stack-pointer assignments that appear immediately
411 // before calls from potentially appearing dead.
412 let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
413             FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, ST1,
414             MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
415             XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
416             XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
417     Uses = [RSP] in {
418 def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
419                    "# TLS_addr64",
420                   [(X86tlsaddr tls64addr:$sym)]>,
421                   Requires<[In64BitMode]>;
422 def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
423                    "# TLS_base_addr64",
424                   [(X86tlsbaseaddr tls64baseaddr:$sym)]>,
425                   Requires<[In64BitMode]>;
426 }
427
428 // Darwin TLS Support
429 // For i386, the address of the thunk is passed on the stack, on return the
430 // address of the variable is in %eax.  %ecx is trashed during the function
431 // call.  All other registers are preserved.
432 let Defs = [EAX, ECX, EFLAGS],
433     Uses = [ESP],
434     usesCustomInserter = 1 in
435 def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
436                 "# TLSCall_32",
437                 [(X86TLSCall addr:$sym)]>,
438                 Requires<[In32BitMode]>;
439
440 // For x86_64, the address of the thunk is passed in %rdi, on return
441 // the address of the variable is in %rax.  All other registers are preserved.
442 let Defs = [RAX, EFLAGS],
443     Uses = [RSP, RDI],
444     usesCustomInserter = 1 in
445 def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
446                   "# TLSCall_64",
447                   [(X86TLSCall addr:$sym)]>,
448                   Requires<[In64BitMode]>;
449
450
451 //===----------------------------------------------------------------------===//
452 // Conditional Move Pseudo Instructions
453
454 // X86 doesn't have 8-bit conditional moves. Use a customInserter to
455 // emit control flow. An alternative to this is to mark i8 SELECT as Promote,
456 // however that requires promoting the operands, and can induce additional
457 // i8 register pressure.
458 let usesCustomInserter = 1, Uses = [EFLAGS] in {
459 def CMOV_GR8 : I<0, Pseudo,
460                  (outs GR8:$dst), (ins GR8:$src1, GR8:$src2, i8imm:$cond),
461                  "#CMOV_GR8 PSEUDO!",
462                  [(set GR8:$dst, (X86cmov GR8:$src1, GR8:$src2,
463                                           imm:$cond, EFLAGS))]>;
464
465 let Predicates = [NoCMov] in {
466 def CMOV_GR32 : I<0, Pseudo,
467                     (outs GR32:$dst), (ins GR32:$src1, GR32:$src2, i8imm:$cond),
468                     "#CMOV_GR32* PSEUDO!",
469                     [(set GR32:$dst,
470                       (X86cmov GR32:$src1, GR32:$src2, imm:$cond, EFLAGS))]>;
471 def CMOV_GR16 : I<0, Pseudo,
472                     (outs GR16:$dst), (ins GR16:$src1, GR16:$src2, i8imm:$cond),
473                     "#CMOV_GR16* PSEUDO!",
474                     [(set GR16:$dst,
475                       (X86cmov GR16:$src1, GR16:$src2, imm:$cond, EFLAGS))]>;
476 } // Predicates = [NoCMov]
477
478 // fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
479 // SSE1.
480 let Predicates = [FPStackf32] in
481 def CMOV_RFP32 : I<0, Pseudo,
482                     (outs RFP32:$dst),
483                     (ins RFP32:$src1, RFP32:$src2, i8imm:$cond),
484                     "#CMOV_RFP32 PSEUDO!",
485                     [(set RFP32:$dst,
486                       (X86cmov RFP32:$src1, RFP32:$src2, imm:$cond,
487                                                   EFLAGS))]>;
488 // fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
489 // SSE2.
490 let Predicates = [FPStackf64] in
491 def CMOV_RFP64 : I<0, Pseudo,
492                     (outs RFP64:$dst),
493                     (ins RFP64:$src1, RFP64:$src2, i8imm:$cond),
494                     "#CMOV_RFP64 PSEUDO!",
495                     [(set RFP64:$dst,
496                       (X86cmov RFP64:$src1, RFP64:$src2, imm:$cond,
497                                                   EFLAGS))]>;
498 def CMOV_RFP80 : I<0, Pseudo,
499                     (outs RFP80:$dst),
500                     (ins RFP80:$src1, RFP80:$src2, i8imm:$cond),
501                     "#CMOV_RFP80 PSEUDO!",
502                     [(set RFP80:$dst,
503                       (X86cmov RFP80:$src1, RFP80:$src2, imm:$cond,
504                                                   EFLAGS))]>;
505 } // UsesCustomInserter = 1, Uses = [EFLAGS]
506
507
508 //===----------------------------------------------------------------------===//
509 // Atomic Instruction Pseudo Instructions
510 //===----------------------------------------------------------------------===//
511
512 // Pseudo atomic instructions
513
514 multiclass PSEUDO_ATOMIC_LOAD_BINOP<string mnemonic> {
515   let usesCustomInserter = 1, mayLoad = 1, mayStore = 1 in {
516     let Defs = [EFLAGS, AL] in
517     def NAME#8  : I<0, Pseudo, (outs GR8:$dst),
518                     (ins i8mem:$ptr, GR8:$val),
519                     !strconcat(mnemonic, "8 PSEUDO!"), []>;
520     let Defs = [EFLAGS, AX] in
521     def NAME#16 : I<0, Pseudo,(outs GR16:$dst),
522                     (ins i16mem:$ptr, GR16:$val),
523                     !strconcat(mnemonic, "16 PSEUDO!"), []>;
524     let Defs = [EFLAGS, EAX] in
525     def NAME#32 : I<0, Pseudo, (outs GR32:$dst),
526                     (ins i32mem:$ptr, GR32:$val),
527                     !strconcat(mnemonic, "32 PSEUDO!"), []>;
528     let Defs = [EFLAGS, RAX] in
529     def NAME#64 : I<0, Pseudo, (outs GR64:$dst),
530                     (ins i64mem:$ptr, GR64:$val),
531                     !strconcat(mnemonic, "64 PSEUDO!"), []>;
532   }
533 }
534
535 multiclass PSEUDO_ATOMIC_LOAD_BINOP_PATS<string name, string frag> {
536   def : Pat<(!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val),
537             (!cast<Instruction>(name # "8") addr:$ptr, GR8:$val)>;
538   def : Pat<(!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val),
539             (!cast<Instruction>(name # "16") addr:$ptr, GR16:$val)>;
540   def : Pat<(!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val),
541             (!cast<Instruction>(name # "32") addr:$ptr, GR32:$val)>;
542   def : Pat<(!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val),
543             (!cast<Instruction>(name # "64") addr:$ptr, GR64:$val)>;
544 }
545
546 // Atomic exchange, and, or, xor
547 defm ATOMAND  : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMAND">;
548 defm ATOMOR   : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMOR">;
549 defm ATOMXOR  : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMXOR">;
550 defm ATOMNAND : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMNAND">;
551 defm ATOMMAX  : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMMAX">;
552 defm ATOMMIN  : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMMIN">;
553 defm ATOMUMAX : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMUMAX">;
554 defm ATOMUMIN : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMUMIN">;
555
556 defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMAND",  "atomic_load_and">;
557 defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMOR",   "atomic_load_or">;
558 defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMXOR",  "atomic_load_xor">;
559 defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMNAND", "atomic_load_nand">;
560 defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMMAX",  "atomic_load_max">;
561 defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMMIN",  "atomic_load_min">;
562 defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMUMAX", "atomic_load_umax">;
563 defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMUMIN", "atomic_load_umin">;
564
565 multiclass PSEUDO_ATOMIC_LOAD_BINOP6432<string mnemonic> {
566   let usesCustomInserter = 1, Defs = [EFLAGS, EAX, EDX],
567       mayLoad = 1, mayStore = 1, hasSideEffects = 0 in
568     def NAME#6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
569                       (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
570                       !strconcat(mnemonic, "6432 PSEUDO!"), []>;
571 }
572
573 defm ATOMAND  : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMAND">;
574 defm ATOMOR   : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMOR">;
575 defm ATOMXOR  : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMXOR">;
576 defm ATOMNAND : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMNAND">;
577 defm ATOMADD  : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMADD">;
578 defm ATOMSUB  : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMSUB">;
579 defm ATOMMAX  : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMMAX">;
580 defm ATOMMIN  : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMMIN">;
581 defm ATOMUMAX : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMUMAX">;
582 defm ATOMUMIN : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMUMIN">;
583 defm ATOMSWAP : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMSWAP">;
584
585 //===----------------------------------------------------------------------===//
586 // Normal-Instructions-With-Lock-Prefix Pseudo Instructions
587 //===----------------------------------------------------------------------===//
588
589 // FIXME: Use normal instructions and add lock prefix dynamically.
590
591 // Memory barriers
592
593 // TODO: Get this to fold the constant into the instruction.
594 let isCodeGenOnly = 1, Defs = [EFLAGS] in
595 def OR32mrLocked  : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero),
596                       "or{l}\t{$zero, $dst|$dst, $zero}",
597                       [], IIC_ALU_MEM>, Requires<[In32BitMode]>, LOCK;
598
599 let hasSideEffects = 1 in
600 def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
601                      "#MEMBARRIER",
602                      [(X86MemBarrier)]>;
603
604 // RegOpc corresponds to the mr version of the instruction
605 // ImmOpc corresponds to the mi version of the instruction
606 // ImmOpc8 corresponds to the mi8 version of the instruction
607 // ImmMod corresponds to the instruction format of the mi and mi8 versions
608 multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8,
609                            Format ImmMod, string mnemonic> {
610 let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1 in {
611
612 def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
613                   RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 },
614                   MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
615                   !strconcat(mnemonic, "{b}\t",
616                              "{$src2, $dst|$dst, $src2}"),
617                   [], IIC_ALU_NONMEM>, LOCK;
618 def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
619                    RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
620                    MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
621                    !strconcat(mnemonic, "{w}\t",
622                               "{$src2, $dst|$dst, $src2}"),
623                    [], IIC_ALU_NONMEM>, OpSize, LOCK;
624 def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
625                    RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
626                    MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
627                    !strconcat(mnemonic, "{l}\t",
628                               "{$src2, $dst|$dst, $src2}"),
629                    [], IIC_ALU_NONMEM>, LOCK;
630 def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
631                     RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
632                     MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
633                     !strconcat(mnemonic, "{q}\t",
634                                "{$src2, $dst|$dst, $src2}"),
635                     [], IIC_ALU_NONMEM>, LOCK;
636
637 def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
638                     ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 },
639                     ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2),
640                     !strconcat(mnemonic, "{b}\t",
641                                "{$src2, $dst|$dst, $src2}"),
642                     [], IIC_ALU_MEM>, LOCK;
643
644 def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
645                       ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
646                       ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2),
647                       !strconcat(mnemonic, "{w}\t",
648                                  "{$src2, $dst|$dst, $src2}"),
649                       [], IIC_ALU_MEM>, OpSize, LOCK;
650
651 def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
652                       ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
653                       ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2),
654                       !strconcat(mnemonic, "{l}\t",
655                                  "{$src2, $dst|$dst, $src2}"),
656                       [], IIC_ALU_MEM>, LOCK;
657
658 def NAME#64mi32 : RIi32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
659                          ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
660                          ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2),
661                          !strconcat(mnemonic, "{q}\t",
662                                     "{$src2, $dst|$dst, $src2}"),
663                          [], IIC_ALU_MEM>, LOCK;
664
665 def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
666                       ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
667                       ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2),
668                       !strconcat(mnemonic, "{w}\t",
669                                  "{$src2, $dst|$dst, $src2}"),
670                       [], IIC_ALU_MEM>, OpSize, LOCK;
671 def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
672                       ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
673                       ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2),
674                       !strconcat(mnemonic, "{l}\t",
675                                  "{$src2, $dst|$dst, $src2}"),
676                       [], IIC_ALU_MEM>, LOCK;
677 def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
678                        ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
679                        ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2),
680                        !strconcat(mnemonic, "{q}\t",
681                                   "{$src2, $dst|$dst, $src2}"),
682                        [], IIC_ALU_MEM>, LOCK;
683
684 }
685
686 }
687
688 defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, "add">;
689 defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, "sub">;
690 defm LOCK_OR  : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, "or">;
691 defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, "and">;
692 defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, "xor">;
693
694 // Optimized codegen when the non-memory output is not used.
695 multiclass LOCK_ArithUnOp<bits<8> Opc8, bits<8> Opc, Format Form,
696                           string mnemonic> {
697 let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1 in {
698
699 def NAME#8m  : I<Opc8, Form, (outs), (ins i8mem :$dst),
700                  !strconcat(mnemonic, "{b}\t$dst"),
701                  [], IIC_UNARY_MEM>, LOCK;
702 def NAME#16m : I<Opc, Form, (outs), (ins i16mem:$dst),
703                  !strconcat(mnemonic, "{w}\t$dst"),
704                  [], IIC_UNARY_MEM>, OpSize, LOCK;
705 def NAME#32m : I<Opc, Form, (outs), (ins i32mem:$dst),
706                  !strconcat(mnemonic, "{l}\t$dst"),
707                  [], IIC_UNARY_MEM>, LOCK;
708 def NAME#64m : RI<Opc, Form, (outs), (ins i64mem:$dst),
709                   !strconcat(mnemonic, "{q}\t$dst"),
710                   [], IIC_UNARY_MEM>, LOCK;
711 }
712 }
713
714 defm LOCK_INC    : LOCK_ArithUnOp<0xFE, 0xFF, MRM0m, "inc">;
715 defm LOCK_DEC    : LOCK_ArithUnOp<0xFE, 0xFF, MRM1m, "dec">;
716
717 // Atomic compare and swap.
718 multiclass LCMPXCHG_UnOp<bits<8> Opc, Format Form, string mnemonic,
719                          SDPatternOperator frag, X86MemOperand x86memop,
720                          InstrItinClass itin> {
721 let isCodeGenOnly = 1 in {
722   def NAME : I<Opc, Form, (outs), (ins x86memop:$ptr),
723                !strconcat(mnemonic, "\t$ptr"),
724                [(frag addr:$ptr)], itin>, TB, LOCK;
725 }
726 }
727
728 multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form,
729                           string mnemonic, SDPatternOperator frag,
730                           InstrItinClass itin8, InstrItinClass itin> {
731 let isCodeGenOnly = 1 in {
732   let Defs = [AL, EFLAGS], Uses = [AL] in
733   def NAME#8  : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap),
734                   !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"),
735                   [(frag addr:$ptr, GR8:$swap, 1)], itin8>, TB, LOCK;
736   let Defs = [AX, EFLAGS], Uses = [AX] in
737   def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap),
738                   !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"),
739                   [(frag addr:$ptr, GR16:$swap, 2)], itin>, TB, OpSize, LOCK;
740   let Defs = [EAX, EFLAGS], Uses = [EAX] in
741   def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap),
742                   !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"),
743                   [(frag addr:$ptr, GR32:$swap, 4)], itin>, TB, LOCK;
744   let Defs = [RAX, EFLAGS], Uses = [RAX] in
745   def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap),
746                    !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"),
747                    [(frag addr:$ptr, GR64:$swap, 8)], itin>, TB, LOCK;
748 }
749 }
750
751 let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX] in {
752 defm LCMPXCHG8B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg8b",
753                                 X86cas8, i64mem,
754                                 IIC_CMPX_LOCK_8B>;
755 }
756
757 let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX],
758     Predicates = [HasCmpxchg16b] in {
759 defm LCMPXCHG16B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg16b",
760                                  X86cas16, i128mem,
761                                  IIC_CMPX_LOCK_16B>, REX_W;
762 }
763
764 defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg",
765                                X86cas, IIC_CMPX_LOCK_8, IIC_CMPX_LOCK>;
766
767 // Atomic exchange and add
768 multiclass ATOMIC_LOAD_BINOP<bits<8> opc8, bits<8> opc, string mnemonic,
769                              string frag,
770                              InstrItinClass itin8, InstrItinClass itin> {
771   let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1 in {
772     def NAME#8  : I<opc8, MRMSrcMem, (outs GR8:$dst),
773                     (ins GR8:$val, i8mem:$ptr),
774                     !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"),
775                     [(set GR8:$dst,
776                           (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))],
777                     itin8>;
778     def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst),
779                     (ins GR16:$val, i16mem:$ptr),
780                     !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"),
781                     [(set
782                        GR16:$dst,
783                        (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))],
784                     itin>, OpSize;
785     def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst),
786                     (ins GR32:$val, i32mem:$ptr),
787                     !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"),
788                     [(set
789                        GR32:$dst,
790                        (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))],
791                     itin>;
792     def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst),
793                      (ins GR64:$val, i64mem:$ptr),
794                      !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"),
795                      [(set
796                         GR64:$dst,
797                         (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))],
798                      itin>;
799   }
800 }
801
802 defm LXADD : ATOMIC_LOAD_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add",
803                                IIC_XADD_LOCK_MEM8, IIC_XADD_LOCK_MEM>,
804              TB, LOCK;
805
806 def ACQUIRE_MOV8rm  : I<0, Pseudo, (outs GR8 :$dst), (ins i8mem :$src),
807                       "#ACQUIRE_MOV PSEUDO!",
808                       [(set GR8:$dst,  (atomic_load_8  addr:$src))]>;
809 def ACQUIRE_MOV16rm : I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$src),
810                       "#ACQUIRE_MOV PSEUDO!",
811                       [(set GR16:$dst, (atomic_load_16 addr:$src))]>;
812 def ACQUIRE_MOV32rm : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$src),
813                       "#ACQUIRE_MOV PSEUDO!",
814                       [(set GR32:$dst, (atomic_load_32 addr:$src))]>;
815 def ACQUIRE_MOV64rm : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$src),
816                       "#ACQUIRE_MOV PSEUDO!",
817                       [(set GR64:$dst, (atomic_load_64 addr:$src))]>;
818
819 def RELEASE_MOV8mr  : I<0, Pseudo, (outs), (ins i8mem :$dst, GR8 :$src),
820                         "#RELEASE_MOV PSEUDO!",
821                         [(atomic_store_8  addr:$dst, GR8 :$src)]>;
822 def RELEASE_MOV16mr : I<0, Pseudo, (outs), (ins i16mem:$dst, GR16:$src),
823                         "#RELEASE_MOV PSEUDO!",
824                         [(atomic_store_16 addr:$dst, GR16:$src)]>;
825 def RELEASE_MOV32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src),
826                         "#RELEASE_MOV PSEUDO!",
827                         [(atomic_store_32 addr:$dst, GR32:$src)]>;
828 def RELEASE_MOV64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
829                         "#RELEASE_MOV PSEUDO!",
830                         [(atomic_store_64 addr:$dst, GR64:$src)]>;
831
832 //===----------------------------------------------------------------------===//
833 // Conditional Move Pseudo Instructions.
834 //===----------------------------------------------------------------------===//
835
836
837 // CMOV* - Used to implement the SSE SELECT DAG operation.  Expanded after
838 // instruction selection into a branch sequence.
839 let Uses = [EFLAGS], usesCustomInserter = 1 in {
840   def CMOV_FR32 : I<0, Pseudo,
841                     (outs FR32:$dst), (ins FR32:$t, FR32:$f, i8imm:$cond),
842                     "#CMOV_FR32 PSEUDO!",
843                     [(set FR32:$dst, (X86cmov FR32:$t, FR32:$f, imm:$cond,
844                                                   EFLAGS))]>;
845   def CMOV_FR64 : I<0, Pseudo,
846                     (outs FR64:$dst), (ins FR64:$t, FR64:$f, i8imm:$cond),
847                     "#CMOV_FR64 PSEUDO!",
848                     [(set FR64:$dst, (X86cmov FR64:$t, FR64:$f, imm:$cond,
849                                                   EFLAGS))]>;
850   def CMOV_V4F32 : I<0, Pseudo,
851                     (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
852                     "#CMOV_V4F32 PSEUDO!",
853                     [(set VR128:$dst,
854                       (v4f32 (X86cmov VR128:$t, VR128:$f, imm:$cond,
855                                           EFLAGS)))]>;
856   def CMOV_V2F64 : I<0, Pseudo,
857                     (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
858                     "#CMOV_V2F64 PSEUDO!",
859                     [(set VR128:$dst,
860                       (v2f64 (X86cmov VR128:$t, VR128:$f, imm:$cond,
861                                           EFLAGS)))]>;
862   def CMOV_V2I64 : I<0, Pseudo,
863                     (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
864                     "#CMOV_V2I64 PSEUDO!",
865                     [(set VR128:$dst,
866                       (v2i64 (X86cmov VR128:$t, VR128:$f, imm:$cond,
867                                           EFLAGS)))]>;
868   def CMOV_V8F32 : I<0, Pseudo,
869                     (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond),
870                     "#CMOV_V8F32 PSEUDO!",
871                     [(set VR256:$dst,
872                       (v8f32 (X86cmov VR256:$t, VR256:$f, imm:$cond,
873                                           EFLAGS)))]>;
874   def CMOV_V4F64 : I<0, Pseudo,
875                     (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond),
876                     "#CMOV_V4F64 PSEUDO!",
877                     [(set VR256:$dst,
878                       (v4f64 (X86cmov VR256:$t, VR256:$f, imm:$cond,
879                                           EFLAGS)))]>;
880   def CMOV_V4I64 : I<0, Pseudo,
881                     (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond),
882                     "#CMOV_V4I64 PSEUDO!",
883                     [(set VR256:$dst,
884                       (v4i64 (X86cmov VR256:$t, VR256:$f, imm:$cond,
885                                           EFLAGS)))]>;
886 }
887
888
889 //===----------------------------------------------------------------------===//
890 // DAG Pattern Matching Rules
891 //===----------------------------------------------------------------------===//
892
893 // ConstantPool GlobalAddress, ExternalSymbol, and JumpTable
894 def : Pat<(i32 (X86Wrapper tconstpool  :$dst)), (MOV32ri tconstpool  :$dst)>;
895 def : Pat<(i32 (X86Wrapper tjumptable  :$dst)), (MOV32ri tjumptable  :$dst)>;
896 def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>;
897 def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>;
898 def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>;
899 def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>;
900
901 def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)),
902           (ADD32ri GR32:$src1, tconstpool:$src2)>;
903 def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)),
904           (ADD32ri GR32:$src1, tjumptable:$src2)>;
905 def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)),
906           (ADD32ri GR32:$src1, tglobaladdr:$src2)>;
907 def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)),
908           (ADD32ri GR32:$src1, texternalsym:$src2)>;
909 def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)),
910           (ADD32ri GR32:$src1, tblockaddress:$src2)>;
911
912 def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst),
913           (MOV32mi addr:$dst, tglobaladdr:$src)>;
914 def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst),
915           (MOV32mi addr:$dst, texternalsym:$src)>;
916 def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst),
917           (MOV32mi addr:$dst, tblockaddress:$src)>;
918
919
920
921 // ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small
922 // code model mode, should use 'movabs'.  FIXME: This is really a hack, the
923 //  'movabs' predicate should handle this sort of thing.
924 def : Pat<(i64 (X86Wrapper tconstpool  :$dst)),
925           (MOV64ri tconstpool  :$dst)>, Requires<[FarData]>;
926 def : Pat<(i64 (X86Wrapper tjumptable  :$dst)),
927           (MOV64ri tjumptable  :$dst)>, Requires<[FarData]>;
928 def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
929           (MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>;
930 def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
931           (MOV64ri texternalsym:$dst)>, Requires<[FarData]>;
932 def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
933           (MOV64ri tblockaddress:$dst)>, Requires<[FarData]>;
934
935 // In static codegen with small code model, we can get the address of a label
936 // into a register with 'movl'.  FIXME: This is a hack, the 'imm' predicate of
937 // the MOV64ri64i32 should accept these.
938 def : Pat<(i64 (X86Wrapper tconstpool  :$dst)),
939           (MOV64ri64i32 tconstpool  :$dst)>, Requires<[SmallCode]>;
940 def : Pat<(i64 (X86Wrapper tjumptable  :$dst)),
941           (MOV64ri64i32 tjumptable  :$dst)>, Requires<[SmallCode]>;
942 def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
943           (MOV64ri64i32 tglobaladdr :$dst)>, Requires<[SmallCode]>;
944 def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
945           (MOV64ri64i32 texternalsym:$dst)>, Requires<[SmallCode]>;
946 def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
947           (MOV64ri64i32 tblockaddress:$dst)>, Requires<[SmallCode]>;
948
949 // In kernel code model, we can get the address of a label
950 // into a register with 'movq'.  FIXME: This is a hack, the 'imm' predicate of
951 // the MOV64ri32 should accept these.
952 def : Pat<(i64 (X86Wrapper tconstpool  :$dst)),
953           (MOV64ri32 tconstpool  :$dst)>, Requires<[KernelCode]>;
954 def : Pat<(i64 (X86Wrapper tjumptable  :$dst)),
955           (MOV64ri32 tjumptable  :$dst)>, Requires<[KernelCode]>;
956 def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
957           (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
958 def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
959           (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
960 def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
961           (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;
962
963 // If we have small model and -static mode, it is safe to store global addresses
964 // directly as immediates.  FIXME: This is really a hack, the 'imm' predicate
965 // for MOV64mi32 should handle this sort of thing.
966 def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
967           (MOV64mi32 addr:$dst, tconstpool:$src)>,
968           Requires<[NearData, IsStatic]>;
969 def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
970           (MOV64mi32 addr:$dst, tjumptable:$src)>,
971           Requires<[NearData, IsStatic]>;
972 def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
973           (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
974           Requires<[NearData, IsStatic]>;
975 def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
976           (MOV64mi32 addr:$dst, texternalsym:$src)>,
977           Requires<[NearData, IsStatic]>;
978 def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
979           (MOV64mi32 addr:$dst, tblockaddress:$src)>,
980           Requires<[NearData, IsStatic]>;
981
982
983
984 // Calls
985
986 // tls has some funny stuff here...
987 // This corresponds to movabs $foo@tpoff, %rax
988 def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
989           (MOV64ri tglobaltlsaddr :$dst)>;
990 // This corresponds to add $foo@tpoff, %rax
991 def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
992           (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;
993
994
995 // Direct PC relative function call for small code model. 32-bit displacement
996 // sign extended to 64-bit.
997 def : Pat<(X86call (i64 tglobaladdr:$dst)),
998           (CALL64pcrel32 tglobaladdr:$dst)>;
999 def : Pat<(X86call (i64 texternalsym:$dst)),
1000           (CALL64pcrel32 texternalsym:$dst)>;
1001
1002 // Tailcall stuff. The TCRETURN instructions execute after the epilog, so they
1003 // can never use callee-saved registers. That is the purpose of the GR64_TC
1004 // register classes.
1005 //
1006 // The only volatile register that is never used by the calling convention is
1007 // %r11. This happens when calling a vararg function with 6 arguments.
1008 //
1009 // Match an X86tcret that uses less than 7 volatile registers.
1010 def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off),
1011                              (X86tcret node:$ptr, node:$off), [{
1012   // X86tcret args: (*chain, ptr, imm, regs..., glue)
1013   unsigned NumRegs = 0;
1014   for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i)
1015     if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6)
1016       return false;
1017   return true;
1018 }]>;
1019
1020 def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
1021           (TCRETURNri ptr_rc_tailcall:$dst, imm:$off)>,
1022           Requires<[In32BitMode]>;
1023
1024 // FIXME: This is disabled for 32-bit PIC mode because the global base
1025 // register which is part of the address mode may be assigned a
1026 // callee-saved register.
1027 def : Pat<(X86tcret (load addr:$dst), imm:$off),
1028           (TCRETURNmi addr:$dst, imm:$off)>,
1029           Requires<[In32BitMode, IsNotPIC]>;
1030
1031 def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
1032           (TCRETURNdi texternalsym:$dst, imm:$off)>,
1033           Requires<[In32BitMode]>;
1034
1035 def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
1036           (TCRETURNdi texternalsym:$dst, imm:$off)>,
1037           Requires<[In32BitMode]>;
1038
1039 def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
1040           (TCRETURNri64 ptr_rc_tailcall:$dst, imm:$off)>,
1041           Requires<[In64BitMode]>;
1042
1043 // Don't fold loads into X86tcret requiring more than 6 regs.
1044 // There wouldn't be enough scratch registers for base+index.
1045 def : Pat<(X86tcret_6regs (load addr:$dst), imm:$off),
1046           (TCRETURNmi64 addr:$dst, imm:$off)>,
1047           Requires<[In64BitMode]>;
1048
1049 def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
1050           (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>,
1051           Requires<[In64BitMode]>;
1052
1053 def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
1054           (TCRETURNdi64 texternalsym:$dst, imm:$off)>,
1055           Requires<[In64BitMode]>;
1056
1057 // Normal calls, with various flavors of addresses.
1058 def : Pat<(X86call (i32 tglobaladdr:$dst)),
1059           (CALLpcrel32 tglobaladdr:$dst)>;
1060 def : Pat<(X86call (i32 texternalsym:$dst)),
1061           (CALLpcrel32 texternalsym:$dst)>;
1062 def : Pat<(X86call (i32 imm:$dst)),
1063           (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;
1064
1065 // Comparisons.
1066
1067 // TEST R,R is smaller than CMP R,0
1068 def : Pat<(X86cmp GR8:$src1, 0),
1069           (TEST8rr GR8:$src1, GR8:$src1)>;
1070 def : Pat<(X86cmp GR16:$src1, 0),
1071           (TEST16rr GR16:$src1, GR16:$src1)>;
1072 def : Pat<(X86cmp GR32:$src1, 0),
1073           (TEST32rr GR32:$src1, GR32:$src1)>;
1074 def : Pat<(X86cmp GR64:$src1, 0),
1075           (TEST64rr GR64:$src1, GR64:$src1)>;
1076
1077 // Conditional moves with folded loads with operands swapped and conditions
1078 // inverted.
1079 multiclass CMOVmr<PatLeaf InvertedCond, Instruction Inst16, Instruction Inst32,
1080                   Instruction Inst64> {
1081   let Predicates = [HasCMov] in {
1082     def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS),
1083               (Inst16 GR16:$src2, addr:$src1)>;
1084     def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS),
1085               (Inst32 GR32:$src2, addr:$src1)>;
1086     def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS),
1087               (Inst64 GR64:$src2, addr:$src1)>;
1088   }
1089 }
1090
1091 defm : CMOVmr<X86_COND_B , CMOVAE16rm, CMOVAE32rm, CMOVAE64rm>;
1092 defm : CMOVmr<X86_COND_AE, CMOVB16rm , CMOVB32rm , CMOVB64rm>;
1093 defm : CMOVmr<X86_COND_E , CMOVNE16rm, CMOVNE32rm, CMOVNE64rm>;
1094 defm : CMOVmr<X86_COND_NE, CMOVE16rm , CMOVE32rm , CMOVE64rm>;
1095 defm : CMOVmr<X86_COND_BE, CMOVA16rm , CMOVA32rm , CMOVA64rm>;
1096 defm : CMOVmr<X86_COND_A , CMOVBE16rm, CMOVBE32rm, CMOVBE64rm>;
1097 defm : CMOVmr<X86_COND_L , CMOVGE16rm, CMOVGE32rm, CMOVGE64rm>;
1098 defm : CMOVmr<X86_COND_GE, CMOVL16rm , CMOVL32rm , CMOVL64rm>;
1099 defm : CMOVmr<X86_COND_LE, CMOVG16rm , CMOVG32rm , CMOVG64rm>;
1100 defm : CMOVmr<X86_COND_G , CMOVLE16rm, CMOVLE32rm, CMOVLE64rm>;
1101 defm : CMOVmr<X86_COND_P , CMOVNP16rm, CMOVNP32rm, CMOVNP64rm>;
1102 defm : CMOVmr<X86_COND_NP, CMOVP16rm , CMOVP32rm , CMOVP64rm>;
1103 defm : CMOVmr<X86_COND_S , CMOVNS16rm, CMOVNS32rm, CMOVNS64rm>;
1104 defm : CMOVmr<X86_COND_NS, CMOVS16rm , CMOVS32rm , CMOVS64rm>;
1105 defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>;
1106 defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>;
1107
1108 // zextload bool -> zextload byte
1109 def : Pat<(zextloadi8i1  addr:$src), (MOV8rm     addr:$src)>;
1110 def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
1111 def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
1112 def : Pat<(zextloadi64i1 addr:$src), (MOVZX64rm8 addr:$src)>;
1113
1114 // extload bool -> extload byte
1115 // When extloading from 16-bit and smaller memory locations into 64-bit
1116 // registers, use zero-extending loads so that the entire 64-bit register is
1117 // defined, avoiding partial-register updates.
1118
1119 def : Pat<(extloadi8i1 addr:$src),   (MOV8rm      addr:$src)>;
1120 def : Pat<(extloadi16i1 addr:$src),  (MOVZX16rm8  addr:$src)>;
1121 def : Pat<(extloadi32i1 addr:$src),  (MOVZX32rm8  addr:$src)>;
1122 def : Pat<(extloadi16i8 addr:$src),  (MOVZX16rm8  addr:$src)>;
1123 def : Pat<(extloadi32i8 addr:$src),  (MOVZX32rm8  addr:$src)>;
1124 def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
1125
1126 def : Pat<(extloadi64i1 addr:$src),  (MOVZX64rm8  addr:$src)>;
1127 def : Pat<(extloadi64i8 addr:$src),  (MOVZX64rm8  addr:$src)>;
1128 def : Pat<(extloadi64i16 addr:$src), (MOVZX64rm16 addr:$src)>;
1129 // For other extloads, use subregs, since the high contents of the register are
1130 // defined after an extload.
1131 def : Pat<(extloadi64i32 addr:$src),
1132           (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src),
1133                          sub_32bit)>;
1134
1135 // anyext. Define these to do an explicit zero-extend to
1136 // avoid partial-register updates.
1137 def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG
1138                                      (MOVZX32rr8 GR8 :$src), sub_16bit)>;
1139 def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8  GR8 :$src)>;
1140
1141 // Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
1142 def : Pat<(i32 (anyext GR16:$src)),
1143           (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;
1144
1145 def : Pat<(i64 (anyext GR8 :$src)), (MOVZX64rr8  GR8  :$src)>;
1146 def : Pat<(i64 (anyext GR16:$src)), (MOVZX64rr16 GR16 :$src)>;
1147 def : Pat<(i64 (anyext GR32:$src)),
1148           (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1149
1150
1151 // Any instruction that defines a 32-bit result leaves the high half of the
1152 // register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
1153 // be copying from a truncate. And x86's cmov doesn't do anything if the
1154 // condition is false. But any other 32-bit operation will zero-extend
1155 // up to 64 bits.
1156 def def32 : PatLeaf<(i32 GR32:$src), [{
1157   return N->getOpcode() != ISD::TRUNCATE &&
1158          N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
1159          N->getOpcode() != ISD::CopyFromReg &&
1160          N->getOpcode() != X86ISD::CMOV;
1161 }]>;
1162
1163 // In the case of a 32-bit def that is known to implicitly zero-extend,
1164 // we can use a SUBREG_TO_REG.
1165 def : Pat<(i64 (zext def32:$src)),
1166           (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1167
1168 //===----------------------------------------------------------------------===//
1169 // Pattern match OR as ADD
1170 //===----------------------------------------------------------------------===//
1171
1172 // If safe, we prefer to pattern match OR as ADD at isel time. ADD can be
1173 // 3-addressified into an LEA instruction to avoid copies.  However, we also
1174 // want to finally emit these instructions as an or at the end of the code
1175 // generator to make the generated code easier to read.  To do this, we select
1176 // into "disjoint bits" pseudo ops.
1177
1178 // Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero.
1179 def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
1180   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
1181     return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue());
1182
1183   APInt KnownZero0, KnownOne0;
1184   CurDAG->ComputeMaskedBits(N->getOperand(0), KnownZero0, KnownOne0, 0);
1185   APInt KnownZero1, KnownOne1;
1186   CurDAG->ComputeMaskedBits(N->getOperand(1), KnownZero1, KnownOne1, 0);
1187   return (~KnownZero0 & ~KnownZero1) == 0;
1188 }]>;
1189
1190
1191 // (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
1192 let AddedComplexity = 5 in { // Try this before the selecting to OR
1193
1194 let isConvertibleToThreeAddress = 1,
1195     Constraints = "$src1 = $dst", Defs = [EFLAGS] in {
1196 let isCommutable = 1 in {
1197 def ADD16rr_DB  : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
1198                     "", // orw/addw REG, REG
1199                     [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>;
1200 def ADD32rr_DB  : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
1201                     "", // orl/addl REG, REG
1202                     [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>;
1203 def ADD64rr_DB  : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
1204                     "", // orq/addq REG, REG
1205                     [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>;
1206 } // isCommutable
1207
1208 // NOTE: These are order specific, we want the ri8 forms to be listed
1209 // first so that they are slightly preferred to the ri forms.
1210
1211 def ADD16ri8_DB : I<0, Pseudo,
1212                     (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
1213                     "", // orw/addw REG, imm8
1214                     [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>;
1215 def ADD16ri_DB  : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
1216                     "", // orw/addw REG, imm
1217                     [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>;
1218
1219 def ADD32ri8_DB : I<0, Pseudo,
1220                     (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
1221                     "", // orl/addl REG, imm8
1222                     [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>;
1223 def ADD32ri_DB  : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
1224                     "", // orl/addl REG, imm
1225                     [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>;
1226
1227
1228 def ADD64ri8_DB : I<0, Pseudo,
1229                     (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
1230                     "", // orq/addq REG, imm8
1231                     [(set GR64:$dst, (or_is_add GR64:$src1,
1232                                                 i64immSExt8:$src2))]>;
1233 def ADD64ri32_DB : I<0, Pseudo,
1234                      (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
1235                       "", // orq/addq REG, imm
1236                       [(set GR64:$dst, (or_is_add GR64:$src1,
1237                                                   i64immSExt32:$src2))]>;
1238 }
1239 } // AddedComplexity
1240
1241
1242 //===----------------------------------------------------------------------===//
1243 // Some peepholes
1244 //===----------------------------------------------------------------------===//
1245
1246 // Odd encoding trick: -128 fits into an 8-bit immediate field while
1247 // +128 doesn't, so in this special case use a sub instead of an add.
1248 def : Pat<(add GR16:$src1, 128),
1249           (SUB16ri8 GR16:$src1, -128)>;
1250 def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
1251           (SUB16mi8 addr:$dst, -128)>;
1252
1253 def : Pat<(add GR32:$src1, 128),
1254           (SUB32ri8 GR32:$src1, -128)>;
1255 def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
1256           (SUB32mi8 addr:$dst, -128)>;
1257
1258 def : Pat<(add GR64:$src1, 128),
1259           (SUB64ri8 GR64:$src1, -128)>;
1260 def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
1261           (SUB64mi8 addr:$dst, -128)>;
1262
1263 // The same trick applies for 32-bit immediate fields in 64-bit
1264 // instructions.
1265 def : Pat<(add GR64:$src1, 0x0000000080000000),
1266           (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
1267 def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst),
1268           (SUB64mi32 addr:$dst, 0xffffffff80000000)>;
1269
1270 // To avoid needing to materialize an immediate in a register, use a 32-bit and
1271 // with implicit zero-extension instead of a 64-bit and if the immediate has at
1272 // least 32 bits of leading zeros. If in addition the last 32 bits can be
1273 // represented with a sign extension of a 8 bit constant, use that.
1274
1275 def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm),
1276           (SUBREG_TO_REG
1277             (i64 0),
1278             (AND32ri8
1279               (EXTRACT_SUBREG GR64:$src, sub_32bit),
1280               (i32 (GetLo8XForm imm:$imm))),
1281             sub_32bit)>;
1282
1283 def : Pat<(and GR64:$src, i64immZExt32:$imm),
1284           (SUBREG_TO_REG
1285             (i64 0),
1286             (AND32ri
1287               (EXTRACT_SUBREG GR64:$src, sub_32bit),
1288               (i32 (GetLo32XForm imm:$imm))),
1289             sub_32bit)>;
1290
1291
1292 // r & (2^16-1) ==> movz
1293 def : Pat<(and GR32:$src1, 0xffff),
1294           (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
1295 // r & (2^8-1) ==> movz
1296 def : Pat<(and GR32:$src1, 0xff),
1297           (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1,
1298                                                              GR32_ABCD)),
1299                                       sub_8bit))>,
1300       Requires<[In32BitMode]>;
1301 // r & (2^8-1) ==> movz
1302 def : Pat<(and GR16:$src1, 0xff),
1303            (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG
1304             (i16 (COPY_TO_REGCLASS GR16:$src1, GR16_ABCD)), sub_8bit)),
1305              sub_16bit)>,
1306       Requires<[In32BitMode]>;
1307
1308 // r & (2^32-1) ==> movz
1309 def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
1310           (MOVZX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
1311 // r & (2^16-1) ==> movz
1312 def : Pat<(and GR64:$src, 0xffff),
1313           (MOVZX64rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit)))>;
1314 // r & (2^8-1) ==> movz
1315 def : Pat<(and GR64:$src, 0xff),
1316           (MOVZX64rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit)))>;
1317 // r & (2^8-1) ==> movz
1318 def : Pat<(and GR32:$src1, 0xff),
1319            (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>,
1320       Requires<[In64BitMode]>;
1321 // r & (2^8-1) ==> movz
1322 def : Pat<(and GR16:$src1, 0xff),
1323            (EXTRACT_SUBREG (MOVZX32rr8 (i8
1324             (EXTRACT_SUBREG GR16:$src1, sub_8bit))), sub_16bit)>,
1325       Requires<[In64BitMode]>;
1326
1327
1328 // sext_inreg patterns
1329 def : Pat<(sext_inreg GR32:$src, i16),
1330           (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
1331 def : Pat<(sext_inreg GR32:$src, i8),
1332           (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1333                                                              GR32_ABCD)),
1334                                       sub_8bit))>,
1335       Requires<[In32BitMode]>;
1336
1337 def : Pat<(sext_inreg GR16:$src, i8),
1338            (EXTRACT_SUBREG (i32 (MOVSX32rr8 (EXTRACT_SUBREG
1339             (i32 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit))),
1340              sub_16bit)>,
1341       Requires<[In32BitMode]>;
1342
1343 def : Pat<(sext_inreg GR64:$src, i32),
1344           (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
1345 def : Pat<(sext_inreg GR64:$src, i16),
1346           (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
1347 def : Pat<(sext_inreg GR64:$src, i8),
1348           (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
1349 def : Pat<(sext_inreg GR32:$src, i8),
1350           (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>,
1351       Requires<[In64BitMode]>;
1352 def : Pat<(sext_inreg GR16:$src, i8),
1353            (EXTRACT_SUBREG (MOVSX32rr8
1354             (EXTRACT_SUBREG GR16:$src, sub_8bit)), sub_16bit)>,
1355       Requires<[In64BitMode]>;
1356
1357 // sext, sext_load, zext, zext_load
1358 def: Pat<(i16 (sext GR8:$src)),
1359           (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>;
1360 def: Pat<(sextloadi16i8 addr:$src),
1361           (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>;
1362 def: Pat<(i16 (zext GR8:$src)),
1363           (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>;
1364 def: Pat<(zextloadi16i8 addr:$src),
1365           (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
1366
1367 // trunc patterns
1368 def : Pat<(i16 (trunc GR32:$src)),
1369           (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
1370 def : Pat<(i8 (trunc GR32:$src)),
1371           (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1372                           sub_8bit)>,
1373       Requires<[In32BitMode]>;
1374 def : Pat<(i8 (trunc GR16:$src)),
1375           (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1376                           sub_8bit)>,
1377       Requires<[In32BitMode]>;
1378 def : Pat<(i32 (trunc GR64:$src)),
1379           (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
1380 def : Pat<(i16 (trunc GR64:$src)),
1381           (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
1382 def : Pat<(i8 (trunc GR64:$src)),
1383           (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
1384 def : Pat<(i8 (trunc GR32:$src)),
1385           (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
1386       Requires<[In64BitMode]>;
1387 def : Pat<(i8 (trunc GR16:$src)),
1388           (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
1389       Requires<[In64BitMode]>;
1390
1391 // h-register tricks
1392 def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
1393           (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1394                           sub_8bit_hi)>,
1395       Requires<[In32BitMode]>;
1396 def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
1397           (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1398                           sub_8bit_hi)>,
1399       Requires<[In32BitMode]>;
1400 def : Pat<(srl GR16:$src, (i8 8)),
1401           (EXTRACT_SUBREG
1402             (MOVZX32rr8
1403               (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1404                               sub_8bit_hi)),
1405             sub_16bit)>,
1406       Requires<[In32BitMode]>;
1407 def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1408           (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1409                                                              GR16_ABCD)),
1410                                       sub_8bit_hi))>,
1411       Requires<[In32BitMode]>;
1412 def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1413           (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1414                                                              GR16_ABCD)),
1415                                       sub_8bit_hi))>,
1416       Requires<[In32BitMode]>;
1417 def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1418           (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1419                                                              GR32_ABCD)),
1420                                       sub_8bit_hi))>,
1421       Requires<[In32BitMode]>;
1422 def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1423           (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1424                                                              GR32_ABCD)),
1425                                       sub_8bit_hi))>,
1426       Requires<[In32BitMode]>;
1427
1428 // h-register tricks.
1429 // For now, be conservative on x86-64 and use an h-register extract only if the
1430 // value is immediately zero-extended or stored, which are somewhat common
1431 // cases. This uses a bunch of code to prevent a register requiring a REX prefix
1432 // from being allocated in the same instruction as the h register, as there's
1433 // currently no way to describe this requirement to the register allocator.
1434
1435 // h-register extract and zero-extend.
1436 def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
1437           (SUBREG_TO_REG
1438             (i64 0),
1439             (MOVZX32_NOREXrr8
1440               (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1441                               sub_8bit_hi)),
1442             sub_32bit)>;
1443 def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1444           (MOVZX32_NOREXrr8
1445             (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1446                             sub_8bit_hi))>,
1447       Requires<[In64BitMode]>;
1448 def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1449           (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1450                                                                    GR32_ABCD)),
1451                                              sub_8bit_hi))>,
1452       Requires<[In64BitMode]>;
1453 def : Pat<(srl GR16:$src, (i8 8)),
1454           (EXTRACT_SUBREG
1455             (MOVZX32_NOREXrr8
1456               (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1457                               sub_8bit_hi)),
1458             sub_16bit)>,
1459       Requires<[In64BitMode]>;
1460 def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1461           (MOVZX32_NOREXrr8
1462             (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1463                             sub_8bit_hi))>,
1464       Requires<[In64BitMode]>;
1465 def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1466           (MOVZX32_NOREXrr8
1467             (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1468                             sub_8bit_hi))>,
1469       Requires<[In64BitMode]>;
1470 def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
1471           (SUBREG_TO_REG
1472             (i64 0),
1473             (MOVZX32_NOREXrr8
1474               (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1475                               sub_8bit_hi)),
1476             sub_32bit)>;
1477 def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
1478           (SUBREG_TO_REG
1479             (i64 0),
1480             (MOVZX32_NOREXrr8
1481               (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1482                               sub_8bit_hi)),
1483             sub_32bit)>;
1484
1485 // h-register extract and store.
1486 def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
1487           (MOV8mr_NOREX
1488             addr:$dst,
1489             (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1490                             sub_8bit_hi))>;
1491 def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
1492           (MOV8mr_NOREX
1493             addr:$dst,
1494             (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1495                             sub_8bit_hi))>,
1496       Requires<[In64BitMode]>;
1497 def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
1498           (MOV8mr_NOREX
1499             addr:$dst,
1500             (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1501                             sub_8bit_hi))>,
1502       Requires<[In64BitMode]>;
1503
1504
1505 // (shl x, 1) ==> (add x, x)
1506 // Note that if x is undef (immediate or otherwise), we could theoretically
1507 // end up with the two uses of x getting different values, producing a result
1508 // where the least significant bit is not 0. However, the probability of this
1509 // happening is considered low enough that this is officially not a
1510 // "real problem".
1511 def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr  GR8 :$src1, GR8 :$src1)>;
1512 def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
1513 def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
1514 def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
1515
1516 // Helper imms that check if a mask doesn't change significant shift bits.
1517 def immShift32 : ImmLeaf<i8, [{ return CountTrailingOnes_32(Imm) >= 5; }]>;
1518 def immShift64 : ImmLeaf<i8, [{ return CountTrailingOnes_32(Imm) >= 6; }]>;
1519
1520 // (shl x (and y, 31)) ==> (shl x, y)
1521 def : Pat<(shl GR8:$src1, (and CL, immShift32)),
1522           (SHL8rCL GR8:$src1)>;
1523 def : Pat<(shl GR16:$src1, (and CL, immShift32)),
1524           (SHL16rCL GR16:$src1)>;
1525 def : Pat<(shl GR32:$src1, (and CL, immShift32)),
1526           (SHL32rCL GR32:$src1)>;
1527 def : Pat<(store (shl (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
1528           (SHL8mCL addr:$dst)>;
1529 def : Pat<(store (shl (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
1530           (SHL16mCL addr:$dst)>;
1531 def : Pat<(store (shl (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
1532           (SHL32mCL addr:$dst)>;
1533
1534 def : Pat<(srl GR8:$src1, (and CL, immShift32)),
1535           (SHR8rCL GR8:$src1)>;
1536 def : Pat<(srl GR16:$src1, (and CL, immShift32)),
1537           (SHR16rCL GR16:$src1)>;
1538 def : Pat<(srl GR32:$src1, (and CL, immShift32)),
1539           (SHR32rCL GR32:$src1)>;
1540 def : Pat<(store (srl (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
1541           (SHR8mCL addr:$dst)>;
1542 def : Pat<(store (srl (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
1543           (SHR16mCL addr:$dst)>;
1544 def : Pat<(store (srl (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
1545           (SHR32mCL addr:$dst)>;
1546
1547 def : Pat<(sra GR8:$src1, (and CL, immShift32)),
1548           (SAR8rCL GR8:$src1)>;
1549 def : Pat<(sra GR16:$src1, (and CL, immShift32)),
1550           (SAR16rCL GR16:$src1)>;
1551 def : Pat<(sra GR32:$src1, (and CL, immShift32)),
1552           (SAR32rCL GR32:$src1)>;
1553 def : Pat<(store (sra (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
1554           (SAR8mCL addr:$dst)>;
1555 def : Pat<(store (sra (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
1556           (SAR16mCL addr:$dst)>;
1557 def : Pat<(store (sra (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
1558           (SAR32mCL addr:$dst)>;
1559
1560 // (shl x (and y, 63)) ==> (shl x, y)
1561 def : Pat<(shl GR64:$src1, (and CL, immShift64)),
1562           (SHL64rCL GR64:$src1)>;
1563 def : Pat<(store (shl (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1564           (SHL64mCL addr:$dst)>;
1565
1566 def : Pat<(srl GR64:$src1, (and CL, immShift64)),
1567           (SHR64rCL GR64:$src1)>;
1568 def : Pat<(store (srl (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1569           (SHR64mCL addr:$dst)>;
1570
1571 def : Pat<(sra GR64:$src1, (and CL, immShift64)),
1572           (SAR64rCL GR64:$src1)>;
1573 def : Pat<(store (sra (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1574           (SAR64mCL addr:$dst)>;
1575
1576
1577 // (anyext (setcc_carry)) -> (setcc_carry)
1578 def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1579           (SETB_C16r)>;
1580 def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1581           (SETB_C32r)>;
1582 def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))),
1583           (SETB_C32r)>;
1584
1585
1586
1587
1588 //===----------------------------------------------------------------------===//
1589 // EFLAGS-defining Patterns
1590 //===----------------------------------------------------------------------===//
1591
1592 // add reg, reg
1593 def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr  GR8 :$src1, GR8 :$src2)>;
1594 def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
1595 def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
1596
1597 // add reg, mem
1598 def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
1599           (ADD8rm GR8:$src1, addr:$src2)>;
1600 def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
1601           (ADD16rm GR16:$src1, addr:$src2)>;
1602 def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
1603           (ADD32rm GR32:$src1, addr:$src2)>;
1604
1605 // add reg, imm
1606 def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri  GR8:$src1 , imm:$src2)>;
1607 def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
1608 def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
1609 def : Pat<(add GR16:$src1, i16immSExt8:$src2),
1610           (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
1611 def : Pat<(add GR32:$src1, i32immSExt8:$src2),
1612           (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
1613
1614 // sub reg, reg
1615 def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr  GR8 :$src1, GR8 :$src2)>;
1616 def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
1617 def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
1618
1619 // sub reg, mem
1620 def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
1621           (SUB8rm GR8:$src1, addr:$src2)>;
1622 def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
1623           (SUB16rm GR16:$src1, addr:$src2)>;
1624 def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
1625           (SUB32rm GR32:$src1, addr:$src2)>;
1626
1627 // sub reg, imm
1628 def : Pat<(sub GR8:$src1, imm:$src2),
1629           (SUB8ri GR8:$src1, imm:$src2)>;
1630 def : Pat<(sub GR16:$src1, imm:$src2),
1631           (SUB16ri GR16:$src1, imm:$src2)>;
1632 def : Pat<(sub GR32:$src1, imm:$src2),
1633           (SUB32ri GR32:$src1, imm:$src2)>;
1634 def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
1635           (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
1636 def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
1637           (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
1638
1639 // sub 0, reg
1640 def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r  GR8 :$src)>;
1641 def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>;
1642 def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>;
1643 def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>;
1644
1645 // mul reg, reg
1646 def : Pat<(mul GR16:$src1, GR16:$src2),
1647           (IMUL16rr GR16:$src1, GR16:$src2)>;
1648 def : Pat<(mul GR32:$src1, GR32:$src2),
1649           (IMUL32rr GR32:$src1, GR32:$src2)>;
1650
1651 // mul reg, mem
1652 def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
1653           (IMUL16rm GR16:$src1, addr:$src2)>;
1654 def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
1655           (IMUL32rm GR32:$src1, addr:$src2)>;
1656
1657 // mul reg, imm
1658 def : Pat<(mul GR16:$src1, imm:$src2),
1659           (IMUL16rri GR16:$src1, imm:$src2)>;
1660 def : Pat<(mul GR32:$src1, imm:$src2),
1661           (IMUL32rri GR32:$src1, imm:$src2)>;
1662 def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
1663           (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
1664 def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
1665           (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
1666
1667 // reg = mul mem, imm
1668 def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
1669           (IMUL16rmi addr:$src1, imm:$src2)>;
1670 def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
1671           (IMUL32rmi addr:$src1, imm:$src2)>;
1672 def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
1673           (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
1674 def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
1675           (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
1676
1677 // Patterns for nodes that do not produce flags, for instructions that do.
1678
1679 // addition
1680 def : Pat<(add GR64:$src1, GR64:$src2),
1681           (ADD64rr GR64:$src1, GR64:$src2)>;
1682 def : Pat<(add GR64:$src1, i64immSExt8:$src2),
1683           (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
1684 def : Pat<(add GR64:$src1, i64immSExt32:$src2),
1685           (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
1686 def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
1687           (ADD64rm GR64:$src1, addr:$src2)>;
1688
1689 // subtraction
1690 def : Pat<(sub GR64:$src1, GR64:$src2),
1691           (SUB64rr GR64:$src1, GR64:$src2)>;
1692 def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
1693           (SUB64rm GR64:$src1, addr:$src2)>;
1694 def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
1695           (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
1696 def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
1697           (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
1698
1699 // Multiply
1700 def : Pat<(mul GR64:$src1, GR64:$src2),
1701           (IMUL64rr GR64:$src1, GR64:$src2)>;
1702 def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
1703           (IMUL64rm GR64:$src1, addr:$src2)>;
1704 def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
1705           (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
1706 def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
1707           (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
1708 def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
1709           (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
1710 def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
1711           (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
1712
1713 // Increment reg.
1714 def : Pat<(add GR8 :$src, 1), (INC8r     GR8 :$src)>;
1715 def : Pat<(add GR16:$src, 1), (INC16r    GR16:$src)>, Requires<[In32BitMode]>;
1716 def : Pat<(add GR16:$src, 1), (INC64_16r GR16:$src)>, Requires<[In64BitMode]>;
1717 def : Pat<(add GR32:$src, 1), (INC32r    GR32:$src)>, Requires<[In32BitMode]>;
1718 def : Pat<(add GR32:$src, 1), (INC64_32r GR32:$src)>, Requires<[In64BitMode]>;
1719 def : Pat<(add GR64:$src, 1), (INC64r    GR64:$src)>;
1720
1721 // Decrement reg.
1722 def : Pat<(add GR8 :$src, -1), (DEC8r     GR8 :$src)>;
1723 def : Pat<(add GR16:$src, -1), (DEC16r    GR16:$src)>, Requires<[In32BitMode]>;
1724 def : Pat<(add GR16:$src, -1), (DEC64_16r GR16:$src)>, Requires<[In64BitMode]>;
1725 def : Pat<(add GR32:$src, -1), (DEC32r    GR32:$src)>, Requires<[In32BitMode]>;
1726 def : Pat<(add GR32:$src, -1), (DEC64_32r GR32:$src)>, Requires<[In64BitMode]>;
1727 def : Pat<(add GR64:$src, -1), (DEC64r    GR64:$src)>;
1728
1729 // or reg/reg.
1730 def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr  GR8 :$src1, GR8 :$src2)>;
1731 def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
1732 def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
1733 def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;
1734
1735 // or reg/mem
1736 def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
1737           (OR8rm GR8:$src1, addr:$src2)>;
1738 def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
1739           (OR16rm GR16:$src1, addr:$src2)>;
1740 def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
1741           (OR32rm GR32:$src1, addr:$src2)>;
1742 def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
1743           (OR64rm GR64:$src1, addr:$src2)>;
1744
1745 // or reg/imm
1746 def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri  GR8 :$src1, imm:$src2)>;
1747 def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
1748 def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
1749 def : Pat<(or GR16:$src1, i16immSExt8:$src2),
1750           (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1751 def : Pat<(or GR32:$src1, i32immSExt8:$src2),
1752           (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1753 def : Pat<(or GR64:$src1, i64immSExt8:$src2),
1754           (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1755 def : Pat<(or GR64:$src1, i64immSExt32:$src2),
1756           (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1757
1758 // xor reg/reg
1759 def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr  GR8 :$src1, GR8 :$src2)>;
1760 def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
1761 def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
1762 def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;
1763
1764 // xor reg/mem
1765 def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
1766           (XOR8rm GR8:$src1, addr:$src2)>;
1767 def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
1768           (XOR16rm GR16:$src1, addr:$src2)>;
1769 def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
1770           (XOR32rm GR32:$src1, addr:$src2)>;
1771 def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
1772           (XOR64rm GR64:$src1, addr:$src2)>;
1773
1774 // xor reg/imm
1775 def : Pat<(xor GR8:$src1, imm:$src2),
1776           (XOR8ri GR8:$src1, imm:$src2)>;
1777 def : Pat<(xor GR16:$src1, imm:$src2),
1778           (XOR16ri GR16:$src1, imm:$src2)>;
1779 def : Pat<(xor GR32:$src1, imm:$src2),
1780           (XOR32ri GR32:$src1, imm:$src2)>;
1781 def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
1782           (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1783 def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
1784           (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1785 def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
1786           (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1787 def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
1788           (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1789
1790 // and reg/reg
1791 def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr  GR8 :$src1, GR8 :$src2)>;
1792 def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
1793 def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
1794 def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;
1795
1796 // and reg/mem
1797 def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
1798           (AND8rm GR8:$src1, addr:$src2)>;
1799 def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
1800           (AND16rm GR16:$src1, addr:$src2)>;
1801 def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
1802           (AND32rm GR32:$src1, addr:$src2)>;
1803 def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
1804           (AND64rm GR64:$src1, addr:$src2)>;
1805
1806 // and reg/imm
1807 def : Pat<(and GR8:$src1, imm:$src2),
1808           (AND8ri GR8:$src1, imm:$src2)>;
1809 def : Pat<(and GR16:$src1, imm:$src2),
1810           (AND16ri GR16:$src1, imm:$src2)>;
1811 def : Pat<(and GR32:$src1, imm:$src2),
1812           (AND32ri GR32:$src1, imm:$src2)>;
1813 def : Pat<(and GR16:$src1, i16immSExt8:$src2),
1814           (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
1815 def : Pat<(and GR32:$src1, i32immSExt8:$src2),
1816           (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
1817 def : Pat<(and GR64:$src1, i64immSExt8:$src2),
1818           (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
1819 def : Pat<(and GR64:$src1, i64immSExt32:$src2),
1820           (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;
1821
1822 // Bit scan instruction patterns to match explicit zero-undef behavior.
1823 def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>;
1824 def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>;
1825 def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>;
1826 def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>;
1827 def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>;
1828 def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>;