Set the void flag on instructions that should get it
[oota-llvm.git] / lib / Target / X86 / X86InstrInfo.def
1 //===-- X86InstructionInfo.def - X86 Instruction Information ----*- C++ -*-===//
2 //
3 // This file describes all of the instructions that the X86 backend uses.  It
4 // relys on an external 'I' macro being defined that takes the arguments
5 // specified below, and is used to make all of the information relevant to an
6 // instruction be in one place.
7 //
8 // Note that X86 Instructions always have the destination register listed as
9 // operand 0, unless it does not produce a value (in which case the TSFlags will
10 // include X86II::Void).
11 //
12 //===----------------------------------------------------------------------===//
13
14 // NOTE: No include guards desired
15
16 #ifndef I
17 #errror "Must define I macro before including X86/X86InstructionInfo.def!"
18 #endif
19
20 // Arguments to be passed into the I macro
21 //  #1: Enum name - This ends up being the opcode symbol in the X86 namespace
22 //  #2: Opcode name, as used by the gnu assembler
23 //  #3: Instruction Flags - This should be a field or'd together that contains
24 //      constants from the MachineInstrInfo.h file.
25 //  #4: Target Specific Flags - Another bitfield containing X86 specific flags
26 //      that we are interested in for each instruction.  These should be flags
27 //      defined in X86InstrInfo.h in the X86II namespace.
28 //
29
30 // The first instruction must always be the PHI instruction:
31 I(PHI         , "phi",                0, 0)
32
33 // The second instruction must always be the noop instruction:
34 I(NOOP        , "nop",                0, X86II::Void) // nop          90
35
36 // Flow control instructions
37 I(RET         , "ret",       M_RET_FLAG, X86II::Void) // ret          CB
38 I(JMP         , "jmp",    M_BRANCH_FLAG, X86II::Void) // jmp foo      EB|E9 cb|w
39
40 // Misc instructions
41 I(LEAVE       , "leave",              0, 0)           // leave        C9
42
43 // Move instructions
44 I(MOVrr8      , "movb",               0, 0)           // R8  = R8     88/r
45 I(MOVrr16     , "movw",               0, 0)           // R16 = R16    89/r
46 I(MOVrr32     , "movl",               0, 0)           // R32 = R32    89/r
47 I(MOVir8      , "movb",               0, 0)           // R8  = imm8   B0+ rb
48 I(MOVir16     , "movw",               0, 0)           // R16 = imm16  B8+ rw
49 I(MOVir32     , "movl",               0, 0)           // R32 = imm32  B8+ rd
50 I(MOVmr8      , "movb",               0, 0)           // R8  = [mem]  8A/r
51 I(MOVmr16     , "movw",               0, 0)           // R16 = [mem]  8B/r
52 I(MOVmr32     , "movl",               0, 0)           // R32 = [mem]  8B/r
53 I(MOVrm8      , "movb",               0, X86II::Void) // [mem] = R8   88/r
54 I(MOVrm16     , "movw",               0, X86II::Void) // [mem] = R16  89/r
55 I(MOVrm32     , "movl",               0, X86II::Void) // [mem] = R32  89/r
56
57 // Arithmetic instructions
58 I(ADDrr8      , "addb",               0, 0)           // R8  += R8    00/r
59 I(ADDrr16     , "addw",               0, 0)           // R16 += R16   01/r
60 I(ADDrr32     , "addl",               0, 0)           // R32 += R32   01/r
61 I(SUBrr8      , "subb",               0, 0)           // R8  -= R8    2A/r
62 I(SUBrr16     , "subw",               0, 0)           // R16 -= R16   2B/r
63 I(SUBrr32     , "subl",               0, 0)           // R32 -= R32   2B/r
64 I(MULrr8      , "mulb",               0, 0)           // AX   = AL*R8  F6/4
65 I(MULrr16     , "mulw",               0, 0)           // DX:AX= AX*R16 F7/4
66 I(MULrr32     , "mull",               0, 0)           // ED:EA= EA*R32 F7/4
67
68 // unsigned division/remainder
69 I(DIVrr8      , "divb",               0, X86II::Void) // AX/r8= AL&AH  F6/6
70 I(DIVrr16     , "divw",               0, X86II::Void) // DA/r16=AX&DX  F7/6
71 I(DIVrr32     , "divl",               0, X86II::Void) // DA/r32=EAX&DX F7/6
72
73 // signed division/remainder
74 I(IDIVrr8     , "idivb",              0, X86II::Void) // AX/r8= AL&AH  F6/6
75 I(IDIVrr16    , "idivw",              0, X86II::Void) // DA/r16=AX&DX  F7/6
76 I(IDIVrr32    , "idivl",              0, X86II::Void) // DA/r32=EAX&DX F7/6
77
78 // Logical operators
79 I(ANDrr8      , "andb",               0, 0)           // R8  &= R8    20/r
80 I(ANDrr16     , "andw",               0, 0)           // R16 &= R16   21/r
81 I(ANDrr32     , "andl",               0, 0)           // R32 &= R32   21/r
82 I(ORrr8       , "orb",                0, 0)           // R8  |= R8    08/r
83 I(ORrr16      , "orw",                0, 0)           // R16 |= R16   09/r
84 I(ORrr32      , "orl",                0, 0)           // R32 |= R32   09/r
85 I(XORrr8      , "xorb",               0, 0)           // R8  ^= R8    30/r
86 I(XORrr16     , "xorw",               0, 0)           // R16 ^= R16   31/r
87 I(XORrr32     , "xorl",               0, 0)           // R32 ^= R32   31/r
88
89 // Shift instructions
90 I(SHLrr8      , "shlb",               0, 0)           // R8   <<= cl   D2/4
91 I(SHLir8      , "shlb",               0, 0)           // R8   <<= imm8 C0/4 ib
92 I(SHLrr16     , "shlw",               0, 0)           // R16  <<= cl   D3/4
93 I(SHLir16     , "shlw",               0, 0)           // R16  <<= imm8 C1/4 ib
94 I(SHLrr32     , "shll",               0, 0)           // R32  <<= cl   D3/4
95 I(SHLir32     , "shll",               0, 0)           // R32  <<= imm8 C1/4 ib
96 I(SHRrr8      , "shrb",               0, 0)           // R8  >>>= cl   D2/5
97 I(SHRir8      , "shrb",               0, 0)           // R8  >>>= imm8 C0/5 ib
98 I(SHRrr16     , "shrw",               0, 0)           // R16 >>>= cl   D3/5
99 I(SHRir16     , "shrw",               0, 0)           // R16 >>>= imm8 C1/5 ib
100 I(SHRrr32     , "shrl",               0, 0)           // R32 >>>= cl   D3/5
101 I(SHRir32     , "shrl",               0, 0)           // R32 >>>= imm8 C1/5 ib
102 I(SARrr8      , "sarb",               0, 0)           // R8   >>= cl   D2/7
103 I(SARir8      , "sarb",               0, 0)           // R8   >>= imm8 C0/7 ib
104 I(SARrr16     , "sarw",               0, 0)           // R16  >>= cl   D3/7
105 I(SARir16     , "sarw",               0, 0)           // R16  >>= imm8 C1/7 ib
106 I(SARrr32     , "sarl",               0, 0)           // R32  >>= cl   D3/7
107 I(SARir32     , "sarl",               0, 0)           // R32  >>= imm8 C1/7 ib
108
109 // Floating point loads
110 I(FLDr4       , "flds",               0, X86II::Void) // push float    D9/0
111 I(FLDr8       , "fldl ",              0, X86II::Void) // push double   DD/0
112
113 // Floating point compares
114 I(FUCOMPP     , "fucompp",            0, X86II::Void) // compare+pop2x DA E9
115
116 // Floating point flag ops
117 I(FNSTSWr8    , "fnstsw",             0, X86II::Void) // AX = fp flags DF E0
118
119 // Condition code ops, incl. set if equal/not equal/...
120 I(SAHF        , "sahf",               0, 0)           // flags = AH    9E
121 I(SETA        , "seta",               0, 0)           // R8 = > unsign 0F 97
122 I(SETAE       , "setae",              0, 0)           // R8 = >=unsign 0F 93
123 I(SETB        , "setb",               0, 0)           // R8 = < unsign 0F 92
124 I(SETBE       , "setbe",              0, 0)           // R8 = <=unsign 0F 96
125 I(SETE        , "sete",               0, 0)           // R8 = ==       0F 94
126 I(SETG        , "setg",               0, 0)           // R8 = > signed 0F 9F
127 I(SETGE       , "setge",              0, 0)           // R8 = >=signed 0F 9D
128 I(SETL        , "setl",               0, 0)           // R8 = < signed 0F 9C
129 I(SETLE       , "setle",              0, 0)           // R8 = <=signed 0F 9E
130 I(SETNE       , "setne",              0, 0)           // R8 = !=       0F 95
131
132 // Integer comparisons
133 I(CMPrr8      , "cmpb",               0, 0)           // compare R8,R8   38/r
134 I(CMPrr16     , "cmpw",               0, 0)           // compare R16,R16 39/r
135 I(CMPrr32     , "cmpl",               0, 0)           // compare R32,R32 39/r
136
137 // Sign extenders (first 3 are good for DIV/IDIV; the others are more general)
138 I(CBW         , "cbw",                0, 0)     // AX = signext(AL)         98
139 I(CWD         , "cwd",                0, 0)     // DX:AX = signext(AX)      99
140 I(CDQ         , "cdq",                0, 0)     // EDX:EAX = signext(EAX)   99
141 I(MOVSXr16r8  , "movsx",              0, 0)     // R32 = signext(R8)  0F BE /r
142 I(MOVSXr32r8  , "movsx",              0, 0)     // R32 = signext(R8)  0F BE /r
143 I(MOVSXr32r16 , "movsx",              0, 0)     // R32 = signext(R16) 0F BF /r
144 I(MOVZXr16r8  , "movzx",              0, 0)     // R32 = zeroext(R8)  0F B6 /r
145 I(MOVZXr32r8  , "movzx",              0, 0)     // R32 = zeroext(R8)  0F B6 /r
146 I(MOVZXr32r16 , "movzx",              0, 0)     // R32 = zeroext(R16) 0F B7 /r
147
148 // At this point, I is dead, so undefine the macro
149 #undef I