[X86] Move address for store target from outs to ins on a couple instructions.
[oota-llvm.git] / lib / Target / X86 / X86InstrInfo.h
1 //===-- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the X86 implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_LIB_TARGET_X86_X86INSTRINFO_H
15 #define LLVM_LIB_TARGET_X86_X86INSTRINFO_H
16
17 #include "MCTargetDesc/X86BaseInfo.h"
18 #include "X86RegisterInfo.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/Target/TargetInstrInfo.h"
21
22 #define GET_INSTRINFO_HEADER
23 #include "X86GenInstrInfo.inc"
24
25 namespace llvm {
26   class MachineInstrBuilder;
27   class X86RegisterInfo;
28   class X86Subtarget;
29
30 namespace X86 {
31   // X86 specific condition code. These correspond to X86_*_COND in
32   // X86InstrInfo.td. They must be kept in synch.
33   enum CondCode {
34     COND_A  = 0,
35     COND_AE = 1,
36     COND_B  = 2,
37     COND_BE = 3,
38     COND_E  = 4,
39     COND_G  = 5,
40     COND_GE = 6,
41     COND_L  = 7,
42     COND_LE = 8,
43     COND_NE = 9,
44     COND_NO = 10,
45     COND_NP = 11,
46     COND_NS = 12,
47     COND_O  = 13,
48     COND_P  = 14,
49     COND_S  = 15,
50     LAST_VALID_COND = COND_S,
51
52     // Artificial condition codes. These are used by AnalyzeBranch
53     // to indicate a block terminated with two conditional branches to
54     // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
55     // which can't be represented on x86 with a single condition. These
56     // are never used in MachineInstrs.
57     COND_NE_OR_P,
58     COND_NP_OR_E,
59
60     COND_INVALID
61   };
62
63   // Turn condition code into conditional branch opcode.
64   unsigned GetCondBranchFromCond(CondCode CC);
65
66   /// \brief Return a set opcode for the given condition and whether it has
67   /// a memory operand.
68   unsigned getSETFromCond(CondCode CC, bool HasMemoryOperand = false);
69
70   /// \brief Return a cmov opcode for the given condition, register size in
71   /// bytes, and operand type.
72   unsigned getCMovFromCond(CondCode CC, unsigned RegBytes,
73                            bool HasMemoryOperand = false);
74
75   // Turn CMov opcode into condition code.
76   CondCode getCondFromCMovOpc(unsigned Opc);
77
78   /// GetOppositeBranchCondition - Return the inverse of the specified cond,
79   /// e.g. turning COND_E to COND_NE.
80   CondCode GetOppositeBranchCondition(CondCode CC);
81 }  // end namespace X86;
82
83
84 /// isGlobalStubReference - Return true if the specified TargetFlag operand is
85 /// a reference to a stub for a global, not the global itself.
86 inline static bool isGlobalStubReference(unsigned char TargetFlag) {
87   switch (TargetFlag) {
88   case X86II::MO_DLLIMPORT: // dllimport stub.
89   case X86II::MO_GOTPCREL:  // rip-relative GOT reference.
90   case X86II::MO_GOT:       // normal GOT reference.
91   case X86II::MO_DARWIN_NONLAZY_PIC_BASE:        // Normal $non_lazy_ptr ref.
92   case X86II::MO_DARWIN_NONLAZY:                 // Normal $non_lazy_ptr ref.
93   case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Hidden $non_lazy_ptr ref.
94     return true;
95   default:
96     return false;
97   }
98 }
99
100 /// isGlobalRelativeToPICBase - Return true if the specified global value
101 /// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg).  If this
102 /// is true, the addressing mode has the PIC base register added in (e.g. EBX).
103 inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
104   switch (TargetFlag) {
105   case X86II::MO_GOTOFF:                         // isPICStyleGOT: local global.
106   case X86II::MO_GOT:                            // isPICStyleGOT: other global.
107   case X86II::MO_PIC_BASE_OFFSET:                // Darwin local global.
108   case X86II::MO_DARWIN_NONLAZY_PIC_BASE:        // Darwin/32 external global.
109   case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Darwin/32 hidden global.
110   case X86II::MO_TLVP:                           // ??? Pretty sure..
111     return true;
112   default:
113     return false;
114   }
115 }
116
117 inline static bool isScale(const MachineOperand &MO) {
118   return MO.isImm() &&
119     (MO.getImm() == 1 || MO.getImm() == 2 ||
120      MO.getImm() == 4 || MO.getImm() == 8);
121 }
122
123 inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) {
124   if (MI->getOperand(Op).isFI()) return true;
125   return Op+X86::AddrSegmentReg <= MI->getNumOperands() &&
126     MI->getOperand(Op+X86::AddrBaseReg).isReg() &&
127     isScale(MI->getOperand(Op+X86::AddrScaleAmt)) &&
128     MI->getOperand(Op+X86::AddrIndexReg).isReg() &&
129     (MI->getOperand(Op+X86::AddrDisp).isImm() ||
130      MI->getOperand(Op+X86::AddrDisp).isGlobal() ||
131      MI->getOperand(Op+X86::AddrDisp).isCPI() ||
132      MI->getOperand(Op+X86::AddrDisp).isJTI());
133 }
134
135 inline static bool isMem(const MachineInstr *MI, unsigned Op) {
136   if (MI->getOperand(Op).isFI()) return true;
137   return Op+X86::AddrNumOperands <= MI->getNumOperands() &&
138     MI->getOperand(Op+X86::AddrSegmentReg).isReg() &&
139     isLeaMem(MI, Op);
140 }
141
142 class X86InstrInfo final : public X86GenInstrInfo {
143   X86Subtarget &Subtarget;
144   const X86RegisterInfo RI;
145
146   /// RegOp2MemOpTable3Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
147   /// RegOp2MemOpTable2, RegOp2MemOpTable3 - Load / store folding opcode maps.
148   ///
149   typedef DenseMap<unsigned,
150                    std::pair<unsigned, unsigned> > RegOp2MemOpTableType;
151   RegOp2MemOpTableType RegOp2MemOpTable2Addr;
152   RegOp2MemOpTableType RegOp2MemOpTable0;
153   RegOp2MemOpTableType RegOp2MemOpTable1;
154   RegOp2MemOpTableType RegOp2MemOpTable2;
155   RegOp2MemOpTableType RegOp2MemOpTable3;
156   RegOp2MemOpTableType RegOp2MemOpTable4;
157
158   /// MemOp2RegOpTable - Load / store unfolding opcode map.
159   ///
160   typedef DenseMap<unsigned,
161                    std::pair<unsigned, unsigned> > MemOp2RegOpTableType;
162   MemOp2RegOpTableType MemOp2RegOpTable;
163
164   static void AddTableEntry(RegOp2MemOpTableType &R2MTable,
165                             MemOp2RegOpTableType &M2RTable,
166                             unsigned RegOp, unsigned MemOp, unsigned Flags);
167
168   virtual void anchor();
169
170   bool AnalyzeBranchImpl(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
171                          MachineBasicBlock *&FBB,
172                          SmallVectorImpl<MachineOperand> &Cond,
173                          SmallVectorImpl<MachineInstr *> &CondBranches,
174                          bool AllowModify) const;
175
176 public:
177   explicit X86InstrInfo(X86Subtarget &STI);
178
179   /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
180   /// such, whenever a client has an instance of instruction info, it should
181   /// always be able to get register info as well (through this method).
182   ///
183   const X86RegisterInfo &getRegisterInfo() const { return RI; }
184
185   /// getSPAdjust - This returns the stack pointer adjustment made by
186   /// this instruction. For x86, we need to handle more complex call
187   /// sequences involving PUSHes.
188   int getSPAdjust(const MachineInstr *MI) const override;
189
190   /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
191   /// extension instruction. That is, it's like a copy where it's legal for the
192   /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
193   /// true, then it's expected the pre-extension value is available as a subreg
194   /// of the result register. This also returns the sub-register index in
195   /// SubIdx.
196   bool isCoalescableExtInstr(const MachineInstr &MI,
197                              unsigned &SrcReg, unsigned &DstReg,
198                              unsigned &SubIdx) const override;
199
200   unsigned isLoadFromStackSlot(const MachineInstr *MI,
201                                int &FrameIndex) const override;
202   /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
203   /// stack locations as well.  This uses a heuristic so it isn't
204   /// reliable for correctness.
205   unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
206                                      int &FrameIndex) const override;
207
208   unsigned isStoreToStackSlot(const MachineInstr *MI,
209                               int &FrameIndex) const override;
210   /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
211   /// stack locations as well.  This uses a heuristic so it isn't
212   /// reliable for correctness.
213   unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
214                                     int &FrameIndex) const override;
215
216   bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
217                                          AliasAnalysis *AA) const override;
218   void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
219                      unsigned DestReg, unsigned SubIdx,
220                      const MachineInstr *Orig,
221                      const TargetRegisterInfo &TRI) const override;
222
223   /// Given an operand within a MachineInstr, insert preceding code to put it
224   /// into the right format for a particular kind of LEA instruction. This may
225   /// involve using an appropriate super-register instead (with an implicit use
226   /// of the original) or creating a new virtual register and inserting COPY
227   /// instructions to get the data into the right class.
228   ///
229   /// Reference parameters are set to indicate how caller should add this
230   /// operand to the LEA instruction.
231   bool classifyLEAReg(MachineInstr *MI, const MachineOperand &Src,
232                       unsigned LEAOpcode, bool AllowSP,
233                       unsigned &NewSrc, bool &isKill,
234                       bool &isUndef, MachineOperand &ImplicitOp) const;
235
236   /// convertToThreeAddress - This method must be implemented by targets that
237   /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
238   /// may be able to convert a two-address instruction into a true
239   /// three-address instruction on demand.  This allows the X86 target (for
240   /// example) to convert ADD and SHL instructions into LEA instructions if they
241   /// would require register copies due to two-addressness.
242   ///
243   /// This method returns a null pointer if the transformation cannot be
244   /// performed, otherwise it returns the new instruction.
245   ///
246   MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
247                                       MachineBasicBlock::iterator &MBBI,
248                                       LiveVariables *LV) const override;
249
250   /// Returns true iff the routine could find two commutable operands in the
251   /// given machine instruction.
252   /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments. Their
253   /// input values can be re-defined in this method only if the input values
254   /// are not pre-defined, which is designated by the special value
255   /// 'CommuteAnyOperandIndex' assigned to it.
256   /// If both of indices are pre-defined and refer to some operands, then the
257   /// method simply returns true if the corresponding operands are commutable
258   /// and returns false otherwise.
259   ///
260   /// For example, calling this method this way:
261   ///     unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
262   ///     findCommutedOpIndices(MI, Op1, Op2);
263   /// can be interpreted as a query asking to find an operand that would be
264   /// commutable with the operand#1.
265   bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
266                              unsigned &SrcOpIdx2) const override;
267
268   /// Returns true if the routine could find two commutable operands
269   /// in the given FMA instruction. Otherwise, returns false.
270   ///
271   /// \p SrcOpIdx1 and \p SrcOpIdx2 are INPUT and OUTPUT arguments.
272   /// The output indices of the commuted operands are returned in these
273   /// arguments. Also, the input values of these arguments may be preset either
274   /// to indices of operands that must be commuted or be equal to a special
275   /// value 'CommuteAnyOperandIndex' which means that the corresponding
276   /// operand index is not set and this method is free to pick any of
277   /// available commutable operands.
278   ///
279   /// For example, calling this method this way:
280   ///     unsigned Idx1 = 1, Idx2 = CommuteAnyOperandIndex;
281   ///     findFMA3CommutedOpIndices(MI, Idx1, Idx2);
282   /// can be interpreted as a query asking if the operand #1 can be swapped
283   /// with any other available operand (e.g. operand #2, operand #3, etc.).
284   ///
285   /// The returned FMA opcode may differ from the opcode in the given MI.
286   /// For example, commuting the operands #1 and #3 in the following FMA
287   ///     FMA213 #1, #2, #3
288   /// results into instruction with adjusted opcode:
289   ///     FMA231 #3, #2, #1
290   bool findFMA3CommutedOpIndices(MachineInstr *MI,
291                                  unsigned &SrcOpIdx1,
292                                  unsigned &SrcOpIdx2) const;
293
294   /// Returns an adjusted FMA opcode that must be used in FMA instruction that
295   /// performs the same computations as the given MI but which has the operands
296   /// \p SrcOpIdx1 and \p SrcOpIdx2 commuted.
297   /// It may return 0 if it is unsafe to commute the operands.
298   ///
299   /// The returned FMA opcode may differ from the opcode in the given \p MI.
300   /// For example, commuting the operands #1 and #3 in the following FMA
301   ///     FMA213 #1, #2, #3
302   /// results into instruction with adjusted opcode:
303   ///     FMA231 #3, #2, #1
304   unsigned getFMA3OpcodeToCommuteOperands(MachineInstr *MI,
305                                           unsigned SrcOpIdx1,
306                                           unsigned SrcOpIdx2) const;
307
308   // Branch analysis.
309   bool isUnpredicatedTerminator(const MachineInstr* MI) const override;
310   bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
311                      MachineBasicBlock *&FBB,
312                      SmallVectorImpl<MachineOperand> &Cond,
313                      bool AllowModify) const override;
314
315   bool getMemOpBaseRegImmOfs(MachineInstr *LdSt, unsigned &BaseReg,
316                              unsigned &Offset,
317                              const TargetRegisterInfo *TRI) const override;
318   bool AnalyzeBranchPredicate(MachineBasicBlock &MBB,
319                               TargetInstrInfo::MachineBranchPredicate &MBP,
320                               bool AllowModify = false) const override;
321
322   unsigned RemoveBranch(MachineBasicBlock &MBB) const override;
323   unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
324                         MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
325                         DebugLoc DL) const override;
326   bool canInsertSelect(const MachineBasicBlock&, ArrayRef<MachineOperand> Cond,
327                        unsigned, unsigned, int&, int&, int&) const override;
328   void insertSelect(MachineBasicBlock &MBB,
329                     MachineBasicBlock::iterator MI, DebugLoc DL,
330                     unsigned DstReg, ArrayRef<MachineOperand> Cond,
331                     unsigned TrueReg, unsigned FalseReg) const override;
332   void copyPhysReg(MachineBasicBlock &MBB,
333                    MachineBasicBlock::iterator MI, DebugLoc DL,
334                    unsigned DestReg, unsigned SrcReg,
335                    bool KillSrc) const override;
336   void storeRegToStackSlot(MachineBasicBlock &MBB,
337                            MachineBasicBlock::iterator MI,
338                            unsigned SrcReg, bool isKill, int FrameIndex,
339                            const TargetRegisterClass *RC,
340                            const TargetRegisterInfo *TRI) const override;
341
342   void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
343                       SmallVectorImpl<MachineOperand> &Addr,
344                       const TargetRegisterClass *RC,
345                       MachineInstr::mmo_iterator MMOBegin,
346                       MachineInstr::mmo_iterator MMOEnd,
347                       SmallVectorImpl<MachineInstr*> &NewMIs) const;
348
349   void loadRegFromStackSlot(MachineBasicBlock &MBB,
350                             MachineBasicBlock::iterator MI,
351                             unsigned DestReg, int FrameIndex,
352                             const TargetRegisterClass *RC,
353                             const TargetRegisterInfo *TRI) const override;
354
355   void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
356                        SmallVectorImpl<MachineOperand> &Addr,
357                        const TargetRegisterClass *RC,
358                        MachineInstr::mmo_iterator MMOBegin,
359                        MachineInstr::mmo_iterator MMOEnd,
360                        SmallVectorImpl<MachineInstr*> &NewMIs) const;
361
362   bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const override;
363
364   /// foldMemoryOperand - If this target supports it, fold a load or store of
365   /// the specified stack slot into the specified machine instruction for the
366   /// specified operand(s).  If this is possible, the target should perform the
367   /// folding and return true, otherwise it should return false.  If it folds
368   /// the instruction, it is likely that the MachineInstruction the iterator
369   /// references has been changed.
370   MachineInstr *foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI,
371                                       ArrayRef<unsigned> Ops,
372                                       MachineBasicBlock::iterator InsertPt,
373                                       int FrameIndex) const override;
374
375   /// foldMemoryOperand - Same as the previous version except it allows folding
376   /// of any load and store from / to any address, not just from a specific
377   /// stack slot.
378   MachineInstr *foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI,
379                                       ArrayRef<unsigned> Ops,
380                                       MachineBasicBlock::iterator InsertPt,
381                                       MachineInstr *LoadMI) const override;
382
383   /// unfoldMemoryOperand - Separate a single instruction which folded a load or
384   /// a store or a load and a store into two or more instruction. If this is
385   /// possible, returns true as well as the new instructions by reference.
386   bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
387                          unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
388                          SmallVectorImpl<MachineInstr*> &NewMIs) const override;
389
390   bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
391                            SmallVectorImpl<SDNode*> &NewNodes) const override;
392
393   /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
394   /// instruction after load / store are unfolded from an instruction of the
395   /// specified opcode. It returns zero if the specified unfolding is not
396   /// possible. If LoadRegIndex is non-null, it is filled in with the operand
397   /// index of the operand which will hold the register holding the loaded
398   /// value.
399   unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
400                               bool UnfoldLoad, bool UnfoldStore,
401                               unsigned *LoadRegIndex = nullptr) const override;
402
403   /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
404   /// to determine if two loads are loading from the same base address. It
405   /// should only return true if the base pointers are the same and the
406   /// only differences between the two addresses are the offset. It also returns
407   /// the offsets by reference.
408   bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1,
409                                int64_t &Offset2) const override;
410
411   /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
412   /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
413   /// be scheduled togther. On some targets if two loads are loading from
414   /// addresses in the same cache line, it's better if they are scheduled
415   /// together. This function takes two integers that represent the load offsets
416   /// from the common base address. It returns true if it decides it's desirable
417   /// to schedule the two loads together. "NumLoads" is the number of loads that
418   /// have already been scheduled after Load1.
419   bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
420                                int64_t Offset1, int64_t Offset2,
421                                unsigned NumLoads) const override;
422
423   bool shouldScheduleAdjacent(MachineInstr* First,
424                               MachineInstr *Second) const override;
425
426   void getNoopForMachoTarget(MCInst &NopInst) const override;
427
428   bool
429   ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;
430
431   /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
432   /// instruction that defines the specified register class.
433   bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const override;
434
435   /// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction tha
436   /// would clobber the EFLAGS condition register. Note the result may be
437   /// conservative. If it cannot definitely determine the safety after visiting
438   /// a few instructions in each direction it assumes it's not safe.
439   bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
440                              MachineBasicBlock::iterator I) const;
441
442   /// True if MI has a condition code def, e.g. EFLAGS, that is
443   /// not marked dead.
444   bool hasLiveCondCodeDef(MachineInstr *MI) const;
445
446   /// getGlobalBaseReg - Return a virtual register initialized with the
447   /// the global base register value. Output instructions required to
448   /// initialize the register in the function entry block, if necessary.
449   ///
450   unsigned getGlobalBaseReg(MachineFunction *MF) const;
451
452   std::pair<uint16_t, uint16_t>
453   getExecutionDomain(const MachineInstr *MI) const override;
454
455   void setExecutionDomain(MachineInstr *MI, unsigned Domain) const override;
456
457   unsigned
458     getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
459                                  const TargetRegisterInfo *TRI) const override;
460   unsigned getUndefRegClearance(const MachineInstr *MI, unsigned &OpNum,
461                                 const TargetRegisterInfo *TRI) const override;
462   void breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
463                                  const TargetRegisterInfo *TRI) const override;
464
465   MachineInstr *foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI,
466                                       unsigned OpNum,
467                                       ArrayRef<MachineOperand> MOs,
468                                       MachineBasicBlock::iterator InsertPt,
469                                       unsigned Size, unsigned Alignment,
470                                       bool AllowCommute) const;
471
472   void
473   getUnconditionalBranch(MCInst &Branch,
474                          const MCSymbolRefExpr *BranchTarget) const override;
475
476   void getTrap(MCInst &MI) const override;
477
478   unsigned getJumpInstrTableEntryBound() const override;
479
480   bool isHighLatencyDef(int opc) const override;
481
482   bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
483                              const MachineRegisterInfo *MRI,
484                              const MachineInstr *DefMI, unsigned DefIdx,
485                              const MachineInstr *UseMI,
486                              unsigned UseIdx) const override;
487   
488   bool useMachineCombiner() const override {
489     return true;
490   }
491
492   bool isAssociativeAndCommutative(const MachineInstr &Inst) const override;
493
494   bool hasReassociableOperands(const MachineInstr &Inst,
495                                const MachineBasicBlock *MBB) const override;
496
497   void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
498                              MachineInstr &NewMI1,
499                              MachineInstr &NewMI2) const override;
500
501   /// analyzeCompare - For a comparison instruction, return the source registers
502   /// in SrcReg and SrcReg2 if having two register operands, and the value it
503   /// compares against in CmpValue. Return true if the comparison instruction
504   /// can be analyzed.
505   bool analyzeCompare(const MachineInstr *MI, unsigned &SrcReg,
506                       unsigned &SrcReg2, int &CmpMask,
507                       int &CmpValue) const override;
508
509   /// optimizeCompareInstr - Check if there exists an earlier instruction that
510   /// operates on the same source operands and sets flags in the same way as
511   /// Compare; remove Compare if possible.
512   bool optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg,
513                             unsigned SrcReg2, int CmpMask, int CmpValue,
514                             const MachineRegisterInfo *MRI) const override;
515
516   /// optimizeLoadInstr - Try to remove the load by folding it to a register
517   /// operand at the use. We fold the load instructions if and only if the
518   /// def and use are in the same BB. We only look at one load and see
519   /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
520   /// defined by the load we are trying to fold. DefMI returns the machine
521   /// instruction that defines FoldAsLoadDefReg, and the function returns
522   /// the machine instruction generated due to folding.
523   MachineInstr* optimizeLoadInstr(MachineInstr *MI,
524                                   const MachineRegisterInfo *MRI,
525                                   unsigned &FoldAsLoadDefReg,
526                                   MachineInstr *&DefMI) const override;
527
528   std::pair<unsigned, unsigned>
529   decomposeMachineOperandsTargetFlags(unsigned TF) const override;
530
531   ArrayRef<std::pair<unsigned, const char *>>
532   getSerializableDirectMachineOperandTargetFlags() const override;
533
534 protected:
535   /// Commutes the operands in the given instruction by changing the operands
536   /// order and/or changing the instruction's opcode and/or the immediate value
537   /// operand.
538   ///
539   /// The arguments 'CommuteOpIdx1' and 'CommuteOpIdx2' specify the operands
540   /// to be commuted.
541   ///
542   /// Do not call this method for a non-commutable instruction or
543   /// non-commutable operands.
544   /// Even though the instruction is commutable, the method may still
545   /// fail to commute the operands, null pointer is returned in such cases.
546   MachineInstr *commuteInstructionImpl(MachineInstr *MI, bool NewMI,
547                                        unsigned CommuteOpIdx1,
548                                        unsigned CommuteOpIdx2) const override;
549
550 private:
551   MachineInstr * convertToThreeAddressWithLEA(unsigned MIOpc,
552                                               MachineFunction::iterator &MFI,
553                                               MachineBasicBlock::iterator &MBBI,
554                                               LiveVariables *LV) const;
555
556   /// Handles memory folding for special case instructions, for instance those
557   /// requiring custom manipulation of the address.
558   MachineInstr *foldMemoryOperandCustom(MachineFunction &MF, MachineInstr *MI,
559                                         unsigned OpNum,
560                                         ArrayRef<MachineOperand> MOs,
561                                         MachineBasicBlock::iterator InsertPt,
562                                         unsigned Size, unsigned Align) const;
563
564   /// isFrameOperand - Return true and the FrameIndex if the specified
565   /// operand and follow operands form a reference to the stack frame.
566   bool isFrameOperand(const MachineInstr *MI, unsigned int Op,
567                       int &FrameIndex) const;
568
569   /// Expand the MOVImmSExti8 pseudo-instructions.
570   bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB) const;
571 };
572
573 } // End llvm namespace
574
575 #endif