First round of support for doing scalar FP using the SSE2 ISA extension and
[oota-llvm.git] / lib / Target / X86 / X86RegisterInfo.td
1 //===- X86RegisterInfo.td - Describe the X86 Register File ------*- C++ -*-===//
2 // 
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 // 
8 //===----------------------------------------------------------------------===//
9 //
10 // This file describes the X86 Register file, defining the registers themselves,
11 // aliases between the registers, and the register classes built out of the
12 // registers.
13 //
14 //===----------------------------------------------------------------------===//
15
16 //===----------------------------------------------------------------------===//
17 //  Register definitions...
18 //
19 let Namespace = "X86" in {
20
21   // In the register alias definitions below, we define which registers alias
22   // which others.  We only specify which registers the small registers alias,
23   // because the register file generator is smart enough to figure out that
24   // AL aliases AX if we tell it that AX aliased AL (for example).
25
26   // 32-bit registers
27   def EAX : Register<"EAX">; def ECX : Register<"ECX">;
28   def EDX : Register<"EDX">; def EBX : Register<"EBX">;
29   def ESP : Register<"ESP">; def EBP : Register<"EBP">;
30   def ESI : Register<"ESI">; def EDI : Register<"EDI">;
31   
32   // 16-bit registers
33   def AX : RegisterGroup<"AX", [EAX]>; def CX : RegisterGroup<"CX", [ECX]>;
34   def DX : RegisterGroup<"DX", [EDX]>; def BX : RegisterGroup<"BX", [EBX]>;
35   def SP : RegisterGroup<"SP", [ESP]>; def BP : RegisterGroup<"BP", [EBP]>;
36   def SI : RegisterGroup<"SI", [ESI]>; def DI : RegisterGroup<"DI", [EDI]>;
37   
38   // 8-bit registers
39   def AL : RegisterGroup<"AL", [AX,EAX]>; def CL : RegisterGroup<"CL",[CX,ECX]>;
40   def DL : RegisterGroup<"DL", [DX,EDX]>; def BL : RegisterGroup<"BL",[BX,EBX]>;
41   def AH : RegisterGroup<"AH", [AX,EAX]>; def CH : RegisterGroup<"CH",[CX,ECX]>;
42   def DH : RegisterGroup<"DH", [DX,EDX]>; def BH : RegisterGroup<"BH",[BX,EBX]>;
43   
44   // Pseudo Floating Point registers
45   def FP0 : Register<"FP0">; def FP1 : Register<"FP1">;
46   def FP2 : Register<"FP2">; def FP3 : Register<"FP3">;
47   def FP4 : Register<"FP4">; def FP5 : Register<"FP5">;
48   def FP6 : Register<"FP6">; 
49
50   // XMM Registers, used by the various SSE instruction set extensions
51   def XMM0: Register<"XMM0">; def XMM1: Register<"XMM1">;
52   def XMM2: Register<"XMM2">; def XMM3: Register<"XMM3">;
53   def XMM4: Register<"XMM4">; def XMM5: Register<"XMM5">;
54   def XMM6: Register<"XMM6">; def XMM7: Register<"XMM7">;
55
56   // Floating point stack registers
57   def ST0 : Register<"ST(0)">; def ST1 : Register<"ST(1)">;
58   def ST2 : Register<"ST(2)">; def ST3 : Register<"ST(3)">;
59   def ST4 : Register<"ST(4)">; def ST5 : Register<"ST(5)">;
60   def ST6 : Register<"ST(6)">; def ST7 : Register<"ST(7)">; 
61   
62   // Flags, Segment registers, etc...
63 }
64
65 //===----------------------------------------------------------------------===//
66 // Register Class Definitions... now that we have all of the pieces, define the
67 // top-level register classes.  The order specified in the register list is
68 // implicitly defined to be the register allocation order.
69 //
70
71 // List AL,CL,DL before AH,CH,DH, as X86 processors often suffer from false
72 // dependences between upper and lower parts of the register.  BL and BH are
73 // last because they are call clobbered. Both Athlon and P4 chips suffer this
74 // issue.
75 def R8  : RegisterClass<i8,  8, [AL, CL, DL, AH, CH, DH, BL, BH]>;
76
77 def R16 : RegisterClass<i16, 16, [AX, CX, DX, SI, DI, BX, BP, SP]> {
78   let Methods = [{
79     iterator allocation_order_end(MachineFunction &MF) const {
80       if (hasFP(MF))     // Does the function dedicate EBP to being a frame ptr?
81         return end()-2;  // If so, don't allocate SP or BP
82       else
83         return end()-1;  // If not, just don't allocate SP
84     }
85   }];
86 }
87
88 def R32 : RegisterClass<i32, 32, [EAX, ECX, EDX, ESI, EDI, EBX, EBP, ESP]> {
89   let Methods = [{
90     iterator allocation_order_end(MachineFunction &MF) const {
91       if (hasFP(MF))     // Does the function dedicate EBP to being a frame ptr?
92         return end()-2;  // If so, don't allocate ESP or EBP
93       else
94         return end()-1;  // If not, just don't allocate ESP
95     }
96   }];
97 }
98
99 // FIXME: These registers can contain both integer and fp values.  We should
100 // figure out the right way to deal with that.  For now, since they'll be used
101 // for scalar FP, they are being declared f64
102 def RXMM : RegisterClass<f64, 32, [XMM0, XMM1, XMM2, XMM3, 
103                                    XMM4, XMM5, XMM6, XMM7]>;
104
105 // FIXME: This sets up the floating point register files as though they are f64
106 // values, though they really are f80 values.  This will cause us to spill
107 // values as 64-bit quantities instead of 80-bit quantities, which is much much
108 // faster on common hardware.  In reality, this should be controlled by a
109 // command line option or something.
110
111 def RFP : RegisterClass<f64, 32, [FP0, FP1, FP2, FP3, FP4, FP5, FP6]>;
112
113 // Floating point stack registers (these are not allocatable by the
114 // register allocator - the floating point stackifier is responsible
115 // for transforming FPn allocations to STn registers)
116 def RST : RegisterClass<f64, 32, [ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7]> {
117   let Methods = [{
118     iterator allocation_order_end(MachineFunction &MF) const {
119       return begin();
120     }
121   }];
122 }