Use <0 checks in place of ==-1 because it results in simpler code.
[oota-llvm.git] / lib / Target / X86 / X86TargetTransformInfo.cpp
1 //===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 /// This file implements a TargetTransformInfo analysis pass specific to the
11 /// X86 target machine. It uses the target's detailed information to provide
12 /// more precise answers to certain TTI queries, while letting the target
13 /// independent and default TTI implementations handle the rest.
14 ///
15 //===----------------------------------------------------------------------===//
16
17 #define DEBUG_TYPE "x86tti"
18 #include "X86.h"
19 #include "X86TargetMachine.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Target/TargetLowering.h"
23 using namespace llvm;
24
25 // Declare the pass initialization routine locally as target-specific passes
26 // don't havve a target-wide initialization entry point, and so we rely on the
27 // pass constructor initialization.
28 namespace llvm {
29 void initializeX86TTIPass(PassRegistry &);
30 }
31
32 namespace {
33
34 class X86TTI : public ImmutablePass, public TargetTransformInfo {
35   const X86TargetMachine *TM;
36   const X86Subtarget *ST;
37   const X86TargetLowering *TLI;
38
39   /// Estimate the overhead of scalarizing an instruction. Insert and Extract
40   /// are set if the result needs to be inserted and/or extracted from vectors.
41   unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
42
43 public:
44   X86TTI() : ImmutablePass(ID), TM(0), ST(0), TLI(0) {
45     llvm_unreachable("This pass cannot be directly constructed");
46   }
47
48   X86TTI(const X86TargetMachine *TM)
49       : ImmutablePass(ID), TM(TM), ST(TM->getSubtargetImpl()),
50         TLI(TM->getTargetLowering()) {
51     initializeX86TTIPass(*PassRegistry::getPassRegistry());
52   }
53
54   virtual void initializePass() {
55     pushTTIStack(this);
56   }
57
58   virtual void finalizePass() {
59     popTTIStack();
60   }
61
62   virtual void getAnalysisUsage(AnalysisUsage &AU) const {
63     TargetTransformInfo::getAnalysisUsage(AU);
64   }
65
66   /// Pass identification.
67   static char ID;
68
69   /// Provide necessary pointer adjustments for the two base classes.
70   virtual void *getAdjustedAnalysisPointer(const void *ID) {
71     if (ID == &TargetTransformInfo::ID)
72       return (TargetTransformInfo*)this;
73     return this;
74   }
75
76   /// \name Scalar TTI Implementations
77   /// @{
78   virtual PopcntSupportKind getPopcntSupport(unsigned TyWidth) const;
79
80   /// @}
81
82   /// \name Vector TTI Implementations
83   /// @{
84
85   virtual unsigned getNumberOfRegisters(bool Vector) const;
86   virtual unsigned getRegisterBitWidth(bool Vector) const;
87   virtual unsigned getMaximumUnrollFactor() const;
88   virtual unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty) const;
89   virtual unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
90                                   int Index, Type *SubTp) const;
91   virtual unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
92                                     Type *Src) const;
93   virtual unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
94                                       Type *CondTy) const;
95   virtual unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
96                                       unsigned Index) const;
97   virtual unsigned getMemoryOpCost(unsigned Opcode, Type *Src,
98                                    unsigned Alignment,
99                                    unsigned AddressSpace) const;
100
101   /// @}
102 };
103
104 } // end anonymous namespace
105
106 INITIALIZE_AG_PASS(X86TTI, TargetTransformInfo, "x86tti",
107                    "X86 Target Transform Info", true, true, false)
108 char X86TTI::ID = 0;
109
110 ImmutablePass *
111 llvm::createX86TargetTransformInfoPass(const X86TargetMachine *TM) {
112   return new X86TTI(TM);
113 }
114
115
116 //===----------------------------------------------------------------------===//
117 //
118 // X86 cost model.
119 //
120 //===----------------------------------------------------------------------===//
121
122 namespace {
123 struct X86CostTblEntry {
124   int ISD;
125   MVT Type;
126   unsigned Cost;
127 };
128 }
129
130 static int
131 FindInTable(const X86CostTblEntry *Tbl, unsigned len, int ISD, MVT Ty) {
132   for (unsigned int i = 0; i < len; ++i)
133     if (Tbl[i].ISD == ISD && Tbl[i].Type == Ty)
134       return i;
135
136   // Could not find an entry.
137   return -1;
138 }
139
140 namespace {
141 struct X86TypeConversionCostTblEntry {
142   int ISD;
143   MVT Dst;
144   MVT Src;
145   unsigned Cost;
146 };
147 }
148
149 static int
150 FindInConvertTable(const X86TypeConversionCostTblEntry *Tbl, unsigned len,
151                    int ISD, MVT Dst, MVT Src) {
152   for (unsigned int i = 0; i < len; ++i)
153     if (Tbl[i].ISD == ISD && Tbl[i].Src == Src && Tbl[i].Dst == Dst)
154       return i;
155
156   // Could not find an entry.
157   return -1;
158 }
159
160 X86TTI::PopcntSupportKind X86TTI::getPopcntSupport(unsigned TyWidth) const {
161   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
162   // TODO: Currently the __builtin_popcount() implementation using SSE3
163   //   instructions is inefficient. Once the problem is fixed, we should
164   //   call ST->hasSSE3() instead of ST->hasSSE4().
165   return ST->hasSSE41() ? PSK_FastHardware : PSK_Software;
166 }
167
168 unsigned X86TTI::getNumberOfRegisters(bool Vector) const {
169   if (Vector && !ST->hasSSE1())
170     return 0;
171
172   if (ST->is64Bit())
173     return 16;
174   return 8;
175 }
176
177 unsigned X86TTI::getRegisterBitWidth(bool Vector) const {
178   if (Vector) {
179     if (ST->hasAVX()) return 256;
180     if (ST->hasSSE1()) return 128;
181     return 0;
182   }
183
184   if (ST->is64Bit())
185     return 64;
186   return 32;
187
188 }
189
190 unsigned X86TTI::getMaximumUnrollFactor() const {
191   if (ST->isAtom())
192     return 1;
193
194   // Sandybridge and Haswell have multiple execution ports and pipelined
195   // vector units.
196   if (ST->hasAVX())
197     return 4;
198
199   return 2;
200 }
201
202 unsigned X86TTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty) const {
203   // Legalize the type.
204   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
205
206   int ISD = TLI->InstructionOpcodeToISD(Opcode);
207   assert(ISD && "Invalid opcode");
208
209   static const X86CostTblEntry AVX1CostTable[] = {
210     // We don't have to scalarize unsupported ops. We can issue two half-sized
211     // operations and we only need to extract the upper YMM half.
212     // Two ops + 1 extract + 1 insert = 4.
213     { ISD::MUL,     MVT::v8i32,    4 },
214     { ISD::SUB,     MVT::v8i32,    4 },
215     { ISD::ADD,     MVT::v8i32,    4 },
216     { ISD::MUL,     MVT::v4i64,    4 },
217     { ISD::SUB,     MVT::v4i64,    4 },
218     { ISD::ADD,     MVT::v4i64,    4 },
219     };
220
221   // Look for AVX1 lowering tricks.
222   if (ST->hasAVX()) {
223     int Idx = FindInTable(AVX1CostTable, array_lengthof(AVX1CostTable), ISD,
224                           LT.second);
225     if (Idx != -1)
226       return LT.first * AVX1CostTable[Idx].Cost;
227   }
228   // Fallback to the default implementation.
229   return TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty);
230 }
231
232 unsigned X86TTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
233                                 Type *SubTp) const {
234   // We only estimate the cost of reverse shuffles.
235   if (Kind != SK_Reverse)
236     return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
237
238   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp);
239   unsigned Cost = 1;
240   if (LT.second.getSizeInBits() > 128)
241     Cost = 3; // Extract + insert + copy.
242
243   // Multiple by the number of parts.
244   return Cost * LT.first;
245 }
246
247 unsigned X86TTI::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const {
248   int ISD = TLI->InstructionOpcodeToISD(Opcode);
249   assert(ISD && "Invalid opcode");
250
251   EVT SrcTy = TLI->getValueType(Src);
252   EVT DstTy = TLI->getValueType(Dst);
253
254   if (!SrcTy.isSimple() || !DstTy.isSimple())
255     return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
256
257   static const X86TypeConversionCostTblEntry AVXConversionTbl[] = {
258     { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
259     { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
260     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
261     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
262     { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64, 1 },
263     { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i32, 1 },
264     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i8,  1 },
265     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8,  1 },
266     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i8,  1 },
267     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8,  1 },
268     { ISD::FP_TO_SINT,  MVT::v8i8,  MVT::v8f32, 1 },
269     { ISD::FP_TO_SINT,  MVT::v4i8,  MVT::v4f32, 1 },
270     { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1,  6 },
271     { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1,  9 },
272     { ISD::TRUNCATE,    MVT::v8i32, MVT::v8i64, 3 },
273   };
274
275   if (ST->hasAVX()) {
276     int Idx = FindInConvertTable(AVXConversionTbl,
277                                  array_lengthof(AVXConversionTbl),
278                                  ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT());
279     if (Idx != -1)
280       return AVXConversionTbl[Idx].Cost;
281   }
282
283   return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
284 }
285
286 unsigned X86TTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
287                                     Type *CondTy) const {
288   // Legalize the type.
289   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
290
291   MVT MTy = LT.second;
292
293   int ISD = TLI->InstructionOpcodeToISD(Opcode);
294   assert(ISD && "Invalid opcode");
295
296   static const X86CostTblEntry SSE42CostTbl[] = {
297     { ISD::SETCC,   MVT::v2f64,   1 },
298     { ISD::SETCC,   MVT::v4f32,   1 },
299     { ISD::SETCC,   MVT::v2i64,   1 },
300     { ISD::SETCC,   MVT::v4i32,   1 },
301     { ISD::SETCC,   MVT::v8i16,   1 },
302     { ISD::SETCC,   MVT::v16i8,   1 },
303   };
304
305   static const X86CostTblEntry AVX1CostTbl[] = {
306     { ISD::SETCC,   MVT::v4f64,   1 },
307     { ISD::SETCC,   MVT::v8f32,   1 },
308     // AVX1 does not support 8-wide integer compare.
309     { ISD::SETCC,   MVT::v4i64,   4 },
310     { ISD::SETCC,   MVT::v8i32,   4 },
311     { ISD::SETCC,   MVT::v16i16,  4 },
312     { ISD::SETCC,   MVT::v32i8,   4 },
313   };
314
315   static const X86CostTblEntry AVX2CostTbl[] = {
316     { ISD::SETCC,   MVT::v4i64,   1 },
317     { ISD::SETCC,   MVT::v8i32,   1 },
318     { ISD::SETCC,   MVT::v16i16,  1 },
319     { ISD::SETCC,   MVT::v32i8,   1 },
320   };
321
322   if (ST->hasAVX2()) {
323     int Idx = FindInTable(AVX2CostTbl, array_lengthof(AVX2CostTbl), ISD, MTy);
324     if (Idx != -1)
325       return LT.first * AVX2CostTbl[Idx].Cost;
326   }
327
328   if (ST->hasAVX()) {
329     int Idx = FindInTable(AVX1CostTbl, array_lengthof(AVX1CostTbl), ISD, MTy);
330     if (Idx != -1)
331       return LT.first * AVX1CostTbl[Idx].Cost;
332   }
333
334   if (ST->hasSSE42()) {
335     int Idx = FindInTable(SSE42CostTbl, array_lengthof(SSE42CostTbl), ISD, MTy);
336     if (Idx != -1)
337       return LT.first * SSE42CostTbl[Idx].Cost;
338   }
339
340   return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy);
341 }
342
343 unsigned X86TTI::getVectorInstrCost(unsigned Opcode, Type *Val,
344                                     unsigned Index) const {
345   assert(Val->isVectorTy() && "This must be a vector type");
346
347   if (Index != -1U) {
348     // Legalize the type.
349     std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Val);
350
351     // This type is legalized to a scalar type.
352     if (!LT.second.isVector())
353       return 0;
354
355     // The type may be split. Normalize the index to the new type.
356     unsigned Width = LT.second.getVectorNumElements();
357     Index = Index % Width;
358
359     // Floating point scalars are already located in index #0.
360     if (Val->getScalarType()->isFloatingPointTy() && Index == 0)
361       return 0;
362   }
363
364   return TargetTransformInfo::getVectorInstrCost(Opcode, Val, Index);
365 }
366
367 unsigned X86TTI::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
368                                  unsigned AddressSpace) const {
369   // Legalize the type.
370   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
371   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
372          "Invalid Opcode");
373
374   // Each load/store unit costs 1.
375   unsigned Cost = LT.first * 1;
376
377   // On Sandybridge 256bit load/stores are double pumped
378   // (but not on Haswell).
379   if (LT.second.getSizeInBits() > 128 && !ST->hasAVX2())
380     Cost*=2;
381
382   return Cost;
383 }