Move an instance variable to a local variable based on review by Duncan.
[oota-llvm.git] / lib / Transforms / IPO / ArgumentPromotion.cpp
1 //===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass promotes "by reference" arguments to be "by value" arguments.  In
11 // practice, this means looking for internal functions that have pointer
12 // arguments.  If it can prove, through the use of alias analysis, that an
13 // argument is *only* loaded, then it can pass the value into the function
14 // instead of the address of the value.  This can cause recursive simplification
15 // of code and lead to the elimination of allocas (especially in C++ template
16 // code like the STL).
17 //
18 // This pass also handles aggregate arguments that are passed into a function,
19 // scalarizing them if the elements of the aggregate are only loaded.  Note that
20 // by default it refuses to scalarize aggregates which would require passing in
21 // more than three operands to the function, because passing thousands of
22 // operands for a large array or structure is unprofitable! This limit can be
23 // configured or disabled, however.
24 //
25 // Note that this transformation could also be done for arguments that are only
26 // stored to (returning the value instead), but does not currently.  This case
27 // would be best handled when and if LLVM begins supporting multiple return
28 // values from functions.
29 //
30 //===----------------------------------------------------------------------===//
31
32 #define DEBUG_TYPE "argpromotion"
33 #include "llvm/Transforms/IPO.h"
34 #include "llvm/Constants.h"
35 #include "llvm/DerivedTypes.h"
36 #include "llvm/Module.h"
37 #include "llvm/CallGraphSCCPass.h"
38 #include "llvm/Instructions.h"
39 #include "llvm/LLVMContext.h"
40 #include "llvm/Analysis/AliasAnalysis.h"
41 #include "llvm/Analysis/CallGraph.h"
42 #include "llvm/Support/CallSite.h"
43 #include "llvm/Support/CFG.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/ADT/DepthFirstIterator.h"
47 #include "llvm/ADT/Statistic.h"
48 #include "llvm/ADT/StringExtras.h"
49 #include <set>
50 using namespace llvm;
51
52 STATISTIC(NumArgumentsPromoted , "Number of pointer arguments promoted");
53 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
54 STATISTIC(NumByValArgsPromoted , "Number of byval arguments promoted");
55 STATISTIC(NumArgumentsDead     , "Number of dead pointer args eliminated");
56
57 namespace {
58   /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
59   ///
60   struct ArgPromotion : public CallGraphSCCPass {
61     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
62       AU.addRequired<AliasAnalysis>();
63       CallGraphSCCPass::getAnalysisUsage(AU);
64     }
65
66     virtual bool runOnSCC(CallGraphSCC &SCC);
67     static char ID; // Pass identification, replacement for typeid
68     explicit ArgPromotion(unsigned maxElements = 3)
69         : CallGraphSCCPass(ID), maxElements(maxElements) {
70       initializeArgPromotionPass(*PassRegistry::getPassRegistry());
71     }
72
73     /// A vector used to hold the indices of a single GEP instruction
74     typedef std::vector<uint64_t> IndicesVector;
75
76   private:
77     CallGraphNode *PromoteArguments(CallGraphNode *CGN);
78     bool isSafeToPromoteArgument(Argument *Arg, bool isByVal) const;
79     CallGraphNode *DoPromotion(Function *F,
80                                SmallPtrSet<Argument*, 8> &ArgsToPromote,
81                                SmallPtrSet<Argument*, 8> &ByValArgsToTransform);
82     /// The maximum number of elements to expand, or 0 for unlimited.
83     unsigned maxElements;
84   };
85 }
86
87 char ArgPromotion::ID = 0;
88 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
89                 "Promote 'by reference' arguments to scalars", false, false)
90 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
91 INITIALIZE_AG_DEPENDENCY(CallGraph)
92 INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
93                 "Promote 'by reference' arguments to scalars", false, false)
94
95 Pass *llvm::createArgumentPromotionPass(unsigned maxElements) {
96   return new ArgPromotion(maxElements);
97 }
98
99 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
100   bool Changed = false, LocalChange;
101
102   do {  // Iterate until we stop promoting from this SCC.
103     LocalChange = false;
104     // Attempt to promote arguments from all functions in this SCC.
105     for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
106       if (CallGraphNode *CGN = PromoteArguments(*I)) {
107         LocalChange = true;
108         SCC.ReplaceNode(*I, CGN);
109       }
110     }
111     Changed |= LocalChange;               // Remember that we changed something.
112   } while (LocalChange);
113   
114   return Changed;
115 }
116
117 /// PromoteArguments - This method checks the specified function to see if there
118 /// are any promotable arguments and if it is safe to promote the function (for
119 /// example, all callers are direct).  If safe to promote some arguments, it
120 /// calls the DoPromotion method.
121 ///
122 CallGraphNode *ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
123   Function *F = CGN->getFunction();
124
125   // Make sure that it is local to this module.
126   if (!F || !F->hasLocalLinkage()) return 0;
127
128   // First check: see if there are any pointer arguments!  If not, quick exit.
129   SmallVector<std::pair<Argument*, unsigned>, 16> PointerArgs;
130   unsigned ArgNo = 0;
131   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
132        I != E; ++I, ++ArgNo)
133     if (I->getType()->isPointerTy())
134       PointerArgs.push_back(std::pair<Argument*, unsigned>(I, ArgNo));
135   if (PointerArgs.empty()) return 0;
136
137   // Second check: make sure that all callers are direct callers.  We can't
138   // transform functions that have indirect callers.  Also see if the function
139   // is self-recursive.
140   bool isSelfRecursive = false;
141   for (Value::use_iterator UI = F->use_begin(), E = F->use_end();
142        UI != E; ++UI) {
143     CallSite CS(*UI);
144     // Must be a direct call.
145     if (CS.getInstruction() == 0 || !CS.isCallee(UI)) return 0;
146     
147     if (CS.getInstruction()->getParent()->getParent() == F)
148       isSelfRecursive = true;
149   }
150   
151   // Check to see which arguments are promotable.  If an argument is promotable,
152   // add it to ArgsToPromote.
153   SmallPtrSet<Argument*, 8> ArgsToPromote;
154   SmallPtrSet<Argument*, 8> ByValArgsToTransform;
155   for (unsigned i = 0; i != PointerArgs.size(); ++i) {
156     bool isByVal = F->paramHasAttr(PointerArgs[i].second+1, Attribute::ByVal);
157     Argument *PtrArg = PointerArgs[i].first;
158     Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
159
160     // If this is a byval argument, and if the aggregate type is small, just
161     // pass the elements, which is always safe.
162     if (isByVal) {
163       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
164         if (maxElements > 0 && STy->getNumElements() > maxElements) {
165           DEBUG(dbgs() << "argpromotion disable promoting argument '"
166                 << PtrArg->getName() << "' because it would require adding more"
167                 << " than " << maxElements << " arguments to the function.\n");
168           continue;
169         }
170         
171         // If all the elements are single-value types, we can promote it.
172         bool AllSimple = true;
173         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
174           if (!STy->getElementType(i)->isSingleValueType()) {
175             AllSimple = false;
176             break;
177           }
178         }
179
180         // Safe to transform, don't even bother trying to "promote" it.
181         // Passing the elements as a scalar will allow scalarrepl to hack on
182         // the new alloca we introduce.
183         if (AllSimple) {
184           ByValArgsToTransform.insert(PtrArg);
185           continue;
186         }
187       }
188     }
189
190     // If the argument is a recursive type and we're in a recursive
191     // function, we could end up infinitely peeling the function argument.
192     if (isSelfRecursive) {
193       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
194         bool RecursiveType = false;
195         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
196           if (STy->getElementType(i) == PtrArg->getType()) {
197             RecursiveType = true;
198             break;
199           }
200         }
201         if (RecursiveType)
202           continue;
203       }
204     }
205     
206     // Otherwise, see if we can promote the pointer to its value.
207     if (isSafeToPromoteArgument(PtrArg, isByVal))
208       ArgsToPromote.insert(PtrArg);
209   }
210
211   // No promotable pointer arguments.
212   if (ArgsToPromote.empty() && ByValArgsToTransform.empty()) 
213     return 0;
214
215   return DoPromotion(F, ArgsToPromote, ByValArgsToTransform);
216 }
217
218 /// AllCallersPassInValidPointerForArgument - Return true if we can prove that
219 /// all callees pass in a valid pointer for the specified function argument.
220 static bool AllCallersPassInValidPointerForArgument(Argument *Arg) {
221   Function *Callee = Arg->getParent();
222
223   unsigned ArgNo = std::distance(Callee->arg_begin(),
224                                  Function::arg_iterator(Arg));
225
226   // Look at all call sites of the function.  At this pointer we know we only
227   // have direct callees.
228   for (Value::use_iterator UI = Callee->use_begin(), E = Callee->use_end();
229        UI != E; ++UI) {
230     CallSite CS(*UI);
231     assert(CS && "Should only have direct calls!");
232
233     if (!CS.getArgument(ArgNo)->isDereferenceablePointer())
234       return false;
235   }
236   return true;
237 }
238
239 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size
240 /// that is greater than or equal to the size of prefix, and each of the
241 /// elements in Prefix is the same as the corresponding elements in Longer.
242 ///
243 /// This means it also returns true when Prefix and Longer are equal!
244 static bool IsPrefix(const ArgPromotion::IndicesVector &Prefix,
245                      const ArgPromotion::IndicesVector &Longer) {
246   if (Prefix.size() > Longer.size())
247     return false;
248   return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
249 }
250
251
252 /// Checks if Indices, or a prefix of Indices, is in Set.
253 static bool PrefixIn(const ArgPromotion::IndicesVector &Indices,
254                      std::set<ArgPromotion::IndicesVector> &Set) {
255     std::set<ArgPromotion::IndicesVector>::iterator Low;
256     Low = Set.upper_bound(Indices);
257     if (Low != Set.begin())
258       Low--;
259     // Low is now the last element smaller than or equal to Indices. This means
260     // it points to a prefix of Indices (possibly Indices itself), if such
261     // prefix exists.
262     //
263     // This load is safe if any prefix of its operands is safe to load.
264     return Low != Set.end() && IsPrefix(*Low, Indices);
265 }
266
267 /// Mark the given indices (ToMark) as safe in the given set of indices
268 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
269 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe
270 /// already. Furthermore, any indices that Indices is itself a prefix of, are
271 /// removed from Safe (since they are implicitely safe because of Indices now).
272 static void MarkIndicesSafe(const ArgPromotion::IndicesVector &ToMark,
273                             std::set<ArgPromotion::IndicesVector> &Safe) {
274   std::set<ArgPromotion::IndicesVector>::iterator Low;
275   Low = Safe.upper_bound(ToMark);
276   // Guard against the case where Safe is empty
277   if (Low != Safe.begin())
278     Low--;
279   // Low is now the last element smaller than or equal to Indices. This
280   // means it points to a prefix of Indices (possibly Indices itself), if
281   // such prefix exists.
282   if (Low != Safe.end()) {
283     if (IsPrefix(*Low, ToMark))
284       // If there is already a prefix of these indices (or exactly these
285       // indices) marked a safe, don't bother adding these indices
286       return;
287
288     // Increment Low, so we can use it as a "insert before" hint
289     ++Low;
290   }
291   // Insert
292   Low = Safe.insert(Low, ToMark);
293   ++Low;
294   // If there we're a prefix of longer index list(s), remove those
295   std::set<ArgPromotion::IndicesVector>::iterator End = Safe.end();
296   while (Low != End && IsPrefix(ToMark, *Low)) {
297     std::set<ArgPromotion::IndicesVector>::iterator Remove = Low;
298     ++Low;
299     Safe.erase(Remove);
300   }
301 }
302
303 /// isSafeToPromoteArgument - As you might guess from the name of this method,
304 /// it checks to see if it is both safe and useful to promote the argument.
305 /// This method limits promotion of aggregates to only promote up to three
306 /// elements of the aggregate in order to avoid exploding the number of
307 /// arguments passed in.
308 bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg, bool isByVal) const {
309   typedef std::set<IndicesVector> GEPIndicesSet;
310
311   // Quick exit for unused arguments
312   if (Arg->use_empty())
313     return true;
314
315   // We can only promote this argument if all of the uses are loads, or are GEP
316   // instructions (with constant indices) that are subsequently loaded.
317   //
318   // Promoting the argument causes it to be loaded in the caller
319   // unconditionally. This is only safe if we can prove that either the load
320   // would have happened in the callee anyway (ie, there is a load in the entry
321   // block) or the pointer passed in at every call site is guaranteed to be
322   // valid.
323   // In the former case, invalid loads can happen, but would have happened
324   // anyway, in the latter case, invalid loads won't happen. This prevents us
325   // from introducing an invalid load that wouldn't have happened in the
326   // original code.
327   //
328   // This set will contain all sets of indices that are loaded in the entry
329   // block, and thus are safe to unconditionally load in the caller.
330   GEPIndicesSet SafeToUnconditionallyLoad;
331
332   // This set contains all the sets of indices that we are planning to promote.
333   // This makes it possible to limit the number of arguments added.
334   GEPIndicesSet ToPromote;
335
336   // If the pointer is always valid, any load with first index 0 is valid.
337   if (isByVal || AllCallersPassInValidPointerForArgument(Arg))
338     SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
339
340   // First, iterate the entry block and mark loads of (geps of) arguments as
341   // safe.
342   BasicBlock *EntryBlock = Arg->getParent()->begin();
343   // Declare this here so we can reuse it
344   IndicesVector Indices;
345   for (BasicBlock::iterator I = EntryBlock->begin(), E = EntryBlock->end();
346        I != E; ++I)
347     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
348       Value *V = LI->getPointerOperand();
349       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
350         V = GEP->getPointerOperand();
351         if (V == Arg) {
352           // This load actually loads (part of) Arg? Check the indices then.
353           Indices.reserve(GEP->getNumIndices());
354           for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
355                II != IE; ++II)
356             if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
357               Indices.push_back(CI->getSExtValue());
358             else
359               // We found a non-constant GEP index for this argument? Bail out
360               // right away, can't promote this argument at all.
361               return false;
362
363           // Indices checked out, mark them as safe
364           MarkIndicesSafe(Indices, SafeToUnconditionallyLoad);
365           Indices.clear();
366         }
367       } else if (V == Arg) {
368         // Direct loads are equivalent to a GEP with a single 0 index.
369         MarkIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
370       }
371     }
372
373   // Now, iterate all uses of the argument to see if there are any uses that are
374   // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
375   SmallVector<LoadInst*, 16> Loads;
376   IndicesVector Operands;
377   for (Value::use_iterator UI = Arg->use_begin(), E = Arg->use_end();
378        UI != E; ++UI) {
379     User *U = *UI;
380     Operands.clear();
381     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
382       // Don't hack volatile/atomic loads
383       if (!LI->isSimple()) return false;
384       Loads.push_back(LI);
385       // Direct loads are equivalent to a GEP with a zero index and then a load.
386       Operands.push_back(0);
387     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
388       if (GEP->use_empty()) {
389         // Dead GEP's cause trouble later.  Just remove them if we run into
390         // them.
391         getAnalysis<AliasAnalysis>().deleteValue(GEP);
392         GEP->eraseFromParent();
393         // TODO: This runs the above loop over and over again for dead GEPs
394         // Couldn't we just do increment the UI iterator earlier and erase the
395         // use?
396         return isSafeToPromoteArgument(Arg, isByVal);
397       }
398
399       // Ensure that all of the indices are constants.
400       for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end();
401         i != e; ++i)
402         if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
403           Operands.push_back(C->getSExtValue());
404         else
405           return false;  // Not a constant operand GEP!
406
407       // Ensure that the only users of the GEP are load instructions.
408       for (Value::use_iterator UI = GEP->use_begin(), E = GEP->use_end();
409            UI != E; ++UI)
410         if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
411           // Don't hack volatile/atomic loads
412           if (!LI->isSimple()) return false;
413           Loads.push_back(LI);
414         } else {
415           // Other uses than load?
416           return false;
417         }
418     } else {
419       return false;  // Not a load or a GEP.
420     }
421
422     // Now, see if it is safe to promote this load / loads of this GEP. Loading
423     // is safe if Operands, or a prefix of Operands, is marked as safe.
424     if (!PrefixIn(Operands, SafeToUnconditionallyLoad))
425       return false;
426
427     // See if we are already promoting a load with these indices. If not, check
428     // to make sure that we aren't promoting too many elements.  If so, nothing
429     // to do.
430     if (ToPromote.find(Operands) == ToPromote.end()) {
431       if (maxElements > 0 && ToPromote.size() == maxElements) {
432         DEBUG(dbgs() << "argpromotion not promoting argument '"
433               << Arg->getName() << "' because it would require adding more "
434               << "than " << maxElements << " arguments to the function.\n");
435         // We limit aggregate promotion to only promoting up to a fixed number
436         // of elements of the aggregate.
437         return false;
438       }
439       ToPromote.insert(Operands);
440     }
441   }
442
443   if (Loads.empty()) return true;  // No users, this is a dead argument.
444
445   // Okay, now we know that the argument is only used by load instructions and
446   // it is safe to unconditionally perform all of them. Use alias analysis to
447   // check to see if the pointer is guaranteed to not be modified from entry of
448   // the function to each of the load instructions.
449
450   // Because there could be several/many load instructions, remember which
451   // blocks we know to be transparent to the load.
452   SmallPtrSet<BasicBlock*, 16> TranspBlocks;
453
454   AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
455
456   for (unsigned i = 0, e = Loads.size(); i != e; ++i) {
457     // Check to see if the load is invalidated from the start of the block to
458     // the load itself.
459     LoadInst *Load = Loads[i];
460     BasicBlock *BB = Load->getParent();
461
462     AliasAnalysis::Location Loc = AA.getLocation(Load);
463     if (AA.canInstructionRangeModify(BB->front(), *Load, Loc))
464       return false;  // Pointer is invalidated!
465
466     // Now check every path from the entry block to the load for transparency.
467     // To do this, we perform a depth first search on the inverse CFG from the
468     // loading block.
469     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
470       BasicBlock *P = *PI;
471       for (idf_ext_iterator<BasicBlock*, SmallPtrSet<BasicBlock*, 16> >
472              I = idf_ext_begin(P, TranspBlocks),
473              E = idf_ext_end(P, TranspBlocks); I != E; ++I)
474         if (AA.canBasicBlockModify(**I, Loc))
475           return false;
476     }
477   }
478
479   // If the path from the entry of the function to each load is free of
480   // instructions that potentially invalidate the load, we can make the
481   // transformation!
482   return true;
483 }
484
485 /// DoPromotion - This method actually performs the promotion of the specified
486 /// arguments, and returns the new function.  At this point, we know that it's
487 /// safe to do so.
488 CallGraphNode *ArgPromotion::DoPromotion(Function *F,
489                                SmallPtrSet<Argument*, 8> &ArgsToPromote,
490                               SmallPtrSet<Argument*, 8> &ByValArgsToTransform) {
491
492   // Start by computing a new prototype for the function, which is the same as
493   // the old function, but has modified arguments.
494   FunctionType *FTy = F->getFunctionType();
495   std::vector<Type*> Params;
496
497   typedef std::set<IndicesVector> ScalarizeTable;
498
499   // ScalarizedElements - If we are promoting a pointer that has elements
500   // accessed out of it, keep track of which elements are accessed so that we
501   // can add one argument for each.
502   //
503   // Arguments that are directly loaded will have a zero element value here, to
504   // handle cases where there are both a direct load and GEP accesses.
505   //
506   std::map<Argument*, ScalarizeTable> ScalarizedElements;
507
508   // OriginalLoads - Keep track of a representative load instruction from the
509   // original function so that we can tell the alias analysis implementation
510   // what the new GEP/Load instructions we are inserting look like.
511   std::map<IndicesVector, LoadInst*> OriginalLoads;
512
513   // Attributes - Keep track of the parameter attributes for the arguments
514   // that we are *not* promoting. For the ones that we do promote, the parameter
515   // attributes are lost
516   SmallVector<AttributeWithIndex, 8> AttributesVec;
517   const AttrListPtr &PAL = F->getAttributes();
518
519   // Add any return attributes.
520   if (Attributes attrs = PAL.getRetAttributes())
521     AttributesVec.push_back(AttributeWithIndex::get(0, attrs));
522
523   // First, determine the new argument list
524   unsigned ArgIndex = 1;
525   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
526        ++I, ++ArgIndex) {
527     if (ByValArgsToTransform.count(I)) {
528       // Simple byval argument? Just add all the struct element types.
529       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
530       StructType *STy = cast<StructType>(AgTy);
531       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
532         Params.push_back(STy->getElementType(i));
533       ++NumByValArgsPromoted;
534     } else if (!ArgsToPromote.count(I)) {
535       // Unchanged argument
536       Params.push_back(I->getType());
537       if (Attributes attrs = PAL.getParamAttributes(ArgIndex))
538         AttributesVec.push_back(AttributeWithIndex::get(Params.size(), attrs));
539     } else if (I->use_empty()) {
540       // Dead argument (which are always marked as promotable)
541       ++NumArgumentsDead;
542     } else {
543       // Okay, this is being promoted. This means that the only uses are loads
544       // or GEPs which are only used by loads
545
546       // In this table, we will track which indices are loaded from the argument
547       // (where direct loads are tracked as no indices).
548       ScalarizeTable &ArgIndices = ScalarizedElements[I];
549       for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
550            ++UI) {
551         Instruction *User = cast<Instruction>(*UI);
552         assert(isa<LoadInst>(User) || isa<GetElementPtrInst>(User));
553         IndicesVector Indices;
554         Indices.reserve(User->getNumOperands() - 1);
555         // Since loads will only have a single operand, and GEPs only a single
556         // non-index operand, this will record direct loads without any indices,
557         // and gep+loads with the GEP indices.
558         for (User::op_iterator II = User->op_begin() + 1, IE = User->op_end();
559              II != IE; ++II)
560           Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
561         // GEPs with a single 0 index can be merged with direct loads
562         if (Indices.size() == 1 && Indices.front() == 0)
563           Indices.clear();
564         ArgIndices.insert(Indices);
565         LoadInst *OrigLoad;
566         if (LoadInst *L = dyn_cast<LoadInst>(User))
567           OrigLoad = L;
568         else
569           // Take any load, we will use it only to update Alias Analysis
570           OrigLoad = cast<LoadInst>(User->use_back());
571         OriginalLoads[Indices] = OrigLoad;
572       }
573
574       // Add a parameter to the function for each element passed in.
575       for (ScalarizeTable::iterator SI = ArgIndices.begin(),
576              E = ArgIndices.end(); SI != E; ++SI) {
577         // not allowed to dereference ->begin() if size() is 0
578         Params.push_back(GetElementPtrInst::getIndexedType(I->getType(), *SI));
579         assert(Params.back());
580       }
581
582       if (ArgIndices.size() == 1 && ArgIndices.begin()->empty())
583         ++NumArgumentsPromoted;
584       else
585         ++NumAggregatesPromoted;
586     }
587   }
588
589   // Add any function attributes.
590   if (Attributes attrs = PAL.getFnAttributes())
591     AttributesVec.push_back(AttributeWithIndex::get(~0, attrs));
592
593   Type *RetTy = FTy->getReturnType();
594
595   // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
596   // have zero fixed arguments.
597   bool ExtraArgHack = false;
598   if (Params.empty() && FTy->isVarArg()) {
599     ExtraArgHack = true;
600     Params.push_back(Type::getInt32Ty(F->getContext()));
601   }
602
603   // Construct the new function type using the new arguments.
604   FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
605
606   // Create the new function body and insert it into the module.
607   Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName());
608   NF->copyAttributesFrom(F);
609
610   
611   DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n"
612         << "From: " << *F);
613   
614   // Recompute the parameter attributes list based on the new arguments for
615   // the function.
616   NF->setAttributes(AttrListPtr::get(AttributesVec));
617   AttributesVec.clear();
618
619   F->getParent()->getFunctionList().insert(F, NF);
620   NF->takeName(F);
621
622   // Get the alias analysis information that we need to update to reflect our
623   // changes.
624   AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
625
626   // Get the callgraph information that we need to update to reflect our
627   // changes.
628   CallGraph &CG = getAnalysis<CallGraph>();
629   
630   // Get a new callgraph node for NF.
631   CallGraphNode *NF_CGN = CG.getOrInsertFunction(NF);
632
633   // Loop over all of the callers of the function, transforming the call sites
634   // to pass in the loaded pointers.
635   //
636   SmallVector<Value*, 16> Args;
637   while (!F->use_empty()) {
638     CallSite CS(F->use_back());
639     assert(CS.getCalledFunction() == F);
640     Instruction *Call = CS.getInstruction();
641     const AttrListPtr &CallPAL = CS.getAttributes();
642
643     // Add any return attributes.
644     if (Attributes attrs = CallPAL.getRetAttributes())
645       AttributesVec.push_back(AttributeWithIndex::get(0, attrs));
646
647     // Loop over the operands, inserting GEP and loads in the caller as
648     // appropriate.
649     CallSite::arg_iterator AI = CS.arg_begin();
650     ArgIndex = 1;
651     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
652          I != E; ++I, ++AI, ++ArgIndex)
653       if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
654         Args.push_back(*AI);          // Unmodified argument
655
656         if (Attributes Attrs = CallPAL.getParamAttributes(ArgIndex))
657           AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
658
659       } else if (ByValArgsToTransform.count(I)) {
660         // Emit a GEP and load for each element of the struct.
661         Type *AgTy = cast<PointerType>(I->getType())->getElementType();
662         StructType *STy = cast<StructType>(AgTy);
663         Value *Idxs[2] = {
664               ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 0 };
665         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
666           Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
667           Value *Idx = GetElementPtrInst::Create(*AI, Idxs,
668                                                  (*AI)->getName()+"."+utostr(i),
669                                                  Call);
670           // TODO: Tell AA about the new values?
671           Args.push_back(new LoadInst(Idx, Idx->getName()+".val", Call));
672         }
673       } else if (!I->use_empty()) {
674         // Non-dead argument: insert GEPs and loads as appropriate.
675         ScalarizeTable &ArgIndices = ScalarizedElements[I];
676         // Store the Value* version of the indices in here, but declare it now
677         // for reuse.
678         std::vector<Value*> Ops;
679         for (ScalarizeTable::iterator SI = ArgIndices.begin(),
680                E = ArgIndices.end(); SI != E; ++SI) {
681           Value *V = *AI;
682           LoadInst *OrigLoad = OriginalLoads[*SI];
683           if (!SI->empty()) {
684             Ops.reserve(SI->size());
685             Type *ElTy = V->getType();
686             for (IndicesVector::const_iterator II = SI->begin(),
687                  IE = SI->end(); II != IE; ++II) {
688               // Use i32 to index structs, and i64 for others (pointers/arrays).
689               // This satisfies GEP constraints.
690               Type *IdxTy = (ElTy->isStructTy() ?
691                     Type::getInt32Ty(F->getContext()) : 
692                     Type::getInt64Ty(F->getContext()));
693               Ops.push_back(ConstantInt::get(IdxTy, *II));
694               // Keep track of the type we're currently indexing.
695               ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(*II);
696             }
697             // And create a GEP to extract those indices.
698             V = GetElementPtrInst::Create(V, Ops, V->getName()+".idx", Call);
699             Ops.clear();
700             AA.copyValue(OrigLoad->getOperand(0), V);
701           }
702           // Since we're replacing a load make sure we take the alignment
703           // of the previous load.
704           LoadInst *newLoad = new LoadInst(V, V->getName()+".val", Call);
705           newLoad->setAlignment(OrigLoad->getAlignment());
706           // Transfer the TBAA info too.
707           newLoad->setMetadata(LLVMContext::MD_tbaa,
708                                OrigLoad->getMetadata(LLVMContext::MD_tbaa));
709           Args.push_back(newLoad);
710           AA.copyValue(OrigLoad, Args.back());
711         }
712       }
713
714     if (ExtraArgHack)
715       Args.push_back(Constant::getNullValue(Type::getInt32Ty(F->getContext())));
716
717     // Push any varargs arguments on the list.
718     for (; AI != CS.arg_end(); ++AI, ++ArgIndex) {
719       Args.push_back(*AI);
720       if (Attributes Attrs = CallPAL.getParamAttributes(ArgIndex))
721         AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
722     }
723
724     // Add any function attributes.
725     if (Attributes attrs = CallPAL.getFnAttributes())
726       AttributesVec.push_back(AttributeWithIndex::get(~0, attrs));
727
728     Instruction *New;
729     if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
730       New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
731                                Args, "", Call);
732       cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
733       cast<InvokeInst>(New)->setAttributes(AttrListPtr::get(AttributesVec));
734     } else {
735       New = CallInst::Create(NF, Args, "", Call);
736       cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
737       cast<CallInst>(New)->setAttributes(AttrListPtr::get(AttributesVec));
738       if (cast<CallInst>(Call)->isTailCall())
739         cast<CallInst>(New)->setTailCall();
740     }
741     Args.clear();
742     AttributesVec.clear();
743
744     // Update the alias analysis implementation to know that we are replacing
745     // the old call with a new one.
746     AA.replaceWithNewValue(Call, New);
747
748     // Update the callgraph to know that the callsite has been transformed.
749     CallGraphNode *CalleeNode = CG[Call->getParent()->getParent()];
750     CalleeNode->replaceCallEdge(Call, New, NF_CGN);
751
752     if (!Call->use_empty()) {
753       Call->replaceAllUsesWith(New);
754       New->takeName(Call);
755     }
756
757     // Finally, remove the old call from the program, reducing the use-count of
758     // F.
759     Call->eraseFromParent();
760   }
761
762   // Since we have now created the new function, splice the body of the old
763   // function right into the new function, leaving the old rotting hulk of the
764   // function empty.
765   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
766
767   // Loop over the argument list, transferring uses of the old arguments over to
768   // the new arguments, also transferring over the names as well.
769   //
770   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
771        I2 = NF->arg_begin(); I != E; ++I) {
772     if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
773       // If this is an unmodified argument, move the name and users over to the
774       // new version.
775       I->replaceAllUsesWith(I2);
776       I2->takeName(I);
777       AA.replaceWithNewValue(I, I2);
778       ++I2;
779       continue;
780     }
781
782     if (ByValArgsToTransform.count(I)) {
783       // In the callee, we create an alloca, and store each of the new incoming
784       // arguments into the alloca.
785       Instruction *InsertPt = NF->begin()->begin();
786
787       // Just add all the struct element types.
788       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
789       Value *TheAlloca = new AllocaInst(AgTy, 0, "", InsertPt);
790       StructType *STy = cast<StructType>(AgTy);
791       Value *Idxs[2] = {
792             ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 0 };
793
794       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
795         Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
796         Value *Idx = 
797           GetElementPtrInst::Create(TheAlloca, Idxs,
798                                     TheAlloca->getName()+"."+Twine(i), 
799                                     InsertPt);
800         I2->setName(I->getName()+"."+Twine(i));
801         new StoreInst(I2++, Idx, InsertPt);
802       }
803
804       // Anything that used the arg should now use the alloca.
805       I->replaceAllUsesWith(TheAlloca);
806       TheAlloca->takeName(I);
807       AA.replaceWithNewValue(I, TheAlloca);
808       continue;
809     }
810
811     if (I->use_empty()) {
812       AA.deleteValue(I);
813       continue;
814     }
815
816     // Otherwise, if we promoted this argument, then all users are load
817     // instructions (or GEPs with only load users), and all loads should be
818     // using the new argument that we added.
819     ScalarizeTable &ArgIndices = ScalarizedElements[I];
820
821     while (!I->use_empty()) {
822       if (LoadInst *LI = dyn_cast<LoadInst>(I->use_back())) {
823         assert(ArgIndices.begin()->empty() &&
824                "Load element should sort to front!");
825         I2->setName(I->getName()+".val");
826         LI->replaceAllUsesWith(I2);
827         AA.replaceWithNewValue(LI, I2);
828         LI->eraseFromParent();
829         DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
830               << "' in function '" << F->getName() << "'\n");
831       } else {
832         GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->use_back());
833         IndicesVector Operands;
834         Operands.reserve(GEP->getNumIndices());
835         for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
836              II != IE; ++II)
837           Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());
838
839         // GEPs with a single 0 index can be merged with direct loads
840         if (Operands.size() == 1 && Operands.front() == 0)
841           Operands.clear();
842
843         Function::arg_iterator TheArg = I2;
844         for (ScalarizeTable::iterator It = ArgIndices.begin();
845              *It != Operands; ++It, ++TheArg) {
846           assert(It != ArgIndices.end() && "GEP not handled??");
847         }
848
849         std::string NewName = I->getName();
850         for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
851             NewName += "." + utostr(Operands[i]);
852         }
853         NewName += ".val";
854         TheArg->setName(NewName);
855
856         DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
857               << "' of function '" << NF->getName() << "'\n");
858
859         // All of the uses must be load instructions.  Replace them all with
860         // the argument specified by ArgNo.
861         while (!GEP->use_empty()) {
862           LoadInst *L = cast<LoadInst>(GEP->use_back());
863           L->replaceAllUsesWith(TheArg);
864           AA.replaceWithNewValue(L, TheArg);
865           L->eraseFromParent();
866         }
867         AA.deleteValue(GEP);
868         GEP->eraseFromParent();
869       }
870     }
871
872     // Increment I2 past all of the arguments added for this promoted pointer.
873     for (unsigned i = 0, e = ArgIndices.size(); i != e; ++i)
874       ++I2;
875   }
876
877   // Notify the alias analysis implementation that we inserted a new argument.
878   if (ExtraArgHack)
879     AA.copyValue(Constant::getNullValue(Type::getInt32Ty(F->getContext())), 
880                  NF->arg_begin());
881
882
883   // Tell the alias analysis that the old function is about to disappear.
884   AA.replaceWithNewValue(F, NF);
885
886   
887   NF_CGN->stealCalledFunctionsFrom(CG[F]);
888   
889   // Now that the old function is dead, delete it.  If there is a dangling
890   // reference to the CallgraphNode, just leave the dead function around for
891   // someone else to nuke.
892   CallGraphNode *CGN = CG[F];
893   if (CGN->getNumReferences() == 0)
894     delete CG.removeFunctionFromModule(CGN);
895   else
896     F->setLinkage(Function::ExternalLinkage);
897   
898   return NF_CGN;
899 }