1 //===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass deletes dead arguments from internal functions. Dead argument
11 // elimination removes arguments which are directly dead, as well as arguments
12 // only passed into function calls as dead arguments of other functions. This
13 // pass also deletes dead return values in a similar way.
15 // This pass is often useful as a cleanup pass to run after aggressive
16 // interprocedural passes, which add possibly-dead arguments or return values.
18 //===----------------------------------------------------------------------===//
20 #define DEBUG_TYPE "deadargelim"
21 #include "llvm/Transforms/IPO.h"
22 #include "llvm/CallingConv.h"
23 #include "llvm/Constant.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Instructions.h"
26 #include "llvm/IntrinsicInst.h"
27 #include "llvm/Module.h"
28 #include "llvm/Pass.h"
29 #include "llvm/Support/CallSite.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/ADT/StringExtras.h"
34 #include "llvm/Support/Compiler.h"
39 STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
40 STATISTIC(NumRetValsEliminated , "Number of unused return values removed");
43 /// DAE - The dead argument elimination pass.
45 class VISIBILITY_HIDDEN DAE : public ModulePass {
48 /// Struct that represents (part of) either a return value or a function
49 /// argument. Used so that arguments and return values can be used
52 RetOrArg(const Function* F, unsigned Idx, bool IsArg) : F(F), Idx(Idx),
58 /// Make RetOrArg comparable, so we can put it into a map.
59 bool operator<(const RetOrArg &O) const {
62 else if (Idx != O.Idx)
65 return IsArg < O.IsArg;
68 /// Make RetOrArg comparable, so we can easily iterate the multimap.
69 bool operator==(const RetOrArg &O) const {
70 return F == O.F && Idx == O.Idx && IsArg == O.IsArg;
73 std::string getDescription() const {
74 return std::string((IsArg ? "Argument #" : "Return value #"))
75 + utostr(Idx) + " of function " + F->getName();
79 /// Liveness enum - During our initial pass over the program, we determine
80 /// that things are either alive or maybe alive. We don't mark anything
81 /// explicitly dead (even if we know they are), since anything not alive
82 /// with no registered uses (in Uses) will never be marked alive and will
83 /// thus become dead in the end.
84 enum Liveness { Live, MaybeLive };
86 /// Convenience wrapper
87 RetOrArg CreateRet(const Function *F, unsigned Idx) {
88 return RetOrArg(F, Idx, false);
90 /// Convenience wrapper
91 RetOrArg CreateArg(const Function *F, unsigned Idx) {
92 return RetOrArg(F, Idx, true);
95 typedef std::multimap<RetOrArg, RetOrArg> UseMap;
96 /// This maps a return value or argument to any MaybeLive return values or
97 /// arguments it uses. This allows the MaybeLive values to be marked live
98 /// when any of its users is marked live.
99 /// For example (indices are left out for clarity):
100 /// - Uses[ret F] = ret G
101 /// This means that F calls G, and F returns the value returned by G.
102 /// - Uses[arg F] = ret G
103 /// This means that some function calls G and passes its result as an
105 /// - Uses[ret F] = arg F
106 /// This means that F returns one of its own arguments.
107 /// - Uses[arg F] = arg G
108 /// This means that G calls F and passes one of its own (G's) arguments
112 typedef std::set<RetOrArg> LiveSet;
113 typedef std::set<const Function*> LiveFuncSet;
115 /// This set contains all values that have been determined to be live.
117 /// This set contains all values that are cannot be changed in any way.
118 LiveFuncSet LiveFunctions;
120 typedef SmallVector<RetOrArg, 5> UseVector;
123 static char ID; // Pass identification, replacement for typeid
124 DAE() : ModulePass(&ID) {}
125 bool runOnModule(Module &M);
127 virtual bool ShouldHackArguments() const { return false; }
130 Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses);
131 Liveness SurveyUse(Value::use_iterator U, UseVector &MaybeLiveUses,
132 unsigned RetValNum = 0);
133 Liveness SurveyUses(Value *V, UseVector &MaybeLiveUses);
135 void SurveyFunction(Function &F);
136 void MarkValue(const RetOrArg &RA, Liveness L,
137 const UseVector &MaybeLiveUses);
138 void MarkLive(const RetOrArg &RA);
139 void MarkLive(const Function &F);
140 void PropagateLiveness(const RetOrArg &RA);
141 bool RemoveDeadStuffFromFunction(Function *F);
142 bool DeleteDeadVarargs(Function &Fn);
148 static RegisterPass<DAE>
149 X("deadargelim", "Dead Argument Elimination");
152 /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
153 /// deletes arguments to functions which are external. This is only for use
155 struct DAH : public DAE {
157 virtual bool ShouldHackArguments() const { return true; }
162 static RegisterPass<DAH>
163 Y("deadarghaX0r", "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)");
165 /// createDeadArgEliminationPass - This pass removes arguments from functions
166 /// which are not used by the body of the function.
168 ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
169 ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
171 /// DeleteDeadVarargs - If this is an function that takes a ... list, and if
172 /// llvm.vastart is never called, the varargs list is dead for the function.
173 bool DAE::DeleteDeadVarargs(Function &Fn) {
174 assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
175 if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
177 // Ensure that the function is only directly called.
178 for (Value::use_iterator I = Fn.use_begin(), E = Fn.use_end(); I != E; ++I) {
179 // If this use is anything other than a call site, give up.
180 CallSite CS = CallSite::get(*I);
181 Instruction *TheCall = CS.getInstruction();
182 if (!TheCall) return false; // Not a direct call site?
184 // The addr of this function is passed to the call.
185 if (!CS.isCallee(I)) return false;
188 // Okay, we know we can transform this function if safe. Scan its body
189 // looking for calls to llvm.vastart.
190 for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
191 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
192 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
193 if (II->getIntrinsicID() == Intrinsic::vastart)
199 // If we get here, there are no calls to llvm.vastart in the function body,
200 // remove the "..." and adjust all the calls.
202 // Start by computing a new prototype for the function, which is the same as
203 // the old function, but doesn't have isVarArg set.
204 const FunctionType *FTy = Fn.getFunctionType();
205 std::vector<const Type*> Params(FTy->param_begin(), FTy->param_end());
206 FunctionType *NFTy = FunctionType::get(FTy->getReturnType(), Params, false);
207 unsigned NumArgs = Params.size();
209 // Create the new function body and insert it into the module...
210 Function *NF = Function::Create(NFTy, Fn.getLinkage());
211 NF->copyAttributesFrom(&Fn);
212 Fn.getParent()->getFunctionList().insert(&Fn, NF);
215 // Loop over all of the callers of the function, transforming the call sites
216 // to pass in a smaller number of arguments into the new function.
218 std::vector<Value*> Args;
219 while (!Fn.use_empty()) {
220 CallSite CS = CallSite::get(Fn.use_back());
221 Instruction *Call = CS.getInstruction();
223 // Pass all the same arguments.
224 Args.assign(CS.arg_begin(), CS.arg_begin()+NumArgs);
226 // Drop any attributes that were on the vararg arguments.
227 AttrListPtr PAL = CS.getAttributes();
228 if (!PAL.isEmpty() && PAL.getSlot(PAL.getNumSlots() - 1).Index > NumArgs) {
229 SmallVector<AttributeWithIndex, 8> AttributesVec;
230 for (unsigned i = 0; PAL.getSlot(i).Index <= NumArgs; ++i)
231 AttributesVec.push_back(PAL.getSlot(i));
232 if (Attributes FnAttrs = PAL.getFnAttributes())
233 AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
234 PAL = AttrListPtr::get(AttributesVec.begin(), AttributesVec.end());
238 if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
239 New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
240 Args.begin(), Args.end(), "", Call);
241 cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
242 cast<InvokeInst>(New)->setAttributes(PAL);
244 New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
245 cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
246 cast<CallInst>(New)->setAttributes(PAL);
247 if (cast<CallInst>(Call)->isTailCall())
248 cast<CallInst>(New)->setTailCall();
252 if (!Call->use_empty())
253 Call->replaceAllUsesWith(New);
257 // Finally, remove the old call from the program, reducing the use-count of
259 Call->eraseFromParent();
262 // Since we have now created the new function, splice the body of the old
263 // function right into the new function, leaving the old rotting hulk of the
265 NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
267 // Loop over the argument list, transfering uses of the old arguments over to
268 // the new arguments, also transfering over the names as well. While we're at
269 // it, remove the dead arguments from the DeadArguments list.
271 for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
272 I2 = NF->arg_begin(); I != E; ++I, ++I2) {
273 // Move the name and users over to the new version.
274 I->replaceAllUsesWith(I2);
278 // Finally, nuke the old function.
279 Fn.eraseFromParent();
283 /// Convenience function that returns the number of return values. It returns 0
284 /// for void functions and 1 for functions not returning a struct. It returns
285 /// the number of struct elements for functions returning a struct.
286 static unsigned NumRetVals(const Function *F) {
287 if (F->getReturnType() == Type::VoidTy)
289 else if (const StructType *STy = dyn_cast<StructType>(F->getReturnType()))
290 return STy->getNumElements();
295 /// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
296 /// live, it adds Use to the MaybeLiveUses argument. Returns the determined
298 DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) {
299 // We're live if our use or its Function is already marked as live.
300 if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
303 // We're maybe live otherwise, but remember that we must become live if
305 MaybeLiveUses.push_back(Use);
310 /// SurveyUse - This looks at a single use of an argument or return value
311 /// and determines if it should be alive or not. Adds this use to MaybeLiveUses
312 /// if it causes the used value to become MaybeAlive.
314 /// RetValNum is the return value number to use when this use is used in a
315 /// return instruction. This is used in the recursion, you should always leave
317 DAE::Liveness DAE::SurveyUse(Value::use_iterator U, UseVector &MaybeLiveUses,
318 unsigned RetValNum) {
320 if (ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
321 // The value is returned from a function. It's only live when the
322 // function's return value is live. We use RetValNum here, for the case
323 // that U is really a use of an insertvalue instruction that uses the
325 RetOrArg Use = CreateRet(RI->getParent()->getParent(), RetValNum);
326 // We might be live, depending on the liveness of Use.
327 return MarkIfNotLive(Use, MaybeLiveUses);
329 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
330 if (U.getOperandNo() != InsertValueInst::getAggregateOperandIndex()
332 // The use we are examining is inserted into an aggregate. Our liveness
333 // depends on all uses of that aggregate, but if it is used as a return
334 // value, only index at which we were inserted counts.
335 RetValNum = *IV->idx_begin();
337 // Note that if we are used as the aggregate operand to the insertvalue,
338 // we don't change RetValNum, but do survey all our uses.
340 Liveness Result = MaybeLive;
341 for (Value::use_iterator I = IV->use_begin(),
342 E = V->use_end(); I != E; ++I) {
343 Result = SurveyUse(I, MaybeLiveUses, RetValNum);
349 CallSite CS = CallSite::get(V);
350 if (CS.getInstruction()) {
351 Function *F = CS.getCalledFunction();
353 // Used in a direct call.
355 // Find the argument number. We know for sure that this use is an
356 // argument, since if it was the function argument this would be an
357 // indirect call and the we know can't be looking at a value of the
358 // label type (for the invoke instruction).
359 unsigned ArgNo = CS.getArgumentNo(U.getOperandNo());
361 if (ArgNo >= F->getFunctionType()->getNumParams())
362 // The value is passed in through a vararg! Must be live.
365 assert(CS.getArgument(ArgNo)
366 == CS.getInstruction()->getOperand(U.getOperandNo())
367 && "Argument is not where we expected it");
369 // Value passed to a normal call. It's only live when the corresponding
370 // argument to the called function turns out live.
371 RetOrArg Use = CreateArg(F, ArgNo);
372 return MarkIfNotLive(Use, MaybeLiveUses);
375 // Used in any other way? Value must be live.
379 /// SurveyUses - This looks at all the uses of the given value
380 /// Returns the Liveness deduced from the uses of this value.
382 /// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
383 /// the result is Live, MaybeLiveUses might be modified but its content should
384 /// be ignored (since it might not be complete).
385 DAE::Liveness DAE::SurveyUses(Value *V, UseVector &MaybeLiveUses) {
386 // Assume it's dead (which will only hold if there are no uses at all..).
387 Liveness Result = MaybeLive;
389 for (Value::use_iterator I = V->use_begin(),
390 E = V->use_end(); I != E; ++I) {
391 Result = SurveyUse(I, MaybeLiveUses);
398 // SurveyFunction - This performs the initial survey of the specified function,
399 // checking out whether or not it uses any of its incoming arguments or whether
400 // any callers use the return value. This fills in the LiveValues set and Uses
403 // We consider arguments of non-internal functions to be intrinsically alive as
404 // well as arguments to functions which have their "address taken".
406 void DAE::SurveyFunction(Function &F) {
407 unsigned RetCount = NumRetVals(&F);
408 // Assume all return values are dead
409 typedef SmallVector<Liveness, 5> RetVals;
410 RetVals RetValLiveness(RetCount, MaybeLive);
412 typedef SmallVector<UseVector, 5> RetUses;
413 // These vectors map each return value to the uses that make it MaybeLive, so
414 // we can add those to the Uses map if the return value really turns out to be
415 // MaybeLive. Initialized to a list of RetCount empty lists.
416 RetUses MaybeLiveRetUses(RetCount);
418 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
419 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
420 if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
421 != F.getFunctionType()->getReturnType()) {
422 // We don't support old style multiple return values.
427 if (!F.hasLocalLinkage() && (!ShouldHackArguments() || F.isIntrinsic())) {
432 DOUT << "DAE - Inspecting callers for fn: " << F.getName() << "\n";
433 // Keep track of the number of live retvals, so we can skip checks once all
434 // of them turn out to be live.
435 unsigned NumLiveRetVals = 0;
436 const Type *STy = dyn_cast<StructType>(F.getReturnType());
437 // Loop all uses of the function.
438 for (Value::use_iterator I = F.use_begin(), E = F.use_end(); I != E; ++I) {
439 // If the function is PASSED IN as an argument, its address has been
441 CallSite CS = CallSite::get(*I);
442 if (!CS.getInstruction() || !CS.isCallee(I)) {
447 // If this use is anything other than a call site, the function is alive.
448 Instruction *TheCall = CS.getInstruction();
449 if (!TheCall) { // Not a direct call site?
454 // If we end up here, we are looking at a direct call to our function.
456 // Now, check how our return value(s) is/are used in this caller. Don't
457 // bother checking return values if all of them are live already.
458 if (NumLiveRetVals != RetCount) {
460 // Check all uses of the return value.
461 for (Value::use_iterator I = TheCall->use_begin(),
462 E = TheCall->use_end(); I != E; ++I) {
463 ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(*I);
464 if (Ext && Ext->hasIndices()) {
465 // This use uses a part of our return value, survey the uses of
466 // that part and store the results for this index only.
467 unsigned Idx = *Ext->idx_begin();
468 if (RetValLiveness[Idx] != Live) {
469 RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
470 if (RetValLiveness[Idx] == Live)
474 // Used by something else than extractvalue. Mark all return
476 for (unsigned i = 0; i != RetCount; ++i )
477 RetValLiveness[i] = Live;
478 NumLiveRetVals = RetCount;
483 // Single return value
484 RetValLiveness[0] = SurveyUses(TheCall, MaybeLiveRetUses[0]);
485 if (RetValLiveness[0] == Live)
486 NumLiveRetVals = RetCount;
491 // Now we've inspected all callers, record the liveness of our return values.
492 for (unsigned i = 0; i != RetCount; ++i)
493 MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
495 DOUT << "DAE - Inspecting args for fn: " << F.getName() << "\n";
497 // Now, check all of our arguments.
499 UseVector MaybeLiveArgUses;
500 for (Function::arg_iterator AI = F.arg_begin(),
501 E = F.arg_end(); AI != E; ++AI, ++i) {
502 // See what the effect of this use is (recording any uses that cause
503 // MaybeLive in MaybeLiveArgUses).
504 Liveness Result = SurveyUses(AI, MaybeLiveArgUses);
506 MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
507 // Clear the vector again for the next iteration.
508 MaybeLiveArgUses.clear();
512 /// MarkValue - This function marks the liveness of RA depending on L. If L is
513 /// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
514 /// such that RA will be marked live if any use in MaybeLiveUses gets marked
516 void DAE::MarkValue(const RetOrArg &RA, Liveness L,
517 const UseVector &MaybeLiveUses) {
519 case Live: MarkLive(RA); break;
522 // Note any uses of this value, so this return value can be
523 // marked live whenever one of the uses becomes live.
524 for (UseVector::const_iterator UI = MaybeLiveUses.begin(),
525 UE = MaybeLiveUses.end(); UI != UE; ++UI)
526 Uses.insert(std::make_pair(*UI, RA));
532 /// MarkLive - Mark the given Function as alive, meaning that it cannot be
533 /// changed in any way. Additionally,
534 /// mark any values that are used as this function's parameters or by its return
535 /// values (according to Uses) live as well.
536 void DAE::MarkLive(const Function &F) {
537 DOUT << "DAE - Intrinsically live fn: " << F.getName() << "\n";
538 // Mark the function as live.
539 LiveFunctions.insert(&F);
540 // Mark all arguments as live.
541 for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
542 PropagateLiveness(CreateArg(&F, i));
543 // Mark all return values as live.
544 for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
545 PropagateLiveness(CreateRet(&F, i));
548 /// MarkLive - Mark the given return value or argument as live. Additionally,
549 /// mark any values that are used by this value (according to Uses) live as
551 void DAE::MarkLive(const RetOrArg &RA) {
552 if (LiveFunctions.count(RA.F))
553 return; // Function was already marked Live.
555 if (!LiveValues.insert(RA).second)
556 return; // We were already marked Live.
558 DOUT << "DAE - Marking " << RA.getDescription() << " live\n";
559 PropagateLiveness(RA);
562 /// PropagateLiveness - Given that RA is a live value, propagate it's liveness
563 /// to any other values it uses (according to Uses).
564 void DAE::PropagateLiveness(const RetOrArg &RA) {
565 // We don't use upper_bound (or equal_range) here, because our recursive call
566 // to ourselves is likely to cause the upper_bound (which is the first value
567 // not belonging to RA) to become erased and the iterator invalidated.
568 UseMap::iterator Begin = Uses.lower_bound(RA);
569 UseMap::iterator E = Uses.end();
571 for (I = Begin; I != E && I->first == RA; ++I)
574 // Erase RA from the Uses map (from the lower bound to wherever we ended up
576 Uses.erase(Begin, I);
579 // RemoveDeadStuffFromFunction - Remove any arguments and return values from F
580 // that are not in LiveValues. Transform the function and all of the callees of
581 // the function to not have these arguments and return values.
583 bool DAE::RemoveDeadStuffFromFunction(Function *F) {
584 // Don't modify fully live functions
585 if (LiveFunctions.count(F))
588 // Start by computing a new prototype for the function, which is the same as
589 // the old function, but has fewer arguments and a different return type.
590 const FunctionType *FTy = F->getFunctionType();
591 std::vector<const Type*> Params;
593 // Set up to build a new list of parameter attributes.
594 SmallVector<AttributeWithIndex, 8> AttributesVec;
595 const AttrListPtr &PAL = F->getAttributes();
597 // The existing function return attributes.
598 Attributes RAttrs = PAL.getRetAttributes();
599 Attributes FnAttrs = PAL.getFnAttributes();
601 // Find out the new return value.
603 const Type *RetTy = FTy->getReturnType();
604 const Type *NRetTy = NULL;
605 unsigned RetCount = NumRetVals(F);
606 // -1 means unused, other numbers are the new index
607 SmallVector<int, 5> NewRetIdxs(RetCount, -1);
608 std::vector<const Type*> RetTypes;
609 if (RetTy == Type::VoidTy) {
610 NRetTy = Type::VoidTy;
612 const StructType *STy = dyn_cast<StructType>(RetTy);
614 // Look at each of the original return values individually.
615 for (unsigned i = 0; i != RetCount; ++i) {
616 RetOrArg Ret = CreateRet(F, i);
617 if (LiveValues.erase(Ret)) {
618 RetTypes.push_back(STy->getElementType(i));
619 NewRetIdxs[i] = RetTypes.size() - 1;
621 ++NumRetValsEliminated;
622 DOUT << "DAE - Removing return value " << i << " from "
623 << F->getNameStart() << "\n";
627 // We used to return a single value.
628 if (LiveValues.erase(CreateRet(F, 0))) {
629 RetTypes.push_back(RetTy);
632 DOUT << "DAE - Removing return value from " << F->getNameStart()
634 ++NumRetValsEliminated;
636 if (RetTypes.size() > 1)
637 // More than one return type? Return a struct with them. Also, if we used
638 // to return a struct and didn't change the number of return values,
639 // return a struct again. This prevents changing {something} into
640 // something and {} into void.
641 // Make the new struct packed if we used to return a packed struct
643 NRetTy = StructType::get(RetTypes, STy->isPacked());
644 else if (RetTypes.size() == 1)
645 // One return type? Just a simple value then, but only if we didn't use to
646 // return a struct with that simple value before.
647 NRetTy = RetTypes.front();
648 else if (RetTypes.size() == 0)
649 // No return types? Make it void, but only if we didn't use to return {}.
650 NRetTy = Type::VoidTy;
653 assert(NRetTy && "No new return type found?");
655 // Remove any incompatible attributes, but only if we removed all return
656 // values. Otherwise, ensure that we don't have any conflicting attributes
657 // here. Currently, this should not be possible, but special handling might be
658 // required when new return value attributes are added.
659 if (NRetTy == Type::VoidTy)
660 RAttrs &= ~Attribute::typeIncompatible(NRetTy);
662 assert((RAttrs & Attribute::typeIncompatible(NRetTy)) == 0
663 && "Return attributes no longer compatible?");
666 AttributesVec.push_back(AttributeWithIndex::get(0, RAttrs));
668 // Remember which arguments are still alive.
669 SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
670 // Construct the new parameter list from non-dead arguments. Also construct
671 // a new set of parameter attributes to correspond. Skip the first parameter
672 // attribute, since that belongs to the return value.
674 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
676 RetOrArg Arg = CreateArg(F, i);
677 if (LiveValues.erase(Arg)) {
678 Params.push_back(I->getType());
681 // Get the original parameter attributes (skipping the first one, that is
682 // for the return value.
683 if (Attributes Attrs = PAL.getParamAttributes(i + 1))
684 AttributesVec.push_back(AttributeWithIndex::get(Params.size(), Attrs));
686 ++NumArgumentsEliminated;
687 DOUT << "DAE - Removing argument " << i << " (" << I->getNameStart()
688 << ") from " << F->getNameStart() << "\n";
692 if (FnAttrs != Attribute::None)
693 AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
695 // Reconstruct the AttributesList based on the vector we constructed.
696 AttrListPtr NewPAL = AttrListPtr::get(AttributesVec.begin(), AttributesVec.end());
698 // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
699 // have zero fixed arguments.
701 // Note that we apply this hack for a vararg fuction that does not have any
702 // arguments anymore, but did have them before (so don't bother fixing
703 // functions that were already broken wrt CWriter).
704 bool ExtraArgHack = false;
705 if (Params.empty() && FTy->isVarArg() && FTy->getNumParams() != 0) {
707 Params.push_back(Type::Int32Ty);
710 // Create the new function type based on the recomputed parameters.
711 FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
717 // Create the new function body and insert it into the module...
718 Function *NF = Function::Create(NFTy, F->getLinkage());
719 NF->copyAttributesFrom(F);
720 NF->setAttributes(NewPAL);
721 // Insert the new function before the old function, so we won't be processing
723 F->getParent()->getFunctionList().insert(F, NF);
726 // Loop over all of the callers of the function, transforming the call sites
727 // to pass in a smaller number of arguments into the new function.
729 std::vector<Value*> Args;
730 while (!F->use_empty()) {
731 CallSite CS = CallSite::get(F->use_back());
732 Instruction *Call = CS.getInstruction();
734 AttributesVec.clear();
735 const AttrListPtr &CallPAL = CS.getAttributes();
737 // The call return attributes.
738 Attributes RAttrs = CallPAL.getRetAttributes();
739 Attributes FnAttrs = CallPAL.getFnAttributes();
740 // Adjust in case the function was changed to return void.
741 RAttrs &= ~Attribute::typeIncompatible(NF->getReturnType());
743 AttributesVec.push_back(AttributeWithIndex::get(0, RAttrs));
745 // Declare these outside of the loops, so we can reuse them for the second
746 // loop, which loops the varargs.
747 CallSite::arg_iterator I = CS.arg_begin();
749 // Loop over those operands, corresponding to the normal arguments to the
750 // original function, and add those that are still alive.
751 for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
754 // Get original parameter attributes, but skip return attributes.
755 if (Attributes Attrs = CallPAL.getParamAttributes(i + 1))
756 AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
760 Args.push_back(UndefValue::get(Type::Int32Ty));
762 // Push any varargs arguments on the list. Don't forget their attributes.
763 for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
765 if (Attributes Attrs = CallPAL.getParamAttributes(i + 1))
766 AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
769 if (FnAttrs != Attribute::None)
770 AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
772 // Reconstruct the AttributesList based on the vector we constructed.
773 AttrListPtr NewCallPAL = AttrListPtr::get(AttributesVec.begin(),
774 AttributesVec.end());
777 if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
778 New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
779 Args.begin(), Args.end(), "", Call);
780 cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
781 cast<InvokeInst>(New)->setAttributes(NewCallPAL);
783 New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
784 cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
785 cast<CallInst>(New)->setAttributes(NewCallPAL);
786 if (cast<CallInst>(Call)->isTailCall())
787 cast<CallInst>(New)->setTailCall();
791 if (!Call->use_empty()) {
792 if (New->getType() == Call->getType()) {
793 // Return type not changed? Just replace users then.
794 Call->replaceAllUsesWith(New);
796 } else if (New->getType() == Type::VoidTy) {
797 // Our return value has uses, but they will get removed later on.
798 // Replace by null for now.
799 Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
801 assert(isa<StructType>(RetTy) &&
802 "Return type changed, but not into a void. The old return type"
803 " must have been a struct!");
804 Instruction *InsertPt = Call;
805 if (InvokeInst *II = dyn_cast<InvokeInst>(Call))
806 InsertPt = II->getNormalDest()->begin();
808 // We used to return a struct. Instead of doing smart stuff with all the
809 // uses of this struct, we will just rebuild it using
810 // extract/insertvalue chaining and let instcombine clean that up.
812 // Start out building up our return value from undef
813 Value *RetVal = llvm::UndefValue::get(RetTy);
814 for (unsigned i = 0; i != RetCount; ++i)
815 if (NewRetIdxs[i] != -1) {
817 if (RetTypes.size() > 1)
818 // We are still returning a struct, so extract the value from our
820 V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret",
823 // We are now returning a single element, so just insert that
825 // Insert the value at the old position
826 RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt);
828 // Now, replace all uses of the old call instruction with the return
830 Call->replaceAllUsesWith(RetVal);
835 // Finally, remove the old call from the program, reducing the use-count of
837 Call->eraseFromParent();
840 // Since we have now created the new function, splice the body of the old
841 // function right into the new function, leaving the old rotting hulk of the
843 NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
845 // Loop over the argument list, transfering uses of the old arguments over to
846 // the new arguments, also transfering over the names as well.
848 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
849 I2 = NF->arg_begin(); I != E; ++I, ++i)
851 // If this is a live argument, move the name and users over to the new
853 I->replaceAllUsesWith(I2);
857 // If this argument is dead, replace any uses of it with null constants
858 // (these are guaranteed to become unused later on).
859 I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
862 // If we change the return value of the function we must rewrite any return
863 // instructions. Check this now.
864 if (F->getReturnType() != NF->getReturnType())
865 for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
866 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
869 if (NFTy->getReturnType() == Type::VoidTy) {
872 assert (isa<StructType>(RetTy));
873 // The original return value was a struct, insert
874 // extractvalue/insertvalue chains to extract only the values we need
875 // to return and insert them into our new result.
876 // This does generate messy code, but we'll let it to instcombine to
878 Value *OldRet = RI->getOperand(0);
879 // Start out building up our return value from undef
880 RetVal = llvm::UndefValue::get(NRetTy);
881 for (unsigned i = 0; i != RetCount; ++i)
882 if (NewRetIdxs[i] != -1) {
883 ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
885 if (RetTypes.size() > 1) {
886 // We're still returning a struct, so reinsert the value into
887 // our new return value at the new index
889 RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
892 // We are now only returning a simple value, so just return the
898 // Replace the return instruction with one returning the new return
899 // value (possibly 0 if we became void).
900 ReturnInst::Create(RetVal, RI);
901 BB->getInstList().erase(RI);
904 // Now that the old function is dead, delete it.
905 F->eraseFromParent();
910 bool DAE::runOnModule(Module &M) {
911 bool Changed = false;
913 // First pass: Do a simple check to see if any functions can have their "..."
914 // removed. We can do this if they never call va_start. This loop cannot be
915 // fused with the next loop, because deleting a function invalidates
916 // information computed while surveying other functions.
917 DOUT << "DAE - Deleting dead varargs\n";
918 for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
920 if (F.getFunctionType()->isVarArg())
921 Changed |= DeleteDeadVarargs(F);
924 // Second phase:loop through the module, determining which arguments are live.
925 // We assume all arguments are dead unless proven otherwise (allowing us to
926 // determine that dead arguments passed into recursive functions are dead).
928 DOUT << "DAE - Determining liveness\n";
929 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
932 // Now, remove all dead arguments and return values from each function in
934 for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
935 // Increment now, because the function will probably get removed (ie
936 // replaced by a new one).
938 Changed |= RemoveDeadStuffFromFunction(F);