1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass transforms simple global variables that never have their address
11 // taken. If obviously true, it marks read/write globals as constant, deletes
12 // variables only stored to, etc.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Transforms/IPO.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/ConstantFolding.h"
24 #include "llvm/Analysis/MemoryBuiltins.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/CallingConv.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/GetElementPtrTypeIterator.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/IR/ValueHandle.h"
36 #include "llvm/Pass.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Target/TargetLibraryInfo.h"
42 #include "llvm/Transforms/Utils/CtorUtils.h"
43 #include "llvm/Transforms/Utils/GlobalStatus.h"
44 #include "llvm/Transforms/Utils/ModuleUtils.h"
49 #define DEBUG_TYPE "globalopt"
51 STATISTIC(NumMarked , "Number of globals marked constant");
52 STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr");
53 STATISTIC(NumSRA , "Number of aggregate globals broken into scalars");
54 STATISTIC(NumHeapSRA , "Number of heap objects SRA'd");
55 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
56 STATISTIC(NumDeleted , "Number of globals deleted");
57 STATISTIC(NumFnDeleted , "Number of functions deleted");
58 STATISTIC(NumGlobUses , "Number of global uses devirtualized");
59 STATISTIC(NumLocalized , "Number of globals localized");
60 STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans");
61 STATISTIC(NumFastCallFns , "Number of functions converted to fastcc");
62 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
63 STATISTIC(NumNestRemoved , "Number of nest attributes removed");
64 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
65 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
66 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
69 struct GlobalOpt : public ModulePass {
70 void getAnalysisUsage(AnalysisUsage &AU) const override {
71 AU.addRequired<TargetLibraryInfo>();
73 static char ID; // Pass identification, replacement for typeid
74 GlobalOpt() : ModulePass(ID) {
75 initializeGlobalOptPass(*PassRegistry::getPassRegistry());
78 bool runOnModule(Module &M) override;
81 bool OptimizeFunctions(Module &M);
82 bool OptimizeGlobalVars(Module &M);
83 bool OptimizeGlobalAliases(Module &M);
84 bool ProcessGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
85 bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI,
86 const GlobalStatus &GS);
87 bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn);
90 TargetLibraryInfo *TLI;
94 char GlobalOpt::ID = 0;
95 INITIALIZE_PASS_BEGIN(GlobalOpt, "globalopt",
96 "Global Variable Optimizer", false, false)
97 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
98 INITIALIZE_PASS_END(GlobalOpt, "globalopt",
99 "Global Variable Optimizer", false, false)
101 ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
103 /// isLeakCheckerRoot - Is this global variable possibly used by a leak checker
104 /// as a root? If so, we might not really want to eliminate the stores to it.
105 static bool isLeakCheckerRoot(GlobalVariable *GV) {
106 // A global variable is a root if it is a pointer, or could plausibly contain
107 // a pointer. There are two challenges; one is that we could have a struct
108 // the has an inner member which is a pointer. We recurse through the type to
109 // detect these (up to a point). The other is that we may actually be a union
110 // of a pointer and another type, and so our LLVM type is an integer which
111 // gets converted into a pointer, or our type is an [i8 x #] with a pointer
112 // potentially contained here.
114 if (GV->hasPrivateLinkage())
117 SmallVector<Type *, 4> Types;
118 Types.push_back(cast<PointerType>(GV->getType())->getElementType());
122 Type *Ty = Types.pop_back_val();
123 switch (Ty->getTypeID()) {
125 case Type::PointerTyID: return true;
126 case Type::ArrayTyID:
127 case Type::VectorTyID: {
128 SequentialType *STy = cast<SequentialType>(Ty);
129 Types.push_back(STy->getElementType());
132 case Type::StructTyID: {
133 StructType *STy = cast<StructType>(Ty);
134 if (STy->isOpaque()) return true;
135 for (StructType::element_iterator I = STy->element_begin(),
136 E = STy->element_end(); I != E; ++I) {
138 if (isa<PointerType>(InnerTy)) return true;
139 if (isa<CompositeType>(InnerTy))
140 Types.push_back(InnerTy);
145 if (--Limit == 0) return true;
146 } while (!Types.empty());
150 /// Given a value that is stored to a global but never read, determine whether
151 /// it's safe to remove the store and the chain of computation that feeds the
153 static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) {
155 if (isa<Constant>(V))
159 if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
162 if (isAllocationFn(V, TLI))
165 Instruction *I = cast<Instruction>(V);
166 if (I->mayHaveSideEffects())
168 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
169 if (!GEP->hasAllConstantIndices())
171 } else if (I->getNumOperands() != 1) {
175 V = I->getOperand(0);
179 /// CleanupPointerRootUsers - This GV is a pointer root. Loop over all users
180 /// of the global and clean up any that obviously don't assign the global a
181 /// value that isn't dynamically allocated.
183 static bool CleanupPointerRootUsers(GlobalVariable *GV,
184 const TargetLibraryInfo *TLI) {
185 // A brief explanation of leak checkers. The goal is to find bugs where
186 // pointers are forgotten, causing an accumulating growth in memory
187 // usage over time. The common strategy for leak checkers is to whitelist the
188 // memory pointed to by globals at exit. This is popular because it also
189 // solves another problem where the main thread of a C++ program may shut down
190 // before other threads that are still expecting to use those globals. To
191 // handle that case, we expect the program may create a singleton and never
194 bool Changed = false;
196 // If Dead[n].first is the only use of a malloc result, we can delete its
197 // chain of computation and the store to the global in Dead[n].second.
198 SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
200 // Constants can't be pointers to dynamically allocated memory.
201 for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end();
204 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
205 Value *V = SI->getValueOperand();
206 if (isa<Constant>(V)) {
208 SI->eraseFromParent();
209 } else if (Instruction *I = dyn_cast<Instruction>(V)) {
211 Dead.push_back(std::make_pair(I, SI));
213 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
214 if (isa<Constant>(MSI->getValue())) {
216 MSI->eraseFromParent();
217 } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
219 Dead.push_back(std::make_pair(I, MSI));
221 } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
222 GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
223 if (MemSrc && MemSrc->isConstant()) {
225 MTI->eraseFromParent();
226 } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
228 Dead.push_back(std::make_pair(I, MTI));
230 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
231 if (CE->use_empty()) {
232 CE->destroyConstant();
235 } else if (Constant *C = dyn_cast<Constant>(U)) {
236 if (isSafeToDestroyConstant(C)) {
237 C->destroyConstant();
238 // This could have invalidated UI, start over from scratch.
240 CleanupPointerRootUsers(GV, TLI);
246 for (int i = 0, e = Dead.size(); i != e; ++i) {
247 if (IsSafeComputationToRemove(Dead[i].first, TLI)) {
248 Dead[i].second->eraseFromParent();
249 Instruction *I = Dead[i].first;
251 if (isAllocationFn(I, TLI))
253 Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
256 I->eraseFromParent();
259 I->eraseFromParent();
266 /// CleanupConstantGlobalUsers - We just marked GV constant. Loop over all
267 /// users of the global, cleaning up the obvious ones. This is largely just a
268 /// quick scan over the use list to clean up the easy and obvious cruft. This
269 /// returns true if it made a change.
270 static bool CleanupConstantGlobalUsers(Value *V, Constant *Init,
271 const DataLayout *DL,
272 TargetLibraryInfo *TLI) {
273 bool Changed = false;
274 // Note that we need to use a weak value handle for the worklist items. When
275 // we delete a constant array, we may also be holding pointer to one of its
276 // elements (or an element of one of its elements if we're dealing with an
277 // array of arrays) in the worklist.
278 SmallVector<WeakVH, 8> WorkList(V->user_begin(), V->user_end());
279 while (!WorkList.empty()) {
280 Value *UV = WorkList.pop_back_val();
284 User *U = cast<User>(UV);
286 if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
288 // Replace the load with the initializer.
289 LI->replaceAllUsesWith(Init);
290 LI->eraseFromParent();
293 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
294 // Store must be unreachable or storing Init into the global.
295 SI->eraseFromParent();
297 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
298 if (CE->getOpcode() == Instruction::GetElementPtr) {
299 Constant *SubInit = nullptr;
301 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
302 Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, TLI);
303 } else if ((CE->getOpcode() == Instruction::BitCast &&
304 CE->getType()->isPointerTy()) ||
305 CE->getOpcode() == Instruction::AddrSpaceCast) {
306 // Pointer cast, delete any stores and memsets to the global.
307 Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, TLI);
310 if (CE->use_empty()) {
311 CE->destroyConstant();
314 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
315 // Do not transform "gepinst (gep constexpr (GV))" here, because forming
316 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
317 // and will invalidate our notion of what Init is.
318 Constant *SubInit = nullptr;
319 if (!isa<ConstantExpr>(GEP->getOperand(0))) {
321 dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP, DL, TLI));
322 if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
323 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
325 // If the initializer is an all-null value and we have an inbounds GEP,
326 // we already know what the result of any load from that GEP is.
327 // TODO: Handle splats.
328 if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
329 SubInit = Constant::getNullValue(GEP->getType()->getElementType());
331 Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, TLI);
333 if (GEP->use_empty()) {
334 GEP->eraseFromParent();
337 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
338 if (MI->getRawDest() == V) {
339 MI->eraseFromParent();
343 } else if (Constant *C = dyn_cast<Constant>(U)) {
344 // If we have a chain of dead constantexprs or other things dangling from
345 // us, and if they are all dead, nuke them without remorse.
346 if (isSafeToDestroyConstant(C)) {
347 C->destroyConstant();
348 CleanupConstantGlobalUsers(V, Init, DL, TLI);
356 /// isSafeSROAElementUse - Return true if the specified instruction is a safe
357 /// user of a derived expression from a global that we want to SROA.
358 static bool isSafeSROAElementUse(Value *V) {
359 // We might have a dead and dangling constant hanging off of here.
360 if (Constant *C = dyn_cast<Constant>(V))
361 return isSafeToDestroyConstant(C);
363 Instruction *I = dyn_cast<Instruction>(V);
364 if (!I) return false;
367 if (isa<LoadInst>(I)) return true;
369 // Stores *to* the pointer are ok.
370 if (StoreInst *SI = dyn_cast<StoreInst>(I))
371 return SI->getOperand(0) != V;
373 // Otherwise, it must be a GEP.
374 GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
375 if (!GEPI) return false;
377 if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
378 !cast<Constant>(GEPI->getOperand(1))->isNullValue())
381 for (User *U : GEPI->users())
382 if (!isSafeSROAElementUse(U))
388 /// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value.
389 /// Look at it and its uses and decide whether it is safe to SROA this global.
391 static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
392 // The user of the global must be a GEP Inst or a ConstantExpr GEP.
393 if (!isa<GetElementPtrInst>(U) &&
394 (!isa<ConstantExpr>(U) ||
395 cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
398 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we
399 // don't like < 3 operand CE's, and we don't like non-constant integer
400 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some
402 if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
403 !cast<Constant>(U->getOperand(1))->isNullValue() ||
404 !isa<ConstantInt>(U->getOperand(2)))
407 gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
408 ++GEPI; // Skip over the pointer index.
410 // If this is a use of an array allocation, do a bit more checking for sanity.
411 if (ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
412 uint64_t NumElements = AT->getNumElements();
413 ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
415 // Check to make sure that index falls within the array. If not,
416 // something funny is going on, so we won't do the optimization.
418 if (Idx->getZExtValue() >= NumElements)
421 // We cannot scalar repl this level of the array unless any array
422 // sub-indices are in-range constants. In particular, consider:
423 // A[0][i]. We cannot know that the user isn't doing invalid things like
424 // allowing i to index an out-of-range subscript that accesses A[1].
426 // Scalar replacing *just* the outer index of the array is probably not
427 // going to be a win anyway, so just give up.
428 for (++GEPI; // Skip array index.
431 uint64_t NumElements;
432 if (ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
433 NumElements = SubArrayTy->getNumElements();
434 else if (VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI))
435 NumElements = SubVectorTy->getNumElements();
437 assert((*GEPI)->isStructTy() &&
438 "Indexed GEP type is not array, vector, or struct!");
442 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
443 if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
448 for (User *UU : U->users())
449 if (!isSafeSROAElementUse(UU))
455 /// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it
456 /// is safe for us to perform this transformation.
458 static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
459 for (User *U : GV->users())
460 if (!IsUserOfGlobalSafeForSRA(U, GV))
467 /// SRAGlobal - Perform scalar replacement of aggregates on the specified global
468 /// variable. This opens the door for other optimizations by exposing the
469 /// behavior of the program in a more fine-grained way. We have determined that
470 /// this transformation is safe already. We return the first global variable we
471 /// insert so that the caller can reprocess it.
472 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
473 // Make sure this global only has simple uses that we can SRA.
474 if (!GlobalUsersSafeToSRA(GV))
477 assert(GV->hasLocalLinkage() && !GV->isConstant());
478 Constant *Init = GV->getInitializer();
479 Type *Ty = Init->getType();
481 std::vector<GlobalVariable*> NewGlobals;
482 Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
484 // Get the alignment of the global, either explicit or target-specific.
485 unsigned StartAlignment = GV->getAlignment();
486 if (StartAlignment == 0)
487 StartAlignment = DL.getABITypeAlignment(GV->getType());
489 if (StructType *STy = dyn_cast<StructType>(Ty)) {
490 NewGlobals.reserve(STy->getNumElements());
491 const StructLayout &Layout = *DL.getStructLayout(STy);
492 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
493 Constant *In = Init->getAggregateElement(i);
494 assert(In && "Couldn't get element of initializer?");
495 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
496 GlobalVariable::InternalLinkage,
497 In, GV->getName()+"."+Twine(i),
498 GV->getThreadLocalMode(),
499 GV->getType()->getAddressSpace());
500 Globals.insert(GV, NGV);
501 NewGlobals.push_back(NGV);
503 // Calculate the known alignment of the field. If the original aggregate
504 // had 256 byte alignment for example, something might depend on that:
505 // propagate info to each field.
506 uint64_t FieldOffset = Layout.getElementOffset(i);
507 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
508 if (NewAlign > DL.getABITypeAlignment(STy->getElementType(i)))
509 NGV->setAlignment(NewAlign);
511 } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
512 unsigned NumElements = 0;
513 if (ArrayType *ATy = dyn_cast<ArrayType>(STy))
514 NumElements = ATy->getNumElements();
516 NumElements = cast<VectorType>(STy)->getNumElements();
518 if (NumElements > 16 && GV->hasNUsesOrMore(16))
519 return nullptr; // It's not worth it.
520 NewGlobals.reserve(NumElements);
522 uint64_t EltSize = DL.getTypeAllocSize(STy->getElementType());
523 unsigned EltAlign = DL.getABITypeAlignment(STy->getElementType());
524 for (unsigned i = 0, e = NumElements; i != e; ++i) {
525 Constant *In = Init->getAggregateElement(i);
526 assert(In && "Couldn't get element of initializer?");
528 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
529 GlobalVariable::InternalLinkage,
530 In, GV->getName()+"."+Twine(i),
531 GV->getThreadLocalMode(),
532 GV->getType()->getAddressSpace());
533 Globals.insert(GV, NGV);
534 NewGlobals.push_back(NGV);
536 // Calculate the known alignment of the field. If the original aggregate
537 // had 256 byte alignment for example, something might depend on that:
538 // propagate info to each field.
539 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
540 if (NewAlign > EltAlign)
541 NGV->setAlignment(NewAlign);
545 if (NewGlobals.empty())
548 DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV);
550 Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
552 // Loop over all of the uses of the global, replacing the constantexpr geps,
553 // with smaller constantexpr geps or direct references.
554 while (!GV->use_empty()) {
555 User *GEP = GV->user_back();
556 assert(((isa<ConstantExpr>(GEP) &&
557 cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
558 isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
560 // Ignore the 1th operand, which has to be zero or else the program is quite
561 // broken (undefined). Get the 2nd operand, which is the structure or array
563 unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
564 if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
566 Value *NewPtr = NewGlobals[Val];
568 // Form a shorter GEP if needed.
569 if (GEP->getNumOperands() > 3) {
570 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
571 SmallVector<Constant*, 8> Idxs;
572 Idxs.push_back(NullInt);
573 for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
574 Idxs.push_back(CE->getOperand(i));
575 NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr), Idxs);
577 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
578 SmallVector<Value*, 8> Idxs;
579 Idxs.push_back(NullInt);
580 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
581 Idxs.push_back(GEPI->getOperand(i));
582 NewPtr = GetElementPtrInst::Create(NewPtr, Idxs,
583 GEPI->getName()+"."+Twine(Val),GEPI);
586 GEP->replaceAllUsesWith(NewPtr);
588 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
589 GEPI->eraseFromParent();
591 cast<ConstantExpr>(GEP)->destroyConstant();
594 // Delete the old global, now that it is dead.
598 // Loop over the new globals array deleting any globals that are obviously
599 // dead. This can arise due to scalarization of a structure or an array that
600 // has elements that are dead.
601 unsigned FirstGlobal = 0;
602 for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
603 if (NewGlobals[i]->use_empty()) {
604 Globals.erase(NewGlobals[i]);
605 if (FirstGlobal == i) ++FirstGlobal;
608 return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : nullptr;
611 /// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
612 /// value will trap if the value is dynamically null. PHIs keeps track of any
613 /// phi nodes we've seen to avoid reprocessing them.
614 static bool AllUsesOfValueWillTrapIfNull(const Value *V,
615 SmallPtrSet<const PHINode*, 8> &PHIs) {
616 for (const User *U : V->users())
617 if (isa<LoadInst>(U)) {
619 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
620 if (SI->getOperand(0) == V) {
621 //cerr << "NONTRAPPING USE: " << *U;
622 return false; // Storing the value.
624 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
625 if (CI->getCalledValue() != V) {
626 //cerr << "NONTRAPPING USE: " << *U;
627 return false; // Not calling the ptr
629 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
630 if (II->getCalledValue() != V) {
631 //cerr << "NONTRAPPING USE: " << *U;
632 return false; // Not calling the ptr
634 } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
635 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
636 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
637 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
638 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
639 // If we've already seen this phi node, ignore it, it has already been
641 if (PHIs.insert(PN) && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
643 } else if (isa<ICmpInst>(U) &&
644 isa<ConstantPointerNull>(U->getOperand(1))) {
645 // Ignore icmp X, null
647 //cerr << "NONTRAPPING USE: " << *U;
654 /// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
655 /// from GV will trap if the loaded value is null. Note that this also permits
656 /// comparisons of the loaded value against null, as a special case.
657 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
658 for (const User *U : GV->users())
659 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
660 SmallPtrSet<const PHINode*, 8> PHIs;
661 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
663 } else if (isa<StoreInst>(U)) {
664 // Ignore stores to the global.
666 // We don't know or understand this user, bail out.
667 //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
673 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
674 bool Changed = false;
675 for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
676 Instruction *I = cast<Instruction>(*UI++);
677 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
678 LI->setOperand(0, NewV);
680 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
681 if (SI->getOperand(1) == V) {
682 SI->setOperand(1, NewV);
685 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
687 if (CS.getCalledValue() == V) {
688 // Calling through the pointer! Turn into a direct call, but be careful
689 // that the pointer is not also being passed as an argument.
690 CS.setCalledFunction(NewV);
692 bool PassedAsArg = false;
693 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
694 if (CS.getArgument(i) == V) {
696 CS.setArgument(i, NewV);
700 // Being passed as an argument also. Be careful to not invalidate UI!
701 UI = V->user_begin();
704 } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
705 Changed |= OptimizeAwayTrappingUsesOfValue(CI,
706 ConstantExpr::getCast(CI->getOpcode(),
707 NewV, CI->getType()));
708 if (CI->use_empty()) {
710 CI->eraseFromParent();
712 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
713 // Should handle GEP here.
714 SmallVector<Constant*, 8> Idxs;
715 Idxs.reserve(GEPI->getNumOperands()-1);
716 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
718 if (Constant *C = dyn_cast<Constant>(*i))
722 if (Idxs.size() == GEPI->getNumOperands()-1)
723 Changed |= OptimizeAwayTrappingUsesOfValue(GEPI,
724 ConstantExpr::getGetElementPtr(NewV, Idxs));
725 if (GEPI->use_empty()) {
727 GEPI->eraseFromParent();
736 /// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
737 /// value stored into it. If there are uses of the loaded value that would trap
738 /// if the loaded value is dynamically null, then we know that they cannot be
739 /// reachable with a null optimize away the load.
740 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
741 const DataLayout *DL,
742 TargetLibraryInfo *TLI) {
743 bool Changed = false;
745 // Keep track of whether we are able to remove all the uses of the global
746 // other than the store that defines it.
747 bool AllNonStoreUsesGone = true;
749 // Replace all uses of loads with uses of uses of the stored value.
750 for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){
751 User *GlobalUser = *GUI++;
752 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
753 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
754 // If we were able to delete all uses of the loads
755 if (LI->use_empty()) {
756 LI->eraseFromParent();
759 AllNonStoreUsesGone = false;
761 } else if (isa<StoreInst>(GlobalUser)) {
762 // Ignore the store that stores "LV" to the global.
763 assert(GlobalUser->getOperand(1) == GV &&
764 "Must be storing *to* the global");
766 AllNonStoreUsesGone = false;
768 // If we get here we could have other crazy uses that are transitively
770 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
771 isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
772 isa<BitCastInst>(GlobalUser) ||
773 isa<GetElementPtrInst>(GlobalUser)) &&
774 "Only expect load and stores!");
779 DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV);
783 // If we nuked all of the loads, then none of the stores are needed either,
784 // nor is the global.
785 if (AllNonStoreUsesGone) {
786 if (isLeakCheckerRoot(GV)) {
787 Changed |= CleanupPointerRootUsers(GV, TLI);
790 CleanupConstantGlobalUsers(GV, nullptr, DL, TLI);
792 if (GV->use_empty()) {
793 DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n");
795 GV->eraseFromParent();
802 /// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
803 /// instructions that are foldable.
804 static void ConstantPropUsersOf(Value *V, const DataLayout *DL,
805 TargetLibraryInfo *TLI) {
806 for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
807 if (Instruction *I = dyn_cast<Instruction>(*UI++))
808 if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
809 I->replaceAllUsesWith(NewC);
811 // Advance UI to the next non-I use to avoid invalidating it!
812 // Instructions could multiply use V.
813 while (UI != E && *UI == I)
815 I->eraseFromParent();
819 /// OptimizeGlobalAddressOfMalloc - This function takes the specified global
820 /// variable, and transforms the program as if it always contained the result of
821 /// the specified malloc. Because it is always the result of the specified
822 /// malloc, there is no reason to actually DO the malloc. Instead, turn the
823 /// malloc into a global, and any loads of GV as uses of the new global.
824 static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
827 ConstantInt *NElements,
828 const DataLayout *DL,
829 TargetLibraryInfo *TLI) {
830 DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI << '\n');
833 if (NElements->getZExtValue() == 1)
834 GlobalType = AllocTy;
836 // If we have an array allocation, the global variable is of an array.
837 GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
839 // Create the new global variable. The contents of the malloc'd memory is
840 // undefined, so initialize with an undef value.
841 GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(),
843 GlobalValue::InternalLinkage,
844 UndefValue::get(GlobalType),
845 GV->getName()+".body",
847 GV->getThreadLocalMode());
849 // If there are bitcast users of the malloc (which is typical, usually we have
850 // a malloc + bitcast) then replace them with uses of the new global. Update
851 // other users to use the global as well.
852 BitCastInst *TheBC = nullptr;
853 while (!CI->use_empty()) {
854 Instruction *User = cast<Instruction>(CI->user_back());
855 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
856 if (BCI->getType() == NewGV->getType()) {
857 BCI->replaceAllUsesWith(NewGV);
858 BCI->eraseFromParent();
860 BCI->setOperand(0, NewGV);
864 TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
865 User->replaceUsesOfWith(CI, TheBC);
869 Constant *RepValue = NewGV;
870 if (NewGV->getType() != GV->getType()->getElementType())
871 RepValue = ConstantExpr::getBitCast(RepValue,
872 GV->getType()->getElementType());
874 // If there is a comparison against null, we will insert a global bool to
875 // keep track of whether the global was initialized yet or not.
876 GlobalVariable *InitBool =
877 new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
878 GlobalValue::InternalLinkage,
879 ConstantInt::getFalse(GV->getContext()),
880 GV->getName()+".init", GV->getThreadLocalMode());
881 bool InitBoolUsed = false;
883 // Loop over all uses of GV, processing them in turn.
884 while (!GV->use_empty()) {
885 if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) {
886 // The global is initialized when the store to it occurs.
887 new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0,
888 SI->getOrdering(), SI->getSynchScope(), SI);
889 SI->eraseFromParent();
893 LoadInst *LI = cast<LoadInst>(GV->user_back());
894 while (!LI->use_empty()) {
895 Use &LoadUse = *LI->use_begin();
896 ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
902 // Replace the cmp X, 0 with a use of the bool value.
903 // Sink the load to where the compare was, if atomic rules allow us to.
904 Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0,
905 LI->getOrdering(), LI->getSynchScope(),
906 LI->isUnordered() ? (Instruction*)ICI : LI);
908 switch (ICI->getPredicate()) {
909 default: llvm_unreachable("Unknown ICmp Predicate!");
910 case ICmpInst::ICMP_ULT:
911 case ICmpInst::ICMP_SLT: // X < null -> always false
912 LV = ConstantInt::getFalse(GV->getContext());
914 case ICmpInst::ICMP_ULE:
915 case ICmpInst::ICMP_SLE:
916 case ICmpInst::ICMP_EQ:
917 LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
919 case ICmpInst::ICMP_NE:
920 case ICmpInst::ICMP_UGE:
921 case ICmpInst::ICMP_SGE:
922 case ICmpInst::ICMP_UGT:
923 case ICmpInst::ICMP_SGT:
926 ICI->replaceAllUsesWith(LV);
927 ICI->eraseFromParent();
929 LI->eraseFromParent();
932 // If the initialization boolean was used, insert it, otherwise delete it.
934 while (!InitBool->use_empty()) // Delete initializations
935 cast<StoreInst>(InitBool->user_back())->eraseFromParent();
938 GV->getParent()->getGlobalList().insert(GV, InitBool);
940 // Now the GV is dead, nuke it and the malloc..
941 GV->eraseFromParent();
942 CI->eraseFromParent();
944 // To further other optimizations, loop over all users of NewGV and try to
945 // constant prop them. This will promote GEP instructions with constant
946 // indices into GEP constant-exprs, which will allow global-opt to hack on it.
947 ConstantPropUsersOf(NewGV, DL, TLI);
948 if (RepValue != NewGV)
949 ConstantPropUsersOf(RepValue, DL, TLI);
954 /// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
955 /// to make sure that there are no complex uses of V. We permit simple things
956 /// like dereferencing the pointer, but not storing through the address, unless
957 /// it is to the specified global.
958 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
959 const GlobalVariable *GV,
960 SmallPtrSet<const PHINode*, 8> &PHIs) {
961 for (const User *U : V->users()) {
962 const Instruction *Inst = cast<Instruction>(U);
964 if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
965 continue; // Fine, ignore.
968 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
969 if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
970 return false; // Storing the pointer itself... bad.
971 continue; // Otherwise, storing through it, or storing into GV... fine.
974 // Must index into the array and into the struct.
975 if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
976 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
981 if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
982 // PHIs are ok if all uses are ok. Don't infinitely recurse through PHI
985 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
990 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
991 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
1001 /// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
1002 /// somewhere. Transform all uses of the allocation into loads from the
1003 /// global and uses of the resultant pointer. Further, delete the store into
1004 /// GV. This assumes that these value pass the
1005 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
1006 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
1007 GlobalVariable *GV) {
1008 while (!Alloc->use_empty()) {
1009 Instruction *U = cast<Instruction>(*Alloc->user_begin());
1010 Instruction *InsertPt = U;
1011 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1012 // If this is the store of the allocation into the global, remove it.
1013 if (SI->getOperand(1) == GV) {
1014 SI->eraseFromParent();
1017 } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1018 // Insert the load in the corresponding predecessor, not right before the
1020 InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator();
1021 } else if (isa<BitCastInst>(U)) {
1022 // Must be bitcast between the malloc and store to initialize the global.
1023 ReplaceUsesOfMallocWithGlobal(U, GV);
1024 U->eraseFromParent();
1026 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1027 // If this is a "GEP bitcast" and the user is a store to the global, then
1028 // just process it as a bitcast.
1029 if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1030 if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back()))
1031 if (SI->getOperand(1) == GV) {
1032 // Must be bitcast GEP between the malloc and store to initialize
1034 ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1035 GEPI->eraseFromParent();
1040 // Insert a load from the global, and use it instead of the malloc.
1041 Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
1042 U->replaceUsesOfWith(Alloc, NL);
1046 /// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi
1047 /// of a load) are simple enough to perform heap SRA on. This permits GEP's
1048 /// that index through the array and struct field, icmps of null, and PHIs.
1049 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
1050 SmallPtrSet<const PHINode*, 32> &LoadUsingPHIs,
1051 SmallPtrSet<const PHINode*, 32> &LoadUsingPHIsPerLoad) {
1052 // We permit two users of the load: setcc comparing against the null
1053 // pointer, and a getelementptr of a specific form.
1054 for (const User *U : V->users()) {
1055 const Instruction *UI = cast<Instruction>(U);
1057 // Comparison against null is ok.
1058 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) {
1059 if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1064 // getelementptr is also ok, but only a simple form.
1065 if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) {
1066 // Must index into the array and into the struct.
1067 if (GEPI->getNumOperands() < 3)
1070 // Otherwise the GEP is ok.
1074 if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1075 if (!LoadUsingPHIsPerLoad.insert(PN))
1076 // This means some phi nodes are dependent on each other.
1077 // Avoid infinite looping!
1079 if (!LoadUsingPHIs.insert(PN))
1080 // If we have already analyzed this PHI, then it is safe.
1083 // Make sure all uses of the PHI are simple enough to transform.
1084 if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1085 LoadUsingPHIs, LoadUsingPHIsPerLoad))
1091 // Otherwise we don't know what this is, not ok.
1099 /// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
1100 /// GV are simple enough to perform HeapSRA, return true.
1101 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
1102 Instruction *StoredVal) {
1103 SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
1104 SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
1105 for (const User *U : GV->users())
1106 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
1107 if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1108 LoadUsingPHIsPerLoad))
1110 LoadUsingPHIsPerLoad.clear();
1113 // If we reach here, we know that all uses of the loads and transitive uses
1114 // (through PHI nodes) are simple enough to transform. However, we don't know
1115 // that all inputs the to the PHI nodes are in the same equivalence sets.
1116 // Check to verify that all operands of the PHIs are either PHIS that can be
1117 // transformed, loads from GV, or MI itself.
1118 for (SmallPtrSet<const PHINode*, 32>::const_iterator I = LoadUsingPHIs.begin()
1119 , E = LoadUsingPHIs.end(); I != E; ++I) {
1120 const PHINode *PN = *I;
1121 for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1122 Value *InVal = PN->getIncomingValue(op);
1124 // PHI of the stored value itself is ok.
1125 if (InVal == StoredVal) continue;
1127 if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1128 // One of the PHIs in our set is (optimistically) ok.
1129 if (LoadUsingPHIs.count(InPN))
1134 // Load from GV is ok.
1135 if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
1136 if (LI->getOperand(0) == GV)
1141 // Anything else is rejected.
1149 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1150 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1151 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1152 std::vector<Value*> &FieldVals = InsertedScalarizedValues[V];
1154 if (FieldNo >= FieldVals.size())
1155 FieldVals.resize(FieldNo+1);
1157 // If we already have this value, just reuse the previously scalarized
1159 if (Value *FieldVal = FieldVals[FieldNo])
1162 // Depending on what instruction this is, we have several cases.
1164 if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1165 // This is a scalarized version of the load from the global. Just create
1166 // a new Load of the scalarized global.
1167 Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
1168 InsertedScalarizedValues,
1170 LI->getName()+".f"+Twine(FieldNo), LI);
1171 } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
1172 // PN's type is pointer to struct. Make a new PHI of pointer to struct
1175 PointerType *PTy = cast<PointerType>(PN->getType());
1176 StructType *ST = cast<StructType>(PTy->getElementType());
1178 unsigned AS = PTy->getAddressSpace();
1180 PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS),
1181 PN->getNumIncomingValues(),
1182 PN->getName()+".f"+Twine(FieldNo), PN);
1184 PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1186 llvm_unreachable("Unknown usable value");
1189 return FieldVals[FieldNo] = Result;
1192 /// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
1193 /// the load, rewrite the derived value to use the HeapSRoA'd load.
1194 static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1195 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1196 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1197 // If this is a comparison against null, handle it.
1198 if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1199 assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1200 // If we have a setcc of the loaded pointer, we can use a setcc of any
1202 Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1203 InsertedScalarizedValues, PHIsToRewrite);
1205 Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1206 Constant::getNullValue(NPtr->getType()),
1208 SCI->replaceAllUsesWith(New);
1209 SCI->eraseFromParent();
1213 // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1214 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1215 assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1216 && "Unexpected GEPI!");
1218 // Load the pointer for this field.
1219 unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1220 Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1221 InsertedScalarizedValues, PHIsToRewrite);
1223 // Create the new GEP idx vector.
1224 SmallVector<Value*, 8> GEPIdx;
1225 GEPIdx.push_back(GEPI->getOperand(1));
1226 GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1228 Value *NGEPI = GetElementPtrInst::Create(NewPtr, GEPIdx,
1229 GEPI->getName(), GEPI);
1230 GEPI->replaceAllUsesWith(NGEPI);
1231 GEPI->eraseFromParent();
1235 // Recursively transform the users of PHI nodes. This will lazily create the
1236 // PHIs that are needed for individual elements. Keep track of what PHIs we
1237 // see in InsertedScalarizedValues so that we don't get infinite loops (very
1238 // antisocial). If the PHI is already in InsertedScalarizedValues, it has
1239 // already been seen first by another load, so its uses have already been
1241 PHINode *PN = cast<PHINode>(LoadUser);
1242 if (!InsertedScalarizedValues.insert(std::make_pair(PN,
1243 std::vector<Value*>())).second)
1246 // If this is the first time we've seen this PHI, recursively process all
1248 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
1249 Instruction *User = cast<Instruction>(*UI++);
1250 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1254 /// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global. Ptr
1255 /// is a value loaded from the global. Eliminate all uses of Ptr, making them
1256 /// use FieldGlobals instead. All uses of loaded values satisfy
1257 /// AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1258 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1259 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1260 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1261 for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) {
1262 Instruction *User = cast<Instruction>(*UI++);
1263 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1266 if (Load->use_empty()) {
1267 Load->eraseFromParent();
1268 InsertedScalarizedValues.erase(Load);
1272 /// PerformHeapAllocSRoA - CI is an allocation of an array of structures. Break
1273 /// it up into multiple allocations of arrays of the fields.
1274 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
1275 Value *NElems, const DataLayout *DL,
1276 const TargetLibraryInfo *TLI) {
1277 DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *CI << '\n');
1278 Type *MAT = getMallocAllocatedType(CI, TLI);
1279 StructType *STy = cast<StructType>(MAT);
1281 // There is guaranteed to be at least one use of the malloc (storing
1282 // it into GV). If there are other uses, change them to be uses of
1283 // the global to simplify later code. This also deletes the store
1285 ReplaceUsesOfMallocWithGlobal(CI, GV);
1287 // Okay, at this point, there are no users of the malloc. Insert N
1288 // new mallocs at the same place as CI, and N globals.
1289 std::vector<Value*> FieldGlobals;
1290 std::vector<Value*> FieldMallocs;
1292 unsigned AS = GV->getType()->getPointerAddressSpace();
1293 for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1294 Type *FieldTy = STy->getElementType(FieldNo);
1295 PointerType *PFieldTy = PointerType::get(FieldTy, AS);
1297 GlobalVariable *NGV =
1298 new GlobalVariable(*GV->getParent(),
1299 PFieldTy, false, GlobalValue::InternalLinkage,
1300 Constant::getNullValue(PFieldTy),
1301 GV->getName() + ".f" + Twine(FieldNo), GV,
1302 GV->getThreadLocalMode());
1303 FieldGlobals.push_back(NGV);
1305 unsigned TypeSize = DL->getTypeAllocSize(FieldTy);
1306 if (StructType *ST = dyn_cast<StructType>(FieldTy))
1307 TypeSize = DL->getStructLayout(ST)->getSizeInBytes();
1308 Type *IntPtrTy = DL->getIntPtrType(CI->getType());
1309 Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
1310 ConstantInt::get(IntPtrTy, TypeSize),
1312 CI->getName() + ".f" + Twine(FieldNo));
1313 FieldMallocs.push_back(NMI);
1314 new StoreInst(NMI, NGV, CI);
1317 // The tricky aspect of this transformation is handling the case when malloc
1318 // fails. In the original code, malloc failing would set the result pointer
1319 // of malloc to null. In this case, some mallocs could succeed and others
1320 // could fail. As such, we emit code that looks like this:
1321 // F0 = malloc(field0)
1322 // F1 = malloc(field1)
1323 // F2 = malloc(field2)
1324 // if (F0 == 0 || F1 == 0 || F2 == 0) {
1325 // if (F0) { free(F0); F0 = 0; }
1326 // if (F1) { free(F1); F1 = 0; }
1327 // if (F2) { free(F2); F2 = 0; }
1329 // The malloc can also fail if its argument is too large.
1330 Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
1331 Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
1332 ConstantZero, "isneg");
1333 for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1334 Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1335 Constant::getNullValue(FieldMallocs[i]->getType()),
1337 RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
1340 // Split the basic block at the old malloc.
1341 BasicBlock *OrigBB = CI->getParent();
1342 BasicBlock *ContBB = OrigBB->splitBasicBlock(CI, "malloc_cont");
1344 // Create the block to check the first condition. Put all these blocks at the
1345 // end of the function as they are unlikely to be executed.
1346 BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
1348 OrigBB->getParent());
1350 // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1351 // branch on RunningOr.
1352 OrigBB->getTerminator()->eraseFromParent();
1353 BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1355 // Within the NullPtrBlock, we need to emit a comparison and branch for each
1356 // pointer, because some may be null while others are not.
1357 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1358 Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1359 Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1360 Constant::getNullValue(GVVal->getType()));
1361 BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
1362 OrigBB->getParent());
1363 BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
1364 OrigBB->getParent());
1365 Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
1368 // Fill in FreeBlock.
1369 CallInst::CreateFree(GVVal, BI);
1370 new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1372 BranchInst::Create(NextBlock, FreeBlock);
1374 NullPtrBlock = NextBlock;
1377 BranchInst::Create(ContBB, NullPtrBlock);
1379 // CI is no longer needed, remove it.
1380 CI->eraseFromParent();
1382 /// InsertedScalarizedLoads - As we process loads, if we can't immediately
1383 /// update all uses of the load, keep track of what scalarized loads are
1384 /// inserted for a given load.
1385 DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues;
1386 InsertedScalarizedValues[GV] = FieldGlobals;
1388 std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite;
1390 // Okay, the malloc site is completely handled. All of the uses of GV are now
1391 // loads, and all uses of those loads are simple. Rewrite them to use loads
1392 // of the per-field globals instead.
1393 for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) {
1394 Instruction *User = cast<Instruction>(*UI++);
1396 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1397 RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
1401 // Must be a store of null.
1402 StoreInst *SI = cast<StoreInst>(User);
1403 assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1404 "Unexpected heap-sra user!");
1406 // Insert a store of null into each global.
1407 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1408 PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType());
1409 Constant *Null = Constant::getNullValue(PT->getElementType());
1410 new StoreInst(Null, FieldGlobals[i], SI);
1412 // Erase the original store.
1413 SI->eraseFromParent();
1416 // While we have PHIs that are interesting to rewrite, do it.
1417 while (!PHIsToRewrite.empty()) {
1418 PHINode *PN = PHIsToRewrite.back().first;
1419 unsigned FieldNo = PHIsToRewrite.back().second;
1420 PHIsToRewrite.pop_back();
1421 PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1422 assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1424 // Add all the incoming values. This can materialize more phis.
1425 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1426 Value *InVal = PN->getIncomingValue(i);
1427 InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1429 FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1433 // Drop all inter-phi links and any loads that made it this far.
1434 for (DenseMap<Value*, std::vector<Value*> >::iterator
1435 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1437 if (PHINode *PN = dyn_cast<PHINode>(I->first))
1438 PN->dropAllReferences();
1439 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1440 LI->dropAllReferences();
1443 // Delete all the phis and loads now that inter-references are dead.
1444 for (DenseMap<Value*, std::vector<Value*> >::iterator
1445 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1447 if (PHINode *PN = dyn_cast<PHINode>(I->first))
1448 PN->eraseFromParent();
1449 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1450 LI->eraseFromParent();
1453 // The old global is now dead, remove it.
1454 GV->eraseFromParent();
1457 return cast<GlobalVariable>(FieldGlobals[0]);
1460 /// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a
1461 /// pointer global variable with a single value stored it that is a malloc or
1463 static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
1466 AtomicOrdering Ordering,
1467 Module::global_iterator &GVI,
1468 const DataLayout *DL,
1469 TargetLibraryInfo *TLI) {
1473 // If this is a malloc of an abstract type, don't touch it.
1474 if (!AllocTy->isSized())
1477 // We can't optimize this global unless all uses of it are *known* to be
1478 // of the malloc value, not of the null initializer value (consider a use
1479 // that compares the global's value against zero to see if the malloc has
1480 // been reached). To do this, we check to see if all uses of the global
1481 // would trap if the global were null: this proves that they must all
1482 // happen after the malloc.
1483 if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1486 // We can't optimize this if the malloc itself is used in a complex way,
1487 // for example, being stored into multiple globals. This allows the
1488 // malloc to be stored into the specified global, loaded icmp'd, and
1489 // GEP'd. These are all things we could transform to using the global
1491 SmallPtrSet<const PHINode*, 8> PHIs;
1492 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
1495 // If we have a global that is only initialized with a fixed size malloc,
1496 // transform the program to use global memory instead of malloc'd memory.
1497 // This eliminates dynamic allocation, avoids an indirection accessing the
1498 // data, and exposes the resultant global to further GlobalOpt.
1499 // We cannot optimize the malloc if we cannot determine malloc array size.
1500 Value *NElems = getMallocArraySize(CI, DL, TLI, true);
1504 if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1505 // Restrict this transformation to only working on small allocations
1506 // (2048 bytes currently), as we don't want to introduce a 16M global or
1508 if (NElements->getZExtValue() * DL->getTypeAllocSize(AllocTy) < 2048) {
1509 GVI = OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI);
1513 // If the allocation is an array of structures, consider transforming this
1514 // into multiple malloc'd arrays, one for each field. This is basically
1515 // SRoA for malloc'd memory.
1517 if (Ordering != NotAtomic)
1520 // If this is an allocation of a fixed size array of structs, analyze as a
1521 // variable size array. malloc [100 x struct],1 -> malloc struct, 100
1522 if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
1523 if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1524 AllocTy = AT->getElementType();
1526 StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
1530 // This the structure has an unreasonable number of fields, leave it
1532 if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1533 AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
1535 // If this is a fixed size array, transform the Malloc to be an alloc of
1536 // structs. malloc [100 x struct],1 -> malloc struct, 100
1537 if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) {
1538 Type *IntPtrTy = DL->getIntPtrType(CI->getType());
1539 unsigned TypeSize = DL->getStructLayout(AllocSTy)->getSizeInBytes();
1540 Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
1541 Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
1542 Instruction *Malloc = CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy,
1543 AllocSize, NumElements,
1544 nullptr, CI->getName());
1545 Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
1546 CI->replaceAllUsesWith(Cast);
1547 CI->eraseFromParent();
1548 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc))
1549 CI = cast<CallInst>(BCI->getOperand(0));
1551 CI = cast<CallInst>(Malloc);
1554 GVI = PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true),
1562 // OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
1563 // that only one value (besides its initializer) is ever stored to the global.
1564 static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1565 AtomicOrdering Ordering,
1566 Module::global_iterator &GVI,
1567 const DataLayout *DL,
1568 TargetLibraryInfo *TLI) {
1569 // Ignore no-op GEPs and bitcasts.
1570 StoredOnceVal = StoredOnceVal->stripPointerCasts();
1572 // If we are dealing with a pointer global that is initialized to null and
1573 // only has one (non-null) value stored into it, then we can optimize any
1574 // users of the loaded value (often calls and loads) that would trap if the
1576 if (GV->getInitializer()->getType()->isPointerTy() &&
1577 GV->getInitializer()->isNullValue()) {
1578 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1579 if (GV->getInitializer()->getType() != SOVC->getType())
1580 SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1582 // Optimize away any trapping uses of the loaded value.
1583 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, TLI))
1585 } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) {
1586 Type *MallocType = getMallocAllocatedType(CI, TLI);
1588 TryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, Ordering, GVI,
1597 /// TryToShrinkGlobalToBoolean - At this point, we have learned that the only
1598 /// two values ever stored into GV are its initializer and OtherVal. See if we
1599 /// can shrink the global into a boolean and select between the two values
1600 /// whenever it is used. This exposes the values to other scalar optimizations.
1601 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1602 Type *GVElType = GV->getType()->getElementType();
1604 // If GVElType is already i1, it is already shrunk. If the type of the GV is
1605 // an FP value, pointer or vector, don't do this optimization because a select
1606 // between them is very expensive and unlikely to lead to later
1607 // simplification. In these cases, we typically end up with "cond ? v1 : v2"
1608 // where v1 and v2 both require constant pool loads, a big loss.
1609 if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1610 GVElType->isFloatingPointTy() ||
1611 GVElType->isPointerTy() || GVElType->isVectorTy())
1614 // Walk the use list of the global seeing if all the uses are load or store.
1615 // If there is anything else, bail out.
1616 for (User *U : GV->users())
1617 if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1620 DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV);
1622 // Create the new global, initializing it to false.
1623 GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1625 GlobalValue::InternalLinkage,
1626 ConstantInt::getFalse(GV->getContext()),
1628 GV->getThreadLocalMode(),
1629 GV->getType()->getAddressSpace());
1630 GV->getParent()->getGlobalList().insert(GV, NewGV);
1632 Constant *InitVal = GV->getInitializer();
1633 assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1634 "No reason to shrink to bool!");
1636 // If initialized to zero and storing one into the global, we can use a cast
1637 // instead of a select to synthesize the desired value.
1638 bool IsOneZero = false;
1639 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
1640 IsOneZero = InitVal->isNullValue() && CI->isOne();
1642 while (!GV->use_empty()) {
1643 Instruction *UI = cast<Instruction>(GV->user_back());
1644 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1645 // Change the store into a boolean store.
1646 bool StoringOther = SI->getOperand(0) == OtherVal;
1647 // Only do this if we weren't storing a loaded value.
1649 if (StoringOther || SI->getOperand(0) == InitVal) {
1650 StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1653 // Otherwise, we are storing a previously loaded copy. To do this,
1654 // change the copy from copying the original value to just copying the
1656 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1658 // If we've already replaced the input, StoredVal will be a cast or
1659 // select instruction. If not, it will be a load of the original
1661 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1662 assert(LI->getOperand(0) == GV && "Not a copy!");
1663 // Insert a new load, to preserve the saved value.
1664 StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0,
1665 LI->getOrdering(), LI->getSynchScope(), LI);
1667 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1668 "This is not a form that we understand!");
1669 StoreVal = StoredVal->getOperand(0);
1670 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1673 new StoreInst(StoreVal, NewGV, false, 0,
1674 SI->getOrdering(), SI->getSynchScope(), SI);
1676 // Change the load into a load of bool then a select.
1677 LoadInst *LI = cast<LoadInst>(UI);
1678 LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0,
1679 LI->getOrdering(), LI->getSynchScope(), LI);
1682 NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1684 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1686 LI->replaceAllUsesWith(NSI);
1688 UI->eraseFromParent();
1691 // Retain the name of the old global variable. People who are debugging their
1692 // programs may expect these variables to be named the same.
1693 NewGV->takeName(GV);
1694 GV->eraseFromParent();
1699 /// ProcessGlobal - Analyze the specified global variable and optimize it if
1700 /// possible. If we make a change, return true.
1701 bool GlobalOpt::ProcessGlobal(GlobalVariable *GV,
1702 Module::global_iterator &GVI) {
1703 // Do more involved optimizations if the global is internal.
1704 GV->removeDeadConstantUsers();
1706 if (GV->use_empty()) {
1707 DEBUG(dbgs() << "GLOBAL DEAD: " << *GV);
1708 GV->eraseFromParent();
1713 if (!GV->hasLocalLinkage())
1718 if (GlobalStatus::analyzeGlobal(GV, GS))
1721 if (!GS.IsCompared && !GV->hasUnnamedAddr()) {
1722 GV->setUnnamedAddr(true);
1726 if (GV->isConstant() || !GV->hasInitializer())
1729 return ProcessInternalGlobal(GV, GVI, GS);
1732 /// ProcessInternalGlobal - Analyze the specified global variable and optimize
1733 /// it if possible. If we make a change, return true.
1734 bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
1735 Module::global_iterator &GVI,
1736 const GlobalStatus &GS) {
1737 // If this is a first class global and has only one accessing function
1738 // and this function is main (which we know is not recursive), we replace
1739 // the global with a local alloca in this function.
1741 // NOTE: It doesn't make sense to promote non-single-value types since we
1742 // are just replacing static memory to stack memory.
1744 // If the global is in different address space, don't bring it to stack.
1745 if (!GS.HasMultipleAccessingFunctions &&
1746 GS.AccessingFunction && !GS.HasNonInstructionUser &&
1747 GV->getType()->getElementType()->isSingleValueType() &&
1748 GS.AccessingFunction->getName() == "main" &&
1749 GS.AccessingFunction->hasExternalLinkage() &&
1750 GV->getType()->getAddressSpace() == 0) {
1751 DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV);
1752 Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1753 ->getEntryBlock().begin());
1754 Type *ElemTy = GV->getType()->getElementType();
1755 // FIXME: Pass Global's alignment when globals have alignment
1756 AllocaInst *Alloca = new AllocaInst(ElemTy, nullptr,
1757 GV->getName(), &FirstI);
1758 if (!isa<UndefValue>(GV->getInitializer()))
1759 new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1761 GV->replaceAllUsesWith(Alloca);
1762 GV->eraseFromParent();
1767 // If the global is never loaded (but may be stored to), it is dead.
1770 DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV);
1773 if (isLeakCheckerRoot(GV)) {
1774 // Delete any constant stores to the global.
1775 Changed = CleanupPointerRootUsers(GV, TLI);
1777 // Delete any stores we can find to the global. We may not be able to
1778 // make it completely dead though.
1779 Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
1782 // If the global is dead now, delete it.
1783 if (GV->use_empty()) {
1784 GV->eraseFromParent();
1790 } else if (GS.StoredType <= GlobalStatus::InitializerStored) {
1791 DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
1792 GV->setConstant(true);
1794 // Clean up any obviously simplifiable users now.
1795 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
1797 // If the global is dead now, just nuke it.
1798 if (GV->use_empty()) {
1799 DEBUG(dbgs() << " *** Marking constant allowed us to simplify "
1800 << "all users and delete global!\n");
1801 GV->eraseFromParent();
1807 } else if (!GV->getInitializer()->getType()->isSingleValueType()) {
1808 if (DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>()) {
1809 const DataLayout &DL = DLP->getDataLayout();
1810 if (GlobalVariable *FirstNewGV = SRAGlobal(GV, DL)) {
1811 GVI = FirstNewGV; // Don't skip the newly produced globals!
1815 } else if (GS.StoredType == GlobalStatus::StoredOnce) {
1816 // If the initial value for the global was an undef value, and if only
1817 // one other value was stored into it, we can just change the
1818 // initializer to be the stored value, then delete all stores to the
1819 // global. This allows us to mark it constant.
1820 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1821 if (isa<UndefValue>(GV->getInitializer())) {
1822 // Change the initial value here.
1823 GV->setInitializer(SOVConstant);
1825 // Clean up any obviously simplifiable users now.
1826 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
1828 if (GV->use_empty()) {
1829 DEBUG(dbgs() << " *** Substituting initializer allowed us to "
1830 << "simplify all users and delete global!\n");
1831 GV->eraseFromParent();
1840 // Try to optimize globals based on the knowledge that only one value
1841 // (besides its initializer) is ever stored to the global.
1842 if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, GVI,
1846 // Otherwise, if the global was not a boolean, we can shrink it to be a
1848 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) {
1849 if (GS.Ordering == NotAtomic) {
1850 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
1861 /// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
1862 /// function, changing them to FastCC.
1863 static void ChangeCalleesToFastCall(Function *F) {
1864 for (User *U : F->users()) {
1865 if (isa<BlockAddress>(U))
1867 CallSite CS(cast<Instruction>(U));
1868 CS.setCallingConv(CallingConv::Fast);
1872 static AttributeSet StripNest(LLVMContext &C, const AttributeSet &Attrs) {
1873 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
1874 unsigned Index = Attrs.getSlotIndex(i);
1875 if (!Attrs.getSlotAttributes(i).hasAttribute(Index, Attribute::Nest))
1878 // There can be only one.
1879 return Attrs.removeAttribute(C, Index, Attribute::Nest);
1885 static void RemoveNestAttribute(Function *F) {
1886 F->setAttributes(StripNest(F->getContext(), F->getAttributes()));
1887 for (User *U : F->users()) {
1888 if (isa<BlockAddress>(U))
1890 CallSite CS(cast<Instruction>(U));
1891 CS.setAttributes(StripNest(F->getContext(), CS.getAttributes()));
1895 /// Return true if this is a calling convention that we'd like to change. The
1896 /// idea here is that we don't want to mess with the convention if the user
1897 /// explicitly requested something with performance implications like coldcc,
1898 /// GHC, or anyregcc.
1899 static bool isProfitableToMakeFastCC(Function *F) {
1900 CallingConv::ID CC = F->getCallingConv();
1901 // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
1902 return CC == CallingConv::C || CC == CallingConv::X86_ThisCall;
1905 bool GlobalOpt::OptimizeFunctions(Module &M) {
1906 bool Changed = false;
1907 // Optimize functions.
1908 for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
1910 // Functions without names cannot be referenced outside this module.
1911 if (!F->hasName() && !F->isDeclaration())
1912 F->setLinkage(GlobalValue::InternalLinkage);
1913 F->removeDeadConstantUsers();
1914 if (F->isDefTriviallyDead()) {
1915 F->eraseFromParent();
1918 } else if (F->hasLocalLinkage()) {
1919 if (isProfitableToMakeFastCC(F) && !F->isVarArg() &&
1920 !F->hasAddressTaken()) {
1921 // If this function has a calling convention worth changing, is not a
1922 // varargs function, and is only called directly, promote it to use the
1923 // Fast calling convention.
1924 F->setCallingConv(CallingConv::Fast);
1925 ChangeCalleesToFastCall(F);
1930 if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
1931 !F->hasAddressTaken()) {
1932 // The function is not used by a trampoline intrinsic, so it is safe
1933 // to remove the 'nest' attribute.
1934 RemoveNestAttribute(F);
1943 bool GlobalOpt::OptimizeGlobalVars(Module &M) {
1944 bool Changed = false;
1946 SmallSet<const Comdat *, 8> NotDiscardableComdats;
1947 for (const GlobalVariable &GV : M.globals())
1948 if (const Comdat *C = GV.getComdat())
1949 if (!GV.isDiscardableIfUnused())
1950 NotDiscardableComdats.insert(C);
1952 for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
1954 GlobalVariable *GV = GVI++;
1955 // Global variables without names cannot be referenced outside this module.
1956 if (!GV->hasName() && !GV->isDeclaration())
1957 GV->setLinkage(GlobalValue::InternalLinkage);
1958 // Simplify the initializer.
1959 if (GV->hasInitializer())
1960 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) {
1961 Constant *New = ConstantFoldConstantExpression(CE, DL, TLI);
1962 if (New && New != CE)
1963 GV->setInitializer(New);
1966 if (GV->isDiscardableIfUnused()) {
1967 if (const Comdat *C = GV->getComdat())
1968 if (NotDiscardableComdats.count(C))
1970 Changed |= ProcessGlobal(GV, GVI);
1977 isSimpleEnoughValueToCommit(Constant *C,
1978 SmallPtrSet<Constant*, 8> &SimpleConstants,
1979 const DataLayout *DL);
1982 /// isSimpleEnoughValueToCommit - Return true if the specified constant can be
1983 /// handled by the code generator. We don't want to generate something like:
1984 /// void *X = &X/42;
1985 /// because the code generator doesn't have a relocation that can handle that.
1987 /// This function should be called if C was not found (but just got inserted)
1988 /// in SimpleConstants to avoid having to rescan the same constants all the
1990 static bool isSimpleEnoughValueToCommitHelper(Constant *C,
1991 SmallPtrSet<Constant*, 8> &SimpleConstants,
1992 const DataLayout *DL) {
1993 // Simple global addresses are supported, do not allow dllimport or
1994 // thread-local globals.
1995 if (auto *GV = dyn_cast<GlobalValue>(C))
1996 return !GV->hasDLLImportStorageClass() && !GV->isThreadLocal();
1998 // Simple integer, undef, constant aggregate zero, etc are all supported.
1999 if (C->getNumOperands() == 0 || isa<BlockAddress>(C))
2002 // Aggregate values are safe if all their elements are.
2003 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
2004 isa<ConstantVector>(C)) {
2005 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
2006 Constant *Op = cast<Constant>(C->getOperand(i));
2007 if (!isSimpleEnoughValueToCommit(Op, SimpleConstants, DL))
2013 // We don't know exactly what relocations are allowed in constant expressions,
2014 // so we allow &global+constantoffset, which is safe and uniformly supported
2016 ConstantExpr *CE = cast<ConstantExpr>(C);
2017 switch (CE->getOpcode()) {
2018 case Instruction::BitCast:
2019 // Bitcast is fine if the casted value is fine.
2020 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
2022 case Instruction::IntToPtr:
2023 case Instruction::PtrToInt:
2024 // int <=> ptr is fine if the int type is the same size as the
2026 if (!DL || DL->getTypeSizeInBits(CE->getType()) !=
2027 DL->getTypeSizeInBits(CE->getOperand(0)->getType()))
2029 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
2031 // GEP is fine if it is simple + constant offset.
2032 case Instruction::GetElementPtr:
2033 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
2034 if (!isa<ConstantInt>(CE->getOperand(i)))
2036 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
2038 case Instruction::Add:
2039 // We allow simple+cst.
2040 if (!isa<ConstantInt>(CE->getOperand(1)))
2042 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
2048 isSimpleEnoughValueToCommit(Constant *C,
2049 SmallPtrSet<Constant*, 8> &SimpleConstants,
2050 const DataLayout *DL) {
2051 // If we already checked this constant, we win.
2052 if (!SimpleConstants.insert(C)) return true;
2053 // Check the constant.
2054 return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL);
2058 /// isSimpleEnoughPointerToCommit - Return true if this constant is simple
2059 /// enough for us to understand. In particular, if it is a cast to anything
2060 /// other than from one pointer type to another pointer type, we punt.
2061 /// We basically just support direct accesses to globals and GEP's of
2062 /// globals. This should be kept up to date with CommitValueTo.
2063 static bool isSimpleEnoughPointerToCommit(Constant *C) {
2064 // Conservatively, avoid aggregate types. This is because we don't
2065 // want to worry about them partially overlapping other stores.
2066 if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
2069 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
2070 // Do not allow weak/*_odr/linkonce linkage or external globals.
2071 return GV->hasUniqueInitializer();
2073 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2074 // Handle a constantexpr gep.
2075 if (CE->getOpcode() == Instruction::GetElementPtr &&
2076 isa<GlobalVariable>(CE->getOperand(0)) &&
2077 cast<GEPOperator>(CE)->isInBounds()) {
2078 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2079 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
2080 // external globals.
2081 if (!GV->hasUniqueInitializer())
2084 // The first index must be zero.
2085 ConstantInt *CI = dyn_cast<ConstantInt>(*std::next(CE->op_begin()));
2086 if (!CI || !CI->isZero()) return false;
2088 // The remaining indices must be compile-time known integers within the
2089 // notional bounds of the corresponding static array types.
2090 if (!CE->isGEPWithNoNotionalOverIndexing())
2093 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2095 // A constantexpr bitcast from a pointer to another pointer is a no-op,
2096 // and we know how to evaluate it by moving the bitcast from the pointer
2097 // operand to the value operand.
2098 } else if (CE->getOpcode() == Instruction::BitCast &&
2099 isa<GlobalVariable>(CE->getOperand(0))) {
2100 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
2101 // external globals.
2102 return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer();
2109 /// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
2110 /// initializer. This returns 'Init' modified to reflect 'Val' stored into it.
2111 /// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
2112 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2113 ConstantExpr *Addr, unsigned OpNo) {
2114 // Base case of the recursion.
2115 if (OpNo == Addr->getNumOperands()) {
2116 assert(Val->getType() == Init->getType() && "Type mismatch!");
2120 SmallVector<Constant*, 32> Elts;
2121 if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
2122 // Break up the constant into its elements.
2123 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2124 Elts.push_back(Init->getAggregateElement(i));
2126 // Replace the element that we are supposed to.
2127 ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2128 unsigned Idx = CU->getZExtValue();
2129 assert(Idx < STy->getNumElements() && "Struct index out of range!");
2130 Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2132 // Return the modified struct.
2133 return ConstantStruct::get(STy, Elts);
2136 ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2137 SequentialType *InitTy = cast<SequentialType>(Init->getType());
2140 if (ArrayType *ATy = dyn_cast<ArrayType>(InitTy))
2141 NumElts = ATy->getNumElements();
2143 NumElts = InitTy->getVectorNumElements();
2145 // Break up the array into elements.
2146 for (uint64_t i = 0, e = NumElts; i != e; ++i)
2147 Elts.push_back(Init->getAggregateElement(i));
2149 assert(CI->getZExtValue() < NumElts);
2150 Elts[CI->getZExtValue()] =
2151 EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2153 if (Init->getType()->isArrayTy())
2154 return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
2155 return ConstantVector::get(Elts);
2158 /// CommitValueTo - We have decided that Addr (which satisfies the predicate
2159 /// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen.
2160 static void CommitValueTo(Constant *Val, Constant *Addr) {
2161 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2162 assert(GV->hasInitializer());
2163 GV->setInitializer(Val);
2167 ConstantExpr *CE = cast<ConstantExpr>(Addr);
2168 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2169 GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2174 /// Evaluator - This class evaluates LLVM IR, producing the Constant
2175 /// representing each SSA instruction. Changes to global variables are stored
2176 /// in a mapping that can be iterated over after the evaluation is complete.
2177 /// Once an evaluation call fails, the evaluation object should not be reused.
2180 Evaluator(const DataLayout *DL, const TargetLibraryInfo *TLI)
2181 : DL(DL), TLI(TLI) {
2182 ValueStack.emplace_back();
2186 for (auto &Tmp : AllocaTmps)
2187 // If there are still users of the alloca, the program is doing something
2188 // silly, e.g. storing the address of the alloca somewhere and using it
2189 // later. Since this is undefined, we'll just make it be null.
2190 if (!Tmp->use_empty())
2191 Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
2194 /// EvaluateFunction - Evaluate a call to function F, returning true if
2195 /// successful, false if we can't evaluate it. ActualArgs contains the formal
2196 /// arguments for the function.
2197 bool EvaluateFunction(Function *F, Constant *&RetVal,
2198 const SmallVectorImpl<Constant*> &ActualArgs);
2200 /// EvaluateBlock - Evaluate all instructions in block BB, returning true if
2201 /// successful, false if we can't evaluate it. NewBB returns the next BB that
2202 /// control flows into, or null upon return.
2203 bool EvaluateBlock(BasicBlock::iterator CurInst, BasicBlock *&NextBB);
2205 Constant *getVal(Value *V) {
2206 if (Constant *CV = dyn_cast<Constant>(V)) return CV;
2207 Constant *R = ValueStack.back().lookup(V);
2208 assert(R && "Reference to an uncomputed value!");
2212 void setVal(Value *V, Constant *C) {
2213 ValueStack.back()[V] = C;
2216 const DenseMap<Constant*, Constant*> &getMutatedMemory() const {
2217 return MutatedMemory;
2220 const SmallPtrSet<GlobalVariable*, 8> &getInvariants() const {
2225 Constant *ComputeLoadResult(Constant *P);
2227 /// ValueStack - As we compute SSA register values, we store their contents
2228 /// here. The back of the deque contains the current function and the stack
2229 /// contains the values in the calling frames.
2230 std::deque<DenseMap<Value*, Constant*>> ValueStack;
2232 /// CallStack - This is used to detect recursion. In pathological situations
2233 /// we could hit exponential behavior, but at least there is nothing
2235 SmallVector<Function*, 4> CallStack;
2237 /// MutatedMemory - For each store we execute, we update this map. Loads
2238 /// check this to get the most up-to-date value. If evaluation is successful,
2239 /// this state is committed to the process.
2240 DenseMap<Constant*, Constant*> MutatedMemory;
2242 /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
2243 /// to represent its body. This vector is needed so we can delete the
2244 /// temporary globals when we are done.
2245 SmallVector<std::unique_ptr<GlobalVariable>, 32> AllocaTmps;
2247 /// Invariants - These global variables have been marked invariant by the
2248 /// static constructor.
2249 SmallPtrSet<GlobalVariable*, 8> Invariants;
2251 /// SimpleConstants - These are constants we have checked and know to be
2252 /// simple enough to live in a static initializer of a global.
2253 SmallPtrSet<Constant*, 8> SimpleConstants;
2255 const DataLayout *DL;
2256 const TargetLibraryInfo *TLI;
2259 } // anonymous namespace
2261 /// ComputeLoadResult - Return the value that would be computed by a load from
2262 /// P after the stores reflected by 'memory' have been performed. If we can't
2263 /// decide, return null.
2264 Constant *Evaluator::ComputeLoadResult(Constant *P) {
2265 // If this memory location has been recently stored, use the stored value: it
2266 // is the most up-to-date.
2267 DenseMap<Constant*, Constant*>::const_iterator I = MutatedMemory.find(P);
2268 if (I != MutatedMemory.end()) return I->second;
2271 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
2272 if (GV->hasDefinitiveInitializer())
2273 return GV->getInitializer();
2277 // Handle a constantexpr getelementptr.
2278 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
2279 if (CE->getOpcode() == Instruction::GetElementPtr &&
2280 isa<GlobalVariable>(CE->getOperand(0))) {
2281 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2282 if (GV->hasDefinitiveInitializer())
2283 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2286 return nullptr; // don't know how to evaluate.
2289 /// EvaluateBlock - Evaluate all instructions in block BB, returning true if
2290 /// successful, false if we can't evaluate it. NewBB returns the next BB that
2291 /// control flows into, or null upon return.
2292 bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
2293 BasicBlock *&NextBB) {
2294 // This is the main evaluation loop.
2296 Constant *InstResult = nullptr;
2298 DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n");
2300 if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
2301 if (!SI->isSimple()) {
2302 DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n");
2303 return false; // no volatile/atomic accesses.
2305 Constant *Ptr = getVal(SI->getOperand(1));
2306 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
2307 DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr);
2308 Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
2309 DEBUG(dbgs() << "; To: " << *Ptr << "\n");
2311 if (!isSimpleEnoughPointerToCommit(Ptr)) {
2312 // If this is too complex for us to commit, reject it.
2313 DEBUG(dbgs() << "Pointer is too complex for us to evaluate store.");
2317 Constant *Val = getVal(SI->getOperand(0));
2319 // If this might be too difficult for the backend to handle (e.g. the addr
2320 // of one global variable divided by another) then we can't commit it.
2321 if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) {
2322 DEBUG(dbgs() << "Store value is too complex to evaluate store. " << *Val
2327 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
2328 if (CE->getOpcode() == Instruction::BitCast) {
2329 DEBUG(dbgs() << "Attempting to resolve bitcast on constant ptr.\n");
2330 // If we're evaluating a store through a bitcast, then we need
2331 // to pull the bitcast off the pointer type and push it onto the
2333 Ptr = CE->getOperand(0);
2335 Type *NewTy = cast<PointerType>(Ptr->getType())->getElementType();
2337 // In order to push the bitcast onto the stored value, a bitcast
2338 // from NewTy to Val's type must be legal. If it's not, we can try
2339 // introspecting NewTy to find a legal conversion.
2340 while (!Val->getType()->canLosslesslyBitCastTo(NewTy)) {
2341 // If NewTy is a struct, we can convert the pointer to the struct
2342 // into a pointer to its first member.
2343 // FIXME: This could be extended to support arrays as well.
2344 if (StructType *STy = dyn_cast<StructType>(NewTy)) {
2345 NewTy = STy->getTypeAtIndex(0U);
2347 IntegerType *IdxTy = IntegerType::get(NewTy->getContext(), 32);
2348 Constant *IdxZero = ConstantInt::get(IdxTy, 0, false);
2349 Constant * const IdxList[] = {IdxZero, IdxZero};
2351 Ptr = ConstantExpr::getGetElementPtr(Ptr, IdxList);
2352 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
2353 Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
2355 // If we can't improve the situation by introspecting NewTy,
2356 // we have to give up.
2358 DEBUG(dbgs() << "Failed to bitcast constant ptr, can not "
2364 // If we found compatible types, go ahead and push the bitcast
2365 // onto the stored value.
2366 Val = ConstantExpr::getBitCast(Val, NewTy);
2368 DEBUG(dbgs() << "Evaluated bitcast: " << *Val << "\n");
2372 MutatedMemory[Ptr] = Val;
2373 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
2374 InstResult = ConstantExpr::get(BO->getOpcode(),
2375 getVal(BO->getOperand(0)),
2376 getVal(BO->getOperand(1)));
2377 DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: " << *InstResult
2379 } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
2380 InstResult = ConstantExpr::getCompare(CI->getPredicate(),
2381 getVal(CI->getOperand(0)),
2382 getVal(CI->getOperand(1)));
2383 DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult
2385 } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
2386 InstResult = ConstantExpr::getCast(CI->getOpcode(),
2387 getVal(CI->getOperand(0)),
2389 DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult
2391 } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
2392 InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)),
2393 getVal(SI->getOperand(1)),
2394 getVal(SI->getOperand(2)));
2395 DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult
2397 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
2398 Constant *P = getVal(GEP->getOperand(0));
2399 SmallVector<Constant*, 8> GEPOps;
2400 for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
2402 GEPOps.push_back(getVal(*i));
2404 ConstantExpr::getGetElementPtr(P, GEPOps,
2405 cast<GEPOperator>(GEP)->isInBounds());
2406 DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult
2408 } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
2410 if (!LI->isSimple()) {
2411 DEBUG(dbgs() << "Found a Load! Not a simple load, can not evaluate.\n");
2412 return false; // no volatile/atomic accesses.
2415 Constant *Ptr = getVal(LI->getOperand(0));
2416 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
2417 Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
2418 DEBUG(dbgs() << "Found a constant pointer expression, constant "
2419 "folding: " << *Ptr << "\n");
2421 InstResult = ComputeLoadResult(Ptr);
2423 DEBUG(dbgs() << "Failed to compute load result. Can not evaluate load."
2425 return false; // Could not evaluate load.
2428 DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n");
2429 } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
2430 if (AI->isArrayAllocation()) {
2431 DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n");
2432 return false; // Cannot handle array allocs.
2434 Type *Ty = AI->getType()->getElementType();
2435 AllocaTmps.push_back(
2436 make_unique<GlobalVariable>(Ty, false, GlobalValue::InternalLinkage,
2437 UndefValue::get(Ty), AI->getName()));
2438 InstResult = AllocaTmps.back().get();
2439 DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n");
2440 } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) {
2441 CallSite CS(CurInst);
2443 // Debug info can safely be ignored here.
2444 if (isa<DbgInfoIntrinsic>(CS.getInstruction())) {
2445 DEBUG(dbgs() << "Ignoring debug info.\n");
2450 // Cannot handle inline asm.
2451 if (isa<InlineAsm>(CS.getCalledValue())) {
2452 DEBUG(dbgs() << "Found inline asm, can not evaluate.\n");
2456 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
2457 if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) {
2458 if (MSI->isVolatile()) {
2459 DEBUG(dbgs() << "Can not optimize a volatile memset " <<
2463 Constant *Ptr = getVal(MSI->getDest());
2464 Constant *Val = getVal(MSI->getValue());
2465 Constant *DestVal = ComputeLoadResult(getVal(Ptr));
2466 if (Val->isNullValue() && DestVal && DestVal->isNullValue()) {
2467 // This memset is a no-op.
2468 DEBUG(dbgs() << "Ignoring no-op memset.\n");
2474 if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
2475 II->getIntrinsicID() == Intrinsic::lifetime_end) {
2476 DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n");
2481 if (II->getIntrinsicID() == Intrinsic::invariant_start) {
2482 // We don't insert an entry into Values, as it doesn't have a
2483 // meaningful return value.
2484 if (!II->use_empty()) {
2485 DEBUG(dbgs() << "Found unused invariant_start. Can't evaluate.\n");
2488 ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0));
2489 Value *PtrArg = getVal(II->getArgOperand(1));
2490 Value *Ptr = PtrArg->stripPointerCasts();
2491 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
2492 Type *ElemTy = cast<PointerType>(GV->getType())->getElementType();
2493 if (DL && !Size->isAllOnesValue() &&
2494 Size->getValue().getLimitedValue() >=
2495 DL->getTypeStoreSize(ElemTy)) {
2496 Invariants.insert(GV);
2497 DEBUG(dbgs() << "Found a global var that is an invariant: " << *GV
2500 DEBUG(dbgs() << "Found a global var, but can not treat it as an "
2504 // Continue even if we do nothing.
2509 DEBUG(dbgs() << "Unknown intrinsic. Can not evaluate.\n");
2513 // Resolve function pointers.
2514 Function *Callee = dyn_cast<Function>(getVal(CS.getCalledValue()));
2515 if (!Callee || Callee->mayBeOverridden()) {
2516 DEBUG(dbgs() << "Can not resolve function pointer.\n");
2517 return false; // Cannot resolve.
2520 SmallVector<Constant*, 8> Formals;
2521 for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i)
2522 Formals.push_back(getVal(*i));
2524 if (Callee->isDeclaration()) {
2525 // If this is a function we can constant fold, do it.
2526 if (Constant *C = ConstantFoldCall(Callee, Formals, TLI)) {
2528 DEBUG(dbgs() << "Constant folded function call. Result: " <<
2529 *InstResult << "\n");
2531 DEBUG(dbgs() << "Can not constant fold function call.\n");
2535 if (Callee->getFunctionType()->isVarArg()) {
2536 DEBUG(dbgs() << "Can not constant fold vararg function call.\n");
2540 Constant *RetVal = nullptr;
2541 // Execute the call, if successful, use the return value.
2542 ValueStack.emplace_back();
2543 if (!EvaluateFunction(Callee, RetVal, Formals)) {
2544 DEBUG(dbgs() << "Failed to evaluate function.\n");
2547 ValueStack.pop_back();
2548 InstResult = RetVal;
2551 DEBUG(dbgs() << "Successfully evaluated function. Result: " <<
2552 InstResult << "\n\n");
2554 DEBUG(dbgs() << "Successfully evaluated function. Result: 0\n\n");
2557 } else if (isa<TerminatorInst>(CurInst)) {
2558 DEBUG(dbgs() << "Found a terminator instruction.\n");
2560 if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
2561 if (BI->isUnconditional()) {
2562 NextBB = BI->getSuccessor(0);
2565 dyn_cast<ConstantInt>(getVal(BI->getCondition()));
2566 if (!Cond) return false; // Cannot determine.
2568 NextBB = BI->getSuccessor(!Cond->getZExtValue());
2570 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
2572 dyn_cast<ConstantInt>(getVal(SI->getCondition()));
2573 if (!Val) return false; // Cannot determine.
2574 NextBB = SI->findCaseValue(Val).getCaseSuccessor();
2575 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
2576 Value *Val = getVal(IBI->getAddress())->stripPointerCasts();
2577 if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
2578 NextBB = BA->getBasicBlock();
2580 return false; // Cannot determine.
2581 } else if (isa<ReturnInst>(CurInst)) {
2584 // invoke, unwind, resume, unreachable.
2585 DEBUG(dbgs() << "Can not handle terminator.");
2586 return false; // Cannot handle this terminator.
2589 // We succeeded at evaluating this block!
2590 DEBUG(dbgs() << "Successfully evaluated block.\n");
2593 // Did not know how to evaluate this!
2594 DEBUG(dbgs() << "Failed to evaluate block due to unhandled instruction."
2599 if (!CurInst->use_empty()) {
2600 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult))
2601 InstResult = ConstantFoldConstantExpression(CE, DL, TLI);
2603 setVal(CurInst, InstResult);
2606 // If we just processed an invoke, we finished evaluating the block.
2607 if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) {
2608 NextBB = II->getNormalDest();
2609 DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n");
2613 // Advance program counter.
2618 /// EvaluateFunction - Evaluate a call to function F, returning true if
2619 /// successful, false if we can't evaluate it. ActualArgs contains the formal
2620 /// arguments for the function.
2621 bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal,
2622 const SmallVectorImpl<Constant*> &ActualArgs) {
2623 // Check to see if this function is already executing (recursion). If so,
2624 // bail out. TODO: we might want to accept limited recursion.
2625 if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
2628 CallStack.push_back(F);
2630 // Initialize arguments to the incoming values specified.
2632 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
2634 setVal(AI, ActualArgs[ArgNo]);
2636 // ExecutedBlocks - We only handle non-looping, non-recursive code. As such,
2637 // we can only evaluate any one basic block at most once. This set keeps
2638 // track of what we have executed so we can detect recursive cases etc.
2639 SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
2641 // CurBB - The current basic block we're evaluating.
2642 BasicBlock *CurBB = F->begin();
2644 BasicBlock::iterator CurInst = CurBB->begin();
2647 BasicBlock *NextBB = nullptr; // Initialized to avoid compiler warnings.
2648 DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n");
2650 if (!EvaluateBlock(CurInst, NextBB))
2654 // Successfully running until there's no next block means that we found
2655 // the return. Fill it the return value and pop the call stack.
2656 ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator());
2657 if (RI->getNumOperands())
2658 RetVal = getVal(RI->getOperand(0));
2659 CallStack.pop_back();
2663 // Okay, we succeeded in evaluating this control flow. See if we have
2664 // executed the new block before. If so, we have a looping function,
2665 // which we cannot evaluate in reasonable time.
2666 if (!ExecutedBlocks.insert(NextBB))
2667 return false; // looped!
2669 // Okay, we have never been in this block before. Check to see if there
2670 // are any PHI nodes. If so, evaluate them with information about where
2672 PHINode *PN = nullptr;
2673 for (CurInst = NextBB->begin();
2674 (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
2675 setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB)));
2677 // Advance to the next block.
2682 /// EvaluateStaticConstructor - Evaluate static constructors in the function, if
2683 /// we can. Return true if we can, false otherwise.
2684 static bool EvaluateStaticConstructor(Function *F, const DataLayout *DL,
2685 const TargetLibraryInfo *TLI) {
2686 // Call the function.
2687 Evaluator Eval(DL, TLI);
2688 Constant *RetValDummy;
2689 bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2690 SmallVector<Constant*, 0>());
2693 ++NumCtorsEvaluated;
2695 // We succeeded at evaluation: commit the result.
2696 DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2697 << F->getName() << "' to " << Eval.getMutatedMemory().size()
2699 for (DenseMap<Constant*, Constant*>::const_iterator I =
2700 Eval.getMutatedMemory().begin(), E = Eval.getMutatedMemory().end();
2702 CommitValueTo(I->second, I->first);
2703 for (SmallPtrSet<GlobalVariable*, 8>::const_iterator I =
2704 Eval.getInvariants().begin(), E = Eval.getInvariants().end();
2706 (*I)->setConstant(true);
2712 static int compareNames(Constant *const *A, Constant *const *B) {
2713 return (*A)->getName().compare((*B)->getName());
2716 static void setUsedInitializer(GlobalVariable &V,
2717 SmallPtrSet<GlobalValue *, 8> Init) {
2719 V.eraseFromParent();
2723 // Type of pointer to the array of pointers.
2724 PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
2726 SmallVector<llvm::Constant *, 8> UsedArray;
2727 for (SmallPtrSet<GlobalValue *, 8>::iterator I = Init.begin(), E = Init.end();
2730 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(*I, Int8PtrTy);
2731 UsedArray.push_back(Cast);
2733 // Sort to get deterministic order.
2734 array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
2735 ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
2737 Module *M = V.getParent();
2738 V.removeFromParent();
2739 GlobalVariable *NV =
2740 new GlobalVariable(*M, ATy, false, llvm::GlobalValue::AppendingLinkage,
2741 llvm::ConstantArray::get(ATy, UsedArray), "");
2743 NV->setSection("llvm.metadata");
2748 /// \brief An easy to access representation of llvm.used and llvm.compiler.used.
2750 SmallPtrSet<GlobalValue *, 8> Used;
2751 SmallPtrSet<GlobalValue *, 8> CompilerUsed;
2752 GlobalVariable *UsedV;
2753 GlobalVariable *CompilerUsedV;
2756 LLVMUsed(Module &M) {
2757 UsedV = collectUsedGlobalVariables(M, Used, false);
2758 CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true);
2760 typedef SmallPtrSet<GlobalValue *, 8>::iterator iterator;
2761 iterator usedBegin() { return Used.begin(); }
2762 iterator usedEnd() { return Used.end(); }
2763 iterator compilerUsedBegin() { return CompilerUsed.begin(); }
2764 iterator compilerUsedEnd() { return CompilerUsed.end(); }
2765 bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
2766 bool compilerUsedCount(GlobalValue *GV) const {
2767 return CompilerUsed.count(GV);
2769 bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
2770 bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
2771 bool usedInsert(GlobalValue *GV) { return Used.insert(GV); }
2772 bool compilerUsedInsert(GlobalValue *GV) { return CompilerUsed.insert(GV); }
2774 void syncVariablesAndSets() {
2776 setUsedInitializer(*UsedV, Used);
2778 setUsedInitializer(*CompilerUsedV, CompilerUsed);
2783 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
2784 if (GA.use_empty()) // No use at all.
2787 assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
2788 "We should have removed the duplicated "
2789 "element from llvm.compiler.used");
2790 if (!GA.hasOneUse())
2791 // Strictly more than one use. So at least one is not in llvm.used and
2792 // llvm.compiler.used.
2795 // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
2796 return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
2799 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
2800 const LLVMUsed &U) {
2802 assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
2803 "We should have removed the duplicated "
2804 "element from llvm.compiler.used");
2805 if (U.usedCount(&V) || U.compilerUsedCount(&V))
2807 return V.hasNUsesOrMore(N);
2810 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
2811 if (!GA.hasLocalLinkage())
2814 return U.usedCount(&GA) || U.compilerUsedCount(&GA);
2817 static bool hasUsesToReplace(GlobalAlias &GA, LLVMUsed &U, bool &RenameTarget) {
2818 RenameTarget = false;
2820 if (hasUseOtherThanLLVMUsed(GA, U))
2823 // If the alias is externally visible, we may still be able to simplify it.
2824 if (!mayHaveOtherReferences(GA, U))
2827 // If the aliasee has internal linkage, give it the name and linkage
2828 // of the alias, and delete the alias. This turns:
2829 // define internal ... @f(...)
2830 // @a = alias ... @f
2832 // define ... @a(...)
2833 Constant *Aliasee = GA.getAliasee();
2834 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2835 if (!Target->hasLocalLinkage())
2838 // Do not perform the transform if multiple aliases potentially target the
2839 // aliasee. This check also ensures that it is safe to replace the section
2840 // and other attributes of the aliasee with those of the alias.
2841 if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
2844 RenameTarget = true;
2848 bool GlobalOpt::OptimizeGlobalAliases(Module &M) {
2849 bool Changed = false;
2852 for (SmallPtrSet<GlobalValue *, 8>::iterator I = Used.usedBegin(),
2855 Used.compilerUsedErase(*I);
2857 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2859 Module::alias_iterator J = I++;
2860 // Aliases without names cannot be referenced outside this module.
2861 if (!J->hasName() && !J->isDeclaration())
2862 J->setLinkage(GlobalValue::InternalLinkage);
2863 // If the aliasee may change at link time, nothing can be done - bail out.
2864 if (J->mayBeOverridden())
2867 Constant *Aliasee = J->getAliasee();
2868 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2869 Target->removeDeadConstantUsers();
2871 // Make all users of the alias use the aliasee instead.
2873 if (!hasUsesToReplace(*J, Used, RenameTarget))
2876 J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType()));
2877 ++NumAliasesResolved;
2881 // Give the aliasee the name, linkage and other attributes of the alias.
2882 Target->takeName(J);
2883 Target->setLinkage(J->getLinkage());
2884 Target->setVisibility(J->getVisibility());
2885 Target->setDLLStorageClass(J->getDLLStorageClass());
2887 if (Used.usedErase(J))
2888 Used.usedInsert(Target);
2890 if (Used.compilerUsedErase(J))
2891 Used.compilerUsedInsert(Target);
2892 } else if (mayHaveOtherReferences(*J, Used))
2895 // Delete the alias.
2896 M.getAliasList().erase(J);
2897 ++NumAliasesRemoved;
2901 Used.syncVariablesAndSets();
2906 static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) {
2907 if (!TLI->has(LibFunc::cxa_atexit))
2910 Function *Fn = M.getFunction(TLI->getName(LibFunc::cxa_atexit));
2915 FunctionType *FTy = Fn->getFunctionType();
2917 // Checking that the function has the right return type, the right number of
2918 // parameters and that they all have pointer types should be enough.
2919 if (!FTy->getReturnType()->isIntegerTy() ||
2920 FTy->getNumParams() != 3 ||
2921 !FTy->getParamType(0)->isPointerTy() ||
2922 !FTy->getParamType(1)->isPointerTy() ||
2923 !FTy->getParamType(2)->isPointerTy())
2929 /// cxxDtorIsEmpty - Returns whether the given function is an empty C++
2930 /// destructor and can therefore be eliminated.
2931 /// Note that we assume that other optimization passes have already simplified
2932 /// the code so we only look for a function with a single basic block, where
2933 /// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and
2934 /// other side-effect free instructions.
2935 static bool cxxDtorIsEmpty(const Function &Fn,
2936 SmallPtrSet<const Function *, 8> &CalledFunctions) {
2937 // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
2938 // nounwind, but that doesn't seem worth doing.
2939 if (Fn.isDeclaration())
2942 if (++Fn.begin() != Fn.end())
2945 const BasicBlock &EntryBlock = Fn.getEntryBlock();
2946 for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end();
2948 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
2949 // Ignore debug intrinsics.
2950 if (isa<DbgInfoIntrinsic>(CI))
2953 const Function *CalledFn = CI->getCalledFunction();
2958 SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions);
2960 // Don't treat recursive functions as empty.
2961 if (!NewCalledFunctions.insert(CalledFn))
2964 if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions))
2966 } else if (isa<ReturnInst>(*I))
2967 return true; // We're done.
2968 else if (I->mayHaveSideEffects())
2969 return false; // Destructor with side effects, bail.
2975 bool GlobalOpt::OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
2976 /// Itanium C++ ABI p3.3.5:
2978 /// After constructing a global (or local static) object, that will require
2979 /// destruction on exit, a termination function is registered as follows:
2981 /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
2983 /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
2984 /// call f(p) when DSO d is unloaded, before all such termination calls
2985 /// registered before this one. It returns zero if registration is
2986 /// successful, nonzero on failure.
2988 // This pass will look for calls to __cxa_atexit where the function is trivial
2990 bool Changed = false;
2992 for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end();
2994 // We're only interested in calls. Theoretically, we could handle invoke
2995 // instructions as well, but neither llvm-gcc nor clang generate invokes
2997 CallInst *CI = dyn_cast<CallInst>(*I++);
3002 dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
3006 SmallPtrSet<const Function *, 8> CalledFunctions;
3007 if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions))
3010 // Just remove the call.
3011 CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
3012 CI->eraseFromParent();
3014 ++NumCXXDtorsRemoved;
3022 bool GlobalOpt::runOnModule(Module &M) {
3023 bool Changed = false;
3025 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
3026 DL = DLP ? &DLP->getDataLayout() : nullptr;
3027 TLI = &getAnalysis<TargetLibraryInfo>();
3029 bool LocalChange = true;
3030 while (LocalChange) {
3031 LocalChange = false;
3033 // Delete functions that are trivially dead, ccc -> fastcc
3034 LocalChange |= OptimizeFunctions(M);
3036 // Optimize global_ctors list.
3037 LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) {
3038 return EvaluateStaticConstructor(F, DL, TLI);
3041 // Optimize non-address-taken globals.
3042 LocalChange |= OptimizeGlobalVars(M);
3044 // Resolve aliases, when possible.
3045 LocalChange |= OptimizeGlobalAliases(M);
3047 // Try to remove trivial global destructors if they are not removed
3049 Function *CXAAtExitFn = FindCXAAtExit(M, TLI);
3051 LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
3053 Changed |= LocalChange;
3056 // TODO: Move all global ctors functions to the end of the module for code