1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass transforms simple global variables that never have their address
11 // taken. If obviously true, it marks read/write globals as constant, deletes
12 // variables only stored to, etc.
14 //===----------------------------------------------------------------------===//
16 #define DEBUG_TYPE "globalopt"
17 #include "llvm/Transforms/IPO.h"
18 #include "llvm/CallingConv.h"
19 #include "llvm/Constants.h"
20 #include "llvm/DerivedTypes.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/IntrinsicInst.h"
23 #include "llvm/Module.h"
24 #include "llvm/Operator.h"
25 #include "llvm/Pass.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/MemoryBuiltins.h"
28 #include "llvm/Target/TargetData.h"
29 #include "llvm/Target/TargetLibraryInfo.h"
30 #include "llvm/Support/CallSite.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/GetElementPtrTypeIterator.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/SmallPtrSet.h"
38 #include "llvm/ADT/SmallVector.h"
39 #include "llvm/ADT/Statistic.h"
40 #include "llvm/ADT/STLExtras.h"
44 STATISTIC(NumMarked , "Number of globals marked constant");
45 STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr");
46 STATISTIC(NumSRA , "Number of aggregate globals broken into scalars");
47 STATISTIC(NumHeapSRA , "Number of heap objects SRA'd");
48 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
49 STATISTIC(NumDeleted , "Number of globals deleted");
50 STATISTIC(NumFnDeleted , "Number of functions deleted");
51 STATISTIC(NumGlobUses , "Number of global uses devirtualized");
52 STATISTIC(NumLocalized , "Number of globals localized");
53 STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans");
54 STATISTIC(NumFastCallFns , "Number of functions converted to fastcc");
55 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
56 STATISTIC(NumNestRemoved , "Number of nest attributes removed");
57 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
58 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
59 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
63 struct GlobalOpt : public ModulePass {
64 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
65 AU.addRequired<TargetLibraryInfo>();
67 static char ID; // Pass identification, replacement for typeid
68 GlobalOpt() : ModulePass(ID) {
69 initializeGlobalOptPass(*PassRegistry::getPassRegistry());
72 bool runOnModule(Module &M);
75 GlobalVariable *FindGlobalCtors(Module &M);
76 bool OptimizeFunctions(Module &M);
77 bool OptimizeGlobalVars(Module &M);
78 bool OptimizeGlobalAliases(Module &M);
79 bool OptimizeGlobalCtorsList(GlobalVariable *&GCL);
80 bool ProcessGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
81 bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI,
82 const SmallPtrSet<const PHINode*, 16> &PHIUsers,
83 const GlobalStatus &GS);
84 bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn);
87 TargetLibraryInfo *TLI;
91 char GlobalOpt::ID = 0;
92 INITIALIZE_PASS_BEGIN(GlobalOpt, "globalopt",
93 "Global Variable Optimizer", false, false)
94 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
95 INITIALIZE_PASS_END(GlobalOpt, "globalopt",
96 "Global Variable Optimizer", false, false)
98 ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
102 /// GlobalStatus - As we analyze each global, keep track of some information
103 /// about it. If we find out that the address of the global is taken, none of
104 /// this info will be accurate.
105 struct GlobalStatus {
106 /// isCompared - True if the global's address is used in a comparison.
109 /// isLoaded - True if the global is ever loaded. If the global isn't ever
110 /// loaded it can be deleted.
113 /// StoredType - Keep track of what stores to the global look like.
116 /// NotStored - There is no store to this global. It can thus be marked
120 /// isInitializerStored - This global is stored to, but the only thing
121 /// stored is the constant it was initialized with. This is only tracked
122 /// for scalar globals.
125 /// isStoredOnce - This global is stored to, but only its initializer and
126 /// one other value is ever stored to it. If this global isStoredOnce, we
127 /// track the value stored to it in StoredOnceValue below. This is only
128 /// tracked for scalar globals.
131 /// isStored - This global is stored to by multiple values or something else
132 /// that we cannot track.
136 /// StoredOnceValue - If only one value (besides the initializer constant) is
137 /// ever stored to this global, keep track of what value it is.
138 Value *StoredOnceValue;
140 /// AccessingFunction/HasMultipleAccessingFunctions - These start out
141 /// null/false. When the first accessing function is noticed, it is recorded.
142 /// When a second different accessing function is noticed,
143 /// HasMultipleAccessingFunctions is set to true.
144 const Function *AccessingFunction;
145 bool HasMultipleAccessingFunctions;
147 /// HasNonInstructionUser - Set to true if this global has a user that is not
148 /// an instruction (e.g. a constant expr or GV initializer).
149 bool HasNonInstructionUser;
151 /// HasPHIUser - Set to true if this global has a user that is a PHI node.
154 /// AtomicOrdering - Set to the strongest atomic ordering requirement.
155 AtomicOrdering Ordering;
157 GlobalStatus() : isCompared(false), isLoaded(false), StoredType(NotStored),
158 StoredOnceValue(0), AccessingFunction(0),
159 HasMultipleAccessingFunctions(false),
160 HasNonInstructionUser(false), HasPHIUser(false),
161 Ordering(NotAtomic) {}
166 /// StrongerOrdering - Return the stronger of the two ordering. If the two
167 /// orderings are acquire and release, then return AcquireRelease.
169 static AtomicOrdering StrongerOrdering(AtomicOrdering X, AtomicOrdering Y) {
170 if (X == Acquire && Y == Release) return AcquireRelease;
171 if (Y == Acquire && X == Release) return AcquireRelease;
172 return (AtomicOrdering)std::max(X, Y);
175 /// SafeToDestroyConstant - It is safe to destroy a constant iff it is only used
176 /// by constants itself. Note that constants cannot be cyclic, so this test is
177 /// pretty easy to implement recursively.
179 static bool SafeToDestroyConstant(const Constant *C) {
180 if (isa<GlobalValue>(C)) return false;
182 for (Value::const_use_iterator UI = C->use_begin(), E = C->use_end(); UI != E;
184 if (const Constant *CU = dyn_cast<Constant>(*UI)) {
185 if (!SafeToDestroyConstant(CU)) return false;
192 /// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus
193 /// structure. If the global has its address taken, return true to indicate we
194 /// can't do anything with it.
196 static bool AnalyzeGlobal(const Value *V, GlobalStatus &GS,
197 SmallPtrSet<const PHINode*, 16> &PHIUsers) {
198 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
201 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
202 GS.HasNonInstructionUser = true;
204 // If the result of the constantexpr isn't pointer type, then we won't
205 // know to expect it in various places. Just reject early.
206 if (!isa<PointerType>(CE->getType())) return true;
208 if (AnalyzeGlobal(CE, GS, PHIUsers)) return true;
209 } else if (const Instruction *I = dyn_cast<Instruction>(U)) {
210 if (!GS.HasMultipleAccessingFunctions) {
211 const Function *F = I->getParent()->getParent();
212 if (GS.AccessingFunction == 0)
213 GS.AccessingFunction = F;
214 else if (GS.AccessingFunction != F)
215 GS.HasMultipleAccessingFunctions = true;
217 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
219 // Don't hack on volatile loads.
220 if (LI->isVolatile()) return true;
221 GS.Ordering = StrongerOrdering(GS.Ordering, LI->getOrdering());
222 } else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) {
223 // Don't allow a store OF the address, only stores TO the address.
224 if (SI->getOperand(0) == V) return true;
226 // Don't hack on volatile stores.
227 if (SI->isVolatile()) return true;
228 GS.Ordering = StrongerOrdering(GS.Ordering, SI->getOrdering());
230 // If this is a direct store to the global (i.e., the global is a scalar
231 // value, not an aggregate), keep more specific information about
233 if (GS.StoredType != GlobalStatus::isStored) {
234 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(
235 SI->getOperand(1))) {
236 Value *StoredVal = SI->getOperand(0);
237 if (StoredVal == GV->getInitializer()) {
238 if (GS.StoredType < GlobalStatus::isInitializerStored)
239 GS.StoredType = GlobalStatus::isInitializerStored;
240 } else if (isa<LoadInst>(StoredVal) &&
241 cast<LoadInst>(StoredVal)->getOperand(0) == GV) {
242 if (GS.StoredType < GlobalStatus::isInitializerStored)
243 GS.StoredType = GlobalStatus::isInitializerStored;
244 } else if (GS.StoredType < GlobalStatus::isStoredOnce) {
245 GS.StoredType = GlobalStatus::isStoredOnce;
246 GS.StoredOnceValue = StoredVal;
247 } else if (GS.StoredType == GlobalStatus::isStoredOnce &&
248 GS.StoredOnceValue == StoredVal) {
251 GS.StoredType = GlobalStatus::isStored;
254 GS.StoredType = GlobalStatus::isStored;
257 } else if (isa<GetElementPtrInst>(I)) {
258 if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
259 } else if (isa<SelectInst>(I)) {
260 if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
261 } else if (const PHINode *PN = dyn_cast<PHINode>(I)) {
262 // PHI nodes we can check just like select or GEP instructions, but we
263 // have to be careful about infinite recursion.
264 if (PHIUsers.insert(PN)) // Not already visited.
265 if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
266 GS.HasPHIUser = true;
267 } else if (isa<CmpInst>(I)) {
268 GS.isCompared = true;
269 } else if (const MemTransferInst *MTI = dyn_cast<MemTransferInst>(I)) {
270 if (MTI->isVolatile()) return true;
271 if (MTI->getArgOperand(0) == V)
272 GS.StoredType = GlobalStatus::isStored;
273 if (MTI->getArgOperand(1) == V)
275 } else if (const MemSetInst *MSI = dyn_cast<MemSetInst>(I)) {
276 assert(MSI->getArgOperand(0) == V && "Memset only takes one pointer!");
277 if (MSI->isVolatile()) return true;
278 GS.StoredType = GlobalStatus::isStored;
280 return true; // Any other non-load instruction might take address!
282 } else if (const Constant *C = dyn_cast<Constant>(U)) {
283 GS.HasNonInstructionUser = true;
284 // We might have a dead and dangling constant hanging off of here.
285 if (!SafeToDestroyConstant(C))
288 GS.HasNonInstructionUser = true;
289 // Otherwise must be some other user.
297 /// CleanupConstantGlobalUsers - We just marked GV constant. Loop over all
298 /// users of the global, cleaning up the obvious ones. This is largely just a
299 /// quick scan over the use list to clean up the easy and obvious cruft. This
300 /// returns true if it made a change.
301 static bool CleanupConstantGlobalUsers(Value *V, Constant *Init,
302 TargetData *TD, TargetLibraryInfo *TLI) {
303 bool Changed = false;
304 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) {
307 if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
309 // Replace the load with the initializer.
310 LI->replaceAllUsesWith(Init);
311 LI->eraseFromParent();
314 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
315 // Store must be unreachable or storing Init into the global.
316 SI->eraseFromParent();
318 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
319 if (CE->getOpcode() == Instruction::GetElementPtr) {
320 Constant *SubInit = 0;
322 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
323 Changed |= CleanupConstantGlobalUsers(CE, SubInit, TD, TLI);
324 } else if (CE->getOpcode() == Instruction::BitCast &&
325 CE->getType()->isPointerTy()) {
326 // Pointer cast, delete any stores and memsets to the global.
327 Changed |= CleanupConstantGlobalUsers(CE, 0, TD, TLI);
330 if (CE->use_empty()) {
331 CE->destroyConstant();
334 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
335 // Do not transform "gepinst (gep constexpr (GV))" here, because forming
336 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
337 // and will invalidate our notion of what Init is.
338 Constant *SubInit = 0;
339 if (!isa<ConstantExpr>(GEP->getOperand(0))) {
341 dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP, TD, TLI));
342 if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
343 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
345 Changed |= CleanupConstantGlobalUsers(GEP, SubInit, TD, TLI);
347 if (GEP->use_empty()) {
348 GEP->eraseFromParent();
351 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
352 if (MI->getRawDest() == V) {
353 MI->eraseFromParent();
357 } else if (Constant *C = dyn_cast<Constant>(U)) {
358 // If we have a chain of dead constantexprs or other things dangling from
359 // us, and if they are all dead, nuke them without remorse.
360 if (SafeToDestroyConstant(C)) {
361 C->destroyConstant();
362 // This could have invalidated UI, start over from scratch.
363 CleanupConstantGlobalUsers(V, Init, TD, TLI);
371 /// isSafeSROAElementUse - Return true if the specified instruction is a safe
372 /// user of a derived expression from a global that we want to SROA.
373 static bool isSafeSROAElementUse(Value *V) {
374 // We might have a dead and dangling constant hanging off of here.
375 if (Constant *C = dyn_cast<Constant>(V))
376 return SafeToDestroyConstant(C);
378 Instruction *I = dyn_cast<Instruction>(V);
379 if (!I) return false;
382 if (isa<LoadInst>(I)) return true;
384 // Stores *to* the pointer are ok.
385 if (StoreInst *SI = dyn_cast<StoreInst>(I))
386 return SI->getOperand(0) != V;
388 // Otherwise, it must be a GEP.
389 GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
390 if (GEPI == 0) return false;
392 if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
393 !cast<Constant>(GEPI->getOperand(1))->isNullValue())
396 for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end();
398 if (!isSafeSROAElementUse(*I))
404 /// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value.
405 /// Look at it and its uses and decide whether it is safe to SROA this global.
407 static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
408 // The user of the global must be a GEP Inst or a ConstantExpr GEP.
409 if (!isa<GetElementPtrInst>(U) &&
410 (!isa<ConstantExpr>(U) ||
411 cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
414 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we
415 // don't like < 3 operand CE's, and we don't like non-constant integer
416 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some
418 if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
419 !cast<Constant>(U->getOperand(1))->isNullValue() ||
420 !isa<ConstantInt>(U->getOperand(2)))
423 gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
424 ++GEPI; // Skip over the pointer index.
426 // If this is a use of an array allocation, do a bit more checking for sanity.
427 if (ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
428 uint64_t NumElements = AT->getNumElements();
429 ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
431 // Check to make sure that index falls within the array. If not,
432 // something funny is going on, so we won't do the optimization.
434 if (Idx->getZExtValue() >= NumElements)
437 // We cannot scalar repl this level of the array unless any array
438 // sub-indices are in-range constants. In particular, consider:
439 // A[0][i]. We cannot know that the user isn't doing invalid things like
440 // allowing i to index an out-of-range subscript that accesses A[1].
442 // Scalar replacing *just* the outer index of the array is probably not
443 // going to be a win anyway, so just give up.
444 for (++GEPI; // Skip array index.
447 uint64_t NumElements;
448 if (ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
449 NumElements = SubArrayTy->getNumElements();
450 else if (VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI))
451 NumElements = SubVectorTy->getNumElements();
453 assert((*GEPI)->isStructTy() &&
454 "Indexed GEP type is not array, vector, or struct!");
458 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
459 if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
464 for (Value::use_iterator I = U->use_begin(), E = U->use_end(); I != E; ++I)
465 if (!isSafeSROAElementUse(*I))
470 /// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it
471 /// is safe for us to perform this transformation.
473 static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
474 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
476 if (!IsUserOfGlobalSafeForSRA(*UI, GV))
483 /// SRAGlobal - Perform scalar replacement of aggregates on the specified global
484 /// variable. This opens the door for other optimizations by exposing the
485 /// behavior of the program in a more fine-grained way. We have determined that
486 /// this transformation is safe already. We return the first global variable we
487 /// insert so that the caller can reprocess it.
488 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD) {
489 // Make sure this global only has simple uses that we can SRA.
490 if (!GlobalUsersSafeToSRA(GV))
493 assert(GV->hasLocalLinkage() && !GV->isConstant());
494 Constant *Init = GV->getInitializer();
495 Type *Ty = Init->getType();
497 std::vector<GlobalVariable*> NewGlobals;
498 Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
500 // Get the alignment of the global, either explicit or target-specific.
501 unsigned StartAlignment = GV->getAlignment();
502 if (StartAlignment == 0)
503 StartAlignment = TD.getABITypeAlignment(GV->getType());
505 if (StructType *STy = dyn_cast<StructType>(Ty)) {
506 NewGlobals.reserve(STy->getNumElements());
507 const StructLayout &Layout = *TD.getStructLayout(STy);
508 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
509 Constant *In = Init->getAggregateElement(i);
510 assert(In && "Couldn't get element of initializer?");
511 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
512 GlobalVariable::InternalLinkage,
513 In, GV->getName()+"."+Twine(i),
515 GV->getType()->getAddressSpace());
516 Globals.insert(GV, NGV);
517 NewGlobals.push_back(NGV);
519 // Calculate the known alignment of the field. If the original aggregate
520 // had 256 byte alignment for example, something might depend on that:
521 // propagate info to each field.
522 uint64_t FieldOffset = Layout.getElementOffset(i);
523 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
524 if (NewAlign > TD.getABITypeAlignment(STy->getElementType(i)))
525 NGV->setAlignment(NewAlign);
527 } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
528 unsigned NumElements = 0;
529 if (ArrayType *ATy = dyn_cast<ArrayType>(STy))
530 NumElements = ATy->getNumElements();
532 NumElements = cast<VectorType>(STy)->getNumElements();
534 if (NumElements > 16 && GV->hasNUsesOrMore(16))
535 return 0; // It's not worth it.
536 NewGlobals.reserve(NumElements);
538 uint64_t EltSize = TD.getTypeAllocSize(STy->getElementType());
539 unsigned EltAlign = TD.getABITypeAlignment(STy->getElementType());
540 for (unsigned i = 0, e = NumElements; i != e; ++i) {
541 Constant *In = Init->getAggregateElement(i);
542 assert(In && "Couldn't get element of initializer?");
544 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
545 GlobalVariable::InternalLinkage,
546 In, GV->getName()+"."+Twine(i),
548 GV->getType()->getAddressSpace());
549 Globals.insert(GV, NGV);
550 NewGlobals.push_back(NGV);
552 // Calculate the known alignment of the field. If the original aggregate
553 // had 256 byte alignment for example, something might depend on that:
554 // propagate info to each field.
555 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
556 if (NewAlign > EltAlign)
557 NGV->setAlignment(NewAlign);
561 if (NewGlobals.empty())
564 DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV);
566 Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
568 // Loop over all of the uses of the global, replacing the constantexpr geps,
569 // with smaller constantexpr geps or direct references.
570 while (!GV->use_empty()) {
571 User *GEP = GV->use_back();
572 assert(((isa<ConstantExpr>(GEP) &&
573 cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
574 isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
576 // Ignore the 1th operand, which has to be zero or else the program is quite
577 // broken (undefined). Get the 2nd operand, which is the structure or array
579 unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
580 if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
582 Value *NewPtr = NewGlobals[Val];
584 // Form a shorter GEP if needed.
585 if (GEP->getNumOperands() > 3) {
586 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
587 SmallVector<Constant*, 8> Idxs;
588 Idxs.push_back(NullInt);
589 for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
590 Idxs.push_back(CE->getOperand(i));
591 NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr), Idxs);
593 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
594 SmallVector<Value*, 8> Idxs;
595 Idxs.push_back(NullInt);
596 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
597 Idxs.push_back(GEPI->getOperand(i));
598 NewPtr = GetElementPtrInst::Create(NewPtr, Idxs,
599 GEPI->getName()+"."+Twine(Val),GEPI);
602 GEP->replaceAllUsesWith(NewPtr);
604 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
605 GEPI->eraseFromParent();
607 cast<ConstantExpr>(GEP)->destroyConstant();
610 // Delete the old global, now that it is dead.
614 // Loop over the new globals array deleting any globals that are obviously
615 // dead. This can arise due to scalarization of a structure or an array that
616 // has elements that are dead.
617 unsigned FirstGlobal = 0;
618 for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
619 if (NewGlobals[i]->use_empty()) {
620 Globals.erase(NewGlobals[i]);
621 if (FirstGlobal == i) ++FirstGlobal;
624 return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0;
627 /// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
628 /// value will trap if the value is dynamically null. PHIs keeps track of any
629 /// phi nodes we've seen to avoid reprocessing them.
630 static bool AllUsesOfValueWillTrapIfNull(const Value *V,
631 SmallPtrSet<const PHINode*, 8> &PHIs) {
632 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
636 if (isa<LoadInst>(U)) {
638 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
639 if (SI->getOperand(0) == V) {
640 //cerr << "NONTRAPPING USE: " << *U;
641 return false; // Storing the value.
643 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
644 if (CI->getCalledValue() != V) {
645 //cerr << "NONTRAPPING USE: " << *U;
646 return false; // Not calling the ptr
648 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
649 if (II->getCalledValue() != V) {
650 //cerr << "NONTRAPPING USE: " << *U;
651 return false; // Not calling the ptr
653 } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
654 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
655 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
656 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
657 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
658 // If we've already seen this phi node, ignore it, it has already been
660 if (PHIs.insert(PN) && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
662 } else if (isa<ICmpInst>(U) &&
663 isa<ConstantPointerNull>(UI->getOperand(1))) {
664 // Ignore icmp X, null
666 //cerr << "NONTRAPPING USE: " << *U;
673 /// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
674 /// from GV will trap if the loaded value is null. Note that this also permits
675 /// comparisons of the loaded value against null, as a special case.
676 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
677 for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end();
681 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
682 SmallPtrSet<const PHINode*, 8> PHIs;
683 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
685 } else if (isa<StoreInst>(U)) {
686 // Ignore stores to the global.
688 // We don't know or understand this user, bail out.
689 //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
696 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
697 bool Changed = false;
698 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) {
699 Instruction *I = cast<Instruction>(*UI++);
700 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
701 LI->setOperand(0, NewV);
703 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
704 if (SI->getOperand(1) == V) {
705 SI->setOperand(1, NewV);
708 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
710 if (CS.getCalledValue() == V) {
711 // Calling through the pointer! Turn into a direct call, but be careful
712 // that the pointer is not also being passed as an argument.
713 CS.setCalledFunction(NewV);
715 bool PassedAsArg = false;
716 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
717 if (CS.getArgument(i) == V) {
719 CS.setArgument(i, NewV);
723 // Being passed as an argument also. Be careful to not invalidate UI!
727 } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
728 Changed |= OptimizeAwayTrappingUsesOfValue(CI,
729 ConstantExpr::getCast(CI->getOpcode(),
730 NewV, CI->getType()));
731 if (CI->use_empty()) {
733 CI->eraseFromParent();
735 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
736 // Should handle GEP here.
737 SmallVector<Constant*, 8> Idxs;
738 Idxs.reserve(GEPI->getNumOperands()-1);
739 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
741 if (Constant *C = dyn_cast<Constant>(*i))
745 if (Idxs.size() == GEPI->getNumOperands()-1)
746 Changed |= OptimizeAwayTrappingUsesOfValue(GEPI,
747 ConstantExpr::getGetElementPtr(NewV, Idxs));
748 if (GEPI->use_empty()) {
750 GEPI->eraseFromParent();
759 /// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
760 /// value stored into it. If there are uses of the loaded value that would trap
761 /// if the loaded value is dynamically null, then we know that they cannot be
762 /// reachable with a null optimize away the load.
763 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
765 TargetLibraryInfo *TLI) {
766 bool Changed = false;
768 // Keep track of whether we are able to remove all the uses of the global
769 // other than the store that defines it.
770 bool AllNonStoreUsesGone = true;
772 // Replace all uses of loads with uses of uses of the stored value.
773 for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end(); GUI != E;){
774 User *GlobalUser = *GUI++;
775 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
776 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
777 // If we were able to delete all uses of the loads
778 if (LI->use_empty()) {
779 LI->eraseFromParent();
782 AllNonStoreUsesGone = false;
784 } else if (isa<StoreInst>(GlobalUser)) {
785 // Ignore the store that stores "LV" to the global.
786 assert(GlobalUser->getOperand(1) == GV &&
787 "Must be storing *to* the global");
789 AllNonStoreUsesGone = false;
791 // If we get here we could have other crazy uses that are transitively
793 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
794 isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser)) &&
795 "Only expect load and stores!");
800 DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV);
804 // If we nuked all of the loads, then none of the stores are needed either,
805 // nor is the global.
806 if (AllNonStoreUsesGone) {
807 DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n");
808 CleanupConstantGlobalUsers(GV, 0, TD, TLI);
809 if (GV->use_empty()) {
810 GV->eraseFromParent();
818 /// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
819 /// instructions that are foldable.
820 static void ConstantPropUsersOf(Value *V,
821 TargetData *TD, TargetLibraryInfo *TLI) {
822 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; )
823 if (Instruction *I = dyn_cast<Instruction>(*UI++))
824 if (Constant *NewC = ConstantFoldInstruction(I, TD, TLI)) {
825 I->replaceAllUsesWith(NewC);
827 // Advance UI to the next non-I use to avoid invalidating it!
828 // Instructions could multiply use V.
829 while (UI != E && *UI == I)
831 I->eraseFromParent();
835 /// OptimizeGlobalAddressOfMalloc - This function takes the specified global
836 /// variable, and transforms the program as if it always contained the result of
837 /// the specified malloc. Because it is always the result of the specified
838 /// malloc, there is no reason to actually DO the malloc. Instead, turn the
839 /// malloc into a global, and any loads of GV as uses of the new global.
840 static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
843 ConstantInt *NElements,
845 TargetLibraryInfo *TLI) {
846 DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI << '\n');
849 if (NElements->getZExtValue() == 1)
850 GlobalType = AllocTy;
852 // If we have an array allocation, the global variable is of an array.
853 GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
855 // Create the new global variable. The contents of the malloc'd memory is
856 // undefined, so initialize with an undef value.
857 GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(),
859 GlobalValue::InternalLinkage,
860 UndefValue::get(GlobalType),
861 GV->getName()+".body",
863 GV->isThreadLocal());
865 // If there are bitcast users of the malloc (which is typical, usually we have
866 // a malloc + bitcast) then replace them with uses of the new global. Update
867 // other users to use the global as well.
868 BitCastInst *TheBC = 0;
869 while (!CI->use_empty()) {
870 Instruction *User = cast<Instruction>(CI->use_back());
871 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
872 if (BCI->getType() == NewGV->getType()) {
873 BCI->replaceAllUsesWith(NewGV);
874 BCI->eraseFromParent();
876 BCI->setOperand(0, NewGV);
880 TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
881 User->replaceUsesOfWith(CI, TheBC);
885 Constant *RepValue = NewGV;
886 if (NewGV->getType() != GV->getType()->getElementType())
887 RepValue = ConstantExpr::getBitCast(RepValue,
888 GV->getType()->getElementType());
890 // If there is a comparison against null, we will insert a global bool to
891 // keep track of whether the global was initialized yet or not.
892 GlobalVariable *InitBool =
893 new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
894 GlobalValue::InternalLinkage,
895 ConstantInt::getFalse(GV->getContext()),
896 GV->getName()+".init", GV->isThreadLocal());
897 bool InitBoolUsed = false;
899 // Loop over all uses of GV, processing them in turn.
900 while (!GV->use_empty()) {
901 if (StoreInst *SI = dyn_cast<StoreInst>(GV->use_back())) {
902 // The global is initialized when the store to it occurs.
903 new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0,
904 SI->getOrdering(), SI->getSynchScope(), SI);
905 SI->eraseFromParent();
909 LoadInst *LI = cast<LoadInst>(GV->use_back());
910 while (!LI->use_empty()) {
911 Use &LoadUse = LI->use_begin().getUse();
912 if (!isa<ICmpInst>(LoadUse.getUser())) {
917 ICmpInst *ICI = cast<ICmpInst>(LoadUse.getUser());
918 // Replace the cmp X, 0 with a use of the bool value.
919 // Sink the load to where the compare was, if atomic rules allow us to.
920 Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0,
921 LI->getOrdering(), LI->getSynchScope(),
922 LI->isUnordered() ? (Instruction*)ICI : LI);
924 switch (ICI->getPredicate()) {
925 default: llvm_unreachable("Unknown ICmp Predicate!");
926 case ICmpInst::ICMP_ULT:
927 case ICmpInst::ICMP_SLT: // X < null -> always false
928 LV = ConstantInt::getFalse(GV->getContext());
930 case ICmpInst::ICMP_ULE:
931 case ICmpInst::ICMP_SLE:
932 case ICmpInst::ICMP_EQ:
933 LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
935 case ICmpInst::ICMP_NE:
936 case ICmpInst::ICMP_UGE:
937 case ICmpInst::ICMP_SGE:
938 case ICmpInst::ICMP_UGT:
939 case ICmpInst::ICMP_SGT:
942 ICI->replaceAllUsesWith(LV);
943 ICI->eraseFromParent();
945 LI->eraseFromParent();
948 // If the initialization boolean was used, insert it, otherwise delete it.
950 while (!InitBool->use_empty()) // Delete initializations
951 cast<StoreInst>(InitBool->use_back())->eraseFromParent();
954 GV->getParent()->getGlobalList().insert(GV, InitBool);
956 // Now the GV is dead, nuke it and the malloc..
957 GV->eraseFromParent();
958 CI->eraseFromParent();
960 // To further other optimizations, loop over all users of NewGV and try to
961 // constant prop them. This will promote GEP instructions with constant
962 // indices into GEP constant-exprs, which will allow global-opt to hack on it.
963 ConstantPropUsersOf(NewGV, TD, TLI);
964 if (RepValue != NewGV)
965 ConstantPropUsersOf(RepValue, TD, TLI);
970 /// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
971 /// to make sure that there are no complex uses of V. We permit simple things
972 /// like dereferencing the pointer, but not storing through the address, unless
973 /// it is to the specified global.
974 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
975 const GlobalVariable *GV,
976 SmallPtrSet<const PHINode*, 8> &PHIs) {
977 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
979 const Instruction *Inst = cast<Instruction>(*UI);
981 if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
982 continue; // Fine, ignore.
985 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
986 if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
987 return false; // Storing the pointer itself... bad.
988 continue; // Otherwise, storing through it, or storing into GV... fine.
991 // Must index into the array and into the struct.
992 if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
993 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
998 if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
999 // PHIs are ok if all uses are ok. Don't infinitely recurse through PHI
1001 if (PHIs.insert(PN))
1002 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
1007 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
1008 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
1018 /// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
1019 /// somewhere. Transform all uses of the allocation into loads from the
1020 /// global and uses of the resultant pointer. Further, delete the store into
1021 /// GV. This assumes that these value pass the
1022 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
1023 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
1024 GlobalVariable *GV) {
1025 while (!Alloc->use_empty()) {
1026 Instruction *U = cast<Instruction>(*Alloc->use_begin());
1027 Instruction *InsertPt = U;
1028 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1029 // If this is the store of the allocation into the global, remove it.
1030 if (SI->getOperand(1) == GV) {
1031 SI->eraseFromParent();
1034 } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1035 // Insert the load in the corresponding predecessor, not right before the
1037 InsertPt = PN->getIncomingBlock(Alloc->use_begin())->getTerminator();
1038 } else if (isa<BitCastInst>(U)) {
1039 // Must be bitcast between the malloc and store to initialize the global.
1040 ReplaceUsesOfMallocWithGlobal(U, GV);
1041 U->eraseFromParent();
1043 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1044 // If this is a "GEP bitcast" and the user is a store to the global, then
1045 // just process it as a bitcast.
1046 if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1047 if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->use_back()))
1048 if (SI->getOperand(1) == GV) {
1049 // Must be bitcast GEP between the malloc and store to initialize
1051 ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1052 GEPI->eraseFromParent();
1057 // Insert a load from the global, and use it instead of the malloc.
1058 Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
1059 U->replaceUsesOfWith(Alloc, NL);
1063 /// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi
1064 /// of a load) are simple enough to perform heap SRA on. This permits GEP's
1065 /// that index through the array and struct field, icmps of null, and PHIs.
1066 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
1067 SmallPtrSet<const PHINode*, 32> &LoadUsingPHIs,
1068 SmallPtrSet<const PHINode*, 32> &LoadUsingPHIsPerLoad) {
1069 // We permit two users of the load: setcc comparing against the null
1070 // pointer, and a getelementptr of a specific form.
1071 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
1073 const Instruction *User = cast<Instruction>(*UI);
1075 // Comparison against null is ok.
1076 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(User)) {
1077 if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1082 // getelementptr is also ok, but only a simple form.
1083 if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1084 // Must index into the array and into the struct.
1085 if (GEPI->getNumOperands() < 3)
1088 // Otherwise the GEP is ok.
1092 if (const PHINode *PN = dyn_cast<PHINode>(User)) {
1093 if (!LoadUsingPHIsPerLoad.insert(PN))
1094 // This means some phi nodes are dependent on each other.
1095 // Avoid infinite looping!
1097 if (!LoadUsingPHIs.insert(PN))
1098 // If we have already analyzed this PHI, then it is safe.
1101 // Make sure all uses of the PHI are simple enough to transform.
1102 if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1103 LoadUsingPHIs, LoadUsingPHIsPerLoad))
1109 // Otherwise we don't know what this is, not ok.
1117 /// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
1118 /// GV are simple enough to perform HeapSRA, return true.
1119 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
1120 Instruction *StoredVal) {
1121 SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
1122 SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
1123 for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end();
1125 if (const LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
1126 if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1127 LoadUsingPHIsPerLoad))
1129 LoadUsingPHIsPerLoad.clear();
1132 // If we reach here, we know that all uses of the loads and transitive uses
1133 // (through PHI nodes) are simple enough to transform. However, we don't know
1134 // that all inputs the to the PHI nodes are in the same equivalence sets.
1135 // Check to verify that all operands of the PHIs are either PHIS that can be
1136 // transformed, loads from GV, or MI itself.
1137 for (SmallPtrSet<const PHINode*, 32>::const_iterator I = LoadUsingPHIs.begin()
1138 , E = LoadUsingPHIs.end(); I != E; ++I) {
1139 const PHINode *PN = *I;
1140 for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1141 Value *InVal = PN->getIncomingValue(op);
1143 // PHI of the stored value itself is ok.
1144 if (InVal == StoredVal) continue;
1146 if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1147 // One of the PHIs in our set is (optimistically) ok.
1148 if (LoadUsingPHIs.count(InPN))
1153 // Load from GV is ok.
1154 if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
1155 if (LI->getOperand(0) == GV)
1160 // Anything else is rejected.
1168 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1169 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1170 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1171 std::vector<Value*> &FieldVals = InsertedScalarizedValues[V];
1173 if (FieldNo >= FieldVals.size())
1174 FieldVals.resize(FieldNo+1);
1176 // If we already have this value, just reuse the previously scalarized
1178 if (Value *FieldVal = FieldVals[FieldNo])
1181 // Depending on what instruction this is, we have several cases.
1183 if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1184 // This is a scalarized version of the load from the global. Just create
1185 // a new Load of the scalarized global.
1186 Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
1187 InsertedScalarizedValues,
1189 LI->getName()+".f"+Twine(FieldNo), LI);
1190 } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
1191 // PN's type is pointer to struct. Make a new PHI of pointer to struct
1194 cast<StructType>(cast<PointerType>(PN->getType())->getElementType());
1197 PHINode::Create(PointerType::getUnqual(ST->getElementType(FieldNo)),
1198 PN->getNumIncomingValues(),
1199 PN->getName()+".f"+Twine(FieldNo), PN);
1201 PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1203 llvm_unreachable("Unknown usable value");
1206 return FieldVals[FieldNo] = Result;
1209 /// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
1210 /// the load, rewrite the derived value to use the HeapSRoA'd load.
1211 static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1212 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1213 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1214 // If this is a comparison against null, handle it.
1215 if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1216 assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1217 // If we have a setcc of the loaded pointer, we can use a setcc of any
1219 Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1220 InsertedScalarizedValues, PHIsToRewrite);
1222 Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1223 Constant::getNullValue(NPtr->getType()),
1225 SCI->replaceAllUsesWith(New);
1226 SCI->eraseFromParent();
1230 // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1231 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1232 assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1233 && "Unexpected GEPI!");
1235 // Load the pointer for this field.
1236 unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1237 Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1238 InsertedScalarizedValues, PHIsToRewrite);
1240 // Create the new GEP idx vector.
1241 SmallVector<Value*, 8> GEPIdx;
1242 GEPIdx.push_back(GEPI->getOperand(1));
1243 GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1245 Value *NGEPI = GetElementPtrInst::Create(NewPtr, GEPIdx,
1246 GEPI->getName(), GEPI);
1247 GEPI->replaceAllUsesWith(NGEPI);
1248 GEPI->eraseFromParent();
1252 // Recursively transform the users of PHI nodes. This will lazily create the
1253 // PHIs that are needed for individual elements. Keep track of what PHIs we
1254 // see in InsertedScalarizedValues so that we don't get infinite loops (very
1255 // antisocial). If the PHI is already in InsertedScalarizedValues, it has
1256 // already been seen first by another load, so its uses have already been
1258 PHINode *PN = cast<PHINode>(LoadUser);
1259 if (!InsertedScalarizedValues.insert(std::make_pair(PN,
1260 std::vector<Value*>())).second)
1263 // If this is the first time we've seen this PHI, recursively process all
1265 for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E; ) {
1266 Instruction *User = cast<Instruction>(*UI++);
1267 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1271 /// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global. Ptr
1272 /// is a value loaded from the global. Eliminate all uses of Ptr, making them
1273 /// use FieldGlobals instead. All uses of loaded values satisfy
1274 /// AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1275 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1276 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1277 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1278 for (Value::use_iterator UI = Load->use_begin(), E = Load->use_end();
1280 Instruction *User = cast<Instruction>(*UI++);
1281 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1284 if (Load->use_empty()) {
1285 Load->eraseFromParent();
1286 InsertedScalarizedValues.erase(Load);
1290 /// PerformHeapAllocSRoA - CI is an allocation of an array of structures. Break
1291 /// it up into multiple allocations of arrays of the fields.
1292 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
1293 Value *NElems, TargetData *TD) {
1294 DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *CI << '\n');
1295 Type *MAT = getMallocAllocatedType(CI);
1296 StructType *STy = cast<StructType>(MAT);
1298 // There is guaranteed to be at least one use of the malloc (storing
1299 // it into GV). If there are other uses, change them to be uses of
1300 // the global to simplify later code. This also deletes the store
1302 ReplaceUsesOfMallocWithGlobal(CI, GV);
1304 // Okay, at this point, there are no users of the malloc. Insert N
1305 // new mallocs at the same place as CI, and N globals.
1306 std::vector<Value*> FieldGlobals;
1307 std::vector<Value*> FieldMallocs;
1309 for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1310 Type *FieldTy = STy->getElementType(FieldNo);
1311 PointerType *PFieldTy = PointerType::getUnqual(FieldTy);
1313 GlobalVariable *NGV =
1314 new GlobalVariable(*GV->getParent(),
1315 PFieldTy, false, GlobalValue::InternalLinkage,
1316 Constant::getNullValue(PFieldTy),
1317 GV->getName() + ".f" + Twine(FieldNo), GV,
1318 GV->isThreadLocal());
1319 FieldGlobals.push_back(NGV);
1321 unsigned TypeSize = TD->getTypeAllocSize(FieldTy);
1322 if (StructType *ST = dyn_cast<StructType>(FieldTy))
1323 TypeSize = TD->getStructLayout(ST)->getSizeInBytes();
1324 Type *IntPtrTy = TD->getIntPtrType(CI->getContext());
1325 Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
1326 ConstantInt::get(IntPtrTy, TypeSize),
1328 CI->getName() + ".f" + Twine(FieldNo));
1329 FieldMallocs.push_back(NMI);
1330 new StoreInst(NMI, NGV, CI);
1333 // The tricky aspect of this transformation is handling the case when malloc
1334 // fails. In the original code, malloc failing would set the result pointer
1335 // of malloc to null. In this case, some mallocs could succeed and others
1336 // could fail. As such, we emit code that looks like this:
1337 // F0 = malloc(field0)
1338 // F1 = malloc(field1)
1339 // F2 = malloc(field2)
1340 // if (F0 == 0 || F1 == 0 || F2 == 0) {
1341 // if (F0) { free(F0); F0 = 0; }
1342 // if (F1) { free(F1); F1 = 0; }
1343 // if (F2) { free(F2); F2 = 0; }
1345 // The malloc can also fail if its argument is too large.
1346 Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
1347 Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
1348 ConstantZero, "isneg");
1349 for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1350 Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1351 Constant::getNullValue(FieldMallocs[i]->getType()),
1353 RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
1356 // Split the basic block at the old malloc.
1357 BasicBlock *OrigBB = CI->getParent();
1358 BasicBlock *ContBB = OrigBB->splitBasicBlock(CI, "malloc_cont");
1360 // Create the block to check the first condition. Put all these blocks at the
1361 // end of the function as they are unlikely to be executed.
1362 BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
1364 OrigBB->getParent());
1366 // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1367 // branch on RunningOr.
1368 OrigBB->getTerminator()->eraseFromParent();
1369 BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1371 // Within the NullPtrBlock, we need to emit a comparison and branch for each
1372 // pointer, because some may be null while others are not.
1373 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1374 Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1375 Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1376 Constant::getNullValue(GVVal->getType()));
1377 BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
1378 OrigBB->getParent());
1379 BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
1380 OrigBB->getParent());
1381 Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
1384 // Fill in FreeBlock.
1385 CallInst::CreateFree(GVVal, BI);
1386 new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1388 BranchInst::Create(NextBlock, FreeBlock);
1390 NullPtrBlock = NextBlock;
1393 BranchInst::Create(ContBB, NullPtrBlock);
1395 // CI is no longer needed, remove it.
1396 CI->eraseFromParent();
1398 /// InsertedScalarizedLoads - As we process loads, if we can't immediately
1399 /// update all uses of the load, keep track of what scalarized loads are
1400 /// inserted for a given load.
1401 DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues;
1402 InsertedScalarizedValues[GV] = FieldGlobals;
1404 std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite;
1406 // Okay, the malloc site is completely handled. All of the uses of GV are now
1407 // loads, and all uses of those loads are simple. Rewrite them to use loads
1408 // of the per-field globals instead.
1409 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;) {
1410 Instruction *User = cast<Instruction>(*UI++);
1412 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1413 RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
1417 // Must be a store of null.
1418 StoreInst *SI = cast<StoreInst>(User);
1419 assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1420 "Unexpected heap-sra user!");
1422 // Insert a store of null into each global.
1423 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1424 PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType());
1425 Constant *Null = Constant::getNullValue(PT->getElementType());
1426 new StoreInst(Null, FieldGlobals[i], SI);
1428 // Erase the original store.
1429 SI->eraseFromParent();
1432 // While we have PHIs that are interesting to rewrite, do it.
1433 while (!PHIsToRewrite.empty()) {
1434 PHINode *PN = PHIsToRewrite.back().first;
1435 unsigned FieldNo = PHIsToRewrite.back().second;
1436 PHIsToRewrite.pop_back();
1437 PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1438 assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1440 // Add all the incoming values. This can materialize more phis.
1441 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1442 Value *InVal = PN->getIncomingValue(i);
1443 InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1445 FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1449 // Drop all inter-phi links and any loads that made it this far.
1450 for (DenseMap<Value*, std::vector<Value*> >::iterator
1451 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1453 if (PHINode *PN = dyn_cast<PHINode>(I->first))
1454 PN->dropAllReferences();
1455 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1456 LI->dropAllReferences();
1459 // Delete all the phis and loads now that inter-references are dead.
1460 for (DenseMap<Value*, std::vector<Value*> >::iterator
1461 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1463 if (PHINode *PN = dyn_cast<PHINode>(I->first))
1464 PN->eraseFromParent();
1465 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1466 LI->eraseFromParent();
1469 // The old global is now dead, remove it.
1470 GV->eraseFromParent();
1473 return cast<GlobalVariable>(FieldGlobals[0]);
1476 /// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a
1477 /// pointer global variable with a single value stored it that is a malloc or
1479 static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
1482 AtomicOrdering Ordering,
1483 Module::global_iterator &GVI,
1485 TargetLibraryInfo *TLI) {
1489 // If this is a malloc of an abstract type, don't touch it.
1490 if (!AllocTy->isSized())
1493 // We can't optimize this global unless all uses of it are *known* to be
1494 // of the malloc value, not of the null initializer value (consider a use
1495 // that compares the global's value against zero to see if the malloc has
1496 // been reached). To do this, we check to see if all uses of the global
1497 // would trap if the global were null: this proves that they must all
1498 // happen after the malloc.
1499 if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1502 // We can't optimize this if the malloc itself is used in a complex way,
1503 // for example, being stored into multiple globals. This allows the
1504 // malloc to be stored into the specified global, loaded icmp'd, and
1505 // GEP'd. These are all things we could transform to using the global
1507 SmallPtrSet<const PHINode*, 8> PHIs;
1508 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
1511 // If we have a global that is only initialized with a fixed size malloc,
1512 // transform the program to use global memory instead of malloc'd memory.
1513 // This eliminates dynamic allocation, avoids an indirection accessing the
1514 // data, and exposes the resultant global to further GlobalOpt.
1515 // We cannot optimize the malloc if we cannot determine malloc array size.
1516 Value *NElems = getMallocArraySize(CI, TD, true);
1520 if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1521 // Restrict this transformation to only working on small allocations
1522 // (2048 bytes currently), as we don't want to introduce a 16M global or
1524 if (NElements->getZExtValue() * TD->getTypeAllocSize(AllocTy) < 2048) {
1525 GVI = OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, TD, TLI);
1529 // If the allocation is an array of structures, consider transforming this
1530 // into multiple malloc'd arrays, one for each field. This is basically
1531 // SRoA for malloc'd memory.
1533 if (Ordering != NotAtomic)
1536 // If this is an allocation of a fixed size array of structs, analyze as a
1537 // variable size array. malloc [100 x struct],1 -> malloc struct, 100
1538 if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
1539 if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1540 AllocTy = AT->getElementType();
1542 StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
1546 // This the structure has an unreasonable number of fields, leave it
1548 if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1549 AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
1551 // If this is a fixed size array, transform the Malloc to be an alloc of
1552 // structs. malloc [100 x struct],1 -> malloc struct, 100
1553 if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI))) {
1554 Type *IntPtrTy = TD->getIntPtrType(CI->getContext());
1555 unsigned TypeSize = TD->getStructLayout(AllocSTy)->getSizeInBytes();
1556 Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
1557 Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
1558 Instruction *Malloc = CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy,
1559 AllocSize, NumElements,
1561 Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
1562 CI->replaceAllUsesWith(Cast);
1563 CI->eraseFromParent();
1564 CI = dyn_cast<BitCastInst>(Malloc) ?
1565 extractMallocCallFromBitCast(Malloc) : cast<CallInst>(Malloc);
1568 GVI = PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, TD, true), TD);
1575 // OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
1576 // that only one value (besides its initializer) is ever stored to the global.
1577 static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1578 AtomicOrdering Ordering,
1579 Module::global_iterator &GVI,
1580 TargetData *TD, TargetLibraryInfo *TLI) {
1581 // Ignore no-op GEPs and bitcasts.
1582 StoredOnceVal = StoredOnceVal->stripPointerCasts();
1584 // If we are dealing with a pointer global that is initialized to null and
1585 // only has one (non-null) value stored into it, then we can optimize any
1586 // users of the loaded value (often calls and loads) that would trap if the
1588 if (GV->getInitializer()->getType()->isPointerTy() &&
1589 GV->getInitializer()->isNullValue()) {
1590 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1591 if (GV->getInitializer()->getType() != SOVC->getType())
1592 SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1594 // Optimize away any trapping uses of the loaded value.
1595 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, TD, TLI))
1597 } else if (CallInst *CI = extractMallocCall(StoredOnceVal)) {
1598 Type *MallocType = getMallocAllocatedType(CI);
1600 TryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, Ordering, GVI,
1609 /// TryToShrinkGlobalToBoolean - At this point, we have learned that the only
1610 /// two values ever stored into GV are its initializer and OtherVal. See if we
1611 /// can shrink the global into a boolean and select between the two values
1612 /// whenever it is used. This exposes the values to other scalar optimizations.
1613 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1614 Type *GVElType = GV->getType()->getElementType();
1616 // If GVElType is already i1, it is already shrunk. If the type of the GV is
1617 // an FP value, pointer or vector, don't do this optimization because a select
1618 // between them is very expensive and unlikely to lead to later
1619 // simplification. In these cases, we typically end up with "cond ? v1 : v2"
1620 // where v1 and v2 both require constant pool loads, a big loss.
1621 if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1622 GVElType->isFloatingPointTy() ||
1623 GVElType->isPointerTy() || GVElType->isVectorTy())
1626 // Walk the use list of the global seeing if all the uses are load or store.
1627 // If there is anything else, bail out.
1628 for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I){
1630 if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1634 DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV);
1636 // Create the new global, initializing it to false.
1637 GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1639 GlobalValue::InternalLinkage,
1640 ConstantInt::getFalse(GV->getContext()),
1642 GV->isThreadLocal());
1643 GV->getParent()->getGlobalList().insert(GV, NewGV);
1645 Constant *InitVal = GV->getInitializer();
1646 assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1647 "No reason to shrink to bool!");
1649 // If initialized to zero and storing one into the global, we can use a cast
1650 // instead of a select to synthesize the desired value.
1651 bool IsOneZero = false;
1652 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
1653 IsOneZero = InitVal->isNullValue() && CI->isOne();
1655 while (!GV->use_empty()) {
1656 Instruction *UI = cast<Instruction>(GV->use_back());
1657 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1658 // Change the store into a boolean store.
1659 bool StoringOther = SI->getOperand(0) == OtherVal;
1660 // Only do this if we weren't storing a loaded value.
1662 if (StoringOther || SI->getOperand(0) == InitVal)
1663 StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1666 // Otherwise, we are storing a previously loaded copy. To do this,
1667 // change the copy from copying the original value to just copying the
1669 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1671 // If we've already replaced the input, StoredVal will be a cast or
1672 // select instruction. If not, it will be a load of the original
1674 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1675 assert(LI->getOperand(0) == GV && "Not a copy!");
1676 // Insert a new load, to preserve the saved value.
1677 StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0,
1678 LI->getOrdering(), LI->getSynchScope(), LI);
1680 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1681 "This is not a form that we understand!");
1682 StoreVal = StoredVal->getOperand(0);
1683 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1686 new StoreInst(StoreVal, NewGV, false, 0,
1687 SI->getOrdering(), SI->getSynchScope(), SI);
1689 // Change the load into a load of bool then a select.
1690 LoadInst *LI = cast<LoadInst>(UI);
1691 LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0,
1692 LI->getOrdering(), LI->getSynchScope(), LI);
1695 NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1697 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1699 LI->replaceAllUsesWith(NSI);
1701 UI->eraseFromParent();
1704 GV->eraseFromParent();
1709 /// ProcessGlobal - Analyze the specified global variable and optimize it if
1710 /// possible. If we make a change, return true.
1711 bool GlobalOpt::ProcessGlobal(GlobalVariable *GV,
1712 Module::global_iterator &GVI) {
1713 if (!GV->hasLocalLinkage())
1716 // Do more involved optimizations if the global is internal.
1717 GV->removeDeadConstantUsers();
1719 if (GV->use_empty()) {
1720 DEBUG(dbgs() << "GLOBAL DEAD: " << *GV);
1721 GV->eraseFromParent();
1726 SmallPtrSet<const PHINode*, 16> PHIUsers;
1729 if (AnalyzeGlobal(GV, GS, PHIUsers))
1732 if (!GS.isCompared && !GV->hasUnnamedAddr()) {
1733 GV->setUnnamedAddr(true);
1737 if (GV->isConstant() || !GV->hasInitializer())
1740 return ProcessInternalGlobal(GV, GVI, PHIUsers, GS);
1743 /// ProcessInternalGlobal - Analyze the specified global variable and optimize
1744 /// it if possible. If we make a change, return true.
1745 bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
1746 Module::global_iterator &GVI,
1747 const SmallPtrSet<const PHINode*, 16> &PHIUsers,
1748 const GlobalStatus &GS) {
1749 // If this is a first class global and has only one accessing function
1750 // and this function is main (which we know is not recursive we can make
1751 // this global a local variable) we replace the global with a local alloca
1752 // in this function.
1754 // NOTE: It doesn't make sense to promote non single-value types since we
1755 // are just replacing static memory to stack memory.
1757 // If the global is in different address space, don't bring it to stack.
1758 if (!GS.HasMultipleAccessingFunctions &&
1759 GS.AccessingFunction && !GS.HasNonInstructionUser &&
1760 GV->getType()->getElementType()->isSingleValueType() &&
1761 GS.AccessingFunction->getName() == "main" &&
1762 GS.AccessingFunction->hasExternalLinkage() &&
1763 GV->getType()->getAddressSpace() == 0) {
1764 DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV);
1765 Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1766 ->getEntryBlock().begin());
1767 Type *ElemTy = GV->getType()->getElementType();
1768 // FIXME: Pass Global's alignment when globals have alignment
1769 AllocaInst *Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), &FirstI);
1770 if (!isa<UndefValue>(GV->getInitializer()))
1771 new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1773 GV->replaceAllUsesWith(Alloca);
1774 GV->eraseFromParent();
1779 // If the global is never loaded (but may be stored to), it is dead.
1782 DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV);
1784 // Delete any stores we can find to the global. We may not be able to
1785 // make it completely dead though.
1786 bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(),
1789 // If the global is dead now, delete it.
1790 if (GV->use_empty()) {
1791 GV->eraseFromParent();
1797 } else if (GS.StoredType <= GlobalStatus::isInitializerStored) {
1798 DEBUG(dbgs() << "MARKING CONSTANT: " << *GV);
1799 GV->setConstant(true);
1801 // Clean up any obviously simplifiable users now.
1802 CleanupConstantGlobalUsers(GV, GV->getInitializer(), TD, TLI);
1804 // If the global is dead now, just nuke it.
1805 if (GV->use_empty()) {
1806 DEBUG(dbgs() << " *** Marking constant allowed us to simplify "
1807 << "all users and delete global!\n");
1808 GV->eraseFromParent();
1814 } else if (!GV->getInitializer()->getType()->isSingleValueType()) {
1815 if (TargetData *TD = getAnalysisIfAvailable<TargetData>())
1816 if (GlobalVariable *FirstNewGV = SRAGlobal(GV, *TD)) {
1817 GVI = FirstNewGV; // Don't skip the newly produced globals!
1820 } else if (GS.StoredType == GlobalStatus::isStoredOnce) {
1821 // If the initial value for the global was an undef value, and if only
1822 // one other value was stored into it, we can just change the
1823 // initializer to be the stored value, then delete all stores to the
1824 // global. This allows us to mark it constant.
1825 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1826 if (isa<UndefValue>(GV->getInitializer())) {
1827 // Change the initial value here.
1828 GV->setInitializer(SOVConstant);
1830 // Clean up any obviously simplifiable users now.
1831 CleanupConstantGlobalUsers(GV, GV->getInitializer(), TD, TLI);
1833 if (GV->use_empty()) {
1834 DEBUG(dbgs() << " *** Substituting initializer allowed us to "
1835 << "simplify all users and delete global!\n");
1836 GV->eraseFromParent();
1845 // Try to optimize globals based on the knowledge that only one value
1846 // (besides its initializer) is ever stored to the global.
1847 if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, GVI,
1851 // Otherwise, if the global was not a boolean, we can shrink it to be a
1853 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1854 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
1863 /// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
1864 /// function, changing them to FastCC.
1865 static void ChangeCalleesToFastCall(Function *F) {
1866 for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1867 CallSite User(cast<Instruction>(*UI));
1868 User.setCallingConv(CallingConv::Fast);
1872 static AttrListPtr StripNest(const AttrListPtr &Attrs) {
1873 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
1874 if ((Attrs.getSlot(i).Attrs & Attribute::Nest) == 0)
1877 // There can be only one.
1878 return Attrs.removeAttr(Attrs.getSlot(i).Index, Attribute::Nest);
1884 static void RemoveNestAttribute(Function *F) {
1885 F->setAttributes(StripNest(F->getAttributes()));
1886 for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1887 CallSite User(cast<Instruction>(*UI));
1888 User.setAttributes(StripNest(User.getAttributes()));
1892 bool GlobalOpt::OptimizeFunctions(Module &M) {
1893 bool Changed = false;
1894 // Optimize functions.
1895 for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
1897 // Functions without names cannot be referenced outside this module.
1898 if (!F->hasName() && !F->isDeclaration())
1899 F->setLinkage(GlobalValue::InternalLinkage);
1900 F->removeDeadConstantUsers();
1901 if (F->isDefTriviallyDead()) {
1902 F->eraseFromParent();
1905 } else if (F->hasLocalLinkage()) {
1906 if (F->getCallingConv() == CallingConv::C && !F->isVarArg() &&
1907 !F->hasAddressTaken()) {
1908 // If this function has C calling conventions, is not a varargs
1909 // function, and is only called directly, promote it to use the Fast
1910 // calling convention.
1911 F->setCallingConv(CallingConv::Fast);
1912 ChangeCalleesToFastCall(F);
1917 if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
1918 !F->hasAddressTaken()) {
1919 // The function is not used by a trampoline intrinsic, so it is safe
1920 // to remove the 'nest' attribute.
1921 RemoveNestAttribute(F);
1930 bool GlobalOpt::OptimizeGlobalVars(Module &M) {
1931 bool Changed = false;
1932 for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
1934 GlobalVariable *GV = GVI++;
1935 // Global variables without names cannot be referenced outside this module.
1936 if (!GV->hasName() && !GV->isDeclaration())
1937 GV->setLinkage(GlobalValue::InternalLinkage);
1938 // Simplify the initializer.
1939 if (GV->hasInitializer())
1940 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) {
1941 Constant *New = ConstantFoldConstantExpression(CE, TD, TLI);
1942 if (New && New != CE)
1943 GV->setInitializer(New);
1946 Changed |= ProcessGlobal(GV, GVI);
1951 /// FindGlobalCtors - Find the llvm.global_ctors list, verifying that all
1952 /// initializers have an init priority of 65535.
1953 GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) {
1954 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
1955 if (GV == 0) return 0;
1957 // Verify that the initializer is simple enough for us to handle. We are
1958 // only allowed to optimize the initializer if it is unique.
1959 if (!GV->hasUniqueInitializer()) return 0;
1961 if (isa<ConstantAggregateZero>(GV->getInitializer()))
1963 ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
1965 for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) {
1966 if (isa<ConstantAggregateZero>(*i))
1968 ConstantStruct *CS = cast<ConstantStruct>(*i);
1969 if (isa<ConstantPointerNull>(CS->getOperand(1)))
1972 // Must have a function or null ptr.
1973 if (!isa<Function>(CS->getOperand(1)))
1976 // Init priority must be standard.
1977 ConstantInt *CI = cast<ConstantInt>(CS->getOperand(0));
1978 if (CI->getZExtValue() != 65535)
1985 /// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand,
1986 /// return a list of the functions and null terminator as a vector.
1987 static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) {
1988 if (GV->getInitializer()->isNullValue())
1989 return std::vector<Function*>();
1990 ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
1991 std::vector<Function*> Result;
1992 Result.reserve(CA->getNumOperands());
1993 for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) {
1994 ConstantStruct *CS = cast<ConstantStruct>(*i);
1995 Result.push_back(dyn_cast<Function>(CS->getOperand(1)));
2000 /// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the
2001 /// specified array, returning the new global to use.
2002 static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
2003 const std::vector<Function*> &Ctors) {
2004 // If we made a change, reassemble the initializer list.
2005 Constant *CSVals[2];
2006 CSVals[0] = ConstantInt::get(Type::getInt32Ty(GCL->getContext()), 65535);
2009 StructType *StructTy =
2011 cast<ArrayType>(GCL->getType()->getElementType())->getElementType());
2013 // Create the new init list.
2014 std::vector<Constant*> CAList;
2015 for (unsigned i = 0, e = Ctors.size(); i != e; ++i) {
2017 CSVals[1] = Ctors[i];
2019 Type *FTy = FunctionType::get(Type::getVoidTy(GCL->getContext()),
2021 PointerType *PFTy = PointerType::getUnqual(FTy);
2022 CSVals[1] = Constant::getNullValue(PFTy);
2023 CSVals[0] = ConstantInt::get(Type::getInt32Ty(GCL->getContext()),
2026 CAList.push_back(ConstantStruct::get(StructTy, CSVals));
2029 // Create the array initializer.
2030 Constant *CA = ConstantArray::get(ArrayType::get(StructTy,
2031 CAList.size()), CAList);
2033 // If we didn't change the number of elements, don't create a new GV.
2034 if (CA->getType() == GCL->getInitializer()->getType()) {
2035 GCL->setInitializer(CA);
2039 // Create the new global and insert it next to the existing list.
2040 GlobalVariable *NGV = new GlobalVariable(CA->getType(), GCL->isConstant(),
2041 GCL->getLinkage(), CA, "",
2042 GCL->isThreadLocal());
2043 GCL->getParent()->getGlobalList().insert(GCL, NGV);
2046 // Nuke the old list, replacing any uses with the new one.
2047 if (!GCL->use_empty()) {
2049 if (V->getType() != GCL->getType())
2050 V = ConstantExpr::getBitCast(V, GCL->getType());
2051 GCL->replaceAllUsesWith(V);
2053 GCL->eraseFromParent();
2063 isSimpleEnoughValueToCommit(Constant *C,
2064 SmallPtrSet<Constant*, 8> &SimpleConstants,
2065 const TargetData *TD);
2068 /// isSimpleEnoughValueToCommit - Return true if the specified constant can be
2069 /// handled by the code generator. We don't want to generate something like:
2070 /// void *X = &X/42;
2071 /// because the code generator doesn't have a relocation that can handle that.
2073 /// This function should be called if C was not found (but just got inserted)
2074 /// in SimpleConstants to avoid having to rescan the same constants all the
2076 static bool isSimpleEnoughValueToCommitHelper(Constant *C,
2077 SmallPtrSet<Constant*, 8> &SimpleConstants,
2078 const TargetData *TD) {
2079 // Simple integer, undef, constant aggregate zero, global addresses, etc are
2081 if (C->getNumOperands() == 0 || isa<BlockAddress>(C) ||
2082 isa<GlobalValue>(C))
2085 // Aggregate values are safe if all their elements are.
2086 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
2087 isa<ConstantVector>(C)) {
2088 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
2089 Constant *Op = cast<Constant>(C->getOperand(i));
2090 if (!isSimpleEnoughValueToCommit(Op, SimpleConstants, TD))
2096 // We don't know exactly what relocations are allowed in constant expressions,
2097 // so we allow &global+constantoffset, which is safe and uniformly supported
2099 ConstantExpr *CE = cast<ConstantExpr>(C);
2100 switch (CE->getOpcode()) {
2101 case Instruction::BitCast:
2102 // Bitcast is fine if the casted value is fine.
2103 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD);
2105 case Instruction::IntToPtr:
2106 case Instruction::PtrToInt:
2107 // int <=> ptr is fine if the int type is the same size as the
2109 if (!TD || TD->getTypeSizeInBits(CE->getType()) !=
2110 TD->getTypeSizeInBits(CE->getOperand(0)->getType()))
2112 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD);
2114 // GEP is fine if it is simple + constant offset.
2115 case Instruction::GetElementPtr:
2116 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
2117 if (!isa<ConstantInt>(CE->getOperand(i)))
2119 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD);
2121 case Instruction::Add:
2122 // We allow simple+cst.
2123 if (!isa<ConstantInt>(CE->getOperand(1)))
2125 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD);
2131 isSimpleEnoughValueToCommit(Constant *C,
2132 SmallPtrSet<Constant*, 8> &SimpleConstants,
2133 const TargetData *TD) {
2134 // If we already checked this constant, we win.
2135 if (!SimpleConstants.insert(C)) return true;
2136 // Check the constant.
2137 return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, TD);
2141 /// isSimpleEnoughPointerToCommit - Return true if this constant is simple
2142 /// enough for us to understand. In particular, if it is a cast to anything
2143 /// other than from one pointer type to another pointer type, we punt.
2144 /// We basically just support direct accesses to globals and GEP's of
2145 /// globals. This should be kept up to date with CommitValueTo.
2146 static bool isSimpleEnoughPointerToCommit(Constant *C) {
2147 // Conservatively, avoid aggregate types. This is because we don't
2148 // want to worry about them partially overlapping other stores.
2149 if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
2152 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
2153 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
2154 // external globals.
2155 return GV->hasUniqueInitializer();
2157 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2158 // Handle a constantexpr gep.
2159 if (CE->getOpcode() == Instruction::GetElementPtr &&
2160 isa<GlobalVariable>(CE->getOperand(0)) &&
2161 cast<GEPOperator>(CE)->isInBounds()) {
2162 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2163 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
2164 // external globals.
2165 if (!GV->hasUniqueInitializer())
2168 // The first index must be zero.
2169 ConstantInt *CI = dyn_cast<ConstantInt>(*llvm::next(CE->op_begin()));
2170 if (!CI || !CI->isZero()) return false;
2172 // The remaining indices must be compile-time known integers within the
2173 // notional bounds of the corresponding static array types.
2174 if (!CE->isGEPWithNoNotionalOverIndexing())
2177 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2179 // A constantexpr bitcast from a pointer to another pointer is a no-op,
2180 // and we know how to evaluate it by moving the bitcast from the pointer
2181 // operand to the value operand.
2182 } else if (CE->getOpcode() == Instruction::BitCast &&
2183 isa<GlobalVariable>(CE->getOperand(0))) {
2184 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
2185 // external globals.
2186 return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer();
2193 /// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
2194 /// initializer. This returns 'Init' modified to reflect 'Val' stored into it.
2195 /// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
2196 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2197 ConstantExpr *Addr, unsigned OpNo) {
2198 // Base case of the recursion.
2199 if (OpNo == Addr->getNumOperands()) {
2200 assert(Val->getType() == Init->getType() && "Type mismatch!");
2204 SmallVector<Constant*, 32> Elts;
2205 if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
2206 // Break up the constant into its elements.
2207 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2208 Elts.push_back(Init->getAggregateElement(i));
2210 // Replace the element that we are supposed to.
2211 ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2212 unsigned Idx = CU->getZExtValue();
2213 assert(Idx < STy->getNumElements() && "Struct index out of range!");
2214 Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2216 // Return the modified struct.
2217 return ConstantStruct::get(STy, Elts);
2220 ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2221 SequentialType *InitTy = cast<SequentialType>(Init->getType());
2224 if (ArrayType *ATy = dyn_cast<ArrayType>(InitTy))
2225 NumElts = ATy->getNumElements();
2227 NumElts = InitTy->getVectorNumElements();
2229 // Break up the array into elements.
2230 for (uint64_t i = 0, e = NumElts; i != e; ++i)
2231 Elts.push_back(Init->getAggregateElement(i));
2233 assert(CI->getZExtValue() < NumElts);
2234 Elts[CI->getZExtValue()] =
2235 EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2237 if (Init->getType()->isArrayTy())
2238 return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
2239 return ConstantVector::get(Elts);
2242 /// CommitValueTo - We have decided that Addr (which satisfies the predicate
2243 /// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen.
2244 static void CommitValueTo(Constant *Val, Constant *Addr) {
2245 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2246 assert(GV->hasInitializer());
2247 GV->setInitializer(Val);
2251 ConstantExpr *CE = cast<ConstantExpr>(Addr);
2252 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2253 GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2258 /// Evaluator - This class evaluates LLVM IR, producing the Constant
2259 /// representing each SSA instruction. Changes to global variables are stored
2260 /// in a mapping that can be iterated over after the evaluation is complete.
2261 /// Once an evaluation call fails, the evaluation object should not be reused.
2264 Evaluator(const TargetData *TD, const TargetLibraryInfo *TLI)
2265 : TD(TD), TLI(TLI) {
2266 ValueStack.push_back(new DenseMap<Value*, Constant*>);
2270 DeleteContainerPointers(ValueStack);
2271 while (!AllocaTmps.empty()) {
2272 GlobalVariable *Tmp = AllocaTmps.back();
2273 AllocaTmps.pop_back();
2275 // If there are still users of the alloca, the program is doing something
2276 // silly, e.g. storing the address of the alloca somewhere and using it
2277 // later. Since this is undefined, we'll just make it be null.
2278 if (!Tmp->use_empty())
2279 Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
2284 /// EvaluateFunction - Evaluate a call to function F, returning true if
2285 /// successful, false if we can't evaluate it. ActualArgs contains the formal
2286 /// arguments for the function.
2287 bool EvaluateFunction(Function *F, Constant *&RetVal,
2288 const SmallVectorImpl<Constant*> &ActualArgs);
2290 /// EvaluateBlock - Evaluate all instructions in block BB, returning true if
2291 /// successful, false if we can't evaluate it. NewBB returns the next BB that
2292 /// control flows into, or null upon return.
2293 bool EvaluateBlock(BasicBlock::iterator CurInst, BasicBlock *&NextBB);
2295 Constant *getVal(Value *V) {
2296 if (Constant *CV = dyn_cast<Constant>(V)) return CV;
2297 Constant *R = ValueStack.back()->lookup(V);
2298 assert(R && "Reference to an uncomputed value!");
2302 void setVal(Value *V, Constant *C) {
2303 ValueStack.back()->operator[](V) = C;
2306 const DenseMap<Constant*, Constant*> &getMutatedMemory() const {
2307 return MutatedMemory;
2310 const SmallPtrSet<GlobalVariable*, 8> &getInvariants() const {
2315 Constant *ComputeLoadResult(Constant *P);
2317 /// ValueStack - As we compute SSA register values, we store their contents
2318 /// here. The back of the vector contains the current function and the stack
2319 /// contains the values in the calling frames.
2320 SmallVector<DenseMap<Value*, Constant*>*, 4> ValueStack;
2322 /// CallStack - This is used to detect recursion. In pathological situations
2323 /// we could hit exponential behavior, but at least there is nothing
2325 SmallVector<Function*, 4> CallStack;
2327 /// MutatedMemory - For each store we execute, we update this map. Loads
2328 /// check this to get the most up-to-date value. If evaluation is successful,
2329 /// this state is committed to the process.
2330 DenseMap<Constant*, Constant*> MutatedMemory;
2332 /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
2333 /// to represent its body. This vector is needed so we can delete the
2334 /// temporary globals when we are done.
2335 SmallVector<GlobalVariable*, 32> AllocaTmps;
2337 /// Invariants - These global variables have been marked invariant by the
2338 /// static constructor.
2339 SmallPtrSet<GlobalVariable*, 8> Invariants;
2341 /// SimpleConstants - These are constants we have checked and know to be
2342 /// simple enough to live in a static initializer of a global.
2343 SmallPtrSet<Constant*, 8> SimpleConstants;
2345 const TargetData *TD;
2346 const TargetLibraryInfo *TLI;
2349 } // anonymous namespace
2351 /// ComputeLoadResult - Return the value that would be computed by a load from
2352 /// P after the stores reflected by 'memory' have been performed. If we can't
2353 /// decide, return null.
2354 Constant *Evaluator::ComputeLoadResult(Constant *P) {
2355 // If this memory location has been recently stored, use the stored value: it
2356 // is the most up-to-date.
2357 DenseMap<Constant*, Constant*>::const_iterator I = MutatedMemory.find(P);
2358 if (I != MutatedMemory.end()) return I->second;
2361 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
2362 if (GV->hasDefinitiveInitializer())
2363 return GV->getInitializer();
2367 // Handle a constantexpr getelementptr.
2368 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
2369 if (CE->getOpcode() == Instruction::GetElementPtr &&
2370 isa<GlobalVariable>(CE->getOperand(0))) {
2371 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2372 if (GV->hasDefinitiveInitializer())
2373 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2376 return 0; // don't know how to evaluate.
2379 /// EvaluateBlock - Evaluate all instructions in block BB, returning true if
2380 /// successful, false if we can't evaluate it. NewBB returns the next BB that
2381 /// control flows into, or null upon return.
2382 bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
2383 BasicBlock *&NextBB) {
2384 // This is the main evaluation loop.
2386 Constant *InstResult = 0;
2388 if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
2389 if (!SI->isSimple()) return false; // no volatile/atomic accesses.
2390 Constant *Ptr = getVal(SI->getOperand(1));
2391 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
2392 Ptr = ConstantFoldConstantExpression(CE, TD, TLI);
2393 if (!isSimpleEnoughPointerToCommit(Ptr))
2394 // If this is too complex for us to commit, reject it.
2397 Constant *Val = getVal(SI->getOperand(0));
2399 // If this might be too difficult for the backend to handle (e.g. the addr
2400 // of one global variable divided by another) then we can't commit it.
2401 if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, TD))
2404 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
2405 if (CE->getOpcode() == Instruction::BitCast) {
2406 // If we're evaluating a store through a bitcast, then we need
2407 // to pull the bitcast off the pointer type and push it onto the
2409 Ptr = CE->getOperand(0);
2411 Type *NewTy = cast<PointerType>(Ptr->getType())->getElementType();
2413 // In order to push the bitcast onto the stored value, a bitcast
2414 // from NewTy to Val's type must be legal. If it's not, we can try
2415 // introspecting NewTy to find a legal conversion.
2416 while (!Val->getType()->canLosslesslyBitCastTo(NewTy)) {
2417 // If NewTy is a struct, we can convert the pointer to the struct
2418 // into a pointer to its first member.
2419 // FIXME: This could be extended to support arrays as well.
2420 if (StructType *STy = dyn_cast<StructType>(NewTy)) {
2421 NewTy = STy->getTypeAtIndex(0U);
2423 IntegerType *IdxTy = IntegerType::get(NewTy->getContext(), 32);
2424 Constant *IdxZero = ConstantInt::get(IdxTy, 0, false);
2425 Constant * const IdxList[] = {IdxZero, IdxZero};
2427 Ptr = ConstantExpr::getGetElementPtr(Ptr, IdxList);
2428 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
2429 Ptr = ConstantFoldConstantExpression(CE, TD, TLI);
2431 // If we can't improve the situation by introspecting NewTy,
2432 // we have to give up.
2438 // If we found compatible types, go ahead and push the bitcast
2439 // onto the stored value.
2440 Val = ConstantExpr::getBitCast(Val, NewTy);
2443 MutatedMemory[Ptr] = Val;
2444 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
2445 InstResult = ConstantExpr::get(BO->getOpcode(),
2446 getVal(BO->getOperand(0)),
2447 getVal(BO->getOperand(1)));
2448 } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
2449 InstResult = ConstantExpr::getCompare(CI->getPredicate(),
2450 getVal(CI->getOperand(0)),
2451 getVal(CI->getOperand(1)));
2452 } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
2453 InstResult = ConstantExpr::getCast(CI->getOpcode(),
2454 getVal(CI->getOperand(0)),
2456 } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
2457 InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)),
2458 getVal(SI->getOperand(1)),
2459 getVal(SI->getOperand(2)));
2460 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
2461 Constant *P = getVal(GEP->getOperand(0));
2462 SmallVector<Constant*, 8> GEPOps;
2463 for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
2465 GEPOps.push_back(getVal(*i));
2467 ConstantExpr::getGetElementPtr(P, GEPOps,
2468 cast<GEPOperator>(GEP)->isInBounds());
2469 } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
2470 if (!LI->isSimple()) return false; // no volatile/atomic accesses.
2471 Constant *Ptr = getVal(LI->getOperand(0));
2472 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
2473 Ptr = ConstantFoldConstantExpression(CE, TD, TLI);
2474 InstResult = ComputeLoadResult(Ptr);
2475 if (InstResult == 0) return false; // Could not evaluate load.
2476 } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
2477 if (AI->isArrayAllocation()) return false; // Cannot handle array allocs.
2478 Type *Ty = AI->getType()->getElementType();
2479 AllocaTmps.push_back(new GlobalVariable(Ty, false,
2480 GlobalValue::InternalLinkage,
2481 UndefValue::get(Ty),
2483 InstResult = AllocaTmps.back();
2484 } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) {
2485 CallSite CS(CurInst);
2487 // Debug info can safely be ignored here.
2488 if (isa<DbgInfoIntrinsic>(CS.getInstruction())) {
2493 // Cannot handle inline asm.
2494 if (isa<InlineAsm>(CS.getCalledValue())) return false;
2496 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
2497 if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) {
2498 if (MSI->isVolatile()) return false;
2499 Constant *Ptr = getVal(MSI->getDest());
2500 Constant *Val = getVal(MSI->getValue());
2501 Constant *DestVal = ComputeLoadResult(getVal(Ptr));
2502 if (Val->isNullValue() && DestVal && DestVal->isNullValue()) {
2503 // This memset is a no-op.
2509 if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
2510 II->getIntrinsicID() == Intrinsic::lifetime_end) {
2515 if (II->getIntrinsicID() == Intrinsic::invariant_start) {
2516 // We don't insert an entry into Values, as it doesn't have a
2517 // meaningful return value.
2518 if (!II->use_empty())
2520 ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0));
2521 Value *PtrArg = getVal(II->getArgOperand(1));
2522 Value *Ptr = PtrArg->stripPointerCasts();
2523 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
2524 Type *ElemTy = cast<PointerType>(GV->getType())->getElementType();
2525 if (!Size->isAllOnesValue() &&
2526 Size->getValue().getLimitedValue() >=
2527 TD->getTypeStoreSize(ElemTy))
2528 Invariants.insert(GV);
2530 // Continue even if we do nothing.
2537 // Resolve function pointers.
2538 Function *Callee = dyn_cast<Function>(getVal(CS.getCalledValue()));
2539 if (!Callee || Callee->mayBeOverridden())
2540 return false; // Cannot resolve.
2542 SmallVector<Constant*, 8> Formals;
2543 for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i)
2544 Formals.push_back(getVal(*i));
2546 if (Callee->isDeclaration()) {
2547 // If this is a function we can constant fold, do it.
2548 if (Constant *C = ConstantFoldCall(Callee, Formals, TLI)) {
2554 if (Callee->getFunctionType()->isVarArg())
2558 // Execute the call, if successful, use the return value.
2559 ValueStack.push_back(new DenseMap<Value*, Constant*>);
2560 if (!EvaluateFunction(Callee, RetVal, Formals))
2562 delete ValueStack.pop_back_val();
2563 InstResult = RetVal;
2565 } else if (isa<TerminatorInst>(CurInst)) {
2566 if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
2567 if (BI->isUnconditional()) {
2568 NextBB = BI->getSuccessor(0);
2571 dyn_cast<ConstantInt>(getVal(BI->getCondition()));
2572 if (!Cond) return false; // Cannot determine.
2574 NextBB = BI->getSuccessor(!Cond->getZExtValue());
2576 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
2578 dyn_cast<ConstantInt>(getVal(SI->getCondition()));
2579 if (!Val) return false; // Cannot determine.
2580 NextBB = SI->findCaseValue(Val).getCaseSuccessor();
2581 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
2582 Value *Val = getVal(IBI->getAddress())->stripPointerCasts();
2583 if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
2584 NextBB = BA->getBasicBlock();
2586 return false; // Cannot determine.
2587 } else if (isa<ReturnInst>(CurInst)) {
2590 // invoke, unwind, resume, unreachable.
2591 return false; // Cannot handle this terminator.
2594 // We succeeded at evaluating this block!
2597 // Did not know how to evaluate this!
2601 if (!CurInst->use_empty()) {
2602 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult))
2603 InstResult = ConstantFoldConstantExpression(CE, TD, TLI);
2605 setVal(CurInst, InstResult);
2608 // If we just processed an invoke, we finished evaluating the block.
2609 if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) {
2610 NextBB = II->getNormalDest();
2614 // Advance program counter.
2619 /// EvaluateFunction - Evaluate a call to function F, returning true if
2620 /// successful, false if we can't evaluate it. ActualArgs contains the formal
2621 /// arguments for the function.
2622 bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal,
2623 const SmallVectorImpl<Constant*> &ActualArgs) {
2624 // Check to see if this function is already executing (recursion). If so,
2625 // bail out. TODO: we might want to accept limited recursion.
2626 if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
2629 CallStack.push_back(F);
2631 // Initialize arguments to the incoming values specified.
2633 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
2635 setVal(AI, ActualArgs[ArgNo]);
2637 // ExecutedBlocks - We only handle non-looping, non-recursive code. As such,
2638 // we can only evaluate any one basic block at most once. This set keeps
2639 // track of what we have executed so we can detect recursive cases etc.
2640 SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
2642 // CurBB - The current basic block we're evaluating.
2643 BasicBlock *CurBB = F->begin();
2645 BasicBlock::iterator CurInst = CurBB->begin();
2648 BasicBlock *NextBB = 0; // Initialized to avoid compiler warnings.
2649 if (!EvaluateBlock(CurInst, NextBB))
2653 // Successfully running until there's no next block means that we found
2654 // the return. Fill it the return value and pop the call stack.
2655 ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator());
2656 if (RI->getNumOperands())
2657 RetVal = getVal(RI->getOperand(0));
2658 CallStack.pop_back();
2662 // Okay, we succeeded in evaluating this control flow. See if we have
2663 // executed the new block before. If so, we have a looping function,
2664 // which we cannot evaluate in reasonable time.
2665 if (!ExecutedBlocks.insert(NextBB))
2666 return false; // looped!
2668 // Okay, we have never been in this block before. Check to see if there
2669 // are any PHI nodes. If so, evaluate them with information about where
2672 for (CurInst = NextBB->begin();
2673 (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
2674 setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB)));
2676 // Advance to the next block.
2681 /// EvaluateStaticConstructor - Evaluate static constructors in the function, if
2682 /// we can. Return true if we can, false otherwise.
2683 static bool EvaluateStaticConstructor(Function *F, const TargetData *TD,
2684 const TargetLibraryInfo *TLI) {
2685 // Call the function.
2686 Evaluator Eval(TD, TLI);
2687 Constant *RetValDummy;
2688 bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2689 SmallVector<Constant*, 0>());
2692 // We succeeded at evaluation: commit the result.
2693 DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2694 << F->getName() << "' to " << Eval.getMutatedMemory().size()
2696 for (DenseMap<Constant*, Constant*>::const_iterator I =
2697 Eval.getMutatedMemory().begin(), E = Eval.getMutatedMemory().end();
2699 CommitValueTo(I->second, I->first);
2700 for (SmallPtrSet<GlobalVariable*, 8>::const_iterator I =
2701 Eval.getInvariants().begin(), E = Eval.getInvariants().end();
2703 (*I)->setConstant(true);
2709 /// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible.
2710 /// Return true if anything changed.
2711 bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) {
2712 std::vector<Function*> Ctors = ParseGlobalCtors(GCL);
2713 bool MadeChange = false;
2714 if (Ctors.empty()) return false;
2716 // Loop over global ctors, optimizing them when we can.
2717 for (unsigned i = 0; i != Ctors.size(); ++i) {
2718 Function *F = Ctors[i];
2719 // Found a null terminator in the middle of the list, prune off the rest of
2722 if (i != Ctors.size()-1) {
2729 // We cannot simplify external ctor functions.
2730 if (F->empty()) continue;
2732 // If we can evaluate the ctor at compile time, do.
2733 if (EvaluateStaticConstructor(F, TD, TLI)) {
2734 Ctors.erase(Ctors.begin()+i);
2737 ++NumCtorsEvaluated;
2742 if (!MadeChange) return false;
2744 GCL = InstallGlobalCtors(GCL, Ctors);
2748 bool GlobalOpt::OptimizeGlobalAliases(Module &M) {
2749 bool Changed = false;
2751 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2753 Module::alias_iterator J = I++;
2754 // Aliases without names cannot be referenced outside this module.
2755 if (!J->hasName() && !J->isDeclaration())
2756 J->setLinkage(GlobalValue::InternalLinkage);
2757 // If the aliasee may change at link time, nothing can be done - bail out.
2758 if (J->mayBeOverridden())
2761 Constant *Aliasee = J->getAliasee();
2762 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2763 Target->removeDeadConstantUsers();
2764 bool hasOneUse = Target->hasOneUse() && Aliasee->hasOneUse();
2766 // Make all users of the alias use the aliasee instead.
2767 if (!J->use_empty()) {
2768 J->replaceAllUsesWith(Aliasee);
2769 ++NumAliasesResolved;
2773 // If the alias is externally visible, we may still be able to simplify it.
2774 if (!J->hasLocalLinkage()) {
2775 // If the aliasee has internal linkage, give it the name and linkage
2776 // of the alias, and delete the alias. This turns:
2777 // define internal ... @f(...)
2778 // @a = alias ... @f
2780 // define ... @a(...)
2781 if (!Target->hasLocalLinkage())
2784 // Do not perform the transform if multiple aliases potentially target the
2785 // aliasee. This check also ensures that it is safe to replace the section
2786 // and other attributes of the aliasee with those of the alias.
2790 // Give the aliasee the name, linkage and other attributes of the alias.
2791 Target->takeName(J);
2792 Target->setLinkage(J->getLinkage());
2793 Target->GlobalValue::copyAttributesFrom(J);
2796 // Delete the alias.
2797 M.getAliasList().erase(J);
2798 ++NumAliasesRemoved;
2805 static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) {
2806 if (!TLI->has(LibFunc::cxa_atexit))
2809 Function *Fn = M.getFunction(TLI->getName(LibFunc::cxa_atexit));
2814 FunctionType *FTy = Fn->getFunctionType();
2816 // Checking that the function has the right return type, the right number of
2817 // parameters and that they all have pointer types should be enough.
2818 if (!FTy->getReturnType()->isIntegerTy() ||
2819 FTy->getNumParams() != 3 ||
2820 !FTy->getParamType(0)->isPointerTy() ||
2821 !FTy->getParamType(1)->isPointerTy() ||
2822 !FTy->getParamType(2)->isPointerTy())
2828 /// cxxDtorIsEmpty - Returns whether the given function is an empty C++
2829 /// destructor and can therefore be eliminated.
2830 /// Note that we assume that other optimization passes have already simplified
2831 /// the code so we only look for a function with a single basic block, where
2832 /// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and
2833 /// other side-effect free instructions.
2834 static bool cxxDtorIsEmpty(const Function &Fn,
2835 SmallPtrSet<const Function *, 8> &CalledFunctions) {
2836 // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
2837 // nounwind, but that doesn't seem worth doing.
2838 if (Fn.isDeclaration())
2841 if (++Fn.begin() != Fn.end())
2844 const BasicBlock &EntryBlock = Fn.getEntryBlock();
2845 for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end();
2847 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
2848 // Ignore debug intrinsics.
2849 if (isa<DbgInfoIntrinsic>(CI))
2852 const Function *CalledFn = CI->getCalledFunction();
2857 SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions);
2859 // Don't treat recursive functions as empty.
2860 if (!NewCalledFunctions.insert(CalledFn))
2863 if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions))
2865 } else if (isa<ReturnInst>(*I))
2866 return true; // We're done.
2867 else if (I->mayHaveSideEffects())
2868 return false; // Destructor with side effects, bail.
2874 bool GlobalOpt::OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
2875 /// Itanium C++ ABI p3.3.5:
2877 /// After constructing a global (or local static) object, that will require
2878 /// destruction on exit, a termination function is registered as follows:
2880 /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
2882 /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
2883 /// call f(p) when DSO d is unloaded, before all such termination calls
2884 /// registered before this one. It returns zero if registration is
2885 /// successful, nonzero on failure.
2887 // This pass will look for calls to __cxa_atexit where the function is trivial
2889 bool Changed = false;
2891 for (Function::use_iterator I = CXAAtExitFn->use_begin(),
2892 E = CXAAtExitFn->use_end(); I != E;) {
2893 // We're only interested in calls. Theoretically, we could handle invoke
2894 // instructions as well, but neither llvm-gcc nor clang generate invokes
2896 CallInst *CI = dyn_cast<CallInst>(*I++);
2901 dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
2905 SmallPtrSet<const Function *, 8> CalledFunctions;
2906 if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions))
2909 // Just remove the call.
2910 CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
2911 CI->eraseFromParent();
2913 ++NumCXXDtorsRemoved;
2921 bool GlobalOpt::runOnModule(Module &M) {
2922 bool Changed = false;
2924 TD = getAnalysisIfAvailable<TargetData>();
2925 TLI = &getAnalysis<TargetLibraryInfo>();
2927 // Try to find the llvm.globalctors list.
2928 GlobalVariable *GlobalCtors = FindGlobalCtors(M);
2930 Function *CXAAtExitFn = FindCXAAtExit(M, TLI);
2932 bool LocalChange = true;
2933 while (LocalChange) {
2934 LocalChange = false;
2936 // Delete functions that are trivially dead, ccc -> fastcc
2937 LocalChange |= OptimizeFunctions(M);
2939 // Optimize global_ctors list.
2941 LocalChange |= OptimizeGlobalCtorsList(GlobalCtors);
2943 // Optimize non-address-taken globals.
2944 LocalChange |= OptimizeGlobalVars(M);
2946 // Resolve aliases, when possible.
2947 LocalChange |= OptimizeGlobalAliases(M);
2949 // Try to remove trivial global destructors.
2951 LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
2953 Changed |= LocalChange;
2956 // TODO: Move all global ctors functions to the end of the module for code