Prefer shuffles to selects. Backends love shuffles!
[oota-llvm.git] / lib / Transforms / InstCombine / InstCombineSelect.cpp
1 //===- InstCombineSelect.cpp ----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitSelect function.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombine.h"
15 #include "llvm/Support/PatternMatch.h"
16 #include "llvm/Analysis/ConstantFolding.h"
17 #include "llvm/Analysis/InstructionSimplify.h"
18 using namespace llvm;
19 using namespace PatternMatch;
20
21 /// MatchSelectPattern - Pattern match integer [SU]MIN, [SU]MAX, and ABS idioms,
22 /// returning the kind and providing the out parameter results if we
23 /// successfully match.
24 static SelectPatternFlavor
25 MatchSelectPattern(Value *V, Value *&LHS, Value *&RHS) {
26   SelectInst *SI = dyn_cast<SelectInst>(V);
27   if (SI == 0) return SPF_UNKNOWN;
28
29   ICmpInst *ICI = dyn_cast<ICmpInst>(SI->getCondition());
30   if (ICI == 0) return SPF_UNKNOWN;
31
32   LHS = ICI->getOperand(0);
33   RHS = ICI->getOperand(1);
34
35   // (icmp X, Y) ? X : Y
36   if (SI->getTrueValue() == ICI->getOperand(0) &&
37       SI->getFalseValue() == ICI->getOperand(1)) {
38     switch (ICI->getPredicate()) {
39     default: return SPF_UNKNOWN; // Equality.
40     case ICmpInst::ICMP_UGT:
41     case ICmpInst::ICMP_UGE: return SPF_UMAX;
42     case ICmpInst::ICMP_SGT:
43     case ICmpInst::ICMP_SGE: return SPF_SMAX;
44     case ICmpInst::ICMP_ULT:
45     case ICmpInst::ICMP_ULE: return SPF_UMIN;
46     case ICmpInst::ICMP_SLT:
47     case ICmpInst::ICMP_SLE: return SPF_SMIN;
48     }
49   }
50
51   // (icmp X, Y) ? Y : X
52   if (SI->getTrueValue() == ICI->getOperand(1) &&
53       SI->getFalseValue() == ICI->getOperand(0)) {
54     switch (ICI->getPredicate()) {
55       default: return SPF_UNKNOWN; // Equality.
56       case ICmpInst::ICMP_UGT:
57       case ICmpInst::ICMP_UGE: return SPF_UMIN;
58       case ICmpInst::ICMP_SGT:
59       case ICmpInst::ICMP_SGE: return SPF_SMIN;
60       case ICmpInst::ICMP_ULT:
61       case ICmpInst::ICMP_ULE: return SPF_UMAX;
62       case ICmpInst::ICMP_SLT:
63       case ICmpInst::ICMP_SLE: return SPF_SMAX;
64     }
65   }
66
67   // TODO: (X > 4) ? X : 5   -->  (X >= 5) ? X : 5  -->  MAX(X, 5)
68
69   return SPF_UNKNOWN;
70 }
71
72
73 /// GetSelectFoldableOperands - We want to turn code that looks like this:
74 ///   %C = or %A, %B
75 ///   %D = select %cond, %C, %A
76 /// into:
77 ///   %C = select %cond, %B, 0
78 ///   %D = or %A, %C
79 ///
80 /// Assuming that the specified instruction is an operand to the select, return
81 /// a bitmask indicating which operands of this instruction are foldable if they
82 /// equal the other incoming value of the select.
83 ///
84 static unsigned GetSelectFoldableOperands(Instruction *I) {
85   switch (I->getOpcode()) {
86   case Instruction::Add:
87   case Instruction::Mul:
88   case Instruction::And:
89   case Instruction::Or:
90   case Instruction::Xor:
91     return 3;              // Can fold through either operand.
92   case Instruction::Sub:   // Can only fold on the amount subtracted.
93   case Instruction::Shl:   // Can only fold on the shift amount.
94   case Instruction::LShr:
95   case Instruction::AShr:
96     return 1;
97   default:
98     return 0;              // Cannot fold
99   }
100 }
101
102 /// GetSelectFoldableConstant - For the same transformation as the previous
103 /// function, return the identity constant that goes into the select.
104 static Constant *GetSelectFoldableConstant(Instruction *I) {
105   switch (I->getOpcode()) {
106   default: llvm_unreachable("This cannot happen!");
107   case Instruction::Add:
108   case Instruction::Sub:
109   case Instruction::Or:
110   case Instruction::Xor:
111   case Instruction::Shl:
112   case Instruction::LShr:
113   case Instruction::AShr:
114     return Constant::getNullValue(I->getType());
115   case Instruction::And:
116     return Constant::getAllOnesValue(I->getType());
117   case Instruction::Mul:
118     return ConstantInt::get(I->getType(), 1);
119   }
120 }
121
122 /// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
123 /// have the same opcode and only one use each.  Try to simplify this.
124 Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
125                                           Instruction *FI) {
126   if (TI->getNumOperands() == 1) {
127     // If this is a non-volatile load or a cast from the same type,
128     // merge.
129     if (TI->isCast()) {
130       if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
131         return 0;
132       // The select condition may be a vector. We may only change the operand
133       // type if the vector width remains the same (and matches the condition).
134       Type *CondTy = SI.getCondition()->getType();
135       if (CondTy->isVectorTy() && CondTy->getVectorNumElements() !=
136           FI->getOperand(0)->getType()->getVectorNumElements())
137         return 0;
138     } else {
139       return 0;  // unknown unary op.
140     }
141
142     // Fold this by inserting a select from the input values.
143     Value *NewSI = Builder->CreateSelect(SI.getCondition(), TI->getOperand(0),
144                                          FI->getOperand(0), SI.getName()+".v");
145     return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
146                             TI->getType());
147   }
148
149   // Only handle binary operators here.
150   if (!isa<BinaryOperator>(TI))
151     return 0;
152
153   // Figure out if the operations have any operands in common.
154   Value *MatchOp, *OtherOpT, *OtherOpF;
155   bool MatchIsOpZero;
156   if (TI->getOperand(0) == FI->getOperand(0)) {
157     MatchOp  = TI->getOperand(0);
158     OtherOpT = TI->getOperand(1);
159     OtherOpF = FI->getOperand(1);
160     MatchIsOpZero = true;
161   } else if (TI->getOperand(1) == FI->getOperand(1)) {
162     MatchOp  = TI->getOperand(1);
163     OtherOpT = TI->getOperand(0);
164     OtherOpF = FI->getOperand(0);
165     MatchIsOpZero = false;
166   } else if (!TI->isCommutative()) {
167     return 0;
168   } else if (TI->getOperand(0) == FI->getOperand(1)) {
169     MatchOp  = TI->getOperand(0);
170     OtherOpT = TI->getOperand(1);
171     OtherOpF = FI->getOperand(0);
172     MatchIsOpZero = true;
173   } else if (TI->getOperand(1) == FI->getOperand(0)) {
174     MatchOp  = TI->getOperand(1);
175     OtherOpT = TI->getOperand(0);
176     OtherOpF = FI->getOperand(1);
177     MatchIsOpZero = true;
178   } else {
179     return 0;
180   }
181
182   // If we reach here, they do have operations in common.
183   Value *NewSI = Builder->CreateSelect(SI.getCondition(), OtherOpT,
184                                        OtherOpF, SI.getName()+".v");
185
186   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
187     if (MatchIsOpZero)
188       return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
189     else
190       return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
191   }
192   llvm_unreachable("Shouldn't get here");
193 }
194
195 static bool isSelect01(Constant *C1, Constant *C2) {
196   ConstantInt *C1I = dyn_cast<ConstantInt>(C1);
197   if (!C1I)
198     return false;
199   ConstantInt *C2I = dyn_cast<ConstantInt>(C2);
200   if (!C2I)
201     return false;
202   if (!C1I->isZero() && !C2I->isZero()) // One side must be zero.
203     return false;
204   return C1I->isOne() || C1I->isAllOnesValue() ||
205          C2I->isOne() || C2I->isAllOnesValue();
206 }
207
208 /// FoldSelectIntoOp - Try fold the select into one of the operands to
209 /// facilitate further optimization.
210 Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal,
211                                             Value *FalseVal) {
212   // See the comment above GetSelectFoldableOperands for a description of the
213   // transformation we are doing here.
214   if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) {
215     if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
216         !isa<Constant>(FalseVal)) {
217       if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
218         unsigned OpToFold = 0;
219         if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
220           OpToFold = 1;
221         } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
222           OpToFold = 2;
223         }
224
225         if (OpToFold) {
226           Constant *C = GetSelectFoldableConstant(TVI);
227           Value *OOp = TVI->getOperand(2-OpToFold);
228           // Avoid creating select between 2 constants unless it's selecting
229           // between 0, 1 and -1.
230           if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
231             Value *NewSel = Builder->CreateSelect(SI.getCondition(), OOp, C);
232             NewSel->takeName(TVI);
233             BinaryOperator *TVI_BO = cast<BinaryOperator>(TVI);
234             BinaryOperator *BO = BinaryOperator::Create(TVI_BO->getOpcode(),
235                                                         FalseVal, NewSel);
236             if (isa<PossiblyExactOperator>(BO))
237               BO->setIsExact(TVI_BO->isExact());
238             if (isa<OverflowingBinaryOperator>(BO)) {
239               BO->setHasNoUnsignedWrap(TVI_BO->hasNoUnsignedWrap());
240               BO->setHasNoSignedWrap(TVI_BO->hasNoSignedWrap());
241             }
242             return BO;
243           }
244         }
245       }
246     }
247   }
248
249   if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) {
250     if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
251         !isa<Constant>(TrueVal)) {
252       if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
253         unsigned OpToFold = 0;
254         if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
255           OpToFold = 1;
256         } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
257           OpToFold = 2;
258         }
259
260         if (OpToFold) {
261           Constant *C = GetSelectFoldableConstant(FVI);
262           Value *OOp = FVI->getOperand(2-OpToFold);
263           // Avoid creating select between 2 constants unless it's selecting
264           // between 0, 1 and -1.
265           if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
266             Value *NewSel = Builder->CreateSelect(SI.getCondition(), C, OOp);
267             NewSel->takeName(FVI);
268             BinaryOperator *FVI_BO = cast<BinaryOperator>(FVI);
269             BinaryOperator *BO = BinaryOperator::Create(FVI_BO->getOpcode(),
270                                                         TrueVal, NewSel);
271             if (isa<PossiblyExactOperator>(BO))
272               BO->setIsExact(FVI_BO->isExact());
273             if (isa<OverflowingBinaryOperator>(BO)) {
274               BO->setHasNoUnsignedWrap(FVI_BO->hasNoUnsignedWrap());
275               BO->setHasNoSignedWrap(FVI_BO->hasNoSignedWrap());
276             }
277             return BO;
278           }
279         }
280       }
281     }
282   }
283
284   return 0;
285 }
286
287 /// SimplifyWithOpReplaced - See if V simplifies when its operand Op is
288 /// replaced with RepOp.
289 static Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
290                                      const TargetData *TD,
291                                      const TargetLibraryInfo *TLI) {
292   // Trivial replacement.
293   if (V == Op)
294     return RepOp;
295
296   Instruction *I = dyn_cast<Instruction>(V);
297   if (!I)
298     return 0;
299
300   // If this is a binary operator, try to simplify it with the replaced op.
301   if (BinaryOperator *B = dyn_cast<BinaryOperator>(I)) {
302     if (B->getOperand(0) == Op)
303       return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), TD, TLI);
304     if (B->getOperand(1) == Op)
305       return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, TD, TLI);
306   }
307
308   // Same for CmpInsts.
309   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
310     if (C->getOperand(0) == Op)
311       return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), TD,
312                              TLI);
313     if (C->getOperand(1) == Op)
314       return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, TD,
315                              TLI);
316   }
317
318   // TODO: We could hand off more cases to instsimplify here.
319
320   // If all operands are constant after substituting Op for RepOp then we can
321   // constant fold the instruction.
322   if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
323     // Build a list of all constant operands.
324     SmallVector<Constant*, 8> ConstOps;
325     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
326       if (I->getOperand(i) == Op)
327         ConstOps.push_back(CRepOp);
328       else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
329         ConstOps.push_back(COp);
330       else
331         break;
332     }
333
334     // All operands were constants, fold it.
335     if (ConstOps.size() == I->getNumOperands()) {
336       if (LoadInst *LI = dyn_cast<LoadInst>(I))
337         if (!LI->isVolatile())
338           return ConstantFoldLoadFromConstPtr(ConstOps[0], TD);
339
340       return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
341                                       ConstOps, TD, TLI);
342     }
343   }
344
345   return 0;
346 }
347
348 /// visitSelectInstWithICmp - Visit a SelectInst that has an
349 /// ICmpInst as its first operand.
350 ///
351 Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
352                                                    ICmpInst *ICI) {
353   bool Changed = false;
354   ICmpInst::Predicate Pred = ICI->getPredicate();
355   Value *CmpLHS = ICI->getOperand(0);
356   Value *CmpRHS = ICI->getOperand(1);
357   Value *TrueVal = SI.getTrueValue();
358   Value *FalseVal = SI.getFalseValue();
359
360   // Check cases where the comparison is with a constant that
361   // can be adjusted to fit the min/max idiom. We may move or edit ICI
362   // here, so make sure the select is the only user.
363   if (ICI->hasOneUse())
364     if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
365       // X < MIN ? T : F  -->  F
366       if ((Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT)
367           && CI->isMinValue(Pred == ICmpInst::ICMP_SLT))
368         return ReplaceInstUsesWith(SI, FalseVal);
369       // X > MAX ? T : F  -->  F
370       else if ((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT)
371                && CI->isMaxValue(Pred == ICmpInst::ICMP_SGT))
372         return ReplaceInstUsesWith(SI, FalseVal);
373       switch (Pred) {
374       default: break;
375       case ICmpInst::ICMP_ULT:
376       case ICmpInst::ICMP_SLT:
377       case ICmpInst::ICMP_UGT:
378       case ICmpInst::ICMP_SGT: {
379         // These transformations only work for selects over integers.
380         IntegerType *SelectTy = dyn_cast<IntegerType>(SI.getType());
381         if (!SelectTy)
382           break;
383
384         Constant *AdjustedRHS;
385         if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
386           AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() + 1);
387         else // (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
388           AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() - 1);
389
390         // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
391         // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
392         if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
393             (CmpLHS == FalseVal && AdjustedRHS == TrueVal))
394           ; // Nothing to do here. Values match without any sign/zero extension.
395
396         // Types do not match. Instead of calculating this with mixed types
397         // promote all to the larger type. This enables scalar evolution to
398         // analyze this expression.
399         else if (CmpRHS->getType()->getScalarSizeInBits()
400                  < SelectTy->getBitWidth()) {
401           Constant *sextRHS = ConstantExpr::getSExt(AdjustedRHS, SelectTy);
402
403           // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
404           // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
405           // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
406           // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
407           if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) &&
408                 sextRHS == FalseVal) {
409             CmpLHS = TrueVal;
410             AdjustedRHS = sextRHS;
411           } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
412                      sextRHS == TrueVal) {
413             CmpLHS = FalseVal;
414             AdjustedRHS = sextRHS;
415           } else if (ICI->isUnsigned()) {
416             Constant *zextRHS = ConstantExpr::getZExt(AdjustedRHS, SelectTy);
417             // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
418             // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
419             // zext + signed compare cannot be changed:
420             //    0xff <s 0x00, but 0x00ff >s 0x0000
421             if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) &&
422                 zextRHS == FalseVal) {
423               CmpLHS = TrueVal;
424               AdjustedRHS = zextRHS;
425             } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
426                        zextRHS == TrueVal) {
427               CmpLHS = FalseVal;
428               AdjustedRHS = zextRHS;
429             } else
430               break;
431           } else
432             break;
433         } else
434           break;
435
436         Pred = ICmpInst::getSwappedPredicate(Pred);
437         CmpRHS = AdjustedRHS;
438         std::swap(FalseVal, TrueVal);
439         ICI->setPredicate(Pred);
440         ICI->setOperand(0, CmpLHS);
441         ICI->setOperand(1, CmpRHS);
442         SI.setOperand(1, TrueVal);
443         SI.setOperand(2, FalseVal);
444
445         // Move ICI instruction right before the select instruction. Otherwise
446         // the sext/zext value may be defined after the ICI instruction uses it.
447         ICI->moveBefore(&SI);
448
449         Changed = true;
450         break;
451       }
452       }
453     }
454
455   // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1
456   // and       (X <s  0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1
457   // FIXME: Type and constness constraints could be lifted, but we have to
458   //        watch code size carefully. We should consider xor instead of
459   //        sub/add when we decide to do that.
460   if (IntegerType *Ty = dyn_cast<IntegerType>(CmpLHS->getType())) {
461     if (TrueVal->getType() == Ty) {
462       if (ConstantInt *Cmp = dyn_cast<ConstantInt>(CmpRHS)) {
463         ConstantInt *C1 = NULL, *C2 = NULL;
464         if (Pred == ICmpInst::ICMP_SGT && Cmp->isAllOnesValue()) {
465           C1 = dyn_cast<ConstantInt>(TrueVal);
466           C2 = dyn_cast<ConstantInt>(FalseVal);
467         } else if (Pred == ICmpInst::ICMP_SLT && Cmp->isNullValue()) {
468           C1 = dyn_cast<ConstantInt>(FalseVal);
469           C2 = dyn_cast<ConstantInt>(TrueVal);
470         }
471         if (C1 && C2) {
472           // This shift results in either -1 or 0.
473           Value *AShr = Builder->CreateAShr(CmpLHS, Ty->getBitWidth()-1);
474
475           // Check if we can express the operation with a single or.
476           if (C2->isAllOnesValue())
477             return ReplaceInstUsesWith(SI, Builder->CreateOr(AShr, C1));
478
479           Value *And = Builder->CreateAnd(AShr, C2->getValue()-C1->getValue());
480           return ReplaceInstUsesWith(SI, Builder->CreateAdd(And, C1));
481         }
482       }
483     }
484   }
485
486   // If we have an equality comparison then we know the value in one of the
487   // arms of the select. See if substituting this value into the arm and
488   // simplifying the result yields the same value as the other arm.
489   if (Pred == ICmpInst::ICMP_EQ) {
490     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, TD, TLI) == TrueVal ||
491         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, TD, TLI) == TrueVal)
492       return ReplaceInstUsesWith(SI, FalseVal);
493     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, TD, TLI) == FalseVal ||
494         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, TD, TLI) == FalseVal)
495       return ReplaceInstUsesWith(SI, FalseVal);
496   } else if (Pred == ICmpInst::ICMP_NE) {
497     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, TD, TLI) == FalseVal ||
498         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, TD, TLI) == FalseVal)
499       return ReplaceInstUsesWith(SI, TrueVal);
500     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, TD, TLI) == TrueVal ||
501         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, TD, TLI) == TrueVal)
502       return ReplaceInstUsesWith(SI, TrueVal);
503   }
504
505   // NOTE: if we wanted to, this is where to detect integer MIN/MAX
506
507   if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
508     if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
509       // Transform (X == C) ? X : Y -> (X == C) ? C : Y
510       SI.setOperand(1, CmpRHS);
511       Changed = true;
512     } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
513       // Transform (X != C) ? Y : X -> (X != C) ? Y : C
514       SI.setOperand(2, CmpRHS);
515       Changed = true;
516     }
517   }
518
519   return Changed ? &SI : 0;
520 }
521
522
523 /// CanSelectOperandBeMappingIntoPredBlock - SI is a select whose condition is a
524 /// PHI node (but the two may be in different blocks).  See if the true/false
525 /// values (V) are live in all of the predecessor blocks of the PHI.  For
526 /// example, cases like this cannot be mapped:
527 ///
528 ///   X = phi [ C1, BB1], [C2, BB2]
529 ///   Y = add
530 ///   Z = select X, Y, 0
531 ///
532 /// because Y is not live in BB1/BB2.
533 ///
534 static bool CanSelectOperandBeMappingIntoPredBlock(const Value *V,
535                                                    const SelectInst &SI) {
536   // If the value is a non-instruction value like a constant or argument, it
537   // can always be mapped.
538   const Instruction *I = dyn_cast<Instruction>(V);
539   if (I == 0) return true;
540
541   // If V is a PHI node defined in the same block as the condition PHI, we can
542   // map the arguments.
543   const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
544
545   if (const PHINode *VP = dyn_cast<PHINode>(I))
546     if (VP->getParent() == CondPHI->getParent())
547       return true;
548
549   // Otherwise, if the PHI and select are defined in the same block and if V is
550   // defined in a different block, then we can transform it.
551   if (SI.getParent() == CondPHI->getParent() &&
552       I->getParent() != CondPHI->getParent())
553     return true;
554
555   // Otherwise we have a 'hard' case and we can't tell without doing more
556   // detailed dominator based analysis, punt.
557   return false;
558 }
559
560 /// FoldSPFofSPF - We have an SPF (e.g. a min or max) of an SPF of the form:
561 ///   SPF2(SPF1(A, B), C)
562 Instruction *InstCombiner::FoldSPFofSPF(Instruction *Inner,
563                                         SelectPatternFlavor SPF1,
564                                         Value *A, Value *B,
565                                         Instruction &Outer,
566                                         SelectPatternFlavor SPF2, Value *C) {
567   if (C == A || C == B) {
568     // MAX(MAX(A, B), B) -> MAX(A, B)
569     // MIN(MIN(a, b), a) -> MIN(a, b)
570     if (SPF1 == SPF2)
571       return ReplaceInstUsesWith(Outer, Inner);
572
573     // MAX(MIN(a, b), a) -> a
574     // MIN(MAX(a, b), a) -> a
575     if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
576         (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
577         (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
578         (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
579       return ReplaceInstUsesWith(Outer, C);
580   }
581
582   // TODO: MIN(MIN(A, 23), 97)
583   return 0;
584 }
585
586
587 /// foldSelectICmpAnd - If one of the constants is zero (we know they can't
588 /// both be) and we have an icmp instruction with zero, and we have an 'and'
589 /// with the non-constant value and a power of two we can turn the select
590 /// into a shift on the result of the 'and'.
591 static Value *foldSelectICmpAnd(const SelectInst &SI, ConstantInt *TrueVal,
592                                 ConstantInt *FalseVal,
593                                 InstCombiner::BuilderTy *Builder) {
594   const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition());
595   if (!IC || !IC->isEquality())
596     return 0;
597
598   if (!match(IC->getOperand(1), m_Zero()))
599     return 0;
600
601   ConstantInt *AndRHS;
602   Value *LHS = IC->getOperand(0);
603   if (LHS->getType() != SI.getType() ||
604       !match(LHS, m_And(m_Value(), m_ConstantInt(AndRHS))))
605     return 0;
606
607   // If both select arms are non-zero see if we have a select of the form
608   // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic
609   // for 'x ? 2^n : 0' and fix the thing up at the end.
610   ConstantInt *Offset = 0;
611   if (!TrueVal->isZero() && !FalseVal->isZero()) {
612     if ((TrueVal->getValue() - FalseVal->getValue()).isPowerOf2())
613       Offset = FalseVal;
614     else if ((FalseVal->getValue() - TrueVal->getValue()).isPowerOf2())
615       Offset = TrueVal;
616     else
617       return 0;
618
619     // Adjust TrueVal and FalseVal to the offset.
620     TrueVal = ConstantInt::get(Builder->getContext(),
621                                TrueVal->getValue() - Offset->getValue());
622     FalseVal = ConstantInt::get(Builder->getContext(),
623                                 FalseVal->getValue() - Offset->getValue());
624   }
625
626   // Make sure the mask in the 'and' and one of the select arms is a power of 2.
627   if (!AndRHS->getValue().isPowerOf2() ||
628       (!TrueVal->getValue().isPowerOf2() &&
629        !FalseVal->getValue().isPowerOf2()))
630     return 0;
631
632   // Determine which shift is needed to transform result of the 'and' into the
633   // desired result.
634   ConstantInt *ValC = !TrueVal->isZero() ? TrueVal : FalseVal;
635   unsigned ValZeros = ValC->getValue().logBase2();
636   unsigned AndZeros = AndRHS->getValue().logBase2();
637
638   Value *V = LHS;
639   if (ValZeros > AndZeros)
640     V = Builder->CreateShl(V, ValZeros - AndZeros);
641   else if (ValZeros < AndZeros)
642     V = Builder->CreateLShr(V, AndZeros - ValZeros);
643
644   // Okay, now we know that everything is set up, we just don't know whether we
645   // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
646   bool ShouldNotVal = !TrueVal->isZero();
647   ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
648   if (ShouldNotVal)
649     V = Builder->CreateXor(V, ValC);
650
651   // Apply an offset if needed.
652   if (Offset)
653     V = Builder->CreateAdd(V, Offset);
654   return V;
655 }
656
657 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
658   Value *CondVal = SI.getCondition();
659   Value *TrueVal = SI.getTrueValue();
660   Value *FalseVal = SI.getFalseValue();
661
662   if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, TD))
663     return ReplaceInstUsesWith(SI, V);
664
665   if (SI.getType()->isIntegerTy(1)) {
666     if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
667       if (C->getZExtValue()) {
668         // Change: A = select B, true, C --> A = or B, C
669         return BinaryOperator::CreateOr(CondVal, FalseVal);
670       }
671       // Change: A = select B, false, C --> A = and !B, C
672       Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
673       return BinaryOperator::CreateAnd(NotCond, FalseVal);
674     } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
675       if (C->getZExtValue() == false) {
676         // Change: A = select B, C, false --> A = and B, C
677         return BinaryOperator::CreateAnd(CondVal, TrueVal);
678       }
679       // Change: A = select B, C, true --> A = or !B, C
680       Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
681       return BinaryOperator::CreateOr(NotCond, TrueVal);
682     }
683
684     // select a, b, a  -> a&b
685     // select a, a, b  -> a|b
686     if (CondVal == TrueVal)
687       return BinaryOperator::CreateOr(CondVal, FalseVal);
688     else if (CondVal == FalseVal)
689       return BinaryOperator::CreateAnd(CondVal, TrueVal);
690
691     // select a, ~a, b -> (~a)&b
692     // select a, b, ~a -> (~a)|b
693     if (match(TrueVal, m_Not(m_Specific(CondVal))))
694       return BinaryOperator::CreateAnd(TrueVal, FalseVal);
695     else if (match(FalseVal, m_Not(m_Specific(CondVal))))
696       return BinaryOperator::CreateOr(TrueVal, FalseVal);
697   }
698
699   // Selecting between two integer constants?
700   if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
701     if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
702       // select C, 1, 0 -> zext C to int
703       if (FalseValC->isZero() && TrueValC->getValue() == 1)
704         return new ZExtInst(CondVal, SI.getType());
705
706       // select C, -1, 0 -> sext C to int
707       if (FalseValC->isZero() && TrueValC->isAllOnesValue())
708         return new SExtInst(CondVal, SI.getType());
709
710       // select C, 0, 1 -> zext !C to int
711       if (TrueValC->isZero() && FalseValC->getValue() == 1) {
712         Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
713         return new ZExtInst(NotCond, SI.getType());
714       }
715
716       // select C, 0, -1 -> sext !C to int
717       if (TrueValC->isZero() && FalseValC->isAllOnesValue()) {
718         Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
719         return new SExtInst(NotCond, SI.getType());
720       }
721
722       if (Value *V = foldSelectICmpAnd(SI, TrueValC, FalseValC, Builder))
723         return ReplaceInstUsesWith(SI, V);
724     }
725
726   // See if we are selecting two values based on a comparison of the two values.
727   if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
728     if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
729       // Transform (X == Y) ? X : Y  -> Y
730       if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
731         // This is not safe in general for floating point:
732         // consider X== -0, Y== +0.
733         // It becomes safe if either operand is a nonzero constant.
734         ConstantFP *CFPt, *CFPf;
735         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
736               !CFPt->getValueAPF().isZero()) ||
737             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
738              !CFPf->getValueAPF().isZero()))
739         return ReplaceInstUsesWith(SI, FalseVal);
740       }
741       // Transform (X une Y) ? X : Y  -> X
742       if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
743         // This is not safe in general for floating point:
744         // consider X== -0, Y== +0.
745         // It becomes safe if either operand is a nonzero constant.
746         ConstantFP *CFPt, *CFPf;
747         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
748               !CFPt->getValueAPF().isZero()) ||
749             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
750              !CFPf->getValueAPF().isZero()))
751         return ReplaceInstUsesWith(SI, TrueVal);
752       }
753       // NOTE: if we wanted to, this is where to detect MIN/MAX
754
755     } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
756       // Transform (X == Y) ? Y : X  -> X
757       if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
758         // This is not safe in general for floating point:
759         // consider X== -0, Y== +0.
760         // It becomes safe if either operand is a nonzero constant.
761         ConstantFP *CFPt, *CFPf;
762         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
763               !CFPt->getValueAPF().isZero()) ||
764             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
765              !CFPf->getValueAPF().isZero()))
766           return ReplaceInstUsesWith(SI, FalseVal);
767       }
768       // Transform (X une Y) ? Y : X  -> Y
769       if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
770         // This is not safe in general for floating point:
771         // consider X== -0, Y== +0.
772         // It becomes safe if either operand is a nonzero constant.
773         ConstantFP *CFPt, *CFPf;
774         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
775               !CFPt->getValueAPF().isZero()) ||
776             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
777              !CFPf->getValueAPF().isZero()))
778           return ReplaceInstUsesWith(SI, TrueVal);
779       }
780       // NOTE: if we wanted to, this is where to detect MIN/MAX
781     }
782     // NOTE: if we wanted to, this is where to detect ABS
783   }
784
785   // See if we are selecting two values based on a comparison of the two values.
786   if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
787     if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
788       return Result;
789
790   if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
791     if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
792       if (TI->hasOneUse() && FI->hasOneUse()) {
793         Instruction *AddOp = 0, *SubOp = 0;
794
795         // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
796         if (TI->getOpcode() == FI->getOpcode())
797           if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
798             return IV;
799
800         // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))).  This is
801         // even legal for FP.
802         if ((TI->getOpcode() == Instruction::Sub &&
803              FI->getOpcode() == Instruction::Add) ||
804             (TI->getOpcode() == Instruction::FSub &&
805              FI->getOpcode() == Instruction::FAdd)) {
806           AddOp = FI; SubOp = TI;
807         } else if ((FI->getOpcode() == Instruction::Sub &&
808                     TI->getOpcode() == Instruction::Add) ||
809                    (FI->getOpcode() == Instruction::FSub &&
810                     TI->getOpcode() == Instruction::FAdd)) {
811           AddOp = TI; SubOp = FI;
812         }
813
814         if (AddOp) {
815           Value *OtherAddOp = 0;
816           if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
817             OtherAddOp = AddOp->getOperand(1);
818           } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
819             OtherAddOp = AddOp->getOperand(0);
820           }
821
822           if (OtherAddOp) {
823             // So at this point we know we have (Y -> OtherAddOp):
824             //        select C, (add X, Y), (sub X, Z)
825             Value *NegVal;  // Compute -Z
826             if (SI.getType()->isFPOrFPVectorTy()) {
827               NegVal = Builder->CreateFNeg(SubOp->getOperand(1));
828             } else {
829               NegVal = Builder->CreateNeg(SubOp->getOperand(1));
830             }
831
832             Value *NewTrueOp = OtherAddOp;
833             Value *NewFalseOp = NegVal;
834             if (AddOp != TI)
835               std::swap(NewTrueOp, NewFalseOp);
836             Value *NewSel = 
837               Builder->CreateSelect(CondVal, NewTrueOp,
838                                     NewFalseOp, SI.getName() + ".p");
839
840             if (SI.getType()->isFPOrFPVectorTy())
841               return BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
842             else
843               return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
844           }
845         }
846       }
847
848   // See if we can fold the select into one of our operands.
849   if (SI.getType()->isIntegerTy()) {
850     if (Instruction *FoldI = FoldSelectIntoOp(SI, TrueVal, FalseVal))
851       return FoldI;
852
853     // MAX(MAX(a, b), a) -> MAX(a, b)
854     // MIN(MIN(a, b), a) -> MIN(a, b)
855     // MAX(MIN(a, b), a) -> a
856     // MIN(MAX(a, b), a) -> a
857     Value *LHS, *RHS, *LHS2, *RHS2;
858     if (SelectPatternFlavor SPF = MatchSelectPattern(&SI, LHS, RHS)) {
859       if (SelectPatternFlavor SPF2 = MatchSelectPattern(LHS, LHS2, RHS2))
860         if (Instruction *R = FoldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2, 
861                                           SI, SPF, RHS))
862           return R;
863       if (SelectPatternFlavor SPF2 = MatchSelectPattern(RHS, LHS2, RHS2))
864         if (Instruction *R = FoldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2,
865                                           SI, SPF, LHS))
866           return R;
867     }
868
869     // TODO.
870     // ABS(-X) -> ABS(X)
871     // ABS(ABS(X)) -> ABS(X)
872   }
873
874   // See if we can fold the select into a phi node if the condition is a select.
875   if (isa<PHINode>(SI.getCondition()))
876     // The true/false values have to be live in the PHI predecessor's blocks.
877     if (CanSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
878         CanSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
879       if (Instruction *NV = FoldOpIntoPhi(SI))
880         return NV;
881
882   if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
883     if (TrueSI->getCondition() == CondVal) {
884       if (SI.getTrueValue() == TrueSI->getTrueValue())
885         return 0;
886       SI.setOperand(1, TrueSI->getTrueValue());
887       return &SI;
888     }
889   }
890   if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
891     if (FalseSI->getCondition() == CondVal) {
892       if (SI.getFalseValue() == FalseSI->getFalseValue())
893         return 0;
894       SI.setOperand(2, FalseSI->getFalseValue());
895       return &SI;
896     }
897   }
898
899   if (BinaryOperator::isNot(CondVal)) {
900     SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
901     SI.setOperand(1, FalseVal);
902     SI.setOperand(2, TrueVal);
903     return &SI;
904   }
905
906   if (VectorType *VecTy = dyn_cast<VectorType>(SI.getType())) {
907     unsigned VWidth = VecTy->getNumElements();
908     APInt UndefElts(VWidth, 0);
909     APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
910     if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) {
911       if (V != &SI)
912         return ReplaceInstUsesWith(SI, V);
913       return &SI;
914     }
915
916     if (ConstantVector *CV = dyn_cast<ConstantVector>(CondVal)) {
917       // Form a shufflevector instruction.
918       SmallVector<Constant *, 8> Mask(VWidth);
919       Type *Int32Ty = Type::getInt32Ty(CV->getContext());
920       for (unsigned i = 0; i != VWidth; ++i) {
921         Constant *Elem = cast<Constant>(CV->getOperand(i));
922         if (ConstantInt *E = dyn_cast<ConstantInt>(Elem))
923           Mask[i] = ConstantInt::get(Int32Ty, i + (E->isZero() ? VWidth : 0));
924         else if (isa<UndefValue>(Elem))
925           Mask[i] = UndefValue::get(Int32Ty);
926         else
927           return 0;
928       }
929       Constant *MaskVal = ConstantVector::get(Mask);
930       Value *V = Builder->CreateShuffleVector(TrueVal, FalseVal, MaskVal);
931       return ReplaceInstUsesWith(SI, V);
932     }
933   }
934
935   return 0;
936 }