bc022600cbefae90dbc773e30b4fa443d870d0a2
[oota-llvm.git] / lib / Transforms / Instrumentation / ThreadSanitizer.cpp
1 //===-- ThreadSanitizer.cpp - race detector -------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer, a race detector.
11 //
12 // The tool is under development, for the details about previous versions see
13 // http://code.google.com/p/data-race-test
14 //
15 // The instrumentation phase is quite simple:
16 //   - Insert calls to run-time library before every memory access.
17 //      - Optimizations may apply to avoid instrumenting some of the accesses.
18 //   - Insert calls at function entry/exit.
19 // The rest is handled by the run-time library.
20 //===----------------------------------------------------------------------===//
21
22 #define DEBUG_TYPE "tsan"
23
24 #include "llvm/Transforms/Instrumentation.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/Metadata.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
44 #include "llvm/Transforms/Utils/ModuleUtils.h"
45 #include "llvm/Transforms/Utils/SpecialCaseList.h"
46
47 using namespace llvm;
48
49 static cl::opt<std::string>  ClBlacklistFile("tsan-blacklist",
50        cl::desc("Blacklist file"), cl::Hidden);
51 static cl::opt<bool>  ClInstrumentMemoryAccesses(
52     "tsan-instrument-memory-accesses", cl::init(true),
53     cl::desc("Instrument memory accesses"), cl::Hidden);
54 static cl::opt<bool>  ClInstrumentFuncEntryExit(
55     "tsan-instrument-func-entry-exit", cl::init(true),
56     cl::desc("Instrument function entry and exit"), cl::Hidden);
57 static cl::opt<bool>  ClInstrumentAtomics(
58     "tsan-instrument-atomics", cl::init(true),
59     cl::desc("Instrument atomics"), cl::Hidden);
60 static cl::opt<bool>  ClInstrumentMemIntrinsics(
61     "tsan-instrument-memintrinsics", cl::init(true),
62     cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden);
63
64 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
65 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
66 STATISTIC(NumOmittedReadsBeforeWrite,
67           "Number of reads ignored due to following writes");
68 STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size");
69 STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes");
70 STATISTIC(NumInstrumentedVtableReads, "Number of vtable ptr reads");
71 STATISTIC(NumOmittedReadsFromConstantGlobals,
72           "Number of reads from constant globals");
73 STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads");
74
75 namespace {
76
77 /// ThreadSanitizer: instrument the code in module to find races.
78 struct ThreadSanitizer : public FunctionPass {
79   ThreadSanitizer(StringRef BlacklistFile = StringRef())
80       : FunctionPass(ID),
81         DL(0),
82         BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile
83                                             : BlacklistFile) { }
84   const char *getPassName() const override;
85   bool runOnFunction(Function &F) override;
86   bool doInitialization(Module &M) override;
87   static char ID;  // Pass identification, replacement for typeid.
88
89  private:
90   void initializeCallbacks(Module &M);
91   bool instrumentLoadOrStore(Instruction *I);
92   bool instrumentAtomic(Instruction *I);
93   bool instrumentMemIntrinsic(Instruction *I);
94   void chooseInstructionsToInstrument(SmallVectorImpl<Instruction*> &Local,
95                                       SmallVectorImpl<Instruction*> &All);
96   bool addrPointsToConstantData(Value *Addr);
97   int getMemoryAccessFuncIndex(Value *Addr);
98
99   const DataLayout *DL;
100   Type *IntptrTy;
101   SmallString<64> BlacklistFile;
102   OwningPtr<SpecialCaseList> BL;
103   IntegerType *OrdTy;
104   // Callbacks to run-time library are computed in doInitialization.
105   Function *TsanFuncEntry;
106   Function *TsanFuncExit;
107   // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
108   static const size_t kNumberOfAccessSizes = 5;
109   Function *TsanRead[kNumberOfAccessSizes];
110   Function *TsanWrite[kNumberOfAccessSizes];
111   Function *TsanAtomicLoad[kNumberOfAccessSizes];
112   Function *TsanAtomicStore[kNumberOfAccessSizes];
113   Function *TsanAtomicRMW[AtomicRMWInst::LAST_BINOP + 1][kNumberOfAccessSizes];
114   Function *TsanAtomicCAS[kNumberOfAccessSizes];
115   Function *TsanAtomicThreadFence;
116   Function *TsanAtomicSignalFence;
117   Function *TsanVptrUpdate;
118   Function *TsanVptrLoad;
119   Function *MemmoveFn, *MemcpyFn, *MemsetFn;
120 };
121 }  // namespace
122
123 char ThreadSanitizer::ID = 0;
124 INITIALIZE_PASS(ThreadSanitizer, "tsan",
125     "ThreadSanitizer: detects data races.",
126     false, false)
127
128 const char *ThreadSanitizer::getPassName() const {
129   return "ThreadSanitizer";
130 }
131
132 FunctionPass *llvm::createThreadSanitizerPass(StringRef BlacklistFile) {
133   return new ThreadSanitizer(BlacklistFile);
134 }
135
136 static Function *checkInterfaceFunction(Constant *FuncOrBitcast) {
137   if (Function *F = dyn_cast<Function>(FuncOrBitcast))
138      return F;
139   FuncOrBitcast->dump();
140   report_fatal_error("ThreadSanitizer interface function redefined");
141 }
142
143 void ThreadSanitizer::initializeCallbacks(Module &M) {
144   IRBuilder<> IRB(M.getContext());
145   // Initialize the callbacks.
146   TsanFuncEntry = checkInterfaceFunction(M.getOrInsertFunction(
147       "__tsan_func_entry", IRB.getVoidTy(), IRB.getInt8PtrTy(), NULL));
148   TsanFuncExit = checkInterfaceFunction(M.getOrInsertFunction(
149       "__tsan_func_exit", IRB.getVoidTy(), NULL));
150   OrdTy = IRB.getInt32Ty();
151   for (size_t i = 0; i < kNumberOfAccessSizes; ++i) {
152     const size_t ByteSize = 1 << i;
153     const size_t BitSize = ByteSize * 8;
154     SmallString<32> ReadName("__tsan_read" + itostr(ByteSize));
155     TsanRead[i] = checkInterfaceFunction(M.getOrInsertFunction(
156         ReadName, IRB.getVoidTy(), IRB.getInt8PtrTy(), NULL));
157
158     SmallString<32> WriteName("__tsan_write" + itostr(ByteSize));
159     TsanWrite[i] = checkInterfaceFunction(M.getOrInsertFunction(
160         WriteName, IRB.getVoidTy(), IRB.getInt8PtrTy(), NULL));
161
162     Type *Ty = Type::getIntNTy(M.getContext(), BitSize);
163     Type *PtrTy = Ty->getPointerTo();
164     SmallString<32> AtomicLoadName("__tsan_atomic" + itostr(BitSize) +
165                                    "_load");
166     TsanAtomicLoad[i] = checkInterfaceFunction(M.getOrInsertFunction(
167         AtomicLoadName, Ty, PtrTy, OrdTy, NULL));
168
169     SmallString<32> AtomicStoreName("__tsan_atomic" + itostr(BitSize) +
170                                     "_store");
171     TsanAtomicStore[i] = checkInterfaceFunction(M.getOrInsertFunction(
172         AtomicStoreName, IRB.getVoidTy(), PtrTy, Ty, OrdTy,
173         NULL));
174
175     for (int op = AtomicRMWInst::FIRST_BINOP;
176         op <= AtomicRMWInst::LAST_BINOP; ++op) {
177       TsanAtomicRMW[op][i] = NULL;
178       const char *NamePart = NULL;
179       if (op == AtomicRMWInst::Xchg)
180         NamePart = "_exchange";
181       else if (op == AtomicRMWInst::Add)
182         NamePart = "_fetch_add";
183       else if (op == AtomicRMWInst::Sub)
184         NamePart = "_fetch_sub";
185       else if (op == AtomicRMWInst::And)
186         NamePart = "_fetch_and";
187       else if (op == AtomicRMWInst::Or)
188         NamePart = "_fetch_or";
189       else if (op == AtomicRMWInst::Xor)
190         NamePart = "_fetch_xor";
191       else if (op == AtomicRMWInst::Nand)
192         NamePart = "_fetch_nand";
193       else
194         continue;
195       SmallString<32> RMWName("__tsan_atomic" + itostr(BitSize) + NamePart);
196       TsanAtomicRMW[op][i] = checkInterfaceFunction(M.getOrInsertFunction(
197           RMWName, Ty, PtrTy, Ty, OrdTy, NULL));
198     }
199
200     SmallString<32> AtomicCASName("__tsan_atomic" + itostr(BitSize) +
201                                   "_compare_exchange_val");
202     TsanAtomicCAS[i] = checkInterfaceFunction(M.getOrInsertFunction(
203         AtomicCASName, Ty, PtrTy, Ty, Ty, OrdTy, OrdTy, NULL));
204   }
205   TsanVptrUpdate = checkInterfaceFunction(M.getOrInsertFunction(
206       "__tsan_vptr_update", IRB.getVoidTy(), IRB.getInt8PtrTy(),
207       IRB.getInt8PtrTy(), NULL));
208   TsanVptrLoad = checkInterfaceFunction(M.getOrInsertFunction(
209       "__tsan_vptr_read", IRB.getVoidTy(), IRB.getInt8PtrTy(), NULL));
210   TsanAtomicThreadFence = checkInterfaceFunction(M.getOrInsertFunction(
211       "__tsan_atomic_thread_fence", IRB.getVoidTy(), OrdTy, NULL));
212   TsanAtomicSignalFence = checkInterfaceFunction(M.getOrInsertFunction(
213       "__tsan_atomic_signal_fence", IRB.getVoidTy(), OrdTy, NULL));
214
215   MemmoveFn = checkInterfaceFunction(M.getOrInsertFunction(
216     "memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
217     IRB.getInt8PtrTy(), IntptrTy, NULL));
218   MemcpyFn = checkInterfaceFunction(M.getOrInsertFunction(
219     "memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
220     IntptrTy, NULL));
221   MemsetFn = checkInterfaceFunction(M.getOrInsertFunction(
222     "memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
223     IntptrTy, NULL));
224 }
225
226 bool ThreadSanitizer::doInitialization(Module &M) {
227   DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
228   if (!DLP)
229     return false;
230   DL = &DLP->getDataLayout();
231   BL.reset(SpecialCaseList::createOrDie(BlacklistFile));
232
233   // Always insert a call to __tsan_init into the module's CTORs.
234   IRBuilder<> IRB(M.getContext());
235   IntptrTy = IRB.getIntPtrTy(DL);
236   Value *TsanInit = M.getOrInsertFunction("__tsan_init",
237                                           IRB.getVoidTy(), NULL);
238   appendToGlobalCtors(M, cast<Function>(TsanInit), 0);
239
240   return true;
241 }
242
243 static bool isVtableAccess(Instruction *I) {
244   if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa))
245     return Tag->isTBAAVtableAccess();
246   return false;
247 }
248
249 bool ThreadSanitizer::addrPointsToConstantData(Value *Addr) {
250   // If this is a GEP, just analyze its pointer operand.
251   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr))
252     Addr = GEP->getPointerOperand();
253
254   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
255     if (GV->isConstant()) {
256       // Reads from constant globals can not race with any writes.
257       NumOmittedReadsFromConstantGlobals++;
258       return true;
259     }
260   } else if (LoadInst *L = dyn_cast<LoadInst>(Addr)) {
261     if (isVtableAccess(L)) {
262       // Reads from a vtable pointer can not race with any writes.
263       NumOmittedReadsFromVtable++;
264       return true;
265     }
266   }
267   return false;
268 }
269
270 // Instrumenting some of the accesses may be proven redundant.
271 // Currently handled:
272 //  - read-before-write (within same BB, no calls between)
273 //
274 // We do not handle some of the patterns that should not survive
275 // after the classic compiler optimizations.
276 // E.g. two reads from the same temp should be eliminated by CSE,
277 // two writes should be eliminated by DSE, etc.
278 //
279 // 'Local' is a vector of insns within the same BB (no calls between).
280 // 'All' is a vector of insns that will be instrumented.
281 void ThreadSanitizer::chooseInstructionsToInstrument(
282     SmallVectorImpl<Instruction*> &Local,
283     SmallVectorImpl<Instruction*> &All) {
284   SmallSet<Value*, 8> WriteTargets;
285   // Iterate from the end.
286   for (SmallVectorImpl<Instruction*>::reverse_iterator It = Local.rbegin(),
287        E = Local.rend(); It != E; ++It) {
288     Instruction *I = *It;
289     if (StoreInst *Store = dyn_cast<StoreInst>(I)) {
290       WriteTargets.insert(Store->getPointerOperand());
291     } else {
292       LoadInst *Load = cast<LoadInst>(I);
293       Value *Addr = Load->getPointerOperand();
294       if (WriteTargets.count(Addr)) {
295         // We will write to this temp, so no reason to analyze the read.
296         NumOmittedReadsBeforeWrite++;
297         continue;
298       }
299       if (addrPointsToConstantData(Addr)) {
300         // Addr points to some constant data -- it can not race with any writes.
301         continue;
302       }
303     }
304     All.push_back(I);
305   }
306   Local.clear();
307 }
308
309 static bool isAtomic(Instruction *I) {
310   if (LoadInst *LI = dyn_cast<LoadInst>(I))
311     return LI->isAtomic() && LI->getSynchScope() == CrossThread;
312   if (StoreInst *SI = dyn_cast<StoreInst>(I))
313     return SI->isAtomic() && SI->getSynchScope() == CrossThread;
314   if (isa<AtomicRMWInst>(I))
315     return true;
316   if (isa<AtomicCmpXchgInst>(I))
317     return true;
318   if (isa<FenceInst>(I))
319     return true;
320   return false;
321 }
322
323 bool ThreadSanitizer::runOnFunction(Function &F) {
324   if (!DL) return false;
325   if (BL->isIn(F)) return false;
326   initializeCallbacks(*F.getParent());
327   SmallVector<Instruction*, 8> RetVec;
328   SmallVector<Instruction*, 8> AllLoadsAndStores;
329   SmallVector<Instruction*, 8> LocalLoadsAndStores;
330   SmallVector<Instruction*, 8> AtomicAccesses;
331   SmallVector<Instruction*, 8> MemIntrinCalls;
332   bool Res = false;
333   bool HasCalls = false;
334
335   // Traverse all instructions, collect loads/stores/returns, check for calls.
336   for (Function::iterator FI = F.begin(), FE = F.end();
337        FI != FE; ++FI) {
338     BasicBlock &BB = *FI;
339     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end();
340          BI != BE; ++BI) {
341       if (isAtomic(BI))
342         AtomicAccesses.push_back(BI);
343       else if (isa<LoadInst>(BI) || isa<StoreInst>(BI))
344         LocalLoadsAndStores.push_back(BI);
345       else if (isa<ReturnInst>(BI))
346         RetVec.push_back(BI);
347       else if (isa<CallInst>(BI) || isa<InvokeInst>(BI)) {
348         if (isa<MemIntrinsic>(BI))
349           MemIntrinCalls.push_back(BI);
350         HasCalls = true;
351         chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores);
352       }
353     }
354     chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores);
355   }
356
357   // We have collected all loads and stores.
358   // FIXME: many of these accesses do not need to be checked for races
359   // (e.g. variables that do not escape, etc).
360
361   // Instrument memory accesses.
362   if (ClInstrumentMemoryAccesses && F.hasFnAttribute(Attribute::SanitizeThread))
363     for (size_t i = 0, n = AllLoadsAndStores.size(); i < n; ++i) {
364       Res |= instrumentLoadOrStore(AllLoadsAndStores[i]);
365     }
366
367   // Instrument atomic memory accesses.
368   if (ClInstrumentAtomics)
369     for (size_t i = 0, n = AtomicAccesses.size(); i < n; ++i) {
370       Res |= instrumentAtomic(AtomicAccesses[i]);
371     }
372
373   if (ClInstrumentMemIntrinsics)
374     for (size_t i = 0, n = MemIntrinCalls.size(); i < n; ++i) {
375       Res |= instrumentMemIntrinsic(MemIntrinCalls[i]);
376     }
377
378   // Instrument function entry/exit points if there were instrumented accesses.
379   if ((Res || HasCalls) && ClInstrumentFuncEntryExit) {
380     IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
381     Value *ReturnAddress = IRB.CreateCall(
382         Intrinsic::getDeclaration(F.getParent(), Intrinsic::returnaddress),
383         IRB.getInt32(0));
384     IRB.CreateCall(TsanFuncEntry, ReturnAddress);
385     for (size_t i = 0, n = RetVec.size(); i < n; ++i) {
386       IRBuilder<> IRBRet(RetVec[i]);
387       IRBRet.CreateCall(TsanFuncExit);
388     }
389     Res = true;
390   }
391   return Res;
392 }
393
394 bool ThreadSanitizer::instrumentLoadOrStore(Instruction *I) {
395   IRBuilder<> IRB(I);
396   bool IsWrite = isa<StoreInst>(*I);
397   Value *Addr = IsWrite
398       ? cast<StoreInst>(I)->getPointerOperand()
399       : cast<LoadInst>(I)->getPointerOperand();
400   int Idx = getMemoryAccessFuncIndex(Addr);
401   if (Idx < 0)
402     return false;
403   if (IsWrite && isVtableAccess(I)) {
404     DEBUG(dbgs() << "  VPTR : " << *I << "\n");
405     Value *StoredValue = cast<StoreInst>(I)->getValueOperand();
406     // StoredValue may be a vector type if we are storing several vptrs at once.
407     // In this case, just take the first element of the vector since this is
408     // enough to find vptr races.
409     if (isa<VectorType>(StoredValue->getType()))
410       StoredValue = IRB.CreateExtractElement(
411           StoredValue, ConstantInt::get(IRB.getInt32Ty(), 0));
412     if (StoredValue->getType()->isIntegerTy())
413       StoredValue = IRB.CreateIntToPtr(StoredValue, IRB.getInt8PtrTy());
414     // Call TsanVptrUpdate.
415     IRB.CreateCall2(TsanVptrUpdate,
416                     IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
417                     IRB.CreatePointerCast(StoredValue, IRB.getInt8PtrTy()));
418     NumInstrumentedVtableWrites++;
419     return true;
420   }
421   if (!IsWrite && isVtableAccess(I)) {
422     IRB.CreateCall(TsanVptrLoad,
423                    IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
424     NumInstrumentedVtableReads++;
425     return true;
426   }
427   Value *OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx];
428   IRB.CreateCall(OnAccessFunc, IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
429   if (IsWrite) NumInstrumentedWrites++;
430   else         NumInstrumentedReads++;
431   return true;
432 }
433
434 static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) {
435   uint32_t v = 0;
436   switch (ord) {
437     case NotAtomic:              assert(false);
438     case Unordered:              // Fall-through.
439     case Monotonic:              v = 0; break;
440     // case Consume:                v = 1; break;  // Not specified yet.
441     case Acquire:                v = 2; break;
442     case Release:                v = 3; break;
443     case AcquireRelease:         v = 4; break;
444     case SequentiallyConsistent: v = 5; break;
445   }
446   return IRB->getInt32(v);
447 }
448
449 static ConstantInt *createFailOrdering(IRBuilder<> *IRB, AtomicOrdering ord) {
450   uint32_t v = 0;
451   switch (ord) {
452     case NotAtomic:              assert(false);
453     case Unordered:              // Fall-through.
454     case Monotonic:              v = 0; break;
455     // case Consume:                v = 1; break;  // Not specified yet.
456     case Acquire:                v = 2; break;
457     case Release:                v = 0; break;
458     case AcquireRelease:         v = 2; break;
459     case SequentiallyConsistent: v = 5; break;
460   }
461   return IRB->getInt32(v);
462 }
463
464 // If a memset intrinsic gets inlined by the code gen, we will miss races on it.
465 // So, we either need to ensure the intrinsic is not inlined, or instrument it.
466 // We do not instrument memset/memmove/memcpy intrinsics (too complicated),
467 // instead we simply replace them with regular function calls, which are then
468 // intercepted by the run-time.
469 // Since tsan is running after everyone else, the calls should not be
470 // replaced back with intrinsics. If that becomes wrong at some point,
471 // we will need to call e.g. __tsan_memset to avoid the intrinsics.
472 bool ThreadSanitizer::instrumentMemIntrinsic(Instruction *I) {
473   IRBuilder<> IRB(I);
474   if (MemSetInst *M = dyn_cast<MemSetInst>(I)) {
475     IRB.CreateCall3(MemsetFn,
476       IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
477       IRB.CreateIntCast(M->getArgOperand(1), IRB.getInt32Ty(), false),
478       IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false));
479     I->eraseFromParent();
480   } else if (MemTransferInst *M = dyn_cast<MemTransferInst>(I)) {
481     IRB.CreateCall3(isa<MemCpyInst>(M) ? MemcpyFn : MemmoveFn,
482       IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
483       IRB.CreatePointerCast(M->getArgOperand(1), IRB.getInt8PtrTy()),
484       IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false));
485     I->eraseFromParent();
486   }
487   return false;
488 }
489
490 // Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x
491 // standards.  For background see C++11 standard.  A slightly older, publicly
492 // available draft of the standard (not entirely up-to-date, but close enough
493 // for casual browsing) is available here:
494 // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
495 // The following page contains more background information:
496 // http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
497
498 bool ThreadSanitizer::instrumentAtomic(Instruction *I) {
499   IRBuilder<> IRB(I);
500   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
501     Value *Addr = LI->getPointerOperand();
502     int Idx = getMemoryAccessFuncIndex(Addr);
503     if (Idx < 0)
504       return false;
505     const size_t ByteSize = 1 << Idx;
506     const size_t BitSize = ByteSize * 8;
507     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
508     Type *PtrTy = Ty->getPointerTo();
509     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
510                      createOrdering(&IRB, LI->getOrdering())};
511     CallInst *C = CallInst::Create(TsanAtomicLoad[Idx],
512                                    ArrayRef<Value*>(Args));
513     ReplaceInstWithInst(I, C);
514
515   } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
516     Value *Addr = SI->getPointerOperand();
517     int Idx = getMemoryAccessFuncIndex(Addr);
518     if (Idx < 0)
519       return false;
520     const size_t ByteSize = 1 << Idx;
521     const size_t BitSize = ByteSize * 8;
522     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
523     Type *PtrTy = Ty->getPointerTo();
524     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
525                      IRB.CreateIntCast(SI->getValueOperand(), Ty, false),
526                      createOrdering(&IRB, SI->getOrdering())};
527     CallInst *C = CallInst::Create(TsanAtomicStore[Idx],
528                                    ArrayRef<Value*>(Args));
529     ReplaceInstWithInst(I, C);
530   } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) {
531     Value *Addr = RMWI->getPointerOperand();
532     int Idx = getMemoryAccessFuncIndex(Addr);
533     if (Idx < 0)
534       return false;
535     Function *F = TsanAtomicRMW[RMWI->getOperation()][Idx];
536     if (F == NULL)
537       return false;
538     const size_t ByteSize = 1 << Idx;
539     const size_t BitSize = ByteSize * 8;
540     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
541     Type *PtrTy = Ty->getPointerTo();
542     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
543                      IRB.CreateIntCast(RMWI->getValOperand(), Ty, false),
544                      createOrdering(&IRB, RMWI->getOrdering())};
545     CallInst *C = CallInst::Create(F, ArrayRef<Value*>(Args));
546     ReplaceInstWithInst(I, C);
547   } else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) {
548     Value *Addr = CASI->getPointerOperand();
549     int Idx = getMemoryAccessFuncIndex(Addr);
550     if (Idx < 0)
551       return false;
552     const size_t ByteSize = 1 << Idx;
553     const size_t BitSize = ByteSize * 8;
554     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
555     Type *PtrTy = Ty->getPointerTo();
556     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
557                      IRB.CreateIntCast(CASI->getCompareOperand(), Ty, false),
558                      IRB.CreateIntCast(CASI->getNewValOperand(), Ty, false),
559                      createOrdering(&IRB, CASI->getOrdering()),
560                      createFailOrdering(&IRB, CASI->getOrdering())};
561     CallInst *C = CallInst::Create(TsanAtomicCAS[Idx], ArrayRef<Value*>(Args));
562     ReplaceInstWithInst(I, C);
563   } else if (FenceInst *FI = dyn_cast<FenceInst>(I)) {
564     Value *Args[] = {createOrdering(&IRB, FI->getOrdering())};
565     Function *F = FI->getSynchScope() == SingleThread ?
566         TsanAtomicSignalFence : TsanAtomicThreadFence;
567     CallInst *C = CallInst::Create(F, ArrayRef<Value*>(Args));
568     ReplaceInstWithInst(I, C);
569   }
570   return true;
571 }
572
573 int ThreadSanitizer::getMemoryAccessFuncIndex(Value *Addr) {
574   Type *OrigPtrTy = Addr->getType();
575   Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType();
576   assert(OrigTy->isSized());
577   uint32_t TypeSize = DL->getTypeStoreSizeInBits(OrigTy);
578   if (TypeSize != 8  && TypeSize != 16 &&
579       TypeSize != 32 && TypeSize != 64 && TypeSize != 128) {
580     NumAccessesWithBadSize++;
581     // Ignore all unusual sizes.
582     return -1;
583   }
584   size_t Idx = countTrailingZeros(TypeSize / 8);
585   assert(Idx < kNumberOfAccessSizes);
586   return Idx;
587 }