Juggled Debug.h from ObjCARC.h to only the including cpp files that
[oota-llvm.git] / lib / Transforms / ObjCARC / ObjCARC.h
1 //===- ObjCARC.h - ObjC ARC Optimization --------------*- mode: c++ -*-----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 /// This file defines common definitions/declarations used by the ObjC ARC
11 /// Optimizer. ARC stands for Automatic Reference Counting and is a system for
12 /// managing reference counts for objects in Objective C.
13 ///
14 /// WARNING: This file knows about certain library functions. It recognizes them
15 /// by name, and hardwires knowledge of their semantics.
16 ///
17 /// WARNING: This file knows about how certain Objective-C library functions are
18 /// used. Naive LLVM IR transformations which would otherwise be
19 /// behavior-preserving may break these assumptions.
20 ///
21 //===----------------------------------------------------------------------===//
22
23 #ifndef LLVM_TRANSFORMS_SCALAR_OBJCARC_H
24 #define LLVM_TRANSFORMS_SCALAR_OBJCARC_H
25
26 #include "llvm/ADT/StringSwitch.h"
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/Analysis/Passes.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/Pass.h"
32 #include "llvm/Support/CallSite.h"
33 #include "llvm/Support/InstIterator.h"
34 #include "llvm/Transforms/ObjCARC.h"
35 #include "llvm/Transforms/Utils/Local.h"
36
37 namespace llvm {
38 class raw_ostream;
39 }
40
41 namespace llvm {
42 namespace objcarc {
43
44 /// \brief A handy option to enable/disable all ARC Optimizations.
45 extern bool EnableARCOpts;
46
47 /// \brief Test if the given module looks interesting to run ARC optimization
48 /// on.
49 static inline bool ModuleHasARC(const Module &M) {
50   return
51     M.getNamedValue("objc_retain") ||
52     M.getNamedValue("objc_release") ||
53     M.getNamedValue("objc_autorelease") ||
54     M.getNamedValue("objc_retainAutoreleasedReturnValue") ||
55     M.getNamedValue("objc_retainBlock") ||
56     M.getNamedValue("objc_autoreleaseReturnValue") ||
57     M.getNamedValue("objc_autoreleasePoolPush") ||
58     M.getNamedValue("objc_loadWeakRetained") ||
59     M.getNamedValue("objc_loadWeak") ||
60     M.getNamedValue("objc_destroyWeak") ||
61     M.getNamedValue("objc_storeWeak") ||
62     M.getNamedValue("objc_initWeak") ||
63     M.getNamedValue("objc_moveWeak") ||
64     M.getNamedValue("objc_copyWeak") ||
65     M.getNamedValue("objc_retainedObject") ||
66     M.getNamedValue("objc_unretainedObject") ||
67     M.getNamedValue("objc_unretainedPointer");
68 }
69
70 /// \enum InstructionClass
71 /// \brief A simple classification for instructions.
72 enum InstructionClass {
73   IC_Retain,              ///< objc_retain
74   IC_RetainRV,            ///< objc_retainAutoreleasedReturnValue
75   IC_RetainBlock,         ///< objc_retainBlock
76   IC_Release,             ///< objc_release
77   IC_Autorelease,         ///< objc_autorelease
78   IC_AutoreleaseRV,       ///< objc_autoreleaseReturnValue
79   IC_AutoreleasepoolPush, ///< objc_autoreleasePoolPush
80   IC_AutoreleasepoolPop,  ///< objc_autoreleasePoolPop
81   IC_NoopCast,            ///< objc_retainedObject, etc.
82   IC_FusedRetainAutorelease, ///< objc_retainAutorelease
83   IC_FusedRetainAutoreleaseRV, ///< objc_retainAutoreleaseReturnValue
84   IC_LoadWeakRetained,    ///< objc_loadWeakRetained (primitive)
85   IC_StoreWeak,           ///< objc_storeWeak (primitive)
86   IC_InitWeak,            ///< objc_initWeak (derived)
87   IC_LoadWeak,            ///< objc_loadWeak (derived)
88   IC_MoveWeak,            ///< objc_moveWeak (derived)
89   IC_CopyWeak,            ///< objc_copyWeak (derived)
90   IC_DestroyWeak,         ///< objc_destroyWeak (derived)
91   IC_StoreStrong,         ///< objc_storeStrong (derived)
92   IC_CallOrUser,          ///< could call objc_release and/or "use" pointers
93   IC_Call,                ///< could call objc_release
94   IC_User,                ///< could "use" a pointer
95   IC_None                 ///< anything else
96 };
97
98 raw_ostream &operator<<(raw_ostream &OS, const InstructionClass Class);
99
100 /// \brief Test if the given class is objc_retain or equivalent.
101 static inline bool IsRetain(InstructionClass Class) {
102   return Class == IC_Retain ||
103          Class == IC_RetainRV;
104 }
105
106 /// \brief Test if the given class is objc_autorelease or equivalent.
107 static inline bool IsAutorelease(InstructionClass Class) {
108   return Class == IC_Autorelease ||
109          Class == IC_AutoreleaseRV;
110 }
111
112 /// \brief Test if the given class represents instructions which return their
113 /// argument verbatim.
114 static inline bool IsForwarding(InstructionClass Class) {
115   // objc_retainBlock technically doesn't always return its argument
116   // verbatim, but it doesn't matter for our purposes here.
117   return Class == IC_Retain ||
118          Class == IC_RetainRV ||
119          Class == IC_Autorelease ||
120          Class == IC_AutoreleaseRV ||
121          Class == IC_RetainBlock ||
122          Class == IC_NoopCast;
123 }
124
125 /// \brief Test if the given class represents instructions which do nothing if
126 /// passed a null pointer.
127 static inline bool IsNoopOnNull(InstructionClass Class) {
128   return Class == IC_Retain ||
129          Class == IC_RetainRV ||
130          Class == IC_Release ||
131          Class == IC_Autorelease ||
132          Class == IC_AutoreleaseRV ||
133          Class == IC_RetainBlock;
134 }
135
136 /// \brief Test if the given class represents instructions which are always safe
137 /// to mark with the "tail" keyword.
138 static inline bool IsAlwaysTail(InstructionClass Class) {
139   // IC_RetainBlock may be given a stack argument.
140   return Class == IC_Retain ||
141          Class == IC_RetainRV ||
142          Class == IC_AutoreleaseRV;
143 }
144
145 /// \brief Test if the given class represents instructions which are never safe
146 /// to mark with the "tail" keyword.
147 static inline bool IsNeverTail(InstructionClass Class) {
148   /// It is never safe to tail call objc_autorelease since by tail calling
149   /// objc_autorelease, we also tail call -[NSObject autorelease] which supports
150   /// fast autoreleasing causing our object to be potentially reclaimed from the
151   /// autorelease pool which violates the semantics of __autoreleasing types in
152   /// ARC.
153   return Class == IC_Autorelease;
154 }
155
156 /// \brief Test if the given class represents instructions which are always safe
157 /// to mark with the nounwind attribute.
158 static inline bool IsNoThrow(InstructionClass Class) {
159   // objc_retainBlock is not nounwind because it calls user copy constructors
160   // which could theoretically throw.
161   return Class == IC_Retain ||
162          Class == IC_RetainRV ||
163          Class == IC_Release ||
164          Class == IC_Autorelease ||
165          Class == IC_AutoreleaseRV ||
166          Class == IC_AutoreleasepoolPush ||
167          Class == IC_AutoreleasepoolPop;
168 }
169
170 /// Test whether the given instruction can autorelease any pointer or cause an
171 /// autoreleasepool pop.
172 static inline bool
173 CanInterruptRV(InstructionClass Class) {
174   switch (Class) {
175   case IC_AutoreleasepoolPop:
176   case IC_CallOrUser:
177   case IC_Call:
178   case IC_Autorelease:
179   case IC_AutoreleaseRV:
180   case IC_FusedRetainAutorelease:
181   case IC_FusedRetainAutoreleaseRV:
182     return true;
183   default:
184     return false;
185   }
186 }
187
188 /// \brief Determine if F is one of the special known Functions.  If it isn't,
189 /// return IC_CallOrUser.
190 InstructionClass GetFunctionClass(const Function *F);
191
192 /// \brief Determine which objc runtime call instruction class V belongs to.
193 ///
194 /// This is similar to GetInstructionClass except that it only detects objc
195 /// runtime calls. This allows it to be faster.
196 ///
197 static inline InstructionClass GetBasicInstructionClass(const Value *V) {
198   if (const CallInst *CI = dyn_cast<CallInst>(V)) {
199     if (const Function *F = CI->getCalledFunction())
200       return GetFunctionClass(F);
201     // Otherwise, be conservative.
202     return IC_CallOrUser;
203   }
204
205   // Otherwise, be conservative.
206   return isa<InvokeInst>(V) ? IC_CallOrUser : IC_User;
207 }
208
209 /// \brief Determine what kind of construct V is.
210 InstructionClass GetInstructionClass(const Value *V);
211
212 /// \brief This is a wrapper around getUnderlyingObject which also knows how to
213 /// look through objc_retain and objc_autorelease calls, which we know to return
214 /// their argument verbatim.
215 static inline const Value *GetUnderlyingObjCPtr(const Value *V) {
216   for (;;) {
217     V = GetUnderlyingObject(V);
218     if (!IsForwarding(GetBasicInstructionClass(V)))
219       break;
220     V = cast<CallInst>(V)->getArgOperand(0);
221   }
222
223   return V;
224 }
225
226 /// \brief This is a wrapper around Value::stripPointerCasts which also knows
227 /// how to look through objc_retain and objc_autorelease calls, which we know to
228 /// return their argument verbatim.
229 static inline const Value *StripPointerCastsAndObjCCalls(const Value *V) {
230   for (;;) {
231     V = V->stripPointerCasts();
232     if (!IsForwarding(GetBasicInstructionClass(V)))
233       break;
234     V = cast<CallInst>(V)->getArgOperand(0);
235   }
236   return V;
237 }
238
239 /// \brief This is a wrapper around Value::stripPointerCasts which also knows
240 /// how to look through objc_retain and objc_autorelease calls, which we know to
241 /// return their argument verbatim.
242 static inline Value *StripPointerCastsAndObjCCalls(Value *V) {
243   for (;;) {
244     V = V->stripPointerCasts();
245     if (!IsForwarding(GetBasicInstructionClass(V)))
246       break;
247     V = cast<CallInst>(V)->getArgOperand(0);
248   }
249   return V;
250 }
251
252 /// \brief Assuming the given instruction is one of the special calls such as
253 /// objc_retain or objc_release, return the argument value, stripped of no-op
254 /// casts and forwarding calls.
255 static inline Value *GetObjCArg(Value *Inst) {
256   return StripPointerCastsAndObjCCalls(cast<CallInst>(Inst)->getArgOperand(0));
257 }
258
259 static inline bool isNullOrUndef(const Value *V) {
260   return isa<ConstantPointerNull>(V) || isa<UndefValue>(V);
261 }
262
263 static inline bool isNoopInstruction(const Instruction *I) {
264   return isa<BitCastInst>(I) ||
265     (isa<GetElementPtrInst>(I) &&
266      cast<GetElementPtrInst>(I)->hasAllZeroIndices());
267 }
268
269
270 /// \brief Erase the given instruction.
271 ///
272 /// Many ObjC calls return their argument verbatim,
273 /// so if it's such a call and the return value has users, replace them with the
274 /// argument value.
275 ///
276 static inline void EraseInstruction(Instruction *CI) {
277   Value *OldArg = cast<CallInst>(CI)->getArgOperand(0);
278
279   bool Unused = CI->use_empty();
280
281   if (!Unused) {
282     // Replace the return value with the argument.
283     assert(IsForwarding(GetBasicInstructionClass(CI)) &&
284            "Can't delete non-forwarding instruction with users!");
285     CI->replaceAllUsesWith(OldArg);
286   }
287
288   CI->eraseFromParent();
289
290   if (Unused)
291     RecursivelyDeleteTriviallyDeadInstructions(OldArg);
292 }
293
294 /// \brief Test whether the given value is possible a retainable object pointer.
295 static inline bool IsPotentialRetainableObjPtr(const Value *Op) {
296   // Pointers to static or stack storage are not valid retainable object pointers.
297   if (isa<Constant>(Op) || isa<AllocaInst>(Op))
298     return false;
299   // Special arguments can not be a valid retainable object pointer.
300   if (const Argument *Arg = dyn_cast<Argument>(Op))
301     if (Arg->hasByValAttr() ||
302         Arg->hasNestAttr() ||
303         Arg->hasStructRetAttr())
304       return false;
305   // Only consider values with pointer types.
306   //
307   // It seemes intuitive to exclude function pointer types as well, since
308   // functions are never retainable object pointers, however clang occasionally
309   // bitcasts retainable object pointers to function-pointer type temporarily.
310   PointerType *Ty = dyn_cast<PointerType>(Op->getType());
311   if (!Ty)
312     return false;
313   // Conservatively assume anything else is a potential retainable object pointer.
314   return true;
315 }
316
317 static inline bool IsPotentialRetainableObjPtr(const Value *Op,
318                                                AliasAnalysis &AA) {
319   // First make the rudimentary check.
320   if (!IsPotentialRetainableObjPtr(Op))
321     return false;
322
323   // Objects in constant memory are not reference-counted.
324   if (AA.pointsToConstantMemory(Op))
325     return false;
326
327   // Pointers in constant memory are not pointing to reference-counted objects.
328   if (const LoadInst *LI = dyn_cast<LoadInst>(Op))
329     if (AA.pointsToConstantMemory(LI->getPointerOperand()))
330       return false;
331
332   // Otherwise assume the worst.
333   return true;
334 }
335
336 /// \brief Helper for GetInstructionClass. Determines what kind of construct CS
337 /// is.
338 static inline InstructionClass GetCallSiteClass(ImmutableCallSite CS) {
339   for (ImmutableCallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
340        I != E; ++I)
341     if (IsPotentialRetainableObjPtr(*I))
342       return CS.onlyReadsMemory() ? IC_User : IC_CallOrUser;
343
344   return CS.onlyReadsMemory() ? IC_None : IC_Call;
345 }
346
347 /// \brief Return true if this value refers to a distinct and identifiable
348 /// object.
349 ///
350 /// This is similar to AliasAnalysis's isIdentifiedObject, except that it uses
351 /// special knowledge of ObjC conventions.
352 static inline bool IsObjCIdentifiedObject(const Value *V) {
353   // Assume that call results and arguments have their own "provenance".
354   // Constants (including GlobalVariables) and Allocas are never
355   // reference-counted.
356   if (isa<CallInst>(V) || isa<InvokeInst>(V) ||
357       isa<Argument>(V) || isa<Constant>(V) ||
358       isa<AllocaInst>(V))
359     return true;
360
361   if (const LoadInst *LI = dyn_cast<LoadInst>(V)) {
362     const Value *Pointer =
363       StripPointerCastsAndObjCCalls(LI->getPointerOperand());
364     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Pointer)) {
365       // A constant pointer can't be pointing to an object on the heap. It may
366       // be reference-counted, but it won't be deleted.
367       if (GV->isConstant())
368         return true;
369       StringRef Name = GV->getName();
370       // These special variables are known to hold values which are not
371       // reference-counted pointers.
372       if (Name.startswith("\01L_OBJC_SELECTOR_REFERENCES_") ||
373           Name.startswith("\01L_OBJC_CLASSLIST_REFERENCES_") ||
374           Name.startswith("\01L_OBJC_CLASSLIST_SUP_REFS_$_") ||
375           Name.startswith("\01L_OBJC_METH_VAR_NAME_") ||
376           Name.startswith("\01l_objc_msgSend_fixup_"))
377         return true;
378     }
379   }
380
381   return false;
382 }
383
384 } // end namespace objcarc
385 } // end namespace llvm
386
387 #endif // LLVM_TRANSFORMS_SCALAR_OBJCARC_H