1 //===- ObjCARC.h - ObjC ARC Optimization --------------*- mode: c++ -*-----===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 /// This file defines common definitions/declarations used by the ObjC ARC
11 /// Optimizer. ARC stands for Automatic Reference Counting and is a system for
12 /// managing reference counts for objects in Objective C.
14 /// WARNING: This file knows about certain library functions. It recognizes them
15 /// by name, and hardwires knowledge of their semantics.
17 /// WARNING: This file knows about how certain Objective-C library functions are
18 /// used. Naive LLVM IR transformations which would otherwise be
19 /// behavior-preserving may break these assumptions.
21 //===----------------------------------------------------------------------===//
23 #ifndef LLVM_TRANSFORMS_SCALAR_OBJCARC_H
24 #define LLVM_TRANSFORMS_SCALAR_OBJCARC_H
26 #include "llvm/ADT/StringSwitch.h"
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/Analysis/Passes.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/Pass.h"
32 #include "llvm/Support/CallSite.h"
33 #include "llvm/Support/InstIterator.h"
34 #include "llvm/Transforms/ObjCARC.h"
35 #include "llvm/Transforms/Utils/Local.h"
44 /// \brief A handy option to enable/disable all ARC Optimizations.
45 extern bool EnableARCOpts;
47 /// \brief Test if the given module looks interesting to run ARC optimization
49 static inline bool ModuleHasARC(const Module &M) {
51 M.getNamedValue("objc_retain") ||
52 M.getNamedValue("objc_release") ||
53 M.getNamedValue("objc_autorelease") ||
54 M.getNamedValue("objc_retainAutoreleasedReturnValue") ||
55 M.getNamedValue("objc_retainBlock") ||
56 M.getNamedValue("objc_autoreleaseReturnValue") ||
57 M.getNamedValue("objc_autoreleasePoolPush") ||
58 M.getNamedValue("objc_loadWeakRetained") ||
59 M.getNamedValue("objc_loadWeak") ||
60 M.getNamedValue("objc_destroyWeak") ||
61 M.getNamedValue("objc_storeWeak") ||
62 M.getNamedValue("objc_initWeak") ||
63 M.getNamedValue("objc_moveWeak") ||
64 M.getNamedValue("objc_copyWeak") ||
65 M.getNamedValue("objc_retainedObject") ||
66 M.getNamedValue("objc_unretainedObject") ||
67 M.getNamedValue("objc_unretainedPointer");
70 /// \enum InstructionClass
71 /// \brief A simple classification for instructions.
72 enum InstructionClass {
73 IC_Retain, ///< objc_retain
74 IC_RetainRV, ///< objc_retainAutoreleasedReturnValue
75 IC_RetainBlock, ///< objc_retainBlock
76 IC_Release, ///< objc_release
77 IC_Autorelease, ///< objc_autorelease
78 IC_AutoreleaseRV, ///< objc_autoreleaseReturnValue
79 IC_AutoreleasepoolPush, ///< objc_autoreleasePoolPush
80 IC_AutoreleasepoolPop, ///< objc_autoreleasePoolPop
81 IC_NoopCast, ///< objc_retainedObject, etc.
82 IC_FusedRetainAutorelease, ///< objc_retainAutorelease
83 IC_FusedRetainAutoreleaseRV, ///< objc_retainAutoreleaseReturnValue
84 IC_LoadWeakRetained, ///< objc_loadWeakRetained (primitive)
85 IC_StoreWeak, ///< objc_storeWeak (primitive)
86 IC_InitWeak, ///< objc_initWeak (derived)
87 IC_LoadWeak, ///< objc_loadWeak (derived)
88 IC_MoveWeak, ///< objc_moveWeak (derived)
89 IC_CopyWeak, ///< objc_copyWeak (derived)
90 IC_DestroyWeak, ///< objc_destroyWeak (derived)
91 IC_StoreStrong, ///< objc_storeStrong (derived)
92 IC_CallOrUser, ///< could call objc_release and/or "use" pointers
93 IC_Call, ///< could call objc_release
94 IC_User, ///< could "use" a pointer
95 IC_None ///< anything else
98 raw_ostream &operator<<(raw_ostream &OS, const InstructionClass Class);
100 /// \brief Test if the given class is objc_retain or equivalent.
101 static inline bool IsRetain(InstructionClass Class) {
102 return Class == IC_Retain ||
103 Class == IC_RetainRV;
106 /// \brief Test if the given class is objc_autorelease or equivalent.
107 static inline bool IsAutorelease(InstructionClass Class) {
108 return Class == IC_Autorelease ||
109 Class == IC_AutoreleaseRV;
112 /// \brief Test if the given class represents instructions which return their
113 /// argument verbatim.
114 static inline bool IsForwarding(InstructionClass Class) {
115 // objc_retainBlock technically doesn't always return its argument
116 // verbatim, but it doesn't matter for our purposes here.
117 return Class == IC_Retain ||
118 Class == IC_RetainRV ||
119 Class == IC_Autorelease ||
120 Class == IC_AutoreleaseRV ||
121 Class == IC_RetainBlock ||
122 Class == IC_NoopCast;
125 /// \brief Test if the given class represents instructions which do nothing if
126 /// passed a null pointer.
127 static inline bool IsNoopOnNull(InstructionClass Class) {
128 return Class == IC_Retain ||
129 Class == IC_RetainRV ||
130 Class == IC_Release ||
131 Class == IC_Autorelease ||
132 Class == IC_AutoreleaseRV ||
133 Class == IC_RetainBlock;
136 /// \brief Test if the given class represents instructions which are always safe
137 /// to mark with the "tail" keyword.
138 static inline bool IsAlwaysTail(InstructionClass Class) {
139 // IC_RetainBlock may be given a stack argument.
140 return Class == IC_Retain ||
141 Class == IC_RetainRV ||
142 Class == IC_AutoreleaseRV;
145 /// \brief Test if the given class represents instructions which are never safe
146 /// to mark with the "tail" keyword.
147 static inline bool IsNeverTail(InstructionClass Class) {
148 /// It is never safe to tail call objc_autorelease since by tail calling
149 /// objc_autorelease, we also tail call -[NSObject autorelease] which supports
150 /// fast autoreleasing causing our object to be potentially reclaimed from the
151 /// autorelease pool which violates the semantics of __autoreleasing types in
153 return Class == IC_Autorelease;
156 /// \brief Test if the given class represents instructions which are always safe
157 /// to mark with the nounwind attribute.
158 static inline bool IsNoThrow(InstructionClass Class) {
159 // objc_retainBlock is not nounwind because it calls user copy constructors
160 // which could theoretically throw.
161 return Class == IC_Retain ||
162 Class == IC_RetainRV ||
163 Class == IC_Release ||
164 Class == IC_Autorelease ||
165 Class == IC_AutoreleaseRV ||
166 Class == IC_AutoreleasepoolPush ||
167 Class == IC_AutoreleasepoolPop;
170 /// Test whether the given instruction can autorelease any pointer or cause an
171 /// autoreleasepool pop.
173 CanInterruptRV(InstructionClass Class) {
175 case IC_AutoreleasepoolPop:
179 case IC_AutoreleaseRV:
180 case IC_FusedRetainAutorelease:
181 case IC_FusedRetainAutoreleaseRV:
188 /// \brief Determine if F is one of the special known Functions. If it isn't,
189 /// return IC_CallOrUser.
190 InstructionClass GetFunctionClass(const Function *F);
192 /// \brief Determine which objc runtime call instruction class V belongs to.
194 /// This is similar to GetInstructionClass except that it only detects objc
195 /// runtime calls. This allows it to be faster.
197 static inline InstructionClass GetBasicInstructionClass(const Value *V) {
198 if (const CallInst *CI = dyn_cast<CallInst>(V)) {
199 if (const Function *F = CI->getCalledFunction())
200 return GetFunctionClass(F);
201 // Otherwise, be conservative.
202 return IC_CallOrUser;
205 // Otherwise, be conservative.
206 return isa<InvokeInst>(V) ? IC_CallOrUser : IC_User;
209 /// \brief Determine what kind of construct V is.
210 InstructionClass GetInstructionClass(const Value *V);
212 /// \brief This is a wrapper around getUnderlyingObject which also knows how to
213 /// look through objc_retain and objc_autorelease calls, which we know to return
214 /// their argument verbatim.
215 static inline const Value *GetUnderlyingObjCPtr(const Value *V) {
217 V = GetUnderlyingObject(V);
218 if (!IsForwarding(GetBasicInstructionClass(V)))
220 V = cast<CallInst>(V)->getArgOperand(0);
226 /// \brief This is a wrapper around Value::stripPointerCasts which also knows
227 /// how to look through objc_retain and objc_autorelease calls, which we know to
228 /// return their argument verbatim.
229 static inline const Value *StripPointerCastsAndObjCCalls(const Value *V) {
231 V = V->stripPointerCasts();
232 if (!IsForwarding(GetBasicInstructionClass(V)))
234 V = cast<CallInst>(V)->getArgOperand(0);
239 /// \brief This is a wrapper around Value::stripPointerCasts which also knows
240 /// how to look through objc_retain and objc_autorelease calls, which we know to
241 /// return their argument verbatim.
242 static inline Value *StripPointerCastsAndObjCCalls(Value *V) {
244 V = V->stripPointerCasts();
245 if (!IsForwarding(GetBasicInstructionClass(V)))
247 V = cast<CallInst>(V)->getArgOperand(0);
252 /// \brief Assuming the given instruction is one of the special calls such as
253 /// objc_retain or objc_release, return the argument value, stripped of no-op
254 /// casts and forwarding calls.
255 static inline Value *GetObjCArg(Value *Inst) {
256 return StripPointerCastsAndObjCCalls(cast<CallInst>(Inst)->getArgOperand(0));
259 static inline bool isNullOrUndef(const Value *V) {
260 return isa<ConstantPointerNull>(V) || isa<UndefValue>(V);
263 static inline bool isNoopInstruction(const Instruction *I) {
264 return isa<BitCastInst>(I) ||
265 (isa<GetElementPtrInst>(I) &&
266 cast<GetElementPtrInst>(I)->hasAllZeroIndices());
270 /// \brief Erase the given instruction.
272 /// Many ObjC calls return their argument verbatim,
273 /// so if it's such a call and the return value has users, replace them with the
276 static inline void EraseInstruction(Instruction *CI) {
277 Value *OldArg = cast<CallInst>(CI)->getArgOperand(0);
279 bool Unused = CI->use_empty();
282 // Replace the return value with the argument.
283 assert(IsForwarding(GetBasicInstructionClass(CI)) &&
284 "Can't delete non-forwarding instruction with users!");
285 CI->replaceAllUsesWith(OldArg);
288 CI->eraseFromParent();
291 RecursivelyDeleteTriviallyDeadInstructions(OldArg);
294 /// \brief Test whether the given value is possible a retainable object pointer.
295 static inline bool IsPotentialRetainableObjPtr(const Value *Op) {
296 // Pointers to static or stack storage are not valid retainable object pointers.
297 if (isa<Constant>(Op) || isa<AllocaInst>(Op))
299 // Special arguments can not be a valid retainable object pointer.
300 if (const Argument *Arg = dyn_cast<Argument>(Op))
301 if (Arg->hasByValAttr() ||
302 Arg->hasNestAttr() ||
303 Arg->hasStructRetAttr())
305 // Only consider values with pointer types.
307 // It seemes intuitive to exclude function pointer types as well, since
308 // functions are never retainable object pointers, however clang occasionally
309 // bitcasts retainable object pointers to function-pointer type temporarily.
310 PointerType *Ty = dyn_cast<PointerType>(Op->getType());
313 // Conservatively assume anything else is a potential retainable object pointer.
317 static inline bool IsPotentialRetainableObjPtr(const Value *Op,
319 // First make the rudimentary check.
320 if (!IsPotentialRetainableObjPtr(Op))
323 // Objects in constant memory are not reference-counted.
324 if (AA.pointsToConstantMemory(Op))
327 // Pointers in constant memory are not pointing to reference-counted objects.
328 if (const LoadInst *LI = dyn_cast<LoadInst>(Op))
329 if (AA.pointsToConstantMemory(LI->getPointerOperand()))
332 // Otherwise assume the worst.
336 /// \brief Helper for GetInstructionClass. Determines what kind of construct CS
338 static inline InstructionClass GetCallSiteClass(ImmutableCallSite CS) {
339 for (ImmutableCallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
341 if (IsPotentialRetainableObjPtr(*I))
342 return CS.onlyReadsMemory() ? IC_User : IC_CallOrUser;
344 return CS.onlyReadsMemory() ? IC_None : IC_Call;
347 /// \brief Return true if this value refers to a distinct and identifiable
350 /// This is similar to AliasAnalysis's isIdentifiedObject, except that it uses
351 /// special knowledge of ObjC conventions.
352 static inline bool IsObjCIdentifiedObject(const Value *V) {
353 // Assume that call results and arguments have their own "provenance".
354 // Constants (including GlobalVariables) and Allocas are never
355 // reference-counted.
356 if (isa<CallInst>(V) || isa<InvokeInst>(V) ||
357 isa<Argument>(V) || isa<Constant>(V) ||
361 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) {
362 const Value *Pointer =
363 StripPointerCastsAndObjCCalls(LI->getPointerOperand());
364 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Pointer)) {
365 // A constant pointer can't be pointing to an object on the heap. It may
366 // be reference-counted, but it won't be deleted.
367 if (GV->isConstant())
369 StringRef Name = GV->getName();
370 // These special variables are known to hold values which are not
371 // reference-counted pointers.
372 if (Name.startswith("\01L_OBJC_SELECTOR_REFERENCES_") ||
373 Name.startswith("\01L_OBJC_CLASSLIST_REFERENCES_") ||
374 Name.startswith("\01L_OBJC_CLASSLIST_SUP_REFS_$_") ||
375 Name.startswith("\01L_OBJC_METH_VAR_NAME_") ||
376 Name.startswith("\01l_objc_msgSend_fixup_"))
384 } // end namespace objcarc
385 } // end namespace llvm
387 #endif // LLVM_TRANSFORMS_SCALAR_OBJCARC_H