1 //===----------------------- AlignmentFromAssumptions.cpp -----------------===//
2 // Set Load/Store Alignments From Assumptions
4 // The LLVM Compiler Infrastructure
6 // This file is distributed under the University of Illinois Open Source
7 // License. See LICENSE.TXT for details.
9 //===----------------------------------------------------------------------===//
11 // This file implements a ScalarEvolution-based transformation to set
12 // the alignments of load, stores and memory intrinsics based on the truth
13 // expressions of assume intrinsics. The primary motivation is to handle
14 // complex alignment assumptions that apply to vector loads and stores that
15 // appear after vectorization and unrolling.
17 //===----------------------------------------------------------------------===//
19 #define AA_NAME "alignment-from-assumptions"
20 #define DEBUG_TYPE AA_NAME
21 #include "llvm/Transforms/Scalar.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/ScalarEvolution.h"
27 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/Constant.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
39 STATISTIC(NumLoadAlignChanged,
40 "Number of loads changed by alignment assumptions");
41 STATISTIC(NumStoreAlignChanged,
42 "Number of stores changed by alignment assumptions");
43 STATISTIC(NumMemIntAlignChanged,
44 "Number of memory intrinsics changed by alignment assumptions");
47 struct AlignmentFromAssumptions : public FunctionPass {
48 static char ID; // Pass identification, replacement for typeid
49 AlignmentFromAssumptions() : FunctionPass(ID) {
50 initializeAlignmentFromAssumptionsPass(*PassRegistry::getPassRegistry());
53 bool runOnFunction(Function &F) override;
55 void getAnalysisUsage(AnalysisUsage &AU) const override {
56 AU.addRequired<AssumptionCacheTracker>();
57 AU.addRequired<ScalarEvolutionWrapperPass>();
58 AU.addRequired<DominatorTreeWrapperPass>();
61 AU.addPreserved<LoopInfoWrapperPass>();
62 AU.addPreserved<DominatorTreeWrapperPass>();
63 AU.addPreserved<ScalarEvolutionWrapperPass>();
66 // For memory transfers, we need a common alignment for both the source and
67 // destination. If we have a new alignment for only one operand of a transfer
68 // instruction, save it in these maps. If we reach the other operand through
69 // another assumption later, then we may change the alignment at that point.
70 DenseMap<MemTransferInst *, unsigned> NewDestAlignments, NewSrcAlignments;
75 bool extractAlignmentInfo(CallInst *I, Value *&AAPtr, const SCEV *&AlignSCEV,
76 const SCEV *&OffSCEV);
77 bool processAssumption(CallInst *I);
81 char AlignmentFromAssumptions::ID = 0;
82 static const char aip_name[] = "Alignment from assumptions";
83 INITIALIZE_PASS_BEGIN(AlignmentFromAssumptions, AA_NAME,
84 aip_name, false, false)
85 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
86 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
87 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
88 INITIALIZE_PASS_END(AlignmentFromAssumptions, AA_NAME,
89 aip_name, false, false)
91 FunctionPass *llvm::createAlignmentFromAssumptionsPass() {
92 return new AlignmentFromAssumptions();
95 // Given an expression for the (constant) alignment, AlignSCEV, and an
96 // expression for the displacement between a pointer and the aligned address,
97 // DiffSCEV, compute the alignment of the displaced pointer if it can be reduced
98 // to a constant. Using SCEV to compute alignment handles the case where
99 // DiffSCEV is a recurrence with constant start such that the aligned offset
100 // is constant. e.g. {16,+,32} % 32 -> 16.
101 static unsigned getNewAlignmentDiff(const SCEV *DiffSCEV,
102 const SCEV *AlignSCEV,
103 ScalarEvolution *SE) {
104 // DiffUnits = Diff % int64_t(Alignment)
105 const SCEV *DiffAlignDiv = SE->getUDivExpr(DiffSCEV, AlignSCEV);
106 const SCEV *DiffAlign = SE->getMulExpr(DiffAlignDiv, AlignSCEV);
107 const SCEV *DiffUnitsSCEV = SE->getMinusSCEV(DiffAlign, DiffSCEV);
109 DEBUG(dbgs() << "\talignment relative to " << *AlignSCEV << " is " <<
110 *DiffUnitsSCEV << " (diff: " << *DiffSCEV << ")\n");
112 if (const SCEVConstant *ConstDUSCEV =
113 dyn_cast<SCEVConstant>(DiffUnitsSCEV)) {
114 int64_t DiffUnits = ConstDUSCEV->getValue()->getSExtValue();
116 // If the displacement is an exact multiple of the alignment, then the
117 // displaced pointer has the same alignment as the aligned pointer, so
118 // return the alignment value.
121 cast<SCEVConstant>(AlignSCEV)->getValue()->getSExtValue();
123 // If the displacement is not an exact multiple, but the remainder is a
124 // constant, then return this remainder (but only if it is a power of 2).
125 uint64_t DiffUnitsAbs = std::abs(DiffUnits);
126 if (isPowerOf2_64(DiffUnitsAbs))
127 return (unsigned) DiffUnitsAbs;
133 // There is an address given by an offset OffSCEV from AASCEV which has an
134 // alignment AlignSCEV. Use that information, if possible, to compute a new
135 // alignment for Ptr.
136 static unsigned getNewAlignment(const SCEV *AASCEV, const SCEV *AlignSCEV,
137 const SCEV *OffSCEV, Value *Ptr,
138 ScalarEvolution *SE) {
139 const SCEV *PtrSCEV = SE->getSCEV(Ptr);
140 const SCEV *DiffSCEV = SE->getMinusSCEV(PtrSCEV, AASCEV);
142 // On 32-bit platforms, DiffSCEV might now have type i32 -- we've always
143 // sign-extended OffSCEV to i64, so make sure they agree again.
144 DiffSCEV = SE->getNoopOrSignExtend(DiffSCEV, OffSCEV->getType());
146 // What we really want to know is the overall offset to the aligned
147 // address. This address is displaced by the provided offset.
148 DiffSCEV = SE->getMinusSCEV(DiffSCEV, OffSCEV);
150 DEBUG(dbgs() << "AFI: alignment of " << *Ptr << " relative to " <<
151 *AlignSCEV << " and offset " << *OffSCEV <<
152 " using diff " << *DiffSCEV << "\n");
154 unsigned NewAlignment = getNewAlignmentDiff(DiffSCEV, AlignSCEV, SE);
155 DEBUG(dbgs() << "\tnew alignment: " << NewAlignment << "\n");
159 } else if (const SCEVAddRecExpr *DiffARSCEV =
160 dyn_cast<SCEVAddRecExpr>(DiffSCEV)) {
161 // The relative offset to the alignment assumption did not yield a constant,
162 // but we should try harder: if we assume that a is 32-byte aligned, then in
163 // for (i = 0; i < 1024; i += 4) r += a[i]; not all of the loads from a are
164 // 32-byte aligned, but instead alternate between 32 and 16-byte alignment.
165 // As a result, the new alignment will not be a constant, but can still
166 // be improved over the default (of 4) to 16.
168 const SCEV *DiffStartSCEV = DiffARSCEV->getStart();
169 const SCEV *DiffIncSCEV = DiffARSCEV->getStepRecurrence(*SE);
171 DEBUG(dbgs() << "\ttrying start/inc alignment using start " <<
172 *DiffStartSCEV << " and inc " << *DiffIncSCEV << "\n");
174 // Now compute the new alignment using the displacement to the value in the
175 // first iteration, and also the alignment using the per-iteration delta.
176 // If these are the same, then use that answer. Otherwise, use the smaller
177 // one, but only if it divides the larger one.
178 NewAlignment = getNewAlignmentDiff(DiffStartSCEV, AlignSCEV, SE);
179 unsigned NewIncAlignment = getNewAlignmentDiff(DiffIncSCEV, AlignSCEV, SE);
181 DEBUG(dbgs() << "\tnew start alignment: " << NewAlignment << "\n");
182 DEBUG(dbgs() << "\tnew inc alignment: " << NewIncAlignment << "\n");
184 if (!NewAlignment || !NewIncAlignment) {
186 } else if (NewAlignment > NewIncAlignment) {
187 if (NewAlignment % NewIncAlignment == 0) {
188 DEBUG(dbgs() << "\tnew start/inc alignment: " <<
189 NewIncAlignment << "\n");
190 return NewIncAlignment;
192 } else if (NewIncAlignment > NewAlignment) {
193 if (NewIncAlignment % NewAlignment == 0) {
194 DEBUG(dbgs() << "\tnew start/inc alignment: " <<
195 NewAlignment << "\n");
198 } else if (NewIncAlignment == NewAlignment) {
199 DEBUG(dbgs() << "\tnew start/inc alignment: " <<
200 NewAlignment << "\n");
208 bool AlignmentFromAssumptions::extractAlignmentInfo(CallInst *I,
209 Value *&AAPtr, const SCEV *&AlignSCEV,
210 const SCEV *&OffSCEV) {
211 // An alignment assume must be a statement about the least-significant
212 // bits of the pointer being zero, possibly with some offset.
213 ICmpInst *ICI = dyn_cast<ICmpInst>(I->getArgOperand(0));
217 // This must be an expression of the form: x & m == 0.
218 if (ICI->getPredicate() != ICmpInst::ICMP_EQ)
221 // Swap things around so that the RHS is 0.
222 Value *CmpLHS = ICI->getOperand(0);
223 Value *CmpRHS = ICI->getOperand(1);
224 const SCEV *CmpLHSSCEV = SE->getSCEV(CmpLHS);
225 const SCEV *CmpRHSSCEV = SE->getSCEV(CmpRHS);
226 if (CmpLHSSCEV->isZero())
227 std::swap(CmpLHS, CmpRHS);
228 else if (!CmpRHSSCEV->isZero())
231 BinaryOperator *CmpBO = dyn_cast<BinaryOperator>(CmpLHS);
232 if (!CmpBO || CmpBO->getOpcode() != Instruction::And)
235 // Swap things around so that the right operand of the and is a constant
236 // (the mask); we cannot deal with variable masks.
237 Value *AndLHS = CmpBO->getOperand(0);
238 Value *AndRHS = CmpBO->getOperand(1);
239 const SCEV *AndLHSSCEV = SE->getSCEV(AndLHS);
240 const SCEV *AndRHSSCEV = SE->getSCEV(AndRHS);
241 if (isa<SCEVConstant>(AndLHSSCEV)) {
242 std::swap(AndLHS, AndRHS);
243 std::swap(AndLHSSCEV, AndRHSSCEV);
246 const SCEVConstant *MaskSCEV = dyn_cast<SCEVConstant>(AndRHSSCEV);
250 // The mask must have some trailing ones (otherwise the condition is
251 // trivial and tells us nothing about the alignment of the left operand).
252 unsigned TrailingOnes =
253 MaskSCEV->getValue()->getValue().countTrailingOnes();
257 // Cap the alignment at the maximum with which LLVM can deal (and make sure
258 // we don't overflow the shift).
260 TrailingOnes = std::min(TrailingOnes,
261 unsigned(sizeof(unsigned) * CHAR_BIT - 1));
262 Alignment = std::min(1u << TrailingOnes, +Value::MaximumAlignment);
264 Type *Int64Ty = Type::getInt64Ty(I->getParent()->getParent()->getContext());
265 AlignSCEV = SE->getConstant(Int64Ty, Alignment);
267 // The LHS might be a ptrtoint instruction, or it might be the pointer
271 if (PtrToIntInst *PToI = dyn_cast<PtrToIntInst>(AndLHS)) {
272 AAPtr = PToI->getPointerOperand();
273 OffSCEV = SE->getZero(Int64Ty);
274 } else if (const SCEVAddExpr* AndLHSAddSCEV =
275 dyn_cast<SCEVAddExpr>(AndLHSSCEV)) {
276 // Try to find the ptrtoint; subtract it and the rest is the offset.
277 for (SCEVAddExpr::op_iterator J = AndLHSAddSCEV->op_begin(),
278 JE = AndLHSAddSCEV->op_end(); J != JE; ++J)
279 if (const SCEVUnknown *OpUnk = dyn_cast<SCEVUnknown>(*J))
280 if (PtrToIntInst *PToI = dyn_cast<PtrToIntInst>(OpUnk->getValue())) {
281 AAPtr = PToI->getPointerOperand();
282 OffSCEV = SE->getMinusSCEV(AndLHSAddSCEV, *J);
290 // Sign extend the offset to 64 bits (so that it is like all of the other
292 unsigned OffSCEVBits = OffSCEV->getType()->getPrimitiveSizeInBits();
293 if (OffSCEVBits < 64)
294 OffSCEV = SE->getSignExtendExpr(OffSCEV, Int64Ty);
295 else if (OffSCEVBits > 64)
298 AAPtr = AAPtr->stripPointerCasts();
302 bool AlignmentFromAssumptions::processAssumption(CallInst *ACall) {
304 const SCEV *AlignSCEV, *OffSCEV;
305 if (!extractAlignmentInfo(ACall, AAPtr, AlignSCEV, OffSCEV))
308 const SCEV *AASCEV = SE->getSCEV(AAPtr);
310 // Apply the assumption to all other users of the specified pointer.
311 SmallPtrSet<Instruction *, 32> Visited;
312 SmallVector<Instruction*, 16> WorkList;
313 for (User *J : AAPtr->users()) {
317 if (Instruction *K = dyn_cast<Instruction>(J))
318 if (isValidAssumeForContext(ACall, K, DT))
319 WorkList.push_back(K);
322 while (!WorkList.empty()) {
323 Instruction *J = WorkList.pop_back_val();
325 if (LoadInst *LI = dyn_cast<LoadInst>(J)) {
326 unsigned NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
327 LI->getPointerOperand(), SE);
329 if (NewAlignment > LI->getAlignment()) {
330 LI->setAlignment(NewAlignment);
331 ++NumLoadAlignChanged;
333 } else if (StoreInst *SI = dyn_cast<StoreInst>(J)) {
334 unsigned NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
335 SI->getPointerOperand(), SE);
337 if (NewAlignment > SI->getAlignment()) {
338 SI->setAlignment(NewAlignment);
339 ++NumStoreAlignChanged;
341 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(J)) {
342 unsigned NewDestAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
345 // For memory transfers, we need a common alignment for both the
346 // source and destination. If we have a new alignment for this
347 // instruction, but only for one operand, save it. If we reach the
348 // other operand through another assumption later, then we may
349 // change the alignment at that point.
350 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
351 unsigned NewSrcAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
352 MTI->getSource(), SE);
354 DenseMap<MemTransferInst *, unsigned>::iterator DI =
355 NewDestAlignments.find(MTI);
356 unsigned AltDestAlignment = (DI == NewDestAlignments.end()) ?
359 DenseMap<MemTransferInst *, unsigned>::iterator SI =
360 NewSrcAlignments.find(MTI);
361 unsigned AltSrcAlignment = (SI == NewSrcAlignments.end()) ?
364 DEBUG(dbgs() << "\tmem trans: " << NewDestAlignment << " " <<
365 AltDestAlignment << " " << NewSrcAlignment <<
366 " " << AltSrcAlignment << "\n");
368 // Of these four alignments, pick the largest possible...
369 unsigned NewAlignment = 0;
370 if (NewDestAlignment <= std::max(NewSrcAlignment, AltSrcAlignment))
371 NewAlignment = std::max(NewAlignment, NewDestAlignment);
372 if (AltDestAlignment <= std::max(NewSrcAlignment, AltSrcAlignment))
373 NewAlignment = std::max(NewAlignment, AltDestAlignment);
374 if (NewSrcAlignment <= std::max(NewDestAlignment, AltDestAlignment))
375 NewAlignment = std::max(NewAlignment, NewSrcAlignment);
376 if (AltSrcAlignment <= std::max(NewDestAlignment, AltDestAlignment))
377 NewAlignment = std::max(NewAlignment, AltSrcAlignment);
379 if (NewAlignment > MI->getAlignment()) {
380 MI->setAlignment(ConstantInt::get(Type::getInt32Ty(
381 MI->getParent()->getContext()), NewAlignment));
382 ++NumMemIntAlignChanged;
385 NewDestAlignments.insert(std::make_pair(MTI, NewDestAlignment));
386 NewSrcAlignments.insert(std::make_pair(MTI, NewSrcAlignment));
387 } else if (NewDestAlignment > MI->getAlignment()) {
388 assert((!isa<MemIntrinsic>(MI) || isa<MemSetInst>(MI)) &&
389 "Unknown memory intrinsic");
391 MI->setAlignment(ConstantInt::get(Type::getInt32Ty(
392 MI->getParent()->getContext()), NewDestAlignment));
393 ++NumMemIntAlignChanged;
397 // Now that we've updated that use of the pointer, look for other uses of
398 // the pointer to update.
400 for (User *UJ : J->users()) {
401 Instruction *K = cast<Instruction>(UJ);
402 if (!Visited.count(K) && isValidAssumeForContext(ACall, K, DT))
403 WorkList.push_back(K);
410 bool AlignmentFromAssumptions::runOnFunction(Function &F) {
411 bool Changed = false;
412 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
413 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
414 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
416 NewDestAlignments.clear();
417 NewSrcAlignments.clear();
419 for (auto &AssumeVH : AC.assumptions())
421 Changed |= processAssumption(cast<CallInst>(AssumeVH));