1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // InstructionCombining - Combine instructions to form fewer, simple
11 // instructions. This pass does not modify the CFG. This pass is where
12 // algebraic simplification happens.
14 // This pass combines things like:
20 // This is a simple worklist driven algorithm.
22 // This pass guarantees that the following canonicalizations are performed on
24 // 1. If a binary operator has a constant operand, it is moved to the RHS
25 // 2. Bitwise operators with constant operands are always grouped so that
26 // shifts are performed first, then or's, then and's, then xor's.
27 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28 // 4. All cmp instructions on boolean values are replaced with logical ops
29 // 5. add X, X is represented as (X*2) => (X << 1)
30 // 6. Multiplies with a power-of-two constant argument are transformed into
34 //===----------------------------------------------------------------------===//
36 #define DEBUG_TYPE "instcombine"
37 #include "llvm/Transforms/Scalar.h"
38 #include "llvm/IntrinsicInst.h"
39 #include "llvm/LLVMContext.h"
40 #include "llvm/Pass.h"
41 #include "llvm/DerivedTypes.h"
42 #include "llvm/GlobalVariable.h"
43 #include "llvm/Operator.h"
44 #include "llvm/Analysis/ConstantFolding.h"
45 #include "llvm/Analysis/MallocHelper.h"
46 #include "llvm/Analysis/ValueTracking.h"
47 #include "llvm/Target/TargetData.h"
48 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
49 #include "llvm/Transforms/Utils/Local.h"
50 #include "llvm/Support/CallSite.h"
51 #include "llvm/Support/ConstantRange.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include "llvm/Support/GetElementPtrTypeIterator.h"
55 #include "llvm/Support/InstVisitor.h"
56 #include "llvm/Support/IRBuilder.h"
57 #include "llvm/Support/MathExtras.h"
58 #include "llvm/Support/PatternMatch.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/ADT/DenseMap.h"
61 #include "llvm/ADT/SmallVector.h"
62 #include "llvm/ADT/SmallPtrSet.h"
63 #include "llvm/ADT/Statistic.h"
64 #include "llvm/ADT/STLExtras.h"
68 using namespace llvm::PatternMatch;
70 STATISTIC(NumCombined , "Number of insts combined");
71 STATISTIC(NumConstProp, "Number of constant folds");
72 STATISTIC(NumDeadInst , "Number of dead inst eliminated");
73 STATISTIC(NumDeadStore, "Number of dead stores eliminated");
74 STATISTIC(NumSunkInst , "Number of instructions sunk");
77 /// InstCombineWorklist - This is the worklist management logic for
79 class InstCombineWorklist {
80 SmallVector<Instruction*, 256> Worklist;
81 DenseMap<Instruction*, unsigned> WorklistMap;
83 void operator=(const InstCombineWorklist&RHS); // DO NOT IMPLEMENT
84 InstCombineWorklist(const InstCombineWorklist&); // DO NOT IMPLEMENT
86 InstCombineWorklist() {}
88 bool isEmpty() const { return Worklist.empty(); }
90 /// Add - Add the specified instruction to the worklist if it isn't already
92 void Add(Instruction *I) {
93 DEBUG(errs() << "IC: ADD: " << *I << '\n');
94 if (WorklistMap.insert(std::make_pair(I, Worklist.size())).second)
95 Worklist.push_back(I);
98 void AddValue(Value *V) {
99 if (Instruction *I = dyn_cast<Instruction>(V))
103 // Remove - remove I from the worklist if it exists.
104 void Remove(Instruction *I) {
105 DenseMap<Instruction*, unsigned>::iterator It = WorklistMap.find(I);
106 if (It == WorklistMap.end()) return; // Not in worklist.
108 // Don't bother moving everything down, just null out the slot.
109 Worklist[It->second] = 0;
111 WorklistMap.erase(It);
114 Instruction *RemoveOne() {
115 Instruction *I = Worklist.back();
117 WorklistMap.erase(I);
121 /// AddUsersToWorkList - When an instruction is simplified, add all users of
122 /// the instruction to the work lists because they might get more simplified
125 void AddUsersToWorkList(Instruction &I) {
126 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
128 Add(cast<Instruction>(*UI));
132 /// Zap - check that the worklist is empty and nuke the backing store for
133 /// the map if it is large.
135 assert(WorklistMap.empty() && "Worklist empty, but map not?");
137 // Do an explicit clear, this shrinks the map if needed.
141 } // end anonymous namespace.
145 /// InstCombineIRInserter - This is an IRBuilder insertion helper that works
146 /// just like the normal insertion helper, but also adds any new instructions
147 /// to the instcombine worklist.
148 class InstCombineIRInserter : public IRBuilderDefaultInserter<true> {
149 InstCombineWorklist &Worklist;
151 InstCombineIRInserter(InstCombineWorklist &WL) : Worklist(WL) {}
153 void InsertHelper(Instruction *I, const Twine &Name,
154 BasicBlock *BB, BasicBlock::iterator InsertPt) const {
155 IRBuilderDefaultInserter<true>::InsertHelper(I, Name, BB, InsertPt);
159 } // end anonymous namespace
163 class InstCombiner : public FunctionPass,
164 public InstVisitor<InstCombiner, Instruction*> {
166 bool MustPreserveLCSSA;
169 /// Worklist - All of the instructions that need to be simplified.
170 InstCombineWorklist Worklist;
172 /// Builder - This is an IRBuilder that automatically inserts new
173 /// instructions into the worklist when they are created.
174 typedef IRBuilder<true, ConstantFolder, InstCombineIRInserter> BuilderTy;
177 static char ID; // Pass identification, replacement for typeid
178 InstCombiner() : FunctionPass(&ID), TD(0), Builder(0) {}
180 LLVMContext *Context;
181 LLVMContext *getContext() const { return Context; }
184 virtual bool runOnFunction(Function &F);
186 bool DoOneIteration(Function &F, unsigned ItNum);
188 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
189 AU.addPreservedID(LCSSAID);
190 AU.setPreservesCFG();
193 TargetData *getTargetData() const { return TD; }
195 // Visitation implementation - Implement instruction combining for different
196 // instruction types. The semantics are as follows:
198 // null - No change was made
199 // I - Change was made, I is still valid, I may be dead though
200 // otherwise - Change was made, replace I with returned instruction
202 Instruction *visitAdd(BinaryOperator &I);
203 Instruction *visitFAdd(BinaryOperator &I);
204 Instruction *visitSub(BinaryOperator &I);
205 Instruction *visitFSub(BinaryOperator &I);
206 Instruction *visitMul(BinaryOperator &I);
207 Instruction *visitFMul(BinaryOperator &I);
208 Instruction *visitURem(BinaryOperator &I);
209 Instruction *visitSRem(BinaryOperator &I);
210 Instruction *visitFRem(BinaryOperator &I);
211 bool SimplifyDivRemOfSelect(BinaryOperator &I);
212 Instruction *commonRemTransforms(BinaryOperator &I);
213 Instruction *commonIRemTransforms(BinaryOperator &I);
214 Instruction *commonDivTransforms(BinaryOperator &I);
215 Instruction *commonIDivTransforms(BinaryOperator &I);
216 Instruction *visitUDiv(BinaryOperator &I);
217 Instruction *visitSDiv(BinaryOperator &I);
218 Instruction *visitFDiv(BinaryOperator &I);
219 Instruction *FoldAndOfICmps(Instruction &I, ICmpInst *LHS, ICmpInst *RHS);
220 Instruction *FoldAndOfFCmps(Instruction &I, FCmpInst *LHS, FCmpInst *RHS);
221 Instruction *visitAnd(BinaryOperator &I);
222 Instruction *FoldOrOfICmps(Instruction &I, ICmpInst *LHS, ICmpInst *RHS);
223 Instruction *FoldOrOfFCmps(Instruction &I, FCmpInst *LHS, FCmpInst *RHS);
224 Instruction *FoldOrWithConstants(BinaryOperator &I, Value *Op,
225 Value *A, Value *B, Value *C);
226 Instruction *visitOr (BinaryOperator &I);
227 Instruction *visitXor(BinaryOperator &I);
228 Instruction *visitShl(BinaryOperator &I);
229 Instruction *visitAShr(BinaryOperator &I);
230 Instruction *visitLShr(BinaryOperator &I);
231 Instruction *commonShiftTransforms(BinaryOperator &I);
232 Instruction *FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI,
234 Instruction *visitFCmpInst(FCmpInst &I);
235 Instruction *visitICmpInst(ICmpInst &I);
236 Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
237 Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
240 Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
241 ConstantInt *DivRHS);
243 Instruction *FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
244 ICmpInst::Predicate Cond, Instruction &I);
245 Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
247 Instruction *commonCastTransforms(CastInst &CI);
248 Instruction *commonIntCastTransforms(CastInst &CI);
249 Instruction *commonPointerCastTransforms(CastInst &CI);
250 Instruction *visitTrunc(TruncInst &CI);
251 Instruction *visitZExt(ZExtInst &CI);
252 Instruction *visitSExt(SExtInst &CI);
253 Instruction *visitFPTrunc(FPTruncInst &CI);
254 Instruction *visitFPExt(CastInst &CI);
255 Instruction *visitFPToUI(FPToUIInst &FI);
256 Instruction *visitFPToSI(FPToSIInst &FI);
257 Instruction *visitUIToFP(CastInst &CI);
258 Instruction *visitSIToFP(CastInst &CI);
259 Instruction *visitPtrToInt(PtrToIntInst &CI);
260 Instruction *visitIntToPtr(IntToPtrInst &CI);
261 Instruction *visitBitCast(BitCastInst &CI);
262 Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI,
264 Instruction *FoldSelectIntoOp(SelectInst &SI, Value*, Value*);
265 Instruction *visitSelectInst(SelectInst &SI);
266 Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
267 Instruction *visitCallInst(CallInst &CI);
268 Instruction *visitInvokeInst(InvokeInst &II);
269 Instruction *visitPHINode(PHINode &PN);
270 Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
271 Instruction *visitAllocationInst(AllocationInst &AI);
272 Instruction *visitFreeInst(FreeInst &FI);
273 Instruction *visitLoadInst(LoadInst &LI);
274 Instruction *visitStoreInst(StoreInst &SI);
275 Instruction *visitBranchInst(BranchInst &BI);
276 Instruction *visitSwitchInst(SwitchInst &SI);
277 Instruction *visitInsertElementInst(InsertElementInst &IE);
278 Instruction *visitExtractElementInst(ExtractElementInst &EI);
279 Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
280 Instruction *visitExtractValueInst(ExtractValueInst &EV);
282 // visitInstruction - Specify what to return for unhandled instructions...
283 Instruction *visitInstruction(Instruction &I) { return 0; }
286 Instruction *visitCallSite(CallSite CS);
287 bool transformConstExprCastCall(CallSite CS);
288 Instruction *transformCallThroughTrampoline(CallSite CS);
289 Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI,
290 bool DoXform = true);
291 bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS);
292 DbgDeclareInst *hasOneUsePlusDeclare(Value *V);
296 // InsertNewInstBefore - insert an instruction New before instruction Old
297 // in the program. Add the new instruction to the worklist.
299 Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
300 assert(New && New->getParent() == 0 &&
301 "New instruction already inserted into a basic block!");
302 BasicBlock *BB = Old.getParent();
303 BB->getInstList().insert(&Old, New); // Insert inst
308 // ReplaceInstUsesWith - This method is to be used when an instruction is
309 // found to be dead, replacable with another preexisting expression. Here
310 // we add all uses of I to the worklist, replace all uses of I with the new
311 // value, then return I, so that the inst combiner will know that I was
314 Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
315 Worklist.AddUsersToWorkList(I); // Add all modified instrs to worklist.
317 // If we are replacing the instruction with itself, this must be in a
318 // segment of unreachable code, so just clobber the instruction.
320 V = UndefValue::get(I.getType());
322 I.replaceAllUsesWith(V);
326 // EraseInstFromFunction - When dealing with an instruction that has side
327 // effects or produces a void value, we can't rely on DCE to delete the
328 // instruction. Instead, visit methods should return the value returned by
330 Instruction *EraseInstFromFunction(Instruction &I) {
331 DEBUG(errs() << "IC: ERASE " << I << '\n');
333 assert(I.use_empty() && "Cannot erase instruction that is used!");
334 // Make sure that we reprocess all operands now that we reduced their
336 if (I.getNumOperands() < 8) {
337 for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
338 if (Instruction *Op = dyn_cast<Instruction>(*i))
344 return 0; // Don't do anything with FI
347 void ComputeMaskedBits(Value *V, const APInt &Mask, APInt &KnownZero,
348 APInt &KnownOne, unsigned Depth = 0) const {
349 return llvm::ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
352 bool MaskedValueIsZero(Value *V, const APInt &Mask,
353 unsigned Depth = 0) const {
354 return llvm::MaskedValueIsZero(V, Mask, TD, Depth);
356 unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0) const {
357 return llvm::ComputeNumSignBits(Op, TD, Depth);
362 /// SimplifyCommutative - This performs a few simplifications for
363 /// commutative operators.
364 bool SimplifyCommutative(BinaryOperator &I);
366 /// SimplifyCompare - This reorders the operands of a CmpInst to get them in
367 /// most-complex to least-complex order.
368 bool SimplifyCompare(CmpInst &I);
370 /// SimplifyDemandedUseBits - Attempts to replace V with a simpler value
371 /// based on the demanded bits.
372 Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
373 APInt& KnownZero, APInt& KnownOne,
375 bool SimplifyDemandedBits(Use &U, APInt DemandedMask,
376 APInt& KnownZero, APInt& KnownOne,
379 /// SimplifyDemandedInstructionBits - Inst is an integer instruction that
380 /// SimplifyDemandedBits knows about. See if the instruction has any
381 /// properties that allow us to simplify its operands.
382 bool SimplifyDemandedInstructionBits(Instruction &Inst);
384 Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
385 APInt& UndefElts, unsigned Depth = 0);
387 // FoldOpIntoPhi - Given a binary operator, cast instruction, or select
388 // which has a PHI node as operand #0, see if we can fold the instruction
389 // into the PHI (which is only possible if all operands to the PHI are
392 // If AllowAggressive is true, FoldOpIntoPhi will allow certain transforms
393 // that would normally be unprofitable because they strongly encourage jump
395 Instruction *FoldOpIntoPhi(Instruction &I, bool AllowAggressive = false);
397 // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
398 // operator and they all are only used by the PHI, PHI together their
399 // inputs, and do the operation once, to the result of the PHI.
400 Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
401 Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
402 Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN);
405 Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
406 ConstantInt *AndRHS, BinaryOperator &TheAnd);
408 Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
409 bool isSub, Instruction &I);
410 Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
411 bool isSigned, bool Inside, Instruction &IB);
412 Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocationInst &AI);
413 Instruction *MatchBSwap(BinaryOperator &I);
414 bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
415 Instruction *SimplifyMemTransfer(MemIntrinsic *MI);
416 Instruction *SimplifyMemSet(MemSetInst *MI);
419 Value *EvaluateInDifferentType(Value *V, const Type *Ty, bool isSigned);
421 bool CanEvaluateInDifferentType(Value *V, const Type *Ty,
422 unsigned CastOpc, int &NumCastsRemoved);
423 unsigned GetOrEnforceKnownAlignment(Value *V,
424 unsigned PrefAlign = 0);
427 } // end anonymous namespace
429 char InstCombiner::ID = 0;
430 static RegisterPass<InstCombiner>
431 X("instcombine", "Combine redundant instructions");
433 // getComplexity: Assign a complexity or rank value to LLVM Values...
434 // 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
435 static unsigned getComplexity(Value *V) {
436 if (isa<Instruction>(V)) {
437 if (BinaryOperator::isNeg(V) ||
438 BinaryOperator::isFNeg(V) ||
439 BinaryOperator::isNot(V))
443 if (isa<Argument>(V)) return 3;
444 return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
447 // isOnlyUse - Return true if this instruction will be deleted if we stop using
449 static bool isOnlyUse(Value *V) {
450 return V->hasOneUse() || isa<Constant>(V);
453 // getPromotedType - Return the specified type promoted as it would be to pass
454 // though a va_arg area...
455 static const Type *getPromotedType(const Type *Ty) {
456 if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
457 if (ITy->getBitWidth() < 32)
458 return Type::getInt32Ty(Ty->getContext());
463 /// getBitCastOperand - If the specified operand is a CastInst, a constant
464 /// expression bitcast, or a GetElementPtrInst with all zero indices, return the
465 /// operand value, otherwise return null.
466 static Value *getBitCastOperand(Value *V) {
467 if (Operator *O = dyn_cast<Operator>(V)) {
468 if (O->getOpcode() == Instruction::BitCast)
469 return O->getOperand(0);
470 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
471 if (GEP->hasAllZeroIndices())
472 return GEP->getPointerOperand();
477 /// This function is a wrapper around CastInst::isEliminableCastPair. It
478 /// simply extracts arguments and returns what that function returns.
479 static Instruction::CastOps
480 isEliminableCastPair(
481 const CastInst *CI, ///< The first cast instruction
482 unsigned opcode, ///< The opcode of the second cast instruction
483 const Type *DstTy, ///< The target type for the second cast instruction
484 TargetData *TD ///< The target data for pointer size
487 const Type *SrcTy = CI->getOperand(0)->getType(); // A from above
488 const Type *MidTy = CI->getType(); // B from above
490 // Get the opcodes of the two Cast instructions
491 Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
492 Instruction::CastOps secondOp = Instruction::CastOps(opcode);
494 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
496 TD ? TD->getIntPtrType(CI->getContext()) : 0);
498 // We don't want to form an inttoptr or ptrtoint that converts to an integer
499 // type that differs from the pointer size.
500 if ((Res == Instruction::IntToPtr &&
501 (!TD || SrcTy != TD->getIntPtrType(CI->getContext()))) ||
502 (Res == Instruction::PtrToInt &&
503 (!TD || DstTy != TD->getIntPtrType(CI->getContext()))))
506 return Instruction::CastOps(Res);
509 /// ValueRequiresCast - Return true if the cast from "V to Ty" actually results
510 /// in any code being generated. It does not require codegen if V is simple
511 /// enough or if the cast can be folded into other casts.
512 static bool ValueRequiresCast(Instruction::CastOps opcode, const Value *V,
513 const Type *Ty, TargetData *TD) {
514 if (V->getType() == Ty || isa<Constant>(V)) return false;
516 // If this is another cast that can be eliminated, it isn't codegen either.
517 if (const CastInst *CI = dyn_cast<CastInst>(V))
518 if (isEliminableCastPair(CI, opcode, Ty, TD))
523 // SimplifyCommutative - This performs a few simplifications for commutative
526 // 1. Order operands such that they are listed from right (least complex) to
527 // left (most complex). This puts constants before unary operators before
530 // 2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
531 // 3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
533 bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
534 bool Changed = false;
535 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
536 Changed = !I.swapOperands();
538 if (!I.isAssociative()) return Changed;
539 Instruction::BinaryOps Opcode = I.getOpcode();
540 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
541 if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
542 if (isa<Constant>(I.getOperand(1))) {
543 Constant *Folded = ConstantExpr::get(I.getOpcode(),
544 cast<Constant>(I.getOperand(1)),
545 cast<Constant>(Op->getOperand(1)));
546 I.setOperand(0, Op->getOperand(0));
547 I.setOperand(1, Folded);
549 } else if (BinaryOperator *Op1=dyn_cast<BinaryOperator>(I.getOperand(1)))
550 if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
551 isOnlyUse(Op) && isOnlyUse(Op1)) {
552 Constant *C1 = cast<Constant>(Op->getOperand(1));
553 Constant *C2 = cast<Constant>(Op1->getOperand(1));
555 // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
556 Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
557 Instruction *New = BinaryOperator::Create(Opcode, Op->getOperand(0),
561 I.setOperand(0, New);
562 I.setOperand(1, Folded);
569 /// SimplifyCompare - For a CmpInst this function just orders the operands
570 /// so that theyare listed from right (least complex) to left (most complex).
571 /// This puts constants before unary operators before binary operators.
572 bool InstCombiner::SimplifyCompare(CmpInst &I) {
573 if (getComplexity(I.getOperand(0)) >= getComplexity(I.getOperand(1)))
576 // Compare instructions are not associative so there's nothing else we can do.
580 // dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
581 // if the LHS is a constant zero (which is the 'negate' form).
583 static inline Value *dyn_castNegVal(Value *V) {
584 if (BinaryOperator::isNeg(V))
585 return BinaryOperator::getNegArgument(V);
587 // Constants can be considered to be negated values if they can be folded.
588 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
589 return ConstantExpr::getNeg(C);
591 if (ConstantVector *C = dyn_cast<ConstantVector>(V))
592 if (C->getType()->getElementType()->isInteger())
593 return ConstantExpr::getNeg(C);
598 // dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the
599 // instruction if the LHS is a constant negative zero (which is the 'negate'
602 static inline Value *dyn_castFNegVal(Value *V) {
603 if (BinaryOperator::isFNeg(V))
604 return BinaryOperator::getFNegArgument(V);
606 // Constants can be considered to be negated values if they can be folded.
607 if (ConstantFP *C = dyn_cast<ConstantFP>(V))
608 return ConstantExpr::getFNeg(C);
610 if (ConstantVector *C = dyn_cast<ConstantVector>(V))
611 if (C->getType()->getElementType()->isFloatingPoint())
612 return ConstantExpr::getFNeg(C);
617 static inline Value *dyn_castNotVal(Value *V) {
618 if (BinaryOperator::isNot(V))
619 return BinaryOperator::getNotArgument(V);
621 // Constants can be considered to be not'ed values...
622 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
623 return ConstantInt::get(C->getType(), ~C->getValue());
627 // dyn_castFoldableMul - If this value is a multiply that can be folded into
628 // other computations (because it has a constant operand), return the
629 // non-constant operand of the multiply, and set CST to point to the multiplier.
630 // Otherwise, return null.
632 static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
633 if (V->hasOneUse() && V->getType()->isInteger())
634 if (Instruction *I = dyn_cast<Instruction>(V)) {
635 if (I->getOpcode() == Instruction::Mul)
636 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
637 return I->getOperand(0);
638 if (I->getOpcode() == Instruction::Shl)
639 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
640 // The multiplier is really 1 << CST.
641 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
642 uint32_t CSTVal = CST->getLimitedValue(BitWidth);
643 CST = ConstantInt::get(V->getType()->getContext(),
644 APInt(BitWidth, 1).shl(CSTVal));
645 return I->getOperand(0);
651 /// AddOne - Add one to a ConstantInt
652 static Constant *AddOne(Constant *C) {
653 return ConstantExpr::getAdd(C,
654 ConstantInt::get(C->getType(), 1));
656 /// SubOne - Subtract one from a ConstantInt
657 static Constant *SubOne(ConstantInt *C) {
658 return ConstantExpr::getSub(C,
659 ConstantInt::get(C->getType(), 1));
661 /// MultiplyOverflows - True if the multiply can not be expressed in an int
663 static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
664 uint32_t W = C1->getBitWidth();
665 APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
674 APInt MulExt = LHSExt * RHSExt;
677 APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
678 APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
679 return MulExt.slt(Min) || MulExt.sgt(Max);
681 return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
685 /// ShrinkDemandedConstant - Check to see if the specified operand of the
686 /// specified instruction is a constant integer. If so, check to see if there
687 /// are any bits set in the constant that are not demanded. If so, shrink the
688 /// constant and return true.
689 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
691 assert(I && "No instruction?");
692 assert(OpNo < I->getNumOperands() && "Operand index too large");
694 // If the operand is not a constant integer, nothing to do.
695 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
696 if (!OpC) return false;
698 // If there are no bits set that aren't demanded, nothing to do.
699 Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
700 if ((~Demanded & OpC->getValue()) == 0)
703 // This instruction is producing bits that are not demanded. Shrink the RHS.
704 Demanded &= OpC->getValue();
705 I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Demanded));
709 // ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
710 // set of known zero and one bits, compute the maximum and minimum values that
711 // could have the specified known zero and known one bits, returning them in
713 static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
714 const APInt& KnownOne,
715 APInt& Min, APInt& Max) {
716 assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
717 KnownZero.getBitWidth() == Min.getBitWidth() &&
718 KnownZero.getBitWidth() == Max.getBitWidth() &&
719 "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
720 APInt UnknownBits = ~(KnownZero|KnownOne);
722 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
723 // bit if it is unknown.
725 Max = KnownOne|UnknownBits;
727 if (UnknownBits.isNegative()) { // Sign bit is unknown
728 Min.set(Min.getBitWidth()-1);
729 Max.clear(Max.getBitWidth()-1);
733 // ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
734 // a set of known zero and one bits, compute the maximum and minimum values that
735 // could have the specified known zero and known one bits, returning them in
737 static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
738 const APInt &KnownOne,
739 APInt &Min, APInt &Max) {
740 assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
741 KnownZero.getBitWidth() == Min.getBitWidth() &&
742 KnownZero.getBitWidth() == Max.getBitWidth() &&
743 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
744 APInt UnknownBits = ~(KnownZero|KnownOne);
746 // The minimum value is when the unknown bits are all zeros.
748 // The maximum value is when the unknown bits are all ones.
749 Max = KnownOne|UnknownBits;
752 /// SimplifyDemandedInstructionBits - Inst is an integer instruction that
753 /// SimplifyDemandedBits knows about. See if the instruction has any
754 /// properties that allow us to simplify its operands.
755 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
756 unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
757 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
758 APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
760 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask,
761 KnownZero, KnownOne, 0);
762 if (V == 0) return false;
763 if (V == &Inst) return true;
764 ReplaceInstUsesWith(Inst, V);
768 /// SimplifyDemandedBits - This form of SimplifyDemandedBits simplifies the
769 /// specified instruction operand if possible, updating it in place. It returns
770 /// true if it made any change and false otherwise.
771 bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask,
772 APInt &KnownZero, APInt &KnownOne,
774 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask,
775 KnownZero, KnownOne, Depth);
776 if (NewVal == 0) return false;
782 /// SimplifyDemandedUseBits - This function attempts to replace V with a simpler
783 /// value based on the demanded bits. When this function is called, it is known
784 /// that only the bits set in DemandedMask of the result of V are ever used
785 /// downstream. Consequently, depending on the mask and V, it may be possible
786 /// to replace V with a constant or one of its operands. In such cases, this
787 /// function does the replacement and returns true. In all other cases, it
788 /// returns false after analyzing the expression and setting KnownOne and known
789 /// to be one in the expression. KnownZero contains all the bits that are known
790 /// to be zero in the expression. These are provided to potentially allow the
791 /// caller (which might recursively be SimplifyDemandedBits itself) to simplify
792 /// the expression. KnownOne and KnownZero always follow the invariant that
793 /// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
794 /// the bits in KnownOne and KnownZero may only be accurate for those bits set
795 /// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
796 /// and KnownOne must all be the same.
798 /// This returns null if it did not change anything and it permits no
799 /// simplification. This returns V itself if it did some simplification of V's
800 /// operands based on the information about what bits are demanded. This returns
801 /// some other non-null value if it found out that V is equal to another value
802 /// in the context where the specified bits are demanded, but not for all users.
803 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
804 APInt &KnownZero, APInt &KnownOne,
806 assert(V != 0 && "Null pointer of Value???");
807 assert(Depth <= 6 && "Limit Search Depth");
808 uint32_t BitWidth = DemandedMask.getBitWidth();
809 const Type *VTy = V->getType();
810 assert((TD || !isa<PointerType>(VTy)) &&
811 "SimplifyDemandedBits needs to know bit widths!");
812 assert((!TD || TD->getTypeSizeInBits(VTy->getScalarType()) == BitWidth) &&
813 (!VTy->isIntOrIntVector() ||
814 VTy->getScalarSizeInBits() == BitWidth) &&
815 KnownZero.getBitWidth() == BitWidth &&
816 KnownOne.getBitWidth() == BitWidth &&
817 "Value *V, DemandedMask, KnownZero and KnownOne "
818 "must have same BitWidth");
819 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
820 // We know all of the bits for a constant!
821 KnownOne = CI->getValue() & DemandedMask;
822 KnownZero = ~KnownOne & DemandedMask;
825 if (isa<ConstantPointerNull>(V)) {
826 // We know all of the bits for a constant!
828 KnownZero = DemandedMask;
834 if (DemandedMask == 0) { // Not demanding any bits from V.
835 if (isa<UndefValue>(V))
837 return UndefValue::get(VTy);
840 if (Depth == 6) // Limit search depth.
843 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
844 APInt &RHSKnownZero = KnownZero, &RHSKnownOne = KnownOne;
846 Instruction *I = dyn_cast<Instruction>(V);
848 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
849 return 0; // Only analyze instructions.
852 // If there are multiple uses of this value and we aren't at the root, then
853 // we can't do any simplifications of the operands, because DemandedMask
854 // only reflects the bits demanded by *one* of the users.
855 if (Depth != 0 && !I->hasOneUse()) {
856 // Despite the fact that we can't simplify this instruction in all User's
857 // context, we can at least compute the knownzero/knownone bits, and we can
858 // do simplifications that apply to *just* the one user if we know that
859 // this instruction has a simpler value in that context.
860 if (I->getOpcode() == Instruction::And) {
861 // If either the LHS or the RHS are Zero, the result is zero.
862 ComputeMaskedBits(I->getOperand(1), DemandedMask,
863 RHSKnownZero, RHSKnownOne, Depth+1);
864 ComputeMaskedBits(I->getOperand(0), DemandedMask & ~RHSKnownZero,
865 LHSKnownZero, LHSKnownOne, Depth+1);
867 // If all of the demanded bits are known 1 on one side, return the other.
868 // These bits cannot contribute to the result of the 'and' in this
870 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
871 (DemandedMask & ~LHSKnownZero))
872 return I->getOperand(0);
873 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
874 (DemandedMask & ~RHSKnownZero))
875 return I->getOperand(1);
877 // If all of the demanded bits in the inputs are known zeros, return zero.
878 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
879 return Constant::getNullValue(VTy);
881 } else if (I->getOpcode() == Instruction::Or) {
882 // We can simplify (X|Y) -> X or Y in the user's context if we know that
883 // only bits from X or Y are demanded.
885 // If either the LHS or the RHS are One, the result is One.
886 ComputeMaskedBits(I->getOperand(1), DemandedMask,
887 RHSKnownZero, RHSKnownOne, Depth+1);
888 ComputeMaskedBits(I->getOperand(0), DemandedMask & ~RHSKnownOne,
889 LHSKnownZero, LHSKnownOne, Depth+1);
891 // If all of the demanded bits are known zero on one side, return the
892 // other. These bits cannot contribute to the result of the 'or' in this
894 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
895 (DemandedMask & ~LHSKnownOne))
896 return I->getOperand(0);
897 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
898 (DemandedMask & ~RHSKnownOne))
899 return I->getOperand(1);
901 // If all of the potentially set bits on one side are known to be set on
902 // the other side, just use the 'other' side.
903 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
904 (DemandedMask & (~RHSKnownZero)))
905 return I->getOperand(0);
906 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
907 (DemandedMask & (~LHSKnownZero)))
908 return I->getOperand(1);
911 // Compute the KnownZero/KnownOne bits to simplify things downstream.
912 ComputeMaskedBits(I, DemandedMask, KnownZero, KnownOne, Depth);
916 // If this is the root being simplified, allow it to have multiple uses,
917 // just set the DemandedMask to all bits so that we can try to simplify the
918 // operands. This allows visitTruncInst (for example) to simplify the
919 // operand of a trunc without duplicating all the logic below.
920 if (Depth == 0 && !V->hasOneUse())
921 DemandedMask = APInt::getAllOnesValue(BitWidth);
923 switch (I->getOpcode()) {
925 ComputeMaskedBits(I, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
927 case Instruction::And:
928 // If either the LHS or the RHS are Zero, the result is zero.
929 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
930 RHSKnownZero, RHSKnownOne, Depth+1) ||
931 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero,
932 LHSKnownZero, LHSKnownOne, Depth+1))
934 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
935 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
937 // If all of the demanded bits are known 1 on one side, return the other.
938 // These bits cannot contribute to the result of the 'and'.
939 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
940 (DemandedMask & ~LHSKnownZero))
941 return I->getOperand(0);
942 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
943 (DemandedMask & ~RHSKnownZero))
944 return I->getOperand(1);
946 // If all of the demanded bits in the inputs are known zeros, return zero.
947 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
948 return Constant::getNullValue(VTy);
950 // If the RHS is a constant, see if we can simplify it.
951 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
954 // Output known-1 bits are only known if set in both the LHS & RHS.
955 RHSKnownOne &= LHSKnownOne;
956 // Output known-0 are known to be clear if zero in either the LHS | RHS.
957 RHSKnownZero |= LHSKnownZero;
959 case Instruction::Or:
960 // If either the LHS or the RHS are One, the result is One.
961 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
962 RHSKnownZero, RHSKnownOne, Depth+1) ||
963 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne,
964 LHSKnownZero, LHSKnownOne, Depth+1))
966 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
967 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
969 // If all of the demanded bits are known zero on one side, return the other.
970 // These bits cannot contribute to the result of the 'or'.
971 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
972 (DemandedMask & ~LHSKnownOne))
973 return I->getOperand(0);
974 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
975 (DemandedMask & ~RHSKnownOne))
976 return I->getOperand(1);
978 // If all of the potentially set bits on one side are known to be set on
979 // the other side, just use the 'other' side.
980 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
981 (DemandedMask & (~RHSKnownZero)))
982 return I->getOperand(0);
983 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
984 (DemandedMask & (~LHSKnownZero)))
985 return I->getOperand(1);
987 // If the RHS is a constant, see if we can simplify it.
988 if (ShrinkDemandedConstant(I, 1, DemandedMask))
991 // Output known-0 bits are only known if clear in both the LHS & RHS.
992 RHSKnownZero &= LHSKnownZero;
993 // Output known-1 are known to be set if set in either the LHS | RHS.
994 RHSKnownOne |= LHSKnownOne;
996 case Instruction::Xor: {
997 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
998 RHSKnownZero, RHSKnownOne, Depth+1) ||
999 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
1000 LHSKnownZero, LHSKnownOne, Depth+1))
1002 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
1003 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
1005 // If all of the demanded bits are known zero on one side, return the other.
1006 // These bits cannot contribute to the result of the 'xor'.
1007 if ((DemandedMask & RHSKnownZero) == DemandedMask)
1008 return I->getOperand(0);
1009 if ((DemandedMask & LHSKnownZero) == DemandedMask)
1010 return I->getOperand(1);
1012 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1013 APInt KnownZeroOut = (RHSKnownZero & LHSKnownZero) |
1014 (RHSKnownOne & LHSKnownOne);
1015 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1016 APInt KnownOneOut = (RHSKnownZero & LHSKnownOne) |
1017 (RHSKnownOne & LHSKnownZero);
1019 // If all of the demanded bits are known to be zero on one side or the
1020 // other, turn this into an *inclusive* or.
1021 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1022 if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
1024 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
1026 return InsertNewInstBefore(Or, *I);
1029 // If all of the demanded bits on one side are known, and all of the set
1030 // bits on that side are also known to be set on the other side, turn this
1031 // into an AND, as we know the bits will be cleared.
1032 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1033 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
1035 if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
1036 Constant *AndC = Constant::getIntegerValue(VTy,
1037 ~RHSKnownOne & DemandedMask);
1039 BinaryOperator::CreateAnd(I->getOperand(0), AndC, "tmp");
1040 return InsertNewInstBefore(And, *I);
1044 // If the RHS is a constant, see if we can simplify it.
1045 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
1046 if (ShrinkDemandedConstant(I, 1, DemandedMask))
1049 RHSKnownZero = KnownZeroOut;
1050 RHSKnownOne = KnownOneOut;
1053 case Instruction::Select:
1054 if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask,
1055 RHSKnownZero, RHSKnownOne, Depth+1) ||
1056 SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
1057 LHSKnownZero, LHSKnownOne, Depth+1))
1059 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
1060 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
1062 // If the operands are constants, see if we can simplify them.
1063 if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
1064 ShrinkDemandedConstant(I, 2, DemandedMask))
1067 // Only known if known in both the LHS and RHS.
1068 RHSKnownOne &= LHSKnownOne;
1069 RHSKnownZero &= LHSKnownZero;
1071 case Instruction::Trunc: {
1072 unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits();
1073 DemandedMask.zext(truncBf);
1074 RHSKnownZero.zext(truncBf);
1075 RHSKnownOne.zext(truncBf);
1076 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
1077 RHSKnownZero, RHSKnownOne, Depth+1))
1079 DemandedMask.trunc(BitWidth);
1080 RHSKnownZero.trunc(BitWidth);
1081 RHSKnownOne.trunc(BitWidth);
1082 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
1085 case Instruction::BitCast:
1086 if (!I->getOperand(0)->getType()->isIntOrIntVector())
1087 return false; // vector->int or fp->int?
1089 if (const VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
1090 if (const VectorType *SrcVTy =
1091 dyn_cast<VectorType>(I->getOperand(0)->getType())) {
1092 if (DstVTy->getNumElements() != SrcVTy->getNumElements())
1093 // Don't touch a bitcast between vectors of different element counts.
1096 // Don't touch a scalar-to-vector bitcast.
1098 } else if (isa<VectorType>(I->getOperand(0)->getType()))
1099 // Don't touch a vector-to-scalar bitcast.
1102 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
1103 RHSKnownZero, RHSKnownOne, Depth+1))
1105 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
1107 case Instruction::ZExt: {
1108 // Compute the bits in the result that are not present in the input.
1109 unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
1111 DemandedMask.trunc(SrcBitWidth);
1112 RHSKnownZero.trunc(SrcBitWidth);
1113 RHSKnownOne.trunc(SrcBitWidth);
1114 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
1115 RHSKnownZero, RHSKnownOne, Depth+1))
1117 DemandedMask.zext(BitWidth);
1118 RHSKnownZero.zext(BitWidth);
1119 RHSKnownOne.zext(BitWidth);
1120 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
1121 // The top bits are known to be zero.
1122 RHSKnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1125 case Instruction::SExt: {
1126 // Compute the bits in the result that are not present in the input.
1127 unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
1129 APInt InputDemandedBits = DemandedMask &
1130 APInt::getLowBitsSet(BitWidth, SrcBitWidth);
1132 APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
1133 // If any of the sign extended bits are demanded, we know that the sign
1135 if ((NewBits & DemandedMask) != 0)
1136 InputDemandedBits.set(SrcBitWidth-1);
1138 InputDemandedBits.trunc(SrcBitWidth);
1139 RHSKnownZero.trunc(SrcBitWidth);
1140 RHSKnownOne.trunc(SrcBitWidth);
1141 if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits,
1142 RHSKnownZero, RHSKnownOne, Depth+1))
1144 InputDemandedBits.zext(BitWidth);
1145 RHSKnownZero.zext(BitWidth);
1146 RHSKnownOne.zext(BitWidth);
1147 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
1149 // If the sign bit of the input is known set or clear, then we know the
1150 // top bits of the result.
1152 // If the input sign bit is known zero, or if the NewBits are not demanded
1153 // convert this into a zero extension.
1154 if (RHSKnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) {
1155 // Convert to ZExt cast
1156 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
1157 return InsertNewInstBefore(NewCast, *I);
1158 } else if (RHSKnownOne[SrcBitWidth-1]) { // Input sign bit known set
1159 RHSKnownOne |= NewBits;
1163 case Instruction::Add: {
1164 // Figure out what the input bits are. If the top bits of the and result
1165 // are not demanded, then the add doesn't demand them from its input
1167 unsigned NLZ = DemandedMask.countLeadingZeros();
1169 // If there is a constant on the RHS, there are a variety of xformations
1171 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1172 // If null, this should be simplified elsewhere. Some of the xforms here
1173 // won't work if the RHS is zero.
1177 // If the top bit of the output is demanded, demand everything from the
1178 // input. Otherwise, we demand all the input bits except NLZ top bits.
1179 APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
1181 // Find information about known zero/one bits in the input.
1182 if (SimplifyDemandedBits(I->getOperandUse(0), InDemandedBits,
1183 LHSKnownZero, LHSKnownOne, Depth+1))
1186 // If the RHS of the add has bits set that can't affect the input, reduce
1188 if (ShrinkDemandedConstant(I, 1, InDemandedBits))
1191 // Avoid excess work.
1192 if (LHSKnownZero == 0 && LHSKnownOne == 0)
1195 // Turn it into OR if input bits are zero.
1196 if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
1198 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
1200 return InsertNewInstBefore(Or, *I);
1203 // We can say something about the output known-zero and known-one bits,
1204 // depending on potential carries from the input constant and the
1205 // unknowns. For example if the LHS is known to have at most the 0x0F0F0
1206 // bits set and the RHS constant is 0x01001, then we know we have a known
1207 // one mask of 0x00001 and a known zero mask of 0xE0F0E.
1209 // To compute this, we first compute the potential carry bits. These are
1210 // the bits which may be modified. I'm not aware of a better way to do
1212 const APInt &RHSVal = RHS->getValue();
1213 APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
1215 // Now that we know which bits have carries, compute the known-1/0 sets.
1217 // Bits are known one if they are known zero in one operand and one in the
1218 // other, and there is no input carry.
1219 RHSKnownOne = ((LHSKnownZero & RHSVal) |
1220 (LHSKnownOne & ~RHSVal)) & ~CarryBits;
1222 // Bits are known zero if they are known zero in both operands and there
1223 // is no input carry.
1224 RHSKnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
1226 // If the high-bits of this ADD are not demanded, then it does not demand
1227 // the high bits of its LHS or RHS.
1228 if (DemandedMask[BitWidth-1] == 0) {
1229 // Right fill the mask of bits for this ADD to demand the most
1230 // significant bit and all those below it.
1231 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
1232 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
1233 LHSKnownZero, LHSKnownOne, Depth+1) ||
1234 SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
1235 LHSKnownZero, LHSKnownOne, Depth+1))
1241 case Instruction::Sub:
1242 // If the high-bits of this SUB are not demanded, then it does not demand
1243 // the high bits of its LHS or RHS.
1244 if (DemandedMask[BitWidth-1] == 0) {
1245 // Right fill the mask of bits for this SUB to demand the most
1246 // significant bit and all those below it.
1247 uint32_t NLZ = DemandedMask.countLeadingZeros();
1248 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
1249 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
1250 LHSKnownZero, LHSKnownOne, Depth+1) ||
1251 SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
1252 LHSKnownZero, LHSKnownOne, Depth+1))
1255 // Otherwise just hand the sub off to ComputeMaskedBits to fill in
1256 // the known zeros and ones.
1257 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
1259 case Instruction::Shl:
1260 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1261 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
1262 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
1263 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
1264 RHSKnownZero, RHSKnownOne, Depth+1))
1266 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
1267 RHSKnownZero <<= ShiftAmt;
1268 RHSKnownOne <<= ShiftAmt;
1269 // low bits known zero.
1271 RHSKnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
1274 case Instruction::LShr:
1275 // For a logical shift right
1276 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1277 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
1279 // Unsigned shift right.
1280 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
1281 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
1282 RHSKnownZero, RHSKnownOne, Depth+1))
1284 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
1285 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
1286 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
1288 // Compute the new bits that are at the top now.
1289 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1290 RHSKnownZero |= HighBits; // high bits known zero.
1294 case Instruction::AShr:
1295 // If this is an arithmetic shift right and only the low-bit is set, we can
1296 // always convert this into a logical shr, even if the shift amount is
1297 // variable. The low bit of the shift cannot be an input sign bit unless
1298 // the shift amount is >= the size of the datatype, which is undefined.
1299 if (DemandedMask == 1) {
1300 // Perform the logical shift right.
1301 Instruction *NewVal = BinaryOperator::CreateLShr(
1302 I->getOperand(0), I->getOperand(1), I->getName());
1303 return InsertNewInstBefore(NewVal, *I);
1306 // If the sign bit is the only bit demanded by this ashr, then there is no
1307 // need to do it, the shift doesn't change the high bit.
1308 if (DemandedMask.isSignBit())
1309 return I->getOperand(0);
1311 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1312 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth);
1314 // Signed shift right.
1315 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
1316 // If any of the "high bits" are demanded, we should set the sign bit as
1318 if (DemandedMask.countLeadingZeros() <= ShiftAmt)
1319 DemandedMaskIn.set(BitWidth-1);
1320 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
1321 RHSKnownZero, RHSKnownOne, Depth+1))
1323 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
1324 // Compute the new bits that are at the top now.
1325 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1326 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
1327 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
1329 // Handle the sign bits.
1330 APInt SignBit(APInt::getSignBit(BitWidth));
1331 // Adjust to where it is now in the mask.
1332 SignBit = APIntOps::lshr(SignBit, ShiftAmt);
1334 // If the input sign bit is known to be zero, or if none of the top bits
1335 // are demanded, turn this into an unsigned shift right.
1336 if (BitWidth <= ShiftAmt || RHSKnownZero[BitWidth-ShiftAmt-1] ||
1337 (HighBits & ~DemandedMask) == HighBits) {
1338 // Perform the logical shift right.
1339 Instruction *NewVal = BinaryOperator::CreateLShr(
1340 I->getOperand(0), SA, I->getName());
1341 return InsertNewInstBefore(NewVal, *I);
1342 } else if ((RHSKnownOne & SignBit) != 0) { // New bits are known one.
1343 RHSKnownOne |= HighBits;
1347 case Instruction::SRem:
1348 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1349 APInt RA = Rem->getValue().abs();
1350 if (RA.isPowerOf2()) {
1351 if (DemandedMask.ult(RA)) // srem won't affect demanded bits
1352 return I->getOperand(0);
1354 APInt LowBits = RA - 1;
1355 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1356 if (SimplifyDemandedBits(I->getOperandUse(0), Mask2,
1357 LHSKnownZero, LHSKnownOne, Depth+1))
1360 if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
1361 LHSKnownZero |= ~LowBits;
1363 KnownZero |= LHSKnownZero & DemandedMask;
1365 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
1369 case Instruction::URem: {
1370 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
1371 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1372 if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes,
1373 KnownZero2, KnownOne2, Depth+1) ||
1374 SimplifyDemandedBits(I->getOperandUse(1), AllOnes,
1375 KnownZero2, KnownOne2, Depth+1))
1378 unsigned Leaders = KnownZero2.countLeadingOnes();
1379 Leaders = std::max(Leaders,
1380 KnownZero2.countLeadingOnes());
1381 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
1384 case Instruction::Call:
1385 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1386 switch (II->getIntrinsicID()) {
1388 case Intrinsic::bswap: {
1389 // If the only bits demanded come from one byte of the bswap result,
1390 // just shift the input byte into position to eliminate the bswap.
1391 unsigned NLZ = DemandedMask.countLeadingZeros();
1392 unsigned NTZ = DemandedMask.countTrailingZeros();
1394 // Round NTZ down to the next byte. If we have 11 trailing zeros, then
1395 // we need all the bits down to bit 8. Likewise, round NLZ. If we
1396 // have 14 leading zeros, round to 8.
1399 // If we need exactly one byte, we can do this transformation.
1400 if (BitWidth-NLZ-NTZ == 8) {
1401 unsigned ResultBit = NTZ;
1402 unsigned InputBit = BitWidth-NTZ-8;
1404 // Replace this with either a left or right shift to get the byte into
1406 Instruction *NewVal;
1407 if (InputBit > ResultBit)
1408 NewVal = BinaryOperator::CreateLShr(I->getOperand(1),
1409 ConstantInt::get(I->getType(), InputBit-ResultBit));
1411 NewVal = BinaryOperator::CreateShl(I->getOperand(1),
1412 ConstantInt::get(I->getType(), ResultBit-InputBit));
1413 NewVal->takeName(I);
1414 return InsertNewInstBefore(NewVal, *I);
1417 // TODO: Could compute known zero/one bits based on the input.
1422 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
1426 // If the client is only demanding bits that we know, return the known
1428 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask)
1429 return Constant::getIntegerValue(VTy, RHSKnownOne);
1434 /// SimplifyDemandedVectorElts - The specified value produces a vector with
1435 /// any number of elements. DemandedElts contains the set of elements that are
1436 /// actually used by the caller. This method analyzes which elements of the
1437 /// operand are undef and returns that information in UndefElts.
1439 /// If the information about demanded elements can be used to simplify the
1440 /// operation, the operation is simplified, then the resultant value is
1441 /// returned. This returns null if no change was made.
1442 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
1445 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
1446 APInt EltMask(APInt::getAllOnesValue(VWidth));
1447 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
1449 if (isa<UndefValue>(V)) {
1450 // If the entire vector is undefined, just return this info.
1451 UndefElts = EltMask;
1453 } else if (DemandedElts == 0) { // If nothing is demanded, provide undef.
1454 UndefElts = EltMask;
1455 return UndefValue::get(V->getType());
1459 if (ConstantVector *CP = dyn_cast<ConstantVector>(V)) {
1460 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1461 Constant *Undef = UndefValue::get(EltTy);
1463 std::vector<Constant*> Elts;
1464 for (unsigned i = 0; i != VWidth; ++i)
1465 if (!DemandedElts[i]) { // If not demanded, set to undef.
1466 Elts.push_back(Undef);
1468 } else if (isa<UndefValue>(CP->getOperand(i))) { // Already undef.
1469 Elts.push_back(Undef);
1471 } else { // Otherwise, defined.
1472 Elts.push_back(CP->getOperand(i));
1475 // If we changed the constant, return it.
1476 Constant *NewCP = ConstantVector::get(Elts);
1477 return NewCP != CP ? NewCP : 0;
1478 } else if (isa<ConstantAggregateZero>(V)) {
1479 // Simplify the CAZ to a ConstantVector where the non-demanded elements are
1482 // Check if this is identity. If so, return 0 since we are not simplifying
1484 if (DemandedElts == ((1ULL << VWidth) -1))
1487 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1488 Constant *Zero = Constant::getNullValue(EltTy);
1489 Constant *Undef = UndefValue::get(EltTy);
1490 std::vector<Constant*> Elts;
1491 for (unsigned i = 0; i != VWidth; ++i) {
1492 Constant *Elt = DemandedElts[i] ? Zero : Undef;
1493 Elts.push_back(Elt);
1495 UndefElts = DemandedElts ^ EltMask;
1496 return ConstantVector::get(Elts);
1499 // Limit search depth.
1503 // If multiple users are using the root value, procede with
1504 // simplification conservatively assuming that all elements
1506 if (!V->hasOneUse()) {
1507 // Quit if we find multiple users of a non-root value though.
1508 // They'll be handled when it's their turn to be visited by
1509 // the main instcombine process.
1511 // TODO: Just compute the UndefElts information recursively.
1514 // Conservatively assume that all elements are needed.
1515 DemandedElts = EltMask;
1518 Instruction *I = dyn_cast<Instruction>(V);
1519 if (!I) return 0; // Only analyze instructions.
1521 bool MadeChange = false;
1522 APInt UndefElts2(VWidth, 0);
1524 switch (I->getOpcode()) {
1527 case Instruction::InsertElement: {
1528 // If this is a variable index, we don't know which element it overwrites.
1529 // demand exactly the same input as we produce.
1530 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1532 // Note that we can't propagate undef elt info, because we don't know
1533 // which elt is getting updated.
1534 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1535 UndefElts2, Depth+1);
1536 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1540 // If this is inserting an element that isn't demanded, remove this
1542 unsigned IdxNo = Idx->getZExtValue();
1543 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
1545 return I->getOperand(0);
1548 // Otherwise, the element inserted overwrites whatever was there, so the
1549 // input demanded set is simpler than the output set.
1550 APInt DemandedElts2 = DemandedElts;
1551 DemandedElts2.clear(IdxNo);
1552 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2,
1553 UndefElts, Depth+1);
1554 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1556 // The inserted element is defined.
1557 UndefElts.clear(IdxNo);
1560 case Instruction::ShuffleVector: {
1561 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
1562 uint64_t LHSVWidth =
1563 cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements();
1564 APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
1565 for (unsigned i = 0; i < VWidth; i++) {
1566 if (DemandedElts[i]) {
1567 unsigned MaskVal = Shuffle->getMaskValue(i);
1568 if (MaskVal != -1u) {
1569 assert(MaskVal < LHSVWidth * 2 &&
1570 "shufflevector mask index out of range!");
1571 if (MaskVal < LHSVWidth)
1572 LeftDemanded.set(MaskVal);
1574 RightDemanded.set(MaskVal - LHSVWidth);
1579 APInt UndefElts4(LHSVWidth, 0);
1580 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
1581 UndefElts4, Depth+1);
1582 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1584 APInt UndefElts3(LHSVWidth, 0);
1585 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
1586 UndefElts3, Depth+1);
1587 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1589 bool NewUndefElts = false;
1590 for (unsigned i = 0; i < VWidth; i++) {
1591 unsigned MaskVal = Shuffle->getMaskValue(i);
1592 if (MaskVal == -1u) {
1594 } else if (MaskVal < LHSVWidth) {
1595 if (UndefElts4[MaskVal]) {
1596 NewUndefElts = true;
1600 if (UndefElts3[MaskVal - LHSVWidth]) {
1601 NewUndefElts = true;
1608 // Add additional discovered undefs.
1609 std::vector<Constant*> Elts;
1610 for (unsigned i = 0; i < VWidth; ++i) {
1612 Elts.push_back(UndefValue::get(Type::getInt32Ty(*Context)));
1614 Elts.push_back(ConstantInt::get(Type::getInt32Ty(*Context),
1615 Shuffle->getMaskValue(i)));
1617 I->setOperand(2, ConstantVector::get(Elts));
1622 case Instruction::BitCast: {
1623 // Vector->vector casts only.
1624 const VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1626 unsigned InVWidth = VTy->getNumElements();
1627 APInt InputDemandedElts(InVWidth, 0);
1630 if (VWidth == InVWidth) {
1631 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1632 // elements as are demanded of us.
1634 InputDemandedElts = DemandedElts;
1635 } else if (VWidth > InVWidth) {
1639 // If there are more elements in the result than there are in the source,
1640 // then an input element is live if any of the corresponding output
1641 // elements are live.
1642 Ratio = VWidth/InVWidth;
1643 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1644 if (DemandedElts[OutIdx])
1645 InputDemandedElts.set(OutIdx/Ratio);
1651 // If there are more elements in the source than there are in the result,
1652 // then an input element is live if the corresponding output element is
1654 Ratio = InVWidth/VWidth;
1655 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1656 if (DemandedElts[InIdx/Ratio])
1657 InputDemandedElts.set(InIdx);
1660 // div/rem demand all inputs, because they don't want divide by zero.
1661 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
1662 UndefElts2, Depth+1);
1664 I->setOperand(0, TmpV);
1668 UndefElts = UndefElts2;
1669 if (VWidth > InVWidth) {
1670 llvm_unreachable("Unimp");
1671 // If there are more elements in the result than there are in the source,
1672 // then an output element is undef if the corresponding input element is
1674 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1675 if (UndefElts2[OutIdx/Ratio])
1676 UndefElts.set(OutIdx);
1677 } else if (VWidth < InVWidth) {
1678 llvm_unreachable("Unimp");
1679 // If there are more elements in the source than there are in the result,
1680 // then a result element is undef if all of the corresponding input
1681 // elements are undef.
1682 UndefElts = ~0ULL >> (64-VWidth); // Start out all undef.
1683 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1684 if (!UndefElts2[InIdx]) // Not undef?
1685 UndefElts.clear(InIdx/Ratio); // Clear undef bit.
1689 case Instruction::And:
1690 case Instruction::Or:
1691 case Instruction::Xor:
1692 case Instruction::Add:
1693 case Instruction::Sub:
1694 case Instruction::Mul:
1695 // div/rem demand all inputs, because they don't want divide by zero.
1696 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1697 UndefElts, Depth+1);
1698 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1699 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1700 UndefElts2, Depth+1);
1701 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1703 // Output elements are undefined if both are undefined. Consider things
1704 // like undef&0. The result is known zero, not undef.
1705 UndefElts &= UndefElts2;
1708 case Instruction::Call: {
1709 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1711 switch (II->getIntrinsicID()) {
1714 // Binary vector operations that work column-wise. A dest element is a
1715 // function of the corresponding input elements from the two inputs.
1716 case Intrinsic::x86_sse_sub_ss:
1717 case Intrinsic::x86_sse_mul_ss:
1718 case Intrinsic::x86_sse_min_ss:
1719 case Intrinsic::x86_sse_max_ss:
1720 case Intrinsic::x86_sse2_sub_sd:
1721 case Intrinsic::x86_sse2_mul_sd:
1722 case Intrinsic::x86_sse2_min_sd:
1723 case Intrinsic::x86_sse2_max_sd:
1724 TmpV = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
1725 UndefElts, Depth+1);
1726 if (TmpV) { II->setOperand(1, TmpV); MadeChange = true; }
1727 TmpV = SimplifyDemandedVectorElts(II->getOperand(2), DemandedElts,
1728 UndefElts2, Depth+1);
1729 if (TmpV) { II->setOperand(2, TmpV); MadeChange = true; }
1731 // If only the low elt is demanded and this is a scalarizable intrinsic,
1732 // scalarize it now.
1733 if (DemandedElts == 1) {
1734 switch (II->getIntrinsicID()) {
1736 case Intrinsic::x86_sse_sub_ss:
1737 case Intrinsic::x86_sse_mul_ss:
1738 case Intrinsic::x86_sse2_sub_sd:
1739 case Intrinsic::x86_sse2_mul_sd:
1740 // TODO: Lower MIN/MAX/ABS/etc
1741 Value *LHS = II->getOperand(1);
1742 Value *RHS = II->getOperand(2);
1743 // Extract the element as scalars.
1744 LHS = InsertNewInstBefore(ExtractElementInst::Create(LHS,
1745 ConstantInt::get(Type::getInt32Ty(*Context), 0U, false), "tmp"), *II);
1746 RHS = InsertNewInstBefore(ExtractElementInst::Create(RHS,
1747 ConstantInt::get(Type::getInt32Ty(*Context), 0U, false), "tmp"), *II);
1749 switch (II->getIntrinsicID()) {
1750 default: llvm_unreachable("Case stmts out of sync!");
1751 case Intrinsic::x86_sse_sub_ss:
1752 case Intrinsic::x86_sse2_sub_sd:
1753 TmpV = InsertNewInstBefore(BinaryOperator::CreateFSub(LHS, RHS,
1754 II->getName()), *II);
1756 case Intrinsic::x86_sse_mul_ss:
1757 case Intrinsic::x86_sse2_mul_sd:
1758 TmpV = InsertNewInstBefore(BinaryOperator::CreateFMul(LHS, RHS,
1759 II->getName()), *II);
1764 InsertElementInst::Create(
1765 UndefValue::get(II->getType()), TmpV,
1766 ConstantInt::get(Type::getInt32Ty(*Context), 0U, false), II->getName());
1767 InsertNewInstBefore(New, *II);
1772 // Output elements are undefined if both are undefined. Consider things
1773 // like undef&0. The result is known zero, not undef.
1774 UndefElts &= UndefElts2;
1780 return MadeChange ? I : 0;
1784 /// AssociativeOpt - Perform an optimization on an associative operator. This
1785 /// function is designed to check a chain of associative operators for a
1786 /// potential to apply a certain optimization. Since the optimization may be
1787 /// applicable if the expression was reassociated, this checks the chain, then
1788 /// reassociates the expression as necessary to expose the optimization
1789 /// opportunity. This makes use of a special Functor, which must define
1790 /// 'shouldApply' and 'apply' methods.
1792 template<typename Functor>
1793 static Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) {
1794 unsigned Opcode = Root.getOpcode();
1795 Value *LHS = Root.getOperand(0);
1797 // Quick check, see if the immediate LHS matches...
1798 if (F.shouldApply(LHS))
1799 return F.apply(Root);
1801 // Otherwise, if the LHS is not of the same opcode as the root, return.
1802 Instruction *LHSI = dyn_cast<Instruction>(LHS);
1803 while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) {
1804 // Should we apply this transform to the RHS?
1805 bool ShouldApply = F.shouldApply(LHSI->getOperand(1));
1807 // If not to the RHS, check to see if we should apply to the LHS...
1808 if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) {
1809 cast<BinaryOperator>(LHSI)->swapOperands(); // Make the LHS the RHS
1813 // If the functor wants to apply the optimization to the RHS of LHSI,
1814 // reassociate the expression from ((? op A) op B) to (? op (A op B))
1816 // Now all of the instructions are in the current basic block, go ahead
1817 // and perform the reassociation.
1818 Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0));
1820 // First move the selected RHS to the LHS of the root...
1821 Root.setOperand(0, LHSI->getOperand(1));
1823 // Make what used to be the LHS of the root be the user of the root...
1824 Value *ExtraOperand = TmpLHSI->getOperand(1);
1825 if (&Root == TmpLHSI) {
1826 Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType()));
1829 Root.replaceAllUsesWith(TmpLHSI); // Users now use TmpLHSI
1830 TmpLHSI->setOperand(1, &Root); // TmpLHSI now uses the root
1831 BasicBlock::iterator ARI = &Root; ++ARI;
1832 TmpLHSI->moveBefore(ARI); // Move TmpLHSI to after Root
1835 // Now propagate the ExtraOperand down the chain of instructions until we
1837 while (TmpLHSI != LHSI) {
1838 Instruction *NextLHSI = cast<Instruction>(TmpLHSI->getOperand(0));
1839 // Move the instruction to immediately before the chain we are
1840 // constructing to avoid breaking dominance properties.
1841 NextLHSI->moveBefore(ARI);
1844 Value *NextOp = NextLHSI->getOperand(1);
1845 NextLHSI->setOperand(1, ExtraOperand);
1847 ExtraOperand = NextOp;
1850 // Now that the instructions are reassociated, have the functor perform
1851 // the transformation...
1852 return F.apply(Root);
1855 LHSI = dyn_cast<Instruction>(LHSI->getOperand(0));
1862 // AddRHS - Implements: X + X --> X << 1
1865 explicit AddRHS(Value *rhs) : RHS(rhs) {}
1866 bool shouldApply(Value *LHS) const { return LHS == RHS; }
1867 Instruction *apply(BinaryOperator &Add) const {
1868 return BinaryOperator::CreateShl(Add.getOperand(0),
1869 ConstantInt::get(Add.getType(), 1));
1873 // AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2)
1875 struct AddMaskingAnd {
1877 explicit AddMaskingAnd(Constant *c) : C2(c) {}
1878 bool shouldApply(Value *LHS) const {
1880 return match(LHS, m_And(m_Value(), m_ConstantInt(C1))) &&
1881 ConstantExpr::getAnd(C1, C2)->isNullValue();
1883 Instruction *apply(BinaryOperator &Add) const {
1884 return BinaryOperator::CreateOr(Add.getOperand(0), Add.getOperand(1));
1890 static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
1892 if (CastInst *CI = dyn_cast<CastInst>(&I))
1893 return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
1895 // Figure out if the constant is the left or the right argument.
1896 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
1897 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
1899 if (Constant *SOC = dyn_cast<Constant>(SO)) {
1901 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
1902 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
1905 Value *Op0 = SO, *Op1 = ConstOperand;
1907 std::swap(Op0, Op1);
1909 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
1910 return IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
1911 SO->getName()+".op");
1912 if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
1913 return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
1914 SO->getName()+".cmp");
1915 if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
1916 return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
1917 SO->getName()+".cmp");
1918 llvm_unreachable("Unknown binary instruction type!");
1921 // FoldOpIntoSelect - Given an instruction with a select as one operand and a
1922 // constant as the other operand, try to fold the binary operator into the
1923 // select arguments. This also works for Cast instructions, which obviously do
1924 // not have a second operand.
1925 static Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
1927 // Don't modify shared select instructions
1928 if (!SI->hasOneUse()) return 0;
1929 Value *TV = SI->getOperand(1);
1930 Value *FV = SI->getOperand(2);
1932 if (isa<Constant>(TV) || isa<Constant>(FV)) {
1933 // Bool selects with constant operands can be folded to logical ops.
1934 if (SI->getType() == Type::getInt1Ty(*IC->getContext())) return 0;
1936 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, IC);
1937 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, IC);
1939 return SelectInst::Create(SI->getCondition(), SelectTrueVal,
1946 /// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
1947 /// has a PHI node as operand #0, see if we can fold the instruction into the
1948 /// PHI (which is only possible if all operands to the PHI are constants).
1950 /// If AllowAggressive is true, FoldOpIntoPhi will allow certain transforms
1951 /// that would normally be unprofitable because they strongly encourage jump
1953 Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I,
1954 bool AllowAggressive) {
1955 AllowAggressive = false;
1956 PHINode *PN = cast<PHINode>(I.getOperand(0));
1957 unsigned NumPHIValues = PN->getNumIncomingValues();
1958 if (NumPHIValues == 0 ||
1959 // We normally only transform phis with a single use, unless we're trying
1960 // hard to make jump threading happen.
1961 (!PN->hasOneUse() && !AllowAggressive))
1965 // Check to see if all of the operands of the PHI are simple constants
1966 // (constantint/constantfp/undef). If there is one non-constant value,
1967 // remember the BB it is in. If there is more than one or if *it* is a PHI,
1968 // bail out. We don't do arbitrary constant expressions here because moving
1969 // their computation can be expensive without a cost model.
1970 BasicBlock *NonConstBB = 0;
1971 for (unsigned i = 0; i != NumPHIValues; ++i)
1972 if (!isa<Constant>(PN->getIncomingValue(i)) ||
1973 isa<ConstantExpr>(PN->getIncomingValue(i))) {
1974 if (NonConstBB) return 0; // More than one non-const value.
1975 if (isa<PHINode>(PN->getIncomingValue(i))) return 0; // Itself a phi.
1976 NonConstBB = PN->getIncomingBlock(i);
1978 // If the incoming non-constant value is in I's block, we have an infinite
1980 if (NonConstBB == I.getParent())
1984 // If there is exactly one non-constant value, we can insert a copy of the
1985 // operation in that block. However, if this is a critical edge, we would be
1986 // inserting the computation one some other paths (e.g. inside a loop). Only
1987 // do this if the pred block is unconditionally branching into the phi block.
1988 if (NonConstBB != 0 && !AllowAggressive) {
1989 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
1990 if (!BI || !BI->isUnconditional()) return 0;
1993 // Okay, we can do the transformation: create the new PHI node.
1994 PHINode *NewPN = PHINode::Create(I.getType(), "");
1995 NewPN->reserveOperandSpace(PN->getNumOperands()/2);
1996 InsertNewInstBefore(NewPN, *PN);
1997 NewPN->takeName(PN);
1999 // Next, add all of the operands to the PHI.
2000 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
2001 // We only currently try to fold the condition of a select when it is a phi,
2002 // not the true/false values.
2003 Value *TrueV = SI->getTrueValue();
2004 Value *FalseV = SI->getFalseValue();
2005 BasicBlock *PhiTransBB = PN->getParent();
2006 for (unsigned i = 0; i != NumPHIValues; ++i) {
2007 BasicBlock *ThisBB = PN->getIncomingBlock(i);
2008 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
2009 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
2011 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
2012 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
2014 assert(PN->getIncomingBlock(i) == NonConstBB);
2015 InV = SelectInst::Create(PN->getIncomingValue(i), TrueVInPred,
2017 "phitmp", NonConstBB->getTerminator());
2018 Worklist.Add(cast<Instruction>(InV));
2020 NewPN->addIncoming(InV, ThisBB);
2022 } else if (I.getNumOperands() == 2) {
2023 Constant *C = cast<Constant>(I.getOperand(1));
2024 for (unsigned i = 0; i != NumPHIValues; ++i) {
2026 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
2027 if (CmpInst *CI = dyn_cast<CmpInst>(&I))
2028 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
2030 InV = ConstantExpr::get(I.getOpcode(), InC, C);
2032 assert(PN->getIncomingBlock(i) == NonConstBB);
2033 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
2034 InV = BinaryOperator::Create(BO->getOpcode(),
2035 PN->getIncomingValue(i), C, "phitmp",
2036 NonConstBB->getTerminator());
2037 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
2038 InV = CmpInst::Create(CI->getOpcode(),
2040 PN->getIncomingValue(i), C, "phitmp",
2041 NonConstBB->getTerminator());
2043 llvm_unreachable("Unknown binop!");
2045 Worklist.Add(cast<Instruction>(InV));
2047 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
2050 CastInst *CI = cast<CastInst>(&I);
2051 const Type *RetTy = CI->getType();
2052 for (unsigned i = 0; i != NumPHIValues; ++i) {
2054 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
2055 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
2057 assert(PN->getIncomingBlock(i) == NonConstBB);
2058 InV = CastInst::Create(CI->getOpcode(), PN->getIncomingValue(i),
2059 I.getType(), "phitmp",
2060 NonConstBB->getTerminator());
2061 Worklist.Add(cast<Instruction>(InV));
2063 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
2066 return ReplaceInstUsesWith(I, NewPN);
2070 /// WillNotOverflowSignedAdd - Return true if we can prove that:
2071 /// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS))
2072 /// This basically requires proving that the add in the original type would not
2073 /// overflow to change the sign bit or have a carry out.
2074 bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
2075 // There are different heuristics we can use for this. Here are some simple
2078 // Add has the property that adding any two 2's complement numbers can only
2079 // have one carry bit which can change a sign. As such, if LHS and RHS each
2080 // have at least two sign bits, we know that the addition of the two values will
2081 // sign extend fine.
2082 if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1)
2086 // If one of the operands only has one non-zero bit, and if the other operand
2087 // has a known-zero bit in a more significant place than it (not including the
2088 // sign bit) the ripple may go up to and fill the zero, but won't change the
2089 // sign. For example, (X & ~4) + 1.
2097 Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
2098 bool Changed = SimplifyCommutative(I);
2099 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
2101 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
2102 // X + undef -> undef
2103 if (isa<UndefValue>(RHS))
2104 return ReplaceInstUsesWith(I, RHS);
2107 if (RHSC->isNullValue())
2108 return ReplaceInstUsesWith(I, LHS);
2110 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
2111 // X + (signbit) --> X ^ signbit
2112 const APInt& Val = CI->getValue();
2113 uint32_t BitWidth = Val.getBitWidth();
2114 if (Val == APInt::getSignBit(BitWidth))
2115 return BinaryOperator::CreateXor(LHS, RHS);
2117 // See if SimplifyDemandedBits can simplify this. This handles stuff like
2118 // (X & 254)+1 -> (X&254)|1
2119 if (SimplifyDemandedInstructionBits(I))
2122 // zext(bool) + C -> bool ? C + 1 : C
2123 if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
2124 if (ZI->getSrcTy() == Type::getInt1Ty(*Context))
2125 return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI);
2128 if (isa<PHINode>(LHS))
2129 if (Instruction *NV = FoldOpIntoPhi(I))
2132 ConstantInt *XorRHS = 0;
2134 if (isa<ConstantInt>(RHSC) &&
2135 match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
2136 uint32_t TySizeBits = I.getType()->getScalarSizeInBits();
2137 const APInt& RHSVal = cast<ConstantInt>(RHSC)->getValue();
2139 uint32_t Size = TySizeBits / 2;
2140 APInt C0080Val(APInt(TySizeBits, 1ULL).shl(Size - 1));
2141 APInt CFF80Val(-C0080Val);
2143 if (TySizeBits > Size) {
2144 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
2145 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
2146 if ((RHSVal == CFF80Val && XorRHS->getValue() == C0080Val) ||
2147 (RHSVal == C0080Val && XorRHS->getValue() == CFF80Val)) {
2148 // This is a sign extend if the top bits are known zero.
2149 if (!MaskedValueIsZero(XorLHS,
2150 APInt::getHighBitsSet(TySizeBits, TySizeBits - Size)))
2151 Size = 0; // Not a sign ext, but can't be any others either.
2156 C0080Val = APIntOps::lshr(C0080Val, Size);
2157 CFF80Val = APIntOps::ashr(CFF80Val, Size);
2158 } while (Size >= 1);
2160 // FIXME: This shouldn't be necessary. When the backends can handle types
2161 // with funny bit widths then this switch statement should be removed. It
2162 // is just here to get the size of the "middle" type back up to something
2163 // that the back ends can handle.
2164 const Type *MiddleType = 0;
2167 case 32: MiddleType = Type::getInt32Ty(*Context); break;
2168 case 16: MiddleType = Type::getInt16Ty(*Context); break;
2169 case 8: MiddleType = Type::getInt8Ty(*Context); break;
2172 Value *NewTrunc = Builder->CreateTrunc(XorLHS, MiddleType, "sext");
2173 return new SExtInst(NewTrunc, I.getType(), I.getName());
2178 if (I.getType() == Type::getInt1Ty(*Context))
2179 return BinaryOperator::CreateXor(LHS, RHS);
2182 if (I.getType()->isInteger()) {
2183 if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS)))
2186 if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) {
2187 if (RHSI->getOpcode() == Instruction::Sub)
2188 if (LHS == RHSI->getOperand(1)) // A + (B - A) --> B
2189 return ReplaceInstUsesWith(I, RHSI->getOperand(0));
2191 if (Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
2192 if (LHSI->getOpcode() == Instruction::Sub)
2193 if (RHS == LHSI->getOperand(1)) // (B - A) + A --> B
2194 return ReplaceInstUsesWith(I, LHSI->getOperand(0));
2199 // -A + -B --> -(A + B)
2200 if (Value *LHSV = dyn_castNegVal(LHS)) {
2201 if (LHS->getType()->isIntOrIntVector()) {
2202 if (Value *RHSV = dyn_castNegVal(RHS)) {
2203 Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum");
2204 return BinaryOperator::CreateNeg(NewAdd);
2208 return BinaryOperator::CreateSub(RHS, LHSV);
2212 if (!isa<Constant>(RHS))
2213 if (Value *V = dyn_castNegVal(RHS))
2214 return BinaryOperator::CreateSub(LHS, V);
2218 if (Value *X = dyn_castFoldableMul(LHS, C2)) {
2219 if (X == RHS) // X*C + X --> X * (C+1)
2220 return BinaryOperator::CreateMul(RHS, AddOne(C2));
2222 // X*C1 + X*C2 --> X * (C1+C2)
2224 if (X == dyn_castFoldableMul(RHS, C1))
2225 return BinaryOperator::CreateMul(X, ConstantExpr::getAdd(C1, C2));
2228 // X + X*C --> X * (C+1)
2229 if (dyn_castFoldableMul(RHS, C2) == LHS)
2230 return BinaryOperator::CreateMul(LHS, AddOne(C2));
2232 // X + ~X --> -1 since ~X = -X-1
2233 if (dyn_castNotVal(LHS) == RHS ||
2234 dyn_castNotVal(RHS) == LHS)
2235 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
2238 // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0
2239 if (match(RHS, m_And(m_Value(), m_ConstantInt(C2))))
2240 if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2)))
2243 // A+B --> A|B iff A and B have no bits set in common.
2244 if (const IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
2245 APInt Mask = APInt::getAllOnesValue(IT->getBitWidth());
2246 APInt LHSKnownOne(IT->getBitWidth(), 0);
2247 APInt LHSKnownZero(IT->getBitWidth(), 0);
2248 ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
2249 if (LHSKnownZero != 0) {
2250 APInt RHSKnownOne(IT->getBitWidth(), 0);
2251 APInt RHSKnownZero(IT->getBitWidth(), 0);
2252 ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
2254 // No bits in common -> bitwise or.
2255 if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
2256 return BinaryOperator::CreateOr(LHS, RHS);
2260 // W*X + Y*Z --> W * (X+Z) iff W == Y
2261 if (I.getType()->isIntOrIntVector()) {
2262 Value *W, *X, *Y, *Z;
2263 if (match(LHS, m_Mul(m_Value(W), m_Value(X))) &&
2264 match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) {
2268 } else if (Y == X) {
2270 } else if (X == Z) {
2277 Value *NewAdd = Builder->CreateAdd(X, Z, LHS->getName());
2278 return BinaryOperator::CreateMul(W, NewAdd);
2283 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
2285 if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
2286 return BinaryOperator::CreateSub(SubOne(CRHS), X);
2288 // (X & FF00) + xx00 -> (X+xx00) & FF00
2289 if (LHS->hasOneUse() &&
2290 match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
2291 Constant *Anded = ConstantExpr::getAnd(CRHS, C2);
2292 if (Anded == CRHS) {
2293 // See if all bits from the first bit set in the Add RHS up are included
2294 // in the mask. First, get the rightmost bit.
2295 const APInt& AddRHSV = CRHS->getValue();
2297 // Form a mask of all bits from the lowest bit added through the top.
2298 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
2300 // See if the and mask includes all of these bits.
2301 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
2303 if (AddRHSHighBits == AddRHSHighBitsAnd) {
2304 // Okay, the xform is safe. Insert the new add pronto.
2305 Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName());
2306 return BinaryOperator::CreateAnd(NewAdd, C2);
2311 // Try to fold constant add into select arguments.
2312 if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
2313 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2317 // add (select X 0 (sub n A)) A --> select X A n
2319 SelectInst *SI = dyn_cast<SelectInst>(LHS);
2322 SI = dyn_cast<SelectInst>(RHS);
2325 if (SI && SI->hasOneUse()) {
2326 Value *TV = SI->getTrueValue();
2327 Value *FV = SI->getFalseValue();
2330 // Can we fold the add into the argument of the select?
2331 // We check both true and false select arguments for a matching subtract.
2332 if (match(FV, m_Zero()) &&
2333 match(TV, m_Sub(m_Value(N), m_Specific(A))))
2334 // Fold the add into the true select value.
2335 return SelectInst::Create(SI->getCondition(), N, A);
2336 if (match(TV, m_Zero()) &&
2337 match(FV, m_Sub(m_Value(N), m_Specific(A))))
2338 // Fold the add into the false select value.
2339 return SelectInst::Create(SI->getCondition(), A, N);
2343 // Check for (add (sext x), y), see if we can merge this into an
2344 // integer add followed by a sext.
2345 if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
2346 // (add (sext x), cst) --> (sext (add x, cst'))
2347 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
2349 ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
2350 if (LHSConv->hasOneUse() &&
2351 ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
2352 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
2353 // Insert the new, smaller add.
2354 Value *NewAdd = Builder->CreateAdd(LHSConv->getOperand(0),
2356 return new SExtInst(NewAdd, I.getType());
2360 // (add (sext x), (sext y)) --> (sext (add int x, y))
2361 if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
2362 // Only do this if x/y have the same type, if at last one of them has a
2363 // single use (so we don't increase the number of sexts), and if the
2364 // integer add will not overflow.
2365 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
2366 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
2367 WillNotOverflowSignedAdd(LHSConv->getOperand(0),
2368 RHSConv->getOperand(0))) {
2369 // Insert the new integer add.
2370 Value *NewAdd = Builder->CreateAdd(LHSConv->getOperand(0),
2371 RHSConv->getOperand(0), "addconv");
2372 return new SExtInst(NewAdd, I.getType());
2377 return Changed ? &I : 0;
2380 Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
2381 bool Changed = SimplifyCommutative(I);
2382 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
2384 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
2386 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
2387 if (CFP->isExactlyValue(ConstantFP::getNegativeZero
2388 (I.getType())->getValueAPF()))
2389 return ReplaceInstUsesWith(I, LHS);
2392 if (isa<PHINode>(LHS))
2393 if (Instruction *NV = FoldOpIntoPhi(I))
2398 // -A + -B --> -(A + B)
2399 if (Value *LHSV = dyn_castFNegVal(LHS))
2400 return BinaryOperator::CreateFSub(RHS, LHSV);
2403 if (!isa<Constant>(RHS))
2404 if (Value *V = dyn_castFNegVal(RHS))
2405 return BinaryOperator::CreateFSub(LHS, V);
2407 // Check for X+0.0. Simplify it to X if we know X is not -0.0.
2408 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
2409 if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS))
2410 return ReplaceInstUsesWith(I, LHS);
2412 // Check for (add double (sitofp x), y), see if we can merge this into an
2413 // integer add followed by a promotion.
2414 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
2415 // (add double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
2416 // ... if the constant fits in the integer value. This is useful for things
2417 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
2418 // requires a constant pool load, and generally allows the add to be better
2420 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
2422 ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
2423 if (LHSConv->hasOneUse() &&
2424 ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
2425 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
2426 // Insert the new integer add.
2427 Value *NewAdd = Builder->CreateAdd(LHSConv->getOperand(0),
2429 return new SIToFPInst(NewAdd, I.getType());
2433 // (add double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
2434 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
2435 // Only do this if x/y have the same type, if at last one of them has a
2436 // single use (so we don't increase the number of int->fp conversions),
2437 // and if the integer add will not overflow.
2438 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
2439 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
2440 WillNotOverflowSignedAdd(LHSConv->getOperand(0),
2441 RHSConv->getOperand(0))) {
2442 // Insert the new integer add.
2443 Value *NewAdd = Builder->CreateAdd(LHSConv->getOperand(0),
2444 RHSConv->getOperand(0), "addconv");
2445 return new SIToFPInst(NewAdd, I.getType());
2450 return Changed ? &I : 0;
2453 Instruction *InstCombiner::visitSub(BinaryOperator &I) {
2454 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2456 if (Op0 == Op1) // sub X, X -> 0
2457 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2459 // If this is a 'B = x-(-A)', change to B = x+A...
2460 if (Value *V = dyn_castNegVal(Op1))
2461 return BinaryOperator::CreateAdd(Op0, V);
2463 if (isa<UndefValue>(Op0))
2464 return ReplaceInstUsesWith(I, Op0); // undef - X -> undef
2465 if (isa<UndefValue>(Op1))
2466 return ReplaceInstUsesWith(I, Op1); // X - undef -> undef
2468 if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
2469 // Replace (-1 - A) with (~A)...
2470 if (C->isAllOnesValue())
2471 return BinaryOperator::CreateNot(Op1);
2473 // C - ~X == X + (1+C)
2475 if (match(Op1, m_Not(m_Value(X))))
2476 return BinaryOperator::CreateAdd(X, AddOne(C));
2478 // -(X >>u 31) -> (X >>s 31)
2479 // -(X >>s 31) -> (X >>u 31)
2481 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op1)) {
2482 if (SI->getOpcode() == Instruction::LShr) {
2483 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
2484 // Check to see if we are shifting out everything but the sign bit.
2485 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
2486 SI->getType()->getPrimitiveSizeInBits()-1) {
2487 // Ok, the transformation is safe. Insert AShr.
2488 return BinaryOperator::Create(Instruction::AShr,
2489 SI->getOperand(0), CU, SI->getName());
2493 else if (SI->getOpcode() == Instruction::AShr) {
2494 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
2495 // Check to see if we are shifting out everything but the sign bit.
2496 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
2497 SI->getType()->getPrimitiveSizeInBits()-1) {
2498 // Ok, the transformation is safe. Insert LShr.
2499 return BinaryOperator::CreateLShr(
2500 SI->getOperand(0), CU, SI->getName());
2507 // Try to fold constant sub into select arguments.
2508 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2509 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2512 // C - zext(bool) -> bool ? C - 1 : C
2513 if (ZExtInst *ZI = dyn_cast<ZExtInst>(Op1))
2514 if (ZI->getSrcTy() == Type::getInt1Ty(*Context))
2515 return SelectInst::Create(ZI->getOperand(0), SubOne(C), C);
2518 if (I.getType() == Type::getInt1Ty(*Context))
2519 return BinaryOperator::CreateXor(Op0, Op1);
2521 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
2522 if (Op1I->getOpcode() == Instruction::Add) {
2523 if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y
2524 return BinaryOperator::CreateNeg(Op1I->getOperand(1),
2526 else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y
2527 return BinaryOperator::CreateNeg(Op1I->getOperand(0),
2529 else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) {
2530 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1)))
2531 // C1-(X+C2) --> (C1-C2)-X
2532 return BinaryOperator::CreateSub(
2533 ConstantExpr::getSub(CI1, CI2), Op1I->getOperand(0));
2537 if (Op1I->hasOneUse()) {
2538 // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
2539 // is not used by anyone else...
2541 if (Op1I->getOpcode() == Instruction::Sub) {
2542 // Swap the two operands of the subexpr...
2543 Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
2544 Op1I->setOperand(0, IIOp1);
2545 Op1I->setOperand(1, IIOp0);
2547 // Create the new top level add instruction...
2548 return BinaryOperator::CreateAdd(Op0, Op1);
2551 // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
2553 if (Op1I->getOpcode() == Instruction::And &&
2554 (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
2555 Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
2557 Value *NewNot = Builder->CreateNot(OtherOp, "B.not");
2558 return BinaryOperator::CreateAnd(Op0, NewNot);
2561 // 0 - (X sdiv C) -> (X sdiv -C)
2562 if (Op1I->getOpcode() == Instruction::SDiv)
2563 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
2565 if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1)))
2566 return BinaryOperator::CreateSDiv(Op1I->getOperand(0),
2567 ConstantExpr::getNeg(DivRHS));
2569 // X - X*C --> X * (1-C)
2570 ConstantInt *C2 = 0;
2571 if (dyn_castFoldableMul(Op1I, C2) == Op0) {
2573 ConstantExpr::getSub(ConstantInt::get(I.getType(), 1),
2575 return BinaryOperator::CreateMul(Op0, CP1);
2580 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
2581 if (Op0I->getOpcode() == Instruction::Add) {
2582 if (Op0I->getOperand(0) == Op1) // (Y+X)-Y == X
2583 return ReplaceInstUsesWith(I, Op0I->getOperand(1));
2584 else if (Op0I->getOperand(1) == Op1) // (X+Y)-Y == X
2585 return ReplaceInstUsesWith(I, Op0I->getOperand(0));
2586 } else if (Op0I->getOpcode() == Instruction::Sub) {
2587 if (Op0I->getOperand(0) == Op1) // (X-Y)-X == -Y
2588 return BinaryOperator::CreateNeg(Op0I->getOperand(1),
2594 if (Value *X = dyn_castFoldableMul(Op0, C1)) {
2595 if (X == Op1) // X*C - X --> X * (C-1)
2596 return BinaryOperator::CreateMul(Op1, SubOne(C1));
2598 ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2)
2599 if (X == dyn_castFoldableMul(Op1, C2))
2600 return BinaryOperator::CreateMul(X, ConstantExpr::getSub(C1, C2));
2605 Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
2606 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2608 // If this is a 'B = x-(-A)', change to B = x+A...
2609 if (Value *V = dyn_castFNegVal(Op1))
2610 return BinaryOperator::CreateFAdd(Op0, V);
2612 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
2613 if (Op1I->getOpcode() == Instruction::FAdd) {
2614 if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y
2615 return BinaryOperator::CreateFNeg(Op1I->getOperand(1),
2617 else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y
2618 return BinaryOperator::CreateFNeg(Op1I->getOperand(0),
2626 /// isSignBitCheck - Given an exploded icmp instruction, return true if the
2627 /// comparison only checks the sign bit. If it only checks the sign bit, set
2628 /// TrueIfSigned if the result of the comparison is true when the input value is
2630 static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
2631 bool &TrueIfSigned) {
2633 case ICmpInst::ICMP_SLT: // True if LHS s< 0
2634 TrueIfSigned = true;
2635 return RHS->isZero();
2636 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1
2637 TrueIfSigned = true;
2638 return RHS->isAllOnesValue();
2639 case ICmpInst::ICMP_SGT: // True if LHS s> -1
2640 TrueIfSigned = false;
2641 return RHS->isAllOnesValue();
2642 case ICmpInst::ICMP_UGT:
2643 // True if LHS u> RHS and RHS == high-bit-mask - 1
2644 TrueIfSigned = true;
2645 return RHS->getValue() ==
2646 APInt::getSignedMaxValue(RHS->getType()->getPrimitiveSizeInBits());
2647 case ICmpInst::ICMP_UGE:
2648 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
2649 TrueIfSigned = true;
2650 return RHS->getValue().isSignBit();
2656 Instruction *InstCombiner::visitMul(BinaryOperator &I) {
2657 bool Changed = SimplifyCommutative(I);
2658 Value *Op0 = I.getOperand(0);
2660 if (isa<UndefValue>(I.getOperand(1))) // undef * X -> 0
2661 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2663 // Simplify mul instructions with a constant RHS...
2664 if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
2665 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2667 // ((X << C1)*C2) == (X * (C2 << C1))
2668 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
2669 if (SI->getOpcode() == Instruction::Shl)
2670 if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
2671 return BinaryOperator::CreateMul(SI->getOperand(0),
2672 ConstantExpr::getShl(CI, ShOp));
2675 return ReplaceInstUsesWith(I, Op1); // X * 0 == 0
2676 if (CI->equalsInt(1)) // X * 1 == X
2677 return ReplaceInstUsesWith(I, Op0);
2678 if (CI->isAllOnesValue()) // X * -1 == 0 - X
2679 return BinaryOperator::CreateNeg(Op0, I.getName());
2681 const APInt& Val = cast<ConstantInt>(CI)->getValue();
2682 if (Val.isPowerOf2()) { // Replace X*(2^C) with X << C
2683 return BinaryOperator::CreateShl(Op0,
2684 ConstantInt::get(Op0->getType(), Val.logBase2()));
2686 } else if (isa<VectorType>(Op1->getType())) {
2687 if (Op1->isNullValue())
2688 return ReplaceInstUsesWith(I, Op1);
2690 if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1)) {
2691 if (Op1V->isAllOnesValue()) // X * -1 == 0 - X
2692 return BinaryOperator::CreateNeg(Op0, I.getName());
2694 // As above, vector X*splat(1.0) -> X in all defined cases.
2695 if (Constant *Splat = Op1V->getSplatValue()) {
2696 if (ConstantInt *CI = dyn_cast<ConstantInt>(Splat))
2697 if (CI->equalsInt(1))
2698 return ReplaceInstUsesWith(I, Op0);
2703 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
2704 if (Op0I->getOpcode() == Instruction::Add && Op0I->hasOneUse() &&
2705 isa<ConstantInt>(Op0I->getOperand(1)) && isa<ConstantInt>(Op1)) {
2706 // Canonicalize (X+C1)*C2 -> X*C2+C1*C2.
2707 Value *Add = Builder->CreateMul(Op0I->getOperand(0), Op1, "tmp");
2708 Value *C1C2 = Builder->CreateMul(Op1, Op0I->getOperand(1));
2709 return BinaryOperator::CreateAdd(Add, C1C2);
2713 // Try to fold constant mul into select arguments.
2714 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2715 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2718 if (isa<PHINode>(Op0))
2719 if (Instruction *NV = FoldOpIntoPhi(I))
2723 if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
2724 if (Value *Op1v = dyn_castNegVal(I.getOperand(1)))
2725 return BinaryOperator::CreateMul(Op0v, Op1v);
2727 // (X / Y) * Y = X - (X % Y)
2728 // (X / Y) * -Y = (X % Y) - X
2730 Value *Op1 = I.getOperand(1);
2731 BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0);
2733 (BO->getOpcode() != Instruction::UDiv &&
2734 BO->getOpcode() != Instruction::SDiv)) {
2736 BO = dyn_cast<BinaryOperator>(I.getOperand(1));
2738 Value *Neg = dyn_castNegVal(Op1);
2739 if (BO && BO->hasOneUse() &&
2740 (BO->getOperand(1) == Op1 || BO->getOperand(1) == Neg) &&
2741 (BO->getOpcode() == Instruction::UDiv ||
2742 BO->getOpcode() == Instruction::SDiv)) {
2743 Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1);
2745 // If the division is exact, X % Y is zero.
2746 if (SDivOperator *SDiv = dyn_cast<SDivOperator>(BO))
2747 if (SDiv->isExact()) {
2749 return ReplaceInstUsesWith(I, Op0BO);
2751 return BinaryOperator::CreateNeg(Op0BO);
2755 if (BO->getOpcode() == Instruction::UDiv)
2756 Rem = Builder->CreateURem(Op0BO, Op1BO);
2758 Rem = Builder->CreateSRem(Op0BO, Op1BO);
2762 return BinaryOperator::CreateSub(Op0BO, Rem);
2763 return BinaryOperator::CreateSub(Rem, Op0BO);
2767 if (I.getType() == Type::getInt1Ty(*Context))
2768 return BinaryOperator::CreateAnd(Op0, I.getOperand(1));
2770 // If one of the operands of the multiply is a cast from a boolean value, then
2771 // we know the bool is either zero or one, so this is a 'masking' multiply.
2772 // See if we can simplify things based on how the boolean was originally
2774 CastInst *BoolCast = 0;
2775 if (ZExtInst *CI = dyn_cast<ZExtInst>(Op0))
2776 if (CI->getOperand(0)->getType() == Type::getInt1Ty(*Context))
2779 if (ZExtInst *CI = dyn_cast<ZExtInst>(I.getOperand(1)))
2780 if (CI->getOperand(0)->getType() == Type::getInt1Ty(*Context))
2783 if (ICmpInst *SCI = dyn_cast<ICmpInst>(BoolCast->getOperand(0))) {
2784 Value *SCIOp0 = SCI->getOperand(0), *SCIOp1 = SCI->getOperand(1);
2785 const Type *SCOpTy = SCIOp0->getType();
2788 // If the icmp is true iff the sign bit of X is set, then convert this
2789 // multiply into a shift/and combination.
2790 if (isa<ConstantInt>(SCIOp1) &&
2791 isSignBitCheck(SCI->getPredicate(), cast<ConstantInt>(SCIOp1), TIS) &&
2793 // Shift the X value right to turn it into "all signbits".
2794 Constant *Amt = ConstantInt::get(SCIOp0->getType(),
2795 SCOpTy->getPrimitiveSizeInBits()-1);
2796 Value *V = Builder->CreateAShr(SCIOp0, Amt,
2797 BoolCast->getOperand(0)->getName()+".mask");
2799 // If the multiply type is not the same as the source type, sign extend
2800 // or truncate to the multiply type.
2801 if (I.getType() != V->getType())
2802 V = Builder->CreateIntCast(V, I.getType(), true);
2804 Value *OtherOp = Op0 == BoolCast ? I.getOperand(1) : Op0;
2805 return BinaryOperator::CreateAnd(V, OtherOp);
2810 return Changed ? &I : 0;
2813 Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
2814 bool Changed = SimplifyCommutative(I);
2815 Value *Op0 = I.getOperand(0);
2817 // Simplify mul instructions with a constant RHS...
2818 if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
2819 if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1)) {
2820 // "In IEEE floating point, x*1 is not equivalent to x for nans. However,
2821 // ANSI says we can drop signals, so we can do this anyway." (from GCC)
2822 if (Op1F->isExactlyValue(1.0))
2823 return ReplaceInstUsesWith(I, Op0); // Eliminate 'mul double %X, 1.0'
2824 } else if (isa<VectorType>(Op1->getType())) {
2825 if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1)) {
2826 // As above, vector X*splat(1.0) -> X in all defined cases.
2827 if (Constant *Splat = Op1V->getSplatValue()) {
2828 if (ConstantFP *F = dyn_cast<ConstantFP>(Splat))
2829 if (F->isExactlyValue(1.0))
2830 return ReplaceInstUsesWith(I, Op0);
2835 // Try to fold constant mul into select arguments.
2836 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2837 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2840 if (isa<PHINode>(Op0))
2841 if (Instruction *NV = FoldOpIntoPhi(I))
2845 if (Value *Op0v = dyn_castFNegVal(Op0)) // -X * -Y = X*Y
2846 if (Value *Op1v = dyn_castFNegVal(I.getOperand(1)))
2847 return BinaryOperator::CreateFMul(Op0v, Op1v);
2849 return Changed ? &I : 0;
2852 /// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
2854 bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
2855 SelectInst *SI = cast<SelectInst>(I.getOperand(1));
2857 // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
2858 int NonNullOperand = -1;
2859 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
2860 if (ST->isNullValue())
2862 // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
2863 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
2864 if (ST->isNullValue())
2867 if (NonNullOperand == -1)
2870 Value *SelectCond = SI->getOperand(0);
2872 // Change the div/rem to use 'Y' instead of the select.
2873 I.setOperand(1, SI->getOperand(NonNullOperand));
2875 // Okay, we know we replace the operand of the div/rem with 'Y' with no
2876 // problem. However, the select, or the condition of the select may have
2877 // multiple uses. Based on our knowledge that the operand must be non-zero,
2878 // propagate the known value for the select into other uses of it, and
2879 // propagate a known value of the condition into its other users.
2881 // If the select and condition only have a single use, don't bother with this,
2883 if (SI->use_empty() && SelectCond->hasOneUse())
2886 // Scan the current block backward, looking for other uses of SI.
2887 BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin();
2889 while (BBI != BBFront) {
2891 // If we found a call to a function, we can't assume it will return, so
2892 // information from below it cannot be propagated above it.
2893 if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
2896 // Replace uses of the select or its condition with the known values.
2897 for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
2900 *I = SI->getOperand(NonNullOperand);
2902 } else if (*I == SelectCond) {
2903 *I = NonNullOperand == 1 ? ConstantInt::getTrue(*Context) :
2904 ConstantInt::getFalse(*Context);
2909 // If we past the instruction, quit looking for it.
2912 if (&*BBI == SelectCond)
2915 // If we ran out of things to eliminate, break out of the loop.
2916 if (SelectCond == 0 && SI == 0)
2924 /// This function implements the transforms on div instructions that work
2925 /// regardless of the kind of div instruction it is (udiv, sdiv, or fdiv). It is
2926 /// used by the visitors to those instructions.
2927 /// @brief Transforms common to all three div instructions
2928 Instruction *InstCombiner::commonDivTransforms(BinaryOperator &I) {
2929 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2931 // undef / X -> 0 for integer.
2932 // undef / X -> undef for FP (the undef could be a snan).
2933 if (isa<UndefValue>(Op0)) {
2934 if (Op0->getType()->isFPOrFPVector())
2935 return ReplaceInstUsesWith(I, Op0);
2936 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2939 // X / undef -> undef
2940 if (isa<UndefValue>(Op1))
2941 return ReplaceInstUsesWith(I, Op1);
2946 /// This function implements the transforms common to both integer division
2947 /// instructions (udiv and sdiv). It is called by the visitors to those integer
2948 /// division instructions.
2949 /// @brief Common integer divide transforms
2950 Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
2951 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2953 // (sdiv X, X) --> 1 (udiv X, X) --> 1
2955 if (const VectorType *Ty = dyn_cast<VectorType>(I.getType())) {
2956 Constant *CI = ConstantInt::get(Ty->getElementType(), 1);
2957 std::vector<Constant*> Elts(Ty->getNumElements(), CI);
2958 return ReplaceInstUsesWith(I, ConstantVector::get(Elts));
2961 Constant *CI = ConstantInt::get(I.getType(), 1);
2962 return ReplaceInstUsesWith(I, CI);
2965 if (Instruction *Common = commonDivTransforms(I))
2968 // Handle cases involving: [su]div X, (select Cond, Y, Z)
2969 // This does not apply for fdiv.
2970 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
2973 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2975 if (RHS->equalsInt(1))
2976 return ReplaceInstUsesWith(I, Op0);
2978 // (X / C1) / C2 -> X / (C1*C2)
2979 if (Instruction *LHS = dyn_cast<Instruction>(Op0))
2980 if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
2981 if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
2982 if (MultiplyOverflows(RHS, LHSRHS,
2983 I.getOpcode()==Instruction::SDiv))
2984 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2986 return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
2987 ConstantExpr::getMul(RHS, LHSRHS));
2990 if (!RHS->isZero()) { // avoid X udiv 0
2991 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2992 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2994 if (isa<PHINode>(Op0))
2995 if (Instruction *NV = FoldOpIntoPhi(I))
3000 // 0 / X == 0, we don't need to preserve faults!
3001 if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
3002 if (LHS->equalsInt(0))
3003 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3005 // It can't be division by zero, hence it must be division by one.
3006 if (I.getType() == Type::getInt1Ty(*Context))
3007 return ReplaceInstUsesWith(I, Op0);
3009 if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1)) {
3010 if (ConstantInt *X = cast_or_null<ConstantInt>(Op1V->getSplatValue()))
3013 return ReplaceInstUsesWith(I, Op0);
3019 Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
3020 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3022 // Handle the integer div common cases
3023 if (Instruction *Common = commonIDivTransforms(I))
3026 if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
3027 // X udiv C^2 -> X >> C
3028 // Check to see if this is an unsigned division with an exact power of 2,
3029 // if so, convert to a right shift.
3030 if (C->getValue().isPowerOf2()) // 0 not included in isPowerOf2
3031 return BinaryOperator::CreateLShr(Op0,
3032 ConstantInt::get(Op0->getType(), C->getValue().logBase2()));
3034 // X udiv C, where C >= signbit
3035 if (C->getValue().isNegative()) {
3036 Value *IC = Builder->CreateICmpULT( Op0, C);
3037 return SelectInst::Create(IC, Constant::getNullValue(I.getType()),
3038 ConstantInt::get(I.getType(), 1));
3042 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
3043 if (BinaryOperator *RHSI = dyn_cast<BinaryOperator>(I.getOperand(1))) {
3044 if (RHSI->getOpcode() == Instruction::Shl &&
3045 isa<ConstantInt>(RHSI->getOperand(0))) {
3046 const APInt& C1 = cast<ConstantInt>(RHSI->getOperand(0))->getValue();
3047 if (C1.isPowerOf2()) {
3048 Value *N = RHSI->getOperand(1);
3049 const Type *NTy = N->getType();
3050 if (uint32_t C2 = C1.logBase2())
3051 N = Builder->CreateAdd(N, ConstantInt::get(NTy, C2), "tmp");
3052 return BinaryOperator::CreateLShr(Op0, N);
3057 // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
3058 // where C1&C2 are powers of two.
3059 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
3060 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
3061 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
3062 const APInt &TVA = STO->getValue(), &FVA = SFO->getValue();
3063 if (TVA.isPowerOf2() && FVA.isPowerOf2()) {
3064 // Compute the shift amounts
3065 uint32_t TSA = TVA.logBase2(), FSA = FVA.logBase2();
3066 // Construct the "on true" case of the select
3067 Constant *TC = ConstantInt::get(Op0->getType(), TSA);
3068 Value *TSI = Builder->CreateLShr(Op0, TC, SI->getName()+".t");
3070 // Construct the "on false" case of the select
3071 Constant *FC = ConstantInt::get(Op0->getType(), FSA);
3072 Value *FSI = Builder->CreateLShr(Op0, FC, SI->getName()+".f");
3074 // construct the select instruction and return it.
3075 return SelectInst::Create(SI->getOperand(0), TSI, FSI, SI->getName());
3081 Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
3082 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3084 // Handle the integer div common cases
3085 if (Instruction *Common = commonIDivTransforms(I))
3088 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
3090 if (RHS->isAllOnesValue())
3091 return BinaryOperator::CreateNeg(Op0);
3093 // sdiv X, C --> ashr X, log2(C)
3094 if (cast<SDivOperator>(&I)->isExact() &&
3095 RHS->getValue().isNonNegative() &&
3096 RHS->getValue().isPowerOf2()) {
3097 Value *ShAmt = llvm::ConstantInt::get(RHS->getType(),
3098 RHS->getValue().exactLogBase2());
3099 return BinaryOperator::CreateAShr(Op0, ShAmt, I.getName());
3102 // -X/C --> X/-C provided the negation doesn't overflow.
3103 if (SubOperator *Sub = dyn_cast<SubOperator>(Op0))
3104 if (isa<Constant>(Sub->getOperand(0)) &&
3105 cast<Constant>(Sub->getOperand(0))->isNullValue() &&
3106 Sub->hasNoSignedWrap())
3107 return BinaryOperator::CreateSDiv(Sub->getOperand(1),
3108 ConstantExpr::getNeg(RHS));
3111 // If the sign bits of both operands are zero (i.e. we can prove they are
3112 // unsigned inputs), turn this into a udiv.
3113 if (I.getType()->isInteger()) {
3114 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
3115 if (MaskedValueIsZero(Op0, Mask)) {
3116 if (MaskedValueIsZero(Op1, Mask)) {
3117 // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
3118 return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
3120 ConstantInt *ShiftedInt;
3121 if (match(Op1, m_Shl(m_ConstantInt(ShiftedInt), m_Value())) &&
3122 ShiftedInt->getValue().isPowerOf2()) {
3123 // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
3124 // Safe because the only negative value (1 << Y) can take on is
3125 // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
3126 // the sign bit set.
3127 return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
3135 Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
3136 return commonDivTransforms(I);
3139 /// This function implements the transforms on rem instructions that work
3140 /// regardless of the kind of rem instruction it is (urem, srem, or frem). It
3141 /// is used by the visitors to those instructions.
3142 /// @brief Transforms common to all three rem instructions
3143 Instruction *InstCombiner::commonRemTransforms(BinaryOperator &I) {
3144 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3146 if (isa<UndefValue>(Op0)) { // undef % X -> 0
3147 if (I.getType()->isFPOrFPVector())
3148 return ReplaceInstUsesWith(I, Op0); // X % undef -> undef (could be SNaN)
3149 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3151 if (isa<UndefValue>(Op1))
3152 return ReplaceInstUsesWith(I, Op1); // X % undef -> undef
3154 // Handle cases involving: rem X, (select Cond, Y, Z)
3155 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
3161 /// This function implements the transforms common to both integer remainder
3162 /// instructions (urem and srem). It is called by the visitors to those integer
3163 /// remainder instructions.
3164 /// @brief Common integer remainder transforms
3165 Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
3166 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3168 if (Instruction *common = commonRemTransforms(I))
3171 // 0 % X == 0 for integer, we don't need to preserve faults!
3172 if (Constant *LHS = dyn_cast<Constant>(Op0))
3173 if (LHS->isNullValue())
3174 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3176 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
3177 // X % 0 == undef, we don't need to preserve faults!
3178 if (RHS->equalsInt(0))
3179 return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
3181 if (RHS->equalsInt(1)) // X % 1 == 0
3182 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3184 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
3185 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
3186 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
3188 } else if (isa<PHINode>(Op0I)) {
3189 if (Instruction *NV = FoldOpIntoPhi(I))
3193 // See if we can fold away this rem instruction.
3194 if (SimplifyDemandedInstructionBits(I))
3202 Instruction *InstCombiner::visitURem(BinaryOperator &I) {
3203 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3205 if (Instruction *common = commonIRemTransforms(I))
3208 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
3209 // X urem C^2 -> X and C
3210 // Check to see if this is an unsigned remainder with an exact power of 2,
3211 // if so, convert to a bitwise and.
3212 if (ConstantInt *C = dyn_cast<ConstantInt>(RHS))
3213 if (C->getValue().isPowerOf2())
3214 return BinaryOperator::CreateAnd(Op0, SubOne(C));
3217 if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) {
3218 // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)
3219 if (RHSI->getOpcode() == Instruction::Shl &&
3220 isa<ConstantInt>(RHSI->getOperand(0))) {
3221 if (cast<ConstantInt>(RHSI->getOperand(0))->getValue().isPowerOf2()) {
3222 Constant *N1 = Constant::getAllOnesValue(I.getType());
3223 Value *Add = Builder->CreateAdd(RHSI, N1, "tmp");
3224 return BinaryOperator::CreateAnd(Op0, Add);
3229 // urem X, (select Cond, 2^C1, 2^C2) --> select Cond, (and X, C1), (and X, C2)
3230 // where C1&C2 are powers of two.
3231 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
3232 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
3233 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
3234 // STO == 0 and SFO == 0 handled above.
3235 if ((STO->getValue().isPowerOf2()) &&
3236 (SFO->getValue().isPowerOf2())) {
3237 Value *TrueAnd = Builder->CreateAnd(Op0, SubOne(STO),
3238 SI->getName()+".t");
3239 Value *FalseAnd = Builder->CreateAnd(Op0, SubOne(SFO),
3240 SI->getName()+".f");
3241 return SelectInst::Create(SI->getOperand(0), TrueAnd, FalseAnd);
3249 Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
3250 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3252 // Handle the integer rem common cases
3253 if (Instruction *Common = commonIRemTransforms(I))
3256 if (Value *RHSNeg = dyn_castNegVal(Op1))
3257 if (!isa<Constant>(RHSNeg) ||
3258 (isa<ConstantInt>(RHSNeg) &&
3259 cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) {
3261 Worklist.AddValue(I.getOperand(1));
3262 I.setOperand(1, RHSNeg);
3266 // If the sign bits of both operands are zero (i.e. we can prove they are
3267 // unsigned inputs), turn this into a urem.
3268 if (I.getType()->isInteger()) {
3269 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
3270 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
3271 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
3272 return BinaryOperator::CreateURem(Op0, Op1, I.getName());
3276 // If it's a constant vector, flip any negative values positive.
3277 if (ConstantVector *RHSV = dyn_cast<ConstantVector>(Op1)) {
3278 unsigned VWidth = RHSV->getNumOperands();
3280 bool hasNegative = false;
3281 for (unsigned i = 0; !hasNegative && i != VWidth; ++i)
3282 if (ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV->getOperand(i)))
3283 if (RHS->getValue().isNegative())
3287 std::vector<Constant *> Elts(VWidth);
3288 for (unsigned i = 0; i != VWidth; ++i) {
3289 if (ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV->getOperand(i))) {
3290 if (RHS->getValue().isNegative())
3291 Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
3297 Constant *NewRHSV = ConstantVector::get(Elts);
3298 if (NewRHSV != RHSV) {
3299 Worklist.AddValue(I.getOperand(1));
3300 I.setOperand(1, NewRHSV);
3309 Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
3310 return commonRemTransforms(I);
3313 // isOneBitSet - Return true if there is exactly one bit set in the specified
3315 static bool isOneBitSet(const ConstantInt *CI) {
3316 return CI->getValue().isPowerOf2();
3319 // isHighOnes - Return true if the constant is of the form 1+0+.
3320 // This is the same as lowones(~X).
3321 static bool isHighOnes(const ConstantInt *CI) {
3322 return (~CI->getValue() + 1).isPowerOf2();
3325 /// getICmpCode - Encode a icmp predicate into a three bit mask. These bits
3326 /// are carefully arranged to allow folding of expressions such as:
3328 /// (A < B) | (A > B) --> (A != B)
3330 /// Note that this is only valid if the first and second predicates have the
3331 /// same sign. Is illegal to do: (A u< B) | (A s> B)
3333 /// Three bits are used to represent the condition, as follows:
3338 /// <=> Value Definition
3339 /// 000 0 Always false
3346 /// 111 7 Always true
3348 static unsigned getICmpCode(const ICmpInst *ICI) {
3349 switch (ICI->getPredicate()) {
3351 case ICmpInst::ICMP_UGT: return 1; // 001
3352 case ICmpInst::ICMP_SGT: return 1; // 001
3353 case ICmpInst::ICMP_EQ: return 2; // 010
3354 case ICmpInst::ICMP_UGE: return 3; // 011
3355 case ICmpInst::ICMP_SGE: return 3; // 011
3356 case ICmpInst::ICMP_ULT: return 4; // 100
3357 case ICmpInst::ICMP_SLT: return 4; // 100
3358 case ICmpInst::ICMP_NE: return 5; // 101
3359 case ICmpInst::ICMP_ULE: return 6; // 110
3360 case ICmpInst::ICMP_SLE: return 6; // 110
3363 llvm_unreachable("Invalid ICmp predicate!");
3368 /// getFCmpCode - Similar to getICmpCode but for FCmpInst. This encodes a fcmp
3369 /// predicate into a three bit mask. It also returns whether it is an ordered
3370 /// predicate by reference.
3371 static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
3374 case FCmpInst::FCMP_ORD: isOrdered = true; return 0; // 000
3375 case FCmpInst::FCMP_UNO: return 0; // 000
3376 case FCmpInst::FCMP_OGT: isOrdered = true; return 1; // 001
3377 case FCmpInst::FCMP_UGT: return 1; // 001
3378 case FCmpInst::FCMP_OEQ: isOrdered = true; return 2; // 010
3379 case FCmpInst::FCMP_UEQ: return 2; // 010
3380 case FCmpInst::FCMP_OGE: isOrdered = true; return 3; // 011
3381 case FCmpInst::FCMP_UGE: return 3; // 011
3382 case FCmpInst::FCMP_OLT: isOrdered = true; return 4; // 100
3383 case FCmpInst::FCMP_ULT: return 4; // 100
3384 case FCmpInst::FCMP_ONE: isOrdered = true; return 5; // 101
3385 case FCmpInst::FCMP_UNE: return 5; // 101
3386 case FCmpInst::FCMP_OLE: isOrdered = true; return 6; // 110
3387 case FCmpInst::FCMP_ULE: return 6; // 110
3390 // Not expecting FCMP_FALSE and FCMP_TRUE;
3391 llvm_unreachable("Unexpected FCmp predicate!");
3396 /// getICmpValue - This is the complement of getICmpCode, which turns an
3397 /// opcode and two operands into either a constant true or false, or a brand
3398 /// new ICmp instruction. The sign is passed in to determine which kind
3399 /// of predicate to use in the new icmp instruction.
3400 static Value *getICmpValue(bool sign, unsigned code, Value *LHS, Value *RHS,
3401 LLVMContext *Context) {
3403 default: llvm_unreachable("Illegal ICmp code!");
3404 case 0: return ConstantInt::getFalse(*Context);
3407 return new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS);
3409 return new ICmpInst(ICmpInst::ICMP_UGT, LHS, RHS);
3410 case 2: return new ICmpInst(ICmpInst::ICMP_EQ, LHS, RHS);
3413 return new ICmpInst(ICmpInst::ICMP_SGE, LHS, RHS);
3415 return new ICmpInst(ICmpInst::ICMP_UGE, LHS, RHS);
3418 return new ICmpInst(ICmpInst::ICMP_SLT, LHS, RHS);
3420 return new ICmpInst(ICmpInst::ICMP_ULT, LHS, RHS);
3421 case 5: return new ICmpInst(ICmpInst::ICMP_NE, LHS, RHS);
3424 return new ICmpInst(ICmpInst::ICMP_SLE, LHS, RHS);
3426 return new ICmpInst(ICmpInst::ICMP_ULE, LHS, RHS);
3427 case 7: return ConstantInt::getTrue(*Context);
3431 /// getFCmpValue - This is the complement of getFCmpCode, which turns an
3432 /// opcode and two operands into either a FCmp instruction. isordered is passed
3433 /// in to determine which kind of predicate to use in the new fcmp instruction.
3434 static Value *getFCmpValue(bool isordered, unsigned code,
3435 Value *LHS, Value *RHS, LLVMContext *Context) {
3437 default: llvm_unreachable("Illegal FCmp code!");
3440 return new FCmpInst(FCmpInst::FCMP_ORD, LHS, RHS);
3442 return new FCmpInst(FCmpInst::FCMP_UNO, LHS, RHS);
3445 return new FCmpInst(FCmpInst::FCMP_OGT, LHS, RHS);
3447 return new FCmpInst(FCmpInst::FCMP_UGT, LHS, RHS);
3450 return new FCmpInst(FCmpInst::FCMP_OEQ, LHS, RHS);
3452 return new FCmpInst(FCmpInst::FCMP_UEQ, LHS, RHS);
3455 return new FCmpInst(FCmpInst::FCMP_OGE, LHS, RHS);
3457 return new FCmpInst(FCmpInst::FCMP_UGE, LHS, RHS);
3460 return new FCmpInst(FCmpInst::FCMP_OLT, LHS, RHS);
3462 return new FCmpInst(FCmpInst::FCMP_ULT, LHS, RHS);
3465 return new FCmpInst(FCmpInst::FCMP_ONE, LHS, RHS);
3467 return new FCmpInst(FCmpInst::FCMP_UNE, LHS, RHS);
3470 return new FCmpInst(FCmpInst::FCMP_OLE, LHS, RHS);
3472 return new FCmpInst(FCmpInst::FCMP_ULE, LHS, RHS);
3473 case 7: return ConstantInt::getTrue(*Context);
3477 /// PredicatesFoldable - Return true if both predicates match sign or if at
3478 /// least one of them is an equality comparison (which is signless).
3479 static bool PredicatesFoldable(ICmpInst::Predicate p1, ICmpInst::Predicate p2) {
3480 return (ICmpInst::isSignedPredicate(p1) == ICmpInst::isSignedPredicate(p2)) ||
3481 (ICmpInst::isSignedPredicate(p1) && ICmpInst::isEquality(p2)) ||
3482 (ICmpInst::isSignedPredicate(p2) && ICmpInst::isEquality(p1));
3486 // FoldICmpLogical - Implements (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3487 struct FoldICmpLogical {
3490 ICmpInst::Predicate pred;
3491 FoldICmpLogical(InstCombiner &ic, ICmpInst *ICI)
3492 : IC(ic), LHS(ICI->getOperand(0)), RHS(ICI->getOperand(1)),
3493 pred(ICI->getPredicate()) {}
3494 bool shouldApply(Value *V) const {
3495 if (ICmpInst *ICI = dyn_cast<ICmpInst>(V))
3496 if (PredicatesFoldable(pred, ICI->getPredicate()))
3497 return ((ICI->getOperand(0) == LHS && ICI->getOperand(1) == RHS) ||
3498 (ICI->getOperand(0) == RHS && ICI->getOperand(1) == LHS));
3501 Instruction *apply(Instruction &Log) const {
3502 ICmpInst *ICI = cast<ICmpInst>(Log.getOperand(0));
3503 if (ICI->getOperand(0) != LHS) {
3504 assert(ICI->getOperand(1) == LHS);
3505 ICI->swapOperands(); // Swap the LHS and RHS of the ICmp
3508 ICmpInst *RHSICI = cast<ICmpInst>(Log.getOperand(1));
3509 unsigned LHSCode = getICmpCode(ICI);
3510 unsigned RHSCode = getICmpCode(RHSICI);
3512 switch (Log.getOpcode()) {
3513 case Instruction::And: Code = LHSCode & RHSCode; break;
3514 case Instruction::Or: Code = LHSCode | RHSCode; break;
3515 case Instruction::Xor: Code = LHSCode ^ RHSCode; break;
3516 default: llvm_unreachable("Illegal logical opcode!"); return 0;
3519 bool isSigned = ICmpInst::isSignedPredicate(RHSICI->getPredicate()) ||
3520 ICmpInst::isSignedPredicate(ICI->getPredicate());
3522 Value *RV = getICmpValue(isSigned, Code, LHS, RHS, IC.getContext());
3523 if (Instruction *I = dyn_cast<Instruction>(RV))
3525 // Otherwise, it's a constant boolean value...
3526 return IC.ReplaceInstUsesWith(Log, RV);
3529 } // end anonymous namespace
3531 // OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where
3532 // the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is
3533 // guaranteed to be a binary operator.
3534 Instruction *InstCombiner::OptAndOp(Instruction *Op,
3536 ConstantInt *AndRHS,
3537 BinaryOperator &TheAnd) {
3538 Value *X = Op->getOperand(0);
3539 Constant *Together = 0;
3541 Together = ConstantExpr::getAnd(AndRHS, OpRHS);
3543 switch (Op->getOpcode()) {
3544 case Instruction::Xor:
3545 if (Op->hasOneUse()) {
3546 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
3547 Value *And = Builder->CreateAnd(X, AndRHS);
3549 return BinaryOperator::CreateXor(And, Together);
3552 case Instruction::Or:
3553 if (Together == AndRHS) // (X | C) & C --> C
3554 return ReplaceInstUsesWith(TheAnd, AndRHS);
3556 if (Op->hasOneUse() && Together != OpRHS) {
3557 // (X | C1) & C2 --> (X | (C1&C2)) & C2
3558 Value *Or = Builder->CreateOr(X, Together);
3560 return BinaryOperator::CreateAnd(Or, AndRHS);
3563 case Instruction::Add:
3564 if (Op->hasOneUse()) {
3565 // Adding a one to a single bit bit-field should be turned into an XOR
3566 // of the bit. First thing to check is to see if this AND is with a
3567 // single bit constant.
3568 const APInt& AndRHSV = cast<ConstantInt>(AndRHS)->getValue();
3570 // If there is only one bit set...
3571 if (isOneBitSet(cast<ConstantInt>(AndRHS))) {
3572 // Ok, at this point, we know that we are masking the result of the
3573 // ADD down to exactly one bit. If the constant we are adding has
3574 // no bits set below this bit, then we can eliminate the ADD.
3575 const APInt& AddRHS = cast<ConstantInt>(OpRHS)->getValue();
3577 // Check to see if any bits below the one bit set in AndRHSV are set.
3578 if ((AddRHS & (AndRHSV-1)) == 0) {
3579 // If not, the only thing that can effect the output of the AND is
3580 // the bit specified by AndRHSV. If that bit is set, the effect of
3581 // the XOR is to toggle the bit. If it is clear, then the ADD has
3583 if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
3584 TheAnd.setOperand(0, X);
3587 // Pull the XOR out of the AND.
3588 Value *NewAnd = Builder->CreateAnd(X, AndRHS);
3589 NewAnd->takeName(Op);
3590 return BinaryOperator::CreateXor(NewAnd, AndRHS);
3597 case Instruction::Shl: {
3598 // We know that the AND will not produce any of the bits shifted in, so if
3599 // the anded constant includes them, clear them now!
3601 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3602 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3603 APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
3604 ConstantInt *CI = ConstantInt::get(*Context, AndRHS->getValue() & ShlMask);
3606 if (CI->getValue() == ShlMask) {
3607 // Masking out bits that the shift already masks
3608 return ReplaceInstUsesWith(TheAnd, Op); // No need for the and.
3609 } else if (CI != AndRHS) { // Reducing bits set in and.
3610 TheAnd.setOperand(1, CI);
3615 case Instruction::LShr:
3617 // We know that the AND will not produce any of the bits shifted in, so if
3618 // the anded constant includes them, clear them now! This only applies to
3619 // unsigned shifts, because a signed shr may bring in set bits!
3621 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3622 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3623 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
3624 ConstantInt *CI = ConstantInt::get(*Context, AndRHS->getValue() & ShrMask);
3626 if (CI->getValue() == ShrMask) {
3627 // Masking out bits that the shift already masks.
3628 return ReplaceInstUsesWith(TheAnd, Op);
3629 } else if (CI != AndRHS) {
3630 TheAnd.setOperand(1, CI); // Reduce bits set in and cst.
3635 case Instruction::AShr:
3637 // See if this is shifting in some sign extension, then masking it out
3639 if (Op->hasOneUse()) {
3640 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3641 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3642 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
3643 Constant *C = ConstantInt::get(*Context, AndRHS->getValue() & ShrMask);
3644 if (C == AndRHS) { // Masking out bits shifted in.
3645 // (Val ashr C1) & C2 -> (Val lshr C1) & C2
3646 // Make the argument unsigned.
3647 Value *ShVal = Op->getOperand(0);
3648 ShVal = Builder->CreateLShr(ShVal, OpRHS, Op->getName());
3649 return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
3658 /// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
3659 /// true, otherwise (V < Lo || V >= Hi). In pratice, we emit the more efficient
3660 /// (V-Lo) <u Hi-Lo. This method expects that Lo <= Hi. isSigned indicates
3661 /// whether to treat the V, Lo and HI as signed or not. IB is the location to
3662 /// insert new instructions.
3663 Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
3664 bool isSigned, bool Inside,
3666 assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
3667 ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
3668 "Lo is not <= Hi in range emission code!");
3671 if (Lo == Hi) // Trivially false.
3672 return new ICmpInst(ICmpInst::ICMP_NE, V, V);
3674 // V >= Min && V < Hi --> V < Hi
3675 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
3676 ICmpInst::Predicate pred = (isSigned ?
3677 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
3678 return new ICmpInst(pred, V, Hi);
3681 // Emit V-Lo <u Hi-Lo
3682 Constant *NegLo = ConstantExpr::getNeg(Lo);
3683 Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
3684 Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
3685 return new ICmpInst(ICmpInst::ICMP_ULT, Add, UpperBound);
3688 if (Lo == Hi) // Trivially true.
3689 return new ICmpInst(ICmpInst::ICMP_EQ, V, V);
3691 // V < Min || V >= Hi -> V > Hi-1
3692 Hi = SubOne(cast<ConstantInt>(Hi));
3693 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
3694 ICmpInst::Predicate pred = (isSigned ?
3695 ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
3696 return new ICmpInst(pred, V, Hi);
3699 // Emit V-Lo >u Hi-1-Lo
3700 // Note that Hi has already had one subtracted from it, above.
3701 ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
3702 Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
3703 Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
3704 return new ICmpInst(ICmpInst::ICMP_UGT, Add, LowerBound);
3707 // isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
3708 // any number of 0s on either side. The 1s are allowed to wrap from LSB to
3709 // MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
3710 // not, since all 1s are not contiguous.
3711 static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
3712 const APInt& V = Val->getValue();
3713 uint32_t BitWidth = Val->getType()->getBitWidth();
3714 if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
3716 // look for the first zero bit after the run of ones
3717 MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
3718 // look for the first non-zero bit
3719 ME = V.getActiveBits();
3723 /// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
3724 /// where isSub determines whether the operator is a sub. If we can fold one of
3725 /// the following xforms:
3727 /// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
3728 /// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3729 /// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3731 /// return (A +/- B).
3733 Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
3734 ConstantInt *Mask, bool isSub,
3736 Instruction *LHSI = dyn_cast<Instruction>(LHS);
3737 if (!LHSI || LHSI->getNumOperands() != 2 ||
3738 !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
3740 ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
3742 switch (LHSI->getOpcode()) {
3744 case Instruction::And:
3745 if (ConstantExpr::getAnd(N, Mask) == Mask) {
3746 // If the AndRHS is a power of two minus one (0+1+), this is simple.
3747 if ((Mask->getValue().countLeadingZeros() +
3748 Mask->getValue().countPopulation()) ==
3749 Mask->getValue().getBitWidth())
3752 // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
3753 // part, we don't need any explicit masks to take them out of A. If that
3754 // is all N is, ignore it.
3755 uint32_t MB = 0, ME = 0;
3756 if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive
3757 uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
3758 APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
3759 if (MaskedValueIsZero(RHS, Mask))
3764 case Instruction::Or:
3765 case Instruction::Xor:
3766 // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
3767 if ((Mask->getValue().countLeadingZeros() +
3768 Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
3769 && ConstantExpr::getAnd(N, Mask)->isNullValue())
3775 return Builder->CreateSub(LHSI->getOperand(0), RHS, "fold");
3776 return Builder->CreateAdd(LHSI->getOperand(0), RHS, "fold");
3779 /// FoldAndOfICmps - Fold (icmp)&(icmp) if possible.
3780 Instruction *InstCombiner::FoldAndOfICmps(Instruction &I,
3781 ICmpInst *LHS, ICmpInst *RHS) {
3783 ConstantInt *LHSCst, *RHSCst;
3784 ICmpInst::Predicate LHSCC, RHSCC;
3786 // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
3787 if (!match(LHS, m_ICmp(LHSCC, m_Value(Val),
3788 m_ConstantInt(LHSCst))) ||
3789 !match(RHS, m_ICmp(RHSCC, m_Value(Val2),
3790 m_ConstantInt(RHSCst))))
3793 // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
3794 // where C is a power of 2
3795 if (LHSCst == RHSCst && LHSCC == RHSCC && LHSCC == ICmpInst::ICMP_ULT &&
3796 LHSCst->getValue().isPowerOf2()) {
3797 Value *NewOr = Builder->CreateOr(Val, Val2);
3798 return new ICmpInst(LHSCC, NewOr, LHSCst);
3801 // From here on, we only handle:
3802 // (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
3803 if (Val != Val2) return 0;
3805 // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
3806 if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
3807 RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
3808 LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
3809 RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
3812 // We can't fold (ugt x, C) & (sgt x, C2).
3813 if (!PredicatesFoldable(LHSCC, RHSCC))
3816 // Ensure that the larger constant is on the RHS.
3818 if (ICmpInst::isSignedPredicate(LHSCC) ||
3819 (ICmpInst::isEquality(LHSCC) &&
3820 ICmpInst::isSignedPredicate(RHSCC)))
3821 ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
3823 ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
3826 std::swap(LHS, RHS);
3827 std::swap(LHSCst, RHSCst);
3828 std::swap(LHSCC, RHSCC);
3831 // At this point, we know we have have two icmp instructions
3832 // comparing a value against two constants and and'ing the result
3833 // together. Because of the above check, we know that we only have
3834 // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
3835 // (from the FoldICmpLogical check above), that the two constants
3836 // are not equal and that the larger constant is on the RHS
3837 assert(LHSCst != RHSCst && "Compares not folded above?");
3840 default: llvm_unreachable("Unknown integer condition code!");
3841 case ICmpInst::ICMP_EQ:
3843 default: llvm_unreachable("Unknown integer condition code!");
3844 case ICmpInst::ICMP_EQ: // (X == 13 & X == 15) -> false
3845 case ICmpInst::ICMP_UGT: // (X == 13 & X > 15) -> false
3846 case ICmpInst::ICMP_SGT: // (X == 13 & X > 15) -> false
3847 return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
3848 case ICmpInst::ICMP_NE: // (X == 13 & X != 15) -> X == 13
3849 case ICmpInst::ICMP_ULT: // (X == 13 & X < 15) -> X == 13
3850 case ICmpInst::ICMP_SLT: // (X == 13 & X < 15) -> X == 13
3851 return ReplaceInstUsesWith(I, LHS);
3853 case ICmpInst::ICMP_NE:
3855 default: llvm_unreachable("Unknown integer condition code!");
3856 case ICmpInst::ICMP_ULT:
3857 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
3858 return new ICmpInst(ICmpInst::ICMP_ULT, Val, LHSCst);
3859 break; // (X != 13 & X u< 15) -> no change
3860 case ICmpInst::ICMP_SLT:
3861 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
3862 return new ICmpInst(ICmpInst::ICMP_SLT, Val, LHSCst);
3863 break; // (X != 13 & X s< 15) -> no change
3864 case ICmpInst::ICMP_EQ: // (X != 13 & X == 15) -> X == 15
3865 case ICmpInst::ICMP_UGT: // (X != 13 & X u> 15) -> X u> 15
3866 case ICmpInst::ICMP_SGT: // (X != 13 & X s> 15) -> X s> 15
3867 return ReplaceInstUsesWith(I, RHS);
3868 case ICmpInst::ICMP_NE:
3869 if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
3870 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
3871 Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
3872 return new ICmpInst(ICmpInst::ICMP_UGT, Add,
3873 ConstantInt::get(Add->getType(), 1));
3875 break; // (X != 13 & X != 15) -> no change
3878 case ICmpInst::ICMP_ULT:
3880 default: llvm_unreachable("Unknown integer condition code!");
3881 case ICmpInst::ICMP_EQ: // (X u< 13 & X == 15) -> false
3882 case ICmpInst::ICMP_UGT: // (X u< 13 & X u> 15) -> false
3883 return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
3884 case ICmpInst::ICMP_SGT: // (X u< 13 & X s> 15) -> no change
3886 case ICmpInst::ICMP_NE: // (X u< 13 & X != 15) -> X u< 13
3887 case ICmpInst::ICMP_ULT: // (X u< 13 & X u< 15) -> X u< 13
3888 return ReplaceInstUsesWith(I, LHS);
3889 case ICmpInst::ICMP_SLT: // (X u< 13 & X s< 15) -> no change
3893 case ICmpInst::ICMP_SLT:
3895 default: llvm_unreachable("Unknown integer condition code!");
3896 case ICmpInst::ICMP_EQ: // (X s< 13 & X == 15) -> false
3897 case ICmpInst::ICMP_SGT: // (X s< 13 & X s> 15) -> false
3898 return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
3899 case ICmpInst::ICMP_UGT: // (X s< 13 & X u> 15) -> no change
3901 case ICmpInst::ICMP_NE: // (X s< 13 & X != 15) -> X < 13
3902 case ICmpInst::ICMP_SLT: // (X s< 13 & X s< 15) -> X < 13
3903 return ReplaceInstUsesWith(I, LHS);
3904 case ICmpInst::ICMP_ULT: // (X s< 13 & X u< 15) -> no change
3908 case ICmpInst::ICMP_UGT:
3910 default: llvm_unreachable("Unknown integer condition code!");
3911 case ICmpInst::ICMP_EQ: // (X u> 13 & X == 15) -> X == 15
3912 case ICmpInst::ICMP_UGT: // (X u> 13 & X u> 15) -> X u> 15
3913 return ReplaceInstUsesWith(I, RHS);
3914 case ICmpInst::ICMP_SGT: // (X u> 13 & X s> 15) -> no change
3916 case ICmpInst::ICMP_NE:
3917 if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
3918 return new ICmpInst(LHSCC, Val, RHSCst);
3919 break; // (X u> 13 & X != 15) -> no change
3920 case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) -> (X-14) <u 1
3921 return InsertRangeTest(Val, AddOne(LHSCst),
3922 RHSCst, false, true, I);
3923 case ICmpInst::ICMP_SLT: // (X u> 13 & X s< 15) -> no change
3927 case ICmpInst::ICMP_SGT:
3929 default: llvm_unreachable("Unknown integer condition code!");
3930 case ICmpInst::ICMP_EQ: // (X s> 13 & X == 15) -> X == 15
3931 case ICmpInst::ICMP_SGT: // (X s> 13 & X s> 15) -> X s> 15
3932 return ReplaceInstUsesWith(I, RHS);
3933 case ICmpInst::ICMP_UGT: // (X s> 13 & X u> 15) -> no change
3935 case ICmpInst::ICMP_NE:
3936 if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
3937 return new ICmpInst(LHSCC, Val, RHSCst);
3938 break; // (X s> 13 & X != 15) -> no change
3939 case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) -> (X-14) s< 1
3940 return InsertRangeTest(Val, AddOne(LHSCst),
3941 RHSCst, true, true, I);
3942 case ICmpInst::ICMP_ULT: // (X s> 13 & X u< 15) -> no change
3951 Instruction *InstCombiner::FoldAndOfFCmps(Instruction &I, FCmpInst *LHS,
3954 if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
3955 RHS->getPredicate() == FCmpInst::FCMP_ORD) {
3956 // (fcmp ord x, c) & (fcmp ord y, c) -> (fcmp ord x, y)
3957 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
3958 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
3959 // If either of the constants are nans, then the whole thing returns
3961 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
3962 return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
3963 return new FCmpInst(FCmpInst::FCMP_ORD,
3964 LHS->getOperand(0), RHS->getOperand(0));
3967 // Handle vector zeros. This occurs because the canonical form of
3968 // "fcmp ord x,x" is "fcmp ord x, 0".
3969 if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
3970 isa<ConstantAggregateZero>(RHS->getOperand(1)))
3971 return new FCmpInst(FCmpInst::FCMP_ORD,
3972 LHS->getOperand(0), RHS->getOperand(0));
3976 Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
3977 Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
3978 FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
3981 if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
3982 // Swap RHS operands to match LHS.
3983 Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
3984 std::swap(Op1LHS, Op1RHS);
3987 if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
3988 // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
3990 return new FCmpInst((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
3992 if (Op0CC == FCmpInst::FCMP_FALSE || Op1CC == FCmpInst::FCMP_FALSE)
3993 return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
3994 if (Op0CC == FCmpInst::FCMP_TRUE)
3995 return ReplaceInstUsesWith(I, RHS);
3996 if (Op1CC == FCmpInst::FCMP_TRUE)
3997 return ReplaceInstUsesWith(I, LHS);
4001 unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
4002 unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
4004 std::swap(LHS, RHS);
4005 std::swap(Op0Pred, Op1Pred);
4006 std::swap(Op0Ordered, Op1Ordered);
4009 // uno && ueq -> uno && (uno || eq) -> ueq
4010 // ord && olt -> ord && (ord && lt) -> olt
4011 if (Op0Ordered == Op1Ordered)
4012 return ReplaceInstUsesWith(I, RHS);
4014 // uno && oeq -> uno && (ord && eq) -> false
4015 // uno && ord -> false
4017 return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
4018 // ord && ueq -> ord && (uno || eq) -> oeq
4019 return cast<Instruction>(getFCmpValue(true, Op1Pred,
4020 Op0LHS, Op0RHS, Context));
4028 Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
4029 bool Changed = SimplifyCommutative(I);
4030 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4032 if (isa<UndefValue>(Op1)) // X & undef -> 0
4033 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
4037 return ReplaceInstUsesWith(I, Op1);
4039 // See if we can simplify any instructions used by the instruction whose sole
4040 // purpose is to compute bits we don't care about.
4041 if (SimplifyDemandedInstructionBits(I))
4043 if (isa<VectorType>(I.getType())) {
4044 if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
4045 if (CP->isAllOnesValue()) // X & <-1,-1> -> X
4046 return ReplaceInstUsesWith(I, I.getOperand(0));
4047 } else if (isa<ConstantAggregateZero>(Op1)) {
4048 return ReplaceInstUsesWith(I, Op1); // X & <0,0> -> <0,0>
4052 if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
4053 const APInt& AndRHSMask = AndRHS->getValue();
4054 APInt NotAndRHS(~AndRHSMask);
4056 // Optimize a variety of ((val OP C1) & C2) combinations...
4057 if (isa<BinaryOperator>(Op0)) {
4058 Instruction *Op0I = cast<Instruction>(Op0);
4059 Value *Op0LHS = Op0I->getOperand(0);
4060 Value *Op0RHS = Op0I->getOperand(1);
4061 switch (Op0I->getOpcode()) {
4062 case Instruction::Xor:
4063 case Instruction::Or:
4064 // If the mask is only needed on one incoming arm, push it up.
4065 if (Op0I->hasOneUse()) {
4066 if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
4067 // Not masking anything out for the LHS, move to RHS.
4068 Value *NewRHS = Builder->CreateAnd(Op0RHS, AndRHS,
4069 Op0RHS->getName()+".masked");
4070 return BinaryOperator::Create(
4071 cast<BinaryOperator>(Op0I)->getOpcode(), Op0LHS, NewRHS);
4073 if (!isa<Constant>(Op0RHS) &&
4074 MaskedValueIsZero(Op0RHS, NotAndRHS)) {
4075 // Not masking anything out for the RHS, move to LHS.
4076 Value *NewLHS = Builder->CreateAnd(Op0LHS, AndRHS,
4077 Op0LHS->getName()+".masked");
4078 return BinaryOperator::Create(
4079 cast<BinaryOperator>(Op0I)->getOpcode(), NewLHS, Op0RHS);
4084 case Instruction::Add:
4085 // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
4086 // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
4087 // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
4088 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
4089 return BinaryOperator::CreateAnd(V, AndRHS);
4090 if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
4091 return BinaryOperator::CreateAnd(V, AndRHS); // Add commutes
4094 case Instruction::Sub:
4095 // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
4096 // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
4097 // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
4098 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
4099 return BinaryOperator::CreateAnd(V, AndRHS);
4101 // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
4102 // has 1's for all bits that the subtraction with A might affect.
4103 if (Op0I->hasOneUse()) {
4104 uint32_t BitWidth = AndRHSMask.getBitWidth();
4105 uint32_t Zeros = AndRHSMask.countLeadingZeros();
4106 APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
4108 ConstantInt *A = dyn_cast<ConstantInt>(Op0LHS);
4109 if (!(A && A->isZero()) && // avoid infinite recursion.
4110 MaskedValueIsZero(Op0LHS, Mask)) {
4111 Value *NewNeg = Builder->CreateNeg(Op0RHS);
4112 return BinaryOperator::CreateAnd(NewNeg, AndRHS);
4117 case Instruction::Shl:
4118 case Instruction::LShr:
4119 // (1 << x) & 1 --> zext(x == 0)
4120 // (1 >> x) & 1 --> zext(x == 0)
4121 if (AndRHSMask == 1 && Op0LHS == AndRHS) {
4123 Builder->CreateICmpEQ(Op0RHS, Constant::getNullValue(I.getType()));
4124 return new ZExtInst(NewICmp, I.getType());
4129 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
4130 if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
4132 } else if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
4133 // If this is an integer truncation or change from signed-to-unsigned, and
4134 // if the source is an and/or with immediate, transform it. This
4135 // frequently occurs for bitfield accesses.
4136 if (Instruction *CastOp = dyn_cast<Instruction>(CI->getOperand(0))) {
4137 if ((isa<TruncInst>(CI) || isa<BitCastInst>(CI)) &&
4138 CastOp->getNumOperands() == 2)
4139 if (ConstantInt *AndCI = dyn_cast<ConstantInt>(CastOp->getOperand(1))) {
4140 if (CastOp->getOpcode() == Instruction::And) {
4141 // Change: and (cast (and X, C1) to T), C2
4142 // into : and (cast X to T), trunc_or_bitcast(C1)&C2
4143 // This will fold the two constants together, which may allow
4144 // other simplifications.
4145 Value *NewCast = Builder->CreateTruncOrBitCast(
4146 CastOp->getOperand(0), I.getType(),
4147 CastOp->getName()+".shrunk");
4148 // trunc_or_bitcast(C1)&C2
4149 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
4150 C3 = ConstantExpr::getAnd(C3, AndRHS);
4151 return BinaryOperator::CreateAnd(NewCast, C3);
4152 } else if (CastOp->getOpcode() == Instruction::Or) {
4153 // Change: and (cast (or X, C1) to T), C2
4154 // into : trunc(C1)&C2 iff trunc(C1)&C2 == C2
4155 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
4156 if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS)
4158 return ReplaceInstUsesWith(I, AndRHS);
4164 // Try to fold constant and into select arguments.
4165 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
4166 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
4168 if (isa<PHINode>(Op0))
4169 if (Instruction *NV = FoldOpIntoPhi(I))
4173 Value *Op0NotVal = dyn_castNotVal(Op0);
4174 Value *Op1NotVal = dyn_castNotVal(Op1);
4176 if (Op0NotVal == Op1 || Op1NotVal == Op0) // A & ~A == ~A & A == 0
4177 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
4179 // (~A & ~B) == (~(A | B)) - De Morgan's Law
4180 if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
4181 Value *Or = Builder->CreateOr(Op0NotVal, Op1NotVal,
4182 I.getName()+".demorgan");
4183 return BinaryOperator::CreateNot(Or);
4187 Value *A = 0, *B = 0, *C = 0, *D = 0;
4188 if (match(Op0, m_Or(m_Value(A), m_Value(B)))) {
4189 if (A == Op1 || B == Op1) // (A | ?) & A --> A
4190 return ReplaceInstUsesWith(I, Op1);
4192 // (A|B) & ~(A&B) -> A^B
4193 if (match(Op1, m_Not(m_And(m_Value(C), m_Value(D))))) {
4194 if ((A == C && B == D) || (A == D && B == C))
4195 return BinaryOperator::CreateXor(A, B);
4199 if (match(Op1, m_Or(m_Value(A), m_Value(B)))) {
4200 if (A == Op0 || B == Op0) // A & (A | ?) --> A
4201 return ReplaceInstUsesWith(I, Op0);
4203 // ~(A&B) & (A|B) -> A^B
4204 if (match(Op0, m_Not(m_And(m_Value(C), m_Value(D))))) {
4205 if ((A == C && B == D) || (A == D && B == C))
4206 return BinaryOperator::CreateXor(A, B);
4210 if (Op0->hasOneUse() &&
4211 match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
4212 if (A == Op1) { // (A^B)&A -> A&(A^B)
4213 I.swapOperands(); // Simplify below
4214 std::swap(Op0, Op1);
4215 } else if (B == Op1) { // (A^B)&B -> B&(B^A)
4216 cast<BinaryOperator>(Op0)->swapOperands();
4217 I.swapOperands(); // Simplify below
4218 std::swap(Op0, Op1);
4222 if (Op1->hasOneUse() &&
4223 match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
4224 if (B == Op0) { // B&(A^B) -> B&(B^A)
4225 cast<BinaryOperator>(Op1)->swapOperands();
4228 if (A == Op0) // A&(A^B) -> A & ~B
4229 return BinaryOperator::CreateAnd(A, Builder->CreateNot(B, "tmp"));
4232 // (A&((~A)|B)) -> A&B
4233 if (match(Op0, m_Or(m_Not(m_Specific(Op1)), m_Value(A))) ||
4234 match(Op0, m_Or(m_Value(A), m_Not(m_Specific(Op1)))))
4235 return BinaryOperator::CreateAnd(A, Op1);
4236 if (match(Op1, m_Or(m_Not(m_Specific(Op0)), m_Value(A))) ||
4237 match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0)))))
4238 return BinaryOperator::CreateAnd(A, Op0);
4241 if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1)) {
4242 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
4243 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
4246 if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0))
4247 if (Instruction *Res = FoldAndOfICmps(I, LHS, RHS))
4251 // fold (and (cast A), (cast B)) -> (cast (and A, B))
4252 if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
4253 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
4254 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind ?
4255 const Type *SrcTy = Op0C->getOperand(0)->getType();
4256 if (SrcTy == Op1C->getOperand(0)->getType() &&
4257 SrcTy->isIntOrIntVector() &&
4258 // Only do this if the casts both really cause code to be generated.
4259 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4261 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4263 Value *NewOp = Builder->CreateAnd(Op0C->getOperand(0),
4264 Op1C->getOperand(0), I.getName());
4265 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
4269 // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
4270 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
4271 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
4272 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
4273 SI0->getOperand(1) == SI1->getOperand(1) &&
4274 (SI0->hasOneUse() || SI1->hasOneUse())) {
4276 Builder->CreateAnd(SI0->getOperand(0), SI1->getOperand(0),
4278 return BinaryOperator::Create(SI1->getOpcode(), NewOp,
4279 SI1->getOperand(1));
4283 // If and'ing two fcmp, try combine them into one.
4284 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
4285 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
4286 if (Instruction *Res = FoldAndOfFCmps(I, LHS, RHS))
4290 return Changed ? &I : 0;
4293 /// CollectBSwapParts - Analyze the specified subexpression and see if it is
4294 /// capable of providing pieces of a bswap. The subexpression provides pieces
4295 /// of a bswap if it is proven that each of the non-zero bytes in the output of
4296 /// the expression came from the corresponding "byte swapped" byte in some other
4297 /// value. For example, if the current subexpression is "(shl i32 %X, 24)" then
4298 /// we know that the expression deposits the low byte of %X into the high byte
4299 /// of the bswap result and that all other bytes are zero. This expression is
4300 /// accepted, the high byte of ByteValues is set to X to indicate a correct
4303 /// This function returns true if the match was unsuccessful and false if so.
4304 /// On entry to the function the "OverallLeftShift" is a signed integer value
4305 /// indicating the number of bytes that the subexpression is later shifted. For
4306 /// example, if the expression is later right shifted by 16 bits, the
4307 /// OverallLeftShift value would be -2 on entry. This is used to specify which
4308 /// byte of ByteValues is actually being set.
4310 /// Similarly, ByteMask is a bitmask where a bit is clear if its corresponding
4311 /// byte is masked to zero by a user. For example, in (X & 255), X will be
4312 /// processed with a bytemask of 1. Because bytemask is 32-bits, this limits
4313 /// this function to working on up to 32-byte (256 bit) values. ByteMask is
4314 /// always in the local (OverallLeftShift) coordinate space.
4316 static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
4317 SmallVector<Value*, 8> &ByteValues) {
4318 if (Instruction *I = dyn_cast<Instruction>(V)) {
4319 // If this is an or instruction, it may be an inner node of the bswap.
4320 if (I->getOpcode() == Instruction::Or) {
4321 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
4323 CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask,
4327 // If this is a logical shift by a constant multiple of 8, recurse with
4328 // OverallLeftShift and ByteMask adjusted.
4329 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
4331 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
4332 // Ensure the shift amount is defined and of a byte value.
4333 if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size()))
4336 unsigned ByteShift = ShAmt >> 3;
4337 if (I->getOpcode() == Instruction::Shl) {
4338 // X << 2 -> collect(X, +2)
4339 OverallLeftShift += ByteShift;
4340 ByteMask >>= ByteShift;
4342 // X >>u 2 -> collect(X, -2)
4343 OverallLeftShift -= ByteShift;
4344 ByteMask <<= ByteShift;
4345 ByteMask &= (~0U >> (32-ByteValues.size()));
4348 if (OverallLeftShift >= (int)ByteValues.size()) return true;
4349 if (OverallLeftShift <= -(int)ByteValues.size()) return true;
4351 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
4355 // If this is a logical 'and' with a mask that clears bytes, clear the
4356 // corresponding bytes in ByteMask.
4357 if (I->getOpcode() == Instruction::And &&
4358 isa<ConstantInt>(I->getOperand(1))) {
4359 // Scan every byte of the and mask, seeing if the byte is either 0 or 255.
4360 unsigned NumBytes = ByteValues.size();
4361 APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255);
4362 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
4364 for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) {
4365 // If this byte is masked out by a later operation, we don't care what
4367 if ((ByteMask & (1 << i)) == 0)
4370 // If the AndMask is all zeros for this byte, clear the bit.
4371 APInt MaskB = AndMask & Byte;
4373 ByteMask &= ~(1U << i);
4377 // If the AndMask is not all ones for this byte, it's not a bytezap.
4381 // Otherwise, this byte is kept.
4384 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
4389 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
4390 // the input value to the bswap. Some observations: 1) if more than one byte
4391 // is demanded from this input, then it could not be successfully assembled
4392 // into a byteswap. At least one of the two bytes would not be aligned with
4393 // their ultimate destination.
4394 if (!isPowerOf2_32(ByteMask)) return true;
4395 unsigned InputByteNo = CountTrailingZeros_32(ByteMask);
4397 // 2) The input and ultimate destinations must line up: if byte 3 of an i32
4398 // is demanded, it needs to go into byte 0 of the result. This means that the
4399 // byte needs to be shifted until it lands in the right byte bucket. The
4400 // shift amount depends on the position: if the byte is coming from the high
4401 // part of the value (e.g. byte 3) then it must be shifted right. If from the
4402 // low part, it must be shifted left.
4403 unsigned DestByteNo = InputByteNo + OverallLeftShift;
4404 if (InputByteNo < ByteValues.size()/2) {
4405 if (ByteValues.size()-1-DestByteNo != InputByteNo)
4408 if (ByteValues.size()-1-DestByteNo != InputByteNo)
4412 // If the destination byte value is already defined, the values are or'd
4413 // together, which isn't a bswap (unless it's an or of the same bits).
4414 if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V)
4416 ByteValues[DestByteNo] = V;
4420 /// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
4421 /// If so, insert the new bswap intrinsic and return it.
4422 Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
4423 const IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
4424 if (!ITy || ITy->getBitWidth() % 16 ||
4425 // ByteMask only allows up to 32-byte values.
4426 ITy->getBitWidth() > 32*8)
4427 return 0; // Can only bswap pairs of bytes. Can't do vectors.
4429 /// ByteValues - For each byte of the result, we keep track of which value
4430 /// defines each byte.
4431 SmallVector<Value*, 8> ByteValues;
4432 ByteValues.resize(ITy->getBitWidth()/8);
4434 // Try to find all the pieces corresponding to the bswap.
4435 uint32_t ByteMask = ~0U >> (32-ByteValues.size());
4436 if (CollectBSwapParts(&I, 0, ByteMask, ByteValues))
4439 // Check to see if all of the bytes come from the same value.
4440 Value *V = ByteValues[0];
4441 if (V == 0) return 0; // Didn't find a byte? Must be zero.
4443 // Check to make sure that all of the bytes come from the same value.
4444 for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
4445 if (ByteValues[i] != V)
4447 const Type *Tys[] = { ITy };
4448 Module *M = I.getParent()->getParent()->getParent();
4449 Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
4450 return CallInst::Create(F, V);
4453 /// MatchSelectFromAndOr - We have an expression of the form (A&C)|(B&D). Check
4454 /// If A is (cond?-1:0) and either B or D is ~(cond?-1,0) or (cond?0,-1), then
4455 /// we can simplify this expression to "cond ? C : D or B".
4456 static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
4458 LLVMContext *Context) {
4459 // If A is not a select of -1/0, this cannot match.
4461 if (!match(A, m_SelectCst<-1, 0>(m_Value(Cond))))
4464 // ((cond?-1:0)&C) | (B&(cond?0:-1)) -> cond ? C : B.
4465 if (match(D, m_SelectCst<0, -1>(m_Specific(Cond))))
4466 return SelectInst::Create(Cond, C, B);
4467 if (match(D, m_Not(m_SelectCst<-1, 0>(m_Specific(Cond)))))
4468 return SelectInst::Create(Cond, C, B);
4469 // ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D.
4470 if (match(B, m_SelectCst<0, -1>(m_Specific(Cond))))
4471 return SelectInst::Create(Cond, C, D);
4472 if (match(B, m_Not(m_SelectCst<-1, 0>(m_Specific(Cond)))))
4473 return SelectInst::Create(Cond, C, D);
4477 /// FoldOrOfICmps - Fold (icmp)|(icmp) if possible.
4478 Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
4479 ICmpInst *LHS, ICmpInst *RHS) {
4481 ConstantInt *LHSCst, *RHSCst;
4482 ICmpInst::Predicate LHSCC, RHSCC;
4484 // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
4485 if (!match(LHS, m_ICmp(LHSCC, m_Value(Val),
4486 m_ConstantInt(LHSCst))) ||
4487 !match(RHS, m_ICmp(RHSCC, m_Value(Val2),
4488 m_ConstantInt(RHSCst))))
4491 // From here on, we only handle:
4492 // (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
4493 if (Val != Val2) return 0;
4495 // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
4496 if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
4497 RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
4498 LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
4499 RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
4502 // We can't fold (ugt x, C) | (sgt x, C2).
4503 if (!PredicatesFoldable(LHSCC, RHSCC))
4506 // Ensure that the larger constant is on the RHS.
4508 if (ICmpInst::isSignedPredicate(LHSCC) ||
4509 (ICmpInst::isEquality(LHSCC) &&
4510 ICmpInst::isSignedPredicate(RHSCC)))
4511 ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
4513 ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
4516 std::swap(LHS, RHS);
4517 std::swap(LHSCst, RHSCst);
4518 std::swap(LHSCC, RHSCC);
4521 // At this point, we know we have have two icmp instructions
4522 // comparing a value against two constants and or'ing the result
4523 // together. Because of the above check, we know that we only have
4524 // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
4525 // FoldICmpLogical check above), that the two constants are not
4527 assert(LHSCst != RHSCst && "Compares not folded above?");
4530 default: llvm_unreachable("Unknown integer condition code!");
4531 case ICmpInst::ICMP_EQ:
4533 default: llvm_unreachable("Unknown integer condition code!");
4534 case ICmpInst::ICMP_EQ:
4535 if (LHSCst == SubOne(RHSCst)) {
4536 // (X == 13 | X == 14) -> X-13 <u 2
4537 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
4538 Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
4539 AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst);
4540 return new ICmpInst(ICmpInst::ICMP_ULT, Add, AddCST);
4542 break; // (X == 13 | X == 15) -> no change
4543 case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change
4544 case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change
4546 case ICmpInst::ICMP_NE: // (X == 13 | X != 15) -> X != 15
4547 case ICmpInst::ICMP_ULT: // (X == 13 | X u< 15) -> X u< 15
4548 case ICmpInst::ICMP_SLT: // (X == 13 | X s< 15) -> X s< 15
4549 return ReplaceInstUsesWith(I, RHS);
4552 case ICmpInst::ICMP_NE:
4554 default: llvm_unreachable("Unknown integer condition code!");
4555 case ICmpInst::ICMP_EQ: // (X != 13 | X == 15) -> X != 13
4556 case ICmpInst::ICMP_UGT: // (X != 13 | X u> 15) -> X != 13
4557 case ICmpInst::ICMP_SGT: // (X != 13 | X s> 15) -> X != 13
4558 return ReplaceInstUsesWith(I, LHS);
4559 case ICmpInst::ICMP_NE: // (X != 13 | X != 15) -> true
4560 case ICmpInst::ICMP_ULT: // (X != 13 | X u< 15) -> true
4561 case ICmpInst::ICMP_SLT: // (X != 13 | X s< 15) -> true
4562 return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
4565 case ICmpInst::ICMP_ULT:
4567 default: llvm_unreachable("Unknown integer condition code!");
4568 case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change
4570 case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) -> (X-13) u> 2
4571 // If RHSCst is [us]MAXINT, it is always false. Not handling
4572 // this can cause overflow.
4573 if (RHSCst->isMaxValue(false))
4574 return ReplaceInstUsesWith(I, LHS);
4575 return InsertRangeTest(Val, LHSCst, AddOne(RHSCst),
4577 case ICmpInst::ICMP_SGT: // (X u< 13 | X s> 15) -> no change
4579 case ICmpInst::ICMP_NE: // (X u< 13 | X != 15) -> X != 15
4580 case ICmpInst::ICMP_ULT: // (X u< 13 | X u< 15) -> X u< 15
4581 return ReplaceInstUsesWith(I, RHS);
4582 case ICmpInst::ICMP_SLT: // (X u< 13 | X s< 15) -> no change
4586 case ICmpInst::ICMP_SLT:
4588 default: llvm_unreachable("Unknown integer condition code!");
4589 case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change
4591 case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) -> (X-13) s> 2
4592 // If RHSCst is [us]MAXINT, it is always false. Not handling
4593 // this can cause overflow.
4594 if (RHSCst->isMaxValue(true))
4595 return ReplaceInstUsesWith(I, LHS);
4596 return InsertRangeTest(Val, LHSCst, AddOne(RHSCst),
4598 case ICmpInst::ICMP_UGT: // (X s< 13 | X u> 15) -> no change
4600 case ICmpInst::ICMP_NE: // (X s< 13 | X != 15) -> X != 15
4601 case ICmpInst::ICMP_SLT: // (X s< 13 | X s< 15) -> X s< 15
4602 return ReplaceInstUsesWith(I, RHS);
4603 case ICmpInst::ICMP_ULT: // (X s< 13 | X u< 15) -> no change
4607 case ICmpInst::ICMP_UGT:
4609 default: llvm_unreachable("Unknown integer condition code!");
4610 case ICmpInst::ICMP_EQ: // (X u> 13 | X == 15) -> X u> 13
4611 case ICmpInst::ICMP_UGT: // (X u> 13 | X u> 15) -> X u> 13
4612 return ReplaceInstUsesWith(I, LHS);
4613 case ICmpInst::ICMP_SGT: // (X u> 13 | X s> 15) -> no change
4615 case ICmpInst::ICMP_NE: // (X u> 13 | X != 15) -> true
4616 case ICmpInst::ICMP_ULT: // (X u> 13 | X u< 15) -> true
4617 return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
4618 case ICmpInst::ICMP_SLT: // (X u> 13 | X s< 15) -> no change
4622 case ICmpInst::ICMP_SGT:
4624 default: llvm_unreachable("Unknown integer condition code!");
4625 case ICmpInst::ICMP_EQ: // (X s> 13 | X == 15) -> X > 13
4626 case ICmpInst::ICMP_SGT: // (X s> 13 | X s> 15) -> X > 13
4627 return ReplaceInstUsesWith(I, LHS);
4628 case ICmpInst::ICMP_UGT: // (X s> 13 | X u> 15) -> no change
4630 case ICmpInst::ICMP_NE: // (X s> 13 | X != 15) -> true
4631 case ICmpInst::ICMP_SLT: // (X s> 13 | X s< 15) -> true
4632 return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
4633 case ICmpInst::ICMP_ULT: // (X s> 13 | X u< 15) -> no change
4641 Instruction *InstCombiner::FoldOrOfFCmps(Instruction &I, FCmpInst *LHS,
4643 if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
4644 RHS->getPredicate() == FCmpInst::FCMP_UNO &&
4645 LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
4646 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
4647 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
4648 // If either of the constants are nans, then the whole thing returns
4650 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
4651 return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
4653 // Otherwise, no need to compare the two constants, compare the
4655 return new FCmpInst(FCmpInst::FCMP_UNO,
4656 LHS->getOperand(0), RHS->getOperand(0));
4659 // Handle vector zeros. This occurs because the canonical form of
4660 // "fcmp uno x,x" is "fcmp uno x, 0".
4661 if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
4662 isa<ConstantAggregateZero>(RHS->getOperand(1)))
4663 return new FCmpInst(FCmpInst::FCMP_UNO,
4664 LHS->getOperand(0), RHS->getOperand(0));
4669 Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
4670 Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
4671 FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
4673 if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
4674 // Swap RHS operands to match LHS.
4675 Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
4676 std::swap(Op1LHS, Op1RHS);
4678 if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
4679 // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
4681 return new FCmpInst((FCmpInst::Predicate)Op0CC,
4683 if (Op0CC == FCmpInst::FCMP_TRUE || Op1CC == FCmpInst::FCMP_TRUE)
4684 return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
4685 if (Op0CC == FCmpInst::FCMP_FALSE)
4686 return ReplaceInstUsesWith(I, RHS);
4687 if (Op1CC == FCmpInst::FCMP_FALSE)
4688 return ReplaceInstUsesWith(I, LHS);
4691 unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
4692 unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
4693 if (Op0Ordered == Op1Ordered) {
4694 // If both are ordered or unordered, return a new fcmp with
4695 // or'ed predicates.
4696 Value *RV = getFCmpValue(Op0Ordered, Op0Pred|Op1Pred,
4697 Op0LHS, Op0RHS, Context);
4698 if (Instruction *I = dyn_cast<Instruction>(RV))
4700 // Otherwise, it's a constant boolean value...
4701 return ReplaceInstUsesWith(I, RV);
4707 /// FoldOrWithConstants - This helper function folds:
4709 /// ((A | B) & C1) | (B & C2)
4715 /// when the XOR of the two constants is "all ones" (-1).
4716 Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op,
4717 Value *A, Value *B, Value *C) {
4718 ConstantInt *CI1 = dyn_cast<ConstantInt>(C);
4722 ConstantInt *CI2 = 0;
4723 if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2)))) return 0;
4725 APInt Xor = CI1->getValue() ^ CI2->getValue();
4726 if (!Xor.isAllOnesValue()) return 0;
4728 if (V1 == A || V1 == B) {
4729 Value *NewOp = Builder->CreateAnd((V1 == A) ? B : A, CI1);
4730 return BinaryOperator::CreateOr(NewOp, V1);
4736 Instruction *InstCombiner::visitOr(BinaryOperator &I) {
4737 bool Changed = SimplifyCommutative(I);
4738 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4740 if (isa<UndefValue>(Op1)) // X | undef -> -1
4741 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4745 return ReplaceInstUsesWith(I, Op0);
4747 // See if we can simplify any instructions used by the instruction whose sole
4748 // purpose is to compute bits we don't care about.
4749 if (SimplifyDemandedInstructionBits(I))
4751 if (isa<VectorType>(I.getType())) {
4752 if (isa<ConstantAggregateZero>(Op1)) {
4753 return ReplaceInstUsesWith(I, Op0); // X | <0,0> -> X
4754 } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
4755 if (CP->isAllOnesValue()) // X | <-1,-1> -> <-1,-1>
4756 return ReplaceInstUsesWith(I, I.getOperand(1));
4761 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
4762 ConstantInt *C1 = 0; Value *X = 0;
4763 // (X & C1) | C2 --> (X | C2) & (C1|C2)
4764 if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) &&
4766 Value *Or = Builder->CreateOr(X, RHS);
4768 return BinaryOperator::CreateAnd(Or,
4769 ConstantInt::get(*Context, RHS->getValue() | C1->getValue()));
4772 // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
4773 if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) &&
4775 Value *Or = Builder->CreateOr(X, RHS);
4777 return BinaryOperator::CreateXor(Or,
4778 ConstantInt::get(*Context, C1->getValue() & ~RHS->getValue()));
4781 // Try to fold constant and into select arguments.
4782 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
4783 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
4785 if (isa<PHINode>(Op0))
4786 if (Instruction *NV = FoldOpIntoPhi(I))
4790 Value *A = 0, *B = 0;
4791 ConstantInt *C1 = 0, *C2 = 0;
4793 if (match(Op0, m_And(m_Value(A), m_Value(B))))
4794 if (A == Op1 || B == Op1) // (A & ?) | A --> A
4795 return ReplaceInstUsesWith(I, Op1);
4796 if (match(Op1, m_And(m_Value(A), m_Value(B))))
4797 if (A == Op0 || B == Op0) // A | (A & ?) --> A
4798 return ReplaceInstUsesWith(I, Op0);
4800 // (A | B) | C and A | (B | C) -> bswap if possible.
4801 // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible.
4802 if (match(Op0, m_Or(m_Value(), m_Value())) ||
4803 match(Op1, m_Or(m_Value(), m_Value())) ||
4804 (match(Op0, m_Shift(m_Value(), m_Value())) &&
4805 match(Op1, m_Shift(m_Value(), m_Value())))) {
4806 if (Instruction *BSwap = MatchBSwap(I))
4810 // (X^C)|Y -> (X|Y)^C iff Y&C == 0
4811 if (Op0->hasOneUse() &&
4812 match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
4813 MaskedValueIsZero(Op1, C1->getValue())) {
4814 Value *NOr = Builder->CreateOr(A, Op1);
4816 return BinaryOperator::CreateXor(NOr, C1);
4819 // Y|(X^C) -> (X|Y)^C iff Y&C == 0
4820 if (Op1->hasOneUse() &&
4821 match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
4822 MaskedValueIsZero(Op0, C1->getValue())) {
4823 Value *NOr = Builder->CreateOr(A, Op0);
4825 return BinaryOperator::CreateXor(NOr, C1);
4829 Value *C = 0, *D = 0;
4830 if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
4831 match(Op1, m_And(m_Value(B), m_Value(D)))) {
4832 Value *V1 = 0, *V2 = 0, *V3 = 0;
4833 C1 = dyn_cast<ConstantInt>(C);
4834 C2 = dyn_cast<ConstantInt>(D);
4835 if (C1 && C2) { // (A & C1)|(B & C2)
4836 // If we have: ((V + N) & C1) | (V & C2)
4837 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
4838 // replace with V+N.
4839 if (C1->getValue() == ~C2->getValue()) {
4840 if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+
4841 match(A, m_Add(m_Value(V1), m_Value(V2)))) {
4842 // Add commutes, try both ways.
4843 if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
4844 return ReplaceInstUsesWith(I, A);
4845 if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
4846 return ReplaceInstUsesWith(I, A);
4848 // Or commutes, try both ways.
4849 if ((C1->getValue() & (C1->getValue()+1)) == 0 &&
4850 match(B, m_Add(m_Value(V1), m_Value(V2)))) {
4851 // Add commutes, try both ways.
4852 if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
4853 return ReplaceInstUsesWith(I, B);
4854 if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
4855 return ReplaceInstUsesWith(I, B);
4858 V1 = 0; V2 = 0; V3 = 0;
4861 // Check to see if we have any common things being and'ed. If so, find the
4862 // terms for V1 & (V2|V3).
4863 if (isOnlyUse(Op0) || isOnlyUse(Op1)) {
4864 if (A == B) // (A & C)|(A & D) == A & (C|D)
4865 V1 = A, V2 = C, V3 = D;
4866 else if (A == D) // (A & C)|(B & A) == A & (B|C)
4867 V1 = A, V2 = B, V3 = C;
4868 else if (C == B) // (A & C)|(C & D) == C & (A|D)
4869 V1 = C, V2 = A, V3 = D;
4870 else if (C == D) // (A & C)|(B & C) == C & (A|B)
4871 V1 = C, V2 = A, V3 = B;
4874 Value *Or = Builder->CreateOr(V2, V3, "tmp");
4875 return BinaryOperator::CreateAnd(V1, Or);
4879 // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) -> C0 ? A : B, and commuted variants
4880 if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D, Context))
4882 if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C, Context))
4884 if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D, Context))
4886 if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C, Context))
4889 // ((A&~B)|(~A&B)) -> A^B
4890 if ((match(C, m_Not(m_Specific(D))) &&
4891 match(B, m_Not(m_Specific(A)))))
4892 return BinaryOperator::CreateXor(A, D);
4893 // ((~B&A)|(~A&B)) -> A^B
4894 if ((match(A, m_Not(m_Specific(D))) &&
4895 match(B, m_Not(m_Specific(C)))))
4896 return BinaryOperator::CreateXor(C, D);
4897 // ((A&~B)|(B&~A)) -> A^B
4898 if ((match(C, m_Not(m_Specific(B))) &&
4899 match(D, m_Not(m_Specific(A)))))
4900 return BinaryOperator::CreateXor(A, B);
4901 // ((~B&A)|(B&~A)) -> A^B
4902 if ((match(A, m_Not(m_Specific(B))) &&
4903 match(D, m_Not(m_Specific(C)))))
4904 return BinaryOperator::CreateXor(C, B);
4907 // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
4908 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
4909 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
4910 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
4911 SI0->getOperand(1) == SI1->getOperand(1) &&
4912 (SI0->hasOneUse() || SI1->hasOneUse())) {
4913 Value *NewOp = Builder->CreateOr(SI0->getOperand(0), SI1->getOperand(0),
4915 return BinaryOperator::Create(SI1->getOpcode(), NewOp,
4916 SI1->getOperand(1));
4920 // ((A|B)&1)|(B&-2) -> (A&1) | B
4921 if (match(Op0, m_And(m_Or(m_Value(A), m_Value(B)), m_Value(C))) ||
4922 match(Op0, m_And(m_Value(C), m_Or(m_Value(A), m_Value(B))))) {
4923 Instruction *Ret = FoldOrWithConstants(I, Op1, A, B, C);
4924 if (Ret) return Ret;
4926 // (B&-2)|((A|B)&1) -> (A&1) | B
4927 if (match(Op1, m_And(m_Or(m_Value(A), m_Value(B)), m_Value(C))) ||
4928 match(Op1, m_And(m_Value(C), m_Or(m_Value(A), m_Value(B))))) {
4929 Instruction *Ret = FoldOrWithConstants(I, Op0, A, B, C);
4930 if (Ret) return Ret;
4933 if (match(Op0, m_Not(m_Value(A)))) { // ~A | Op1
4934 if (A == Op1) // ~A | A == -1
4935 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4939 // Note, A is still live here!
4940 if (match(Op1, m_Not(m_Value(B)))) { // Op0 | ~B
4942 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4944 // (~A | ~B) == (~(A & B)) - De Morgan's Law
4945 if (A && isOnlyUse(Op0) && isOnlyUse(Op1)) {
4946 Value *And = Builder->CreateAnd(A, B, I.getName()+".demorgan");
4947 return BinaryOperator::CreateNot(And);
4951 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
4952 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) {
4953 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
4956 if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
4957 if (Instruction *Res = FoldOrOfICmps(I, LHS, RHS))
4961 // fold (or (cast A), (cast B)) -> (cast (or A, B))
4962 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
4963 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
4964 if (Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
4965 if (!isa<ICmpInst>(Op0C->getOperand(0)) ||
4966 !isa<ICmpInst>(Op1C->getOperand(0))) {
4967 const Type *SrcTy = Op0C->getOperand(0)->getType();
4968 if (SrcTy == Op1C->getOperand(0)->getType() &&
4969 SrcTy->isIntOrIntVector() &&
4970 // Only do this if the casts both really cause code to be
4972 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4974 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4976 Value *NewOp = Builder->CreateOr(Op0C->getOperand(0),
4977 Op1C->getOperand(0), I.getName());
4978 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
4985 // (fcmp uno x, c) | (fcmp uno y, c) -> (fcmp uno x, y)
4986 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
4987 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
4988 if (Instruction *Res = FoldOrOfFCmps(I, LHS, RHS))
4992 return Changed ? &I : 0;
4997 // XorSelf - Implements: X ^ X --> 0
5000 XorSelf(Value *rhs) : RHS(rhs) {}
5001 bool shouldApply(Value *LHS) const { return LHS == RHS; }
5002 Instruction *apply(BinaryOperator &Xor) const {
5009 Instruction *InstCombiner::visitXor(BinaryOperator &I) {
5010 bool Changed = SimplifyCommutative(I);
5011 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5013 if (isa<UndefValue>(Op1)) {
5014 if (isa<UndefValue>(Op0))
5015 // Handle undef ^ undef -> 0 special case. This is a common
5017 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
5018 return ReplaceInstUsesWith(I, Op1); // X ^ undef -> undef
5021 // xor X, X = 0, even if X is nested in a sequence of Xor's.
5022 if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) {
5023 assert(Result == &I && "AssociativeOpt didn't work?"); Result=Result;
5024 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
5027 // See if we can simplify any instructions used by the instruction whose sole
5028 // purpose is to compute bits we don't care about.
5029 if (SimplifyDemandedInstructionBits(I))
5031 if (isa<VectorType>(I.getType()))
5032 if (isa<ConstantAggregateZero>(Op1))
5033 return ReplaceInstUsesWith(I, Op0); // X ^ <0,0> -> X
5035 // Is this a ~ operation?
5036 if (Value *NotOp = dyn_castNotVal(&I)) {
5037 // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
5038 // ~(~X | Y) === (X & ~Y) - De Morgan's Law
5039 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
5040 if (Op0I->getOpcode() == Instruction::And ||
5041 Op0I->getOpcode() == Instruction::Or) {
5042 if (dyn_castNotVal(Op0I->getOperand(1))) Op0I->swapOperands();
5043 if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
5045 Builder->CreateNot(Op0I->getOperand(1),
5046 Op0I->getOperand(1)->getName()+".not");
5047 if (Op0I->getOpcode() == Instruction::And)
5048 return BinaryOperator::CreateOr(Op0NotVal, NotY);
5049 return BinaryOperator::CreateAnd(Op0NotVal, NotY);
5056 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
5057 if (RHS == ConstantInt::getTrue(*Context) && Op0->hasOneUse()) {
5058 // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
5059 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Op0))
5060 return new ICmpInst(ICI->getInversePredicate(),
5061 ICI->getOperand(0), ICI->getOperand(1));
5063 if (FCmpInst *FCI = dyn_cast<FCmpInst>(Op0))
5064 return new FCmpInst(FCI->getInversePredicate(),
5065 FCI->getOperand(0), FCI->getOperand(1));
5068 // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
5069 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
5070 if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
5071 if (CI->hasOneUse() && Op0C->hasOneUse()) {
5072 Instruction::CastOps Opcode = Op0C->getOpcode();
5073 if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
5074 (RHS == ConstantExpr::getCast(Opcode,
5075 ConstantInt::getTrue(*Context),
5076 Op0C->getDestTy()))) {
5077 CI->setPredicate(CI->getInversePredicate());
5078 return CastInst::Create(Opcode, CI, Op0C->getType());
5084 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
5085 // ~(c-X) == X-c-1 == X+(-c-1)
5086 if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
5087 if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
5088 Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
5089 Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
5090 ConstantInt::get(I.getType(), 1));
5091 return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
5094 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
5095 if (Op0I->getOpcode() == Instruction::Add) {
5096 // ~(X-c) --> (-c-1)-X
5097 if (RHS->isAllOnesValue()) {
5098 Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
5099 return BinaryOperator::CreateSub(
5100 ConstantExpr::getSub(NegOp0CI,
5101 ConstantInt::get(I.getType(), 1)),
5102 Op0I->getOperand(0));
5103 } else if (RHS->getValue().isSignBit()) {
5104 // (X + C) ^ signbit -> (X + C + signbit)
5105 Constant *C = ConstantInt::get(*Context,
5106 RHS->getValue() + Op0CI->getValue());
5107 return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
5110 } else if (Op0I->getOpcode() == Instruction::Or) {
5111 // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
5112 if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
5113 Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
5114 // Anything in both C1 and C2 is known to be zero, remove it from
5116 Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS);
5117 NewRHS = ConstantExpr::getAnd(NewRHS,
5118 ConstantExpr::getNot(CommonBits));
5120 I.setOperand(0, Op0I->getOperand(0));
5121 I.setOperand(1, NewRHS);
5128 // Try to fold constant and into select arguments.
5129 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
5130 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
5132 if (isa<PHINode>(Op0))
5133 if (Instruction *NV = FoldOpIntoPhi(I))
5137 if (Value *X = dyn_castNotVal(Op0)) // ~A ^ A == -1
5139 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
5141 if (Value *X = dyn_castNotVal(Op1)) // A ^ ~A == -1
5143 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
5146 BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
5149 if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
5150 if (A == Op0) { // B^(B|A) == (A|B)^B
5151 Op1I->swapOperands();
5153 std::swap(Op0, Op1);
5154 } else if (B == Op0) { // B^(A|B) == (A|B)^B
5155 I.swapOperands(); // Simplified below.
5156 std::swap(Op0, Op1);
5158 } else if (match(Op1I, m_Xor(m_Specific(Op0), m_Value(B)))) {
5159 return ReplaceInstUsesWith(I, B); // A^(A^B) == B
5160 } else if (match(Op1I, m_Xor(m_Value(A), m_Specific(Op0)))) {
5161 return ReplaceInstUsesWith(I, A); // A^(B^A) == B
5162 } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) &&
5164 if (A == Op0) { // A^(A&B) -> A^(B&A)
5165 Op1I->swapOperands();
5168 if (B == Op0) { // A^(B&A) -> (B&A)^A
5169 I.swapOperands(); // Simplified below.
5170 std::swap(Op0, Op1);
5175 BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
5178 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
5179 Op0I->hasOneUse()) {
5180 if (A == Op1) // (B|A)^B == (A|B)^B
5182 if (B == Op1) // (A|B)^B == A & ~B
5183 return BinaryOperator::CreateAnd(A, Builder->CreateNot(Op1, "tmp"));
5184 } else if (match(Op0I, m_Xor(m_Specific(Op1), m_Value(B)))) {
5185 return ReplaceInstUsesWith(I, B); // (A^B)^A == B
5186 } else if (match(Op0I, m_Xor(m_Value(A), m_Specific(Op1)))) {
5187 return ReplaceInstUsesWith(I, A); // (B^A)^A == B
5188 } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
5190 if (A == Op1) // (A&B)^A -> (B&A)^A
5192 if (B == Op1 && // (B&A)^A == ~B & A
5193 !isa<ConstantInt>(Op1)) { // Canonical form is (B&C)^C
5194 return BinaryOperator::CreateAnd(Builder->CreateNot(A, "tmp"), Op1);
5199 // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
5200 if (Op0I && Op1I && Op0I->isShift() &&
5201 Op0I->getOpcode() == Op1I->getOpcode() &&
5202 Op0I->getOperand(1) == Op1I->getOperand(1) &&
5203 (Op1I->hasOneUse() || Op1I->hasOneUse())) {
5205 Builder->CreateXor(Op0I->getOperand(0), Op1I->getOperand(0),
5207 return BinaryOperator::Create(Op1I->getOpcode(), NewOp,
5208 Op1I->getOperand(1));
5212 Value *A, *B, *C, *D;
5213 // (A & B)^(A | B) -> A ^ B
5214 if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
5215 match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
5216 if ((A == C && B == D) || (A == D && B == C))
5217 return BinaryOperator::CreateXor(A, B);
5219 // (A | B)^(A & B) -> A ^ B
5220 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
5221 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
5222 if ((A == C && B == D) || (A == D && B == C))
5223 return BinaryOperator::CreateXor(A, B);
5227 if ((Op0I->hasOneUse() || Op1I->hasOneUse()) &&
5228 match(Op0I, m_And(m_Value(A), m_Value(B))) &&
5229 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
5230 // (X & Y)^(X & Y) -> (Y^Z) & X
5231 Value *X = 0, *Y = 0, *Z = 0;
5233 X = A, Y = B, Z = D;
5235 X = A, Y = B, Z = C;
5237 X = B, Y = A, Z = D;
5239 X = B, Y = A, Z = C;
5242 Value *NewOp = Builder->CreateXor(Y, Z, Op0->getName());
5243 return BinaryOperator::CreateAnd(NewOp, X);
5248 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
5249 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
5250 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
5253 // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
5254 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
5255 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
5256 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
5257 const Type *SrcTy = Op0C->getOperand(0)->getType();
5258 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
5259 // Only do this if the casts both really cause code to be generated.
5260 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
5262 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
5264 Value *NewOp = Builder->CreateXor(Op0C->getOperand(0),
5265 Op1C->getOperand(0), I.getName());
5266 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
5271 return Changed ? &I : 0;
5274 static ConstantInt *ExtractElement(Constant *V, Constant *Idx,
5275 LLVMContext *Context) {
5276 return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
5279 static bool HasAddOverflow(ConstantInt *Result,
5280 ConstantInt *In1, ConstantInt *In2,
5283 if (In2->getValue().isNegative())
5284 return Result->getValue().sgt(In1->getValue());
5286 return Result->getValue().slt(In1->getValue());
5288 return Result->getValue().ult(In1->getValue());
5291 /// AddWithOverflow - Compute Result = In1+In2, returning true if the result
5292 /// overflowed for this type.
5293 static bool AddWithOverflow(Constant *&Result, Constant *In1,
5294 Constant *In2, LLVMContext *Context,
5295 bool IsSigned = false) {
5296 Result = ConstantExpr::getAdd(In1, In2);
5298 if (const VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
5299 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
5300 Constant *Idx = ConstantInt::get(Type::getInt32Ty(*Context), i);
5301 if (HasAddOverflow(ExtractElement(Result, Idx, Context),
5302 ExtractElement(In1, Idx, Context),
5303 ExtractElement(In2, Idx, Context),
5310 return HasAddOverflow(cast<ConstantInt>(Result),
5311 cast<ConstantInt>(In1), cast<ConstantInt>(In2),
5315 static bool HasSubOverflow(ConstantInt *Result,
5316 ConstantInt *In1, ConstantInt *In2,
5319 if (In2->getValue().isNegative())
5320 return Result->getValue().slt(In1->getValue());
5322 return Result->getValue().sgt(In1->getValue());
5324 return Result->getValue().ugt(In1->getValue());
5327 /// SubWithOverflow - Compute Result = In1-In2, returning true if the result
5328 /// overflowed for this type.
5329 static bool SubWithOverflow(Constant *&Result, Constant *In1,
5330 Constant *In2, LLVMContext *Context,
5331 bool IsSigned = false) {
5332 Result = ConstantExpr::getSub(In1, In2);
5334 if (const VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
5335 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
5336 Constant *Idx = ConstantInt::get(Type::getInt32Ty(*Context), i);
5337 if (HasSubOverflow(ExtractElement(Result, Idx, Context),
5338 ExtractElement(In1, Idx, Context),
5339 ExtractElement(In2, Idx, Context),
5346 return HasSubOverflow(cast<ConstantInt>(Result),
5347 cast<ConstantInt>(In1), cast<ConstantInt>(In2),
5351 /// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
5352 /// code necessary to compute the offset from the base pointer (without adding
5353 /// in the base pointer). Return the result as a signed integer of intptr size.
5354 static Value *EmitGEPOffset(User *GEP, Instruction &I, InstCombiner &IC) {
5355 TargetData &TD = *IC.getTargetData();
5356 gep_type_iterator GTI = gep_type_begin(GEP);
5357 const Type *IntPtrTy = TD.getIntPtrType(I.getContext());
5358 Value *Result = Constant::getNullValue(IntPtrTy);
5360 // Build a mask for high order bits.
5361 unsigned IntPtrWidth = TD.getPointerSizeInBits();
5362 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
5364 for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e;
5367 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()) & PtrSizeMask;
5368 if (ConstantInt *OpC = dyn_cast<ConstantInt>(Op)) {
5369 if (OpC->isZero()) continue;
5371 // Handle a struct index, which adds its field offset to the pointer.
5372 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5373 Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
5375 Result = IC.Builder->CreateAdd(Result,
5376 ConstantInt::get(IntPtrTy, Size),
5377 GEP->getName()+".offs");
5381 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
5383 ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
5384 Scale = ConstantExpr::getMul(OC, Scale);
5385 // Emit an add instruction.
5386 Result = IC.Builder->CreateAdd(Result, Scale, GEP->getName()+".offs");
5389 // Convert to correct type.
5390 if (Op->getType() != IntPtrTy)
5391 Op = IC.Builder->CreateIntCast(Op, IntPtrTy, true, Op->getName()+".c");
5393 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
5394 // We'll let instcombine(mul) convert this to a shl if possible.
5395 Op = IC.Builder->CreateMul(Op, Scale, GEP->getName()+".idx");
5398 // Emit an add instruction.
5399 Result = IC.Builder->CreateAdd(Op, Result, GEP->getName()+".offs");
5405 /// EvaluateGEPOffsetExpression - Return a value that can be used to compare
5406 /// the *offset* implied by a GEP to zero. For example, if we have &A[i], we
5407 /// want to return 'i' for "icmp ne i, 0". Note that, in general, indices can
5408 /// be complex, and scales are involved. The above expression would also be
5409 /// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
5410 /// This later form is less amenable to optimization though, and we are allowed
5411 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
5413 /// If we can't emit an optimized form for this expression, this returns null.
5415 static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I,
5417 TargetData &TD = *IC.getTargetData();
5418 gep_type_iterator GTI = gep_type_begin(GEP);
5420 // Check to see if this gep only has a single variable index. If so, and if
5421 // any constant indices are a multiple of its scale, then we can compute this
5422 // in terms of the scale of the variable index. For example, if the GEP
5423 // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
5424 // because the expression will cross zero at the same point.
5425 unsigned i, e = GEP->getNumOperands();
5427 for (i = 1; i != e; ++i, ++GTI) {
5428 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5429 // Compute the aggregate offset of constant indices.
5430 if (CI->isZero()) continue;
5432 // Handle a struct index, which adds its field offset to the pointer.
5433 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5434 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
5436 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
5437 Offset += Size*CI->getSExtValue();
5440 // Found our variable index.
5445 // If there are no variable indices, we must have a constant offset, just
5446 // evaluate it the general way.
5447 if (i == e) return 0;
5449 Value *VariableIdx = GEP->getOperand(i);
5450 // Determine the scale factor of the variable element. For example, this is
5451 // 4 if the variable index is into an array of i32.
5452 uint64_t VariableScale = TD.getTypeAllocSize(GTI.getIndexedType());
5454 // Verify that there are no other variable indices. If so, emit the hard way.
5455 for (++i, ++GTI; i != e; ++i, ++GTI) {
5456 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
5459 // Compute the aggregate offset of constant indices.
5460 if (CI->isZero()) continue;
5462 // Handle a struct index, which adds its field offset to the pointer.
5463 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5464 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
5466 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
5467 Offset += Size*CI->getSExtValue();
5471 // Okay, we know we have a single variable index, which must be a
5472 // pointer/array/vector index. If there is no offset, life is simple, return
5474 unsigned IntPtrWidth = TD.getPointerSizeInBits();
5476 // Cast to intptrty in case a truncation occurs. If an extension is needed,
5477 // we don't need to bother extending: the extension won't affect where the
5478 // computation crosses zero.
5479 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth)
5480 VariableIdx = new TruncInst(VariableIdx,
5481 TD.getIntPtrType(VariableIdx->getContext()),
5482 VariableIdx->getName(), &I);
5486 // Otherwise, there is an index. The computation we will do will be modulo
5487 // the pointer size, so get it.
5488 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
5490 Offset &= PtrSizeMask;
5491 VariableScale &= PtrSizeMask;
5493 // To do this transformation, any constant index must be a multiple of the
5494 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
5495 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
5496 // multiple of the variable scale.
5497 int64_t NewOffs = Offset / (int64_t)VariableScale;
5498 if (Offset != NewOffs*(int64_t)VariableScale)
5501 // Okay, we can do this evaluation. Start by converting the index to intptr.
5502 const Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
5503 if (VariableIdx->getType() != IntPtrTy)
5504 VariableIdx = CastInst::CreateIntegerCast(VariableIdx, IntPtrTy,
5506 VariableIdx->getName(), &I);
5507 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
5508 return BinaryOperator::CreateAdd(VariableIdx, OffsetVal, "offset", &I);
5512 /// FoldGEPICmp - Fold comparisons between a GEP instruction and something
5513 /// else. At this point we know that the GEP is on the LHS of the comparison.
5514 Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
5515 ICmpInst::Predicate Cond,
5517 // Look through bitcasts.
5518 if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
5519 RHS = BCI->getOperand(0);
5521 Value *PtrBase = GEPLHS->getOperand(0);
5522 if (TD && PtrBase == RHS && GEPLHS->isInBounds()) {
5523 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
5524 // This transformation (ignoring the base and scales) is valid because we
5525 // know pointers can't overflow since the gep is inbounds. See if we can
5526 // output an optimized form.
5527 Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, I, *this);
5529 // If not, synthesize the offset the hard way.
5531 Offset = EmitGEPOffset(GEPLHS, I, *this);
5532 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
5533 Constant::getNullValue(Offset->getType()));
5534 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
5535 // If the base pointers are different, but the indices are the same, just
5536 // compare the base pointer.
5537 if (PtrBase != GEPRHS->getOperand(0)) {
5538 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
5539 IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
5540 GEPRHS->getOperand(0)->getType();
5542 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
5543 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
5544 IndicesTheSame = false;
5548 // If all indices are the same, just compare the base pointers.
5550 return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
5551 GEPLHS->getOperand(0), GEPRHS->getOperand(0));
5553 // Otherwise, the base pointers are different and the indices are
5554 // different, bail out.
5558 // If one of the GEPs has all zero indices, recurse.
5559 bool AllZeros = true;
5560 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
5561 if (!isa<Constant>(GEPLHS->getOperand(i)) ||
5562 !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
5567 return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
5568 ICmpInst::getSwappedPredicate(Cond), I);
5570 // If the other GEP has all zero indices, recurse.
5572 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
5573 if (!isa<Constant>(GEPRHS->getOperand(i)) ||
5574 !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
5579 return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
5581 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
5582 // If the GEPs only differ by one index, compare it.
5583 unsigned NumDifferences = 0; // Keep track of # differences.
5584 unsigned DiffOperand = 0; // The operand that differs.
5585 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
5586 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
5587 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
5588 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
5589 // Irreconcilable differences.
5593 if (NumDifferences++) break;
5598 if (NumDifferences == 0) // SAME GEP?
5599 return ReplaceInstUsesWith(I, // No comparison is needed here.
5600 ConstantInt::get(Type::getInt1Ty(*Context),
5601 ICmpInst::isTrueWhenEqual(Cond)));
5603 else if (NumDifferences == 1) {
5604 Value *LHSV = GEPLHS->getOperand(DiffOperand);
5605 Value *RHSV = GEPRHS->getOperand(DiffOperand);
5606 // Make sure we do a signed comparison here.
5607 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
5611 // Only lower this if the icmp is the only user of the GEP or if we expect
5612 // the result to fold to a constant!
5614 (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
5615 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
5616 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
5617 Value *L = EmitGEPOffset(GEPLHS, I, *this);
5618 Value *R = EmitGEPOffset(GEPRHS, I, *this);
5619 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
5625 /// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
5627 Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
5630 if (!isa<ConstantFP>(RHSC)) return 0;
5631 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
5633 // Get the width of the mantissa. We don't want to hack on conversions that
5634 // might lose information from the integer, e.g. "i64 -> float"
5635 int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
5636 if (MantissaWidth == -1) return 0; // Unknown.
5638 // Check to see that the input is converted from an integer type that is small
5639 // enough that preserves all bits. TODO: check here for "known" sign bits.
5640 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
5641 unsigned InputSize = LHSI->getOperand(0)->getType()->getScalarSizeInBits();
5643 // If this is a uitofp instruction, we need an extra bit to hold the sign.
5644 bool LHSUnsigned = isa<UIToFPInst>(LHSI);
5648 // If the conversion would lose info, don't hack on this.
5649 if ((int)InputSize > MantissaWidth)
5652 // Otherwise, we can potentially simplify the comparison. We know that it
5653 // will always come through as an integer value and we know the constant is
5654 // not a NAN (it would have been previously simplified).
5655 assert(!RHS.isNaN() && "NaN comparison not already folded!");
5657 ICmpInst::Predicate Pred;
5658 switch (I.getPredicate()) {
5659 default: llvm_unreachable("Unexpected predicate!");
5660 case FCmpInst::FCMP_UEQ:
5661 case FCmpInst::FCMP_OEQ:
5662 Pred = ICmpInst::ICMP_EQ;
5664 case FCmpInst::FCMP_UGT:
5665 case FCmpInst::FCMP_OGT:
5666 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
5668 case FCmpInst::FCMP_UGE:
5669 case FCmpInst::FCMP_OGE:
5670 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
5672 case FCmpInst::FCMP_ULT:
5673 case FCmpInst::FCMP_OLT:
5674 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
5676 case FCmpInst::FCMP_ULE:
5677 case FCmpInst::FCMP_OLE:
5678 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
5680 case FCmpInst::FCMP_UNE:
5681 case FCmpInst::FCMP_ONE:
5682 Pred = ICmpInst::ICMP_NE;
5684 case FCmpInst::FCMP_ORD:
5685 return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
5686 case FCmpInst::FCMP_UNO:
5687 return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
5690 const IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
5692 // Now we know that the APFloat is a normal number, zero or inf.
5694 // See if the FP constant is too large for the integer. For example,
5695 // comparing an i8 to 300.0.
5696 unsigned IntWidth = IntTy->getScalarSizeInBits();
5699 // If the RHS value is > SignedMax, fold the comparison. This handles +INF
5700 // and large values.
5701 APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false);
5702 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
5703 APFloat::rmNearestTiesToEven);
5704 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0
5705 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
5706 Pred == ICmpInst::ICMP_SLE)
5707 return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
5708 return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
5711 // If the RHS value is > UnsignedMax, fold the comparison. This handles
5712 // +INF and large values.
5713 APFloat UMax(RHS.getSemantics(), APFloat::fcZero, false);
5714 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
5715 APFloat::rmNearestTiesToEven);
5716 if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0
5717 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT ||
5718 Pred == ICmpInst::ICMP_ULE)
5719 return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
5720 return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
5725 // See if the RHS value is < SignedMin.
5726 APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
5727 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
5728 APFloat::rmNearestTiesToEven);
5729 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
5730 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
5731 Pred == ICmpInst::ICMP_SGE)
5732 return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
5733 return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
5737 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
5738 // [0, UMAX], but it may still be fractional. See if it is fractional by
5739 // casting the FP value to the integer value and back, checking for equality.
5740 // Don't do this for zero, because -0.0 is not fractional.
5741 Constant *RHSInt = LHSUnsigned
5742 ? ConstantExpr::getFPToUI(RHSC, IntTy)
5743 : ConstantExpr::getFPToSI(RHSC, IntTy);
5744 if (!RHS.isZero()) {
5745 bool Equal = LHSUnsigned
5746 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
5747 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
5749 // If we had a comparison against a fractional value, we have to adjust
5750 // the compare predicate and sometimes the value. RHSC is rounded towards
5751 // zero at this point.
5753 default: llvm_unreachable("Unexpected integer comparison!");
5754 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
5755 return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
5756 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
5757 return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
5758 case ICmpInst::ICMP_ULE:
5759 // (float)int <= 4.4 --> int <= 4
5760 // (float)int <= -4.4 --> false
5761 if (RHS.isNegative())
5762 return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
5764 case ICmpInst::ICMP_SLE:
5765 // (float)int <= 4.4 --> int <= 4
5766 // (float)int <= -4.4 --> int < -4
5767 if (RHS.isNegative())
5768 Pred = ICmpInst::ICMP_SLT;
5770 case ICmpInst::ICMP_ULT:
5771 // (float)int < -4.4 --> false
5772 // (float)int < 4.4 --> int <= 4
5773 if (RHS.isNegative())
5774 return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
5775 Pred = ICmpInst::ICMP_ULE;
5777 case ICmpInst::ICMP_SLT:
5778 // (float)int < -4.4 --> int < -4
5779 // (float)int < 4.4 --> int <= 4
5780 if (!RHS.isNegative())
5781 Pred = ICmpInst::ICMP_SLE;
5783 case ICmpInst::ICMP_UGT:
5784 // (float)int > 4.4 --> int > 4
5785 // (float)int > -4.4 --> true
5786 if (RHS.isNegative())
5787 return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
5789 case ICmpInst::ICMP_SGT:
5790 // (float)int > 4.4 --> int > 4
5791 // (float)int > -4.4 --> int >= -4
5792 if (RHS.isNegative())
5793 Pred = ICmpInst::ICMP_SGE;
5795 case ICmpInst::ICMP_UGE:
5796 // (float)int >= -4.4 --> true
5797 // (float)int >= 4.4 --> int > 4
5798 if (!RHS.isNegative())
5799 return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
5800 Pred = ICmpInst::ICMP_UGT;
5802 case ICmpInst::ICMP_SGE:
5803 // (float)int >= -4.4 --> int >= -4
5804 // (float)int >= 4.4 --> int > 4
5805 if (!RHS.isNegative())
5806 Pred = ICmpInst::ICMP_SGT;
5812 // Lower this FP comparison into an appropriate integer version of the
5814 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
5817 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
5818 bool Changed = SimplifyCompare(I);
5819 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5821 // Fold trivial predicates.
5822 if (I.getPredicate() == FCmpInst::FCMP_FALSE)
5823 return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), 0));
5824 if (I.getPredicate() == FCmpInst::FCMP_TRUE)
5825 return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), 1));
5827 // Simplify 'fcmp pred X, X'
5829 switch (I.getPredicate()) {
5830 default: llvm_unreachable("Unknown predicate!");
5831 case FCmpInst::FCMP_UEQ: // True if unordered or equal
5832 case FCmpInst::FCMP_UGE: // True if unordered, greater than, or equal
5833 case FCmpInst::FCMP_ULE: // True if unordered, less than, or equal
5834 return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), 1));
5835 case FCmpInst::FCMP_OGT: // True if ordered and greater than
5836 case FCmpInst::FCMP_OLT: // True if ordered and less than
5837 case FCmpInst::FCMP_ONE: // True if ordered and operands are unequal
5838 return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), 0));
5840 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
5841 case FCmpInst::FCMP_ULT: // True if unordered or less than
5842 case FCmpInst::FCMP_UGT: // True if unordered or greater than
5843 case FCmpInst::FCMP_UNE: // True if unordered or not equal
5844 // Canonicalize these to be 'fcmp uno %X, 0.0'.
5845 I.setPredicate(FCmpInst::FCMP_UNO);
5846 I.setOperand(1, Constant::getNullValue(Op0->getType()));
5849 case FCmpInst::FCMP_ORD: // True if ordered (no nans)
5850 case FCmpInst::FCMP_OEQ: // True if ordered and equal
5851 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
5852 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
5853 // Canonicalize these to be 'fcmp ord %X, 0.0'.
5854 I.setPredicate(FCmpInst::FCMP_ORD);
5855 I.setOperand(1, Constant::getNullValue(Op0->getType()));
5860 if (isa<UndefValue>(Op1)) // fcmp pred X, undef -> undef
5861 return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
5863 // Handle fcmp with constant RHS
5864 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
5865 // If the constant is a nan, see if we can fold the comparison based on it.
5866 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
5867 if (CFP->getValueAPF().isNaN()) {
5868 if (FCmpInst::isOrdered(I.getPredicate())) // True if ordered and...
5869 return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
5870 assert(FCmpInst::isUnordered(I.getPredicate()) &&
5871 "Comparison must be either ordered or unordered!");
5872 // True if unordered.
5873 return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
5877 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5878 switch (LHSI->getOpcode()) {
5879 case Instruction::PHI:
5880 // Only fold fcmp into the PHI if the phi and fcmp are in the same
5881 // block. If in the same block, we're encouraging jump threading. If
5882 // not, we are just pessimizing the code by making an i1 phi.
5883 if (LHSI->getParent() == I.getParent())
5884 if (Instruction *NV = FoldOpIntoPhi(I, true))
5887 case Instruction::SIToFP:
5888 case Instruction::UIToFP:
5889 if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
5892 case Instruction::Select:
5893 // If either operand of the select is a constant, we can fold the
5894 // comparison into the select arms, which will cause one to be
5895 // constant folded and the select turned into a bitwise or.
5896 Value *Op1 = 0, *Op2 = 0;
5897 if (LHSI->hasOneUse()) {
5898 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
5899 // Fold the known value into the constant operand.
5900 Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
5901 // Insert a new FCmp of the other select operand.
5902 Op2 = Builder->CreateFCmp(I.getPredicate(),
5903 LHSI->getOperand(2), RHSC, I.getName());
5904 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
5905 // Fold the known value into the constant operand.
5906 Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
5907 // Insert a new FCmp of the other select operand.
5908 Op1 = Builder->CreateFCmp(I.getPredicate(), LHSI->getOperand(1),
5914 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
5919 return Changed ? &I : 0;
5922 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
5923 bool Changed = SimplifyCompare(I);
5924 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5925 const Type *Ty = Op0->getType();
5929 return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(),
5930 I.isTrueWhenEqual()));
5932 if (isa<UndefValue>(Op1)) // X icmp undef -> undef
5933 return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
5935 // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
5936 // addresses never equal each other! We already know that Op0 != Op1.
5937 if ((isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0) || isMalloc(Op0) ||
5938 isa<ConstantPointerNull>(Op0)) &&
5939 (isa<GlobalValue>(Op1) || isa<AllocaInst>(Op1) || isMalloc(Op1) ||
5940 isa<ConstantPointerNull>(Op1)))
5941 return ReplaceInstUsesWith(I, ConstantInt::get(Type::getInt1Ty(*Context),
5942 !I.isTrueWhenEqual()));
5944 // icmp's with boolean values can always be turned into bitwise operations
5945 if (Ty == Type::getInt1Ty(*Context)) {
5946 switch (I.getPredicate()) {
5947 default: llvm_unreachable("Invalid icmp instruction!");
5948 case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B)
5949 Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
5950 return BinaryOperator::CreateNot(Xor);
5952 case ICmpInst::ICMP_NE: // icmp eq i1 A, B -> A^B
5953 return BinaryOperator::CreateXor(Op0, Op1);
5955 case ICmpInst::ICMP_UGT:
5956 std::swap(Op0, Op1); // Change icmp ugt -> icmp ult
5958 case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B
5959 Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
5960 return BinaryOperator::CreateAnd(Not, Op1);
5962 case ICmpInst::ICMP_SGT:
5963 std::swap(Op0, Op1); // Change icmp sgt -> icmp slt
5965 case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B
5966 Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
5967 return BinaryOperator::CreateAnd(Not, Op0);
5969 case ICmpInst::ICMP_UGE:
5970 std::swap(Op0, Op1); // Change icmp uge -> icmp ule
5972 case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B
5973 Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
5974 return BinaryOperator::CreateOr(Not, Op1);
5976 case ICmpInst::ICMP_SGE:
5977 std::swap(Op0, Op1); // Change icmp sge -> icmp sle
5979 case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B
5980 Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
5981 return BinaryOperator::CreateOr(Not, Op0);
5986 unsigned BitWidth = 0;
5988 BitWidth = TD->getTypeSizeInBits(Ty->getScalarType());
5989 else if (Ty->isIntOrIntVector())
5990 BitWidth = Ty->getScalarSizeInBits();
5992 bool isSignBit = false;
5994 // See if we are doing a comparison with a constant.
5995 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
5996 Value *A = 0, *B = 0;
5998 // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
5999 if (I.isEquality() && CI->isNullValue() &&
6000 match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
6001 // (icmp cond A B) if cond is equality
6002 return new ICmpInst(I.getPredicate(), A, B);
6005 // If we have an icmp le or icmp ge instruction, turn it into the
6006 // appropriate icmp lt or icmp gt instruction. This allows us to rely on
6007 // them being folded in the code below.
6008 switch (I.getPredicate()) {
6010 case ICmpInst::ICMP_ULE:
6011 if (CI->isMaxValue(false)) // A <=u MAX -> TRUE
6012 return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
6013 return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
6015 case ICmpInst::ICMP_SLE:
6016 if (CI->isMaxValue(true)) // A <=s MAX -> TRUE
6017 return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
6018 return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
6020 case ICmpInst::ICMP_UGE:
6021 if (CI->isMinValue(false)) // A >=u MIN -> TRUE
6022 return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
6023 return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
6025 case ICmpInst::ICMP_SGE:
6026 if (CI->isMinValue(true)) // A >=s MIN -> TRUE
6027 return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
6028 return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
6032 // If this comparison is a normal comparison, it demands all
6033 // bits, if it is a sign bit comparison, it only demands the sign bit.
6035 isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
6038 // See if we can fold the comparison based on range information we can get
6039 // by checking whether bits are known to be zero or one in the input.
6040 if (BitWidth != 0) {
6041 APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
6042 APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
6044 if (SimplifyDemandedBits(I.getOperandUse(0),
6045 isSignBit ? APInt::getSignBit(BitWidth)
6046 : APInt::getAllOnesValue(BitWidth),
6047 Op0KnownZero, Op0KnownOne, 0))
6049 if (SimplifyDemandedBits(I.getOperandUse(1),
6050 APInt::getAllOnesValue(BitWidth),
6051 Op1KnownZero, Op1KnownOne, 0))
6054 // Given the known and unknown bits, compute a range that the LHS could be
6055 // in. Compute the Min, Max and RHS values based on the known bits. For the
6056 // EQ and NE we use unsigned values.
6057 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
6058 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
6059 if (ICmpInst::isSignedPredicate(I.getPredicate())) {
6060 ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
6062 ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
6065 ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
6067 ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
6071 // If Min and Max are known to be the same, then SimplifyDemandedBits
6072 // figured out that the LHS is a constant. Just constant fold this now so
6073 // that code below can assume that Min != Max.
6074 if (!isa<Constant>(Op0) && Op0Min == Op0Max)
6075 return new ICmpInst(I.getPredicate(),
6076 ConstantInt::get(*Context, Op0Min), Op1);
6077 if (!isa<Constant>(Op1) && Op1Min == Op1Max)
6078 return new ICmpInst(I.getPredicate(), Op0,
6079 ConstantInt::get(*Context, Op1Min));
6081 // Based on the range information we know about the LHS, see if we can
6082 // simplify this comparison. For example, (x&4) < 8 is always true.
6083 switch (I.getPredicate()) {
6084 default: llvm_unreachable("Unknown icmp opcode!");
6085 case ICmpInst::ICMP_EQ:
6086 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
6087 return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
6089 case ICmpInst::ICMP_NE:
6090 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
6091 return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
6093 case ICmpInst::ICMP_ULT:
6094 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
6095 return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
6096 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
6097 return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
6098 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
6099 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
6100 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
6101 if (Op1Max == Op0Min+1) // A <u C -> A == C-1 if min(A)+1 == C
6102 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
6105 // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
6106 if (CI->isMinValue(true))
6107 return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
6108 Constant::getAllOnesValue(Op0->getType()));
6111 case ICmpInst::ICMP_UGT:
6112 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
6113 return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
6114 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
6115 return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
6117 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
6118 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
6119 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
6120 if (Op1Min == Op0Max-1) // A >u C -> A == C+1 if max(a)-1 == C
6121 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
6124 // (x >u 2147483647) -> (x <s 0) -> true if sign bit set
6125 if (CI->isMaxValue(true))
6126 return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
6127 Constant::getNullValue(Op0->getType()));
6130 case ICmpInst::ICMP_SLT:
6131 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
6132 return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
6133 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
6134 return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
6135 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
6136 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
6137 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
6138 if (Op1Max == Op0Min+1) // A <s C -> A == C-1 if min(A)+1 == C
6139 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
6143 case ICmpInst::ICMP_SGT:
6144 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
6145 return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
6146 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
6147 return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
6149 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
6150 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
6151 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
6152 if (Op1Min == Op0Max-1) // A >s C -> A == C+1 if max(A)-1 == C
6153 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
6157 case ICmpInst::ICMP_SGE:
6158 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
6159 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
6160 return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
6161 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
6162 return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
6164 case ICmpInst::ICMP_SLE:
6165 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
6166 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
6167 return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
6168 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
6169 return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
6171 case ICmpInst::ICMP_UGE:
6172 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
6173 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
6174 return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
6175 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
6176 return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
6178 case ICmpInst::ICMP_ULE:
6179 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
6180 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
6181 return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
6182 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
6183 return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
6187 // Turn a signed comparison into an unsigned one if both operands
6188 // are known to have the same sign.
6189 if (I.isSignedPredicate() &&
6190 ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
6191 (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
6192 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
6195 // Test if the ICmpInst instruction is used exclusively by a select as
6196 // part of a minimum or maximum operation. If so, refrain from doing
6197 // any other folding. This helps out other analyses which understand
6198 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
6199 // and CodeGen. And in this case, at least one of the comparison
6200 // operands has at least one user besides the compare (the select),
6201 // which would often largely negate the benefit of folding anyway.
6203 if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin()))
6204 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
6205 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
6208 // See if we are doing a comparison between a constant and an instruction that
6209 // can be folded into the comparison.
6210 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
6211 // Since the RHS is a ConstantInt (CI), if the left hand side is an
6212 // instruction, see if that instruction also has constants so that the
6213 // instruction can be folded into the icmp
6214 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
6215 if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
6219 // Handle icmp with constant (but not simple integer constant) RHS
6220 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
6221 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
6222 switch (LHSI->getOpcode()) {
6223 case Instruction::GetElementPtr:
6224 if (RHSC->isNullValue()) {
6225 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
6226 bool isAllZeros = true;
6227 for (unsigned i = 1, e = LHSI->getNumOperands(); i != e; ++i)
6228 if (!isa<Constant>(LHSI->getOperand(i)) ||
6229 !cast<Constant>(LHSI->getOperand(i))->isNullValue()) {
6234 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
6235 Constant::getNullValue(LHSI->getOperand(0)->getType()));
6239 case Instruction::PHI:
6240 // Only fold icmp into the PHI if the phi and icmp are in the same
6241 // block. If in the same block, we're encouraging jump threading. If
6242 // not, we are just pessimizing the code by making an i1 phi.
6243 if (LHSI->getParent() == I.getParent())
6244 if (Instruction *NV = FoldOpIntoPhi(I, true))
6247 case Instruction::Select: {
6248 // If either operand of the select is a constant, we can fold the
6249 // comparison into the select arms, which will cause one to be
6250 // constant folded and the select turned into a bitwise or.
6251 Value *Op1 = 0, *Op2 = 0;
6252 if (LHSI->hasOneUse()) {
6253 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
6254 // Fold the known value into the constant operand.
6255 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
6256 // Insert a new ICmp of the other select operand.
6257 Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
6259 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
6260 // Fold the known value into the constant operand.
6261 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
6262 // Insert a new ICmp of the other select operand.
6263 Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
6269 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
6272 case Instruction::Malloc:
6273 // If we have (malloc != null), and if the malloc has a single use, we
6274 // can assume it is successful and remove the malloc.
6275 if (LHSI->hasOneUse() && isa<ConstantPointerNull>(RHSC)) {
6277 return ReplaceInstUsesWith(I,
6278 ConstantInt::get(Type::getInt1Ty(*Context),
6279 !I.isTrueWhenEqual()));
6282 case Instruction::Call:
6283 // If we have (malloc != null), and if the malloc has a single use, we
6284 // can assume it is successful and remove the malloc.
6285 if (isMalloc(LHSI) && LHSI->hasOneUse() &&
6286 isa<ConstantPointerNull>(RHSC)) {
6288 return ReplaceInstUsesWith(I,
6289 ConstantInt::get(Type::getInt1Ty(*Context),
6290 !I.isTrueWhenEqual()));
6296 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
6297 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
6298 if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
6300 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
6301 if (Instruction *NI = FoldGEPICmp(GEP, Op0,
6302 ICmpInst::getSwappedPredicate(I.getPredicate()), I))
6305 // Test to see if the operands of the icmp are casted versions of other
6306 // values. If the ptr->ptr cast can be stripped off both arguments, we do so
6308 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
6309 if (isa<PointerType>(Op0->getType()) &&
6310 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
6311 // We keep moving the cast from the left operand over to the right
6312 // operand, where it can often be eliminated completely.
6313 Op0 = CI->getOperand(0);
6315 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
6316 // so eliminate it as well.
6317 if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
6318 Op1 = CI2->getOperand(0);
6320 // If Op1 is a constant, we can fold the cast into the constant.
6321 if (Op0->getType() != Op1->getType()) {
6322 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
6323 Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
6325 // Otherwise, cast the RHS right before the icmp
6326 Op1 = Builder->CreateBitCast(Op1, Op0->getType());
6329 return new ICmpInst(I.getPredicate(), Op0, Op1);
6333 if (isa<CastInst>(Op0)) {
6334 // Handle the special case of: icmp (cast bool to X), <cst>
6335 // This comes up when you have code like
6338 // For generality, we handle any zero-extension of any operand comparison
6339 // with a constant or another cast from the same type.
6340 if (isa<ConstantInt>(Op1) || isa<CastInst>(Op1))
6341 if (Instruction *R = visitICmpInstWithCastAndCast(I))
6345 // See if it's the same type of instruction on the left and right.
6346 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
6347 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
6348 if (Op0I->getOpcode() == Op1I->getOpcode() && Op0I->hasOneUse() &&
6349 Op1I->hasOneUse() && Op0I->getOperand(1) == Op1I->getOperand(1)) {
6350 switch (Op0I->getOpcode()) {
6352 case Instruction::Add:
6353 case Instruction::Sub:
6354 case Instruction::Xor:
6355 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
6356 return new ICmpInst(I.getPredicate(), Op0I->getOperand(0),
6357 Op1I->getOperand(0));
6358 // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
6359 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
6360 if (CI->getValue().isSignBit()) {
6361 ICmpInst::Predicate Pred = I.isSignedPredicate()
6362 ? I.getUnsignedPredicate()
6363 : I.getSignedPredicate();
6364 return new ICmpInst(Pred, Op0I->getOperand(0),
6365 Op1I->getOperand(0));
6368 if (CI->getValue().isMaxSignedValue()) {
6369 ICmpInst::Predicate Pred = I.isSignedPredicate()
6370 ? I.getUnsignedPredicate()
6371 : I.getSignedPredicate();
6372 Pred = I.getSwappedPredicate(Pred);
6373 return new ICmpInst(Pred, Op0I->getOperand(0),
6374 Op1I->getOperand(0));
6378 case Instruction::Mul:
6379 if (!I.isEquality())
6382 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
6383 // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
6384 // Mask = -1 >> count-trailing-zeros(Cst).
6385 if (!CI->isZero() && !CI->isOne()) {
6386 const APInt &AP = CI->getValue();
6387 ConstantInt *Mask = ConstantInt::get(*Context,
6388 APInt::getLowBitsSet(AP.getBitWidth(),
6390 AP.countTrailingZeros()));
6391 Value *And1 = Builder->CreateAnd(Op0I->getOperand(0), Mask);
6392 Value *And2 = Builder->CreateAnd(Op1I->getOperand(0), Mask);
6393 return new ICmpInst(I.getPredicate(), And1, And2);
6402 // ~x < ~y --> y < x
6404 if (match(Op0, m_Not(m_Value(A))) &&
6405 match(Op1, m_Not(m_Value(B))))
6406 return new ICmpInst(I.getPredicate(), B, A);
6409 if (I.isEquality()) {
6410 Value *A, *B, *C, *D;
6412 // -x == -y --> x == y
6413 if (match(Op0, m_Neg(m_Value(A))) &&
6414 match(Op1, m_Neg(m_Value(B))))
6415 return new ICmpInst(I.getPredicate(), A, B);
6417 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
6418 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
6419 Value *OtherVal = A == Op1 ? B : A;
6420 return new ICmpInst(I.getPredicate(), OtherVal,
6421 Constant::getNullValue(A->getType()));
6424 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
6425 // A^c1 == C^c2 --> A == C^(c1^c2)
6426 ConstantInt *C1, *C2;
6427 if (match(B, m_ConstantInt(C1)) &&
6428 match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
6430 ConstantInt::get(*Context, C1->getValue() ^ C2->getValue());
6431 Value *Xor = Builder->CreateXor(C, NC, "tmp");
6432 return new ICmpInst(I.getPredicate(), A, Xor);
6435 // A^B == A^D -> B == D
6436 if (A == C) return new ICmpInst(I.getPredicate(), B, D);
6437 if (A == D) return new ICmpInst(I.getPredicate(), B, C);
6438 if (B == C) return new ICmpInst(I.getPredicate(), A, D);
6439 if (B == D) return new ICmpInst(I.getPredicate(), A, C);
6443 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
6444 (A == Op0 || B == Op0)) {
6445 // A == (A^B) -> B == 0
6446 Value *OtherVal = A == Op0 ? B : A;
6447 return new ICmpInst(I.getPredicate(), OtherVal,
6448 Constant::getNullValue(A->getType()));
6451 // (A-B) == A -> B == 0
6452 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(B))))
6453 return new ICmpInst(I.getPredicate(), B,
6454 Constant::getNullValue(B->getType()));
6456 // A == (A-B) -> B == 0
6457 if (match(Op1, m_Sub(m_Specific(Op0), m_Value(B))))
6458 return new ICmpInst(I.getPredicate(), B,
6459 Constant::getNullValue(B->getType()));
6461 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
6462 if (Op0->hasOneUse() && Op1->hasOneUse() &&
6463 match(Op0, m_And(m_Value(A), m_Value(B))) &&
6464 match(Op1, m_And(m_Value(C), m_Value(D)))) {
6465 Value *X = 0, *Y = 0, *Z = 0;
6468 X = B; Y = D; Z = A;
6469 } else if (A == D) {
6470 X = B; Y = C; Z = A;
6471 } else if (B == C) {
6472 X = A; Y = D; Z = B;
6473 } else if (B == D) {
6474 X = A; Y = C; Z = B;
6477 if (X) { // Build (X^Y) & Z
6478 Op1 = Builder->CreateXor(X, Y, "tmp");
6479 Op1 = Builder->CreateAnd(Op1, Z, "tmp");
6480 I.setOperand(0, Op1);
6481 I.setOperand(1, Constant::getNullValue(Op1->getType()));
6486 return Changed ? &I : 0;
6490 /// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
6491 /// and CmpRHS are both known to be integer constants.
6492 Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
6493 ConstantInt *DivRHS) {
6494 ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
6495 const APInt &CmpRHSV = CmpRHS->getValue();
6497 // FIXME: If the operand types don't match the type of the divide
6498 // then don't attempt this transform. The code below doesn't have the
6499 // logic to deal with a signed divide and an unsigned compare (and
6500 // vice versa). This is because (x /s C1) <s C2 produces different
6501 // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
6502 // (x /u C1) <u C2. Simply casting the operands and result won't
6503 // work. :( The if statement below tests that condition and bails
6505 bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
6506 if (!ICI.isEquality() && DivIsSigned != ICI.isSignedPredicate())
6508 if (DivRHS->isZero())
6509 return 0; // The ProdOV computation fails on divide by zero.
6510 if (DivIsSigned && DivRHS->isAllOnesValue())
6511 return 0; // The overflow computation also screws up here
6512 if (DivRHS->isOne())
6513 return 0; // Not worth bothering, and eliminates some funny cases
6516 // Compute Prod = CI * DivRHS. We are essentially solving an equation
6517 // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
6518 // C2 (CI). By solving for X we can turn this into a range check
6519 // instead of computing a divide.
6520 Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
6522 // Determine if the product overflows by seeing if the product is
6523 // not equal to the divide. Make sure we do the same kind of divide
6524 // as in the LHS instruction that we're folding.
6525 bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
6526 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
6528 // Get the ICmp opcode
6529 ICmpInst::Predicate Pred = ICI.getPredicate();
6531 // Figure out the interval that is being checked. For example, a comparison
6532 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
6533 // Compute this interval based on the constants involved and the signedness of
6534 // the compare/divide. This computes a half-open interval, keeping track of
6535 // whether either value in the interval overflows. After analysis each
6536 // overflow variable is set to 0 if it's corresponding bound variable is valid
6537 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
6538 int LoOverflow = 0, HiOverflow = 0;
6539 Constant *LoBound = 0, *HiBound = 0;
6541 if (!DivIsSigned) { // udiv
6542 // e.g. X/5 op 3 --> [15, 20)
6544 HiOverflow = LoOverflow = ProdOV;
6546 HiOverflow = AddWithOverflow(HiBound, LoBound, DivRHS, Context, false);
6547 } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
6548 if (CmpRHSV == 0) { // (X / pos) op 0
6549 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
6550 LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS)));
6552 } else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos
6553 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
6554 HiOverflow = LoOverflow = ProdOV;
6556 HiOverflow = AddWithOverflow(HiBound, Prod, DivRHS, Context, true);
6557 } else { // (X / pos) op neg
6558 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
6559 HiBound = AddOne(Prod);
6560 LoOverflow = HiOverflow = ProdOV ? -1 : 0;
6562 ConstantInt* DivNeg =
6563 cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
6564 LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, Context,
6568 } else if (DivRHS->getValue().isNegative()) { // Divisor is < 0.
6569 if (CmpRHSV == 0) { // (X / neg) op 0
6570 // e.g. X/-5 op 0 --> [-4, 5)
6571 LoBound = AddOne(DivRHS);
6572 HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
6573 if (HiBound == DivRHS) { // -INTMIN = INTMIN
6574 HiOverflow = 1; // [INTMIN+1, overflow)
6575 HiBound = 0; // e.g. X/INTMIN = 0 --> X > INTMIN
6577 } else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos
6578 // e.g. X/-5 op 3 --> [-19, -14)
6579 HiBound = AddOne(Prod);
6580 HiOverflow = LoOverflow = ProdOV ? -1 : 0;
6582 LoOverflow = AddWithOverflow(LoBound, HiBound,
6583 DivRHS, Context, true) ? -1 : 0;
6584 } else { // (X / neg) op neg
6585 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20)
6586 LoOverflow = HiOverflow = ProdOV;
6588 HiOverflow = SubWithOverflow(HiBound, Prod, DivRHS, Context, true);
6591 // Dividing by a negative swaps the condition. LT <-> GT
6592 Pred = ICmpInst::getSwappedPredicate(Pred);
6595 Value *X = DivI->getOperand(0);
6597 default: llvm_unreachable("Unhandled icmp opcode!");
6598 case ICmpInst::ICMP_EQ:
6599 if (LoOverflow && HiOverflow)
6600 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(*Context));
6601 else if (HiOverflow)
6602 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
6603 ICmpInst::ICMP_UGE, X, LoBound);
6604 else if (LoOverflow)
6605 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
6606 ICmpInst::ICMP_ULT, X, HiBound);
6608 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, true, ICI);
6609 case ICmpInst::ICMP_NE:
6610 if (LoOverflow && HiOverflow)
6611 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(*Context));
6612 else if (HiOverflow)
6613 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
6614 ICmpInst::ICMP_ULT, X, LoBound);
6615 else if (LoOverflow)
6616 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
6617 ICmpInst::ICMP_UGE, X, HiBound);
6619 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, false, ICI);
6620 case ICmpInst::ICMP_ULT:
6621 case ICmpInst::ICMP_SLT:
6622 if (LoOverflow == +1) // Low bound is greater than input range.
6623 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(*Context));
6624 if (LoOverflow == -1) // Low bound is less than input range.
6625 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(*Context));
6626 return new ICmpInst(Pred, X, LoBound);
6627 case ICmpInst::ICMP_UGT:
6628 case ICmpInst::ICMP_SGT:
6629 if (HiOverflow == +1) // High bound greater than input range.
6630 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(*Context));
6631 else if (HiOverflow == -1) // High bound less than input range.
6632 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(*Context));
6633 if (Pred == ICmpInst::ICMP_UGT)
6634 return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
6636 return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
6641 /// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
6643 Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
6646 const APInt &RHSV = RHS->getValue();
6648 switch (LHSI->getOpcode()) {
6649 case Instruction::Trunc:
6650 if (ICI.isEquality() && LHSI->hasOneUse()) {
6651 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
6652 // of the high bits truncated out of x are known.
6653 unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
6654 SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
6655 APInt Mask(APInt::getHighBitsSet(SrcBits, SrcBits-DstBits));
6656 APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
6657 ComputeMaskedBits(LHSI->getOperand(0), Mask, KnownZero, KnownOne);
6659 // If all the high bits are known, we can do this xform.
6660 if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
6661 // Pull in the high bits from known-ones set.
6662 APInt NewRHS(RHS->getValue());
6663 NewRHS.zext(SrcBits);
6665 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
6666 ConstantInt::get(*Context, NewRHS));
6671 case Instruction::Xor: // (icmp pred (xor X, XorCST), CI)
6672 if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
6673 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
6675 if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
6676 (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
6677 Value *CompareVal = LHSI->getOperand(0);
6679 // If the sign bit of the XorCST is not set, there is no change to
6680 // the operation, just stop using the Xor.
6681 if (!XorCST->getValue().isNegative()) {
6682 ICI.setOperand(0, CompareVal);
6687 // Was the old condition true if the operand is positive?
6688 bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
6690 // If so, the new one isn't.
6691 isTrueIfPositive ^= true;
6693 if (isTrueIfPositive)
6694 return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
6697 return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
6701 if (LHSI->hasOneUse()) {
6702 // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
6703 if (!ICI.isEquality() && XorCST->getValue().isSignBit()) {
6704 const APInt &SignBit = XorCST->getValue();
6705 ICmpInst::Predicate Pred = ICI.isSignedPredicate()
6706 ? ICI.getUnsignedPredicate()
6707 : ICI.getSignedPredicate();
6708 return new ICmpInst(Pred, LHSI->getOperand(0),
6709 ConstantInt::get(*Context, RHSV ^ SignBit));
6712 // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
6713 if (!ICI.isEquality() && XorCST->getValue().isMaxSignedValue()) {
6714 const APInt &NotSignBit = XorCST->getValue();
6715 ICmpInst::Predicate Pred = ICI.isSignedPredicate()
6716 ? ICI.getUnsignedPredicate()
6717 : ICI.getSignedPredicate();
6718 Pred = ICI.getSwappedPredicate(Pred);
6719 return new ICmpInst(Pred, LHSI->getOperand(0),
6720 ConstantInt::get(*Context, RHSV ^ NotSignBit));
6725 case Instruction::And: // (icmp pred (and X, AndCST), RHS)
6726 if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
6727 LHSI->getOperand(0)->hasOneUse()) {
6728 ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
6730 // If the LHS is an AND of a truncating cast, we can widen the
6731 // and/compare to be the input width without changing the value
6732 // produced, eliminating a cast.
6733 if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
6734 // We can do this transformation if either the AND constant does not
6735 // have its sign bit set or if it is an equality comparison.
6736 // Extending a relational comparison when we're checking the sign
6737 // bit would not work.
6738 if (Cast->hasOneUse() &&
6739 (ICI.isEquality() ||
6740 (AndCST->getValue().isNonNegative() && RHSV.isNonNegative()))) {
6742 cast<IntegerType>(Cast->getOperand(0)->getType())->getBitWidth();
6743 APInt NewCST = AndCST->getValue();
6744 NewCST.zext(BitWidth);
6746 NewCI.zext(BitWidth);
6748 Builder->CreateAnd(Cast->getOperand(0),
6749 ConstantInt::get(*Context, NewCST), LHSI->getName());
6750 return new ICmpInst(ICI.getPredicate(), NewAnd,
6751 ConstantInt::get(*Context, NewCI));
6755 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
6756 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
6757 // happens a LOT in code produced by the C front-end, for bitfield
6759 BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
6760 if (Shift && !Shift->isShift())
6764 ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
6765 const Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift.
6766 const Type *AndTy = AndCST->getType(); // Type of the and.
6768 // We can fold this as long as we can't shift unknown bits
6769 // into the mask. This can only happen with signed shift
6770 // rights, as they sign-extend.
6772 bool CanFold = Shift->isLogicalShift();
6774 // To test for the bad case of the signed shr, see if any
6775 // of the bits shifted in could be tested after the mask.
6776 uint32_t TyBits = Ty->getPrimitiveSizeInBits();
6777 int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
6779 uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
6780 if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
6781 AndCST->getValue()) == 0)
6787 if (Shift->getOpcode() == Instruction::Shl)
6788 NewCst = ConstantExpr::getLShr(RHS, ShAmt);
6790 NewCst = ConstantExpr::getShl(RHS, ShAmt);
6792 // Check to see if we are shifting out any of the bits being
6794 if (ConstantExpr::get(Shift->getOpcode(),
6795 NewCst, ShAmt) != RHS) {
6796 // If we shifted bits out, the fold is not going to work out.
6797 // As a special case, check to see if this means that the
6798 // result is always true or false now.
6799 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
6800 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(*Context));
6801 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
6802 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(*Context));
6804 ICI.setOperand(1, NewCst);
6805 Constant *NewAndCST;
6806 if (Shift->getOpcode() == Instruction::Shl)
6807 NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
6809 NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
6810 LHSI->setOperand(1, NewAndCST);
6811 LHSI->setOperand(0, Shift->getOperand(0));
6812 Worklist.Add(Shift); // Shift is dead.
6818 // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
6819 // preferable because it allows the C<<Y expression to be hoisted out
6820 // of a loop if Y is invariant and X is not.
6821 if (Shift && Shift->hasOneUse() && RHSV == 0 &&
6822 ICI.isEquality() && !Shift->isArithmeticShift() &&
6823 !isa<Constant>(Shift->getOperand(0))) {
6826 if (Shift->getOpcode() == Instruction::LShr) {
6827 NS = Builder->CreateShl(AndCST, Shift->getOperand(1), "tmp");
6829 // Insert a logical shift.
6830 NS = Builder->CreateLShr(AndCST, Shift->getOperand(1), "tmp");
6833 // Compute X & (C << Y).
6835 Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
6837 ICI.setOperand(0, NewAnd);
6843 case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI)
6844 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
6847 uint32_t TypeBits = RHSV.getBitWidth();
6849 // Check that the shift amount is in range. If not, don't perform
6850 // undefined shifts. When the shift is visited it will be
6852 if (ShAmt->uge(TypeBits))
6855 if (ICI.isEquality()) {
6856 // If we are comparing against bits always shifted out, the
6857 // comparison cannot succeed.
6859 ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
6861 if (Comp != RHS) {// Comparing against a bit that we know is zero.
6862 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6863 Constant *Cst = ConstantInt::get(Type::getInt1Ty(*Context), IsICMP_NE);
6864 return ReplaceInstUsesWith(ICI, Cst);
6867 if (LHSI->hasOneUse()) {
6868 // Otherwise strength reduce the shift into an and.
6869 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
6871 ConstantInt::get(*Context, APInt::getLowBitsSet(TypeBits,
6872 TypeBits-ShAmtVal));
6875 Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
6876 return new ICmpInst(ICI.getPredicate(), And,
6877 ConstantInt::get(*Context, RHSV.lshr(ShAmtVal)));
6881 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
6882 bool TrueIfSigned = false;
6883 if (LHSI->hasOneUse() &&
6884 isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
6885 // (X << 31) <s 0 --> (X&1) != 0
6886 Constant *Mask = ConstantInt::get(*Context, APInt(TypeBits, 1) <<
6887 (TypeBits-ShAmt->getZExtValue()-1));
6889 Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
6890 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
6891 And, Constant::getNullValue(And->getType()));
6896 case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI)
6897 case Instruction::AShr: {
6898 // Only handle equality comparisons of shift-by-constant.
6899 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
6900 if (!ShAmt || !ICI.isEquality()) break;
6902 // Check that the shift amount is in range. If not, don't perform
6903 // undefined shifts. When the shift is visited it will be
6905 uint32_t TypeBits = RHSV.getBitWidth();
6906 if (ShAmt->uge(TypeBits))
6909 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
6911 // If we are comparing against bits always shifted out, the
6912 // comparison cannot succeed.
6913 APInt Comp = RHSV << ShAmtVal;
6914 if (LHSI->getOpcode() == Instruction::LShr)
6915 Comp = Comp.lshr(ShAmtVal);
6917 Comp = Comp.ashr(ShAmtVal);
6919 if (Comp != RHSV) { // Comparing against a bit that we know is zero.
6920 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6921 Constant *Cst = ConstantInt::get(Type::getInt1Ty(*Context), IsICMP_NE);
6922 return ReplaceInstUsesWith(ICI, Cst);
6925 // Otherwise, check to see if the bits shifted out are known to be zero.
6926 // If so, we can compare against the unshifted value:
6927 // (X & 4) >> 1 == 2 --> (X & 4) == 4.
6928 if (LHSI->hasOneUse() &&
6929 MaskedValueIsZero(LHSI->getOperand(0),
6930 APInt::getLowBitsSet(Comp.getBitWidth(), ShAmtVal))) {
6931 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
6932 ConstantExpr::getShl(RHS, ShAmt));
6935 if (LHSI->hasOneUse()) {
6936 // Otherwise strength reduce the shift into an and.
6937 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
6938 Constant *Mask = ConstantInt::get(*Context, Val);
6940 Value *And = Builder->CreateAnd(LHSI->getOperand(0),
6941 Mask, LHSI->getName()+".mask");
6942 return new ICmpInst(ICI.getPredicate(), And,
6943 ConstantExpr::getShl(RHS, ShAmt));
6948 case Instruction::SDiv:
6949 case Instruction::UDiv:
6950 // Fold: icmp pred ([us]div X, C1), C2 -> range test
6951 // Fold this div into the comparison, producing a range check.
6952 // Determine, based on the divide type, what the range is being
6953 // checked. If there is an overflow on the low or high side, remember
6954 // it, otherwise compute the range [low, hi) bounding the new value.
6955 // See: InsertRangeTest above for the kinds of replacements possible.
6956 if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
6957 if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
6962 case Instruction::Add:
6963 // Fold: icmp pred (add, X, C1), C2
6965 if (!ICI.isEquality()) {
6966 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
6968 const APInt &LHSV = LHSC->getValue();
6970 ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
6973 if (ICI.isSignedPredicate()) {
6974 if (CR.getLower().isSignBit()) {
6975 return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
6976 ConstantInt::get(*Context, CR.getUpper()));
6977 } else if (CR.getUpper().isSignBit()) {
6978 return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
6979 ConstantInt::get(*Context, CR.getLower()));
6982 if (CR.getLower().isMinValue()) {
6983 return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
6984 ConstantInt::get(*Context, CR.getUpper()));
6985 } else if (CR.getUpper().isMinValue()) {
6986 return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
6987 ConstantInt::get(*Context, CR.getLower()));
6994 // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
6995 if (ICI.isEquality()) {
6996 bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6998 // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
6999 // the second operand is a constant, simplify a bit.
7000 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
7001 switch (BO->getOpcode()) {
7002 case Instruction::SRem:
7003 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
7004 if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
7005 const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
7006 if (V.sgt(APInt(V.getBitWidth(), 1)) && V.isPowerOf2()) {
7008 Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
7010 return new ICmpInst(ICI.getPredicate(), NewRem,
7011 Constant::getNullValue(BO->getType()));
7015 case Instruction::Add:
7016 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
7017 if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
7018 if (BO->hasOneUse())
7019 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
7020 ConstantExpr::getSub(RHS, BOp1C));
7021 } else if (RHSV == 0) {
7022 // Replace ((add A, B) != 0) with (A != -B) if A or B is
7023 // efficiently invertible, or if the add has just this one use.
7024 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
7026 if (Value *NegVal = dyn_castNegVal(BOp1))
7027 return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
7028 else if (Value *NegVal = dyn_castNegVal(BOp0))
7029 return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
7030 else if (BO->hasOneUse()) {
7031 Value *Neg = Builder->CreateNeg(BOp1);
7033 return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
7037 case Instruction::Xor:
7038 // For the xor case, we can xor two constants together, eliminating
7039 // the explicit xor.
7040 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
7041 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
7042 ConstantExpr::getXor(RHS, BOC));
7045 case Instruction::Sub:
7046 // Replace (([sub|xor] A, B) != 0) with (A != B)
7048 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
7052 case Instruction::Or:
7053 // If bits are being or'd in that are not present in the constant we
7054 // are comparing against, then the comparison could never succeed!
7055 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
7056 Constant *NotCI = ConstantExpr::getNot(RHS);
7057 if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
7058 return ReplaceInstUsesWith(ICI,
7059 ConstantInt::get(Type::getInt1Ty(*Context),
7064 case Instruction::And:
7065 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
7066 // If bits are being compared against that are and'd out, then the
7067 // comparison can never succeed!
7068 if ((RHSV & ~BOC->getValue()) != 0)
7069 return ReplaceInstUsesWith(ICI,
7070 ConstantInt::get(Type::getInt1Ty(*Context),
7073 // If we have ((X & C) == C), turn it into ((X & C) != 0).
7074 if (RHS == BOC && RHSV.isPowerOf2())
7075 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
7076 ICmpInst::ICMP_NE, LHSI,
7077 Constant::getNullValue(RHS->getType()));
7079 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
7080 if (BOC->getValue().isSignBit()) {
7081 Value *X = BO->getOperand(0);
7082 Constant *Zero = Constant::getNullValue(X->getType());
7083 ICmpInst::Predicate pred = isICMP_NE ?
7084 ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
7085 return new ICmpInst(pred, X, Zero);
7088 // ((X & ~7) == 0) --> X < 8
7089 if (RHSV == 0 && isHighOnes(BOC)) {
7090 Value *X = BO->getOperand(0);
7091 Constant *NegX = ConstantExpr::getNeg(BOC);
7092 ICmpInst::Predicate pred = isICMP_NE ?
7093 ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
7094 return new ICmpInst(pred, X, NegX);
7099 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
7100 // Handle icmp {eq|ne} <intrinsic>, intcst.
7101 if (II->getIntrinsicID() == Intrinsic::bswap) {
7103 ICI.setOperand(0, II->getOperand(1));
7104 ICI.setOperand(1, ConstantInt::get(*Context, RHSV.byteSwap()));
7112 /// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
7113 /// We only handle extending casts so far.
7115 Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
7116 const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
7117 Value *LHSCIOp = LHSCI->getOperand(0);
7118 const Type *SrcTy = LHSCIOp->getType();
7119 const Type *DestTy = LHSCI->getType();
7122 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
7123 // integer type is the same size as the pointer type.
7124 if (TD && LHSCI->getOpcode() == Instruction::PtrToInt &&
7125 TD->getPointerSizeInBits() ==
7126 cast<IntegerType>(DestTy)->getBitWidth()) {
7128 if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
7129 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
7130 } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
7131 RHSOp = RHSC->getOperand(0);
7132 // If the pointer types don't match, insert a bitcast.
7133 if (LHSCIOp->getType() != RHSOp->getType())
7134 RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
7138 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
7141 // The code below only handles extension cast instructions, so far.
7143 if (LHSCI->getOpcode() != Instruction::ZExt &&
7144 LHSCI->getOpcode() != Instruction::SExt)
7147 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
7148 bool isSignedCmp = ICI.isSignedPredicate();
7150 if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
7151 // Not an extension from the same type?
7152 RHSCIOp = CI->getOperand(0);
7153 if (RHSCIOp->getType() != LHSCIOp->getType())
7156 // If the signedness of the two casts doesn't agree (i.e. one is a sext
7157 // and the other is a zext), then we can't handle this.
7158 if (CI->getOpcode() != LHSCI->getOpcode())
7161 // Deal with equality cases early.
7162 if (ICI.isEquality())
7163 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
7165 // A signed comparison of sign extended values simplifies into a
7166 // signed comparison.
7167 if (isSignedCmp && isSignedExt)
7168 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
7170 // The other three cases all fold into an unsigned comparison.
7171 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
7174 // If we aren't dealing with a constant on the RHS, exit early
7175 ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
7179 // Compute the constant that would happen if we truncated to SrcTy then
7180 // reextended to DestTy.
7181 Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
7182 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
7185 // If the re-extended constant didn't change...
7187 // Make sure that sign of the Cmp and the sign of the Cast are the same.
7188 // For example, we might have:
7189 // %A = sext i16 %X to i32
7190 // %B = icmp ugt i32 %A, 1330
7191 // It is incorrect to transform this into
7192 // %B = icmp ugt i16 %X, 1330
7193 // because %A may have negative value.
7195 // However, we allow this when the compare is EQ/NE, because they are
7197 if (isSignedExt == isSignedCmp || ICI.isEquality())
7198 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
7202 // The re-extended constant changed so the constant cannot be represented
7203 // in the shorter type. Consequently, we cannot emit a simple comparison.
7205 // First, handle some easy cases. We know the result cannot be equal at this
7206 // point so handle the ICI.isEquality() cases
7207 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
7208 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(*Context));
7209 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
7210 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(*Context));
7212 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
7213 // should have been folded away previously and not enter in here.
7216 // We're performing a signed comparison.
7217 if (cast<ConstantInt>(CI)->getValue().isNegative())
7218 Result = ConstantInt::getFalse(*Context); // X < (small) --> false
7220 Result = ConstantInt::getTrue(*Context); // X < (large) --> true
7222 // We're performing an unsigned comparison.
7224 // We're performing an unsigned comp with a sign extended value.
7225 // This is true if the input is >= 0. [aka >s -1]
7226 Constant *NegOne = Constant::getAllOnesValue(SrcTy);
7227 Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
7229 // Unsigned extend & unsigned compare -> always true.
7230 Result = ConstantInt::getTrue(*Context);
7234 // Finally, return the value computed.
7235 if (ICI.getPredicate() == ICmpInst::ICMP_ULT ||
7236 ICI.getPredicate() == ICmpInst::ICMP_SLT)
7237 return ReplaceInstUsesWith(ICI, Result);
7239 assert((ICI.getPredicate()==ICmpInst::ICMP_UGT ||
7240 ICI.getPredicate()==ICmpInst::ICMP_SGT) &&
7241 "ICmp should be folded!");
7242 if (Constant *CI = dyn_cast<Constant>(Result))
7243 return ReplaceInstUsesWith(ICI, ConstantExpr::getNot(CI));
7244 return BinaryOperator::CreateNot(Result);
7247 Instruction *InstCombiner::visitShl(BinaryOperator &I) {
7248 return commonShiftTransforms(I);
7251 Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
7252 return commonShiftTransforms(I);
7255 Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
7256 if (Instruction *R = commonShiftTransforms(I))
7259 Value *Op0 = I.getOperand(0);
7261 // ashr int -1, X = -1 (for any arithmetic shift rights of ~0)
7262 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
7263 if (CSI->isAllOnesValue())
7264 return ReplaceInstUsesWith(I, CSI);
7266 // See if we can turn a signed shr into an unsigned shr.
7267 if (MaskedValueIsZero(Op0,
7268 APInt::getSignBit(I.getType()->getScalarSizeInBits())))
7269 return BinaryOperator::CreateLShr(Op0, I.getOperand(1));
7271 // Arithmetic shifting an all-sign-bit value is a no-op.
7272 unsigned NumSignBits = ComputeNumSignBits(Op0);
7273 if (NumSignBits == Op0->getType()->getScalarSizeInBits())
7274 return ReplaceInstUsesWith(I, Op0);
7279 Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
7280 assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
7281 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
7283 // shl X, 0 == X and shr X, 0 == X
7284 // shl 0, X == 0 and shr 0, X == 0
7285 if (Op1 == Constant::getNullValue(Op1->getType()) ||
7286 Op0 == Constant::getNullValue(Op0->getType()))
7287 return ReplaceInstUsesWith(I, Op0);
7289 if (isa<UndefValue>(Op0)) {
7290 if (I.getOpcode() == Instruction::AShr) // undef >>s X -> undef
7291 return ReplaceInstUsesWith(I, Op0);
7292 else // undef << X -> 0, undef >>u X -> 0
7293 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
7295 if (isa<UndefValue>(Op1)) {
7296 if (I.getOpcode() == Instruction::AShr) // X >>s undef -> X
7297 return ReplaceInstUsesWith(I, Op0);
7298 else // X << undef, X >>u undef -> 0
7299 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
7302 // See if we can fold away this shift.
7303 if (SimplifyDemandedInstructionBits(I))
7306 // Try to fold constant and into select arguments.
7307 if (isa<Constant>(Op0))
7308 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
7309 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
7312 if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1))
7313 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
7318 Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
7319 BinaryOperator &I) {
7320 bool isLeftShift = I.getOpcode() == Instruction::Shl;
7322 // See if we can simplify any instructions used by the instruction whose sole
7323 // purpose is to compute bits we don't care about.
7324 uint32_t TypeBits = Op0->getType()->getScalarSizeInBits();
7326 // shl i32 X, 32 = 0 and srl i8 Y, 9 = 0, ... just don't eliminate
7329 if (Op1->uge(TypeBits)) {
7330 if (I.getOpcode() != Instruction::AShr)
7331 return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
7333 I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1));
7338 // ((X*C1) << C2) == (X * (C1 << C2))
7339 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
7340 if (BO->getOpcode() == Instruction::Mul && isLeftShift)
7341 if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
7342 return BinaryOperator::CreateMul(BO->getOperand(0),
7343 ConstantExpr::getShl(BOOp, Op1));
7345 // Try to fold constant and into select arguments.
7346 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
7347 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
7349 if (isa<PHINode>(Op0))
7350 if (Instruction *NV = FoldOpIntoPhi(I))
7353 // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
7354 if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
7355 Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
7356 // If 'shift2' is an ashr, we would have to get the sign bit into a funny
7357 // place. Don't try to do this transformation in this case. Also, we
7358 // require that the input operand is a shift-by-constant so that we have
7359 // confidence that the shifts will get folded together. We could do this
7360 // xform in more cases, but it is unlikely to be profitable.
7361 if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
7362 isa<ConstantInt>(TrOp->getOperand(1))) {
7363 // Okay, we'll do this xform. Make the shift of shift.
7364 Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType());
7365 // (shift2 (shift1 & 0x00FF), c2)
7366 Value *NSh = Builder->CreateBinOp(I.getOpcode(), TrOp, ShAmt,I.getName());
7368 // For logical shifts, the truncation has the effect of making the high
7369 // part of the register be zeros. Emulate this by inserting an AND to
7370 // clear the top bits as needed. This 'and' will usually be zapped by
7371 // other xforms later if dead.
7372 unsigned SrcSize = TrOp->getType()->getScalarSizeInBits();
7373 unsigned DstSize = TI->getType()->getScalarSizeInBits();
7374 APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
7376 // The mask we constructed says what the trunc would do if occurring
7377 // between the shifts. We want to know the effect *after* the second
7378 // shift. We know that it is a logical shift by a constant, so adjust the
7379 // mask as appropriate.
7380 if (I.getOpcode() == Instruction::Shl)
7381 MaskV <<= Op1->getZExtValue();
7383 assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
7384 MaskV = MaskV.lshr(Op1->getZExtValue());
7388 Value *And = Builder->CreateAnd(NSh, ConstantInt::get(*Context, MaskV),
7391 // Return the value truncated to the interesting size.
7392 return new TruncInst(And, I.getType());
7396 if (Op0->hasOneUse()) {
7397 if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
7398 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
7401 switch (Op0BO->getOpcode()) {
7403 case Instruction::Add:
7404 case Instruction::And:
7405 case Instruction::Or:
7406 case Instruction::Xor: {
7407 // These operators commute.
7408 // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C)
7409 if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
7410 match(Op0BO->getOperand(1), m_Shr(m_Value(V1),
7411 m_Specific(Op1)))) {
7412 Value *YS = // (Y << C)
7413 Builder->CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
7415 Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), YS, V1,
7416 Op0BO->getOperand(1)->getName());
7417 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
7418 return BinaryOperator::CreateAnd(X, ConstantInt::get(*Context,
7419 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
7422 // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
7423 Value *Op0BOOp1 = Op0BO->getOperand(1);
7424 if (isLeftShift && Op0BOOp1->hasOneUse() &&
7426 m_And(m_Shr(m_Value(V1), m_Specific(Op1)),
7427 m_ConstantInt(CC))) &&
7428 cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse()) {
7429 Value *YS = // (Y << C)
7430 Builder->CreateShl(Op0BO->getOperand(0), Op1,
7433 Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
7434 V1->getName()+".mask");
7435 return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
7440 case Instruction::Sub: {
7441 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
7442 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
7443 match(Op0BO->getOperand(0), m_Shr(m_Value(V1),
7444 m_Specific(Op1)))) {
7445 Value *YS = // (Y << C)
7446 Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
7448 Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), V1, YS,
7449 Op0BO->getOperand(0)->getName());
7450 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
7451 return BinaryOperator::CreateAnd(X, ConstantInt::get(*Context,
7452 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
7455 // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C)
7456 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
7457 match(Op0BO->getOperand(0),
7458 m_And(m_Shr(m_Value(V1), m_Value(V2)),
7459 m_ConstantInt(CC))) && V2 == Op1 &&
7460 cast<BinaryOperator>(Op0BO->getOperand(0))
7461 ->getOperand(0)->hasOneUse()) {
7462 Value *YS = // (Y << C)
7463 Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
7465 Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
7466 V1->getName()+".mask");
7468 return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
7476 // If the operand is an bitwise operator with a constant RHS, and the
7477 // shift is the only use, we can pull it out of the shift.
7478 if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
7479 bool isValid = true; // Valid only for And, Or, Xor
7480 bool highBitSet = false; // Transform if high bit of constant set?
7482 switch (Op0BO->getOpcode()) {
7483 default: isValid = false; break; // Do not perform transform!
7484 case Instruction::Add:
7485 isValid = isLeftShift;
7487 case Instruction::Or:
7488 case Instruction::Xor:
7491 case Instruction::And:
7496 // If this is a signed shift right, and the high bit is modified
7497 // by the logical operation, do not perform the transformation.
7498 // The highBitSet boolean indicates the value of the high bit of
7499 // the constant which would cause it to be modified for this
7502 if (isValid && I.getOpcode() == Instruction::AShr)
7503 isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
7506 Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
7509 Builder->CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1);
7510 NewShift->takeName(Op0BO);
7512 return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
7519 // Find out if this is a shift of a shift by a constant.
7520 BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
7521 if (ShiftOp && !ShiftOp->isShift())
7524 if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
7525 ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
7526 uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits);
7527 uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits);
7528 assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
7529 if (ShiftAmt1 == 0) return 0; // Will be simplified in the future.
7530 Value *X = ShiftOp->getOperand(0);
7532 uint32_t AmtSum = ShiftAmt1+ShiftAmt2; // Fold into one big shift.
7534 const IntegerType *Ty = cast<IntegerType>(I.getType());
7536 // Check for (X << c1) << c2 and (X >> c1) >> c2
7537 if (I.getOpcode() == ShiftOp->getOpcode()) {
7538 // If this is oversized composite shift, then unsigned shifts get 0, ashr
7540 if (AmtSum >= TypeBits) {
7541 if (I.getOpcode() != Instruction::AShr)
7542 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
7543 AmtSum = TypeBits-1; // Saturate to 31 for i32 ashr.
7546 return BinaryOperator::Create(I.getOpcode(), X,
7547 ConstantInt::get(Ty, AmtSum));
7550 if (ShiftOp->getOpcode() == Instruction::LShr &&
7551 I.getOpcode() == Instruction::AShr) {
7552 if (AmtSum >= TypeBits)
7553 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
7555 // ((X >>u C1) >>s C2) -> (X >>u (C1+C2)) since C1 != 0.
7556 return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
7559 if (ShiftOp->getOpcode() == Instruction::AShr &&
7560 I.getOpcode() == Instruction::LShr) {
7561 // ((X >>s C1) >>u C2) -> ((X >>s (C1+C2)) & mask) since C1 != 0.
7562 if (AmtSum >= TypeBits)
7563 AmtSum = TypeBits-1;
7565 Value *Shift = Builder->CreateAShr(X, ConstantInt::get(Ty, AmtSum));
7567 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
7568 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(*Context, Mask));
7571 // Okay, if we get here, one shift must be left, and the other shift must be
7572 // right. See if the amounts are equal.
7573 if (ShiftAmt1 == ShiftAmt2) {
7574 // If we have ((X >>? C) << C), turn this into X & (-1 << C).
7575 if (I.getOpcode() == Instruction::Shl) {
7576 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt1));
7577 return BinaryOperator::CreateAnd(X, ConstantInt::get(*Context, Mask));
7579 // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
7580 if (I.getOpcode() == Instruction::LShr) {
7581 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1));
7582 return BinaryOperator::CreateAnd(X, ConstantInt::get(*Context, Mask));
7584 // We can simplify ((X << C) >>s C) into a trunc + sext.
7585 // NOTE: we could do this for any C, but that would make 'unusual' integer
7586 // types. For now, just stick to ones well-supported by the code
7588 const Type *SExtType = 0;
7589 switch (Ty->getBitWidth() - ShiftAmt1) {
7596 SExtType = IntegerType::get(*Context, Ty->getBitWidth() - ShiftAmt1);
7601 return new SExtInst(Builder->CreateTrunc(X, SExtType, "sext"), Ty);
7602 // Otherwise, we can't handle it yet.
7603 } else if (ShiftAmt1 < ShiftAmt2) {
7604 uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1;
7606 // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2)
7607 if (I.getOpcode() == Instruction::Shl) {
7608 assert(ShiftOp->getOpcode() == Instruction::LShr ||
7609 ShiftOp->getOpcode() == Instruction::AShr);
7610 Value *Shift = Builder->CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
7612 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
7613 return BinaryOperator::CreateAnd(Shift,
7614 ConstantInt::get(*Context, Mask));
7617 // (X << C1) >>u C2 --> X >>u (C2-C1) & (-1 >> C2)
7618 if (I.getOpcode() == Instruction::LShr) {
7619 assert(ShiftOp->getOpcode() == Instruction::Shl);
7620 Value *Shift = Builder->CreateLShr(X, ConstantInt::get(Ty, ShiftDiff));
7622 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
7623 return BinaryOperator::CreateAnd(Shift,
7624 ConstantInt::get(*Context, Mask));
7627 // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in.
7629 assert(ShiftAmt2 < ShiftAmt1);
7630 uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2;
7632 // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2)
7633 if (I.getOpcode() == Instruction::Shl) {
7634 assert(ShiftOp->getOpcode() == Instruction::LShr ||
7635 ShiftOp->getOpcode() == Instruction::AShr);
7636 Value *Shift = Builder->CreateBinOp(ShiftOp->getOpcode(), X,
7637 ConstantInt::get(Ty, ShiftDiff));
7639 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
7640 return BinaryOperator::CreateAnd(Shift,
7641 ConstantInt::get(*Context, Mask));
7644 // (X << C1) >>u C2 --> X << (C1-C2) & (-1 >> C2)
7645 if (I.getOpcode() == Instruction::LShr) {
7646 assert(ShiftOp->getOpcode() == Instruction::Shl);
7647 Value *Shift = Builder->CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
7649 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
7650 return BinaryOperator::CreateAnd(Shift,
7651 ConstantInt::get(*Context, Mask));
7654 // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in.
7661 /// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
7662 /// expression. If so, decompose it, returning some value X, such that Val is
7665 static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
7666 int &Offset, LLVMContext *Context) {
7667 assert(Val->getType() == Type::getInt32Ty(*Context) &&
7668 "Unexpected allocation size type!");
7669 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
7670 Offset = CI->getZExtValue();
7672 return ConstantInt::get(Type::getInt32Ty(*Context), 0);
7673 } else if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
7674 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
7675 if (I->getOpcode() == Instruction::Shl) {
7676 // This is a value scaled by '1 << the shift amt'.
7677 Scale = 1U << RHS->getZExtValue();
7679 return I->getOperand(0);
7680 } else if (I->getOpcode() == Instruction::Mul) {
7681 // This value is scaled by 'RHS'.
7682 Scale = RHS->getZExtValue();
7684 return I->getOperand(0);
7685 } else if (I->getOpcode() == Instruction::Add) {
7686 // We have X+C. Check to see if we really have (X*C2)+C1,
7687 // where C1 is divisible by C2.
7690 DecomposeSimpleLinearExpr(I->getOperand(0), SubScale,
7692 Offset += RHS->getZExtValue();
7699 // Otherwise, we can't look past this.
7706 /// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
7707 /// try to eliminate the cast by moving the type information into the alloc.
7708 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
7709 AllocationInst &AI) {
7710 const PointerType *PTy = cast<PointerType>(CI.getType());
7712 BuilderTy AllocaBuilder(*Builder);
7713 AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
7715 // Remove any uses of AI that are dead.
7716 assert(!CI.use_empty() && "Dead instructions should be removed earlier!");
7718 for (Value::use_iterator UI = AI.use_begin(), E = AI.use_end(); UI != E; ) {
7719 Instruction *User = cast<Instruction>(*UI++);
7720 if (isInstructionTriviallyDead(User)) {
7721 while (UI != E && *UI == User)
7722 ++UI; // If this instruction uses AI more than once, don't break UI.
7725 DEBUG(errs() << "IC: DCE: " << *User << '\n');
7726 EraseInstFromFunction(*User);
7730 // This requires TargetData to get the alloca alignment and size information.
7733 // Get the type really allocated and the type casted to.
7734 const Type *AllocElTy = AI.getAllocatedType();
7735 const Type *CastElTy = PTy->getElementType();
7736 if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
7738 unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
7739 unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
7740 if (CastElTyAlign < AllocElTyAlign) return 0;
7742 // If the allocation has multiple uses, only promote it if we are strictly
7743 // increasing the alignment of the resultant allocation. If we keep it the
7744 // same, we open the door to infinite loops of various kinds. (A reference
7745 // from a dbg.declare doesn't count as a use for this purpose.)
7746 if (!AI.hasOneUse() && !hasOneUsePlusDeclare(&AI) &&
7747 CastElTyAlign == AllocElTyAlign) return 0;
7749 uint64_t AllocElTySize = TD->getTypeAllocSize(AllocElTy);
7750 uint64_t CastElTySize = TD->getTypeAllocSize(CastElTy);
7751 if (CastElTySize == 0 || AllocElTySize == 0) return 0;
7753 // See if we can satisfy the modulus by pulling a scale out of the array
7755 unsigned ArraySizeScale;
7757 Value *NumElements = // See if the array size is a decomposable linear expr.
7758 DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale,
7759 ArrayOffset, Context);
7761 // If we can now satisfy the modulus, by using a non-1 scale, we really can
7763 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
7764 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0;
7766 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
7771 Amt = ConstantInt::get(Type::getInt32Ty(*Context), Scale);
7772 // Insert before the alloca, not before the cast.
7773 Amt = AllocaBuilder.CreateMul(Amt, NumElements, "tmp");
7776 if (int Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
7777 Value *Off = ConstantInt::get(Type::getInt32Ty(*Context), Offset, true);
7778 Amt = AllocaBuilder.CreateAdd(Amt, Off, "tmp");
7781 AllocationInst *New;
7782 if (isa<MallocInst>(AI))
7783 New = AllocaBuilder.CreateMalloc(CastElTy, Amt);
7785 New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
7786 New->setAlignment(AI.getAlignment());
7789 // If the allocation has one real use plus a dbg.declare, just remove the
7791 if (DbgDeclareInst *DI = hasOneUsePlusDeclare(&AI)) {
7792 EraseInstFromFunction(*DI);
7794 // If the allocation has multiple real uses, insert a cast and change all
7795 // things that used it to use the new cast. This will also hack on CI, but it
7797 else if (!AI.hasOneUse()) {
7798 // New is the allocation instruction, pointer typed. AI is the original
7799 // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
7800 Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
7801 AI.replaceAllUsesWith(NewCast);
7803 return ReplaceInstUsesWith(CI, New);
7806 /// CanEvaluateInDifferentType - Return true if we can take the specified value
7807 /// and return it as type Ty without inserting any new casts and without
7808 /// changing the computed value. This is used by code that tries to decide
7809 /// whether promoting or shrinking integer operations to wider or smaller types
7810 /// will allow us to eliminate a truncate or extend.
7812 /// This is a truncation operation if Ty is smaller than V->getType(), or an
7813 /// extension operation if Ty is larger.
7815 /// If CastOpc is a truncation, then Ty will be a type smaller than V. We
7816 /// should return true if trunc(V) can be computed by computing V in the smaller
7817 /// type. If V is an instruction, then trunc(inst(x,y)) can be computed as
7818 /// inst(trunc(x),trunc(y)), which only makes sense if x and y can be
7819 /// efficiently truncated.
7821 /// If CastOpc is a sext or zext, we are asking if the low bits of the value can
7822 /// bit computed in a larger type, which is then and'd or sext_in_reg'd to get
7823 /// the final result.
7824 bool InstCombiner::CanEvaluateInDifferentType(Value *V, const Type *Ty,
7826 int &NumCastsRemoved){
7827 // We can always evaluate constants in another type.
7828 if (isa<Constant>(V))
7831 Instruction *I = dyn_cast<Instruction>(V);
7832 if (!I) return false;
7834 const Type *OrigTy = V->getType();
7836 // If this is an extension or truncate, we can often eliminate it.
7837 if (isa<TruncInst>(I) || isa<ZExtInst>(I) || isa<SExtInst>(I)) {
7838 // If this is a cast from the destination type, we can trivially eliminate
7839 // it, and this will remove a cast overall.
7840 if (I->getOperand(0)->getType() == Ty) {
7841 // If the first operand is itself a cast, and is eliminable, do not count
7842 // this as an eliminable cast. We would prefer to eliminate those two
7844 if (!isa<CastInst>(I->getOperand(0)) && I->hasOneUse())
7850 // We can't extend or shrink something that has multiple uses: doing so would
7851 // require duplicating the instruction in general, which isn't profitable.
7852 if (!I->hasOneUse()) return false;
7854 unsigned Opc = I->getOpcode();
7856 case Instruction::Add:
7857 case Instruction::Sub:
7858 case Instruction::Mul:
7859 case Instruction::And:
7860 case Instruction::Or:
7861 case Instruction::Xor:
7862 // These operators can all arbitrarily be extended or truncated.
7863 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7865 CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc,
7868 case Instruction::UDiv:
7869 case Instruction::URem: {
7870 // UDiv and URem can be truncated if all the truncated bits are zero.
7871 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
7872 uint32_t BitWidth = Ty->getScalarSizeInBits();
7873 if (BitWidth < OrigBitWidth) {
7874 APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
7875 if (MaskedValueIsZero(I->getOperand(0), Mask) &&
7876 MaskedValueIsZero(I->getOperand(1), Mask)) {
7877 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7879 CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc,
7885 case Instruction::Shl:
7886 // If we are truncating the result of this SHL, and if it's a shift of a
7887 // constant amount, we can always perform a SHL in a smaller type.
7888 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
7889 uint32_t BitWidth = Ty->getScalarSizeInBits();
7890 if (BitWidth < OrigTy->getScalarSizeInBits() &&
7891 CI->getLimitedValue(BitWidth) < BitWidth)
7892 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7896 case Instruction::LShr:
7897 // If this is a truncate of a logical shr, we can truncate it to a smaller
7898 // lshr iff we know that the bits we would otherwise be shifting in are
7900 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
7901 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
7902 uint32_t BitWidth = Ty->getScalarSizeInBits();
7903 if (BitWidth < OrigBitWidth &&
7904 MaskedValueIsZero(I->getOperand(0),
7905 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
7906 CI->getLimitedValue(BitWidth) < BitWidth) {
7907 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7912 case Instruction::ZExt:
7913 case Instruction::SExt:
7914 case Instruction::Trunc:
7915 // If this is the same kind of case as our original (e.g. zext+zext), we
7916 // can safely replace it. Note that replacing it does not reduce the number
7917 // of casts in the input.
7921 // sext (zext ty1), ty2 -> zext ty2
7922 if (CastOpc == Instruction::SExt && Opc == Instruction::ZExt)
7925 case Instruction::Select: {
7926 SelectInst *SI = cast<SelectInst>(I);
7927 return CanEvaluateInDifferentType(SI->getTrueValue(), Ty, CastOpc,
7929 CanEvaluateInDifferentType(SI->getFalseValue(), Ty, CastOpc,
7932 case Instruction::PHI: {
7933 // We can change a phi if we can change all operands.
7934 PHINode *PN = cast<PHINode>(I);
7935 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
7936 if (!CanEvaluateInDifferentType(PN->getIncomingValue(i), Ty, CastOpc,
7942 // TODO: Can handle more cases here.
7949 /// EvaluateInDifferentType - Given an expression that
7950 /// CanEvaluateInDifferentType returns true for, actually insert the code to
7951 /// evaluate the expression.
7952 Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
7954 if (Constant *C = dyn_cast<Constant>(V))
7955 return ConstantExpr::getIntegerCast(C, Ty,
7956 isSigned /*Sext or ZExt*/);
7958 // Otherwise, it must be an instruction.
7959 Instruction *I = cast<Instruction>(V);
7960 Instruction *Res = 0;
7961 unsigned Opc = I->getOpcode();
7963 case Instruction::Add:
7964 case Instruction::Sub:
7965 case Instruction::Mul:
7966 case Instruction::And:
7967 case Instruction::Or:
7968 case Instruction::Xor:
7969 case Instruction::AShr:
7970 case Instruction::LShr:
7971 case Instruction::Shl:
7972 case Instruction::UDiv:
7973 case Instruction::URem: {
7974 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
7975 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
7976 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
7979 case Instruction::Trunc:
7980 case Instruction::ZExt:
7981 case Instruction::SExt:
7982 // If the source type of the cast is the type we're trying for then we can
7983 // just return the source. There's no need to insert it because it is not
7985 if (I->getOperand(0)->getType() == Ty)
7986 return I->getOperand(0);
7988 // Otherwise, must be the same type of cast, so just reinsert a new one.
7989 Res = CastInst::Create(cast<CastInst>(I)->getOpcode(), I->getOperand(0),
7992 case Instruction::Select: {
7993 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
7994 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
7995 Res = SelectInst::Create(I->getOperand(0), True, False);
7998 case Instruction::PHI: {
7999 PHINode *OPN = cast<PHINode>(I);
8000 PHINode *NPN = PHINode::Create(Ty);
8001 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
8002 Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
8003 NPN->addIncoming(V, OPN->getIncomingBlock(i));
8009 // TODO: Can handle more cases here.
8010 llvm_unreachable("Unreachable!");
8015 return InsertNewInstBefore(Res, *I);
8018 /// @brief Implement the transforms common to all CastInst visitors.
8019 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
8020 Value *Src = CI.getOperand(0);
8022 // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
8023 // eliminate it now.
8024 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
8025 if (Instruction::CastOps opc =
8026 isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
8027 // The first cast (CSrc) is eliminable so we need to fix up or replace
8028 // the second cast (CI). CSrc will then have a good chance of being dead.
8029 return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
8033 // If we are casting a select then fold the cast into the select
8034 if (SelectInst *SI = dyn_cast<SelectInst>(Src))
8035 if (Instruction *NV = FoldOpIntoSelect(CI, SI, this))
8038 // If we are casting a PHI then fold the cast into the PHI
8039 if (isa<PHINode>(Src))
8040 if (Instruction *NV = FoldOpIntoPhi(CI))
8046 /// FindElementAtOffset - Given a type and a constant offset, determine whether
8047 /// or not there is a sequence of GEP indices into the type that will land us at
8048 /// the specified offset. If so, fill them into NewIndices and return the
8049 /// resultant element type, otherwise return null.
8050 static const Type *FindElementAtOffset(const Type *Ty, int64_t Offset,
8051 SmallVectorImpl<Value*> &NewIndices,
8052 const TargetData *TD,
8053 LLVMContext *Context) {
8055 if (!Ty->isSized()) return 0;
8057 // Start with the index over the outer type. Note that the type size
8058 // might be zero (even if the offset isn't zero) if the indexed type
8059 // is something like [0 x {int, int}]
8060 const Type *IntPtrTy = TD->getIntPtrType(*Context);
8061 int64_t FirstIdx = 0;
8062 if (int64_t TySize = TD->getTypeAllocSize(Ty)) {
8063 FirstIdx = Offset/TySize;
8064 Offset -= FirstIdx*TySize;
8066 // Handle hosts where % returns negative instead of values [0..TySize).
8070 assert(Offset >= 0);
8072 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
8075 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
8077 // Index into the types. If we fail, set OrigBase to null.
8079 // Indexing into tail padding between struct/array elements.
8080 if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty))
8083 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
8084 const StructLayout *SL = TD->getStructLayout(STy);
8085 assert(Offset < (int64_t)SL->getSizeInBytes() &&
8086 "Offset must stay within the indexed type");
8088 unsigned Elt = SL->getElementContainingOffset(Offset);
8089 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(*Context), Elt));
8091 Offset -= SL->getElementOffset(Elt);
8092 Ty = STy->getElementType(Elt);
8093 } else if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
8094 uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType());
8095 assert(EltSize && "Cannot index into a zero-sized array");
8096 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
8098 Ty = AT->getElementType();
8100 // Otherwise, we can't index into the middle of this atomic type, bail.
8108 /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
8109 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
8110 Value *Src = CI.getOperand(0);
8112 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
8113 // If casting the result of a getelementptr instruction with no offset, turn
8114 // this into a cast of the original pointer!
8115 if (GEP->hasAllZeroIndices()) {
8116 // Changing the cast operand is usually not a good idea but it is safe
8117 // here because the pointer operand is being replaced with another
8118 // pointer operand so the opcode doesn't need to change.
8120 CI.setOperand(0, GEP->getOperand(0));
8124 // If the GEP has a single use, and the base pointer is a bitcast, and the
8125 // GEP computes a constant offset, see if we can convert these three
8126 // instructions into fewer. This typically happens with unions and other
8127 // non-type-safe code.
8128 if (TD && GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0))) {
8129 if (GEP->hasAllConstantIndices()) {
8130 // We are guaranteed to get a constant from EmitGEPOffset.
8131 ConstantInt *OffsetV =
8132 cast<ConstantInt>(EmitGEPOffset(GEP, CI, *this));
8133 int64_t Offset = OffsetV->getSExtValue();
8135 // Get the base pointer input of the bitcast, and the type it points to.
8136 Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
8137 const Type *GEPIdxTy =
8138 cast<PointerType>(OrigBase->getType())->getElementType();
8139 SmallVector<Value*, 8> NewIndices;
8140 if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices, TD, Context)) {
8141 // If we were able to index down into an element, create the GEP
8142 // and bitcast the result. This eliminates one bitcast, potentially
8144 Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ?
8145 Builder->CreateInBoundsGEP(OrigBase,
8146 NewIndices.begin(), NewIndices.end()) :
8147 Builder->CreateGEP(OrigBase, NewIndices.begin(), NewIndices.end());
8148 NGEP->takeName(GEP);
8150 if (isa<BitCastInst>(CI))
8151 return new BitCastInst(NGEP, CI.getType());
8152 assert(isa<PtrToIntInst>(CI));
8153 return new PtrToIntInst(NGEP, CI.getType());
8159 return commonCastTransforms(CI);
8162 /// isSafeIntegerType - Return true if this is a basic integer type, not a crazy
8163 /// type like i42. We don't want to introduce operations on random non-legal
8164 /// integer types where they don't already exist in the code. In the future,
8165 /// we should consider making this based off target-data, so that 32-bit targets
8166 /// won't get i64 operations etc.
8167 static bool isSafeIntegerType(const Type *Ty) {
8168 switch (Ty->getPrimitiveSizeInBits()) {
8179 /// commonIntCastTransforms - This function implements the common transforms
8180 /// for trunc, zext, and sext.
8181 Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
8182 if (Instruction *Result = commonCastTransforms(CI))
8185 Value *Src = CI.getOperand(0);
8186 const Type *SrcTy = Src->getType();
8187 const Type *DestTy = CI.getType();
8188 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
8189 uint32_t DestBitSize = DestTy->getScalarSizeInBits();
8191 // See if we can simplify any instructions used by the LHS whose sole
8192 // purpose is to compute bits we don't care about.
8193 if (SimplifyDemandedInstructionBits(CI))
8196 // If the source isn't an instruction or has more than one use then we
8197 // can't do anything more.
8198 Instruction *SrcI = dyn_cast<Instruction>(Src);
8199 if (!SrcI || !Src->hasOneUse())
8202 // Attempt to propagate the cast into the instruction for int->int casts.
8203 int NumCastsRemoved = 0;
8204 // Only do this if the dest type is a simple type, don't convert the
8205 // expression tree to something weird like i93 unless the source is also
8207 if ((isSafeIntegerType(DestTy->getScalarType()) ||
8208 !isSafeIntegerType(SrcI->getType()->getScalarType())) &&
8209 CanEvaluateInDifferentType(SrcI, DestTy,
8210 CI.getOpcode(), NumCastsRemoved)) {
8211 // If this cast is a truncate, evaluting in a different type always
8212 // eliminates the cast, so it is always a win. If this is a zero-extension,
8213 // we need to do an AND to maintain the clear top-part of the computation,
8214 // so we require that the input have eliminated at least one cast. If this
8215 // is a sign extension, we insert two new casts (to do the extension) so we
8216 // require that two casts have been eliminated.
8217 bool DoXForm = false;
8218 bool JustReplace = false;
8219 switch (CI.getOpcode()) {
8221 // All the others use floating point so we shouldn't actually
8222 // get here because of the check above.
8223 llvm_unreachable("Unknown cast type");
8224 case Instruction::Trunc:
8227 case Instruction::ZExt: {
8228 DoXForm = NumCastsRemoved >= 1;
8229 if (!DoXForm && 0) {
8230 // If it's unnecessary to issue an AND to clear the high bits, it's
8231 // always profitable to do this xform.
8232 Value *TryRes = EvaluateInDifferentType(SrcI, DestTy, false);
8233 APInt Mask(APInt::getBitsSet(DestBitSize, SrcBitSize, DestBitSize));
8234 if (MaskedValueIsZero(TryRes, Mask))
8235 return ReplaceInstUsesWith(CI, TryRes);
8237 if (Instruction *TryI = dyn_cast<Instruction>(TryRes))
8238 if (TryI->use_empty())
8239 EraseInstFromFunction(*TryI);
8243 case Instruction::SExt: {
8244 DoXForm = NumCastsRemoved >= 2;
8245 if (!DoXForm && !isa<TruncInst>(SrcI) && 0) {
8246 // If we do not have to emit the truncate + sext pair, then it's always
8247 // profitable to do this xform.
8249 // It's not safe to eliminate the trunc + sext pair if one of the
8250 // eliminated cast is a truncate. e.g.
8251 // t2 = trunc i32 t1 to i16
8252 // t3 = sext i16 t2 to i32
8255 Value *TryRes = EvaluateInDifferentType(SrcI, DestTy, true);
8256 unsigned NumSignBits = ComputeNumSignBits(TryRes);
8257 if (NumSignBits > (DestBitSize - SrcBitSize))
8258 return ReplaceInstUsesWith(CI, TryRes);
8260 if (Instruction *TryI = dyn_cast<Instruction>(TryRes))
8261 if (TryI->use_empty())
8262 EraseInstFromFunction(*TryI);
8269 DEBUG(errs() << "ICE: EvaluateInDifferentType converting expression type"
8270 " to avoid cast: " << CI);
8271 Value *Res = EvaluateInDifferentType(SrcI, DestTy,
8272 CI.getOpcode() == Instruction::SExt);
8274 // Just replace this cast with the result.
8275 return ReplaceInstUsesWith(CI, Res);
8277 assert(Res->getType() == DestTy);
8278 switch (CI.getOpcode()) {
8279 default: llvm_unreachable("Unknown cast type!");
8280 case Instruction::Trunc:
8281 // Just replace this cast with the result.
8282 return ReplaceInstUsesWith(CI, Res);
8283 case Instruction::ZExt: {
8284 assert(SrcBitSize < DestBitSize && "Not a zext?");
8286 // If the high bits are already zero, just replace this cast with the
8288 APInt Mask(APInt::getBitsSet(DestBitSize, SrcBitSize, DestBitSize));
8289 if (MaskedValueIsZero(Res, Mask))
8290 return ReplaceInstUsesWith(CI, Res);
8292 // We need to emit an AND to clear the high bits.
8293 Constant *C = ConstantInt::get(*Context,
8294 APInt::getLowBitsSet(DestBitSize, SrcBitSize));
8295 return BinaryOperator::CreateAnd(Res, C);
8297 case Instruction::SExt: {
8298 // If the high bits are already filled with sign bit, just replace this
8299 // cast with the result.
8300 unsigned NumSignBits = ComputeNumSignBits(Res);
8301 if (NumSignBits > (DestBitSize - SrcBitSize))
8302 return ReplaceInstUsesWith(CI, Res);
8304 // We need to emit a cast to truncate, then a cast to sext.
8305 return new SExtInst(Builder->CreateTrunc(Res, Src->getType()), DestTy);
8311 Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0;
8312 Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0;
8314 switch (SrcI->getOpcode()) {
8315 case Instruction::Add:
8316 case Instruction::Mul:
8317 case Instruction::And:
8318 case Instruction::Or:
8319 case Instruction::Xor:
8320 // If we are discarding information, rewrite.
8321 if (DestBitSize < SrcBitSize && DestBitSize != 1) {
8322 // Don't insert two casts unless at least one can be eliminated.
8323 if (!ValueRequiresCast(CI.getOpcode(), Op1, DestTy, TD) ||
8324 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
8325 Value *Op0c = Builder->CreateTrunc(Op0, DestTy, Op0->getName());
8326 Value *Op1c = Builder->CreateTrunc(Op1, DestTy, Op1->getName());
8327 return BinaryOperator::Create(
8328 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
8332 // cast (xor bool X, true) to int --> xor (cast bool X to int), 1
8333 if (isa<ZExtInst>(CI) && SrcBitSize == 1 &&
8334 SrcI->getOpcode() == Instruction::Xor &&
8335 Op1 == ConstantInt::getTrue(*Context) &&
8336 (!Op0->hasOneUse() || !isa<CmpInst>(Op0))) {
8337 Value *New = Builder->CreateZExt(Op0, DestTy, Op0->getName());
8338 return BinaryOperator::CreateXor(New,
8339 ConstantInt::get(CI.getType(), 1));
8343 case Instruction::Shl: {
8344 // Canonicalize trunc inside shl, if we can.
8345 ConstantInt *CI = dyn_cast<ConstantInt>(Op1);
8346 if (CI && DestBitSize < SrcBitSize &&
8347 CI->getLimitedValue(DestBitSize) < DestBitSize) {
8348 Value *Op0c = Builder->CreateTrunc(Op0, DestTy, Op0->getName());
8349 Value *Op1c = Builder->CreateTrunc(Op1, DestTy, Op1->getName());
8350 return BinaryOperator::CreateShl(Op0c, Op1c);
8358 Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
8359 if (Instruction *Result = commonIntCastTransforms(CI))
8362 Value *Src = CI.getOperand(0);
8363 const Type *Ty = CI.getType();
8364 uint32_t DestBitWidth = Ty->getScalarSizeInBits();
8365 uint32_t SrcBitWidth = Src->getType()->getScalarSizeInBits();
8367 // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0)
8368 if (DestBitWidth == 1) {
8369 Constant *One = ConstantInt::get(Src->getType(), 1);
8370 Src = Builder->CreateAnd(Src, One, "tmp");
8371 Value *Zero = Constant::getNullValue(Src->getType());
8372 return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
8375 // Optimize trunc(lshr(), c) to pull the shift through the truncate.
8376 ConstantInt *ShAmtV = 0;
8378 if (Src->hasOneUse() &&
8379 match(Src, m_LShr(m_Value(ShiftOp), m_ConstantInt(ShAmtV)))) {
8380 uint32_t ShAmt = ShAmtV->getLimitedValue(SrcBitWidth);
8382 // Get a mask for the bits shifting in.
8383 APInt Mask(APInt::getLowBitsSet(SrcBitWidth, ShAmt).shl(DestBitWidth));
8384 if (MaskedValueIsZero(ShiftOp, Mask)) {
8385 if (ShAmt >= DestBitWidth) // All zeros.
8386 return ReplaceInstUsesWith(CI, Constant::getNullValue(Ty));
8388 // Okay, we can shrink this. Truncate the input, then return a new
8390 Value *V1 = Builder->CreateTrunc(ShiftOp, Ty, ShiftOp->getName());
8391 Value *V2 = ConstantExpr::getTrunc(ShAmtV, Ty);
8392 return BinaryOperator::CreateLShr(V1, V2);
8399 /// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
8400 /// in order to eliminate the icmp.
8401 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
8403 // If we are just checking for a icmp eq of a single bit and zext'ing it
8404 // to an integer, then shift the bit to the appropriate place and then
8405 // cast to integer to avoid the comparison.
8406 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
8407 const APInt &Op1CV = Op1C->getValue();
8409 // zext (x <s 0) to i32 --> x>>u31 true if signbit set.
8410 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
8411 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
8412 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
8413 if (!DoXform) return ICI;
8415 Value *In = ICI->getOperand(0);
8416 Value *Sh = ConstantInt::get(In->getType(),
8417 In->getType()->getScalarSizeInBits()-1);
8418 In = Builder->CreateLShr(In, Sh, In->getName()+".lobit");
8419 if (In->getType() != CI.getType())
8420 In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/, "tmp");
8422 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
8423 Constant *One = ConstantInt::get(In->getType(), 1);
8424 In = Builder->CreateXor(In, One, In->getName()+".not");
8427 return ReplaceInstUsesWith(CI, In);
8432 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
8433 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
8434 // zext (X == 1) to i32 --> X iff X has only the low bit set.
8435 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
8436 // zext (X != 0) to i32 --> X iff X has only the low bit set.
8437 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
8438 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
8439 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
8440 if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
8441 // This only works for EQ and NE
8442 ICI->isEquality()) {
8443 // If Op1C some other power of two, convert:
8444 uint32_t BitWidth = Op1C->getType()->getBitWidth();
8445 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
8446 APInt TypeMask(APInt::getAllOnesValue(BitWidth));
8447 ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
8449 APInt KnownZeroMask(~KnownZero);
8450 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
8451 if (!DoXform) return ICI;
8453 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
8454 if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
8455 // (X&4) == 2 --> false
8456 // (X&4) != 2 --> true
8457 Constant *Res = ConstantInt::get(Type::getInt1Ty(*Context), isNE);
8458 Res = ConstantExpr::getZExt(Res, CI.getType());
8459 return ReplaceInstUsesWith(CI, Res);
8462 uint32_t ShiftAmt = KnownZeroMask.logBase2();
8463 Value *In = ICI->getOperand(0);
8465 // Perform a logical shr by shiftamt.
8466 // Insert the shift to put the result in the low bit.
8467 In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
8468 In->getName()+".lobit");
8471 if ((Op1CV != 0) == isNE) { // Toggle the low bit.
8472 Constant *One = ConstantInt::get(In->getType(), 1);
8473 In = Builder->CreateXor(In, One, "tmp");
8476 if (CI.getType() == In->getType())
8477 return ReplaceInstUsesWith(CI, In);
8479 return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
8487 Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
8488 // If one of the common conversion will work ..
8489 if (Instruction *Result = commonIntCastTransforms(CI))
8492 Value *Src = CI.getOperand(0);
8494 // If this is a TRUNC followed by a ZEXT then we are dealing with integral
8495 // types and if the sizes are just right we can convert this into a logical
8496 // 'and' which will be much cheaper than the pair of casts.
8497 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast
8498 // Get the sizes of the types involved. We know that the intermediate type
8499 // will be smaller than A or C, but don't know the relation between A and C.
8500 Value *A = CSrc->getOperand(0);
8501 unsigned SrcSize = A->getType()->getScalarSizeInBits();
8502 unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
8503 unsigned DstSize = CI.getType()->getScalarSizeInBits();
8504 // If we're actually extending zero bits, then if
8505 // SrcSize < DstSize: zext(a & mask)
8506 // SrcSize == DstSize: a & mask
8507 // SrcSize > DstSize: trunc(a) & mask
8508 if (SrcSize < DstSize) {
8509 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
8510 Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
8511 Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
8512 return new ZExtInst(And, CI.getType());
8515 if (SrcSize == DstSize) {
8516 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
8517 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
8520 if (SrcSize > DstSize) {
8521 Value *Trunc = Builder->CreateTrunc(A, CI.getType(), "tmp");
8522 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
8523 return BinaryOperator::CreateAnd(Trunc,
8524 ConstantInt::get(Trunc->getType(),
8529 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
8530 return transformZExtICmp(ICI, CI);
8532 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
8533 if (SrcI && SrcI->getOpcode() == Instruction::Or) {
8534 // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
8535 // of the (zext icmp) will be transformed.
8536 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
8537 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
8538 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
8539 (transformZExtICmp(LHS, CI, false) ||
8540 transformZExtICmp(RHS, CI, false))) {
8541 Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
8542 Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
8543 return BinaryOperator::Create(Instruction::Or, LCast, RCast);
8547 // zext(trunc(t) & C) -> (t & zext(C)).
8548 if (SrcI && SrcI->getOpcode() == Instruction::And && SrcI->hasOneUse())
8549 if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
8550 if (TruncInst *TI = dyn_cast<TruncInst>(SrcI->getOperand(0))) {
8551 Value *TI0 = TI->getOperand(0);
8552 if (TI0->getType() == CI.getType())
8554 BinaryOperator::CreateAnd(TI0,
8555 ConstantExpr::getZExt(C, CI.getType()));
8558 // zext((trunc(t) & C) ^ C) -> ((t & zext(C)) ^ zext(C)).
8559 if (SrcI && SrcI->getOpcode() == Instruction::Xor && SrcI->hasOneUse())
8560 if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
8561 if (BinaryOperator *And = dyn_cast<BinaryOperator>(SrcI->getOperand(0)))
8562 if (And->getOpcode() == Instruction::And && And->hasOneUse() &&
8563 And->getOperand(1) == C)
8564 if (TruncInst *TI = dyn_cast<TruncInst>(And->getOperand(0))) {
8565 Value *TI0 = TI->getOperand(0);
8566 if (TI0->getType() == CI.getType()) {
8567 Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
8568 Value *NewAnd = Builder->CreateAnd(TI0, ZC, "tmp");
8569 return BinaryOperator::CreateXor(NewAnd, ZC);
8576 Instruction *InstCombiner::visitSExt(SExtInst &CI) {
8577 if (Instruction *I = commonIntCastTransforms(CI))
8580 Value *Src = CI.getOperand(0);
8582 // Canonicalize sign-extend from i1 to a select.
8583 if (Src->getType() == Type::getInt1Ty(*Context))
8584 return SelectInst::Create(Src,
8585 Constant::getAllOnesValue(CI.getType()),
8586 Constant::getNullValue(CI.getType()));
8588 // See if the value being truncated is already sign extended. If so, just
8589 // eliminate the trunc/sext pair.
8590 if (Operator::getOpcode(Src) == Instruction::Trunc) {
8591 Value *Op = cast<User>(Src)->getOperand(0);
8592 unsigned OpBits = Op->getType()->getScalarSizeInBits();
8593 unsigned MidBits = Src->getType()->getScalarSizeInBits();
8594 unsigned DestBits = CI.getType()->getScalarSizeInBits();
8595 unsigned NumSignBits = ComputeNumSignBits(Op);
8597 if (OpBits == DestBits) {
8598 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
8599 // bits, it is already ready.
8600 if (NumSignBits > DestBits-MidBits)
8601 return ReplaceInstUsesWith(CI, Op);
8602 } else if (OpBits < DestBits) {
8603 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
8604 // bits, just sext from i32.
8605 if (NumSignBits > OpBits-MidBits)
8606 return new SExtInst(Op, CI.getType(), "tmp");
8608 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
8609 // bits, just truncate to i32.
8610 if (NumSignBits > OpBits-MidBits)
8611 return new TruncInst(Op, CI.getType(), "tmp");
8615 // If the input is a shl/ashr pair of a same constant, then this is a sign
8616 // extension from a smaller value. If we could trust arbitrary bitwidth
8617 // integers, we could turn this into a truncate to the smaller bit and then
8618 // use a sext for the whole extension. Since we don't, look deeper and check
8619 // for a truncate. If the source and dest are the same type, eliminate the
8620 // trunc and extend and just do shifts. For example, turn:
8621 // %a = trunc i32 %i to i8
8622 // %b = shl i8 %a, 6
8623 // %c = ashr i8 %b, 6
8624 // %d = sext i8 %c to i32
8626 // %a = shl i32 %i, 30
8627 // %d = ashr i32 %a, 30
8629 ConstantInt *BA = 0, *CA = 0;
8630 if (match(Src, m_AShr(m_Shl(m_Value(A), m_ConstantInt(BA)),
8631 m_ConstantInt(CA))) &&
8632 BA == CA && isa<TruncInst>(A)) {
8633 Value *I = cast<TruncInst>(A)->getOperand(0);
8634 if (I->getType() == CI.getType()) {
8635 unsigned MidSize = Src->getType()->getScalarSizeInBits();
8636 unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
8637 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
8638 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
8639 I = Builder->CreateShl(I, ShAmtV, CI.getName());
8640 return BinaryOperator::CreateAShr(I, ShAmtV);
8647 /// FitsInFPType - Return a Constant* for the specified FP constant if it fits
8648 /// in the specified FP type without changing its value.
8649 static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem,
8650 LLVMContext *Context) {
8652 APFloat F = CFP->getValueAPF();
8653 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
8655 return ConstantFP::get(*Context, F);
8659 /// LookThroughFPExtensions - If this is an fp extension instruction, look
8660 /// through it until we get the source value.
8661 static Value *LookThroughFPExtensions(Value *V, LLVMContext *Context) {
8662 if (Instruction *I = dyn_cast<Instruction>(V))
8663 if (I->getOpcode() == Instruction::FPExt)
8664 return LookThroughFPExtensions(I->getOperand(0), Context);
8666 // If this value is a constant, return the constant in the smallest FP type
8667 // that can accurately represent it. This allows us to turn
8668 // (float)((double)X+2.0) into x+2.0f.
8669 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
8670 if (CFP->getType() == Type::getPPC_FP128Ty(*Context))
8671 return V; // No constant folding of this.
8672 // See if the value can be truncated to float and then reextended.
8673 if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle, Context))
8675 if (CFP->getType() == Type::getDoubleTy(*Context))
8676 return V; // Won't shrink.
8677 if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble, Context))
8679 // Don't try to shrink to various long double types.
8685 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
8686 if (Instruction *I = commonCastTransforms(CI))
8689 // If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are
8690 // smaller than the destination type, we can eliminate the truncate by doing
8691 // the add as the smaller type. This applies to fadd/fsub/fmul/fdiv as well as
8692 // many builtins (sqrt, etc).
8693 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
8694 if (OpI && OpI->hasOneUse()) {
8695 switch (OpI->getOpcode()) {
8697 case Instruction::FAdd:
8698 case Instruction::FSub:
8699 case Instruction::FMul:
8700 case Instruction::FDiv:
8701 case Instruction::FRem:
8702 const Type *SrcTy = OpI->getType();
8703 Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0), Context);
8704 Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1), Context);
8705 if (LHSTrunc->getType() != SrcTy &&
8706 RHSTrunc->getType() != SrcTy) {
8707 unsigned DstSize = CI.getType()->getScalarSizeInBits();
8708 // If the source types were both smaller than the destination type of
8709 // the cast, do this xform.
8710 if (LHSTrunc->getType()->getScalarSizeInBits() <= DstSize &&
8711 RHSTrunc->getType()->getScalarSizeInBits() <= DstSize) {
8712 LHSTrunc = Builder->CreateFPExt(LHSTrunc, CI.getType());
8713 RHSTrunc = Builder->CreateFPExt(RHSTrunc, CI.getType());
8714 return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
8723 Instruction *InstCombiner::visitFPExt(CastInst &CI) {
8724 return commonCastTransforms(CI);
8727 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
8728 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
8730 return commonCastTransforms(FI);
8732 // fptoui(uitofp(X)) --> X
8733 // fptoui(sitofp(X)) --> X
8734 // This is safe if the intermediate type has enough bits in its mantissa to
8735 // accurately represent all values of X. For example, do not do this with
8736 // i64->float->i64. This is also safe for sitofp case, because any negative
8737 // 'X' value would cause an undefined result for the fptoui.
8738 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
8739 OpI->getOperand(0)->getType() == FI.getType() &&
8740 (int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */
8741 OpI->getType()->getFPMantissaWidth())
8742 return ReplaceInstUsesWith(FI, OpI->getOperand(0));
8744 return commonCastTransforms(FI);
8747 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
8748 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
8750 return commonCastTransforms(FI);
8752 // fptosi(sitofp(X)) --> X
8753 // fptosi(uitofp(X)) --> X
8754 // This is safe if the intermediate type has enough bits in its mantissa to
8755 // accurately represent all values of X. For example, do not do this with
8756 // i64->float->i64. This is also safe for sitofp case, because any negative
8757 // 'X' value would cause an undefined result for the fptoui.
8758 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
8759 OpI->getOperand(0)->getType() == FI.getType() &&
8760 (int)FI.getType()->getScalarSizeInBits() <=
8761 OpI->getType()->getFPMantissaWidth())
8762 return ReplaceInstUsesWith(FI, OpI->getOperand(0));
8764 return commonCastTransforms(FI);
8767 Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
8768 return commonCastTransforms(CI);
8771 Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
8772 return commonCastTransforms(CI);
8775 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
8776 // If the destination integer type is smaller than the intptr_t type for
8777 // this target, do a ptrtoint to intptr_t then do a trunc. This allows the
8778 // trunc to be exposed to other transforms. Don't do this for extending
8779 // ptrtoint's, because we don't know if the target sign or zero extends its
8782 CI.getType()->getScalarSizeInBits() < TD->getPointerSizeInBits()) {
8783 Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
8784 TD->getIntPtrType(CI.getContext()),
8786 return new TruncInst(P, CI.getType());
8789 return commonPointerCastTransforms(CI);
8792 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
8793 // If the source integer type is larger than the intptr_t type for
8794 // this target, do a trunc to the intptr_t type, then inttoptr of it. This
8795 // allows the trunc to be exposed to other transforms. Don't do this for
8796 // extending inttoptr's, because we don't know if the target sign or zero
8797 // extends to pointers.
8798 if (TD && CI.getOperand(0)->getType()->getScalarSizeInBits() >
8799 TD->getPointerSizeInBits()) {
8800 Value *P = Builder->CreateTrunc(CI.getOperand(0),
8801 TD->getIntPtrType(CI.getContext()), "tmp");
8802 return new IntToPtrInst(P, CI.getType());
8805 if (Instruction *I = commonCastTransforms(CI))
8811 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
8812 // If the operands are integer typed then apply the integer transforms,
8813 // otherwise just apply the common ones.
8814 Value *Src = CI.getOperand(0);
8815 const Type *SrcTy = Src->getType();
8816 const Type *DestTy = CI.getType();
8818 if (isa<PointerType>(SrcTy)) {
8819 if (Instruction *I = commonPointerCastTransforms(CI))
8822 if (Instruction *Result = commonCastTransforms(CI))
8827 // Get rid of casts from one type to the same type. These are useless and can
8828 // be replaced by the operand.
8829 if (DestTy == Src->getType())
8830 return ReplaceInstUsesWith(CI, Src);
8832 if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
8833 const PointerType *SrcPTy = cast<PointerType>(SrcTy);
8834 const Type *DstElTy = DstPTy->getElementType();
8835 const Type *SrcElTy = SrcPTy->getElementType();
8837 // If the address spaces don't match, don't eliminate the bitcast, which is
8838 // required for changing types.
8839 if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
8842 // If we are casting a alloca to a pointer to a type of the same
8843 // size, rewrite the allocation instruction to allocate the "right" type.
8844 // There is no need to modify malloc calls because it is their bitcast that
8845 // needs to be cleaned up.
8846 if (AllocationInst *AI = dyn_cast<AllocationInst>(Src))
8847 if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
8850 // If the source and destination are pointers, and this cast is equivalent
8851 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
8852 // This can enhance SROA and other transforms that want type-safe pointers.
8853 Constant *ZeroUInt = Constant::getNullValue(Type::getInt32Ty(*Context));
8854 unsigned NumZeros = 0;
8855 while (SrcElTy != DstElTy &&
8856 isa<CompositeType>(SrcElTy) && !isa<PointerType>(SrcElTy) &&
8857 SrcElTy->getNumContainedTypes() /* not "{}" */) {
8858 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
8862 // If we found a path from the src to dest, create the getelementptr now.
8863 if (SrcElTy == DstElTy) {
8864 SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
8865 return GetElementPtrInst::CreateInBounds(Src, Idxs.begin(), Idxs.end(), "",
8866 ((Instruction*) NULL));
8870 if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
8871 if (DestVTy->getNumElements() == 1) {
8872 if (!isa<VectorType>(SrcTy)) {
8873 Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
8874 return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
8875 Constant::getNullValue(Type::getInt32Ty(*Context)));
8877 // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
8881 if (const VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
8882 if (SrcVTy->getNumElements() == 1) {
8883 if (!isa<VectorType>(DestTy)) {
8885 Builder->CreateExtractElement(Src,
8886 Constant::getNullValue(Type::getInt32Ty(*Context)));
8887 return CastInst::Create(Instruction::BitCast, Elem, DestTy);
8892 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
8893 if (SVI->hasOneUse()) {
8894 // Okay, we have (bitconvert (shuffle ..)). Check to see if this is
8895 // a bitconvert to a vector with the same # elts.
8896 if (isa<VectorType>(DestTy) &&
8897 cast<VectorType>(DestTy)->getNumElements() ==
8898 SVI->getType()->getNumElements() &&
8899 SVI->getType()->getNumElements() ==
8900 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) {
8902 // If either of the operands is a cast from CI.getType(), then
8903 // evaluating the shuffle in the casted destination's type will allow
8904 // us to eliminate at least one cast.
8905 if (((Tmp = dyn_cast<CastInst>(SVI->getOperand(0))) &&
8906 Tmp->getOperand(0)->getType() == DestTy) ||
8907 ((Tmp = dyn_cast<CastInst>(SVI->getOperand(1))) &&
8908 Tmp->getOperand(0)->getType() == DestTy)) {
8909 Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
8910 Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
8911 // Return a new shuffle vector. Use the same element ID's, as we
8912 // know the vector types match #elts.
8913 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
8921 /// GetSelectFoldableOperands - We want to turn code that looks like this:
8923 /// %D = select %cond, %C, %A
8925 /// %C = select %cond, %B, 0
8928 /// Assuming that the specified instruction is an operand to the select, return
8929 /// a bitmask indicating which operands of this instruction are foldable if they
8930 /// equal the other incoming value of the select.
8932 static unsigned GetSelectFoldableOperands(Instruction *I) {
8933 switch (I->getOpcode()) {
8934 case Instruction::Add:
8935 case Instruction::Mul:
8936 case Instruction::And:
8937 case Instruction::Or:
8938 case Instruction::Xor:
8939 return 3; // Can fold through either operand.
8940 case Instruction::Sub: // Can only fold on the amount subtracted.
8941 case Instruction::Shl: // Can only fold on the shift amount.
8942 case Instruction::LShr:
8943 case Instruction::AShr:
8946 return 0; // Cannot fold
8950 /// GetSelectFoldableConstant - For the same transformation as the previous
8951 /// function, return the identity constant that goes into the select.
8952 static Constant *GetSelectFoldableConstant(Instruction *I,
8953 LLVMContext *Context) {
8954 switch (I->getOpcode()) {
8955 default: llvm_unreachable("This cannot happen!");
8956 case Instruction::Add:
8957 case Instruction::Sub:
8958 case Instruction::Or:
8959 case Instruction::Xor:
8960 case Instruction::Shl:
8961 case Instruction::LShr:
8962 case Instruction::AShr:
8963 return Constant::getNullValue(I->getType());
8964 case Instruction::And:
8965 return Constant::getAllOnesValue(I->getType());
8966 case Instruction::Mul:
8967 return ConstantInt::get(I->getType(), 1);
8971 /// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
8972 /// have the same opcode and only one use each. Try to simplify this.
8973 Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
8975 if (TI->getNumOperands() == 1) {
8976 // If this is a non-volatile load or a cast from the same type,
8979 if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
8982 return 0; // unknown unary op.
8985 // Fold this by inserting a select from the input values.
8986 SelectInst *NewSI = SelectInst::Create(SI.getCondition(), TI->getOperand(0),
8987 FI->getOperand(0), SI.getName()+".v");
8988 InsertNewInstBefore(NewSI, SI);
8989 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
8993 // Only handle binary operators here.
8994 if (!isa<BinaryOperator>(TI))
8997 // Figure out if the operations have any operands in common.
8998 Value *MatchOp, *OtherOpT, *OtherOpF;
9000 if (TI->getOperand(0) == FI->getOperand(0)) {
9001 MatchOp = TI->getOperand(0);
9002 OtherOpT = TI->getOperand(1);
9003 OtherOpF = FI->getOperand(1);
9004 MatchIsOpZero = true;
9005 } else if (TI->getOperand(1) == FI->getOperand(1)) {
9006 MatchOp = TI->getOperand(1);
9007 OtherOpT = TI->getOperand(0);
9008 OtherOpF = FI->getOperand(0);
9009 MatchIsOpZero = false;
9010 } else if (!TI->isCommutative()) {
9012 } else if (TI->getOperand(0) == FI->getOperand(1)) {
9013 MatchOp = TI->getOperand(0);
9014 OtherOpT = TI->getOperand(1);
9015 OtherOpF = FI->getOperand(0);
9016 MatchIsOpZero = true;
9017 } else if (TI->getOperand(1) == FI->getOperand(0)) {
9018 MatchOp = TI->getOperand(1);
9019 OtherOpT = TI->getOperand(0);
9020 OtherOpF = FI->getOperand(1);
9021 MatchIsOpZero = true;
9026 // If we reach here, they do have operations in common.
9027 SelectInst *NewSI = SelectInst::Create(SI.getCondition(), OtherOpT,
9028 OtherOpF, SI.getName()+".v");
9029 InsertNewInstBefore(NewSI, SI);
9031 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
9033 return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
9035 return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
9037 llvm_unreachable("Shouldn't get here");
9041 static bool isSelect01(Constant *C1, Constant *C2) {
9042 ConstantInt *C1I = dyn_cast<ConstantInt>(C1);
9045 ConstantInt *C2I = dyn_cast<ConstantInt>(C2);
9048 return (C1I->isZero() || C1I->isOne()) && (C2I->isZero() || C2I->isOne());
9051 /// FoldSelectIntoOp - Try fold the select into one of the operands to
9052 /// facilitate further optimization.
9053 Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal,
9055 // See the comment above GetSelectFoldableOperands for a description of the
9056 // transformation we are doing here.
9057 if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) {
9058 if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
9059 !isa<Constant>(FalseVal)) {
9060 if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
9061 unsigned OpToFold = 0;
9062 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
9064 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
9069 Constant *C = GetSelectFoldableConstant(TVI, Context);
9070 Value *OOp = TVI->getOperand(2-OpToFold);
9071 // Avoid creating select between 2 constants unless it's selecting
9073 if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
9074 Instruction *NewSel = SelectInst::Create(SI.getCondition(), OOp, C);
9075 InsertNewInstBefore(NewSel, SI);
9076 NewSel->takeName(TVI);
9077 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
9078 return BinaryOperator::Create(BO->getOpcode(), FalseVal, NewSel);
9079 llvm_unreachable("Unknown instruction!!");
9086 if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) {
9087 if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
9088 !isa<Constant>(TrueVal)) {
9089 if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
9090 unsigned OpToFold = 0;
9091 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
9093 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
9098 Constant *C = GetSelectFoldableConstant(FVI, Context);
9099 Value *OOp = FVI->getOperand(2-OpToFold);
9100 // Avoid creating select between 2 constants unless it's selecting
9102 if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
9103 Instruction *NewSel = SelectInst::Create(SI.getCondition(), C, OOp);
9104 InsertNewInstBefore(NewSel, SI);
9105 NewSel->takeName(FVI);
9106 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
9107 return BinaryOperator::Create(BO->getOpcode(), TrueVal, NewSel);
9108 llvm_unreachable("Unknown instruction!!");
9118 /// visitSelectInstWithICmp - Visit a SelectInst that has an
9119 /// ICmpInst as its first operand.
9121 Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
9123 bool Changed = false;
9124 ICmpInst::Predicate Pred = ICI->getPredicate();
9125 Value *CmpLHS = ICI->getOperand(0);
9126 Value *CmpRHS = ICI->getOperand(1);
9127 Value *TrueVal = SI.getTrueValue();
9128 Value *FalseVal = SI.getFalseValue();
9130 // Check cases where the comparison is with a constant that
9131 // can be adjusted to fit the min/max idiom. We may edit ICI in
9132 // place here, so make sure the select is the only user.
9133 if (ICI->hasOneUse())
9134 if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
9137 case ICmpInst::ICMP_ULT:
9138 case ICmpInst::ICMP_SLT: {
9139 // X < MIN ? T : F --> F
9140 if (CI->isMinValue(Pred == ICmpInst::ICMP_SLT))
9141 return ReplaceInstUsesWith(SI, FalseVal);
9142 // X < C ? X : C-1 --> X > C-1 ? C-1 : X
9143 Constant *AdjustedRHS = SubOne(CI);
9144 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
9145 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
9146 Pred = ICmpInst::getSwappedPredicate(Pred);
9147 CmpRHS = AdjustedRHS;
9148 std::swap(FalseVal, TrueVal);
9149 ICI->setPredicate(Pred);
9150 ICI->setOperand(1, CmpRHS);
9151 SI.setOperand(1, TrueVal);
9152 SI.setOperand(2, FalseVal);
9157 case ICmpInst::ICMP_UGT:
9158 case ICmpInst::ICMP_SGT: {
9159 // X > MAX ? T : F --> F
9160 if (CI->isMaxValue(Pred == ICmpInst::ICMP_SGT))
9161 return ReplaceInstUsesWith(SI, FalseVal);
9162 // X > C ? X : C+1 --> X < C+1 ? C+1 : X
9163 Constant *AdjustedRHS = AddOne(CI);
9164 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
9165 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
9166 Pred = ICmpInst::getSwappedPredicate(Pred);
9167 CmpRHS = AdjustedRHS;
9168 std::swap(FalseVal, TrueVal);
9169 ICI->setPredicate(Pred);
9170 ICI->setOperand(1, CmpRHS);
9171 SI.setOperand(1, TrueVal);
9172 SI.setOperand(2, FalseVal);
9179 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if signed
9180 // (x >s -1) ? -1 : 0 -> ashr x, 31 -> all ones if not signed
9181 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
9182 if (match(TrueVal, m_ConstantInt<-1>()) &&
9183 match(FalseVal, m_ConstantInt<0>()))
9184 Pred = ICI->getPredicate();
9185 else if (match(TrueVal, m_ConstantInt<0>()) &&
9186 match(FalseVal, m_ConstantInt<-1>()))
9187 Pred = CmpInst::getInversePredicate(ICI->getPredicate());
9189 if (Pred != CmpInst::BAD_ICMP_PREDICATE) {
9190 // If we are just checking for a icmp eq of a single bit and zext'ing it
9191 // to an integer, then shift the bit to the appropriate place and then
9192 // cast to integer to avoid the comparison.
9193 const APInt &Op1CV = CI->getValue();
9195 // sext (x <s 0) to i32 --> x>>s31 true if signbit set.
9196 // sext (x >s -1) to i32 --> (x>>s31)^-1 true if signbit clear.
9197 if ((Pred == ICmpInst::ICMP_SLT && Op1CV == 0) ||
9198 (Pred == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) {
9199 Value *In = ICI->getOperand(0);
9200 Value *Sh = ConstantInt::get(In->getType(),
9201 In->getType()->getScalarSizeInBits()-1);
9202 In = InsertNewInstBefore(BinaryOperator::CreateAShr(In, Sh,
9203 In->getName()+".lobit"),
9205 if (In->getType() != SI.getType())
9206 In = CastInst::CreateIntegerCast(In, SI.getType(),
9207 true/*SExt*/, "tmp", ICI);
9209 if (Pred == ICmpInst::ICMP_SGT)
9210 In = InsertNewInstBefore(BinaryOperator::CreateNot(In,
9211 In->getName()+".not"), *ICI);
9213 return ReplaceInstUsesWith(SI, In);
9218 if (CmpLHS == TrueVal && CmpRHS == FalseVal) {
9219 // Transform (X == Y) ? X : Y -> Y
9220 if (Pred == ICmpInst::ICMP_EQ)
9221 return ReplaceInstUsesWith(SI, FalseVal);
9222 // Transform (X != Y) ? X : Y -> X
9223 if (Pred == ICmpInst::ICMP_NE)
9224 return ReplaceInstUsesWith(SI, TrueVal);
9225 /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
9227 } else if (CmpLHS == FalseVal && CmpRHS == TrueVal) {
9228 // Transform (X == Y) ? Y : X -> X
9229 if (Pred == ICmpInst::ICMP_EQ)
9230 return ReplaceInstUsesWith(SI, FalseVal);
9231 // Transform (X != Y) ? Y : X -> Y
9232 if (Pred == ICmpInst::ICMP_NE)
9233 return ReplaceInstUsesWith(SI, TrueVal);
9234 /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
9237 /// NOTE: if we wanted to, this is where to detect integer ABS
9239 return Changed ? &SI : 0;
9242 /// isDefinedInBB - Return true if the value is an instruction defined in the
9243 /// specified basicblock.
9244 static bool isDefinedInBB(const Value *V, const BasicBlock *BB) {
9245 const Instruction *I = dyn_cast<Instruction>(V);
9246 return I != 0 && I->getParent() == BB;
9250 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
9251 Value *CondVal = SI.getCondition();
9252 Value *TrueVal = SI.getTrueValue();
9253 Value *FalseVal = SI.getFalseValue();
9255 // select true, X, Y -> X
9256 // select false, X, Y -> Y
9257 if (ConstantInt *C = dyn_cast<ConstantInt>(CondVal))
9258 return ReplaceInstUsesWith(SI, C->getZExtValue() ? TrueVal : FalseVal);
9260 // select C, X, X -> X
9261 if (TrueVal == FalseVal)
9262 return ReplaceInstUsesWith(SI, TrueVal);
9264 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
9265 return ReplaceInstUsesWith(SI, FalseVal);
9266 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
9267 return ReplaceInstUsesWith(SI, TrueVal);
9268 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
9269 if (isa<Constant>(TrueVal))
9270 return ReplaceInstUsesWith(SI, TrueVal);
9272 return ReplaceInstUsesWith(SI, FalseVal);
9275 if (SI.getType() == Type::getInt1Ty(*Context)) {
9276 if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
9277 if (C->getZExtValue()) {
9278 // Change: A = select B, true, C --> A = or B, C
9279 return BinaryOperator::CreateOr(CondVal, FalseVal);
9281 // Change: A = select B, false, C --> A = and !B, C
9283 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
9284 "not."+CondVal->getName()), SI);
9285 return BinaryOperator::CreateAnd(NotCond, FalseVal);
9287 } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
9288 if (C->getZExtValue() == false) {
9289 // Change: A = select B, C, false --> A = and B, C
9290 return BinaryOperator::CreateAnd(CondVal, TrueVal);
9292 // Change: A = select B, C, true --> A = or !B, C
9294 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
9295 "not."+CondVal->getName()), SI);
9296 return BinaryOperator::CreateOr(NotCond, TrueVal);
9300 // select a, b, a -> a&b
9301 // select a, a, b -> a|b
9302 if (CondVal == TrueVal)
9303 return BinaryOperator::CreateOr(CondVal, FalseVal);
9304 else if (CondVal == FalseVal)
9305 return BinaryOperator::CreateAnd(CondVal, TrueVal);
9308 // Selecting between two integer constants?
9309 if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
9310 if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
9311 // select C, 1, 0 -> zext C to int
9312 if (FalseValC->isZero() && TrueValC->getValue() == 1) {
9313 return CastInst::Create(Instruction::ZExt, CondVal, SI.getType());
9314 } else if (TrueValC->isZero() && FalseValC->getValue() == 1) {
9315 // select C, 0, 1 -> zext !C to int
9317 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
9318 "not."+CondVal->getName()), SI);
9319 return CastInst::Create(Instruction::ZExt, NotCond, SI.getType());
9322 if (ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition())) {
9323 // If one of the constants is zero (we know they can't both be) and we
9324 // have an icmp instruction with zero, and we have an 'and' with the
9325 // non-constant value, eliminate this whole mess. This corresponds to
9326 // cases like this: ((X & 27) ? 27 : 0)
9327 if (TrueValC->isZero() || FalseValC->isZero())
9328 if (IC->isEquality() && isa<ConstantInt>(IC->getOperand(1)) &&
9329 cast<Constant>(IC->getOperand(1))->isNullValue())
9330 if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0)))
9331 if (ICA->getOpcode() == Instruction::And &&
9332 isa<ConstantInt>(ICA->getOperand(1)) &&
9333 (ICA->getOperand(1) == TrueValC ||
9334 ICA->getOperand(1) == FalseValC) &&
9335 isOneBitSet(cast<ConstantInt>(ICA->getOperand(1)))) {
9336 // Okay, now we know that everything is set up, we just don't
9337 // know whether we have a icmp_ne or icmp_eq and whether the
9338 // true or false val is the zero.
9339 bool ShouldNotVal = !TrueValC->isZero();
9340 ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
9343 V = InsertNewInstBefore(BinaryOperator::Create(
9344 Instruction::Xor, V, ICA->getOperand(1)), SI);
9345 return ReplaceInstUsesWith(SI, V);
9350 // See if we are selecting two values based on a comparison of the two values.
9351 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
9352 if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
9353 // Transform (X == Y) ? X : Y -> Y
9354 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
9355 // This is not safe in general for floating point:
9356 // consider X== -0, Y== +0.
9357 // It becomes safe if either operand is a nonzero constant.
9358 ConstantFP *CFPt, *CFPf;
9359 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
9360 !CFPt->getValueAPF().isZero()) ||
9361 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
9362 !CFPf->getValueAPF().isZero()))
9363 return ReplaceInstUsesWith(SI, FalseVal);
9365 // Transform (X != Y) ? X : Y -> X
9366 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
9367 return ReplaceInstUsesWith(SI, TrueVal);
9368 // NOTE: if we wanted to, this is where to detect MIN/MAX
9370 } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
9371 // Transform (X == Y) ? Y : X -> X
9372 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
9373 // This is not safe in general for floating point:
9374 // consider X== -0, Y== +0.
9375 // It becomes safe if either operand is a nonzero constant.
9376 ConstantFP *CFPt, *CFPf;
9377 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
9378 !CFPt->getValueAPF().isZero()) ||
9379 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
9380 !CFPf->getValueAPF().isZero()))
9381 return ReplaceInstUsesWith(SI, FalseVal);
9383 // Transform (X != Y) ? Y : X -> Y
9384 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
9385 return ReplaceInstUsesWith(SI, TrueVal);
9386 // NOTE: if we wanted to, this is where to detect MIN/MAX
9388 // NOTE: if we wanted to, this is where to detect ABS
9391 // See if we are selecting two values based on a comparison of the two values.
9392 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
9393 if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
9396 if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
9397 if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
9398 if (TI->hasOneUse() && FI->hasOneUse()) {
9399 Instruction *AddOp = 0, *SubOp = 0;
9401 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
9402 if (TI->getOpcode() == FI->getOpcode())
9403 if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
9406 // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is
9407 // even legal for FP.
9408 if ((TI->getOpcode() == Instruction::Sub &&
9409 FI->getOpcode() == Instruction::Add) ||
9410 (TI->getOpcode() == Instruction::FSub &&
9411 FI->getOpcode() == Instruction::FAdd)) {
9412 AddOp = FI; SubOp = TI;
9413 } else if ((FI->getOpcode() == Instruction::Sub &&
9414 TI->getOpcode() == Instruction::Add) ||
9415 (FI->getOpcode() == Instruction::FSub &&
9416 TI->getOpcode() == Instruction::FAdd)) {
9417 AddOp = TI; SubOp = FI;
9421 Value *OtherAddOp = 0;
9422 if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
9423 OtherAddOp = AddOp->getOperand(1);
9424 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
9425 OtherAddOp = AddOp->getOperand(0);
9429 // So at this point we know we have (Y -> OtherAddOp):
9430 // select C, (add X, Y), (sub X, Z)
9431 Value *NegVal; // Compute -Z
9432 if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) {
9433 NegVal = ConstantExpr::getNeg(C);
9435 NegVal = InsertNewInstBefore(
9436 BinaryOperator::CreateNeg(SubOp->getOperand(1),
9440 Value *NewTrueOp = OtherAddOp;
9441 Value *NewFalseOp = NegVal;
9443 std::swap(NewTrueOp, NewFalseOp);
9444 Instruction *NewSel =
9445 SelectInst::Create(CondVal, NewTrueOp,
9446 NewFalseOp, SI.getName() + ".p");
9448 NewSel = InsertNewInstBefore(NewSel, SI);
9449 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
9454 // See if we can fold the select into one of our operands.
9455 if (SI.getType()->isInteger()) {
9456 Instruction *FoldI = FoldSelectIntoOp(SI, TrueVal, FalseVal);
9461 // See if we can fold the select into a phi node. The true/false values have
9462 // to be live in the predecessor blocks. If they are instructions in SI's
9463 // block, we can't map to the predecessor.
9464 if (isa<PHINode>(SI.getCondition()) &&
9465 (!isDefinedInBB(SI.getTrueValue(), SI.getParent()) ||
9466 isa<PHINode>(SI.getTrueValue())) &&
9467 (!isDefinedInBB(SI.getFalseValue(), SI.getParent()) ||
9468 isa<PHINode>(SI.getFalseValue())))
9469 if (Instruction *NV = FoldOpIntoPhi(SI))
9472 if (BinaryOperator::isNot(CondVal)) {
9473 SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
9474 SI.setOperand(1, FalseVal);
9475 SI.setOperand(2, TrueVal);
9482 /// EnforceKnownAlignment - If the specified pointer points to an object that
9483 /// we control, modify the object's alignment to PrefAlign. This isn't
9484 /// often possible though. If alignment is important, a more reliable approach
9485 /// is to simply align all global variables and allocation instructions to
9486 /// their preferred alignment from the beginning.
9488 static unsigned EnforceKnownAlignment(Value *V,
9489 unsigned Align, unsigned PrefAlign) {
9491 User *U = dyn_cast<User>(V);
9492 if (!U) return Align;
9494 switch (Operator::getOpcode(U)) {
9496 case Instruction::BitCast:
9497 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
9498 case Instruction::GetElementPtr: {
9499 // If all indexes are zero, it is just the alignment of the base pointer.
9500 bool AllZeroOperands = true;
9501 for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i)
9502 if (!isa<Constant>(*i) ||
9503 !cast<Constant>(*i)->isNullValue()) {
9504 AllZeroOperands = false;
9508 if (AllZeroOperands) {
9509 // Treat this like a bitcast.
9510 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
9516 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
9517 // If there is a large requested alignment and we can, bump up the alignment
9519 if (!GV->isDeclaration()) {
9520 if (GV->getAlignment() >= PrefAlign)
9521 Align = GV->getAlignment();
9523 GV->setAlignment(PrefAlign);
9527 } else if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
9528 // If there is a requested alignment and if this is an alloca, round up.
9529 if (AI->getAlignment() >= PrefAlign)
9530 Align = AI->getAlignment();
9532 AI->setAlignment(PrefAlign);
9540 /// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that
9541 /// we can determine, return it, otherwise return 0. If PrefAlign is specified,
9542 /// and it is more than the alignment of the ultimate object, see if we can
9543 /// increase the alignment of the ultimate object, making this check succeed.
9544 unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V,
9545 unsigned PrefAlign) {
9546 unsigned BitWidth = TD ? TD->getTypeSizeInBits(V->getType()) :
9547 sizeof(PrefAlign) * CHAR_BIT;
9548 APInt Mask = APInt::getAllOnesValue(BitWidth);
9549 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
9550 ComputeMaskedBits(V, Mask, KnownZero, KnownOne);
9551 unsigned TrailZ = KnownZero.countTrailingOnes();
9552 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
9554 if (PrefAlign > Align)
9555 Align = EnforceKnownAlignment(V, Align, PrefAlign);
9557 // We don't need to make any adjustment.
9561 Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
9562 unsigned DstAlign = GetOrEnforceKnownAlignment(MI->getOperand(1));
9563 unsigned SrcAlign = GetOrEnforceKnownAlignment(MI->getOperand(2));
9564 unsigned MinAlign = std::min(DstAlign, SrcAlign);
9565 unsigned CopyAlign = MI->getAlignment();
9567 if (CopyAlign < MinAlign) {
9568 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
9573 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
9575 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getOperand(3));
9576 if (MemOpLength == 0) return 0;
9578 // Source and destination pointer types are always "i8*" for intrinsic. See
9579 // if the size is something we can handle with a single primitive load/store.
9580 // A single load+store correctly handles overlapping memory in the memmove
9582 unsigned Size = MemOpLength->getZExtValue();
9583 if (Size == 0) return MI; // Delete this mem transfer.
9585 if (Size > 8 || (Size&(Size-1)))
9586 return 0; // If not 1/2/4/8 bytes, exit.
9588 // Use an integer load+store unless we can find something better.
9590 PointerType::getUnqual(IntegerType::get(*Context, Size<<3));
9592 // Memcpy forces the use of i8* for the source and destination. That means
9593 // that if you're using memcpy to move one double around, you'll get a cast
9594 // from double* to i8*. We'd much rather use a double load+store rather than
9595 // an i64 load+store, here because this improves the odds that the source or
9596 // dest address will be promotable. See if we can find a better type than the
9597 // integer datatype.
9598 if (Value *Op = getBitCastOperand(MI->getOperand(1))) {
9599 const Type *SrcETy = cast<PointerType>(Op->getType())->getElementType();
9600 if (TD && SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
9601 // The SrcETy might be something like {{{double}}} or [1 x double]. Rip
9602 // down through these levels if so.
9603 while (!SrcETy->isSingleValueType()) {
9604 if (const StructType *STy = dyn_cast<StructType>(SrcETy)) {
9605 if (STy->getNumElements() == 1)
9606 SrcETy = STy->getElementType(0);
9609 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
9610 if (ATy->getNumElements() == 1)
9611 SrcETy = ATy->getElementType();
9618 if (SrcETy->isSingleValueType())
9619 NewPtrTy = PointerType::getUnqual(SrcETy);
9624 // If the memcpy/memmove provides better alignment info than we can
9626 SrcAlign = std::max(SrcAlign, CopyAlign);
9627 DstAlign = std::max(DstAlign, CopyAlign);
9629 Value *Src = Builder->CreateBitCast(MI->getOperand(2), NewPtrTy);
9630 Value *Dest = Builder->CreateBitCast(MI->getOperand(1), NewPtrTy);
9631 Instruction *L = new LoadInst(Src, "tmp", false, SrcAlign);
9632 InsertNewInstBefore(L, *MI);
9633 InsertNewInstBefore(new StoreInst(L, Dest, false, DstAlign), *MI);
9635 // Set the size of the copy to 0, it will be deleted on the next iteration.
9636 MI->setOperand(3, Constant::getNullValue(MemOpLength->getType()));
9640 Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
9641 unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest());
9642 if (MI->getAlignment() < Alignment) {
9643 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
9648 // Extract the length and alignment and fill if they are constant.
9649 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
9650 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
9651 if (!LenC || !FillC || FillC->getType() != Type::getInt8Ty(*Context))
9653 uint64_t Len = LenC->getZExtValue();
9654 Alignment = MI->getAlignment();
9656 // If the length is zero, this is a no-op
9657 if (Len == 0) return MI; // memset(d,c,0,a) -> noop
9659 // memset(s,c,n) -> store s, c (for n=1,2,4,8)
9660 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
9661 const Type *ITy = IntegerType::get(*Context, Len*8); // n=1 -> i8.
9663 Value *Dest = MI->getDest();
9664 Dest = Builder->CreateBitCast(Dest, PointerType::getUnqual(ITy));
9666 // Alignment 0 is identity for alignment 1 for memset, but not store.
9667 if (Alignment == 0) Alignment = 1;
9669 // Extract the fill value and store.
9670 uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
9671 InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill),
9672 Dest, false, Alignment), *MI);
9674 // Set the size of the copy to 0, it will be deleted on the next iteration.
9675 MI->setLength(Constant::getNullValue(LenC->getType()));
9683 /// visitCallInst - CallInst simplification. This mostly only handles folding
9684 /// of intrinsic instructions. For normal calls, it allows visitCallSite to do
9685 /// the heavy lifting.
9687 Instruction *InstCombiner::visitCallInst(CallInst &CI) {
9688 // If the caller function is nounwind, mark the call as nounwind, even if the
9690 if (CI.getParent()->getParent()->doesNotThrow() &&
9691 !CI.doesNotThrow()) {
9692 CI.setDoesNotThrow();
9696 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
9697 if (!II) return visitCallSite(&CI);
9699 // Intrinsics cannot occur in an invoke, so handle them here instead of in
9701 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
9702 bool Changed = false;
9704 // memmove/cpy/set of zero bytes is a noop.
9705 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
9706 if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
9708 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
9709 if (CI->getZExtValue() == 1) {
9710 // Replace the instruction with just byte operations. We would
9711 // transform other cases to loads/stores, but we don't know if
9712 // alignment is sufficient.
9716 // If we have a memmove and the source operation is a constant global,
9717 // then the source and dest pointers can't alias, so we can change this
9718 // into a call to memcpy.
9719 if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
9720 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
9721 if (GVSrc->isConstant()) {
9722 Module *M = CI.getParent()->getParent()->getParent();
9723 Intrinsic::ID MemCpyID = Intrinsic::memcpy;
9725 Tys[0] = CI.getOperand(3)->getType();
9727 Intrinsic::getDeclaration(M, MemCpyID, Tys, 1));
9731 // memmove(x,x,size) -> noop.
9732 if (MMI->getSource() == MMI->getDest())
9733 return EraseInstFromFunction(CI);
9736 // If we can determine a pointer alignment that is bigger than currently
9737 // set, update the alignment.
9738 if (isa<MemTransferInst>(MI)) {
9739 if (Instruction *I = SimplifyMemTransfer(MI))
9741 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
9742 if (Instruction *I = SimplifyMemSet(MSI))
9746 if (Changed) return II;
9749 switch (II->getIntrinsicID()) {
9751 case Intrinsic::bswap:
9752 // bswap(bswap(x)) -> x
9753 if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getOperand(1)))
9754 if (Operand->getIntrinsicID() == Intrinsic::bswap)
9755 return ReplaceInstUsesWith(CI, Operand->getOperand(1));
9757 case Intrinsic::ppc_altivec_lvx:
9758 case Intrinsic::ppc_altivec_lvxl:
9759 case Intrinsic::x86_sse_loadu_ps:
9760 case Intrinsic::x86_sse2_loadu_pd:
9761 case Intrinsic::x86_sse2_loadu_dq:
9762 // Turn PPC lvx -> load if the pointer is known aligned.
9763 // Turn X86 loadups -> load if the pointer is known aligned.
9764 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
9765 Value *Ptr = Builder->CreateBitCast(II->getOperand(1),
9766 PointerType::getUnqual(II->getType()));
9767 return new LoadInst(Ptr);
9770 case Intrinsic::ppc_altivec_stvx:
9771 case Intrinsic::ppc_altivec_stvxl:
9772 // Turn stvx -> store if the pointer is known aligned.
9773 if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) {
9774 const Type *OpPtrTy =
9775 PointerType::getUnqual(II->getOperand(1)->getType());
9776 Value *Ptr = Builder->CreateBitCast(II->getOperand(2), OpPtrTy);
9777 return new StoreInst(II->getOperand(1), Ptr);
9780 case Intrinsic::x86_sse_storeu_ps:
9781 case Intrinsic::x86_sse2_storeu_pd:
9782 case Intrinsic::x86_sse2_storeu_dq:
9783 // Turn X86 storeu -> store if the pointer is known aligned.
9784 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
9785 const Type *OpPtrTy =
9786 PointerType::getUnqual(II->getOperand(2)->getType());
9787 Value *Ptr = Builder->CreateBitCast(II->getOperand(1), OpPtrTy);
9788 return new StoreInst(II->getOperand(2), Ptr);
9792 case Intrinsic::x86_sse_cvttss2si: {
9793 // These intrinsics only demands the 0th element of its input vector. If
9794 // we can simplify the input based on that, do so now.
9796 cast<VectorType>(II->getOperand(1)->getType())->getNumElements();
9797 APInt DemandedElts(VWidth, 1);
9798 APInt UndefElts(VWidth, 0);
9799 if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
9801 II->setOperand(1, V);
9807 case Intrinsic::ppc_altivec_vperm:
9808 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
9809 if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) {
9810 assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
9812 // Check that all of the elements are integer constants or undefs.
9813 bool AllEltsOk = true;
9814 for (unsigned i = 0; i != 16; ++i) {
9815 if (!isa<ConstantInt>(Mask->getOperand(i)) &&
9816 !isa<UndefValue>(Mask->getOperand(i))) {
9823 // Cast the input vectors to byte vectors.
9824 Value *Op0 = Builder->CreateBitCast(II->getOperand(1), Mask->getType());
9825 Value *Op1 = Builder->CreateBitCast(II->getOperand(2), Mask->getType());
9826 Value *Result = UndefValue::get(Op0->getType());
9828 // Only extract each element once.
9829 Value *ExtractedElts[32];
9830 memset(ExtractedElts, 0, sizeof(ExtractedElts));
9832 for (unsigned i = 0; i != 16; ++i) {
9833 if (isa<UndefValue>(Mask->getOperand(i)))
9835 unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
9836 Idx &= 31; // Match the hardware behavior.
9838 if (ExtractedElts[Idx] == 0) {
9839 ExtractedElts[Idx] =
9840 Builder->CreateExtractElement(Idx < 16 ? Op0 : Op1,
9841 ConstantInt::get(Type::getInt32Ty(*Context), Idx&15, false),
9845 // Insert this value into the result vector.
9846 Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
9847 ConstantInt::get(Type::getInt32Ty(*Context), i, false),
9850 return CastInst::Create(Instruction::BitCast, Result, CI.getType());
9855 case Intrinsic::stackrestore: {
9856 // If the save is right next to the restore, remove the restore. This can
9857 // happen when variable allocas are DCE'd.
9858 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
9859 if (SS->getIntrinsicID() == Intrinsic::stacksave) {
9860 BasicBlock::iterator BI = SS;
9862 return EraseInstFromFunction(CI);
9866 // Scan down this block to see if there is another stack restore in the
9867 // same block without an intervening call/alloca.
9868 BasicBlock::iterator BI = II;
9869 TerminatorInst *TI = II->getParent()->getTerminator();
9870 bool CannotRemove = false;
9871 for (++BI; &*BI != TI; ++BI) {
9872 if (isa<AllocaInst>(BI) || isMalloc(BI)) {
9873 CannotRemove = true;
9876 if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
9877 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
9878 // If there is a stackrestore below this one, remove this one.
9879 if (II->getIntrinsicID() == Intrinsic::stackrestore)
9880 return EraseInstFromFunction(CI);
9881 // Otherwise, ignore the intrinsic.
9883 // If we found a non-intrinsic call, we can't remove the stack
9885 CannotRemove = true;
9891 // If the stack restore is in a return/unwind block and if there are no
9892 // allocas or calls between the restore and the return, nuke the restore.
9893 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)))
9894 return EraseInstFromFunction(CI);
9899 return visitCallSite(II);
9902 // InvokeInst simplification
9904 Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
9905 return visitCallSite(&II);
9908 /// isSafeToEliminateVarargsCast - If this cast does not affect the value
9909 /// passed through the varargs area, we can eliminate the use of the cast.
9910 static bool isSafeToEliminateVarargsCast(const CallSite CS,
9911 const CastInst * const CI,
9912 const TargetData * const TD,
9914 if (!CI->isLosslessCast())
9917 // The size of ByVal arguments is derived from the type, so we
9918 // can't change to a type with a different size. If the size were
9919 // passed explicitly we could avoid this check.
9920 if (!CS.paramHasAttr(ix, Attribute::ByVal))
9924 cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
9925 const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
9926 if (!SrcTy->isSized() || !DstTy->isSized())
9928 if (!TD || TD->getTypeAllocSize(SrcTy) != TD->getTypeAllocSize(DstTy))
9933 // visitCallSite - Improvements for call and invoke instructions.
9935 Instruction *InstCombiner::visitCallSite(CallSite CS) {
9936 bool Changed = false;
9938 // If the callee is a constexpr cast of a function, attempt to move the cast
9939 // to the arguments of the call/invoke.
9940 if (transformConstExprCastCall(CS)) return 0;
9942 Value *Callee = CS.getCalledValue();
9944 if (Function *CalleeF = dyn_cast<Function>(Callee))
9945 if (CalleeF->getCallingConv() != CS.getCallingConv()) {
9946 Instruction *OldCall = CS.getInstruction();
9947 // If the call and callee calling conventions don't match, this call must
9948 // be unreachable, as the call is undefined.
9949 new StoreInst(ConstantInt::getTrue(*Context),
9950 UndefValue::get(PointerType::getUnqual(Type::getInt1Ty(*Context))),
9952 if (!OldCall->use_empty())
9953 OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
9954 if (isa<CallInst>(OldCall)) // Not worth removing an invoke here.
9955 return EraseInstFromFunction(*OldCall);
9959 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
9960 // This instruction is not reachable, just remove it. We insert a store to
9961 // undef so that we know that this code is not reachable, despite the fact
9962 // that we can't modify the CFG here.
9963 new StoreInst(ConstantInt::getTrue(*Context),
9964 UndefValue::get(PointerType::getUnqual(Type::getInt1Ty(*Context))),
9965 CS.getInstruction());
9967 if (!CS.getInstruction()->use_empty())
9968 CS.getInstruction()->
9969 replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
9971 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
9972 // Don't break the CFG, insert a dummy cond branch.
9973 BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
9974 ConstantInt::getTrue(*Context), II);
9976 return EraseInstFromFunction(*CS.getInstruction());
9979 if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
9980 if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
9981 if (In->getIntrinsicID() == Intrinsic::init_trampoline)
9982 return transformCallThroughTrampoline(CS);
9984 const PointerType *PTy = cast<PointerType>(Callee->getType());
9985 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
9986 if (FTy->isVarArg()) {
9987 int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1);
9988 // See if we can optimize any arguments passed through the varargs area of
9990 for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
9991 E = CS.arg_end(); I != E; ++I, ++ix) {
9992 CastInst *CI = dyn_cast<CastInst>(*I);
9993 if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
9994 *I = CI->getOperand(0);
10000 if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
10001 // Inline asm calls cannot throw - mark them 'nounwind'.
10002 CS.setDoesNotThrow();
10006 return Changed ? CS.getInstruction() : 0;
10009 // transformConstExprCastCall - If the callee is a constexpr cast of a function,
10010 // attempt to move the cast to the arguments of the call/invoke.
10012 bool InstCombiner::transformConstExprCastCall(CallSite CS) {
10013 if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
10014 ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
10015 if (CE->getOpcode() != Instruction::BitCast ||
10016 !isa<Function>(CE->getOperand(0)))
10018 Function *Callee = cast<Function>(CE->getOperand(0));
10019 Instruction *Caller = CS.getInstruction();
10020 const AttrListPtr &CallerPAL = CS.getAttributes();
10022 // Okay, this is a cast from a function to a different type. Unless doing so
10023 // would cause a type conversion of one of our arguments, change this call to
10024 // be a direct call with arguments casted to the appropriate types.
10026 const FunctionType *FT = Callee->getFunctionType();
10027 const Type *OldRetTy = Caller->getType();
10028 const Type *NewRetTy = FT->getReturnType();
10030 if (isa<StructType>(NewRetTy))
10031 return false; // TODO: Handle multiple return values.
10033 // Check to see if we are changing the return type...
10034 if (OldRetTy != NewRetTy) {
10035 if (Callee->isDeclaration() &&
10036 // Conversion is ok if changing from one pointer type to another or from
10037 // a pointer to an integer of the same size.
10038 !((isa<PointerType>(OldRetTy) || !TD ||
10039 OldRetTy == TD->getIntPtrType(Caller->getContext())) &&
10040 (isa<PointerType>(NewRetTy) || !TD ||
10041 NewRetTy == TD->getIntPtrType(Caller->getContext()))))
10042 return false; // Cannot transform this return value.
10044 if (!Caller->use_empty() &&
10045 // void -> non-void is handled specially
10046 NewRetTy != Type::getVoidTy(*Context) && !CastInst::isCastable(NewRetTy, OldRetTy))
10047 return false; // Cannot transform this return value.
10049 if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
10050 Attributes RAttrs = CallerPAL.getRetAttributes();
10051 if (RAttrs & Attribute::typeIncompatible(NewRetTy))
10052 return false; // Attribute not compatible with transformed value.
10055 // If the callsite is an invoke instruction, and the return value is used by
10056 // a PHI node in a successor, we cannot change the return type of the call
10057 // because there is no place to put the cast instruction (without breaking
10058 // the critical edge). Bail out in this case.
10059 if (!Caller->use_empty())
10060 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
10061 for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
10063 if (PHINode *PN = dyn_cast<PHINode>(*UI))
10064 if (PN->getParent() == II->getNormalDest() ||
10065 PN->getParent() == II->getUnwindDest())
10069 unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
10070 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
10072 CallSite::arg_iterator AI = CS.arg_begin();
10073 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
10074 const Type *ParamTy = FT->getParamType(i);
10075 const Type *ActTy = (*AI)->getType();
10077 if (!CastInst::isCastable(ActTy, ParamTy))
10078 return false; // Cannot transform this parameter value.
10080 if (CallerPAL.getParamAttributes(i + 1)
10081 & Attribute::typeIncompatible(ParamTy))
10082 return false; // Attribute not compatible with transformed value.
10084 // Converting from one pointer type to another or between a pointer and an
10085 // integer of the same size is safe even if we do not have a body.
10086 bool isConvertible = ActTy == ParamTy ||
10087 (TD && ((isa<PointerType>(ParamTy) ||
10088 ParamTy == TD->getIntPtrType(Caller->getContext())) &&
10089 (isa<PointerType>(ActTy) ||
10090 ActTy == TD->getIntPtrType(Caller->getContext()))));
10091 if (Callee->isDeclaration() && !isConvertible) return false;
10094 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
10095 Callee->isDeclaration())
10096 return false; // Do not delete arguments unless we have a function body.
10098 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
10099 !CallerPAL.isEmpty())
10100 // In this case we have more arguments than the new function type, but we
10101 // won't be dropping them. Check that these extra arguments have attributes
10102 // that are compatible with being a vararg call argument.
10103 for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
10104 if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
10106 Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
10107 if (PAttrs & Attribute::VarArgsIncompatible)
10111 // Okay, we decided that this is a safe thing to do: go ahead and start
10112 // inserting cast instructions as necessary...
10113 std::vector<Value*> Args;
10114 Args.reserve(NumActualArgs);
10115 SmallVector<AttributeWithIndex, 8> attrVec;
10116 attrVec.reserve(NumCommonArgs);
10118 // Get any return attributes.
10119 Attributes RAttrs = CallerPAL.getRetAttributes();
10121 // If the return value is not being used, the type may not be compatible
10122 // with the existing attributes. Wipe out any problematic attributes.
10123 RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
10125 // Add the new return attributes.
10127 attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
10129 AI = CS.arg_begin();
10130 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
10131 const Type *ParamTy = FT->getParamType(i);
10132 if ((*AI)->getType() == ParamTy) {
10133 Args.push_back(*AI);
10135 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
10136 false, ParamTy, false);
10137 Args.push_back(Builder->CreateCast(opcode, *AI, ParamTy, "tmp"));
10140 // Add any parameter attributes.
10141 if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
10142 attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
10145 // If the function takes more arguments than the call was taking, add them
10147 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
10148 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
10150 // If we are removing arguments to the function, emit an obnoxious warning.
10151 if (FT->getNumParams() < NumActualArgs) {
10152 if (!FT->isVarArg()) {
10153 errs() << "WARNING: While resolving call to function '"
10154 << Callee->getName() << "' arguments were dropped!\n";
10156 // Add all of the arguments in their promoted form to the arg list.
10157 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
10158 const Type *PTy = getPromotedType((*AI)->getType());
10159 if (PTy != (*AI)->getType()) {
10160 // Must promote to pass through va_arg area!
10161 Instruction::CastOps opcode =
10162 CastInst::getCastOpcode(*AI, false, PTy, false);
10163 Args.push_back(Builder->CreateCast(opcode, *AI, PTy, "tmp"));
10165 Args.push_back(*AI);
10168 // Add any parameter attributes.
10169 if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
10170 attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
10175 if (Attributes FnAttrs = CallerPAL.getFnAttributes())
10176 attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
10178 if (NewRetTy == Type::getVoidTy(*Context))
10179 Caller->setName(""); // Void type should not have a name.
10181 const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),
10185 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
10186 NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(),
10187 Args.begin(), Args.end(),
10188 Caller->getName(), Caller);
10189 cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
10190 cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
10192 NC = CallInst::Create(Callee, Args.begin(), Args.end(),
10193 Caller->getName(), Caller);
10194 CallInst *CI = cast<CallInst>(Caller);
10195 if (CI->isTailCall())
10196 cast<CallInst>(NC)->setTailCall();
10197 cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
10198 cast<CallInst>(NC)->setAttributes(NewCallerPAL);
10201 // Insert a cast of the return type as necessary.
10203 if (OldRetTy != NV->getType() && !Caller->use_empty()) {
10204 if (NV->getType() != Type::getVoidTy(*Context)) {
10205 Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false,
10207 NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp");
10209 // If this is an invoke instruction, we should insert it after the first
10210 // non-phi, instruction in the normal successor block.
10211 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
10212 BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI();
10213 InsertNewInstBefore(NC, *I);
10215 // Otherwise, it's a call, just insert cast right after the call instr
10216 InsertNewInstBefore(NC, *Caller);
10218 Worklist.AddUsersToWorkList(*Caller);
10220 NV = UndefValue::get(Caller->getType());
10225 if (!Caller->use_empty())
10226 Caller->replaceAllUsesWith(NV);
10228 EraseInstFromFunction(*Caller);
10232 // transformCallThroughTrampoline - Turn a call to a function created by the
10233 // init_trampoline intrinsic into a direct call to the underlying function.
10235 Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
10236 Value *Callee = CS.getCalledValue();
10237 const PointerType *PTy = cast<PointerType>(Callee->getType());
10238 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
10239 const AttrListPtr &Attrs = CS.getAttributes();
10241 // If the call already has the 'nest' attribute somewhere then give up -
10242 // otherwise 'nest' would occur twice after splicing in the chain.
10243 if (Attrs.hasAttrSomewhere(Attribute::Nest))
10246 IntrinsicInst *Tramp =
10247 cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
10249 Function *NestF = cast<Function>(Tramp->getOperand(2)->stripPointerCasts());
10250 const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
10251 const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
10253 const AttrListPtr &NestAttrs = NestF->getAttributes();
10254 if (!NestAttrs.isEmpty()) {
10255 unsigned NestIdx = 1;
10256 const Type *NestTy = 0;
10257 Attributes NestAttr = Attribute::None;
10259 // Look for a parameter marked with the 'nest' attribute.
10260 for (FunctionType::param_iterator I = NestFTy->param_begin(),
10261 E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
10262 if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
10263 // Record the parameter type and any other attributes.
10265 NestAttr = NestAttrs.getParamAttributes(NestIdx);
10270 Instruction *Caller = CS.getInstruction();
10271 std::vector<Value*> NewArgs;
10272 NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
10274 SmallVector<AttributeWithIndex, 8> NewAttrs;
10275 NewAttrs.reserve(Attrs.getNumSlots() + 1);
10277 // Insert the nest argument into the call argument list, which may
10278 // mean appending it. Likewise for attributes.
10280 // Add any result attributes.
10281 if (Attributes Attr = Attrs.getRetAttributes())
10282 NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
10286 CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
10288 if (Idx == NestIdx) {
10289 // Add the chain argument and attributes.
10290 Value *NestVal = Tramp->getOperand(3);
10291 if (NestVal->getType() != NestTy)
10292 NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller);
10293 NewArgs.push_back(NestVal);
10294 NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
10300 // Add the original argument and attributes.
10301 NewArgs.push_back(*I);
10302 if (Attributes Attr = Attrs.getParamAttributes(Idx))
10304 (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
10310 // Add any function attributes.
10311 if (Attributes Attr = Attrs.getFnAttributes())
10312 NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
10314 // The trampoline may have been bitcast to a bogus type (FTy).
10315 // Handle this by synthesizing a new function type, equal to FTy
10316 // with the chain parameter inserted.
10318 std::vector<const Type*> NewTypes;
10319 NewTypes.reserve(FTy->getNumParams()+1);
10321 // Insert the chain's type into the list of parameter types, which may
10322 // mean appending it.
10325 FunctionType::param_iterator I = FTy->param_begin(),
10326 E = FTy->param_end();
10329 if (Idx == NestIdx)
10330 // Add the chain's type.
10331 NewTypes.push_back(NestTy);
10336 // Add the original type.
10337 NewTypes.push_back(*I);
10343 // Replace the trampoline call with a direct call. Let the generic
10344 // code sort out any function type mismatches.
10345 FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
10347 Constant *NewCallee =
10348 NestF->getType() == PointerType::getUnqual(NewFTy) ?
10349 NestF : ConstantExpr::getBitCast(NestF,
10350 PointerType::getUnqual(NewFTy));
10351 const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),
10354 Instruction *NewCaller;
10355 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
10356 NewCaller = InvokeInst::Create(NewCallee,
10357 II->getNormalDest(), II->getUnwindDest(),
10358 NewArgs.begin(), NewArgs.end(),
10359 Caller->getName(), Caller);
10360 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
10361 cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
10363 NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(),
10364 Caller->getName(), Caller);
10365 if (cast<CallInst>(Caller)->isTailCall())
10366 cast<CallInst>(NewCaller)->setTailCall();
10367 cast<CallInst>(NewCaller)->
10368 setCallingConv(cast<CallInst>(Caller)->getCallingConv());
10369 cast<CallInst>(NewCaller)->setAttributes(NewPAL);
10371 if (Caller->getType() != Type::getVoidTy(*Context) && !Caller->use_empty())
10372 Caller->replaceAllUsesWith(NewCaller);
10373 Caller->eraseFromParent();
10374 Worklist.Remove(Caller);
10379 // Replace the trampoline call with a direct call. Since there is no 'nest'
10380 // parameter, there is no need to adjust the argument list. Let the generic
10381 // code sort out any function type mismatches.
10382 Constant *NewCallee =
10383 NestF->getType() == PTy ? NestF :
10384 ConstantExpr::getBitCast(NestF, PTy);
10385 CS.setCalledFunction(NewCallee);
10386 return CS.getInstruction();
10389 /// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(a,c)]
10390 /// and if a/b/c and the add's all have a single use, turn this into a phi
10391 /// and a single binop.
10392 Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
10393 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
10394 assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst));
10395 unsigned Opc = FirstInst->getOpcode();
10396 Value *LHSVal = FirstInst->getOperand(0);
10397 Value *RHSVal = FirstInst->getOperand(1);
10399 const Type *LHSType = LHSVal->getType();
10400 const Type *RHSType = RHSVal->getType();
10402 // Scan to see if all operands are the same opcode, and all have one use.
10403 for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
10404 Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
10405 if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
10406 // Verify type of the LHS matches so we don't fold cmp's of different
10407 // types or GEP's with different index types.
10408 I->getOperand(0)->getType() != LHSType ||
10409 I->getOperand(1)->getType() != RHSType)
10412 // If they are CmpInst instructions, check their predicates
10413 if (Opc == Instruction::ICmp || Opc == Instruction::FCmp)
10414 if (cast<CmpInst>(I)->getPredicate() !=
10415 cast<CmpInst>(FirstInst)->getPredicate())
10418 // Keep track of which operand needs a phi node.
10419 if (I->getOperand(0) != LHSVal) LHSVal = 0;
10420 if (I->getOperand(1) != RHSVal) RHSVal = 0;
10423 // If both LHS and RHS would need a PHI, don't do this transformation,
10424 // because it would increase the number of PHIs entering the block,
10425 // which leads to higher register pressure. This is especially
10426 // bad when the PHIs are in the header of a loop.
10427 if (!LHSVal && !RHSVal)
10430 // Otherwise, this is safe to transform!
10432 Value *InLHS = FirstInst->getOperand(0);
10433 Value *InRHS = FirstInst->getOperand(1);
10434 PHINode *NewLHS = 0, *NewRHS = 0;
10436 NewLHS = PHINode::Create(LHSType,
10437 FirstInst->getOperand(0)->getName() + ".pn");
10438 NewLHS->reserveOperandSpace(PN.getNumOperands()/2);
10439 NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
10440 InsertNewInstBefore(NewLHS, PN);
10445 NewRHS = PHINode::Create(RHSType,
10446 FirstInst->getOperand(1)->getName() + ".pn");
10447 NewRHS->reserveOperandSpace(PN.getNumOperands()/2);
10448 NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
10449 InsertNewInstBefore(NewRHS, PN);
10453 // Add all operands to the new PHIs.
10454 if (NewLHS || NewRHS) {
10455 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
10456 Instruction *InInst = cast<Instruction>(PN.getIncomingValue(i));
10458 Value *NewInLHS = InInst->getOperand(0);
10459 NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
10462 Value *NewInRHS = InInst->getOperand(1);
10463 NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
10468 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
10469 return BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
10470 CmpInst *CIOp = cast<CmpInst>(FirstInst);
10471 return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
10475 Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) {
10476 GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0));
10478 SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(),
10479 FirstInst->op_end());
10480 // This is true if all GEP bases are allocas and if all indices into them are
10482 bool AllBasePointersAreAllocas = true;
10484 // We don't want to replace this phi if the replacement would require
10485 // more than one phi, which leads to higher register pressure. This is
10486 // especially bad when the PHIs are in the header of a loop.
10487 bool NeededPhi = false;
10489 // Scan to see if all operands are the same opcode, and all have one use.
10490 for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
10491 GetElementPtrInst *GEP= dyn_cast<GetElementPtrInst>(PN.getIncomingValue(i));
10492 if (!GEP || !GEP->hasOneUse() || GEP->getType() != FirstInst->getType() ||
10493 GEP->getNumOperands() != FirstInst->getNumOperands())
10496 // Keep track of whether or not all GEPs are of alloca pointers.
10497 if (AllBasePointersAreAllocas &&
10498 (!isa<AllocaInst>(GEP->getOperand(0)) ||
10499 !GEP->hasAllConstantIndices()))
10500 AllBasePointersAreAllocas = false;
10502 // Compare the operand lists.
10503 for (unsigned op = 0, e = FirstInst->getNumOperands(); op != e; ++op) {
10504 if (FirstInst->getOperand(op) == GEP->getOperand(op))
10507 // Don't merge two GEPs when two operands differ (introducing phi nodes)
10508 // if one of the PHIs has a constant for the index. The index may be
10509 // substantially cheaper to compute for the constants, so making it a
10510 // variable index could pessimize the path. This also handles the case
10511 // for struct indices, which must always be constant.
10512 if (isa<ConstantInt>(FirstInst->getOperand(op)) ||
10513 isa<ConstantInt>(GEP->getOperand(op)))
10516 if (FirstInst->getOperand(op)->getType() !=GEP->getOperand(op)->getType())
10519 // If we already needed a PHI for an earlier operand, and another operand
10520 // also requires a PHI, we'd be introducing more PHIs than we're
10521 // eliminating, which increases register pressure on entry to the PHI's
10526 FixedOperands[op] = 0; // Needs a PHI.
10531 // If all of the base pointers of the PHI'd GEPs are from allocas, don't
10532 // bother doing this transformation. At best, this will just save a bit of
10533 // offset calculation, but all the predecessors will have to materialize the
10534 // stack address into a register anyway. We'd actually rather *clone* the
10535 // load up into the predecessors so that we have a load of a gep of an alloca,
10536 // which can usually all be folded into the load.
10537 if (AllBasePointersAreAllocas)
10540 // Otherwise, this is safe to transform. Insert PHI nodes for each operand
10541 // that is variable.
10542 SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size());
10544 bool HasAnyPHIs = false;
10545 for (unsigned i = 0, e = FixedOperands.size(); i != e; ++i) {
10546 if (FixedOperands[i]) continue; // operand doesn't need a phi.
10547 Value *FirstOp = FirstInst->getOperand(i);
10548 PHINode *NewPN = PHINode::Create(FirstOp->getType(),
10549 FirstOp->getName()+".pn");
10550 InsertNewInstBefore(NewPN, PN);
10552 NewPN->reserveOperandSpace(e);
10553 NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0));
10554 OperandPhis[i] = NewPN;
10555 FixedOperands[i] = NewPN;
10560 // Add all operands to the new PHIs.
10562 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
10563 GetElementPtrInst *InGEP =cast<GetElementPtrInst>(PN.getIncomingValue(i));
10564 BasicBlock *InBB = PN.getIncomingBlock(i);
10566 for (unsigned op = 0, e = OperandPhis.size(); op != e; ++op)
10567 if (PHINode *OpPhi = OperandPhis[op])
10568 OpPhi->addIncoming(InGEP->getOperand(op), InBB);
10572 Value *Base = FixedOperands[0];
10573 return cast<GEPOperator>(FirstInst)->isInBounds() ?
10574 GetElementPtrInst::CreateInBounds(Base, FixedOperands.begin()+1,
10575 FixedOperands.end()) :
10576 GetElementPtrInst::Create(Base, FixedOperands.begin()+1,
10577 FixedOperands.end());
10581 /// isSafeAndProfitableToSinkLoad - Return true if we know that it is safe to
10582 /// sink the load out of the block that defines it. This means that it must be
10583 /// obvious the value of the load is not changed from the point of the load to
10584 /// the end of the block it is in.
10586 /// Finally, it is safe, but not profitable, to sink a load targetting a
10587 /// non-address-taken alloca. Doing so will cause us to not promote the alloca
10589 static bool isSafeAndProfitableToSinkLoad(LoadInst *L) {
10590 BasicBlock::iterator BBI = L, E = L->getParent()->end();
10592 for (++BBI; BBI != E; ++BBI)
10593 if (BBI->mayWriteToMemory())
10596 // Check for non-address taken alloca. If not address-taken already, it isn't
10597 // profitable to do this xform.
10598 if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
10599 bool isAddressTaken = false;
10600 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
10602 if (isa<LoadInst>(UI)) continue;
10603 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
10604 // If storing TO the alloca, then the address isn't taken.
10605 if (SI->getOperand(1) == AI) continue;
10607 isAddressTaken = true;
10611 if (!isAddressTaken && AI->isStaticAlloca())
10615 // If this load is a load from a GEP with a constant offset from an alloca,
10616 // then we don't want to sink it. In its present form, it will be
10617 // load [constant stack offset]. Sinking it will cause us to have to
10618 // materialize the stack addresses in each predecessor in a register only to
10619 // do a shared load from register in the successor.
10620 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(L->getOperand(0)))
10621 if (AllocaInst *AI = dyn_cast<AllocaInst>(GEP->getOperand(0)))
10622 if (AI->isStaticAlloca() && GEP->hasAllConstantIndices())
10629 // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
10630 // operator and they all are only used by the PHI, PHI together their
10631 // inputs, and do the operation once, to the result of the PHI.
10632 Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
10633 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
10635 // Scan the instruction, looking for input operations that can be folded away.
10636 // If all input operands to the phi are the same instruction (e.g. a cast from
10637 // the same type or "+42") we can pull the operation through the PHI, reducing
10638 // code size and simplifying code.
10639 Constant *ConstantOp = 0;
10640 const Type *CastSrcTy = 0;
10641 bool isVolatile = false;
10642 if (isa<CastInst>(FirstInst)) {
10643 CastSrcTy = FirstInst->getOperand(0)->getType();
10644 } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
10645 // Can fold binop, compare or shift here if the RHS is a constant,
10646 // otherwise call FoldPHIArgBinOpIntoPHI.
10647 ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
10648 if (ConstantOp == 0)
10649 return FoldPHIArgBinOpIntoPHI(PN);
10650 } else if (LoadInst *LI = dyn_cast<LoadInst>(FirstInst)) {
10651 isVolatile = LI->isVolatile();
10652 // We can't sink the load if the loaded value could be modified between the
10653 // load and the PHI.
10654 if (LI->getParent() != PN.getIncomingBlock(0) ||
10655 !isSafeAndProfitableToSinkLoad(LI))
10658 // If the PHI is of volatile loads and the load block has multiple
10659 // successors, sinking it would remove a load of the volatile value from
10660 // the path through the other successor.
10662 LI->getParent()->getTerminator()->getNumSuccessors() != 1)
10665 } else if (isa<GetElementPtrInst>(FirstInst)) {
10666 return FoldPHIArgGEPIntoPHI(PN);
10668 return 0; // Cannot fold this operation.
10671 // Check to see if all arguments are the same operation.
10672 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
10673 if (!isa<Instruction>(PN.getIncomingValue(i))) return 0;
10674 Instruction *I = cast<Instruction>(PN.getIncomingValue(i));
10675 if (!I->hasOneUse() || !I->isSameOperationAs(FirstInst))
10678 if (I->getOperand(0)->getType() != CastSrcTy)
10679 return 0; // Cast operation must match.
10680 } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
10681 // We can't sink the load if the loaded value could be modified between
10682 // the load and the PHI.
10683 if (LI->isVolatile() != isVolatile ||
10684 LI->getParent() != PN.getIncomingBlock(i) ||
10685 !isSafeAndProfitableToSinkLoad(LI))
10688 // If the PHI is of volatile loads and the load block has multiple
10689 // successors, sinking it would remove a load of the volatile value from
10690 // the path through the other successor.
10692 LI->getParent()->getTerminator()->getNumSuccessors() != 1)
10695 } else if (I->getOperand(1) != ConstantOp) {
10700 // Okay, they are all the same operation. Create a new PHI node of the
10701 // correct type, and PHI together all of the LHS's of the instructions.
10702 PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
10703 PN.getName()+".in");
10704 NewPN->reserveOperandSpace(PN.getNumOperands()/2);
10706 Value *InVal = FirstInst->getOperand(0);
10707 NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
10709 // Add all operands to the new PHI.
10710 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
10711 Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
10712 if (NewInVal != InVal)
10714 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
10719 // The new PHI unions all of the same values together. This is really
10720 // common, so we handle it intelligently here for compile-time speed.
10724 InsertNewInstBefore(NewPN, PN);
10728 // Insert and return the new operation.
10729 if (CastInst* FirstCI = dyn_cast<CastInst>(FirstInst))
10730 return CastInst::Create(FirstCI->getOpcode(), PhiVal, PN.getType());
10731 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
10732 return BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
10733 if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
10734 return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
10735 PhiVal, ConstantOp);
10736 assert(isa<LoadInst>(FirstInst) && "Unknown operation");
10738 // If this was a volatile load that we are merging, make sure to loop through
10739 // and mark all the input loads as non-volatile. If we don't do this, we will
10740 // insert a new volatile load and the old ones will not be deletable.
10742 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
10743 cast<LoadInst>(PN.getIncomingValue(i))->setVolatile(false);
10745 return new LoadInst(PhiVal, "", isVolatile);
10748 /// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
10750 static bool DeadPHICycle(PHINode *PN,
10751 SmallPtrSet<PHINode*, 16> &PotentiallyDeadPHIs) {
10752 if (PN->use_empty()) return true;
10753 if (!PN->hasOneUse()) return false;
10755 // Remember this node, and if we find the cycle, return.
10756 if (!PotentiallyDeadPHIs.insert(PN))
10759 // Don't scan crazily complex things.
10760 if (PotentiallyDeadPHIs.size() == 16)
10763 if (PHINode *PU = dyn_cast<PHINode>(PN->use_back()))
10764 return DeadPHICycle(PU, PotentiallyDeadPHIs);
10769 /// PHIsEqualValue - Return true if this phi node is always equal to
10770 /// NonPhiInVal. This happens with mutually cyclic phi nodes like:
10771 /// z = some value; x = phi (y, z); y = phi (x, z)
10772 static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal,
10773 SmallPtrSet<PHINode*, 16> &ValueEqualPHIs) {
10774 // See if we already saw this PHI node.
10775 if (!ValueEqualPHIs.insert(PN))
10778 // Don't scan crazily complex things.
10779 if (ValueEqualPHIs.size() == 16)
10782 // Scan the operands to see if they are either phi nodes or are equal to
10784 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
10785 Value *Op = PN->getIncomingValue(i);
10786 if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
10787 if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
10789 } else if (Op != NonPhiInVal)
10797 // PHINode simplification
10799 Instruction *InstCombiner::visitPHINode(PHINode &PN) {
10800 // If LCSSA is around, don't mess with Phi nodes
10801 if (MustPreserveLCSSA) return 0;
10803 if (Value *V = PN.hasConstantValue())
10804 return ReplaceInstUsesWith(PN, V);
10806 // If all PHI operands are the same operation, pull them through the PHI,
10807 // reducing code size.
10808 if (isa<Instruction>(PN.getIncomingValue(0)) &&
10809 isa<Instruction>(PN.getIncomingValue(1)) &&
10810 cast<Instruction>(PN.getIncomingValue(0))->getOpcode() ==
10811 cast<Instruction>(PN.getIncomingValue(1))->getOpcode() &&
10812 // FIXME: The hasOneUse check will fail for PHIs that use the value more
10813 // than themselves more than once.
10814 PN.getIncomingValue(0)->hasOneUse())
10815 if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
10818 // If this is a trivial cycle in the PHI node graph, remove it. Basically, if
10819 // this PHI only has a single use (a PHI), and if that PHI only has one use (a
10820 // PHI)... break the cycle.
10821 if (PN.hasOneUse()) {
10822 Instruction *PHIUser = cast<Instruction>(PN.use_back());
10823 if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
10824 SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
10825 PotentiallyDeadPHIs.insert(&PN);
10826 if (DeadPHICycle(PU, PotentiallyDeadPHIs))
10827 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
10830 // If this phi has a single use, and if that use just computes a value for
10831 // the next iteration of a loop, delete the phi. This occurs with unused
10832 // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this
10833 // common case here is good because the only other things that catch this
10834 // are induction variable analysis (sometimes) and ADCE, which is only run
10836 if (PHIUser->hasOneUse() &&
10837 (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
10838 PHIUser->use_back() == &PN) {
10839 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
10843 // We sometimes end up with phi cycles that non-obviously end up being the
10844 // same value, for example:
10845 // z = some value; x = phi (y, z); y = phi (x, z)
10846 // where the phi nodes don't necessarily need to be in the same block. Do a
10847 // quick check to see if the PHI node only contains a single non-phi value, if
10848 // so, scan to see if the phi cycle is actually equal to that value.
10850 unsigned InValNo = 0, NumOperandVals = PN.getNumIncomingValues();
10851 // Scan for the first non-phi operand.
10852 while (InValNo != NumOperandVals &&
10853 isa<PHINode>(PN.getIncomingValue(InValNo)))
10856 if (InValNo != NumOperandVals) {
10857 Value *NonPhiInVal = PN.getOperand(InValNo);
10859 // Scan the rest of the operands to see if there are any conflicts, if so
10860 // there is no need to recursively scan other phis.
10861 for (++InValNo; InValNo != NumOperandVals; ++InValNo) {
10862 Value *OpVal = PN.getIncomingValue(InValNo);
10863 if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
10867 // If we scanned over all operands, then we have one unique value plus
10868 // phi values. Scan PHI nodes to see if they all merge in each other or
10870 if (InValNo == NumOperandVals) {
10871 SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
10872 if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
10873 return ReplaceInstUsesWith(PN, NonPhiInVal);
10880 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
10881 Value *PtrOp = GEP.getOperand(0);
10882 // Eliminate 'getelementptr %P, i32 0' and 'getelementptr %P', they are noops.
10883 if (GEP.getNumOperands() == 1)
10884 return ReplaceInstUsesWith(GEP, PtrOp);
10886 if (isa<UndefValue>(GEP.getOperand(0)))
10887 return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));
10889 bool HasZeroPointerIndex = false;
10890 if (Constant *C = dyn_cast<Constant>(GEP.getOperand(1)))
10891 HasZeroPointerIndex = C->isNullValue();
10893 if (GEP.getNumOperands() == 2 && HasZeroPointerIndex)
10894 return ReplaceInstUsesWith(GEP, PtrOp);
10896 // Eliminate unneeded casts for indices.
10898 bool MadeChange = false;
10899 unsigned PtrSize = TD->getPointerSizeInBits();
10901 gep_type_iterator GTI = gep_type_begin(GEP);
10902 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
10903 I != E; ++I, ++GTI) {
10904 if (!isa<SequentialType>(*GTI)) continue;
10906 // If we are using a wider index than needed for this platform, shrink it
10907 // to what we need. If narrower, sign-extend it to what we need. This
10908 // explicit cast can make subsequent optimizations more obvious.
10909 unsigned OpBits = cast<IntegerType>((*I)->getType())->getBitWidth();
10910 if (OpBits == PtrSize)
10913 *I = Builder->CreateIntCast(*I, TD->getIntPtrType(GEP.getContext()),true);
10916 if (MadeChange) return &GEP;
10919 // Combine Indices - If the source pointer to this getelementptr instruction
10920 // is a getelementptr instruction, combine the indices of the two
10921 // getelementptr instructions into a single instruction.
10923 if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
10924 // Note that if our source is a gep chain itself that we wait for that
10925 // chain to be resolved before we perform this transformation. This
10926 // avoids us creating a TON of code in some cases.
10928 if (GetElementPtrInst *SrcGEP =
10929 dyn_cast<GetElementPtrInst>(Src->getOperand(0)))
10930 if (SrcGEP->getNumOperands() == 2)
10931 return 0; // Wait until our source is folded to completion.
10933 SmallVector<Value*, 8> Indices;
10935 // Find out whether the last index in the source GEP is a sequential idx.
10936 bool EndsWithSequential = false;
10937 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
10939 EndsWithSequential = !isa<StructType>(*I);
10941 // Can we combine the two pointer arithmetics offsets?
10942 if (EndsWithSequential) {
10943 // Replace: gep (gep %P, long B), long A, ...
10944 // With: T = long A+B; gep %P, T, ...
10947 Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
10948 Value *GO1 = GEP.getOperand(1);
10949 if (SO1 == Constant::getNullValue(SO1->getType())) {
10951 } else if (GO1 == Constant::getNullValue(GO1->getType())) {
10954 // If they aren't the same type, then the input hasn't been processed
10955 // by the loop above yet (which canonicalizes sequential index types to
10956 // intptr_t). Just avoid transforming this until the input has been
10958 if (SO1->getType() != GO1->getType())
10960 Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
10963 // Update the GEP in place if possible.
10964 if (Src->getNumOperands() == 2) {
10965 GEP.setOperand(0, Src->getOperand(0));
10966 GEP.setOperand(1, Sum);
10969 Indices.append(Src->op_begin()+1, Src->op_end()-1);
10970 Indices.push_back(Sum);
10971 Indices.append(GEP.op_begin()+2, GEP.op_end());
10972 } else if (isa<Constant>(*GEP.idx_begin()) &&
10973 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
10974 Src->getNumOperands() != 1) {
10975 // Otherwise we can do the fold if the first index of the GEP is a zero
10976 Indices.append(Src->op_begin()+1, Src->op_end());
10977 Indices.append(GEP.idx_begin()+1, GEP.idx_end());
10980 if (!Indices.empty())
10981 return (cast<GEPOperator>(&GEP)->isInBounds() &&
10982 Src->isInBounds()) ?
10983 GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices.begin(),
10984 Indices.end(), GEP.getName()) :
10985 GetElementPtrInst::Create(Src->getOperand(0), Indices.begin(),
10986 Indices.end(), GEP.getName());
10989 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
10990 if (Value *X = getBitCastOperand(PtrOp)) {
10991 assert(isa<PointerType>(X->getType()) && "Must be cast from pointer");
10993 // If the input bitcast is actually "bitcast(bitcast(x))", then we don't
10994 // want to change the gep until the bitcasts are eliminated.
10995 if (getBitCastOperand(X)) {
10996 Worklist.AddValue(PtrOp);
11000 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
11001 // into : GEP [10 x i8]* X, i32 0, ...
11003 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
11004 // into : GEP i8* X, ...
11006 // This occurs when the program declares an array extern like "int X[];"
11007 if (HasZeroPointerIndex) {
11008 const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
11009 const PointerType *XTy = cast<PointerType>(X->getType());
11010 if (const ArrayType *CATy =
11011 dyn_cast<ArrayType>(CPTy->getElementType())) {
11012 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
11013 if (CATy->getElementType() == XTy->getElementType()) {
11014 // -> GEP i8* X, ...
11015 SmallVector<Value*, 8> Indices(GEP.idx_begin()+1, GEP.idx_end());
11016 return cast<GEPOperator>(&GEP)->isInBounds() ?
11017 GetElementPtrInst::CreateInBounds(X, Indices.begin(), Indices.end(),
11019 GetElementPtrInst::Create(X, Indices.begin(), Indices.end(),
11023 if (const ArrayType *XATy = dyn_cast<ArrayType>(XTy->getElementType())){
11024 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
11025 if (CATy->getElementType() == XATy->getElementType()) {
11026 // -> GEP [10 x i8]* X, i32 0, ...
11027 // At this point, we know that the cast source type is a pointer
11028 // to an array of the same type as the destination pointer
11029 // array. Because the array type is never stepped over (there
11030 // is a leading zero) we can fold the cast into this GEP.
11031 GEP.setOperand(0, X);
11036 } else if (GEP.getNumOperands() == 2) {
11037 // Transform things like:
11038 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
11039 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
11040 const Type *SrcElTy = cast<PointerType>(X->getType())->getElementType();
11041 const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
11042 if (TD && isa<ArrayType>(SrcElTy) &&
11043 TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
11044 TD->getTypeAllocSize(ResElTy)) {
11046 Idx[0] = Constant::getNullValue(Type::getInt32Ty(*Context));
11047 Idx[1] = GEP.getOperand(1);
11048 Value *NewGEP = cast<GEPOperator>(&GEP)->isInBounds() ?
11049 Builder->CreateInBoundsGEP(X, Idx, Idx + 2, GEP.getName()) :
11050 Builder->CreateGEP(X, Idx, Idx + 2, GEP.getName());
11051 // V and GEP are both pointer types --> BitCast
11052 return new BitCastInst(NewGEP, GEP.getType());
11055 // Transform things like:
11056 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
11057 // (where tmp = 8*tmp2) into:
11058 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
11060 if (TD && isa<ArrayType>(SrcElTy) && ResElTy == Type::getInt8Ty(*Context)) {
11061 uint64_t ArrayEltSize =
11062 TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType());
11064 // Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We
11065 // allow either a mul, shift, or constant here.
11067 ConstantInt *Scale = 0;
11068 if (ArrayEltSize == 1) {
11069 NewIdx = GEP.getOperand(1);
11070 Scale = ConstantInt::get(cast<IntegerType>(NewIdx->getType()), 1);
11071 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
11072 NewIdx = ConstantInt::get(CI->getType(), 1);
11074 } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
11075 if (Inst->getOpcode() == Instruction::Shl &&
11076 isa<ConstantInt>(Inst->getOperand(1))) {
11077 ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
11078 uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
11079 Scale = ConstantInt::get(cast<IntegerType>(Inst->getType()),
11081 NewIdx = Inst->getOperand(0);
11082 } else if (Inst->getOpcode() == Instruction::Mul &&
11083 isa<ConstantInt>(Inst->getOperand(1))) {
11084 Scale = cast<ConstantInt>(Inst->getOperand(1));
11085 NewIdx = Inst->getOperand(0);
11089 // If the index will be to exactly the right offset with the scale taken
11090 // out, perform the transformation. Note, we don't know whether Scale is
11091 // signed or not. We'll use unsigned version of division/modulo
11092 // operation after making sure Scale doesn't have the sign bit set.
11093 if (ArrayEltSize && Scale && Scale->getSExtValue() >= 0LL &&
11094 Scale->getZExtValue() % ArrayEltSize == 0) {
11095 Scale = ConstantInt::get(Scale->getType(),
11096 Scale->getZExtValue() / ArrayEltSize);
11097 if (Scale->getZExtValue() != 1) {
11098 Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
11100 NewIdx = Builder->CreateMul(NewIdx, C, "idxscale");
11103 // Insert the new GEP instruction.
11105 Idx[0] = Constant::getNullValue(Type::getInt32Ty(*Context));
11107 Value *NewGEP = cast<GEPOperator>(&GEP)->isInBounds() ?
11108 Builder->CreateInBoundsGEP(X, Idx, Idx + 2, GEP.getName()) :
11109 Builder->CreateGEP(X, Idx, Idx + 2, GEP.getName());
11110 // The NewGEP must be pointer typed, so must the old one -> BitCast
11111 return new BitCastInst(NewGEP, GEP.getType());
11117 /// See if we can simplify:
11118 /// X = bitcast A* to B*
11119 /// Y = gep X, <...constant indices...>
11120 /// into a gep of the original struct. This is important for SROA and alias
11121 /// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
11122 if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
11124 !isa<BitCastInst>(BCI->getOperand(0)) && GEP.hasAllConstantIndices()) {
11125 // Determine how much the GEP moves the pointer. We are guaranteed to get
11126 // a constant back from EmitGEPOffset.
11127 ConstantInt *OffsetV =
11128 cast<ConstantInt>(EmitGEPOffset(&GEP, GEP, *this));
11129 int64_t Offset = OffsetV->getSExtValue();
11131 // If this GEP instruction doesn't move the pointer, just replace the GEP
11132 // with a bitcast of the real input to the dest type.
11134 // If the bitcast is of an allocation, and the allocation will be
11135 // converted to match the type of the cast, don't touch this.
11136 if (isa<AllocationInst>(BCI->getOperand(0)) ||
11137 isMalloc(BCI->getOperand(0))) {
11138 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
11139 if (Instruction *I = visitBitCast(*BCI)) {
11142 BCI->getParent()->getInstList().insert(BCI, I);
11143 ReplaceInstUsesWith(*BCI, I);
11148 return new BitCastInst(BCI->getOperand(0), GEP.getType());
11151 // Otherwise, if the offset is non-zero, we need to find out if there is a
11152 // field at Offset in 'A's type. If so, we can pull the cast through the
11154 SmallVector<Value*, 8> NewIndices;
11156 cast<PointerType>(BCI->getOperand(0)->getType())->getElementType();
11157 if (FindElementAtOffset(InTy, Offset, NewIndices, TD, Context)) {
11158 Value *NGEP = cast<GEPOperator>(&GEP)->isInBounds() ?
11159 Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices.begin(),
11160 NewIndices.end()) :
11161 Builder->CreateGEP(BCI->getOperand(0), NewIndices.begin(),
11164 if (NGEP->getType() == GEP.getType())
11165 return ReplaceInstUsesWith(GEP, NGEP);
11166 NGEP->takeName(&GEP);
11167 return new BitCastInst(NGEP, GEP.getType());
11175 Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) {
11176 // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1
11177 if (AI.isArrayAllocation()) { // Check C != 1
11178 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
11179 const Type *NewTy =
11180 ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
11181 AllocationInst *New = 0;
11183 // Create and insert the replacement instruction...
11184 if (isa<MallocInst>(AI))
11185 New = Builder->CreateMalloc(NewTy, 0, AI.getName());
11187 assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
11188 New = Builder->CreateAlloca(NewTy, 0, AI.getName());
11190 New->setAlignment(AI.getAlignment());
11192 // Scan to the end of the allocation instructions, to skip over a block of
11193 // allocas if possible...also skip interleaved debug info
11195 BasicBlock::iterator It = New;
11196 while (isa<AllocationInst>(*It) || isa<DbgInfoIntrinsic>(*It)) ++It;
11198 // Now that I is pointing to the first non-allocation-inst in the block,
11199 // insert our getelementptr instruction...
11201 Value *NullIdx = Constant::getNullValue(Type::getInt32Ty(*Context));
11205 Value *V = GetElementPtrInst::CreateInBounds(New, Idx, Idx + 2,
11206 New->getName()+".sub", It);
11208 // Now make everything use the getelementptr instead of the original
11210 return ReplaceInstUsesWith(AI, V);
11211 } else if (isa<UndefValue>(AI.getArraySize())) {
11212 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
11216 if (TD && isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized()) {
11217 // If alloca'ing a zero byte object, replace the alloca with a null pointer.
11218 // Note that we only do this for alloca's, because malloc should allocate
11219 // and return a unique pointer, even for a zero byte allocation.
11220 if (TD->getTypeAllocSize(AI.getAllocatedType()) == 0)
11221 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
11223 // If the alignment is 0 (unspecified), assign it the preferred alignment.
11224 if (AI.getAlignment() == 0)
11225 AI.setAlignment(TD->getPrefTypeAlignment(AI.getAllocatedType()));
11231 Instruction *InstCombiner::visitFreeInst(FreeInst &FI) {
11232 Value *Op = FI.getOperand(0);
11234 // free undef -> unreachable.
11235 if (isa<UndefValue>(Op)) {
11236 // Insert a new store to null because we cannot modify the CFG here.
11237 new StoreInst(ConstantInt::getTrue(*Context),
11238 UndefValue::get(PointerType::getUnqual(Type::getInt1Ty(*Context))), &FI);
11239 return EraseInstFromFunction(FI);
11242 // If we have 'free null' delete the instruction. This can happen in stl code
11243 // when lots of inlining happens.
11244 if (isa<ConstantPointerNull>(Op))
11245 return EraseInstFromFunction(FI);
11247 // Change free <ty>* (cast <ty2>* X to <ty>*) into free <ty2>* X
11248 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op)) {
11249 FI.setOperand(0, CI->getOperand(0));
11253 // Change free (gep X, 0,0,0,0) into free(X)
11254 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
11255 if (GEPI->hasAllZeroIndices()) {
11256 Worklist.Add(GEPI);
11257 FI.setOperand(0, GEPI->getOperand(0));
11262 // Change free(malloc) into nothing, if the malloc has a single use.
11263 if (MallocInst *MI = dyn_cast<MallocInst>(Op))
11264 if (MI->hasOneUse()) {
11265 EraseInstFromFunction(FI);
11266 return EraseInstFromFunction(*MI);
11268 if (isMalloc(Op)) {
11269 if (CallInst* CI = extractMallocCallFromBitCast(Op)) {
11270 if (Op->hasOneUse() && CI->hasOneUse()) {
11271 EraseInstFromFunction(FI);
11272 EraseInstFromFunction(*CI);
11273 return EraseInstFromFunction(*cast<Instruction>(Op));
11276 // Op is a call to malloc
11277 if (Op->hasOneUse()) {
11278 EraseInstFromFunction(FI);
11279 return EraseInstFromFunction(*cast<Instruction>(Op));
11288 /// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
11289 static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
11290 const TargetData *TD) {
11291 User *CI = cast<User>(LI.getOperand(0));
11292 Value *CastOp = CI->getOperand(0);
11293 LLVMContext *Context = IC.getContext();
11296 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(CI)) {
11297 // Instead of loading constant c string, use corresponding integer value
11298 // directly if string length is small enough.
11300 if (GetConstantStringInfo(CE->getOperand(0), Str) && !Str.empty()) {
11301 unsigned len = Str.length();
11302 const Type *Ty = cast<PointerType>(CE->getType())->getElementType();
11303 unsigned numBits = Ty->getPrimitiveSizeInBits();
11304 // Replace LI with immediate integer store.
11305 if ((numBits >> 3) == len + 1) {
11306 APInt StrVal(numBits, 0);
11307 APInt SingleChar(numBits, 0);
11308 if (TD->isLittleEndian()) {
11309 for (signed i = len-1; i >= 0; i--) {
11310 SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
11311 StrVal = (StrVal << 8) | SingleChar;
11314 for (unsigned i = 0; i < len; i++) {
11315 SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
11316 StrVal = (StrVal << 8) | SingleChar;
11318 // Append NULL at the end.
11320 StrVal = (StrVal << 8) | SingleChar;
11322 Value *NL = ConstantInt::get(*Context, StrVal);
11323 return IC.ReplaceInstUsesWith(LI, NL);
11329 const PointerType *DestTy = cast<PointerType>(CI->getType());
11330 const Type *DestPTy = DestTy->getElementType();
11331 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
11333 // If the address spaces don't match, don't eliminate the cast.
11334 if (DestTy->getAddressSpace() != SrcTy->getAddressSpace())
11337 const Type *SrcPTy = SrcTy->getElementType();
11339 if (DestPTy->isInteger() || isa<PointerType>(DestPTy) ||
11340 isa<VectorType>(DestPTy)) {
11341 // If the source is an array, the code below will not succeed. Check to
11342 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
11344 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
11345 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
11346 if (ASrcTy->getNumElements() != 0) {
11348 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::getInt32Ty(*Context));
11349 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
11350 SrcTy = cast<PointerType>(CastOp->getType());
11351 SrcPTy = SrcTy->getElementType();
11354 if (IC.getTargetData() &&
11355 (SrcPTy->isInteger() || isa<PointerType>(SrcPTy) ||
11356 isa<VectorType>(SrcPTy)) &&
11357 // Do not allow turning this into a load of an integer, which is then
11358 // casted to a pointer, this pessimizes pointer analysis a lot.
11359 (isa<PointerType>(SrcPTy) == isa<PointerType>(LI.getType())) &&
11360 IC.getTargetData()->getTypeSizeInBits(SrcPTy) ==
11361 IC.getTargetData()->getTypeSizeInBits(DestPTy)) {
11363 // Okay, we are casting from one integer or pointer type to another of
11364 // the same size. Instead of casting the pointer before the load, cast
11365 // the result of the loaded value.
11367 IC.Builder->CreateLoad(CastOp, LI.isVolatile(), CI->getName());
11368 // Now cast the result of the load.
11369 return new BitCastInst(NewLoad, LI.getType());
11376 Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
11377 Value *Op = LI.getOperand(0);
11379 // Attempt to improve the alignment.
11381 unsigned KnownAlign =
11382 GetOrEnforceKnownAlignment(Op, TD->getPrefTypeAlignment(LI.getType()));
11384 (LI.getAlignment() == 0 ? TD->getABITypeAlignment(LI.getType()) :
11385 LI.getAlignment()))
11386 LI.setAlignment(KnownAlign);
11389 // load (cast X) --> cast (load X) iff safe.
11390 if (isa<CastInst>(Op))
11391 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
11394 // None of the following transforms are legal for volatile loads.
11395 if (LI.isVolatile()) return 0;
11397 // Do really simple store-to-load forwarding and load CSE, to catch cases
11398 // where there are several consequtive memory accesses to the same location,
11399 // separated by a few arithmetic operations.
11400 BasicBlock::iterator BBI = &LI;
11401 if (Value *AvailableVal = FindAvailableLoadedValue(Op, LI.getParent(), BBI,6))
11402 return ReplaceInstUsesWith(LI, AvailableVal);
11404 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
11405 const Value *GEPI0 = GEPI->getOperand(0);
11406 // TODO: Consider a target hook for valid address spaces for this xform.
11407 if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){
11408 // Insert a new store to null instruction before the load to indicate
11409 // that this code is not reachable. We do this instead of inserting
11410 // an unreachable instruction directly because we cannot modify the
11412 new StoreInst(UndefValue::get(LI.getType()),
11413 Constant::getNullValue(Op->getType()), &LI);
11414 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
11418 if (Constant *C = dyn_cast<Constant>(Op)) {
11419 // load null/undef -> undef
11420 // TODO: Consider a target hook for valid address spaces for this xform.
11421 if (isa<UndefValue>(C) ||
11422 (C->isNullValue() && LI.getPointerAddressSpace() == 0)) {
11423 // Insert a new store to null instruction before the load to indicate that
11424 // this code is not reachable. We do this instead of inserting an
11425 // unreachable instruction directly because we cannot modify the CFG.
11426 new StoreInst(UndefValue::get(LI.getType()),
11427 Constant::getNullValue(Op->getType()), &LI);
11428 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
11431 // Instcombine load (constant global) into the value loaded.
11432 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op))
11433 if (GV->isConstant() && GV->hasDefinitiveInitializer())
11434 return ReplaceInstUsesWith(LI, GV->getInitializer());
11436 // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded.
11437 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op)) {
11438 if (CE->getOpcode() == Instruction::GetElementPtr) {
11439 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
11440 if (GV->isConstant() && GV->hasDefinitiveInitializer())
11442 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE,
11444 return ReplaceInstUsesWith(LI, V);
11445 if (CE->getOperand(0)->isNullValue()) {
11446 // Insert a new store to null instruction before the load to indicate
11447 // that this code is not reachable. We do this instead of inserting
11448 // an unreachable instruction directly because we cannot modify the
11450 new StoreInst(UndefValue::get(LI.getType()),
11451 Constant::getNullValue(Op->getType()), &LI);
11452 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
11455 } else if (CE->isCast()) {
11456 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
11462 // If this load comes from anywhere in a constant global, and if the global
11463 // is all undef or zero, we know what it loads.
11464 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op->getUnderlyingObject())){
11465 if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
11466 if (GV->getInitializer()->isNullValue())
11467 return ReplaceInstUsesWith(LI, Constant::getNullValue(LI.getType()));
11468 else if (isa<UndefValue>(GV->getInitializer()))
11469 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
11473 if (Op->hasOneUse()) {
11474 // Change select and PHI nodes to select values instead of addresses: this
11475 // helps alias analysis out a lot, allows many others simplifications, and
11476 // exposes redundancy in the code.
11478 // Note that we cannot do the transformation unless we know that the
11479 // introduced loads cannot trap! Something like this is valid as long as
11480 // the condition is always false: load (select bool %C, int* null, int* %G),
11481 // but it would not be valid if we transformed it to load from null
11482 // unconditionally.
11484 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
11485 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
11486 if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) &&
11487 isSafeToLoadUnconditionally(SI->getOperand(2), SI)) {
11488 Value *V1 = Builder->CreateLoad(SI->getOperand(1),
11489 SI->getOperand(1)->getName()+".val");
11490 Value *V2 = Builder->CreateLoad(SI->getOperand(2),
11491 SI->getOperand(2)->getName()+".val");
11492 return SelectInst::Create(SI->getCondition(), V1, V2);
11495 // load (select (cond, null, P)) -> load P
11496 if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
11497 if (C->isNullValue()) {
11498 LI.setOperand(0, SI->getOperand(2));
11502 // load (select (cond, P, null)) -> load P
11503 if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
11504 if (C->isNullValue()) {
11505 LI.setOperand(0, SI->getOperand(1));
11513 /// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
11514 /// when possible. This makes it generally easy to do alias analysis and/or
11515 /// SROA/mem2reg of the memory object.
11516 static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
11517 User *CI = cast<User>(SI.getOperand(1));
11518 Value *CastOp = CI->getOperand(0);
11520 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
11521 const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType());
11522 if (SrcTy == 0) return 0;
11524 const Type *SrcPTy = SrcTy->getElementType();
11526 if (!DestPTy->isInteger() && !isa<PointerType>(DestPTy))
11529 /// NewGEPIndices - If SrcPTy is an aggregate type, we can emit a "noop gep"
11530 /// to its first element. This allows us to handle things like:
11531 /// store i32 xxx, (bitcast {foo*, float}* %P to i32*)
11532 /// on 32-bit hosts.
11533 SmallVector<Value*, 4> NewGEPIndices;
11535 // If the source is an array, the code below will not succeed. Check to
11536 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
11538 if (isa<ArrayType>(SrcPTy) || isa<StructType>(SrcPTy)) {
11539 // Index through pointer.
11540 Constant *Zero = Constant::getNullValue(Type::getInt32Ty(*IC.getContext()));
11541 NewGEPIndices.push_back(Zero);
11544 if (const StructType *STy = dyn_cast<StructType>(SrcPTy)) {
11545 if (!STy->getNumElements()) /* Struct can be empty {} */
11547 NewGEPIndices.push_back(Zero);
11548 SrcPTy = STy->getElementType(0);
11549 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcPTy)) {
11550 NewGEPIndices.push_back(Zero);
11551 SrcPTy = ATy->getElementType();
11557 SrcTy = PointerType::get(SrcPTy, SrcTy->getAddressSpace());
11560 if (!SrcPTy->isInteger() && !isa<PointerType>(SrcPTy))
11563 // If the pointers point into different address spaces or if they point to
11564 // values with different sizes, we can't do the transformation.
11565 if (!IC.getTargetData() ||
11566 SrcTy->getAddressSpace() !=
11567 cast<PointerType>(CI->getType())->getAddressSpace() ||
11568 IC.getTargetData()->getTypeSizeInBits(SrcPTy) !=
11569 IC.getTargetData()->getTypeSizeInBits(DestPTy))
11572 // Okay, we are casting from one integer or pointer type to another of
11573 // the same size. Instead of casting the pointer before
11574 // the store, cast the value to be stored.
11576 Value *SIOp0 = SI.getOperand(0);
11577 Instruction::CastOps opcode = Instruction::BitCast;
11578 const Type* CastSrcTy = SIOp0->getType();
11579 const Type* CastDstTy = SrcPTy;
11580 if (isa<PointerType>(CastDstTy)) {
11581 if (CastSrcTy->isInteger())
11582 opcode = Instruction::IntToPtr;
11583 } else if (isa<IntegerType>(CastDstTy)) {
11584 if (isa<PointerType>(SIOp0->getType()))
11585 opcode = Instruction::PtrToInt;
11588 // SIOp0 is a pointer to aggregate and this is a store to the first field,
11589 // emit a GEP to index into its first field.
11590 if (!NewGEPIndices.empty())
11591 CastOp = IC.Builder->CreateInBoundsGEP(CastOp, NewGEPIndices.begin(),
11592 NewGEPIndices.end());
11594 NewCast = IC.Builder->CreateCast(opcode, SIOp0, CastDstTy,
11595 SIOp0->getName()+".c");
11596 return new StoreInst(NewCast, CastOp);
11599 /// equivalentAddressValues - Test if A and B will obviously have the same
11600 /// value. This includes recognizing that %t0 and %t1 will have the same
11601 /// value in code like this:
11602 /// %t0 = getelementptr \@a, 0, 3
11603 /// store i32 0, i32* %t0
11604 /// %t1 = getelementptr \@a, 0, 3
11605 /// %t2 = load i32* %t1
11607 static bool equivalentAddressValues(Value *A, Value *B) {
11608 // Test if the values are trivially equivalent.
11609 if (A == B) return true;
11611 // Test if the values come form identical arithmetic instructions.
11612 // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
11613 // its only used to compare two uses within the same basic block, which
11614 // means that they'll always either have the same value or one of them
11615 // will have an undefined value.
11616 if (isa<BinaryOperator>(A) ||
11617 isa<CastInst>(A) ||
11619 isa<GetElementPtrInst>(A))
11620 if (Instruction *BI = dyn_cast<Instruction>(B))
11621 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
11624 // Otherwise they may not be equivalent.
11628 // If this instruction has two uses, one of which is a llvm.dbg.declare,
11629 // return the llvm.dbg.declare.
11630 DbgDeclareInst *InstCombiner::hasOneUsePlusDeclare(Value *V) {
11631 if (!V->hasNUses(2))
11633 for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
11635 if (DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(UI))
11637 if (isa<BitCastInst>(UI) && UI->hasOneUse()) {
11638 if (DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(UI->use_begin()))
11645 Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
11646 Value *Val = SI.getOperand(0);
11647 Value *Ptr = SI.getOperand(1);
11649 if (isa<UndefValue>(Ptr)) { // store X, undef -> noop (even if volatile)
11650 EraseInstFromFunction(SI);
11655 // If the RHS is an alloca with a single use, zapify the store, making the
11657 // If the RHS is an alloca with a two uses, the other one being a
11658 // llvm.dbg.declare, zapify the store and the declare, making the
11659 // alloca dead. We must do this to prevent declare's from affecting
11661 if (!SI.isVolatile()) {
11662 if (Ptr->hasOneUse()) {
11663 if (isa<AllocaInst>(Ptr)) {
11664 EraseInstFromFunction(SI);
11668 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
11669 if (isa<AllocaInst>(GEP->getOperand(0))) {
11670 if (GEP->getOperand(0)->hasOneUse()) {
11671 EraseInstFromFunction(SI);
11675 if (DbgDeclareInst *DI = hasOneUsePlusDeclare(GEP->getOperand(0))) {
11676 EraseInstFromFunction(*DI);
11677 EraseInstFromFunction(SI);
11684 if (DbgDeclareInst *DI = hasOneUsePlusDeclare(Ptr)) {
11685 EraseInstFromFunction(*DI);
11686 EraseInstFromFunction(SI);
11692 // Attempt to improve the alignment.
11694 unsigned KnownAlign =
11695 GetOrEnforceKnownAlignment(Ptr, TD->getPrefTypeAlignment(Val->getType()));
11697 (SI.getAlignment() == 0 ? TD->getABITypeAlignment(Val->getType()) :
11698 SI.getAlignment()))
11699 SI.setAlignment(KnownAlign);
11702 // Do really simple DSE, to catch cases where there are several consecutive
11703 // stores to the same location, separated by a few arithmetic operations. This
11704 // situation often occurs with bitfield accesses.
11705 BasicBlock::iterator BBI = &SI;
11706 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
11709 // Don't count debug info directives, lest they affect codegen,
11710 // and we skip pointer-to-pointer bitcasts, which are NOPs.
11711 // It is necessary for correctness to skip those that feed into a
11712 // llvm.dbg.declare, as these are not present when debugging is off.
11713 if (isa<DbgInfoIntrinsic>(BBI) ||
11714 (isa<BitCastInst>(BBI) && isa<PointerType>(BBI->getType()))) {
11719 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
11720 // Prev store isn't volatile, and stores to the same location?
11721 if (!PrevSI->isVolatile() &&equivalentAddressValues(PrevSI->getOperand(1),
11722 SI.getOperand(1))) {
11725 EraseInstFromFunction(*PrevSI);
11731 // If this is a load, we have to stop. However, if the loaded value is from
11732 // the pointer we're loading and is producing the pointer we're storing,
11733 // then *this* store is dead (X = load P; store X -> P).
11734 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
11735 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) &&
11736 !SI.isVolatile()) {
11737 EraseInstFromFunction(SI);
11741 // Otherwise, this is a load from some other location. Stores before it
11742 // may not be dead.
11746 // Don't skip over loads or things that can modify memory.
11747 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
11752 if (SI.isVolatile()) return 0; // Don't hack volatile stores.
11754 // store X, null -> turns into 'unreachable' in SimplifyCFG
11755 if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) {
11756 if (!isa<UndefValue>(Val)) {
11757 SI.setOperand(0, UndefValue::get(Val->getType()));
11758 if (Instruction *U = dyn_cast<Instruction>(Val))
11759 Worklist.Add(U); // Dropped a use.
11762 return 0; // Do not modify these!
11765 // store undef, Ptr -> noop
11766 if (isa<UndefValue>(Val)) {
11767 EraseInstFromFunction(SI);
11772 // If the pointer destination is a cast, see if we can fold the cast into the
11774 if (isa<CastInst>(Ptr))
11775 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
11777 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
11779 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
11783 // If this store is the last instruction in the basic block (possibly
11784 // excepting debug info instructions and the pointer bitcasts that feed
11785 // into them), and if the block ends with an unconditional branch, try
11786 // to move it to the successor block.
11790 } while (isa<DbgInfoIntrinsic>(BBI) ||
11791 (isa<BitCastInst>(BBI) && isa<PointerType>(BBI->getType())));
11792 if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
11793 if (BI->isUnconditional())
11794 if (SimplifyStoreAtEndOfBlock(SI))
11795 return 0; // xform done!
11800 /// SimplifyStoreAtEndOfBlock - Turn things like:
11801 /// if () { *P = v1; } else { *P = v2 }
11802 /// into a phi node with a store in the successor.
11804 /// Simplify things like:
11805 /// *P = v1; if () { *P = v2; }
11806 /// into a phi node with a store in the successor.
11808 bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
11809 BasicBlock *StoreBB = SI.getParent();
11811 // Check to see if the successor block has exactly two incoming edges. If
11812 // so, see if the other predecessor contains a store to the same location.
11813 // if so, insert a PHI node (if needed) and move the stores down.
11814 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
11816 // Determine whether Dest has exactly two predecessors and, if so, compute
11817 // the other predecessor.
11818 pred_iterator PI = pred_begin(DestBB);
11819 BasicBlock *OtherBB = 0;
11820 if (*PI != StoreBB)
11823 if (PI == pred_end(DestBB))
11826 if (*PI != StoreBB) {
11831 if (++PI != pred_end(DestBB))
11834 // Bail out if all the relevant blocks aren't distinct (this can happen,
11835 // for example, if SI is in an infinite loop)
11836 if (StoreBB == DestBB || OtherBB == DestBB)
11839 // Verify that the other block ends in a branch and is not otherwise empty.
11840 BasicBlock::iterator BBI = OtherBB->getTerminator();
11841 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
11842 if (!OtherBr || BBI == OtherBB->begin())
11845 // If the other block ends in an unconditional branch, check for the 'if then
11846 // else' case. there is an instruction before the branch.
11847 StoreInst *OtherStore = 0;
11848 if (OtherBr->isUnconditional()) {
11850 // Skip over debugging info.
11851 while (isa<DbgInfoIntrinsic>(BBI) ||
11852 (isa<BitCastInst>(BBI) && isa<PointerType>(BBI->getType()))) {
11853 if (BBI==OtherBB->begin())
11857 // If this isn't a store, or isn't a store to the same location, bail out.
11858 OtherStore = dyn_cast<StoreInst>(BBI);
11859 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1))
11862 // Otherwise, the other block ended with a conditional branch. If one of the
11863 // destinations is StoreBB, then we have the if/then case.
11864 if (OtherBr->getSuccessor(0) != StoreBB &&
11865 OtherBr->getSuccessor(1) != StoreBB)
11868 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
11869 // if/then triangle. See if there is a store to the same ptr as SI that
11870 // lives in OtherBB.
11872 // Check to see if we find the matching store.
11873 if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
11874 if (OtherStore->getOperand(1) != SI.getOperand(1))
11878 // If we find something that may be using or overwriting the stored
11879 // value, or if we run out of instructions, we can't do the xform.
11880 if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
11881 BBI == OtherBB->begin())
11885 // In order to eliminate the store in OtherBr, we have to
11886 // make sure nothing reads or overwrites the stored value in
11888 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
11889 // FIXME: This should really be AA driven.
11890 if (I->mayReadFromMemory() || I->mayWriteToMemory())
11895 // Insert a PHI node now if we need it.
11896 Value *MergedVal = OtherStore->getOperand(0);
11897 if (MergedVal != SI.getOperand(0)) {
11898 PHINode *PN = PHINode::Create(MergedVal->getType(), "storemerge");
11899 PN->reserveOperandSpace(2);
11900 PN->addIncoming(SI.getOperand(0), SI.getParent());
11901 PN->addIncoming(OtherStore->getOperand(0), OtherBB);
11902 MergedVal = InsertNewInstBefore(PN, DestBB->front());
11905 // Advance to a place where it is safe to insert the new store and
11907 BBI = DestBB->getFirstNonPHI();
11908 InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1),
11909 OtherStore->isVolatile()), *BBI);
11911 // Nuke the old stores.
11912 EraseInstFromFunction(SI);
11913 EraseInstFromFunction(*OtherStore);
11919 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
11920 // Change br (not X), label True, label False to: br X, label False, True
11922 BasicBlock *TrueDest;
11923 BasicBlock *FalseDest;
11924 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
11925 !isa<Constant>(X)) {
11926 // Swap Destinations and condition...
11927 BI.setCondition(X);
11928 BI.setSuccessor(0, FalseDest);
11929 BI.setSuccessor(1, TrueDest);
11933 // Cannonicalize fcmp_one -> fcmp_oeq
11934 FCmpInst::Predicate FPred; Value *Y;
11935 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
11936 TrueDest, FalseDest)) &&
11937 BI.getCondition()->hasOneUse())
11938 if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
11939 FPred == FCmpInst::FCMP_OGE) {
11940 FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
11941 Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
11943 // Swap Destinations and condition.
11944 BI.setSuccessor(0, FalseDest);
11945 BI.setSuccessor(1, TrueDest);
11946 Worklist.Add(Cond);
11950 // Cannonicalize icmp_ne -> icmp_eq
11951 ICmpInst::Predicate IPred;
11952 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
11953 TrueDest, FalseDest)) &&
11954 BI.getCondition()->hasOneUse())
11955 if (IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
11956 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
11957 IPred == ICmpInst::ICMP_SGE) {
11958 ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
11959 Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
11960 // Swap Destinations and condition.
11961 BI.setSuccessor(0, FalseDest);
11962 BI.setSuccessor(1, TrueDest);
11963 Worklist.Add(Cond);
11970 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
11971 Value *Cond = SI.getCondition();
11972 if (Instruction *I = dyn_cast<Instruction>(Cond)) {
11973 if (I->getOpcode() == Instruction::Add)
11974 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
11975 // change 'switch (X+4) case 1:' into 'switch (X) case -3'
11976 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
11978 ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
11980 SI.setOperand(0, I->getOperand(0));
11988 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
11989 Value *Agg = EV.getAggregateOperand();
11991 if (!EV.hasIndices())
11992 return ReplaceInstUsesWith(EV, Agg);
11994 if (Constant *C = dyn_cast<Constant>(Agg)) {
11995 if (isa<UndefValue>(C))
11996 return ReplaceInstUsesWith(EV, UndefValue::get(EV.getType()));
11998 if (isa<ConstantAggregateZero>(C))
11999 return ReplaceInstUsesWith(EV, Constant::getNullValue(EV.getType()));
12001 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) {
12002 // Extract the element indexed by the first index out of the constant
12003 Value *V = C->getOperand(*EV.idx_begin());
12004 if (EV.getNumIndices() > 1)
12005 // Extract the remaining indices out of the constant indexed by the
12007 return ExtractValueInst::Create(V, EV.idx_begin() + 1, EV.idx_end());
12009 return ReplaceInstUsesWith(EV, V);
12011 return 0; // Can't handle other constants
12013 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
12014 // We're extracting from an insertvalue instruction, compare the indices
12015 const unsigned *exti, *exte, *insi, *inse;
12016 for (exti = EV.idx_begin(), insi = IV->idx_begin(),
12017 exte = EV.idx_end(), inse = IV->idx_end();
12018 exti != exte && insi != inse;
12020 if (*insi != *exti)
12021 // The insert and extract both reference distinctly different elements.
12022 // This means the extract is not influenced by the insert, and we can
12023 // replace the aggregate operand of the extract with the aggregate
12024 // operand of the insert. i.e., replace
12025 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
12026 // %E = extractvalue { i32, { i32 } } %I, 0
12028 // %E = extractvalue { i32, { i32 } } %A, 0
12029 return ExtractValueInst::Create(IV->getAggregateOperand(),
12030 EV.idx_begin(), EV.idx_end());
12032 if (exti == exte && insi == inse)
12033 // Both iterators are at the end: Index lists are identical. Replace
12034 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
12035 // %C = extractvalue { i32, { i32 } } %B, 1, 0
12037 return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
12038 if (exti == exte) {
12039 // The extract list is a prefix of the insert list. i.e. replace
12040 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
12041 // %E = extractvalue { i32, { i32 } } %I, 1
12043 // %X = extractvalue { i32, { i32 } } %A, 1
12044 // %E = insertvalue { i32 } %X, i32 42, 0
12045 // by switching the order of the insert and extract (though the
12046 // insertvalue should be left in, since it may have other uses).
12047 Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
12048 EV.idx_begin(), EV.idx_end());
12049 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
12053 // The insert list is a prefix of the extract list
12054 // We can simply remove the common indices from the extract and make it
12055 // operate on the inserted value instead of the insertvalue result.
12057 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
12058 // %E = extractvalue { i32, { i32 } } %I, 1, 0
12060 // %E extractvalue { i32 } { i32 42 }, 0
12061 return ExtractValueInst::Create(IV->getInsertedValueOperand(),
12064 // Can't simplify extracts from other values. Note that nested extracts are
12065 // already simplified implicitely by the above (extract ( extract (insert) )
12066 // will be translated into extract ( insert ( extract ) ) first and then just
12067 // the value inserted, if appropriate).
12071 /// CheapToScalarize - Return true if the value is cheaper to scalarize than it
12072 /// is to leave as a vector operation.
12073 static bool CheapToScalarize(Value *V, bool isConstant) {
12074 if (isa<ConstantAggregateZero>(V))
12076 if (ConstantVector *C = dyn_cast<ConstantVector>(V)) {
12077 if (isConstant) return true;
12078 // If all elts are the same, we can extract.
12079 Constant *Op0 = C->getOperand(0);
12080 for (unsigned i = 1; i < C->getNumOperands(); ++i)
12081 if (C->getOperand(i) != Op0)
12085 Instruction *I = dyn_cast<Instruction>(V);
12086 if (!I) return false;
12088 // Insert element gets simplified to the inserted element or is deleted if
12089 // this is constant idx extract element and its a constant idx insertelt.
12090 if (I->getOpcode() == Instruction::InsertElement && isConstant &&
12091 isa<ConstantInt>(I->getOperand(2)))
12093 if (I->getOpcode() == Instruction::Load && I->hasOneUse())
12095 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
12096 if (BO->hasOneUse() &&
12097 (CheapToScalarize(BO->getOperand(0), isConstant) ||
12098 CheapToScalarize(BO->getOperand(1), isConstant)))
12100 if (CmpInst *CI = dyn_cast<CmpInst>(I))
12101 if (CI->hasOneUse() &&
12102 (CheapToScalarize(CI->getOperand(0), isConstant) ||
12103 CheapToScalarize(CI->getOperand(1), isConstant)))
12109 /// Read and decode a shufflevector mask.
12111 /// It turns undef elements into values that are larger than the number of
12112 /// elements in the input.
12113 static std::vector<unsigned> getShuffleMask(const ShuffleVectorInst *SVI) {
12114 unsigned NElts = SVI->getType()->getNumElements();
12115 if (isa<ConstantAggregateZero>(SVI->getOperand(2)))
12116 return std::vector<unsigned>(NElts, 0);
12117 if (isa<UndefValue>(SVI->getOperand(2)))
12118 return std::vector<unsigned>(NElts, 2*NElts);
12120 std::vector<unsigned> Result;
12121 const ConstantVector *CP = cast<ConstantVector>(SVI->getOperand(2));
12122 for (User::const_op_iterator i = CP->op_begin(), e = CP->op_end(); i!=e; ++i)
12123 if (isa<UndefValue>(*i))
12124 Result.push_back(NElts*2); // undef -> 8
12126 Result.push_back(cast<ConstantInt>(*i)->getZExtValue());
12130 /// FindScalarElement - Given a vector and an element number, see if the scalar
12131 /// value is already around as a register, for example if it were inserted then
12132 /// extracted from the vector.
12133 static Value *FindScalarElement(Value *V, unsigned EltNo,
12134 LLVMContext *Context) {
12135 assert(isa<VectorType>(V->getType()) && "Not looking at a vector?");
12136 const VectorType *PTy = cast<VectorType>(V->getType());
12137 unsigned Width = PTy->getNumElements();
12138 if (EltNo >= Width) // Out of range access.
12139 return UndefValue::get(PTy->getElementType());
12141 if (isa<UndefValue>(V))
12142 return UndefValue::get(PTy->getElementType());
12143 else if (isa<ConstantAggregateZero>(V))
12144 return Constant::getNullValue(PTy->getElementType());
12145 else if (ConstantVector *CP = dyn_cast<ConstantVector>(V))
12146 return CP->getOperand(EltNo);
12147 else if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
12148 // If this is an insert to a variable element, we don't know what it is.
12149 if (!isa<ConstantInt>(III->getOperand(2)))
12151 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
12153 // If this is an insert to the element we are looking for, return the
12155 if (EltNo == IIElt)
12156 return III->getOperand(1);
12158 // Otherwise, the insertelement doesn't modify the value, recurse on its
12160 return FindScalarElement(III->getOperand(0), EltNo, Context);
12161 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
12162 unsigned LHSWidth =
12163 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
12164 unsigned InEl = getShuffleMask(SVI)[EltNo];
12165 if (InEl < LHSWidth)
12166 return FindScalarElement(SVI->getOperand(0), InEl, Context);
12167 else if (InEl < LHSWidth*2)
12168 return FindScalarElement(SVI->getOperand(1), InEl - LHSWidth, Context);
12170 return UndefValue::get(PTy->getElementType());
12173 // Otherwise, we don't know.
12177 Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
12178 // If vector val is undef, replace extract with scalar undef.
12179 if (isa<UndefValue>(EI.getOperand(0)))
12180 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
12182 // If vector val is constant 0, replace extract with scalar 0.
12183 if (isa<ConstantAggregateZero>(EI.getOperand(0)))
12184 return ReplaceInstUsesWith(EI, Constant::getNullValue(EI.getType()));
12186 if (ConstantVector *C = dyn_cast<ConstantVector>(EI.getOperand(0))) {
12187 // If vector val is constant with all elements the same, replace EI with
12188 // that element. When the elements are not identical, we cannot replace yet
12189 // (we do that below, but only when the index is constant).
12190 Constant *op0 = C->getOperand(0);
12191 for (unsigned i = 1; i != C->getNumOperands(); ++i)
12192 if (C->getOperand(i) != op0) {
12197 return ReplaceInstUsesWith(EI, op0);
12200 // If extracting a specified index from the vector, see if we can recursively
12201 // find a previously computed scalar that was inserted into the vector.
12202 if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
12203 unsigned IndexVal = IdxC->getZExtValue();
12204 unsigned VectorWidth = EI.getVectorOperandType()->getNumElements();
12206 // If this is extracting an invalid index, turn this into undef, to avoid
12207 // crashing the code below.
12208 if (IndexVal >= VectorWidth)
12209 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
12211 // This instruction only demands the single element from the input vector.
12212 // If the input vector has a single use, simplify it based on this use
12214 if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
12215 APInt UndefElts(VectorWidth, 0);
12216 APInt DemandedMask(VectorWidth, 1 << IndexVal);
12217 if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0),
12218 DemandedMask, UndefElts)) {
12219 EI.setOperand(0, V);
12224 if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal, Context))
12225 return ReplaceInstUsesWith(EI, Elt);
12227 // If the this extractelement is directly using a bitcast from a vector of
12228 // the same number of elements, see if we can find the source element from
12229 // it. In this case, we will end up needing to bitcast the scalars.
12230 if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
12231 if (const VectorType *VT =
12232 dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
12233 if (VT->getNumElements() == VectorWidth)
12234 if (Value *Elt = FindScalarElement(BCI->getOperand(0),
12235 IndexVal, Context))
12236 return new BitCastInst(Elt, EI.getType());
12240 if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
12241 // Push extractelement into predecessor operation if legal and
12242 // profitable to do so
12243 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
12244 if (I->hasOneUse() &&
12245 CheapToScalarize(BO, isa<ConstantInt>(EI.getOperand(1)))) {
12247 Builder->CreateExtractElement(BO->getOperand(0), EI.getOperand(1),
12248 EI.getName()+".lhs");
12250 Builder->CreateExtractElement(BO->getOperand(1), EI.getOperand(1),
12251 EI.getName()+".rhs");
12252 return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1);
12254 } else if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
12255 // Extracting the inserted element?
12256 if (IE->getOperand(2) == EI.getOperand(1))
12257 return ReplaceInstUsesWith(EI, IE->getOperand(1));
12258 // If the inserted and extracted elements are constants, they must not
12259 // be the same value, extract from the pre-inserted value instead.
12260 if (isa<Constant>(IE->getOperand(2)) && isa<Constant>(EI.getOperand(1))) {
12261 Worklist.AddValue(EI.getOperand(0));
12262 EI.setOperand(0, IE->getOperand(0));
12265 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
12266 // If this is extracting an element from a shufflevector, figure out where
12267 // it came from and extract from the appropriate input element instead.
12268 if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
12269 unsigned SrcIdx = getShuffleMask(SVI)[Elt->getZExtValue()];
12271 unsigned LHSWidth =
12272 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
12274 if (SrcIdx < LHSWidth)
12275 Src = SVI->getOperand(0);
12276 else if (SrcIdx < LHSWidth*2) {
12277 SrcIdx -= LHSWidth;
12278 Src = SVI->getOperand(1);
12280 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
12282 return ExtractElementInst::Create(Src,
12283 ConstantInt::get(Type::getInt32Ty(*Context), SrcIdx,
12287 // FIXME: Canonicalize extractelement(bitcast) -> bitcast(extractelement)
12292 /// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
12293 /// elements from either LHS or RHS, return the shuffle mask and true.
12294 /// Otherwise, return false.
12295 static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
12296 std::vector<Constant*> &Mask,
12297 LLVMContext *Context) {
12298 assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
12299 "Invalid CollectSingleShuffleElements");
12300 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
12302 if (isa<UndefValue>(V)) {
12303 Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(*Context)));
12305 } else if (V == LHS) {
12306 for (unsigned i = 0; i != NumElts; ++i)
12307 Mask.push_back(ConstantInt::get(Type::getInt32Ty(*Context), i));
12309 } else if (V == RHS) {
12310 for (unsigned i = 0; i != NumElts; ++i)
12311 Mask.push_back(ConstantInt::get(Type::getInt32Ty(*Context), i+NumElts));
12313 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
12314 // If this is an insert of an extract from some other vector, include it.
12315 Value *VecOp = IEI->getOperand(0);
12316 Value *ScalarOp = IEI->getOperand(1);
12317 Value *IdxOp = IEI->getOperand(2);
12319 if (!isa<ConstantInt>(IdxOp))
12321 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
12323 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector.
12324 // Okay, we can handle this if the vector we are insertinting into is
12325 // transitively ok.
12326 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask, Context)) {
12327 // If so, update the mask to reflect the inserted undef.
12328 Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(*Context));
12331 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
12332 if (isa<ConstantInt>(EI->getOperand(1)) &&
12333 EI->getOperand(0)->getType() == V->getType()) {
12334 unsigned ExtractedIdx =
12335 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
12337 // This must be extracting from either LHS or RHS.
12338 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
12339 // Okay, we can handle this if the vector we are insertinting into is
12340 // transitively ok.
12341 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask, Context)) {
12342 // If so, update the mask to reflect the inserted value.
12343 if (EI->getOperand(0) == LHS) {
12344 Mask[InsertedIdx % NumElts] =
12345 ConstantInt::get(Type::getInt32Ty(*Context), ExtractedIdx);
12347 assert(EI->getOperand(0) == RHS);
12348 Mask[InsertedIdx % NumElts] =
12349 ConstantInt::get(Type::getInt32Ty(*Context), ExtractedIdx+NumElts);
12358 // TODO: Handle shufflevector here!
12363 /// CollectShuffleElements - We are building a shuffle of V, using RHS as the
12364 /// RHS of the shuffle instruction, if it is not null. Return a shuffle mask
12365 /// that computes V and the LHS value of the shuffle.
12366 static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
12367 Value *&RHS, LLVMContext *Context) {
12368 assert(isa<VectorType>(V->getType()) &&
12369 (RHS == 0 || V->getType() == RHS->getType()) &&
12370 "Invalid shuffle!");
12371 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
12373 if (isa<UndefValue>(V)) {
12374 Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(*Context)));
12376 } else if (isa<ConstantAggregateZero>(V)) {
12377 Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(*Context), 0));
12379 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
12380 // If this is an insert of an extract from some other vector, include it.
12381 Value *VecOp = IEI->getOperand(0);
12382 Value *ScalarOp = IEI->getOperand(1);
12383 Value *IdxOp = IEI->getOperand(2);
12385 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
12386 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
12387 EI->getOperand(0)->getType() == V->getType()) {
12388 unsigned ExtractedIdx =
12389 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
12390 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
12392 // Either the extracted from or inserted into vector must be RHSVec,
12393 // otherwise we'd end up with a shuffle of three inputs.
12394 if (EI->getOperand(0) == RHS || RHS == 0) {
12395 RHS = EI->getOperand(0);
12396 Value *V = CollectShuffleElements(VecOp, Mask, RHS, Context);
12397 Mask[InsertedIdx % NumElts] =
12398 ConstantInt::get(Type::getInt32Ty(*Context), NumElts+ExtractedIdx);
12402 if (VecOp == RHS) {
12403 Value *V = CollectShuffleElements(EI->getOperand(0), Mask,
12405 // Everything but the extracted element is replaced with the RHS.
12406 for (unsigned i = 0; i != NumElts; ++i) {
12407 if (i != InsertedIdx)
12408 Mask[i] = ConstantInt::get(Type::getInt32Ty(*Context), NumElts+i);
12413 // If this insertelement is a chain that comes from exactly these two
12414 // vectors, return the vector and the effective shuffle.
12415 if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask,
12417 return EI->getOperand(0);
12422 // TODO: Handle shufflevector here!
12424 // Otherwise, can't do anything fancy. Return an identity vector.
12425 for (unsigned i = 0; i != NumElts; ++i)
12426 Mask.push_back(ConstantInt::get(Type::getInt32Ty(*Context), i));
12430 Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
12431 Value *VecOp = IE.getOperand(0);
12432 Value *ScalarOp = IE.getOperand(1);
12433 Value *IdxOp = IE.getOperand(2);
12435 // Inserting an undef or into an undefined place, remove this.
12436 if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
12437 ReplaceInstUsesWith(IE, VecOp);
12439 // If the inserted element was extracted from some other vector, and if the
12440 // indexes are constant, try to turn this into a shufflevector operation.
12441 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
12442 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
12443 EI->getOperand(0)->getType() == IE.getType()) {
12444 unsigned NumVectorElts = IE.getType()->getNumElements();
12445 unsigned ExtractedIdx =
12446 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
12447 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
12449 if (ExtractedIdx >= NumVectorElts) // Out of range extract.
12450 return ReplaceInstUsesWith(IE, VecOp);
12452 if (InsertedIdx >= NumVectorElts) // Out of range insert.
12453 return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
12455 // If we are extracting a value from a vector, then inserting it right
12456 // back into the same place, just use the input vector.
12457 if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
12458 return ReplaceInstUsesWith(IE, VecOp);
12460 // We could theoretically do this for ANY input. However, doing so could
12461 // turn chains of insertelement instructions into a chain of shufflevector
12462 // instructions, and right now we do not merge shufflevectors. As such,
12463 // only do this in a situation where it is clear that there is benefit.
12464 if (isa<UndefValue>(VecOp) || isa<ConstantAggregateZero>(VecOp)) {
12465 // Turn this into shuffle(EIOp0, VecOp, Mask). The result has all of
12466 // the values of VecOp, except then one read from EIOp0.
12467 // Build a new shuffle mask.
12468 std::vector<Constant*> Mask;
12469 if (isa<UndefValue>(VecOp))
12470 Mask.assign(NumVectorElts, UndefValue::get(Type::getInt32Ty(*Context)));
12472 assert(isa<ConstantAggregateZero>(VecOp) && "Unknown thing");
12473 Mask.assign(NumVectorElts, ConstantInt::get(Type::getInt32Ty(*Context),
12476 Mask[InsertedIdx] =
12477 ConstantInt::get(Type::getInt32Ty(*Context), ExtractedIdx);
12478 return new ShuffleVectorInst(EI->getOperand(0), VecOp,
12479 ConstantVector::get(Mask));
12482 // If this insertelement isn't used by some other insertelement, turn it
12483 // (and any insertelements it points to), into one big shuffle.
12484 if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
12485 std::vector<Constant*> Mask;
12487 Value *LHS = CollectShuffleElements(&IE, Mask, RHS, Context);
12488 if (RHS == 0) RHS = UndefValue::get(LHS->getType());
12489 // We now have a shuffle of LHS, RHS, Mask.
12490 return new ShuffleVectorInst(LHS, RHS,
12491 ConstantVector::get(Mask));
12496 unsigned VWidth = cast<VectorType>(VecOp->getType())->getNumElements();
12497 APInt UndefElts(VWidth, 0);
12498 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
12499 if (SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts))
12506 Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
12507 Value *LHS = SVI.getOperand(0);
12508 Value *RHS = SVI.getOperand(1);
12509 std::vector<unsigned> Mask = getShuffleMask(&SVI);
12511 bool MadeChange = false;
12513 // Undefined shuffle mask -> undefined value.
12514 if (isa<UndefValue>(SVI.getOperand(2)))
12515 return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
12517 unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements();
12519 if (VWidth != cast<VectorType>(LHS->getType())->getNumElements())
12522 APInt UndefElts(VWidth, 0);
12523 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
12524 if (SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
12525 LHS = SVI.getOperand(0);
12526 RHS = SVI.getOperand(1);
12530 // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask')
12531 // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
12532 if (LHS == RHS || isa<UndefValue>(LHS)) {
12533 if (isa<UndefValue>(LHS) && LHS == RHS) {
12534 // shuffle(undef,undef,mask) -> undef.
12535 return ReplaceInstUsesWith(SVI, LHS);
12538 // Remap any references to RHS to use LHS.
12539 std::vector<Constant*> Elts;
12540 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
12541 if (Mask[i] >= 2*e)
12542 Elts.push_back(UndefValue::get(Type::getInt32Ty(*Context)));
12544 if ((Mask[i] >= e && isa<UndefValue>(RHS)) ||
12545 (Mask[i] < e && isa<UndefValue>(LHS))) {
12546 Mask[i] = 2*e; // Turn into undef.
12547 Elts.push_back(UndefValue::get(Type::getInt32Ty(*Context)));
12549 Mask[i] = Mask[i] % e; // Force to LHS.
12550 Elts.push_back(ConstantInt::get(Type::getInt32Ty(*Context), Mask[i]));
12554 SVI.setOperand(0, SVI.getOperand(1));
12555 SVI.setOperand(1, UndefValue::get(RHS->getType()));
12556 SVI.setOperand(2, ConstantVector::get(Elts));
12557 LHS = SVI.getOperand(0);
12558 RHS = SVI.getOperand(1);
12562 // Analyze the shuffle, are the LHS or RHS and identity shuffles?
12563 bool isLHSID = true, isRHSID = true;
12565 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
12566 if (Mask[i] >= e*2) continue; // Ignore undef values.
12567 // Is this an identity shuffle of the LHS value?
12568 isLHSID &= (Mask[i] == i);
12570 // Is this an identity shuffle of the RHS value?
12571 isRHSID &= (Mask[i]-e == i);
12574 // Eliminate identity shuffles.
12575 if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
12576 if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
12578 // If the LHS is a shufflevector itself, see if we can combine it with this
12579 // one without producing an unusual shuffle. Here we are really conservative:
12580 // we are absolutely afraid of producing a shuffle mask not in the input
12581 // program, because the code gen may not be smart enough to turn a merged
12582 // shuffle into two specific shuffles: it may produce worse code. As such,
12583 // we only merge two shuffles if the result is one of the two input shuffle
12584 // masks. In this case, merging the shuffles just removes one instruction,
12585 // which we know is safe. This is good for things like turning:
12586 // (splat(splat)) -> splat.
12587 if (ShuffleVectorInst *LHSSVI = dyn_cast<ShuffleVectorInst>(LHS)) {
12588 if (isa<UndefValue>(RHS)) {
12589 std::vector<unsigned> LHSMask = getShuffleMask(LHSSVI);
12591 std::vector<unsigned> NewMask;
12592 for (unsigned i = 0, e = Mask.size(); i != e; ++i)
12593 if (Mask[i] >= 2*e)
12594 NewMask.push_back(2*e);
12596 NewMask.push_back(LHSMask[Mask[i]]);
12598 // If the result mask is equal to the src shuffle or this shuffle mask, do
12599 // the replacement.
12600 if (NewMask == LHSMask || NewMask == Mask) {
12601 unsigned LHSInNElts =
12602 cast<VectorType>(LHSSVI->getOperand(0)->getType())->getNumElements();
12603 std::vector<Constant*> Elts;
12604 for (unsigned i = 0, e = NewMask.size(); i != e; ++i) {
12605 if (NewMask[i] >= LHSInNElts*2) {
12606 Elts.push_back(UndefValue::get(Type::getInt32Ty(*Context)));
12608 Elts.push_back(ConstantInt::get(Type::getInt32Ty(*Context), NewMask[i]));
12611 return new ShuffleVectorInst(LHSSVI->getOperand(0),
12612 LHSSVI->getOperand(1),
12613 ConstantVector::get(Elts));
12618 return MadeChange ? &SVI : 0;
12624 /// TryToSinkInstruction - Try to move the specified instruction from its
12625 /// current block into the beginning of DestBlock, which can only happen if it's
12626 /// safe to move the instruction past all of the instructions between it and the
12627 /// end of its block.
12628 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
12629 assert(I->hasOneUse() && "Invariants didn't hold!");
12631 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
12632 if (isa<PHINode>(I) || I->mayHaveSideEffects() || isa<TerminatorInst>(I))
12635 // Do not sink alloca instructions out of the entry block.
12636 if (isa<AllocaInst>(I) && I->getParent() ==
12637 &DestBlock->getParent()->getEntryBlock())
12640 // We can only sink load instructions if there is nothing between the load and
12641 // the end of block that could change the value.
12642 if (I->mayReadFromMemory()) {
12643 for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
12645 if (Scan->mayWriteToMemory())
12649 BasicBlock::iterator InsertPos = DestBlock->getFirstNonPHI();
12651 CopyPrecedingStopPoint(I, InsertPos);
12652 I->moveBefore(InsertPos);
12658 /// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
12659 /// all reachable code to the worklist.
12661 /// This has a couple of tricks to make the code faster and more powerful. In
12662 /// particular, we constant fold and DCE instructions as we go, to avoid adding
12663 /// them to the worklist (this significantly speeds up instcombine on code where
12664 /// many instructions are dead or constant). Additionally, if we find a branch
12665 /// whose condition is a known constant, we only visit the reachable successors.
12667 static void AddReachableCodeToWorklist(BasicBlock *BB,
12668 SmallPtrSet<BasicBlock*, 64> &Visited,
12670 const TargetData *TD) {
12671 SmallVector<BasicBlock*, 256> Worklist;
12672 Worklist.push_back(BB);
12674 while (!Worklist.empty()) {
12675 BB = Worklist.back();
12676 Worklist.pop_back();
12678 // We have now visited this block! If we've already been here, ignore it.
12679 if (!Visited.insert(BB)) continue;
12681 DbgInfoIntrinsic *DBI_Prev = NULL;
12682 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
12683 Instruction *Inst = BBI++;
12685 // DCE instruction if trivially dead.
12686 if (isInstructionTriviallyDead(Inst)) {
12688 DEBUG(errs() << "IC: DCE: " << *Inst << '\n');
12689 Inst->eraseFromParent();
12693 // ConstantProp instruction if trivially constant.
12694 if (Constant *C = ConstantFoldInstruction(Inst, BB->getContext(), TD)) {
12695 DEBUG(errs() << "IC: ConstFold to: " << *C << " from: "
12697 Inst->replaceAllUsesWith(C);
12699 Inst->eraseFromParent();
12703 // If there are two consecutive llvm.dbg.stoppoint calls then
12704 // it is likely that the optimizer deleted code in between these
12706 DbgInfoIntrinsic *DBI_Next = dyn_cast<DbgInfoIntrinsic>(Inst);
12709 && DBI_Prev->getIntrinsicID() == llvm::Intrinsic::dbg_stoppoint
12710 && DBI_Next->getIntrinsicID() == llvm::Intrinsic::dbg_stoppoint) {
12711 IC.Worklist.Remove(DBI_Prev);
12712 DBI_Prev->eraseFromParent();
12714 DBI_Prev = DBI_Next;
12719 IC.Worklist.Add(Inst);
12722 // Recursively visit successors. If this is a branch or switch on a
12723 // constant, only visit the reachable successor.
12724 TerminatorInst *TI = BB->getTerminator();
12725 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
12726 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
12727 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
12728 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
12729 Worklist.push_back(ReachableBB);
12732 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
12733 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
12734 // See if this is an explicit destination.
12735 for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
12736 if (SI->getCaseValue(i) == Cond) {
12737 BasicBlock *ReachableBB = SI->getSuccessor(i);
12738 Worklist.push_back(ReachableBB);
12742 // Otherwise it is the default destination.
12743 Worklist.push_back(SI->getSuccessor(0));
12748 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
12749 Worklist.push_back(TI->getSuccessor(i));
12753 bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
12754 MadeIRChange = false;
12755 TD = getAnalysisIfAvailable<TargetData>();
12757 DEBUG(errs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
12758 << F.getNameStr() << "\n");
12761 // Do a depth-first traversal of the function, populate the worklist with
12762 // the reachable instructions. Ignore blocks that are not reachable. Keep
12763 // track of which blocks we visit.
12764 SmallPtrSet<BasicBlock*, 64> Visited;
12765 AddReachableCodeToWorklist(F.begin(), Visited, *this, TD);
12767 // Do a quick scan over the function. If we find any blocks that are
12768 // unreachable, remove any instructions inside of them. This prevents
12769 // the instcombine code from having to deal with some bad special cases.
12770 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
12771 if (!Visited.count(BB)) {
12772 Instruction *Term = BB->getTerminator();
12773 while (Term != BB->begin()) { // Remove instrs bottom-up
12774 BasicBlock::iterator I = Term; --I;
12776 DEBUG(errs() << "IC: DCE: " << *I << '\n');
12777 // A debug intrinsic shouldn't force another iteration if we weren't
12778 // going to do one without it.
12779 if (!isa<DbgInfoIntrinsic>(I)) {
12781 MadeIRChange = true;
12783 if (!I->use_empty())
12784 I->replaceAllUsesWith(UndefValue::get(I->getType()));
12785 I->eraseFromParent();
12790 while (!Worklist.isEmpty()) {
12791 Instruction *I = Worklist.RemoveOne();
12792 if (I == 0) continue; // skip null values.
12794 // Check to see if we can DCE the instruction.
12795 if (isInstructionTriviallyDead(I)) {
12796 DEBUG(errs() << "IC: DCE: " << *I << '\n');
12797 EraseInstFromFunction(*I);
12799 MadeIRChange = true;
12803 // Instruction isn't dead, see if we can constant propagate it.
12804 if (Constant *C = ConstantFoldInstruction(I, F.getContext(), TD)) {
12805 DEBUG(errs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
12807 // Add operands to the worklist.
12808 ReplaceInstUsesWith(*I, C);
12810 EraseInstFromFunction(*I);
12811 MadeIRChange = true;
12816 // See if we can constant fold its operands.
12817 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
12818 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(i))
12819 if (Constant *NewC = ConstantFoldConstantExpression(CE,
12820 F.getContext(), TD))
12823 MadeIRChange = true;
12827 // See if we can trivially sink this instruction to a successor basic block.
12828 if (I->hasOneUse()) {
12829 BasicBlock *BB = I->getParent();
12830 BasicBlock *UserParent = cast<Instruction>(I->use_back())->getParent();
12831 if (UserParent != BB) {
12832 bool UserIsSuccessor = false;
12833 // See if the user is one of our successors.
12834 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
12835 if (*SI == UserParent) {
12836 UserIsSuccessor = true;
12840 // If the user is one of our immediate successors, and if that successor
12841 // only has us as a predecessors (we'd have to split the critical edge
12842 // otherwise), we can keep going.
12843 if (UserIsSuccessor && !isa<PHINode>(I->use_back()) &&
12844 next(pred_begin(UserParent)) == pred_end(UserParent))
12845 // Okay, the CFG is simple enough, try to sink this instruction.
12846 MadeIRChange |= TryToSinkInstruction(I, UserParent);
12850 // Now that we have an instruction, try combining it to simplify it.
12851 Builder->SetInsertPoint(I->getParent(), I);
12856 DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
12858 if (Instruction *Result = visit(*I)) {
12860 // Should we replace the old instruction with a new one?
12862 DEBUG(errs() << "IC: Old = " << *I << '\n'
12863 << " New = " << *Result << '\n');
12865 // Everything uses the new instruction now.
12866 I->replaceAllUsesWith(Result);
12868 // Push the new instruction and any users onto the worklist.
12869 Worklist.Add(Result);
12870 Worklist.AddUsersToWorkList(*Result);
12872 // Move the name to the new instruction first.
12873 Result->takeName(I);
12875 // Insert the new instruction into the basic block...
12876 BasicBlock *InstParent = I->getParent();
12877 BasicBlock::iterator InsertPos = I;
12879 if (!isa<PHINode>(Result)) // If combining a PHI, don't insert
12880 while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
12883 InstParent->getInstList().insert(InsertPos, Result);
12885 EraseInstFromFunction(*I);
12888 DEBUG(errs() << "IC: Mod = " << OrigI << '\n'
12889 << " New = " << *I << '\n');
12892 // If the instruction was modified, it's possible that it is now dead.
12893 // if so, remove it.
12894 if (isInstructionTriviallyDead(I)) {
12895 EraseInstFromFunction(*I);
12898 Worklist.AddUsersToWorkList(*I);
12901 MadeIRChange = true;
12906 return MadeIRChange;
12910 bool InstCombiner::runOnFunction(Function &F) {
12911 MustPreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
12912 Context = &F.getContext();
12915 /// Builder - This is an IRBuilder that automatically inserts new
12916 /// instructions into the worklist when they are created.
12917 IRBuilder<true, ConstantFolder, InstCombineIRInserter>
12918 TheBuilder(F.getContext(), ConstantFolder(F.getContext()),
12919 InstCombineIRInserter(Worklist));
12920 Builder = &TheBuilder;
12922 bool EverMadeChange = false;
12924 // Iterate while there is work to do.
12925 unsigned Iteration = 0;
12926 while (DoOneIteration(F, Iteration++))
12927 EverMadeChange = true;
12930 return EverMadeChange;
12933 FunctionPass *llvm::createInstructionCombiningPass() {
12934 return new InstCombiner();