1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // InstructionCombining - Combine instructions to form fewer, simple
11 // instructions. This pass does not modify the CFG This pass is where algebraic
12 // simplification happens.
14 // This pass combines things like:
20 // This is a simple worklist driven algorithm.
22 // This pass guarantees that the following canonicalizations are performed on
24 // 1. If a binary operator has a constant operand, it is moved to the RHS
25 // 2. Bitwise operators with constant operands are always grouped so that
26 // shifts are performed first, then or's, then and's, then xor's.
27 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28 // 4. All cmp instructions on boolean values are replaced with logical ops
29 // 5. add X, X is represented as (X*2) => (X << 1)
30 // 6. Multiplies with a power-of-two constant argument are transformed into
34 //===----------------------------------------------------------------------===//
36 #define DEBUG_TYPE "instcombine"
37 #include "llvm/Transforms/Scalar.h"
38 #include "llvm/IntrinsicInst.h"
39 #include "llvm/Pass.h"
40 #include "llvm/DerivedTypes.h"
41 #include "llvm/GlobalVariable.h"
42 #include "llvm/Analysis/ConstantFolding.h"
43 #include "llvm/Target/TargetData.h"
44 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
45 #include "llvm/Transforms/Utils/Local.h"
46 #include "llvm/Support/CallSite.h"
47 #include "llvm/Support/ConstantRange.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/GetElementPtrTypeIterator.h"
50 #include "llvm/Support/InstVisitor.h"
51 #include "llvm/Support/MathExtras.h"
52 #include "llvm/Support/PatternMatch.h"
53 #include "llvm/Support/Compiler.h"
54 #include "llvm/ADT/DenseMap.h"
55 #include "llvm/ADT/SmallVector.h"
56 #include "llvm/ADT/SmallPtrSet.h"
57 #include "llvm/ADT/Statistic.h"
58 #include "llvm/ADT/STLExtras.h"
63 using namespace llvm::PatternMatch;
65 STATISTIC(NumCombined , "Number of insts combined");
66 STATISTIC(NumConstProp, "Number of constant folds");
67 STATISTIC(NumDeadInst , "Number of dead inst eliminated");
68 STATISTIC(NumDeadStore, "Number of dead stores eliminated");
69 STATISTIC(NumSunkInst , "Number of instructions sunk");
72 class VISIBILITY_HIDDEN InstCombiner
73 : public FunctionPass,
74 public InstVisitor<InstCombiner, Instruction*> {
75 // Worklist of all of the instructions that need to be simplified.
76 std::vector<Instruction*> Worklist;
77 DenseMap<Instruction*, unsigned> WorklistMap;
79 bool MustPreserveLCSSA;
81 static char ID; // Pass identification, replacement for typeid
82 InstCombiner() : FunctionPass((intptr_t)&ID) {}
84 /// AddToWorkList - Add the specified instruction to the worklist if it
85 /// isn't already in it.
86 void AddToWorkList(Instruction *I) {
87 if (WorklistMap.insert(std::make_pair(I, Worklist.size())))
88 Worklist.push_back(I);
91 // RemoveFromWorkList - remove I from the worklist if it exists.
92 void RemoveFromWorkList(Instruction *I) {
93 DenseMap<Instruction*, unsigned>::iterator It = WorklistMap.find(I);
94 if (It == WorklistMap.end()) return; // Not in worklist.
96 // Don't bother moving everything down, just null out the slot.
97 Worklist[It->second] = 0;
99 WorklistMap.erase(It);
102 Instruction *RemoveOneFromWorkList() {
103 Instruction *I = Worklist.back();
105 WorklistMap.erase(I);
110 /// AddUsersToWorkList - When an instruction is simplified, add all users of
111 /// the instruction to the work lists because they might get more simplified
114 void AddUsersToWorkList(Value &I) {
115 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
117 AddToWorkList(cast<Instruction>(*UI));
120 /// AddUsesToWorkList - When an instruction is simplified, add operands to
121 /// the work lists because they might get more simplified now.
123 void AddUsesToWorkList(Instruction &I) {
124 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
125 if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i)))
129 /// AddSoonDeadInstToWorklist - The specified instruction is about to become
130 /// dead. Add all of its operands to the worklist, turning them into
131 /// undef's to reduce the number of uses of those instructions.
133 /// Return the specified operand before it is turned into an undef.
135 Value *AddSoonDeadInstToWorklist(Instruction &I, unsigned op) {
136 Value *R = I.getOperand(op);
138 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
139 if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i))) {
141 // Set the operand to undef to drop the use.
142 I.setOperand(i, UndefValue::get(Op->getType()));
149 virtual bool runOnFunction(Function &F);
151 bool DoOneIteration(Function &F, unsigned ItNum);
153 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
154 AU.addRequired<TargetData>();
155 AU.addPreservedID(LCSSAID);
156 AU.setPreservesCFG();
159 TargetData &getTargetData() const { return *TD; }
161 // Visitation implementation - Implement instruction combining for different
162 // instruction types. The semantics are as follows:
164 // null - No change was made
165 // I - Change was made, I is still valid, I may be dead though
166 // otherwise - Change was made, replace I with returned instruction
168 Instruction *visitAdd(BinaryOperator &I);
169 Instruction *visitSub(BinaryOperator &I);
170 Instruction *visitMul(BinaryOperator &I);
171 Instruction *visitURem(BinaryOperator &I);
172 Instruction *visitSRem(BinaryOperator &I);
173 Instruction *visitFRem(BinaryOperator &I);
174 Instruction *commonRemTransforms(BinaryOperator &I);
175 Instruction *commonIRemTransforms(BinaryOperator &I);
176 Instruction *commonDivTransforms(BinaryOperator &I);
177 Instruction *commonIDivTransforms(BinaryOperator &I);
178 Instruction *visitUDiv(BinaryOperator &I);
179 Instruction *visitSDiv(BinaryOperator &I);
180 Instruction *visitFDiv(BinaryOperator &I);
181 Instruction *visitAnd(BinaryOperator &I);
182 Instruction *visitOr (BinaryOperator &I);
183 Instruction *visitXor(BinaryOperator &I);
184 Instruction *visitShl(BinaryOperator &I);
185 Instruction *visitAShr(BinaryOperator &I);
186 Instruction *visitLShr(BinaryOperator &I);
187 Instruction *commonShiftTransforms(BinaryOperator &I);
188 Instruction *visitFCmpInst(FCmpInst &I);
189 Instruction *visitICmpInst(ICmpInst &I);
190 Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
191 Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
194 Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
195 ConstantInt *DivRHS);
197 Instruction *FoldGEPICmp(User *GEPLHS, Value *RHS,
198 ICmpInst::Predicate Cond, Instruction &I);
199 Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
201 Instruction *commonCastTransforms(CastInst &CI);
202 Instruction *commonIntCastTransforms(CastInst &CI);
203 Instruction *commonPointerCastTransforms(CastInst &CI);
204 Instruction *visitTrunc(TruncInst &CI);
205 Instruction *visitZExt(ZExtInst &CI);
206 Instruction *visitSExt(SExtInst &CI);
207 Instruction *visitFPTrunc(FPTruncInst &CI);
208 Instruction *visitFPExt(CastInst &CI);
209 Instruction *visitFPToUI(CastInst &CI);
210 Instruction *visitFPToSI(CastInst &CI);
211 Instruction *visitUIToFP(CastInst &CI);
212 Instruction *visitSIToFP(CastInst &CI);
213 Instruction *visitPtrToInt(CastInst &CI);
214 Instruction *visitIntToPtr(IntToPtrInst &CI);
215 Instruction *visitBitCast(BitCastInst &CI);
216 Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI,
218 Instruction *visitSelectInst(SelectInst &CI);
219 Instruction *visitCallInst(CallInst &CI);
220 Instruction *visitInvokeInst(InvokeInst &II);
221 Instruction *visitPHINode(PHINode &PN);
222 Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
223 Instruction *visitAllocationInst(AllocationInst &AI);
224 Instruction *visitFreeInst(FreeInst &FI);
225 Instruction *visitLoadInst(LoadInst &LI);
226 Instruction *visitStoreInst(StoreInst &SI);
227 Instruction *visitBranchInst(BranchInst &BI);
228 Instruction *visitSwitchInst(SwitchInst &SI);
229 Instruction *visitInsertElementInst(InsertElementInst &IE);
230 Instruction *visitExtractElementInst(ExtractElementInst &EI);
231 Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
233 // visitInstruction - Specify what to return for unhandled instructions...
234 Instruction *visitInstruction(Instruction &I) { return 0; }
237 Instruction *visitCallSite(CallSite CS);
238 bool transformConstExprCastCall(CallSite CS);
239 Instruction *transformCallThroughTrampoline(CallSite CS);
240 Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI,
241 bool DoXform = true);
244 // InsertNewInstBefore - insert an instruction New before instruction Old
245 // in the program. Add the new instruction to the worklist.
247 Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
248 assert(New && New->getParent() == 0 &&
249 "New instruction already inserted into a basic block!");
250 BasicBlock *BB = Old.getParent();
251 BB->getInstList().insert(&Old, New); // Insert inst
256 /// InsertCastBefore - Insert a cast of V to TY before the instruction POS.
257 /// This also adds the cast to the worklist. Finally, this returns the
259 Value *InsertCastBefore(Instruction::CastOps opc, Value *V, const Type *Ty,
261 if (V->getType() == Ty) return V;
263 if (Constant *CV = dyn_cast<Constant>(V))
264 return ConstantExpr::getCast(opc, CV, Ty);
266 Instruction *C = CastInst::create(opc, V, Ty, V->getName(), &Pos);
271 Value *InsertBitCastBefore(Value *V, const Type *Ty, Instruction &Pos) {
272 return InsertCastBefore(Instruction::BitCast, V, Ty, Pos);
276 // ReplaceInstUsesWith - This method is to be used when an instruction is
277 // found to be dead, replacable with another preexisting expression. Here
278 // we add all uses of I to the worklist, replace all uses of I with the new
279 // value, then return I, so that the inst combiner will know that I was
282 Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
283 AddUsersToWorkList(I); // Add all modified instrs to worklist
285 I.replaceAllUsesWith(V);
288 // If we are replacing the instruction with itself, this must be in a
289 // segment of unreachable code, so just clobber the instruction.
290 I.replaceAllUsesWith(UndefValue::get(I.getType()));
295 // UpdateValueUsesWith - This method is to be used when an value is
296 // found to be replacable with another preexisting expression or was
297 // updated. Here we add all uses of I to the worklist, replace all uses of
298 // I with the new value (unless the instruction was just updated), then
299 // return true, so that the inst combiner will know that I was modified.
301 bool UpdateValueUsesWith(Value *Old, Value *New) {
302 AddUsersToWorkList(*Old); // Add all modified instrs to worklist
304 Old->replaceAllUsesWith(New);
305 if (Instruction *I = dyn_cast<Instruction>(Old))
307 if (Instruction *I = dyn_cast<Instruction>(New))
312 // EraseInstFromFunction - When dealing with an instruction that has side
313 // effects or produces a void value, we can't rely on DCE to delete the
314 // instruction. Instead, visit methods should return the value returned by
316 Instruction *EraseInstFromFunction(Instruction &I) {
317 assert(I.use_empty() && "Cannot erase instruction that is used!");
318 AddUsesToWorkList(I);
319 RemoveFromWorkList(&I);
321 return 0; // Don't do anything with FI
325 /// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
326 /// InsertBefore instruction. This is specialized a bit to avoid inserting
327 /// casts that are known to not do anything...
329 Value *InsertOperandCastBefore(Instruction::CastOps opcode,
330 Value *V, const Type *DestTy,
331 Instruction *InsertBefore);
333 /// SimplifyCommutative - This performs a few simplifications for
334 /// commutative operators.
335 bool SimplifyCommutative(BinaryOperator &I);
337 /// SimplifyCompare - This reorders the operands of a CmpInst to get them in
338 /// most-complex to least-complex order.
339 bool SimplifyCompare(CmpInst &I);
341 /// SimplifyDemandedBits - Attempts to replace V with a simpler value based
342 /// on the demanded bits.
343 bool SimplifyDemandedBits(Value *V, APInt DemandedMask,
344 APInt& KnownZero, APInt& KnownOne,
347 Value *SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
348 uint64_t &UndefElts, unsigned Depth = 0);
350 // FoldOpIntoPhi - Given a binary operator or cast instruction which has a
351 // PHI node as operand #0, see if we can fold the instruction into the PHI
352 // (which is only possible if all operands to the PHI are constants).
353 Instruction *FoldOpIntoPhi(Instruction &I);
355 // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
356 // operator and they all are only used by the PHI, PHI together their
357 // inputs, and do the operation once, to the result of the PHI.
358 Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
359 Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
362 Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
363 ConstantInt *AndRHS, BinaryOperator &TheAnd);
365 Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
366 bool isSub, Instruction &I);
367 Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
368 bool isSigned, bool Inside, Instruction &IB);
369 Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocationInst &AI);
370 Instruction *MatchBSwap(BinaryOperator &I);
371 bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
372 Instruction *SimplifyMemTransfer(MemIntrinsic *MI);
373 Instruction *SimplifyMemSet(MemSetInst *MI);
376 Value *EvaluateInDifferentType(Value *V, const Type *Ty, bool isSigned);
378 void ComputeMaskedBits(Value *V, const APInt &Mask, APInt& KnownZero,
379 APInt& KnownOne, unsigned Depth = 0);
380 bool MaskedValueIsZero(Value *V, const APInt& Mask, unsigned Depth = 0);
381 bool CanEvaluateInDifferentType(Value *V, const IntegerType *Ty,
383 int &NumCastsRemoved);
384 unsigned GetOrEnforceKnownAlignment(Value *V,
385 unsigned PrefAlign = 0);
388 char InstCombiner::ID = 0;
389 RegisterPass<InstCombiner> X("instcombine", "Combine redundant instructions");
392 // getComplexity: Assign a complexity or rank value to LLVM Values...
393 // 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
394 static unsigned getComplexity(Value *V) {
395 if (isa<Instruction>(V)) {
396 if (BinaryOperator::isNeg(V) || BinaryOperator::isNot(V))
400 if (isa<Argument>(V)) return 3;
401 return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
404 // isOnlyUse - Return true if this instruction will be deleted if we stop using
406 static bool isOnlyUse(Value *V) {
407 return V->hasOneUse() || isa<Constant>(V);
410 // getPromotedType - Return the specified type promoted as it would be to pass
411 // though a va_arg area...
412 static const Type *getPromotedType(const Type *Ty) {
413 if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
414 if (ITy->getBitWidth() < 32)
415 return Type::Int32Ty;
420 /// getBitCastOperand - If the specified operand is a CastInst or a constant
421 /// expression bitcast, return the operand value, otherwise return null.
422 static Value *getBitCastOperand(Value *V) {
423 if (BitCastInst *I = dyn_cast<BitCastInst>(V))
424 return I->getOperand(0);
425 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
426 if (CE->getOpcode() == Instruction::BitCast)
427 return CE->getOperand(0);
431 /// This function is a wrapper around CastInst::isEliminableCastPair. It
432 /// simply extracts arguments and returns what that function returns.
433 static Instruction::CastOps
434 isEliminableCastPair(
435 const CastInst *CI, ///< The first cast instruction
436 unsigned opcode, ///< The opcode of the second cast instruction
437 const Type *DstTy, ///< The target type for the second cast instruction
438 TargetData *TD ///< The target data for pointer size
441 const Type *SrcTy = CI->getOperand(0)->getType(); // A from above
442 const Type *MidTy = CI->getType(); // B from above
444 // Get the opcodes of the two Cast instructions
445 Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
446 Instruction::CastOps secondOp = Instruction::CastOps(opcode);
448 return Instruction::CastOps(
449 CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
450 DstTy, TD->getIntPtrType()));
453 /// ValueRequiresCast - Return true if the cast from "V to Ty" actually results
454 /// in any code being generated. It does not require codegen if V is simple
455 /// enough or if the cast can be folded into other casts.
456 static bool ValueRequiresCast(Instruction::CastOps opcode, const Value *V,
457 const Type *Ty, TargetData *TD) {
458 if (V->getType() == Ty || isa<Constant>(V)) return false;
460 // If this is another cast that can be eliminated, it isn't codegen either.
461 if (const CastInst *CI = dyn_cast<CastInst>(V))
462 if (isEliminableCastPair(CI, opcode, Ty, TD))
467 /// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
468 /// InsertBefore instruction. This is specialized a bit to avoid inserting
469 /// casts that are known to not do anything...
471 Value *InstCombiner::InsertOperandCastBefore(Instruction::CastOps opcode,
472 Value *V, const Type *DestTy,
473 Instruction *InsertBefore) {
474 if (V->getType() == DestTy) return V;
475 if (Constant *C = dyn_cast<Constant>(V))
476 return ConstantExpr::getCast(opcode, C, DestTy);
478 return InsertCastBefore(opcode, V, DestTy, *InsertBefore);
481 // SimplifyCommutative - This performs a few simplifications for commutative
484 // 1. Order operands such that they are listed from right (least complex) to
485 // left (most complex). This puts constants before unary operators before
488 // 2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
489 // 3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
491 bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
492 bool Changed = false;
493 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
494 Changed = !I.swapOperands();
496 if (!I.isAssociative()) return Changed;
497 Instruction::BinaryOps Opcode = I.getOpcode();
498 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
499 if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
500 if (isa<Constant>(I.getOperand(1))) {
501 Constant *Folded = ConstantExpr::get(I.getOpcode(),
502 cast<Constant>(I.getOperand(1)),
503 cast<Constant>(Op->getOperand(1)));
504 I.setOperand(0, Op->getOperand(0));
505 I.setOperand(1, Folded);
507 } else if (BinaryOperator *Op1=dyn_cast<BinaryOperator>(I.getOperand(1)))
508 if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
509 isOnlyUse(Op) && isOnlyUse(Op1)) {
510 Constant *C1 = cast<Constant>(Op->getOperand(1));
511 Constant *C2 = cast<Constant>(Op1->getOperand(1));
513 // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
514 Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
515 Instruction *New = BinaryOperator::create(Opcode, Op->getOperand(0),
519 I.setOperand(0, New);
520 I.setOperand(1, Folded);
527 /// SimplifyCompare - For a CmpInst this function just orders the operands
528 /// so that theyare listed from right (least complex) to left (most complex).
529 /// This puts constants before unary operators before binary operators.
530 bool InstCombiner::SimplifyCompare(CmpInst &I) {
531 if (getComplexity(I.getOperand(0)) >= getComplexity(I.getOperand(1)))
534 // Compare instructions are not associative so there's nothing else we can do.
538 // dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
539 // if the LHS is a constant zero (which is the 'negate' form).
541 static inline Value *dyn_castNegVal(Value *V) {
542 if (BinaryOperator::isNeg(V))
543 return BinaryOperator::getNegArgument(V);
545 // Constants can be considered to be negated values if they can be folded.
546 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
547 return ConstantExpr::getNeg(C);
551 static inline Value *dyn_castNotVal(Value *V) {
552 if (BinaryOperator::isNot(V))
553 return BinaryOperator::getNotArgument(V);
555 // Constants can be considered to be not'ed values...
556 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
557 return ConstantInt::get(~C->getValue());
561 // dyn_castFoldableMul - If this value is a multiply that can be folded into
562 // other computations (because it has a constant operand), return the
563 // non-constant operand of the multiply, and set CST to point to the multiplier.
564 // Otherwise, return null.
566 static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
567 if (V->hasOneUse() && V->getType()->isInteger())
568 if (Instruction *I = dyn_cast<Instruction>(V)) {
569 if (I->getOpcode() == Instruction::Mul)
570 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
571 return I->getOperand(0);
572 if (I->getOpcode() == Instruction::Shl)
573 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
574 // The multiplier is really 1 << CST.
575 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
576 uint32_t CSTVal = CST->getLimitedValue(BitWidth);
577 CST = ConstantInt::get(APInt(BitWidth, 1).shl(CSTVal));
578 return I->getOperand(0);
584 /// dyn_castGetElementPtr - If this is a getelementptr instruction or constant
585 /// expression, return it.
586 static User *dyn_castGetElementPtr(Value *V) {
587 if (isa<GetElementPtrInst>(V)) return cast<User>(V);
588 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
589 if (CE->getOpcode() == Instruction::GetElementPtr)
590 return cast<User>(V);
594 /// getOpcode - If this is an Instruction or a ConstantExpr, return the
595 /// opcode value. Otherwise return UserOp1.
596 static unsigned getOpcode(User *U) {
597 if (Instruction *I = dyn_cast<Instruction>(U))
598 return I->getOpcode();
599 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U))
600 return CE->getOpcode();
601 // Use UserOp1 to mean there's no opcode.
602 return Instruction::UserOp1;
605 /// AddOne - Add one to a ConstantInt
606 static ConstantInt *AddOne(ConstantInt *C) {
607 APInt Val(C->getValue());
608 return ConstantInt::get(++Val);
610 /// SubOne - Subtract one from a ConstantInt
611 static ConstantInt *SubOne(ConstantInt *C) {
612 APInt Val(C->getValue());
613 return ConstantInt::get(--Val);
615 /// Add - Add two ConstantInts together
616 static ConstantInt *Add(ConstantInt *C1, ConstantInt *C2) {
617 return ConstantInt::get(C1->getValue() + C2->getValue());
619 /// And - Bitwise AND two ConstantInts together
620 static ConstantInt *And(ConstantInt *C1, ConstantInt *C2) {
621 return ConstantInt::get(C1->getValue() & C2->getValue());
623 /// Subtract - Subtract one ConstantInt from another
624 static ConstantInt *Subtract(ConstantInt *C1, ConstantInt *C2) {
625 return ConstantInt::get(C1->getValue() - C2->getValue());
627 /// Multiply - Multiply two ConstantInts together
628 static ConstantInt *Multiply(ConstantInt *C1, ConstantInt *C2) {
629 return ConstantInt::get(C1->getValue() * C2->getValue());
631 /// MultiplyOverflows - True if the multiply can not be expressed in an int
633 static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
634 uint32_t W = C1->getBitWidth();
635 APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
644 APInt MulExt = LHSExt * RHSExt;
647 APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
648 APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
649 return MulExt.slt(Min) || MulExt.sgt(Max);
651 return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
654 /// ComputeMaskedBits - Determine which of the bits specified in Mask are
655 /// known to be either zero or one and return them in the KnownZero/KnownOne
656 /// bit sets. This code only analyzes bits in Mask, in order to short-circuit
658 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
659 /// we cannot optimize based on the assumption that it is zero without changing
660 /// it to be an explicit zero. If we don't change it to zero, other code could
661 /// optimized based on the contradictory assumption that it is non-zero.
662 /// Because instcombine aggressively folds operations with undef args anyway,
663 /// this won't lose us code quality.
664 void InstCombiner::ComputeMaskedBits(Value *V, const APInt &Mask,
665 APInt& KnownZero, APInt& KnownOne,
667 assert(V && "No Value?");
668 assert(Depth <= 6 && "Limit Search Depth");
669 uint32_t BitWidth = Mask.getBitWidth();
670 assert((V->getType()->isInteger() || isa<PointerType>(V->getType())) &&
671 "Not integer or pointer type!");
672 assert((!TD || TD->getTypeSizeInBits(V->getType()) == BitWidth) &&
673 (!isa<IntegerType>(V->getType()) ||
674 V->getType()->getPrimitiveSizeInBits() == BitWidth) &&
675 KnownZero.getBitWidth() == BitWidth &&
676 KnownOne.getBitWidth() == BitWidth &&
677 "V, Mask, KnownOne and KnownZero should have same BitWidth");
678 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
679 // We know all of the bits for a constant!
680 KnownOne = CI->getValue() & Mask;
681 KnownZero = ~KnownOne & Mask;
684 // Null is all-zeros.
685 if (isa<ConstantPointerNull>(V)) {
690 // The address of an aligned GlobalValue has trailing zeros.
691 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
692 unsigned Align = GV->getAlignment();
693 if (Align == 0 && TD && GV->getType()->getElementType()->isSized())
694 Align = TD->getPrefTypeAlignment(GV->getType()->getElementType());
696 KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
697 CountTrailingZeros_32(Align));
704 KnownZero.clear(); KnownOne.clear(); // Start out not knowing anything.
706 if (Depth == 6 || Mask == 0)
707 return; // Limit search depth.
709 User *I = dyn_cast<User>(V);
712 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
713 switch (getOpcode(I)) {
715 case Instruction::And: {
716 // If either the LHS or the RHS are Zero, the result is zero.
717 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
718 APInt Mask2(Mask & ~KnownZero);
719 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
720 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
721 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
723 // Output known-1 bits are only known if set in both the LHS & RHS.
724 KnownOne &= KnownOne2;
725 // Output known-0 are known to be clear if zero in either the LHS | RHS.
726 KnownZero |= KnownZero2;
729 case Instruction::Or: {
730 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
731 APInt Mask2(Mask & ~KnownOne);
732 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
733 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
734 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
736 // Output known-0 bits are only known if clear in both the LHS & RHS.
737 KnownZero &= KnownZero2;
738 // Output known-1 are known to be set if set in either the LHS | RHS.
739 KnownOne |= KnownOne2;
742 case Instruction::Xor: {
743 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
744 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
745 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
746 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
748 // Output known-0 bits are known if clear or set in both the LHS & RHS.
749 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
750 // Output known-1 are known to be set if set in only one of the LHS, RHS.
751 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
752 KnownZero = KnownZeroOut;
755 case Instruction::Mul: {
756 APInt Mask2 = APInt::getAllOnesValue(BitWidth);
757 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
758 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
759 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
760 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
762 // If low bits are zero in either operand, output low known-0 bits.
763 // Also compute a conserative estimate for high known-0 bits.
764 // More trickiness is possible, but this is sufficient for the
765 // interesting case of alignment computation.
767 unsigned TrailZ = KnownZero.countTrailingOnes() +
768 KnownZero2.countTrailingOnes();
769 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
770 KnownZero2.countLeadingOnes() +
771 1, BitWidth) - BitWidth;
773 TrailZ = std::min(TrailZ, BitWidth);
774 LeadZ = std::min(LeadZ, BitWidth);
775 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
776 APInt::getHighBitsSet(BitWidth, LeadZ);
780 case Instruction::UDiv: {
781 // For the purposes of computing leading zeros we can conservatively
782 // treat a udiv as a logical right shift by the power of 2 known to
783 // be less than the denominator.
784 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
785 ComputeMaskedBits(I->getOperand(0),
786 AllOnes, KnownZero2, KnownOne2, Depth+1);
787 unsigned LeadZ = KnownZero2.countLeadingOnes();
791 ComputeMaskedBits(I->getOperand(1),
792 AllOnes, KnownZero2, KnownOne2, Depth+1);
793 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
794 if (RHSUnknownLeadingOnes != BitWidth)
795 LeadZ = std::min(BitWidth,
796 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
798 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
801 case Instruction::Select:
802 ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
803 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
804 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
805 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
807 // Only known if known in both the LHS and RHS.
808 KnownOne &= KnownOne2;
809 KnownZero &= KnownZero2;
811 case Instruction::FPTrunc:
812 case Instruction::FPExt:
813 case Instruction::FPToUI:
814 case Instruction::FPToSI:
815 case Instruction::SIToFP:
816 case Instruction::UIToFP:
817 return; // Can't work with floating point.
818 case Instruction::PtrToInt:
819 case Instruction::IntToPtr:
820 // We can't handle these if we don't know the pointer size.
822 // Fall through and handle them the same as zext/trunc.
823 case Instruction::ZExt:
824 case Instruction::Trunc: {
825 // All these have integer operands
826 const Type *SrcTy = I->getOperand(0)->getType();
827 uint32_t SrcBitWidth = TD ?
828 TD->getTypeSizeInBits(SrcTy) :
829 SrcTy->getPrimitiveSizeInBits();
831 MaskIn.zextOrTrunc(SrcBitWidth);
832 KnownZero.zextOrTrunc(SrcBitWidth);
833 KnownOne.zextOrTrunc(SrcBitWidth);
834 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, Depth+1);
835 KnownZero.zextOrTrunc(BitWidth);
836 KnownOne.zextOrTrunc(BitWidth);
837 // Any top bits are known to be zero.
838 if (BitWidth > SrcBitWidth)
839 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
842 case Instruction::BitCast: {
843 const Type *SrcTy = I->getOperand(0)->getType();
844 if (SrcTy->isInteger() || isa<PointerType>(SrcTy)) {
845 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
850 case Instruction::SExt: {
851 // Compute the bits in the result that are not present in the input.
852 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
853 uint32_t SrcBitWidth = SrcTy->getBitWidth();
856 MaskIn.trunc(SrcBitWidth);
857 KnownZero.trunc(SrcBitWidth);
858 KnownOne.trunc(SrcBitWidth);
859 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, Depth+1);
860 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
861 KnownZero.zext(BitWidth);
862 KnownOne.zext(BitWidth);
864 // If the sign bit of the input is known set or clear, then we know the
865 // top bits of the result.
866 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
867 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
868 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
869 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
872 case Instruction::Shl:
873 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
874 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
875 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
876 APInt Mask2(Mask.lshr(ShiftAmt));
877 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, Depth+1);
878 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
879 KnownZero <<= ShiftAmt;
880 KnownOne <<= ShiftAmt;
881 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
885 case Instruction::LShr:
886 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
887 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
888 // Compute the new bits that are at the top now.
889 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
891 // Unsigned shift right.
892 APInt Mask2(Mask.shl(ShiftAmt));
893 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne,Depth+1);
894 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
895 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
896 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
897 // high bits known zero.
898 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
902 case Instruction::AShr:
903 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
904 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
905 // Compute the new bits that are at the top now.
906 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
908 // Signed shift right.
909 APInt Mask2(Mask.shl(ShiftAmt));
910 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne,Depth+1);
911 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
912 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
913 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
915 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
916 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
917 KnownZero |= HighBits;
918 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
919 KnownOne |= HighBits;
923 case Instruction::Sub: {
924 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(I->getOperand(0))) {
925 // We know that the top bits of C-X are clear if X contains less bits
926 // than C (i.e. no wrap-around can happen). For example, 20-X is
927 // positive if we can prove that X is >= 0 and < 16.
928 if (!CLHS->getValue().isNegative()) {
929 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
930 // NLZ can't be BitWidth with no sign bit
931 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
932 ComputeMaskedBits(I->getOperand(1), MaskV, KnownZero2, KnownOne2,
935 // If all of the MaskV bits are known to be zero, then we know the
936 // output top bits are zero, because we now know that the output is
938 if ((KnownZero2 & MaskV) == MaskV) {
939 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
940 // Top bits known zero.
941 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
947 case Instruction::Add: {
948 // Output known-0 bits are known if clear or set in both the low clear bits
949 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the
951 APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
952 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
953 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
954 unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
956 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
957 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
958 KnownZeroOut = std::min(KnownZeroOut,
959 KnownZero2.countTrailingOnes());
961 KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
964 case Instruction::SRem:
965 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
966 APInt RA = Rem->getValue();
967 if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
968 APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
969 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
970 ComputeMaskedBits(I->getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
972 // The sign of a remainder is equal to the sign of the first
973 // operand (zero being positive).
974 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
975 KnownZero2 |= ~LowBits;
976 else if (KnownOne2[BitWidth-1])
977 KnownOne2 |= ~LowBits;
979 KnownZero |= KnownZero2 & Mask;
980 KnownOne |= KnownOne2 & Mask;
982 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
986 case Instruction::URem: {
987 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
988 APInt RA = Rem->getValue();
989 if (RA.isPowerOf2()) {
990 APInt LowBits = (RA - 1);
991 APInt Mask2 = LowBits & Mask;
992 KnownZero |= ~LowBits & Mask;
993 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
994 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
999 // Since the result is less than or equal to either operand, any leading
1000 // zero bits in either operand must also exist in the result.
1001 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1002 ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero, KnownOne,
1004 ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2,
1007 uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1008 KnownZero2.countLeadingOnes());
1010 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1014 case Instruction::Alloca:
1015 case Instruction::Malloc: {
1016 AllocationInst *AI = cast<AllocationInst>(V);
1017 unsigned Align = AI->getAlignment();
1018 if (Align == 0 && TD) {
1019 if (isa<AllocaInst>(AI))
1020 Align = TD->getPrefTypeAlignment(AI->getType()->getElementType());
1021 else if (isa<MallocInst>(AI)) {
1022 // Malloc returns maximally aligned memory.
1023 Align = TD->getABITypeAlignment(AI->getType()->getElementType());
1026 (unsigned)TD->getABITypeAlignment(Type::DoubleTy));
1029 (unsigned)TD->getABITypeAlignment(Type::Int64Ty));
1034 KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
1035 CountTrailingZeros_32(Align));
1038 case Instruction::GetElementPtr: {
1039 // Analyze all of the subscripts of this getelementptr instruction
1040 // to determine if we can prove known low zero bits.
1041 APInt LocalMask = APInt::getAllOnesValue(BitWidth);
1042 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
1043 ComputeMaskedBits(I->getOperand(0), LocalMask,
1044 LocalKnownZero, LocalKnownOne, Depth+1);
1045 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1047 gep_type_iterator GTI = gep_type_begin(I);
1048 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1049 Value *Index = I->getOperand(i);
1050 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
1051 // Handle struct member offset arithmetic.
1053 const StructLayout *SL = TD->getStructLayout(STy);
1054 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1055 uint64_t Offset = SL->getElementOffset(Idx);
1056 TrailZ = std::min(TrailZ,
1057 CountTrailingZeros_64(Offset));
1059 // Handle array index arithmetic.
1060 const Type *IndexedTy = GTI.getIndexedType();
1061 if (!IndexedTy->isSized()) return;
1062 unsigned GEPOpiBits = Index->getType()->getPrimitiveSizeInBits();
1063 uint64_t TypeSize = TD ? TD->getABITypeSize(IndexedTy) : 1;
1064 LocalMask = APInt::getAllOnesValue(GEPOpiBits);
1065 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
1066 ComputeMaskedBits(Index, LocalMask,
1067 LocalKnownZero, LocalKnownOne, Depth+1);
1068 TrailZ = std::min(TrailZ,
1069 CountTrailingZeros_64(TypeSize) +
1070 LocalKnownZero.countTrailingOnes());
1074 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask;
1077 case Instruction::PHI: {
1078 PHINode *P = cast<PHINode>(I);
1079 // Handle the case of a simple two-predecessor recurrence PHI.
1080 // There's a lot more that could theoretically be done here, but
1081 // this is sufficient to catch some interesting cases.
1082 if (P->getNumIncomingValues() == 2) {
1083 for (unsigned i = 0; i != 2; ++i) {
1084 Value *L = P->getIncomingValue(i);
1085 Value *R = P->getIncomingValue(!i);
1086 User *LU = dyn_cast<User>(L);
1087 unsigned Opcode = LU ? getOpcode(LU) : (unsigned)Instruction::UserOp1;
1088 // Check for operations that have the property that if
1089 // both their operands have low zero bits, the result
1090 // will have low zero bits.
1091 if (Opcode == Instruction::Add ||
1092 Opcode == Instruction::Sub ||
1093 Opcode == Instruction::And ||
1094 Opcode == Instruction::Or ||
1095 Opcode == Instruction::Mul) {
1096 Value *LL = LU->getOperand(0);
1097 Value *LR = LU->getOperand(1);
1098 // Find a recurrence.
1105 // Ok, we have a PHI of the form L op= R. Check for low
1107 APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1108 ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, Depth+1);
1109 Mask2 = APInt::getLowBitsSet(BitWidth,
1110 KnownZero2.countTrailingOnes());
1113 ComputeMaskedBits(L, Mask2, KnownZero2, KnownOne2, Depth+1);
1115 APInt::getLowBitsSet(BitWidth,
1116 KnownZero2.countTrailingOnes());
1123 case Instruction::Call:
1124 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1125 switch (II->getIntrinsicID()) {
1127 case Intrinsic::ctpop:
1128 case Intrinsic::ctlz:
1129 case Intrinsic::cttz: {
1130 unsigned LowBits = Log2_32(BitWidth)+1;
1131 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1140 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
1141 /// this predicate to simplify operations downstream. Mask is known to be zero
1142 /// for bits that V cannot have.
1143 bool InstCombiner::MaskedValueIsZero(Value *V, const APInt& Mask,
1145 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
1146 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, Depth);
1147 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1148 return (KnownZero & Mask) == Mask;
1151 /// ShrinkDemandedConstant - Check to see if the specified operand of the
1152 /// specified instruction is a constant integer. If so, check to see if there
1153 /// are any bits set in the constant that are not demanded. If so, shrink the
1154 /// constant and return true.
1155 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
1157 assert(I && "No instruction?");
1158 assert(OpNo < I->getNumOperands() && "Operand index too large");
1160 // If the operand is not a constant integer, nothing to do.
1161 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
1162 if (!OpC) return false;
1164 // If there are no bits set that aren't demanded, nothing to do.
1165 Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
1166 if ((~Demanded & OpC->getValue()) == 0)
1169 // This instruction is producing bits that are not demanded. Shrink the RHS.
1170 Demanded &= OpC->getValue();
1171 I->setOperand(OpNo, ConstantInt::get(Demanded));
1175 // ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
1176 // set of known zero and one bits, compute the maximum and minimum values that
1177 // could have the specified known zero and known one bits, returning them in
1179 static void ComputeSignedMinMaxValuesFromKnownBits(const Type *Ty,
1180 const APInt& KnownZero,
1181 const APInt& KnownOne,
1182 APInt& Min, APInt& Max) {
1183 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
1184 assert(KnownZero.getBitWidth() == BitWidth &&
1185 KnownOne.getBitWidth() == BitWidth &&
1186 Min.getBitWidth() == BitWidth && Max.getBitWidth() == BitWidth &&
1187 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
1188 APInt UnknownBits = ~(KnownZero|KnownOne);
1190 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
1191 // bit if it is unknown.
1193 Max = KnownOne|UnknownBits;
1195 if (UnknownBits[BitWidth-1]) { // Sign bit is unknown
1196 Min.set(BitWidth-1);
1197 Max.clear(BitWidth-1);
1201 // ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
1202 // a set of known zero and one bits, compute the maximum and minimum values that
1203 // could have the specified known zero and known one bits, returning them in
1205 static void ComputeUnsignedMinMaxValuesFromKnownBits(const Type *Ty,
1206 const APInt &KnownZero,
1207 const APInt &KnownOne,
1208 APInt &Min, APInt &Max) {
1209 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth(); BitWidth = BitWidth;
1210 assert(KnownZero.getBitWidth() == BitWidth &&
1211 KnownOne.getBitWidth() == BitWidth &&
1212 Min.getBitWidth() == BitWidth && Max.getBitWidth() &&
1213 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
1214 APInt UnknownBits = ~(KnownZero|KnownOne);
1216 // The minimum value is when the unknown bits are all zeros.
1218 // The maximum value is when the unknown bits are all ones.
1219 Max = KnownOne|UnknownBits;
1222 /// SimplifyDemandedBits - This function attempts to replace V with a simpler
1223 /// value based on the demanded bits. When this function is called, it is known
1224 /// that only the bits set in DemandedMask of the result of V are ever used
1225 /// downstream. Consequently, depending on the mask and V, it may be possible
1226 /// to replace V with a constant or one of its operands. In such cases, this
1227 /// function does the replacement and returns true. In all other cases, it
1228 /// returns false after analyzing the expression and setting KnownOne and known
1229 /// to be one in the expression. KnownZero contains all the bits that are known
1230 /// to be zero in the expression. These are provided to potentially allow the
1231 /// caller (which might recursively be SimplifyDemandedBits itself) to simplify
1232 /// the expression. KnownOne and KnownZero always follow the invariant that
1233 /// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
1234 /// the bits in KnownOne and KnownZero may only be accurate for those bits set
1235 /// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
1236 /// and KnownOne must all be the same.
1237 bool InstCombiner::SimplifyDemandedBits(Value *V, APInt DemandedMask,
1238 APInt& KnownZero, APInt& KnownOne,
1240 assert(V != 0 && "Null pointer of Value???");
1241 assert(Depth <= 6 && "Limit Search Depth");
1242 uint32_t BitWidth = DemandedMask.getBitWidth();
1243 const IntegerType *VTy = cast<IntegerType>(V->getType());
1244 assert(VTy->getBitWidth() == BitWidth &&
1245 KnownZero.getBitWidth() == BitWidth &&
1246 KnownOne.getBitWidth() == BitWidth &&
1247 "Value *V, DemandedMask, KnownZero and KnownOne \
1248 must have same BitWidth");
1249 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1250 // We know all of the bits for a constant!
1251 KnownOne = CI->getValue() & DemandedMask;
1252 KnownZero = ~KnownOne & DemandedMask;
1258 if (!V->hasOneUse()) { // Other users may use these bits.
1259 if (Depth != 0) { // Not at the root.
1260 // Just compute the KnownZero/KnownOne bits to simplify things downstream.
1261 ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
1264 // If this is the root being simplified, allow it to have multiple uses,
1265 // just set the DemandedMask to all bits.
1266 DemandedMask = APInt::getAllOnesValue(BitWidth);
1267 } else if (DemandedMask == 0) { // Not demanding any bits from V.
1268 if (V != UndefValue::get(VTy))
1269 return UpdateValueUsesWith(V, UndefValue::get(VTy));
1271 } else if (Depth == 6) { // Limit search depth.
1275 Instruction *I = dyn_cast<Instruction>(V);
1276 if (!I) return false; // Only analyze instructions.
1278 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
1279 APInt &RHSKnownZero = KnownZero, &RHSKnownOne = KnownOne;
1280 switch (I->getOpcode()) {
1282 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
1284 case Instruction::And:
1285 // If either the LHS or the RHS are Zero, the result is zero.
1286 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
1287 RHSKnownZero, RHSKnownOne, Depth+1))
1289 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1290 "Bits known to be one AND zero?");
1292 // If something is known zero on the RHS, the bits aren't demanded on the
1294 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownZero,
1295 LHSKnownZero, LHSKnownOne, Depth+1))
1297 assert((LHSKnownZero & LHSKnownOne) == 0 &&
1298 "Bits known to be one AND zero?");
1300 // If all of the demanded bits are known 1 on one side, return the other.
1301 // These bits cannot contribute to the result of the 'and'.
1302 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
1303 (DemandedMask & ~LHSKnownZero))
1304 return UpdateValueUsesWith(I, I->getOperand(0));
1305 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
1306 (DemandedMask & ~RHSKnownZero))
1307 return UpdateValueUsesWith(I, I->getOperand(1));
1309 // If all of the demanded bits in the inputs are known zeros, return zero.
1310 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
1311 return UpdateValueUsesWith(I, Constant::getNullValue(VTy));
1313 // If the RHS is a constant, see if we can simplify it.
1314 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
1315 return UpdateValueUsesWith(I, I);
1317 // Output known-1 bits are only known if set in both the LHS & RHS.
1318 RHSKnownOne &= LHSKnownOne;
1319 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1320 RHSKnownZero |= LHSKnownZero;
1322 case Instruction::Or:
1323 // If either the LHS or the RHS are One, the result is One.
1324 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
1325 RHSKnownZero, RHSKnownOne, Depth+1))
1327 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1328 "Bits known to be one AND zero?");
1329 // If something is known one on the RHS, the bits aren't demanded on the
1331 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownOne,
1332 LHSKnownZero, LHSKnownOne, Depth+1))
1334 assert((LHSKnownZero & LHSKnownOne) == 0 &&
1335 "Bits known to be one AND zero?");
1337 // If all of the demanded bits are known zero on one side, return the other.
1338 // These bits cannot contribute to the result of the 'or'.
1339 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
1340 (DemandedMask & ~LHSKnownOne))
1341 return UpdateValueUsesWith(I, I->getOperand(0));
1342 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
1343 (DemandedMask & ~RHSKnownOne))
1344 return UpdateValueUsesWith(I, I->getOperand(1));
1346 // If all of the potentially set bits on one side are known to be set on
1347 // the other side, just use the 'other' side.
1348 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
1349 (DemandedMask & (~RHSKnownZero)))
1350 return UpdateValueUsesWith(I, I->getOperand(0));
1351 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
1352 (DemandedMask & (~LHSKnownZero)))
1353 return UpdateValueUsesWith(I, I->getOperand(1));
1355 // If the RHS is a constant, see if we can simplify it.
1356 if (ShrinkDemandedConstant(I, 1, DemandedMask))
1357 return UpdateValueUsesWith(I, I);
1359 // Output known-0 bits are only known if clear in both the LHS & RHS.
1360 RHSKnownZero &= LHSKnownZero;
1361 // Output known-1 are known to be set if set in either the LHS | RHS.
1362 RHSKnownOne |= LHSKnownOne;
1364 case Instruction::Xor: {
1365 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
1366 RHSKnownZero, RHSKnownOne, Depth+1))
1368 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1369 "Bits known to be one AND zero?");
1370 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1371 LHSKnownZero, LHSKnownOne, Depth+1))
1373 assert((LHSKnownZero & LHSKnownOne) == 0 &&
1374 "Bits known to be one AND zero?");
1376 // If all of the demanded bits are known zero on one side, return the other.
1377 // These bits cannot contribute to the result of the 'xor'.
1378 if ((DemandedMask & RHSKnownZero) == DemandedMask)
1379 return UpdateValueUsesWith(I, I->getOperand(0));
1380 if ((DemandedMask & LHSKnownZero) == DemandedMask)
1381 return UpdateValueUsesWith(I, I->getOperand(1));
1383 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1384 APInt KnownZeroOut = (RHSKnownZero & LHSKnownZero) |
1385 (RHSKnownOne & LHSKnownOne);
1386 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1387 APInt KnownOneOut = (RHSKnownZero & LHSKnownOne) |
1388 (RHSKnownOne & LHSKnownZero);
1390 // If all of the demanded bits are known to be zero on one side or the
1391 // other, turn this into an *inclusive* or.
1392 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1393 if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
1395 BinaryOperator::createOr(I->getOperand(0), I->getOperand(1),
1397 InsertNewInstBefore(Or, *I);
1398 return UpdateValueUsesWith(I, Or);
1401 // If all of the demanded bits on one side are known, and all of the set
1402 // bits on that side are also known to be set on the other side, turn this
1403 // into an AND, as we know the bits will be cleared.
1404 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1405 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
1407 if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
1408 Constant *AndC = ConstantInt::get(~RHSKnownOne & DemandedMask);
1410 BinaryOperator::createAnd(I->getOperand(0), AndC, "tmp");
1411 InsertNewInstBefore(And, *I);
1412 return UpdateValueUsesWith(I, And);
1416 // If the RHS is a constant, see if we can simplify it.
1417 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
1418 if (ShrinkDemandedConstant(I, 1, DemandedMask))
1419 return UpdateValueUsesWith(I, I);
1421 RHSKnownZero = KnownZeroOut;
1422 RHSKnownOne = KnownOneOut;
1425 case Instruction::Select:
1426 if (SimplifyDemandedBits(I->getOperand(2), DemandedMask,
1427 RHSKnownZero, RHSKnownOne, Depth+1))
1429 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
1430 LHSKnownZero, LHSKnownOne, Depth+1))
1432 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1433 "Bits known to be one AND zero?");
1434 assert((LHSKnownZero & LHSKnownOne) == 0 &&
1435 "Bits known to be one AND zero?");
1437 // If the operands are constants, see if we can simplify them.
1438 if (ShrinkDemandedConstant(I, 1, DemandedMask))
1439 return UpdateValueUsesWith(I, I);
1440 if (ShrinkDemandedConstant(I, 2, DemandedMask))
1441 return UpdateValueUsesWith(I, I);
1443 // Only known if known in both the LHS and RHS.
1444 RHSKnownOne &= LHSKnownOne;
1445 RHSKnownZero &= LHSKnownZero;
1447 case Instruction::Trunc: {
1449 cast<IntegerType>(I->getOperand(0)->getType())->getBitWidth();
1450 DemandedMask.zext(truncBf);
1451 RHSKnownZero.zext(truncBf);
1452 RHSKnownOne.zext(truncBf);
1453 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1454 RHSKnownZero, RHSKnownOne, Depth+1))
1456 DemandedMask.trunc(BitWidth);
1457 RHSKnownZero.trunc(BitWidth);
1458 RHSKnownOne.trunc(BitWidth);
1459 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1460 "Bits known to be one AND zero?");
1463 case Instruction::BitCast:
1464 if (!I->getOperand(0)->getType()->isInteger())
1467 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1468 RHSKnownZero, RHSKnownOne, Depth+1))
1470 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1471 "Bits known to be one AND zero?");
1473 case Instruction::ZExt: {
1474 // Compute the bits in the result that are not present in the input.
1475 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
1476 uint32_t SrcBitWidth = SrcTy->getBitWidth();
1478 DemandedMask.trunc(SrcBitWidth);
1479 RHSKnownZero.trunc(SrcBitWidth);
1480 RHSKnownOne.trunc(SrcBitWidth);
1481 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1482 RHSKnownZero, RHSKnownOne, Depth+1))
1484 DemandedMask.zext(BitWidth);
1485 RHSKnownZero.zext(BitWidth);
1486 RHSKnownOne.zext(BitWidth);
1487 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1488 "Bits known to be one AND zero?");
1489 // The top bits are known to be zero.
1490 RHSKnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1493 case Instruction::SExt: {
1494 // Compute the bits in the result that are not present in the input.
1495 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
1496 uint32_t SrcBitWidth = SrcTy->getBitWidth();
1498 APInt InputDemandedBits = DemandedMask &
1499 APInt::getLowBitsSet(BitWidth, SrcBitWidth);
1501 APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
1502 // If any of the sign extended bits are demanded, we know that the sign
1504 if ((NewBits & DemandedMask) != 0)
1505 InputDemandedBits.set(SrcBitWidth-1);
1507 InputDemandedBits.trunc(SrcBitWidth);
1508 RHSKnownZero.trunc(SrcBitWidth);
1509 RHSKnownOne.trunc(SrcBitWidth);
1510 if (SimplifyDemandedBits(I->getOperand(0), InputDemandedBits,
1511 RHSKnownZero, RHSKnownOne, Depth+1))
1513 InputDemandedBits.zext(BitWidth);
1514 RHSKnownZero.zext(BitWidth);
1515 RHSKnownOne.zext(BitWidth);
1516 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1517 "Bits known to be one AND zero?");
1519 // If the sign bit of the input is known set or clear, then we know the
1520 // top bits of the result.
1522 // If the input sign bit is known zero, or if the NewBits are not demanded
1523 // convert this into a zero extension.
1524 if (RHSKnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits)
1526 // Convert to ZExt cast
1527 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName(), I);
1528 return UpdateValueUsesWith(I, NewCast);
1529 } else if (RHSKnownOne[SrcBitWidth-1]) { // Input sign bit known set
1530 RHSKnownOne |= NewBits;
1534 case Instruction::Add: {
1535 // Figure out what the input bits are. If the top bits of the and result
1536 // are not demanded, then the add doesn't demand them from its input
1538 uint32_t NLZ = DemandedMask.countLeadingZeros();
1540 // If there is a constant on the RHS, there are a variety of xformations
1542 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1543 // If null, this should be simplified elsewhere. Some of the xforms here
1544 // won't work if the RHS is zero.
1548 // If the top bit of the output is demanded, demand everything from the
1549 // input. Otherwise, we demand all the input bits except NLZ top bits.
1550 APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
1552 // Find information about known zero/one bits in the input.
1553 if (SimplifyDemandedBits(I->getOperand(0), InDemandedBits,
1554 LHSKnownZero, LHSKnownOne, Depth+1))
1557 // If the RHS of the add has bits set that can't affect the input, reduce
1559 if (ShrinkDemandedConstant(I, 1, InDemandedBits))
1560 return UpdateValueUsesWith(I, I);
1562 // Avoid excess work.
1563 if (LHSKnownZero == 0 && LHSKnownOne == 0)
1566 // Turn it into OR if input bits are zero.
1567 if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
1569 BinaryOperator::createOr(I->getOperand(0), I->getOperand(1),
1571 InsertNewInstBefore(Or, *I);
1572 return UpdateValueUsesWith(I, Or);
1575 // We can say something about the output known-zero and known-one bits,
1576 // depending on potential carries from the input constant and the
1577 // unknowns. For example if the LHS is known to have at most the 0x0F0F0
1578 // bits set and the RHS constant is 0x01001, then we know we have a known
1579 // one mask of 0x00001 and a known zero mask of 0xE0F0E.
1581 // To compute this, we first compute the potential carry bits. These are
1582 // the bits which may be modified. I'm not aware of a better way to do
1584 const APInt& RHSVal = RHS->getValue();
1585 APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
1587 // Now that we know which bits have carries, compute the known-1/0 sets.
1589 // Bits are known one if they are known zero in one operand and one in the
1590 // other, and there is no input carry.
1591 RHSKnownOne = ((LHSKnownZero & RHSVal) |
1592 (LHSKnownOne & ~RHSVal)) & ~CarryBits;
1594 // Bits are known zero if they are known zero in both operands and there
1595 // is no input carry.
1596 RHSKnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
1598 // If the high-bits of this ADD are not demanded, then it does not demand
1599 // the high bits of its LHS or RHS.
1600 if (DemandedMask[BitWidth-1] == 0) {
1601 // Right fill the mask of bits for this ADD to demand the most
1602 // significant bit and all those below it.
1603 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
1604 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1605 LHSKnownZero, LHSKnownOne, Depth+1))
1607 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1608 LHSKnownZero, LHSKnownOne, Depth+1))
1614 case Instruction::Sub:
1615 // If the high-bits of this SUB are not demanded, then it does not demand
1616 // the high bits of its LHS or RHS.
1617 if (DemandedMask[BitWidth-1] == 0) {
1618 // Right fill the mask of bits for this SUB to demand the most
1619 // significant bit and all those below it.
1620 uint32_t NLZ = DemandedMask.countLeadingZeros();
1621 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
1622 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1623 LHSKnownZero, LHSKnownOne, Depth+1))
1625 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1626 LHSKnownZero, LHSKnownOne, Depth+1))
1629 // Otherwise just hand the sub off to ComputeMaskedBits to fill in
1630 // the known zeros and ones.
1631 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
1633 case Instruction::Shl:
1634 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1635 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
1636 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
1637 if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn,
1638 RHSKnownZero, RHSKnownOne, Depth+1))
1640 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1641 "Bits known to be one AND zero?");
1642 RHSKnownZero <<= ShiftAmt;
1643 RHSKnownOne <<= ShiftAmt;
1644 // low bits known zero.
1646 RHSKnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
1649 case Instruction::LShr:
1650 // For a logical shift right
1651 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1652 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
1654 // Unsigned shift right.
1655 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
1656 if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn,
1657 RHSKnownZero, RHSKnownOne, Depth+1))
1659 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1660 "Bits known to be one AND zero?");
1661 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
1662 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
1664 // Compute the new bits that are at the top now.
1665 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1666 RHSKnownZero |= HighBits; // high bits known zero.
1670 case Instruction::AShr:
1671 // If this is an arithmetic shift right and only the low-bit is set, we can
1672 // always convert this into a logical shr, even if the shift amount is
1673 // variable. The low bit of the shift cannot be an input sign bit unless
1674 // the shift amount is >= the size of the datatype, which is undefined.
1675 if (DemandedMask == 1) {
1676 // Perform the logical shift right.
1677 Value *NewVal = BinaryOperator::createLShr(
1678 I->getOperand(0), I->getOperand(1), I->getName());
1679 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
1680 return UpdateValueUsesWith(I, NewVal);
1683 // If the sign bit is the only bit demanded by this ashr, then there is no
1684 // need to do it, the shift doesn't change the high bit.
1685 if (DemandedMask.isSignBit())
1686 return UpdateValueUsesWith(I, I->getOperand(0));
1688 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1689 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth);
1691 // Signed shift right.
1692 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
1693 // If any of the "high bits" are demanded, we should set the sign bit as
1695 if (DemandedMask.countLeadingZeros() <= ShiftAmt)
1696 DemandedMaskIn.set(BitWidth-1);
1697 if (SimplifyDemandedBits(I->getOperand(0),
1699 RHSKnownZero, RHSKnownOne, Depth+1))
1701 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1702 "Bits known to be one AND zero?");
1703 // Compute the new bits that are at the top now.
1704 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1705 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
1706 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
1708 // Handle the sign bits.
1709 APInt SignBit(APInt::getSignBit(BitWidth));
1710 // Adjust to where it is now in the mask.
1711 SignBit = APIntOps::lshr(SignBit, ShiftAmt);
1713 // If the input sign bit is known to be zero, or if none of the top bits
1714 // are demanded, turn this into an unsigned shift right.
1715 if (RHSKnownZero[BitWidth-ShiftAmt-1] ||
1716 (HighBits & ~DemandedMask) == HighBits) {
1717 // Perform the logical shift right.
1718 Value *NewVal = BinaryOperator::createLShr(
1719 I->getOperand(0), SA, I->getName());
1720 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
1721 return UpdateValueUsesWith(I, NewVal);
1722 } else if ((RHSKnownOne & SignBit) != 0) { // New bits are known one.
1723 RHSKnownOne |= HighBits;
1727 case Instruction::SRem:
1728 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1729 APInt RA = Rem->getValue();
1730 if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1731 APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1732 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1733 if (SimplifyDemandedBits(I->getOperand(0), Mask2,
1734 LHSKnownZero, LHSKnownOne, Depth+1))
1737 if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
1738 LHSKnownZero |= ~LowBits;
1739 else if (LHSKnownOne[BitWidth-1])
1740 LHSKnownOne |= ~LowBits;
1742 KnownZero |= LHSKnownZero & DemandedMask;
1743 KnownOne |= LHSKnownOne & DemandedMask;
1745 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1749 case Instruction::URem: {
1750 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1751 APInt RA = Rem->getValue();
1752 if (RA.isPowerOf2()) {
1753 APInt LowBits = (RA - 1);
1754 APInt Mask2 = LowBits & DemandedMask;
1755 KnownZero |= ~LowBits & DemandedMask;
1756 if (SimplifyDemandedBits(I->getOperand(0), Mask2,
1757 KnownZero, KnownOne, Depth+1))
1760 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1765 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
1766 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1767 if (SimplifyDemandedBits(I->getOperand(0), AllOnes,
1768 KnownZero2, KnownOne2, Depth+1))
1771 uint32_t Leaders = KnownZero2.countLeadingOnes();
1772 if (SimplifyDemandedBits(I->getOperand(1), AllOnes,
1773 KnownZero2, KnownOne2, Depth+1))
1776 Leaders = std::max(Leaders,
1777 KnownZero2.countLeadingOnes());
1778 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
1783 // If the client is only demanding bits that we know, return the known
1785 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask)
1786 return UpdateValueUsesWith(I, ConstantInt::get(RHSKnownOne));
1791 /// SimplifyDemandedVectorElts - The specified value producecs a vector with
1792 /// 64 or fewer elements. DemandedElts contains the set of elements that are
1793 /// actually used by the caller. This method analyzes which elements of the
1794 /// operand are undef and returns that information in UndefElts.
1796 /// If the information about demanded elements can be used to simplify the
1797 /// operation, the operation is simplified, then the resultant value is
1798 /// returned. This returns null if no change was made.
1799 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
1800 uint64_t &UndefElts,
1802 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
1803 assert(VWidth <= 64 && "Vector too wide to analyze!");
1804 uint64_t EltMask = ~0ULL >> (64-VWidth);
1805 assert(DemandedElts != EltMask && (DemandedElts & ~EltMask) == 0 &&
1806 "Invalid DemandedElts!");
1808 if (isa<UndefValue>(V)) {
1809 // If the entire vector is undefined, just return this info.
1810 UndefElts = EltMask;
1812 } else if (DemandedElts == 0) { // If nothing is demanded, provide undef.
1813 UndefElts = EltMask;
1814 return UndefValue::get(V->getType());
1818 if (ConstantVector *CP = dyn_cast<ConstantVector>(V)) {
1819 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1820 Constant *Undef = UndefValue::get(EltTy);
1822 std::vector<Constant*> Elts;
1823 for (unsigned i = 0; i != VWidth; ++i)
1824 if (!(DemandedElts & (1ULL << i))) { // If not demanded, set to undef.
1825 Elts.push_back(Undef);
1826 UndefElts |= (1ULL << i);
1827 } else if (isa<UndefValue>(CP->getOperand(i))) { // Already undef.
1828 Elts.push_back(Undef);
1829 UndefElts |= (1ULL << i);
1830 } else { // Otherwise, defined.
1831 Elts.push_back(CP->getOperand(i));
1834 // If we changed the constant, return it.
1835 Constant *NewCP = ConstantVector::get(Elts);
1836 return NewCP != CP ? NewCP : 0;
1837 } else if (isa<ConstantAggregateZero>(V)) {
1838 // Simplify the CAZ to a ConstantVector where the non-demanded elements are
1840 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1841 Constant *Zero = Constant::getNullValue(EltTy);
1842 Constant *Undef = UndefValue::get(EltTy);
1843 std::vector<Constant*> Elts;
1844 for (unsigned i = 0; i != VWidth; ++i)
1845 Elts.push_back((DemandedElts & (1ULL << i)) ? Zero : Undef);
1846 UndefElts = DemandedElts ^ EltMask;
1847 return ConstantVector::get(Elts);
1850 if (!V->hasOneUse()) { // Other users may use these bits.
1851 if (Depth != 0) { // Not at the root.
1852 // TODO: Just compute the UndefElts information recursively.
1856 } else if (Depth == 10) { // Limit search depth.
1860 Instruction *I = dyn_cast<Instruction>(V);
1861 if (!I) return false; // Only analyze instructions.
1863 bool MadeChange = false;
1864 uint64_t UndefElts2;
1866 switch (I->getOpcode()) {
1869 case Instruction::InsertElement: {
1870 // If this is a variable index, we don't know which element it overwrites.
1871 // demand exactly the same input as we produce.
1872 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1874 // Note that we can't propagate undef elt info, because we don't know
1875 // which elt is getting updated.
1876 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1877 UndefElts2, Depth+1);
1878 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1882 // If this is inserting an element that isn't demanded, remove this
1884 unsigned IdxNo = Idx->getZExtValue();
1885 if (IdxNo >= VWidth || (DemandedElts & (1ULL << IdxNo)) == 0)
1886 return AddSoonDeadInstToWorklist(*I, 0);
1888 // Otherwise, the element inserted overwrites whatever was there, so the
1889 // input demanded set is simpler than the output set.
1890 TmpV = SimplifyDemandedVectorElts(I->getOperand(0),
1891 DemandedElts & ~(1ULL << IdxNo),
1892 UndefElts, Depth+1);
1893 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1895 // The inserted element is defined.
1896 UndefElts |= 1ULL << IdxNo;
1899 case Instruction::BitCast: {
1900 // Vector->vector casts only.
1901 const VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1903 unsigned InVWidth = VTy->getNumElements();
1904 uint64_t InputDemandedElts = 0;
1907 if (VWidth == InVWidth) {
1908 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1909 // elements as are demanded of us.
1911 InputDemandedElts = DemandedElts;
1912 } else if (VWidth > InVWidth) {
1916 // If there are more elements in the result than there are in the source,
1917 // then an input element is live if any of the corresponding output
1918 // elements are live.
1919 Ratio = VWidth/InVWidth;
1920 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1921 if (DemandedElts & (1ULL << OutIdx))
1922 InputDemandedElts |= 1ULL << (OutIdx/Ratio);
1928 // If there are more elements in the source than there are in the result,
1929 // then an input element is live if the corresponding output element is
1931 Ratio = InVWidth/VWidth;
1932 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1933 if (DemandedElts & (1ULL << InIdx/Ratio))
1934 InputDemandedElts |= 1ULL << InIdx;
1937 // div/rem demand all inputs, because they don't want divide by zero.
1938 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
1939 UndefElts2, Depth+1);
1941 I->setOperand(0, TmpV);
1945 UndefElts = UndefElts2;
1946 if (VWidth > InVWidth) {
1947 assert(0 && "Unimp");
1948 // If there are more elements in the result than there are in the source,
1949 // then an output element is undef if the corresponding input element is
1951 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1952 if (UndefElts2 & (1ULL << (OutIdx/Ratio)))
1953 UndefElts |= 1ULL << OutIdx;
1954 } else if (VWidth < InVWidth) {
1955 assert(0 && "Unimp");
1956 // If there are more elements in the source than there are in the result,
1957 // then a result element is undef if all of the corresponding input
1958 // elements are undef.
1959 UndefElts = ~0ULL >> (64-VWidth); // Start out all undef.
1960 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1961 if ((UndefElts2 & (1ULL << InIdx)) == 0) // Not undef?
1962 UndefElts &= ~(1ULL << (InIdx/Ratio)); // Clear undef bit.
1966 case Instruction::And:
1967 case Instruction::Or:
1968 case Instruction::Xor:
1969 case Instruction::Add:
1970 case Instruction::Sub:
1971 case Instruction::Mul:
1972 // div/rem demand all inputs, because they don't want divide by zero.
1973 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1974 UndefElts, Depth+1);
1975 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1976 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1977 UndefElts2, Depth+1);
1978 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1980 // Output elements are undefined if both are undefined. Consider things
1981 // like undef&0. The result is known zero, not undef.
1982 UndefElts &= UndefElts2;
1985 case Instruction::Call: {
1986 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1988 switch (II->getIntrinsicID()) {
1991 // Binary vector operations that work column-wise. A dest element is a
1992 // function of the corresponding input elements from the two inputs.
1993 case Intrinsic::x86_sse_sub_ss:
1994 case Intrinsic::x86_sse_mul_ss:
1995 case Intrinsic::x86_sse_min_ss:
1996 case Intrinsic::x86_sse_max_ss:
1997 case Intrinsic::x86_sse2_sub_sd:
1998 case Intrinsic::x86_sse2_mul_sd:
1999 case Intrinsic::x86_sse2_min_sd:
2000 case Intrinsic::x86_sse2_max_sd:
2001 TmpV = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
2002 UndefElts, Depth+1);
2003 if (TmpV) { II->setOperand(1, TmpV); MadeChange = true; }
2004 TmpV = SimplifyDemandedVectorElts(II->getOperand(2), DemandedElts,
2005 UndefElts2, Depth+1);
2006 if (TmpV) { II->setOperand(2, TmpV); MadeChange = true; }
2008 // If only the low elt is demanded and this is a scalarizable intrinsic,
2009 // scalarize it now.
2010 if (DemandedElts == 1) {
2011 switch (II->getIntrinsicID()) {
2013 case Intrinsic::x86_sse_sub_ss:
2014 case Intrinsic::x86_sse_mul_ss:
2015 case Intrinsic::x86_sse2_sub_sd:
2016 case Intrinsic::x86_sse2_mul_sd:
2017 // TODO: Lower MIN/MAX/ABS/etc
2018 Value *LHS = II->getOperand(1);
2019 Value *RHS = II->getOperand(2);
2020 // Extract the element as scalars.
2021 LHS = InsertNewInstBefore(new ExtractElementInst(LHS, 0U,"tmp"), *II);
2022 RHS = InsertNewInstBefore(new ExtractElementInst(RHS, 0U,"tmp"), *II);
2024 switch (II->getIntrinsicID()) {
2025 default: assert(0 && "Case stmts out of sync!");
2026 case Intrinsic::x86_sse_sub_ss:
2027 case Intrinsic::x86_sse2_sub_sd:
2028 TmpV = InsertNewInstBefore(BinaryOperator::createSub(LHS, RHS,
2029 II->getName()), *II);
2031 case Intrinsic::x86_sse_mul_ss:
2032 case Intrinsic::x86_sse2_mul_sd:
2033 TmpV = InsertNewInstBefore(BinaryOperator::createMul(LHS, RHS,
2034 II->getName()), *II);
2039 InsertElementInst::Create(UndefValue::get(II->getType()), TmpV, 0U,
2041 InsertNewInstBefore(New, *II);
2042 AddSoonDeadInstToWorklist(*II, 0);
2047 // Output elements are undefined if both are undefined. Consider things
2048 // like undef&0. The result is known zero, not undef.
2049 UndefElts &= UndefElts2;
2055 return MadeChange ? I : 0;
2058 /// @returns true if the specified compare predicate is
2059 /// true when both operands are equal...
2060 /// @brief Determine if the icmp Predicate is true when both operands are equal
2061 static bool isTrueWhenEqual(ICmpInst::Predicate pred) {
2062 return pred == ICmpInst::ICMP_EQ || pred == ICmpInst::ICMP_UGE ||
2063 pred == ICmpInst::ICMP_SGE || pred == ICmpInst::ICMP_ULE ||
2064 pred == ICmpInst::ICMP_SLE;
2067 /// @returns true if the specified compare instruction is
2068 /// true when both operands are equal...
2069 /// @brief Determine if the ICmpInst returns true when both operands are equal
2070 static bool isTrueWhenEqual(ICmpInst &ICI) {
2071 return isTrueWhenEqual(ICI.getPredicate());
2074 /// AssociativeOpt - Perform an optimization on an associative operator. This
2075 /// function is designed to check a chain of associative operators for a
2076 /// potential to apply a certain optimization. Since the optimization may be
2077 /// applicable if the expression was reassociated, this checks the chain, then
2078 /// reassociates the expression as necessary to expose the optimization
2079 /// opportunity. This makes use of a special Functor, which must define
2080 /// 'shouldApply' and 'apply' methods.
2082 template<typename Functor>
2083 Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) {
2084 unsigned Opcode = Root.getOpcode();
2085 Value *LHS = Root.getOperand(0);
2087 // Quick check, see if the immediate LHS matches...
2088 if (F.shouldApply(LHS))
2089 return F.apply(Root);
2091 // Otherwise, if the LHS is not of the same opcode as the root, return.
2092 Instruction *LHSI = dyn_cast<Instruction>(LHS);
2093 while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) {
2094 // Should we apply this transform to the RHS?
2095 bool ShouldApply = F.shouldApply(LHSI->getOperand(1));
2097 // If not to the RHS, check to see if we should apply to the LHS...
2098 if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) {
2099 cast<BinaryOperator>(LHSI)->swapOperands(); // Make the LHS the RHS
2103 // If the functor wants to apply the optimization to the RHS of LHSI,
2104 // reassociate the expression from ((? op A) op B) to (? op (A op B))
2106 BasicBlock *BB = Root.getParent();
2108 // Now all of the instructions are in the current basic block, go ahead
2109 // and perform the reassociation.
2110 Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0));
2112 // First move the selected RHS to the LHS of the root...
2113 Root.setOperand(0, LHSI->getOperand(1));
2115 // Make what used to be the LHS of the root be the user of the root...
2116 Value *ExtraOperand = TmpLHSI->getOperand(1);
2117 if (&Root == TmpLHSI) {
2118 Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType()));
2121 Root.replaceAllUsesWith(TmpLHSI); // Users now use TmpLHSI
2122 TmpLHSI->setOperand(1, &Root); // TmpLHSI now uses the root
2123 TmpLHSI->getParent()->getInstList().remove(TmpLHSI);
2124 BasicBlock::iterator ARI = &Root; ++ARI;
2125 BB->getInstList().insert(ARI, TmpLHSI); // Move TmpLHSI to after Root
2128 // Now propagate the ExtraOperand down the chain of instructions until we
2130 while (TmpLHSI != LHSI) {
2131 Instruction *NextLHSI = cast<Instruction>(TmpLHSI->getOperand(0));
2132 // Move the instruction to immediately before the chain we are
2133 // constructing to avoid breaking dominance properties.
2134 NextLHSI->getParent()->getInstList().remove(NextLHSI);
2135 BB->getInstList().insert(ARI, NextLHSI);
2138 Value *NextOp = NextLHSI->getOperand(1);
2139 NextLHSI->setOperand(1, ExtraOperand);
2141 ExtraOperand = NextOp;
2144 // Now that the instructions are reassociated, have the functor perform
2145 // the transformation...
2146 return F.apply(Root);
2149 LHSI = dyn_cast<Instruction>(LHSI->getOperand(0));
2155 // AddRHS - Implements: X + X --> X << 1
2158 AddRHS(Value *rhs) : RHS(rhs) {}
2159 bool shouldApply(Value *LHS) const { return LHS == RHS; }
2160 Instruction *apply(BinaryOperator &Add) const {
2161 return BinaryOperator::createShl(Add.getOperand(0),
2162 ConstantInt::get(Add.getType(), 1));
2166 // AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2)
2168 struct AddMaskingAnd {
2170 AddMaskingAnd(Constant *c) : C2(c) {}
2171 bool shouldApply(Value *LHS) const {
2173 return match(LHS, m_And(m_Value(), m_ConstantInt(C1))) &&
2174 ConstantExpr::getAnd(C1, C2)->isNullValue();
2176 Instruction *apply(BinaryOperator &Add) const {
2177 return BinaryOperator::createOr(Add.getOperand(0), Add.getOperand(1));
2181 static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
2183 if (CastInst *CI = dyn_cast<CastInst>(&I)) {
2184 if (Constant *SOC = dyn_cast<Constant>(SO))
2185 return ConstantExpr::getCast(CI->getOpcode(), SOC, I.getType());
2187 return IC->InsertNewInstBefore(CastInst::create(
2188 CI->getOpcode(), SO, I.getType(), SO->getName() + ".cast"), I);
2191 // Figure out if the constant is the left or the right argument.
2192 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
2193 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
2195 if (Constant *SOC = dyn_cast<Constant>(SO)) {
2197 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
2198 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
2201 Value *Op0 = SO, *Op1 = ConstOperand;
2203 std::swap(Op0, Op1);
2205 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
2206 New = BinaryOperator::create(BO->getOpcode(), Op0, Op1,SO->getName()+".op");
2207 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
2208 New = CmpInst::create(CI->getOpcode(), CI->getPredicate(), Op0, Op1,
2209 SO->getName()+".cmp");
2211 assert(0 && "Unknown binary instruction type!");
2214 return IC->InsertNewInstBefore(New, I);
2217 // FoldOpIntoSelect - Given an instruction with a select as one operand and a
2218 // constant as the other operand, try to fold the binary operator into the
2219 // select arguments. This also works for Cast instructions, which obviously do
2220 // not have a second operand.
2221 static Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
2223 // Don't modify shared select instructions
2224 if (!SI->hasOneUse()) return 0;
2225 Value *TV = SI->getOperand(1);
2226 Value *FV = SI->getOperand(2);
2228 if (isa<Constant>(TV) || isa<Constant>(FV)) {
2229 // Bool selects with constant operands can be folded to logical ops.
2230 if (SI->getType() == Type::Int1Ty) return 0;
2232 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, IC);
2233 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, IC);
2235 return SelectInst::Create(SI->getCondition(), SelectTrueVal,
2242 /// FoldOpIntoPhi - Given a binary operator or cast instruction which has a PHI
2243 /// node as operand #0, see if we can fold the instruction into the PHI (which
2244 /// is only possible if all operands to the PHI are constants).
2245 Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
2246 PHINode *PN = cast<PHINode>(I.getOperand(0));
2247 unsigned NumPHIValues = PN->getNumIncomingValues();
2248 if (!PN->hasOneUse() || NumPHIValues == 0) return 0;
2250 // Check to see if all of the operands of the PHI are constants. If there is
2251 // one non-constant value, remember the BB it is. If there is more than one
2252 // or if *it* is a PHI, bail out.
2253 BasicBlock *NonConstBB = 0;
2254 for (unsigned i = 0; i != NumPHIValues; ++i)
2255 if (!isa<Constant>(PN->getIncomingValue(i))) {
2256 if (NonConstBB) return 0; // More than one non-const value.
2257 if (isa<PHINode>(PN->getIncomingValue(i))) return 0; // Itself a phi.
2258 NonConstBB = PN->getIncomingBlock(i);
2260 // If the incoming non-constant value is in I's block, we have an infinite
2262 if (NonConstBB == I.getParent())
2266 // If there is exactly one non-constant value, we can insert a copy of the
2267 // operation in that block. However, if this is a critical edge, we would be
2268 // inserting the computation one some other paths (e.g. inside a loop). Only
2269 // do this if the pred block is unconditionally branching into the phi block.
2271 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
2272 if (!BI || !BI->isUnconditional()) return 0;
2275 // Okay, we can do the transformation: create the new PHI node.
2276 PHINode *NewPN = PHINode::Create(I.getType(), "");
2277 NewPN->reserveOperandSpace(PN->getNumOperands()/2);
2278 InsertNewInstBefore(NewPN, *PN);
2279 NewPN->takeName(PN);
2281 // Next, add all of the operands to the PHI.
2282 if (I.getNumOperands() == 2) {
2283 Constant *C = cast<Constant>(I.getOperand(1));
2284 for (unsigned i = 0; i != NumPHIValues; ++i) {
2286 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
2287 if (CmpInst *CI = dyn_cast<CmpInst>(&I))
2288 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
2290 InV = ConstantExpr::get(I.getOpcode(), InC, C);
2292 assert(PN->getIncomingBlock(i) == NonConstBB);
2293 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
2294 InV = BinaryOperator::create(BO->getOpcode(),
2295 PN->getIncomingValue(i), C, "phitmp",
2296 NonConstBB->getTerminator());
2297 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
2298 InV = CmpInst::create(CI->getOpcode(),
2300 PN->getIncomingValue(i), C, "phitmp",
2301 NonConstBB->getTerminator());
2303 assert(0 && "Unknown binop!");
2305 AddToWorkList(cast<Instruction>(InV));
2307 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
2310 CastInst *CI = cast<CastInst>(&I);
2311 const Type *RetTy = CI->getType();
2312 for (unsigned i = 0; i != NumPHIValues; ++i) {
2314 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
2315 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
2317 assert(PN->getIncomingBlock(i) == NonConstBB);
2318 InV = CastInst::create(CI->getOpcode(), PN->getIncomingValue(i),
2319 I.getType(), "phitmp",
2320 NonConstBB->getTerminator());
2321 AddToWorkList(cast<Instruction>(InV));
2323 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
2326 return ReplaceInstUsesWith(I, NewPN);
2330 /// CannotBeNegativeZero - Return true if we can prove that the specified FP
2331 /// value is never equal to -0.0.
2333 /// Note that this function will need to be revisited when we support nondefault
2336 static bool CannotBeNegativeZero(const Value *V) {
2337 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2338 return !CFP->getValueAPF().isNegZero();
2340 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
2341 if (const Instruction *I = dyn_cast<Instruction>(V)) {
2342 if (I->getOpcode() == Instruction::Add &&
2343 isa<ConstantFP>(I->getOperand(1)) &&
2344 cast<ConstantFP>(I->getOperand(1))->isNullValue())
2347 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2348 if (II->getIntrinsicID() == Intrinsic::sqrt)
2349 return CannotBeNegativeZero(II->getOperand(1));
2351 if (const CallInst *CI = dyn_cast<CallInst>(I))
2352 if (const Function *F = CI->getCalledFunction()) {
2353 if (F->isDeclaration()) {
2354 switch (F->getNameLen()) {
2355 case 3: // abs(x) != -0.0
2356 if (!strcmp(F->getNameStart(), "abs")) return true;
2358 case 4: // abs[lf](x) != -0.0
2359 if (!strcmp(F->getNameStart(), "absf")) return true;
2360 if (!strcmp(F->getNameStart(), "absl")) return true;
2371 Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
2372 bool Changed = SimplifyCommutative(I);
2373 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
2375 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
2376 // X + undef -> undef
2377 if (isa<UndefValue>(RHS))
2378 return ReplaceInstUsesWith(I, RHS);
2381 if (!I.getType()->isFPOrFPVector()) { // NOTE: -0 + +0 = +0.
2382 if (RHSC->isNullValue())
2383 return ReplaceInstUsesWith(I, LHS);
2384 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
2385 if (CFP->isExactlyValue(ConstantFP::getNegativeZero
2386 (I.getType())->getValueAPF()))
2387 return ReplaceInstUsesWith(I, LHS);
2390 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
2391 // X + (signbit) --> X ^ signbit
2392 const APInt& Val = CI->getValue();
2393 uint32_t BitWidth = Val.getBitWidth();
2394 if (Val == APInt::getSignBit(BitWidth))
2395 return BinaryOperator::createXor(LHS, RHS);
2397 // See if SimplifyDemandedBits can simplify this. This handles stuff like
2398 // (X & 254)+1 -> (X&254)|1
2399 if (!isa<VectorType>(I.getType())) {
2400 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2401 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
2402 KnownZero, KnownOne))
2407 if (isa<PHINode>(LHS))
2408 if (Instruction *NV = FoldOpIntoPhi(I))
2411 ConstantInt *XorRHS = 0;
2413 if (isa<ConstantInt>(RHSC) &&
2414 match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
2415 uint32_t TySizeBits = I.getType()->getPrimitiveSizeInBits();
2416 const APInt& RHSVal = cast<ConstantInt>(RHSC)->getValue();
2418 uint32_t Size = TySizeBits / 2;
2419 APInt C0080Val(APInt(TySizeBits, 1ULL).shl(Size - 1));
2420 APInt CFF80Val(-C0080Val);
2422 if (TySizeBits > Size) {
2423 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
2424 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
2425 if ((RHSVal == CFF80Val && XorRHS->getValue() == C0080Val) ||
2426 (RHSVal == C0080Val && XorRHS->getValue() == CFF80Val)) {
2427 // This is a sign extend if the top bits are known zero.
2428 if (!MaskedValueIsZero(XorLHS,
2429 APInt::getHighBitsSet(TySizeBits, TySizeBits - Size)))
2430 Size = 0; // Not a sign ext, but can't be any others either.
2435 C0080Val = APIntOps::lshr(C0080Val, Size);
2436 CFF80Val = APIntOps::ashr(CFF80Val, Size);
2437 } while (Size >= 1);
2439 // FIXME: This shouldn't be necessary. When the backends can handle types
2440 // with funny bit widths then this whole cascade of if statements should
2441 // be removed. It is just here to get the size of the "middle" type back
2442 // up to something that the back ends can handle.
2443 const Type *MiddleType = 0;
2446 case 32: MiddleType = Type::Int32Ty; break;
2447 case 16: MiddleType = Type::Int16Ty; break;
2448 case 8: MiddleType = Type::Int8Ty; break;
2451 Instruction *NewTrunc = new TruncInst(XorLHS, MiddleType, "sext");
2452 InsertNewInstBefore(NewTrunc, I);
2453 return new SExtInst(NewTrunc, I.getType(), I.getName());
2459 if (I.getType()->isInteger() && I.getType() != Type::Int1Ty) {
2460 if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS))) return Result;
2462 if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) {
2463 if (RHSI->getOpcode() == Instruction::Sub)
2464 if (LHS == RHSI->getOperand(1)) // A + (B - A) --> B
2465 return ReplaceInstUsesWith(I, RHSI->getOperand(0));
2467 if (Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
2468 if (LHSI->getOpcode() == Instruction::Sub)
2469 if (RHS == LHSI->getOperand(1)) // (B - A) + A --> B
2470 return ReplaceInstUsesWith(I, LHSI->getOperand(0));
2475 // -A + -B --> -(A + B)
2476 if (Value *LHSV = dyn_castNegVal(LHS)) {
2477 if (LHS->getType()->isIntOrIntVector()) {
2478 if (Value *RHSV = dyn_castNegVal(RHS)) {
2479 Instruction *NewAdd = BinaryOperator::createAdd(LHSV, RHSV, "sum");
2480 InsertNewInstBefore(NewAdd, I);
2481 return BinaryOperator::createNeg(NewAdd);
2485 return BinaryOperator::createSub(RHS, LHSV);
2489 if (!isa<Constant>(RHS))
2490 if (Value *V = dyn_castNegVal(RHS))
2491 return BinaryOperator::createSub(LHS, V);
2495 if (Value *X = dyn_castFoldableMul(LHS, C2)) {
2496 if (X == RHS) // X*C + X --> X * (C+1)
2497 return BinaryOperator::createMul(RHS, AddOne(C2));
2499 // X*C1 + X*C2 --> X * (C1+C2)
2501 if (X == dyn_castFoldableMul(RHS, C1))
2502 return BinaryOperator::createMul(X, Add(C1, C2));
2505 // X + X*C --> X * (C+1)
2506 if (dyn_castFoldableMul(RHS, C2) == LHS)
2507 return BinaryOperator::createMul(LHS, AddOne(C2));
2509 // X + ~X --> -1 since ~X = -X-1
2510 if (dyn_castNotVal(LHS) == RHS || dyn_castNotVal(RHS) == LHS)
2511 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
2514 // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0
2515 if (match(RHS, m_And(m_Value(), m_ConstantInt(C2))))
2516 if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2)))
2519 // W*X + Y*Z --> W * (X+Z) iff W == Y
2520 if (I.getType()->isIntOrIntVector()) {
2521 Value *W, *X, *Y, *Z;
2522 if (match(LHS, m_Mul(m_Value(W), m_Value(X))) &&
2523 match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) {
2527 } else if (Y == X) {
2529 } else if (X == Z) {
2536 Value *NewAdd = InsertNewInstBefore(BinaryOperator::createAdd(X, Z,
2537 LHS->getName()), I);
2538 return BinaryOperator::createMul(W, NewAdd);
2543 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
2545 if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
2546 return BinaryOperator::createSub(SubOne(CRHS), X);
2548 // (X & FF00) + xx00 -> (X+xx00) & FF00
2549 if (LHS->hasOneUse() && match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
2550 Constant *Anded = And(CRHS, C2);
2551 if (Anded == CRHS) {
2552 // See if all bits from the first bit set in the Add RHS up are included
2553 // in the mask. First, get the rightmost bit.
2554 const APInt& AddRHSV = CRHS->getValue();
2556 // Form a mask of all bits from the lowest bit added through the top.
2557 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
2559 // See if the and mask includes all of these bits.
2560 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
2562 if (AddRHSHighBits == AddRHSHighBitsAnd) {
2563 // Okay, the xform is safe. Insert the new add pronto.
2564 Value *NewAdd = InsertNewInstBefore(BinaryOperator::createAdd(X, CRHS,
2565 LHS->getName()), I);
2566 return BinaryOperator::createAnd(NewAdd, C2);
2571 // Try to fold constant add into select arguments.
2572 if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
2573 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2577 // add (cast *A to intptrtype) B ->
2578 // cast (GEP (cast *A to sbyte*) B) --> intptrtype
2580 CastInst *CI = dyn_cast<CastInst>(LHS);
2583 CI = dyn_cast<CastInst>(RHS);
2586 if (CI && CI->getType()->isSized() &&
2587 (CI->getType()->getPrimitiveSizeInBits() ==
2588 TD->getIntPtrType()->getPrimitiveSizeInBits())
2589 && isa<PointerType>(CI->getOperand(0)->getType())) {
2591 cast<PointerType>(CI->getOperand(0)->getType())->getAddressSpace();
2592 Value *I2 = InsertBitCastBefore(CI->getOperand(0),
2593 PointerType::get(Type::Int8Ty, AS), I);
2594 I2 = InsertNewInstBefore(GetElementPtrInst::Create(I2, Other, "ctg2"), I);
2595 return new PtrToIntInst(I2, CI->getType());
2599 // add (select X 0 (sub n A)) A --> select X A n
2601 SelectInst *SI = dyn_cast<SelectInst>(LHS);
2604 SI = dyn_cast<SelectInst>(RHS);
2607 if (SI && SI->hasOneUse()) {
2608 Value *TV = SI->getTrueValue();
2609 Value *FV = SI->getFalseValue();
2612 // Can we fold the add into the argument of the select?
2613 // We check both true and false select arguments for a matching subtract.
2614 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Value(A))) &&
2615 A == Other) // Fold the add into the true select value.
2616 return SelectInst::Create(SI->getCondition(), N, A);
2617 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Value(A))) &&
2618 A == Other) // Fold the add into the false select value.
2619 return SelectInst::Create(SI->getCondition(), A, N);
2623 // Check for X+0.0. Simplify it to X if we know X is not -0.0.
2624 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
2625 if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS))
2626 return ReplaceInstUsesWith(I, LHS);
2628 return Changed ? &I : 0;
2631 // isSignBit - Return true if the value represented by the constant only has the
2632 // highest order bit set.
2633 static bool isSignBit(ConstantInt *CI) {
2634 uint32_t NumBits = CI->getType()->getPrimitiveSizeInBits();
2635 return CI->getValue() == APInt::getSignBit(NumBits);
2638 Instruction *InstCombiner::visitSub(BinaryOperator &I) {
2639 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2641 if (Op0 == Op1) // sub X, X -> 0
2642 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2644 // If this is a 'B = x-(-A)', change to B = x+A...
2645 if (Value *V = dyn_castNegVal(Op1))
2646 return BinaryOperator::createAdd(Op0, V);
2648 if (isa<UndefValue>(Op0))
2649 return ReplaceInstUsesWith(I, Op0); // undef - X -> undef
2650 if (isa<UndefValue>(Op1))
2651 return ReplaceInstUsesWith(I, Op1); // X - undef -> undef
2653 if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
2654 // Replace (-1 - A) with (~A)...
2655 if (C->isAllOnesValue())
2656 return BinaryOperator::createNot(Op1);
2658 // C - ~X == X + (1+C)
2660 if (match(Op1, m_Not(m_Value(X))))
2661 return BinaryOperator::createAdd(X, AddOne(C));
2663 // -(X >>u 31) -> (X >>s 31)
2664 // -(X >>s 31) -> (X >>u 31)
2666 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op1)) {
2667 if (SI->getOpcode() == Instruction::LShr) {
2668 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
2669 // Check to see if we are shifting out everything but the sign bit.
2670 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
2671 SI->getType()->getPrimitiveSizeInBits()-1) {
2672 // Ok, the transformation is safe. Insert AShr.
2673 return BinaryOperator::create(Instruction::AShr,
2674 SI->getOperand(0), CU, SI->getName());
2678 else if (SI->getOpcode() == Instruction::AShr) {
2679 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
2680 // Check to see if we are shifting out everything but the sign bit.
2681 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
2682 SI->getType()->getPrimitiveSizeInBits()-1) {
2683 // Ok, the transformation is safe. Insert LShr.
2684 return BinaryOperator::createLShr(
2685 SI->getOperand(0), CU, SI->getName());
2692 // Try to fold constant sub into select arguments.
2693 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2694 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2697 if (isa<PHINode>(Op0))
2698 if (Instruction *NV = FoldOpIntoPhi(I))
2702 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
2703 if (Op1I->getOpcode() == Instruction::Add &&
2704 !Op0->getType()->isFPOrFPVector()) {
2705 if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y
2706 return BinaryOperator::createNeg(Op1I->getOperand(1), I.getName());
2707 else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y
2708 return BinaryOperator::createNeg(Op1I->getOperand(0), I.getName());
2709 else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) {
2710 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1)))
2711 // C1-(X+C2) --> (C1-C2)-X
2712 return BinaryOperator::createSub(Subtract(CI1, CI2),
2713 Op1I->getOperand(0));
2717 if (Op1I->hasOneUse()) {
2718 // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
2719 // is not used by anyone else...
2721 if (Op1I->getOpcode() == Instruction::Sub &&
2722 !Op1I->getType()->isFPOrFPVector()) {
2723 // Swap the two operands of the subexpr...
2724 Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
2725 Op1I->setOperand(0, IIOp1);
2726 Op1I->setOperand(1, IIOp0);
2728 // Create the new top level add instruction...
2729 return BinaryOperator::createAdd(Op0, Op1);
2732 // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
2734 if (Op1I->getOpcode() == Instruction::And &&
2735 (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
2736 Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
2739 InsertNewInstBefore(BinaryOperator::createNot(OtherOp, "B.not"), I);
2740 return BinaryOperator::createAnd(Op0, NewNot);
2743 // 0 - (X sdiv C) -> (X sdiv -C)
2744 if (Op1I->getOpcode() == Instruction::SDiv)
2745 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
2747 if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1)))
2748 return BinaryOperator::createSDiv(Op1I->getOperand(0),
2749 ConstantExpr::getNeg(DivRHS));
2751 // X - X*C --> X * (1-C)
2752 ConstantInt *C2 = 0;
2753 if (dyn_castFoldableMul(Op1I, C2) == Op0) {
2754 Constant *CP1 = Subtract(ConstantInt::get(I.getType(), 1), C2);
2755 return BinaryOperator::createMul(Op0, CP1);
2758 // X - ((X / Y) * Y) --> X % Y
2759 if (Op1I->getOpcode() == Instruction::Mul)
2760 if (Instruction *I = dyn_cast<Instruction>(Op1I->getOperand(0)))
2761 if (Op0 == I->getOperand(0) &&
2762 Op1I->getOperand(1) == I->getOperand(1)) {
2763 if (I->getOpcode() == Instruction::SDiv)
2764 return BinaryOperator::createSRem(Op0, Op1I->getOperand(1));
2765 if (I->getOpcode() == Instruction::UDiv)
2766 return BinaryOperator::createURem(Op0, Op1I->getOperand(1));
2771 if (!Op0->getType()->isFPOrFPVector())
2772 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
2773 if (Op0I->getOpcode() == Instruction::Add) {
2774 if (Op0I->getOperand(0) == Op1) // (Y+X)-Y == X
2775 return ReplaceInstUsesWith(I, Op0I->getOperand(1));
2776 else if (Op0I->getOperand(1) == Op1) // (X+Y)-Y == X
2777 return ReplaceInstUsesWith(I, Op0I->getOperand(0));
2778 } else if (Op0I->getOpcode() == Instruction::Sub) {
2779 if (Op0I->getOperand(0) == Op1) // (X-Y)-X == -Y
2780 return BinaryOperator::createNeg(Op0I->getOperand(1), I.getName());
2785 if (Value *X = dyn_castFoldableMul(Op0, C1)) {
2786 if (X == Op1) // X*C - X --> X * (C-1)
2787 return BinaryOperator::createMul(Op1, SubOne(C1));
2789 ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2)
2790 if (X == dyn_castFoldableMul(Op1, C2))
2791 return BinaryOperator::createMul(X, Subtract(C1, C2));
2796 /// isSignBitCheck - Given an exploded icmp instruction, return true if the
2797 /// comparison only checks the sign bit. If it only checks the sign bit, set
2798 /// TrueIfSigned if the result of the comparison is true when the input value is
2800 static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
2801 bool &TrueIfSigned) {
2803 case ICmpInst::ICMP_SLT: // True if LHS s< 0
2804 TrueIfSigned = true;
2805 return RHS->isZero();
2806 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1
2807 TrueIfSigned = true;
2808 return RHS->isAllOnesValue();
2809 case ICmpInst::ICMP_SGT: // True if LHS s> -1
2810 TrueIfSigned = false;
2811 return RHS->isAllOnesValue();
2812 case ICmpInst::ICMP_UGT:
2813 // True if LHS u> RHS and RHS == high-bit-mask - 1
2814 TrueIfSigned = true;
2815 return RHS->getValue() ==
2816 APInt::getSignedMaxValue(RHS->getType()->getPrimitiveSizeInBits());
2817 case ICmpInst::ICMP_UGE:
2818 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
2819 TrueIfSigned = true;
2820 return RHS->getValue() ==
2821 APInt::getSignBit(RHS->getType()->getPrimitiveSizeInBits());
2827 Instruction *InstCombiner::visitMul(BinaryOperator &I) {
2828 bool Changed = SimplifyCommutative(I);
2829 Value *Op0 = I.getOperand(0);
2831 if (isa<UndefValue>(I.getOperand(1))) // undef * X -> 0
2832 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2834 // Simplify mul instructions with a constant RHS...
2835 if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
2836 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2838 // ((X << C1)*C2) == (X * (C2 << C1))
2839 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
2840 if (SI->getOpcode() == Instruction::Shl)
2841 if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
2842 return BinaryOperator::createMul(SI->getOperand(0),
2843 ConstantExpr::getShl(CI, ShOp));
2846 return ReplaceInstUsesWith(I, Op1); // X * 0 == 0
2847 if (CI->equalsInt(1)) // X * 1 == X
2848 return ReplaceInstUsesWith(I, Op0);
2849 if (CI->isAllOnesValue()) // X * -1 == 0 - X
2850 return BinaryOperator::createNeg(Op0, I.getName());
2852 const APInt& Val = cast<ConstantInt>(CI)->getValue();
2853 if (Val.isPowerOf2()) { // Replace X*(2^C) with X << C
2854 return BinaryOperator::createShl(Op0,
2855 ConstantInt::get(Op0->getType(), Val.logBase2()));
2857 } else if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1)) {
2858 if (Op1F->isNullValue())
2859 return ReplaceInstUsesWith(I, Op1);
2861 // "In IEEE floating point, x*1 is not equivalent to x for nans. However,
2862 // ANSI says we can drop signals, so we can do this anyway." (from GCC)
2863 // We need a better interface for long double here.
2864 if (Op1->getType() == Type::FloatTy || Op1->getType() == Type::DoubleTy)
2865 if (Op1F->isExactlyValue(1.0))
2866 return ReplaceInstUsesWith(I, Op0); // Eliminate 'mul double %X, 1.0'
2869 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
2870 if (Op0I->getOpcode() == Instruction::Add && Op0I->hasOneUse() &&
2871 isa<ConstantInt>(Op0I->getOperand(1))) {
2872 // Canonicalize (X+C1)*C2 -> X*C2+C1*C2.
2873 Instruction *Add = BinaryOperator::createMul(Op0I->getOperand(0),
2875 InsertNewInstBefore(Add, I);
2876 Value *C1C2 = ConstantExpr::getMul(Op1,
2877 cast<Constant>(Op0I->getOperand(1)));
2878 return BinaryOperator::createAdd(Add, C1C2);
2882 // Try to fold constant mul into select arguments.
2883 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2884 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2887 if (isa<PHINode>(Op0))
2888 if (Instruction *NV = FoldOpIntoPhi(I))
2892 if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
2893 if (Value *Op1v = dyn_castNegVal(I.getOperand(1)))
2894 return BinaryOperator::createMul(Op0v, Op1v);
2896 // If one of the operands of the multiply is a cast from a boolean value, then
2897 // we know the bool is either zero or one, so this is a 'masking' multiply.
2898 // See if we can simplify things based on how the boolean was originally
2900 CastInst *BoolCast = 0;
2901 if (ZExtInst *CI = dyn_cast<ZExtInst>(I.getOperand(0)))
2902 if (CI->getOperand(0)->getType() == Type::Int1Ty)
2905 if (ZExtInst *CI = dyn_cast<ZExtInst>(I.getOperand(1)))
2906 if (CI->getOperand(0)->getType() == Type::Int1Ty)
2909 if (ICmpInst *SCI = dyn_cast<ICmpInst>(BoolCast->getOperand(0))) {
2910 Value *SCIOp0 = SCI->getOperand(0), *SCIOp1 = SCI->getOperand(1);
2911 const Type *SCOpTy = SCIOp0->getType();
2914 // If the icmp is true iff the sign bit of X is set, then convert this
2915 // multiply into a shift/and combination.
2916 if (isa<ConstantInt>(SCIOp1) &&
2917 isSignBitCheck(SCI->getPredicate(), cast<ConstantInt>(SCIOp1), TIS) &&
2919 // Shift the X value right to turn it into "all signbits".
2920 Constant *Amt = ConstantInt::get(SCIOp0->getType(),
2921 SCOpTy->getPrimitiveSizeInBits()-1);
2923 InsertNewInstBefore(
2924 BinaryOperator::create(Instruction::AShr, SCIOp0, Amt,
2925 BoolCast->getOperand(0)->getName()+
2928 // If the multiply type is not the same as the source type, sign extend
2929 // or truncate to the multiply type.
2930 if (I.getType() != V->getType()) {
2931 uint32_t SrcBits = V->getType()->getPrimitiveSizeInBits();
2932 uint32_t DstBits = I.getType()->getPrimitiveSizeInBits();
2933 Instruction::CastOps opcode =
2934 (SrcBits == DstBits ? Instruction::BitCast :
2935 (SrcBits < DstBits ? Instruction::SExt : Instruction::Trunc));
2936 V = InsertCastBefore(opcode, V, I.getType(), I);
2939 Value *OtherOp = Op0 == BoolCast ? I.getOperand(1) : Op0;
2940 return BinaryOperator::createAnd(V, OtherOp);
2945 return Changed ? &I : 0;
2948 /// This function implements the transforms on div instructions that work
2949 /// regardless of the kind of div instruction it is (udiv, sdiv, or fdiv). It is
2950 /// used by the visitors to those instructions.
2951 /// @brief Transforms common to all three div instructions
2952 Instruction *InstCombiner::commonDivTransforms(BinaryOperator &I) {
2953 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2955 // undef / X -> 0 for integer.
2956 // undef / X -> undef for FP (the undef could be a snan).
2957 if (isa<UndefValue>(Op0)) {
2958 if (Op0->getType()->isFPOrFPVector())
2959 return ReplaceInstUsesWith(I, Op0);
2960 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2963 // X / undef -> undef
2964 if (isa<UndefValue>(Op1))
2965 return ReplaceInstUsesWith(I, Op1);
2967 // Handle cases involving: [su]div X, (select Cond, Y, Z)
2968 // This does not apply for fdiv.
2969 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
2970 // [su]div X, (Cond ? 0 : Y) -> div X, Y. If the div and the select are in
2971 // the same basic block, then we replace the select with Y, and the
2972 // condition of the select with false (if the cond value is in the same BB).
2973 // If the select has uses other than the div, this allows them to be
2974 // simplified also. Note that div X, Y is just as good as div X, 0 (undef)
2975 if (ConstantInt *ST = dyn_cast<ConstantInt>(SI->getOperand(1)))
2976 if (ST->isNullValue()) {
2977 Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
2978 if (CondI && CondI->getParent() == I.getParent())
2979 UpdateValueUsesWith(CondI, ConstantInt::getFalse());
2980 else if (I.getParent() != SI->getParent() || SI->hasOneUse())
2981 I.setOperand(1, SI->getOperand(2));
2983 UpdateValueUsesWith(SI, SI->getOperand(2));
2987 // Likewise for: [su]div X, (Cond ? Y : 0) -> div X, Y
2988 if (ConstantInt *ST = dyn_cast<ConstantInt>(SI->getOperand(2)))
2989 if (ST->isNullValue()) {
2990 Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
2991 if (CondI && CondI->getParent() == I.getParent())
2992 UpdateValueUsesWith(CondI, ConstantInt::getTrue());
2993 else if (I.getParent() != SI->getParent() || SI->hasOneUse())
2994 I.setOperand(1, SI->getOperand(1));
2996 UpdateValueUsesWith(SI, SI->getOperand(1));
3004 /// This function implements the transforms common to both integer division
3005 /// instructions (udiv and sdiv). It is called by the visitors to those integer
3006 /// division instructions.
3007 /// @brief Common integer divide transforms
3008 Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
3009 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3011 if (Instruction *Common = commonDivTransforms(I))
3014 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
3016 if (RHS->equalsInt(1))
3017 return ReplaceInstUsesWith(I, Op0);
3019 // (X / C1) / C2 -> X / (C1*C2)
3020 if (Instruction *LHS = dyn_cast<Instruction>(Op0))
3021 if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
3022 if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
3023 if (MultiplyOverflows(RHS, LHSRHS, I.getOpcode()==Instruction::SDiv))
3024 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3026 return BinaryOperator::create(I.getOpcode(), LHS->getOperand(0),
3027 Multiply(RHS, LHSRHS));
3030 if (!RHS->isZero()) { // avoid X udiv 0
3031 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
3032 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
3034 if (isa<PHINode>(Op0))
3035 if (Instruction *NV = FoldOpIntoPhi(I))
3040 // 0 / X == 0, we don't need to preserve faults!
3041 if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
3042 if (LHS->equalsInt(0))
3043 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3048 Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
3049 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3051 // Handle the integer div common cases
3052 if (Instruction *Common = commonIDivTransforms(I))
3055 // X udiv C^2 -> X >> C
3056 // Check to see if this is an unsigned division with an exact power of 2,
3057 // if so, convert to a right shift.
3058 if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
3059 if (C->getValue().isPowerOf2()) // 0 not included in isPowerOf2
3060 return BinaryOperator::createLShr(Op0,
3061 ConstantInt::get(Op0->getType(), C->getValue().logBase2()));
3064 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
3065 if (BinaryOperator *RHSI = dyn_cast<BinaryOperator>(I.getOperand(1))) {
3066 if (RHSI->getOpcode() == Instruction::Shl &&
3067 isa<ConstantInt>(RHSI->getOperand(0))) {
3068 const APInt& C1 = cast<ConstantInt>(RHSI->getOperand(0))->getValue();
3069 if (C1.isPowerOf2()) {
3070 Value *N = RHSI->getOperand(1);
3071 const Type *NTy = N->getType();
3072 if (uint32_t C2 = C1.logBase2()) {
3073 Constant *C2V = ConstantInt::get(NTy, C2);
3074 N = InsertNewInstBefore(BinaryOperator::createAdd(N, C2V, "tmp"), I);
3076 return BinaryOperator::createLShr(Op0, N);
3081 // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
3082 // where C1&C2 are powers of two.
3083 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
3084 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
3085 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
3086 const APInt &TVA = STO->getValue(), &FVA = SFO->getValue();
3087 if (TVA.isPowerOf2() && FVA.isPowerOf2()) {
3088 // Compute the shift amounts
3089 uint32_t TSA = TVA.logBase2(), FSA = FVA.logBase2();
3090 // Construct the "on true" case of the select
3091 Constant *TC = ConstantInt::get(Op0->getType(), TSA);
3092 Instruction *TSI = BinaryOperator::createLShr(
3093 Op0, TC, SI->getName()+".t");
3094 TSI = InsertNewInstBefore(TSI, I);
3096 // Construct the "on false" case of the select
3097 Constant *FC = ConstantInt::get(Op0->getType(), FSA);
3098 Instruction *FSI = BinaryOperator::createLShr(
3099 Op0, FC, SI->getName()+".f");
3100 FSI = InsertNewInstBefore(FSI, I);
3102 // construct the select instruction and return it.
3103 return SelectInst::Create(SI->getOperand(0), TSI, FSI, SI->getName());
3109 Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
3110 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3112 // Handle the integer div common cases
3113 if (Instruction *Common = commonIDivTransforms(I))
3116 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
3118 if (RHS->isAllOnesValue())
3119 return BinaryOperator::createNeg(Op0);
3122 if (Value *LHSNeg = dyn_castNegVal(Op0))
3123 return BinaryOperator::createSDiv(LHSNeg, ConstantExpr::getNeg(RHS));
3126 // If the sign bits of both operands are zero (i.e. we can prove they are
3127 // unsigned inputs), turn this into a udiv.
3128 if (I.getType()->isInteger()) {
3129 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
3130 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
3131 // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
3132 return BinaryOperator::createUDiv(Op0, Op1, I.getName());
3139 Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
3140 return commonDivTransforms(I);
3143 /// This function implements the transforms on rem instructions that work
3144 /// regardless of the kind of rem instruction it is (urem, srem, or frem). It
3145 /// is used by the visitors to those instructions.
3146 /// @brief Transforms common to all three rem instructions
3147 Instruction *InstCombiner::commonRemTransforms(BinaryOperator &I) {
3148 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3150 // 0 % X == 0 for integer, we don't need to preserve faults!
3151 if (Constant *LHS = dyn_cast<Constant>(Op0))
3152 if (LHS->isNullValue())
3153 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3155 if (isa<UndefValue>(Op0)) { // undef % X -> 0
3156 if (I.getType()->isFPOrFPVector())
3157 return ReplaceInstUsesWith(I, Op0); // X % undef -> undef (could be SNaN)
3158 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3160 if (isa<UndefValue>(Op1))
3161 return ReplaceInstUsesWith(I, Op1); // X % undef -> undef
3163 // Handle cases involving: rem X, (select Cond, Y, Z)
3164 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
3165 // rem X, (Cond ? 0 : Y) -> rem X, Y. If the rem and the select are in
3166 // the same basic block, then we replace the select with Y, and the
3167 // condition of the select with false (if the cond value is in the same
3168 // BB). If the select has uses other than the div, this allows them to be
3170 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
3171 if (ST->isNullValue()) {
3172 Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
3173 if (CondI && CondI->getParent() == I.getParent())
3174 UpdateValueUsesWith(CondI, ConstantInt::getFalse());
3175 else if (I.getParent() != SI->getParent() || SI->hasOneUse())
3176 I.setOperand(1, SI->getOperand(2));
3178 UpdateValueUsesWith(SI, SI->getOperand(2));
3181 // Likewise for: rem X, (Cond ? Y : 0) -> rem X, Y
3182 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
3183 if (ST->isNullValue()) {
3184 Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
3185 if (CondI && CondI->getParent() == I.getParent())
3186 UpdateValueUsesWith(CondI, ConstantInt::getTrue());
3187 else if (I.getParent() != SI->getParent() || SI->hasOneUse())
3188 I.setOperand(1, SI->getOperand(1));
3190 UpdateValueUsesWith(SI, SI->getOperand(1));
3198 /// This function implements the transforms common to both integer remainder
3199 /// instructions (urem and srem). It is called by the visitors to those integer
3200 /// remainder instructions.
3201 /// @brief Common integer remainder transforms
3202 Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
3203 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3205 if (Instruction *common = commonRemTransforms(I))
3208 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
3209 // X % 0 == undef, we don't need to preserve faults!
3210 if (RHS->equalsInt(0))
3211 return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
3213 if (RHS->equalsInt(1)) // X % 1 == 0
3214 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3216 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
3217 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
3218 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
3220 } else if (isa<PHINode>(Op0I)) {
3221 if (Instruction *NV = FoldOpIntoPhi(I))
3225 // See if we can fold away this rem instruction.
3226 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
3227 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3228 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
3229 KnownZero, KnownOne))
3237 Instruction *InstCombiner::visitURem(BinaryOperator &I) {
3238 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3240 if (Instruction *common = commonIRemTransforms(I))
3243 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
3244 // X urem C^2 -> X and C
3245 // Check to see if this is an unsigned remainder with an exact power of 2,
3246 // if so, convert to a bitwise and.
3247 if (ConstantInt *C = dyn_cast<ConstantInt>(RHS))
3248 if (C->getValue().isPowerOf2())
3249 return BinaryOperator::createAnd(Op0, SubOne(C));
3252 if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) {
3253 // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)
3254 if (RHSI->getOpcode() == Instruction::Shl &&
3255 isa<ConstantInt>(RHSI->getOperand(0))) {
3256 if (cast<ConstantInt>(RHSI->getOperand(0))->getValue().isPowerOf2()) {
3257 Constant *N1 = ConstantInt::getAllOnesValue(I.getType());
3258 Value *Add = InsertNewInstBefore(BinaryOperator::createAdd(RHSI, N1,
3260 return BinaryOperator::createAnd(Op0, Add);
3265 // urem X, (select Cond, 2^C1, 2^C2) --> select Cond, (and X, C1), (and X, C2)
3266 // where C1&C2 are powers of two.
3267 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
3268 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
3269 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
3270 // STO == 0 and SFO == 0 handled above.
3271 if ((STO->getValue().isPowerOf2()) &&
3272 (SFO->getValue().isPowerOf2())) {
3273 Value *TrueAnd = InsertNewInstBefore(
3274 BinaryOperator::createAnd(Op0, SubOne(STO), SI->getName()+".t"), I);
3275 Value *FalseAnd = InsertNewInstBefore(
3276 BinaryOperator::createAnd(Op0, SubOne(SFO), SI->getName()+".f"), I);
3277 return SelectInst::Create(SI->getOperand(0), TrueAnd, FalseAnd);
3285 Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
3286 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3288 // Handle the integer rem common cases
3289 if (Instruction *common = commonIRemTransforms(I))
3292 if (Value *RHSNeg = dyn_castNegVal(Op1))
3293 if (!isa<ConstantInt>(RHSNeg) ||
3294 cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive()) {
3296 AddUsesToWorkList(I);
3297 I.setOperand(1, RHSNeg);
3301 // If the sign bits of both operands are zero (i.e. we can prove they are
3302 // unsigned inputs), turn this into a urem.
3303 if (I.getType()->isInteger()) {
3304 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
3305 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
3306 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
3307 return BinaryOperator::createURem(Op0, Op1, I.getName());
3314 Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
3315 return commonRemTransforms(I);
3318 // isMaxValueMinusOne - return true if this is Max-1
3319 static bool isMaxValueMinusOne(const ConstantInt *C, bool isSigned) {
3320 uint32_t TypeBits = C->getType()->getPrimitiveSizeInBits();
3322 return C->getValue() == APInt::getAllOnesValue(TypeBits) - 1;
3323 return C->getValue() == APInt::getSignedMaxValue(TypeBits)-1;
3326 // isMinValuePlusOne - return true if this is Min+1
3327 static bool isMinValuePlusOne(const ConstantInt *C, bool isSigned) {
3329 return C->getValue() == 1; // unsigned
3331 // Calculate 1111111111000000000000
3332 uint32_t TypeBits = C->getType()->getPrimitiveSizeInBits();
3333 return C->getValue() == APInt::getSignedMinValue(TypeBits)+1;
3336 // isOneBitSet - Return true if there is exactly one bit set in the specified
3338 static bool isOneBitSet(const ConstantInt *CI) {
3339 return CI->getValue().isPowerOf2();
3342 // isHighOnes - Return true if the constant is of the form 1+0+.
3343 // This is the same as lowones(~X).
3344 static bool isHighOnes(const ConstantInt *CI) {
3345 return (~CI->getValue() + 1).isPowerOf2();
3348 /// getICmpCode - Encode a icmp predicate into a three bit mask. These bits
3349 /// are carefully arranged to allow folding of expressions such as:
3351 /// (A < B) | (A > B) --> (A != B)
3353 /// Note that this is only valid if the first and second predicates have the
3354 /// same sign. Is illegal to do: (A u< B) | (A s> B)
3356 /// Three bits are used to represent the condition, as follows:
3361 /// <=> Value Definition
3362 /// 000 0 Always false
3369 /// 111 7 Always true
3371 static unsigned getICmpCode(const ICmpInst *ICI) {
3372 switch (ICI->getPredicate()) {
3374 case ICmpInst::ICMP_UGT: return 1; // 001
3375 case ICmpInst::ICMP_SGT: return 1; // 001
3376 case ICmpInst::ICMP_EQ: return 2; // 010
3377 case ICmpInst::ICMP_UGE: return 3; // 011
3378 case ICmpInst::ICMP_SGE: return 3; // 011
3379 case ICmpInst::ICMP_ULT: return 4; // 100
3380 case ICmpInst::ICMP_SLT: return 4; // 100
3381 case ICmpInst::ICMP_NE: return 5; // 101
3382 case ICmpInst::ICMP_ULE: return 6; // 110
3383 case ICmpInst::ICMP_SLE: return 6; // 110
3386 assert(0 && "Invalid ICmp predicate!");
3391 /// getICmpValue - This is the complement of getICmpCode, which turns an
3392 /// opcode and two operands into either a constant true or false, or a brand
3393 /// new ICmp instruction. The sign is passed in to determine which kind
3394 /// of predicate to use in new icmp instructions.
3395 static Value *getICmpValue(bool sign, unsigned code, Value *LHS, Value *RHS) {
3397 default: assert(0 && "Illegal ICmp code!");
3398 case 0: return ConstantInt::getFalse();
3401 return new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS);
3403 return new ICmpInst(ICmpInst::ICMP_UGT, LHS, RHS);
3404 case 2: return new ICmpInst(ICmpInst::ICMP_EQ, LHS, RHS);
3407 return new ICmpInst(ICmpInst::ICMP_SGE, LHS, RHS);
3409 return new ICmpInst(ICmpInst::ICMP_UGE, LHS, RHS);
3412 return new ICmpInst(ICmpInst::ICMP_SLT, LHS, RHS);
3414 return new ICmpInst(ICmpInst::ICMP_ULT, LHS, RHS);
3415 case 5: return new ICmpInst(ICmpInst::ICMP_NE, LHS, RHS);
3418 return new ICmpInst(ICmpInst::ICMP_SLE, LHS, RHS);
3420 return new ICmpInst(ICmpInst::ICMP_ULE, LHS, RHS);
3421 case 7: return ConstantInt::getTrue();
3425 static bool PredicatesFoldable(ICmpInst::Predicate p1, ICmpInst::Predicate p2) {
3426 return (ICmpInst::isSignedPredicate(p1) == ICmpInst::isSignedPredicate(p2)) ||
3427 (ICmpInst::isSignedPredicate(p1) &&
3428 (p2 == ICmpInst::ICMP_EQ || p2 == ICmpInst::ICMP_NE)) ||
3429 (ICmpInst::isSignedPredicate(p2) &&
3430 (p1 == ICmpInst::ICMP_EQ || p1 == ICmpInst::ICMP_NE));
3434 // FoldICmpLogical - Implements (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3435 struct FoldICmpLogical {
3438 ICmpInst::Predicate pred;
3439 FoldICmpLogical(InstCombiner &ic, ICmpInst *ICI)
3440 : IC(ic), LHS(ICI->getOperand(0)), RHS(ICI->getOperand(1)),
3441 pred(ICI->getPredicate()) {}
3442 bool shouldApply(Value *V) const {
3443 if (ICmpInst *ICI = dyn_cast<ICmpInst>(V))
3444 if (PredicatesFoldable(pred, ICI->getPredicate()))
3445 return ((ICI->getOperand(0) == LHS && ICI->getOperand(1) == RHS) ||
3446 (ICI->getOperand(0) == RHS && ICI->getOperand(1) == LHS));
3449 Instruction *apply(Instruction &Log) const {
3450 ICmpInst *ICI = cast<ICmpInst>(Log.getOperand(0));
3451 if (ICI->getOperand(0) != LHS) {
3452 assert(ICI->getOperand(1) == LHS);
3453 ICI->swapOperands(); // Swap the LHS and RHS of the ICmp
3456 ICmpInst *RHSICI = cast<ICmpInst>(Log.getOperand(1));
3457 unsigned LHSCode = getICmpCode(ICI);
3458 unsigned RHSCode = getICmpCode(RHSICI);
3460 switch (Log.getOpcode()) {
3461 case Instruction::And: Code = LHSCode & RHSCode; break;
3462 case Instruction::Or: Code = LHSCode | RHSCode; break;
3463 case Instruction::Xor: Code = LHSCode ^ RHSCode; break;
3464 default: assert(0 && "Illegal logical opcode!"); return 0;
3467 bool isSigned = ICmpInst::isSignedPredicate(RHSICI->getPredicate()) ||
3468 ICmpInst::isSignedPredicate(ICI->getPredicate());
3470 Value *RV = getICmpValue(isSigned, Code, LHS, RHS);
3471 if (Instruction *I = dyn_cast<Instruction>(RV))
3473 // Otherwise, it's a constant boolean value...
3474 return IC.ReplaceInstUsesWith(Log, RV);
3477 } // end anonymous namespace
3479 // OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where
3480 // the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is
3481 // guaranteed to be a binary operator.
3482 Instruction *InstCombiner::OptAndOp(Instruction *Op,
3484 ConstantInt *AndRHS,
3485 BinaryOperator &TheAnd) {
3486 Value *X = Op->getOperand(0);
3487 Constant *Together = 0;
3489 Together = And(AndRHS, OpRHS);
3491 switch (Op->getOpcode()) {
3492 case Instruction::Xor:
3493 if (Op->hasOneUse()) {
3494 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
3495 Instruction *And = BinaryOperator::createAnd(X, AndRHS);
3496 InsertNewInstBefore(And, TheAnd);
3498 return BinaryOperator::createXor(And, Together);
3501 case Instruction::Or:
3502 if (Together == AndRHS) // (X | C) & C --> C
3503 return ReplaceInstUsesWith(TheAnd, AndRHS);
3505 if (Op->hasOneUse() && Together != OpRHS) {
3506 // (X | C1) & C2 --> (X | (C1&C2)) & C2
3507 Instruction *Or = BinaryOperator::createOr(X, Together);
3508 InsertNewInstBefore(Or, TheAnd);
3510 return BinaryOperator::createAnd(Or, AndRHS);
3513 case Instruction::Add:
3514 if (Op->hasOneUse()) {
3515 // Adding a one to a single bit bit-field should be turned into an XOR
3516 // of the bit. First thing to check is to see if this AND is with a
3517 // single bit constant.
3518 const APInt& AndRHSV = cast<ConstantInt>(AndRHS)->getValue();
3520 // If there is only one bit set...
3521 if (isOneBitSet(cast<ConstantInt>(AndRHS))) {
3522 // Ok, at this point, we know that we are masking the result of the
3523 // ADD down to exactly one bit. If the constant we are adding has
3524 // no bits set below this bit, then we can eliminate the ADD.
3525 const APInt& AddRHS = cast<ConstantInt>(OpRHS)->getValue();
3527 // Check to see if any bits below the one bit set in AndRHSV are set.
3528 if ((AddRHS & (AndRHSV-1)) == 0) {
3529 // If not, the only thing that can effect the output of the AND is
3530 // the bit specified by AndRHSV. If that bit is set, the effect of
3531 // the XOR is to toggle the bit. If it is clear, then the ADD has
3533 if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
3534 TheAnd.setOperand(0, X);
3537 // Pull the XOR out of the AND.
3538 Instruction *NewAnd = BinaryOperator::createAnd(X, AndRHS);
3539 InsertNewInstBefore(NewAnd, TheAnd);
3540 NewAnd->takeName(Op);
3541 return BinaryOperator::createXor(NewAnd, AndRHS);
3548 case Instruction::Shl: {
3549 // We know that the AND will not produce any of the bits shifted in, so if
3550 // the anded constant includes them, clear them now!
3552 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3553 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3554 APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
3555 ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShlMask);
3557 if (CI->getValue() == ShlMask) {
3558 // Masking out bits that the shift already masks
3559 return ReplaceInstUsesWith(TheAnd, Op); // No need for the and.
3560 } else if (CI != AndRHS) { // Reducing bits set in and.
3561 TheAnd.setOperand(1, CI);
3566 case Instruction::LShr:
3568 // We know that the AND will not produce any of the bits shifted in, so if
3569 // the anded constant includes them, clear them now! This only applies to
3570 // unsigned shifts, because a signed shr may bring in set bits!
3572 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3573 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3574 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
3575 ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShrMask);
3577 if (CI->getValue() == ShrMask) {
3578 // Masking out bits that the shift already masks.
3579 return ReplaceInstUsesWith(TheAnd, Op);
3580 } else if (CI != AndRHS) {
3581 TheAnd.setOperand(1, CI); // Reduce bits set in and cst.
3586 case Instruction::AShr:
3588 // See if this is shifting in some sign extension, then masking it out
3590 if (Op->hasOneUse()) {
3591 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3592 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3593 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
3594 Constant *C = ConstantInt::get(AndRHS->getValue() & ShrMask);
3595 if (C == AndRHS) { // Masking out bits shifted in.
3596 // (Val ashr C1) & C2 -> (Val lshr C1) & C2
3597 // Make the argument unsigned.
3598 Value *ShVal = Op->getOperand(0);
3599 ShVal = InsertNewInstBefore(
3600 BinaryOperator::createLShr(ShVal, OpRHS,
3601 Op->getName()), TheAnd);
3602 return BinaryOperator::createAnd(ShVal, AndRHS, TheAnd.getName());
3611 /// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
3612 /// true, otherwise (V < Lo || V >= Hi). In pratice, we emit the more efficient
3613 /// (V-Lo) <u Hi-Lo. This method expects that Lo <= Hi. isSigned indicates
3614 /// whether to treat the V, Lo and HI as signed or not. IB is the location to
3615 /// insert new instructions.
3616 Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
3617 bool isSigned, bool Inside,
3619 assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
3620 ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
3621 "Lo is not <= Hi in range emission code!");
3624 if (Lo == Hi) // Trivially false.
3625 return new ICmpInst(ICmpInst::ICMP_NE, V, V);
3627 // V >= Min && V < Hi --> V < Hi
3628 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
3629 ICmpInst::Predicate pred = (isSigned ?
3630 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
3631 return new ICmpInst(pred, V, Hi);
3634 // Emit V-Lo <u Hi-Lo
3635 Constant *NegLo = ConstantExpr::getNeg(Lo);
3636 Instruction *Add = BinaryOperator::createAdd(V, NegLo, V->getName()+".off");
3637 InsertNewInstBefore(Add, IB);
3638 Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
3639 return new ICmpInst(ICmpInst::ICMP_ULT, Add, UpperBound);
3642 if (Lo == Hi) // Trivially true.
3643 return new ICmpInst(ICmpInst::ICMP_EQ, V, V);
3645 // V < Min || V >= Hi -> V > Hi-1
3646 Hi = SubOne(cast<ConstantInt>(Hi));
3647 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
3648 ICmpInst::Predicate pred = (isSigned ?
3649 ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
3650 return new ICmpInst(pred, V, Hi);
3653 // Emit V-Lo >u Hi-1-Lo
3654 // Note that Hi has already had one subtracted from it, above.
3655 ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
3656 Instruction *Add = BinaryOperator::createAdd(V, NegLo, V->getName()+".off");
3657 InsertNewInstBefore(Add, IB);
3658 Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
3659 return new ICmpInst(ICmpInst::ICMP_UGT, Add, LowerBound);
3662 // isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
3663 // any number of 0s on either side. The 1s are allowed to wrap from LSB to
3664 // MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
3665 // not, since all 1s are not contiguous.
3666 static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
3667 const APInt& V = Val->getValue();
3668 uint32_t BitWidth = Val->getType()->getBitWidth();
3669 if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
3671 // look for the first zero bit after the run of ones
3672 MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
3673 // look for the first non-zero bit
3674 ME = V.getActiveBits();
3678 /// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
3679 /// where isSub determines whether the operator is a sub. If we can fold one of
3680 /// the following xforms:
3682 /// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
3683 /// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3684 /// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3686 /// return (A +/- B).
3688 Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
3689 ConstantInt *Mask, bool isSub,
3691 Instruction *LHSI = dyn_cast<Instruction>(LHS);
3692 if (!LHSI || LHSI->getNumOperands() != 2 ||
3693 !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
3695 ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
3697 switch (LHSI->getOpcode()) {
3699 case Instruction::And:
3700 if (And(N, Mask) == Mask) {
3701 // If the AndRHS is a power of two minus one (0+1+), this is simple.
3702 if ((Mask->getValue().countLeadingZeros() +
3703 Mask->getValue().countPopulation()) ==
3704 Mask->getValue().getBitWidth())
3707 // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
3708 // part, we don't need any explicit masks to take them out of A. If that
3709 // is all N is, ignore it.
3710 uint32_t MB = 0, ME = 0;
3711 if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive
3712 uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
3713 APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
3714 if (MaskedValueIsZero(RHS, Mask))
3719 case Instruction::Or:
3720 case Instruction::Xor:
3721 // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
3722 if ((Mask->getValue().countLeadingZeros() +
3723 Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
3724 && And(N, Mask)->isZero())
3731 New = BinaryOperator::createSub(LHSI->getOperand(0), RHS, "fold");
3733 New = BinaryOperator::createAdd(LHSI->getOperand(0), RHS, "fold");
3734 return InsertNewInstBefore(New, I);
3737 Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
3738 bool Changed = SimplifyCommutative(I);
3739 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3741 if (isa<UndefValue>(Op1)) // X & undef -> 0
3742 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3746 return ReplaceInstUsesWith(I, Op1);
3748 // See if we can simplify any instructions used by the instruction whose sole
3749 // purpose is to compute bits we don't care about.
3750 if (!isa<VectorType>(I.getType())) {
3751 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
3752 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3753 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
3754 KnownZero, KnownOne))
3757 if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
3758 if (CP->isAllOnesValue()) // X & <-1,-1> -> X
3759 return ReplaceInstUsesWith(I, I.getOperand(0));
3760 } else if (isa<ConstantAggregateZero>(Op1)) {
3761 return ReplaceInstUsesWith(I, Op1); // X & <0,0> -> <0,0>
3765 if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
3766 const APInt& AndRHSMask = AndRHS->getValue();
3767 APInt NotAndRHS(~AndRHSMask);
3769 // Optimize a variety of ((val OP C1) & C2) combinations...
3770 if (isa<BinaryOperator>(Op0)) {
3771 Instruction *Op0I = cast<Instruction>(Op0);
3772 Value *Op0LHS = Op0I->getOperand(0);
3773 Value *Op0RHS = Op0I->getOperand(1);
3774 switch (Op0I->getOpcode()) {
3775 case Instruction::Xor:
3776 case Instruction::Or:
3777 // If the mask is only needed on one incoming arm, push it up.
3778 if (Op0I->hasOneUse()) {
3779 if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
3780 // Not masking anything out for the LHS, move to RHS.
3781 Instruction *NewRHS = BinaryOperator::createAnd(Op0RHS, AndRHS,
3782 Op0RHS->getName()+".masked");
3783 InsertNewInstBefore(NewRHS, I);
3784 return BinaryOperator::create(
3785 cast<BinaryOperator>(Op0I)->getOpcode(), Op0LHS, NewRHS);
3787 if (!isa<Constant>(Op0RHS) &&
3788 MaskedValueIsZero(Op0RHS, NotAndRHS)) {
3789 // Not masking anything out for the RHS, move to LHS.
3790 Instruction *NewLHS = BinaryOperator::createAnd(Op0LHS, AndRHS,
3791 Op0LHS->getName()+".masked");
3792 InsertNewInstBefore(NewLHS, I);
3793 return BinaryOperator::create(
3794 cast<BinaryOperator>(Op0I)->getOpcode(), NewLHS, Op0RHS);
3799 case Instruction::Add:
3800 // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
3801 // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3802 // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3803 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
3804 return BinaryOperator::createAnd(V, AndRHS);
3805 if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
3806 return BinaryOperator::createAnd(V, AndRHS); // Add commutes
3809 case Instruction::Sub:
3810 // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
3811 // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3812 // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3813 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
3814 return BinaryOperator::createAnd(V, AndRHS);
3818 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
3819 if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
3821 } else if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
3822 // If this is an integer truncation or change from signed-to-unsigned, and
3823 // if the source is an and/or with immediate, transform it. This
3824 // frequently occurs for bitfield accesses.
3825 if (Instruction *CastOp = dyn_cast<Instruction>(CI->getOperand(0))) {
3826 if ((isa<TruncInst>(CI) || isa<BitCastInst>(CI)) &&
3827 CastOp->getNumOperands() == 2)
3828 if (ConstantInt *AndCI = dyn_cast<ConstantInt>(CastOp->getOperand(1))) {
3829 if (CastOp->getOpcode() == Instruction::And) {
3830 // Change: and (cast (and X, C1) to T), C2
3831 // into : and (cast X to T), trunc_or_bitcast(C1)&C2
3832 // This will fold the two constants together, which may allow
3833 // other simplifications.
3834 Instruction *NewCast = CastInst::createTruncOrBitCast(
3835 CastOp->getOperand(0), I.getType(),
3836 CastOp->getName()+".shrunk");
3837 NewCast = InsertNewInstBefore(NewCast, I);
3838 // trunc_or_bitcast(C1)&C2
3839 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
3840 C3 = ConstantExpr::getAnd(C3, AndRHS);
3841 return BinaryOperator::createAnd(NewCast, C3);
3842 } else if (CastOp->getOpcode() == Instruction::Or) {
3843 // Change: and (cast (or X, C1) to T), C2
3844 // into : trunc(C1)&C2 iff trunc(C1)&C2 == C2
3845 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
3846 if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS) // trunc(C1)&C2
3847 return ReplaceInstUsesWith(I, AndRHS);
3853 // Try to fold constant and into select arguments.
3854 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
3855 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
3857 if (isa<PHINode>(Op0))
3858 if (Instruction *NV = FoldOpIntoPhi(I))
3862 Value *Op0NotVal = dyn_castNotVal(Op0);
3863 Value *Op1NotVal = dyn_castNotVal(Op1);
3865 if (Op0NotVal == Op1 || Op1NotVal == Op0) // A & ~A == ~A & A == 0
3866 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3868 // (~A & ~B) == (~(A | B)) - De Morgan's Law
3869 if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
3870 Instruction *Or = BinaryOperator::createOr(Op0NotVal, Op1NotVal,
3871 I.getName()+".demorgan");
3872 InsertNewInstBefore(Or, I);
3873 return BinaryOperator::createNot(Or);
3877 Value *A = 0, *B = 0, *C = 0, *D = 0;
3878 if (match(Op0, m_Or(m_Value(A), m_Value(B)))) {
3879 if (A == Op1 || B == Op1) // (A | ?) & A --> A
3880 return ReplaceInstUsesWith(I, Op1);
3882 // (A|B) & ~(A&B) -> A^B
3883 if (match(Op1, m_Not(m_And(m_Value(C), m_Value(D))))) {
3884 if ((A == C && B == D) || (A == D && B == C))
3885 return BinaryOperator::createXor(A, B);
3889 if (match(Op1, m_Or(m_Value(A), m_Value(B)))) {
3890 if (A == Op0 || B == Op0) // A & (A | ?) --> A
3891 return ReplaceInstUsesWith(I, Op0);
3893 // ~(A&B) & (A|B) -> A^B
3894 if (match(Op0, m_Not(m_And(m_Value(C), m_Value(D))))) {
3895 if ((A == C && B == D) || (A == D && B == C))
3896 return BinaryOperator::createXor(A, B);
3900 if (Op0->hasOneUse() &&
3901 match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
3902 if (A == Op1) { // (A^B)&A -> A&(A^B)
3903 I.swapOperands(); // Simplify below
3904 std::swap(Op0, Op1);
3905 } else if (B == Op1) { // (A^B)&B -> B&(B^A)
3906 cast<BinaryOperator>(Op0)->swapOperands();
3907 I.swapOperands(); // Simplify below
3908 std::swap(Op0, Op1);
3911 if (Op1->hasOneUse() &&
3912 match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
3913 if (B == Op0) { // B&(A^B) -> B&(B^A)
3914 cast<BinaryOperator>(Op1)->swapOperands();
3917 if (A == Op0) { // A&(A^B) -> A & ~B
3918 Instruction *NotB = BinaryOperator::createNot(B, "tmp");
3919 InsertNewInstBefore(NotB, I);
3920 return BinaryOperator::createAnd(A, NotB);
3925 if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1)) {
3926 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3927 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
3930 Value *LHSVal, *RHSVal;
3931 ConstantInt *LHSCst, *RHSCst;
3932 ICmpInst::Predicate LHSCC, RHSCC;
3933 if (match(Op0, m_ICmp(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
3934 if (match(RHS, m_ICmp(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
3935 if (LHSVal == RHSVal && // Found (X icmp C1) & (X icmp C2)
3936 // ICMP_[GL]E X, CST is folded to ICMP_[GL]T elsewhere.
3937 LHSCC != ICmpInst::ICMP_UGE && LHSCC != ICmpInst::ICMP_ULE &&
3938 RHSCC != ICmpInst::ICMP_UGE && RHSCC != ICmpInst::ICMP_ULE &&
3939 LHSCC != ICmpInst::ICMP_SGE && LHSCC != ICmpInst::ICMP_SLE &&
3940 RHSCC != ICmpInst::ICMP_SGE && RHSCC != ICmpInst::ICMP_SLE &&
3942 // Don't try to fold ICMP_SLT + ICMP_ULT.
3943 (ICmpInst::isEquality(LHSCC) || ICmpInst::isEquality(RHSCC) ||
3944 ICmpInst::isSignedPredicate(LHSCC) ==
3945 ICmpInst::isSignedPredicate(RHSCC))) {
3946 // Ensure that the larger constant is on the RHS.
3947 ICmpInst::Predicate GT;
3948 if (ICmpInst::isSignedPredicate(LHSCC) ||
3949 (ICmpInst::isEquality(LHSCC) &&
3950 ICmpInst::isSignedPredicate(RHSCC)))
3951 GT = ICmpInst::ICMP_SGT;
3953 GT = ICmpInst::ICMP_UGT;
3955 Constant *Cmp = ConstantExpr::getICmp(GT, LHSCst, RHSCst);
3956 ICmpInst *LHS = cast<ICmpInst>(Op0);
3957 if (cast<ConstantInt>(Cmp)->getZExtValue()) {
3958 std::swap(LHS, RHS);
3959 std::swap(LHSCst, RHSCst);
3960 std::swap(LHSCC, RHSCC);
3963 // At this point, we know we have have two icmp instructions
3964 // comparing a value against two constants and and'ing the result
3965 // together. Because of the above check, we know that we only have
3966 // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
3967 // (from the FoldICmpLogical check above), that the two constants
3968 // are not equal and that the larger constant is on the RHS
3969 assert(LHSCst != RHSCst && "Compares not folded above?");
3972 default: assert(0 && "Unknown integer condition code!");
3973 case ICmpInst::ICMP_EQ:
3975 default: assert(0 && "Unknown integer condition code!");
3976 case ICmpInst::ICMP_EQ: // (X == 13 & X == 15) -> false
3977 case ICmpInst::ICMP_UGT: // (X == 13 & X > 15) -> false
3978 case ICmpInst::ICMP_SGT: // (X == 13 & X > 15) -> false
3979 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3980 case ICmpInst::ICMP_NE: // (X == 13 & X != 15) -> X == 13
3981 case ICmpInst::ICMP_ULT: // (X == 13 & X < 15) -> X == 13
3982 case ICmpInst::ICMP_SLT: // (X == 13 & X < 15) -> X == 13
3983 return ReplaceInstUsesWith(I, LHS);
3985 case ICmpInst::ICMP_NE:
3987 default: assert(0 && "Unknown integer condition code!");
3988 case ICmpInst::ICMP_ULT:
3989 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
3990 return new ICmpInst(ICmpInst::ICMP_ULT, LHSVal, LHSCst);
3991 break; // (X != 13 & X u< 15) -> no change
3992 case ICmpInst::ICMP_SLT:
3993 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
3994 return new ICmpInst(ICmpInst::ICMP_SLT, LHSVal, LHSCst);
3995 break; // (X != 13 & X s< 15) -> no change
3996 case ICmpInst::ICMP_EQ: // (X != 13 & X == 15) -> X == 15
3997 case ICmpInst::ICMP_UGT: // (X != 13 & X u> 15) -> X u> 15
3998 case ICmpInst::ICMP_SGT: // (X != 13 & X s> 15) -> X s> 15
3999 return ReplaceInstUsesWith(I, RHS);
4000 case ICmpInst::ICMP_NE:
4001 if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
4002 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
4003 Instruction *Add = BinaryOperator::createAdd(LHSVal, AddCST,
4004 LHSVal->getName()+".off");
4005 InsertNewInstBefore(Add, I);
4006 return new ICmpInst(ICmpInst::ICMP_UGT, Add,
4007 ConstantInt::get(Add->getType(), 1));
4009 break; // (X != 13 & X != 15) -> no change
4012 case ICmpInst::ICMP_ULT:
4014 default: assert(0 && "Unknown integer condition code!");
4015 case ICmpInst::ICMP_EQ: // (X u< 13 & X == 15) -> false
4016 case ICmpInst::ICMP_UGT: // (X u< 13 & X u> 15) -> false
4017 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4018 case ICmpInst::ICMP_SGT: // (X u< 13 & X s> 15) -> no change
4020 case ICmpInst::ICMP_NE: // (X u< 13 & X != 15) -> X u< 13
4021 case ICmpInst::ICMP_ULT: // (X u< 13 & X u< 15) -> X u< 13
4022 return ReplaceInstUsesWith(I, LHS);
4023 case ICmpInst::ICMP_SLT: // (X u< 13 & X s< 15) -> no change
4027 case ICmpInst::ICMP_SLT:
4029 default: assert(0 && "Unknown integer condition code!");
4030 case ICmpInst::ICMP_EQ: // (X s< 13 & X == 15) -> false
4031 case ICmpInst::ICMP_SGT: // (X s< 13 & X s> 15) -> false
4032 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4033 case ICmpInst::ICMP_UGT: // (X s< 13 & X u> 15) -> no change
4035 case ICmpInst::ICMP_NE: // (X s< 13 & X != 15) -> X < 13
4036 case ICmpInst::ICMP_SLT: // (X s< 13 & X s< 15) -> X < 13
4037 return ReplaceInstUsesWith(I, LHS);
4038 case ICmpInst::ICMP_ULT: // (X s< 13 & X u< 15) -> no change
4042 case ICmpInst::ICMP_UGT:
4044 default: assert(0 && "Unknown integer condition code!");
4045 case ICmpInst::ICMP_EQ: // (X u> 13 & X == 15) -> X > 13
4046 return ReplaceInstUsesWith(I, LHS);
4047 case ICmpInst::ICMP_UGT: // (X u> 13 & X u> 15) -> X u> 15
4048 return ReplaceInstUsesWith(I, RHS);
4049 case ICmpInst::ICMP_SGT: // (X u> 13 & X s> 15) -> no change
4051 case ICmpInst::ICMP_NE:
4052 if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
4053 return new ICmpInst(LHSCC, LHSVal, RHSCst);
4054 break; // (X u> 13 & X != 15) -> no change
4055 case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) ->(X-14) <u 1
4056 return InsertRangeTest(LHSVal, AddOne(LHSCst), RHSCst, false,
4058 case ICmpInst::ICMP_SLT: // (X u> 13 & X s< 15) -> no change
4062 case ICmpInst::ICMP_SGT:
4064 default: assert(0 && "Unknown integer condition code!");
4065 case ICmpInst::ICMP_EQ: // (X s> 13 & X == 15) -> X == 15
4066 case ICmpInst::ICMP_SGT: // (X s> 13 & X s> 15) -> X s> 15
4067 return ReplaceInstUsesWith(I, RHS);
4068 case ICmpInst::ICMP_UGT: // (X s> 13 & X u> 15) -> no change
4070 case ICmpInst::ICMP_NE:
4071 if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
4072 return new ICmpInst(LHSCC, LHSVal, RHSCst);
4073 break; // (X s> 13 & X != 15) -> no change
4074 case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) ->(X-14) s< 1
4075 return InsertRangeTest(LHSVal, AddOne(LHSCst), RHSCst, true,
4077 case ICmpInst::ICMP_ULT: // (X s> 13 & X u< 15) -> no change
4085 // fold (and (cast A), (cast B)) -> (cast (and A, B))
4086 if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
4087 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
4088 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind ?
4089 const Type *SrcTy = Op0C->getOperand(0)->getType();
4090 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
4091 // Only do this if the casts both really cause code to be generated.
4092 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4094 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4096 Instruction *NewOp = BinaryOperator::createAnd(Op0C->getOperand(0),
4097 Op1C->getOperand(0),
4099 InsertNewInstBefore(NewOp, I);
4100 return CastInst::create(Op0C->getOpcode(), NewOp, I.getType());
4104 // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
4105 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
4106 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
4107 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
4108 SI0->getOperand(1) == SI1->getOperand(1) &&
4109 (SI0->hasOneUse() || SI1->hasOneUse())) {
4110 Instruction *NewOp =
4111 InsertNewInstBefore(BinaryOperator::createAnd(SI0->getOperand(0),
4113 SI0->getName()), I);
4114 return BinaryOperator::create(SI1->getOpcode(), NewOp,
4115 SI1->getOperand(1));
4119 // (fcmp ord x, c) & (fcmp ord y, c) -> (fcmp ord x, y)
4120 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
4121 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
4122 if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
4123 RHS->getPredicate() == FCmpInst::FCMP_ORD)
4124 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
4125 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
4126 // If either of the constants are nans, then the whole thing returns
4128 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
4129 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4130 return new FCmpInst(FCmpInst::FCMP_ORD, LHS->getOperand(0),
4131 RHS->getOperand(0));
4136 return Changed ? &I : 0;
4139 /// CollectBSwapParts - Look to see if the specified value defines a single byte
4140 /// in the result. If it does, and if the specified byte hasn't been filled in
4141 /// yet, fill it in and return false.
4142 static bool CollectBSwapParts(Value *V, SmallVector<Value*, 8> &ByteValues) {
4143 Instruction *I = dyn_cast<Instruction>(V);
4144 if (I == 0) return true;
4146 // If this is an or instruction, it is an inner node of the bswap.
4147 if (I->getOpcode() == Instruction::Or)
4148 return CollectBSwapParts(I->getOperand(0), ByteValues) ||
4149 CollectBSwapParts(I->getOperand(1), ByteValues);
4151 uint32_t BitWidth = I->getType()->getPrimitiveSizeInBits();
4152 // If this is a shift by a constant int, and it is "24", then its operand
4153 // defines a byte. We only handle unsigned types here.
4154 if (I->isShift() && isa<ConstantInt>(I->getOperand(1))) {
4155 // Not shifting the entire input by N-1 bytes?
4156 if (cast<ConstantInt>(I->getOperand(1))->getLimitedValue(BitWidth) !=
4157 8*(ByteValues.size()-1))
4161 if (I->getOpcode() == Instruction::Shl) {
4162 // X << 24 defines the top byte with the lowest of the input bytes.
4163 DestNo = ByteValues.size()-1;
4165 // X >>u 24 defines the low byte with the highest of the input bytes.
4169 // If the destination byte value is already defined, the values are or'd
4170 // together, which isn't a bswap (unless it's an or of the same bits).
4171 if (ByteValues[DestNo] && ByteValues[DestNo] != I->getOperand(0))
4173 ByteValues[DestNo] = I->getOperand(0);
4177 // Otherwise, we can only handle and(shift X, imm), imm). Bail out of if we
4179 Value *Shift = 0, *ShiftLHS = 0;
4180 ConstantInt *AndAmt = 0, *ShiftAmt = 0;
4181 if (!match(I, m_And(m_Value(Shift), m_ConstantInt(AndAmt))) ||
4182 !match(Shift, m_Shift(m_Value(ShiftLHS), m_ConstantInt(ShiftAmt))))
4184 Instruction *SI = cast<Instruction>(Shift);
4186 // Make sure that the shift amount is by a multiple of 8 and isn't too big.
4187 if (ShiftAmt->getLimitedValue(BitWidth) & 7 ||
4188 ShiftAmt->getLimitedValue(BitWidth) > 8*ByteValues.size())
4191 // Turn 0xFF -> 0, 0xFF00 -> 1, 0xFF0000 -> 2, etc.
4193 if (AndAmt->getValue().getActiveBits() > 64)
4195 uint64_t AndAmtVal = AndAmt->getZExtValue();
4196 for (DestByte = 0; DestByte != ByteValues.size(); ++DestByte)
4197 if (AndAmtVal == uint64_t(0xFF) << 8*DestByte)
4199 // Unknown mask for bswap.
4200 if (DestByte == ByteValues.size()) return true;
4202 unsigned ShiftBytes = ShiftAmt->getZExtValue()/8;
4204 if (SI->getOpcode() == Instruction::Shl)
4205 SrcByte = DestByte - ShiftBytes;
4207 SrcByte = DestByte + ShiftBytes;
4209 // If the SrcByte isn't a bswapped value from the DestByte, reject it.
4210 if (SrcByte != ByteValues.size()-DestByte-1)
4213 // If the destination byte value is already defined, the values are or'd
4214 // together, which isn't a bswap (unless it's an or of the same bits).
4215 if (ByteValues[DestByte] && ByteValues[DestByte] != SI->getOperand(0))
4217 ByteValues[DestByte] = SI->getOperand(0);
4221 /// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
4222 /// If so, insert the new bswap intrinsic and return it.
4223 Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
4224 const IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
4225 if (!ITy || ITy->getBitWidth() % 16)
4226 return 0; // Can only bswap pairs of bytes. Can't do vectors.
4228 /// ByteValues - For each byte of the result, we keep track of which value
4229 /// defines each byte.
4230 SmallVector<Value*, 8> ByteValues;
4231 ByteValues.resize(ITy->getBitWidth()/8);
4233 // Try to find all the pieces corresponding to the bswap.
4234 if (CollectBSwapParts(I.getOperand(0), ByteValues) ||
4235 CollectBSwapParts(I.getOperand(1), ByteValues))
4238 // Check to see if all of the bytes come from the same value.
4239 Value *V = ByteValues[0];
4240 if (V == 0) return 0; // Didn't find a byte? Must be zero.
4242 // Check to make sure that all of the bytes come from the same value.
4243 for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
4244 if (ByteValues[i] != V)
4246 const Type *Tys[] = { ITy };
4247 Module *M = I.getParent()->getParent()->getParent();
4248 Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
4249 return CallInst::Create(F, V);
4253 Instruction *InstCombiner::visitOr(BinaryOperator &I) {
4254 bool Changed = SimplifyCommutative(I);
4255 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4257 if (isa<UndefValue>(Op1)) // X | undef -> -1
4258 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4262 return ReplaceInstUsesWith(I, Op0);
4264 // See if we can simplify any instructions used by the instruction whose sole
4265 // purpose is to compute bits we don't care about.
4266 if (!isa<VectorType>(I.getType())) {
4267 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
4268 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4269 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
4270 KnownZero, KnownOne))
4272 } else if (isa<ConstantAggregateZero>(Op1)) {
4273 return ReplaceInstUsesWith(I, Op0); // X | <0,0> -> X
4274 } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
4275 if (CP->isAllOnesValue()) // X | <-1,-1> -> <-1,-1>
4276 return ReplaceInstUsesWith(I, I.getOperand(1));
4282 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
4283 ConstantInt *C1 = 0; Value *X = 0;
4284 // (X & C1) | C2 --> (X | C2) & (C1|C2)
4285 if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
4286 Instruction *Or = BinaryOperator::createOr(X, RHS);
4287 InsertNewInstBefore(Or, I);
4289 return BinaryOperator::createAnd(Or,
4290 ConstantInt::get(RHS->getValue() | C1->getValue()));
4293 // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
4294 if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
4295 Instruction *Or = BinaryOperator::createOr(X, RHS);
4296 InsertNewInstBefore(Or, I);
4298 return BinaryOperator::createXor(Or,
4299 ConstantInt::get(C1->getValue() & ~RHS->getValue()));
4302 // Try to fold constant and into select arguments.
4303 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
4304 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
4306 if (isa<PHINode>(Op0))
4307 if (Instruction *NV = FoldOpIntoPhi(I))
4311 Value *A = 0, *B = 0;
4312 ConstantInt *C1 = 0, *C2 = 0;
4314 if (match(Op0, m_And(m_Value(A), m_Value(B))))
4315 if (A == Op1 || B == Op1) // (A & ?) | A --> A
4316 return ReplaceInstUsesWith(I, Op1);
4317 if (match(Op1, m_And(m_Value(A), m_Value(B))))
4318 if (A == Op0 || B == Op0) // A | (A & ?) --> A
4319 return ReplaceInstUsesWith(I, Op0);
4321 // (A | B) | C and A | (B | C) -> bswap if possible.
4322 // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible.
4323 if (match(Op0, m_Or(m_Value(), m_Value())) ||
4324 match(Op1, m_Or(m_Value(), m_Value())) ||
4325 (match(Op0, m_Shift(m_Value(), m_Value())) &&
4326 match(Op1, m_Shift(m_Value(), m_Value())))) {
4327 if (Instruction *BSwap = MatchBSwap(I))
4331 // (X^C)|Y -> (X|Y)^C iff Y&C == 0
4332 if (Op0->hasOneUse() && match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
4333 MaskedValueIsZero(Op1, C1->getValue())) {
4334 Instruction *NOr = BinaryOperator::createOr(A, Op1);
4335 InsertNewInstBefore(NOr, I);
4337 return BinaryOperator::createXor(NOr, C1);
4340 // Y|(X^C) -> (X|Y)^C iff Y&C == 0
4341 if (Op1->hasOneUse() && match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
4342 MaskedValueIsZero(Op0, C1->getValue())) {
4343 Instruction *NOr = BinaryOperator::createOr(A, Op0);
4344 InsertNewInstBefore(NOr, I);
4346 return BinaryOperator::createXor(NOr, C1);
4350 Value *C = 0, *D = 0;
4351 if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
4352 match(Op1, m_And(m_Value(B), m_Value(D)))) {
4353 Value *V1 = 0, *V2 = 0, *V3 = 0;
4354 C1 = dyn_cast<ConstantInt>(C);
4355 C2 = dyn_cast<ConstantInt>(D);
4356 if (C1 && C2) { // (A & C1)|(B & C2)
4357 // If we have: ((V + N) & C1) | (V & C2)
4358 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
4359 // replace with V+N.
4360 if (C1->getValue() == ~C2->getValue()) {
4361 if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+
4362 match(A, m_Add(m_Value(V1), m_Value(V2)))) {
4363 // Add commutes, try both ways.
4364 if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
4365 return ReplaceInstUsesWith(I, A);
4366 if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
4367 return ReplaceInstUsesWith(I, A);
4369 // Or commutes, try both ways.
4370 if ((C1->getValue() & (C1->getValue()+1)) == 0 &&
4371 match(B, m_Add(m_Value(V1), m_Value(V2)))) {
4372 // Add commutes, try both ways.
4373 if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
4374 return ReplaceInstUsesWith(I, B);
4375 if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
4376 return ReplaceInstUsesWith(I, B);
4379 V1 = 0; V2 = 0; V3 = 0;
4382 // Check to see if we have any common things being and'ed. If so, find the
4383 // terms for V1 & (V2|V3).
4384 if (isOnlyUse(Op0) || isOnlyUse(Op1)) {
4385 if (A == B) // (A & C)|(A & D) == A & (C|D)
4386 V1 = A, V2 = C, V3 = D;
4387 else if (A == D) // (A & C)|(B & A) == A & (B|C)
4388 V1 = A, V2 = B, V3 = C;
4389 else if (C == B) // (A & C)|(C & D) == C & (A|D)
4390 V1 = C, V2 = A, V3 = D;
4391 else if (C == D) // (A & C)|(B & C) == C & (A|B)
4392 V1 = C, V2 = A, V3 = B;
4396 InsertNewInstBefore(BinaryOperator::createOr(V2, V3, "tmp"), I);
4397 return BinaryOperator::createAnd(V1, Or);
4402 // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
4403 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
4404 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
4405 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
4406 SI0->getOperand(1) == SI1->getOperand(1) &&
4407 (SI0->hasOneUse() || SI1->hasOneUse())) {
4408 Instruction *NewOp =
4409 InsertNewInstBefore(BinaryOperator::createOr(SI0->getOperand(0),
4411 SI0->getName()), I);
4412 return BinaryOperator::create(SI1->getOpcode(), NewOp,
4413 SI1->getOperand(1));
4417 if (match(Op0, m_Not(m_Value(A)))) { // ~A | Op1
4418 if (A == Op1) // ~A | A == -1
4419 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4423 // Note, A is still live here!
4424 if (match(Op1, m_Not(m_Value(B)))) { // Op0 | ~B
4426 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4428 // (~A | ~B) == (~(A & B)) - De Morgan's Law
4429 if (A && isOnlyUse(Op0) && isOnlyUse(Op1)) {
4430 Value *And = InsertNewInstBefore(BinaryOperator::createAnd(A, B,
4431 I.getName()+".demorgan"), I);
4432 return BinaryOperator::createNot(And);
4436 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
4437 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) {
4438 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
4441 Value *LHSVal, *RHSVal;
4442 ConstantInt *LHSCst, *RHSCst;
4443 ICmpInst::Predicate LHSCC, RHSCC;
4444 if (match(Op0, m_ICmp(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
4445 if (match(RHS, m_ICmp(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
4446 if (LHSVal == RHSVal && // Found (X icmp C1) | (X icmp C2)
4447 // icmp [us][gl]e x, cst is folded to icmp [us][gl]t elsewhere.
4448 LHSCC != ICmpInst::ICMP_UGE && LHSCC != ICmpInst::ICMP_ULE &&
4449 RHSCC != ICmpInst::ICMP_UGE && RHSCC != ICmpInst::ICMP_ULE &&
4450 LHSCC != ICmpInst::ICMP_SGE && LHSCC != ICmpInst::ICMP_SLE &&
4451 RHSCC != ICmpInst::ICMP_SGE && RHSCC != ICmpInst::ICMP_SLE &&
4452 // We can't fold (ugt x, C) | (sgt x, C2).
4453 PredicatesFoldable(LHSCC, RHSCC)) {
4454 // Ensure that the larger constant is on the RHS.
4455 ICmpInst *LHS = cast<ICmpInst>(Op0);
4457 if (ICmpInst::isSignedPredicate(LHSCC))
4458 NeedsSwap = LHSCst->getValue().sgt(RHSCst->getValue());
4460 NeedsSwap = LHSCst->getValue().ugt(RHSCst->getValue());
4463 std::swap(LHS, RHS);
4464 std::swap(LHSCst, RHSCst);
4465 std::swap(LHSCC, RHSCC);
4468 // At this point, we know we have have two icmp instructions
4469 // comparing a value against two constants and or'ing the result
4470 // together. Because of the above check, we know that we only have
4471 // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
4472 // FoldICmpLogical check above), that the two constants are not
4474 assert(LHSCst != RHSCst && "Compares not folded above?");
4477 default: assert(0 && "Unknown integer condition code!");
4478 case ICmpInst::ICMP_EQ:
4480 default: assert(0 && "Unknown integer condition code!");
4481 case ICmpInst::ICMP_EQ:
4482 if (LHSCst == SubOne(RHSCst)) {// (X == 13 | X == 14) -> X-13 <u 2
4483 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
4484 Instruction *Add = BinaryOperator::createAdd(LHSVal, AddCST,
4485 LHSVal->getName()+".off");
4486 InsertNewInstBefore(Add, I);
4487 AddCST = Subtract(AddOne(RHSCst), LHSCst);
4488 return new ICmpInst(ICmpInst::ICMP_ULT, Add, AddCST);
4490 break; // (X == 13 | X == 15) -> no change
4491 case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change
4492 case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change
4494 case ICmpInst::ICMP_NE: // (X == 13 | X != 15) -> X != 15
4495 case ICmpInst::ICMP_ULT: // (X == 13 | X u< 15) -> X u< 15
4496 case ICmpInst::ICMP_SLT: // (X == 13 | X s< 15) -> X s< 15
4497 return ReplaceInstUsesWith(I, RHS);
4500 case ICmpInst::ICMP_NE:
4502 default: assert(0 && "Unknown integer condition code!");
4503 case ICmpInst::ICMP_EQ: // (X != 13 | X == 15) -> X != 13
4504 case ICmpInst::ICMP_UGT: // (X != 13 | X u> 15) -> X != 13
4505 case ICmpInst::ICMP_SGT: // (X != 13 | X s> 15) -> X != 13
4506 return ReplaceInstUsesWith(I, LHS);
4507 case ICmpInst::ICMP_NE: // (X != 13 | X != 15) -> true
4508 case ICmpInst::ICMP_ULT: // (X != 13 | X u< 15) -> true
4509 case ICmpInst::ICMP_SLT: // (X != 13 | X s< 15) -> true
4510 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4513 case ICmpInst::ICMP_ULT:
4515 default: assert(0 && "Unknown integer condition code!");
4516 case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change
4518 case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) ->(X-13) u> 2
4519 // If RHSCst is [us]MAXINT, it is always false. Not handling
4520 // this can cause overflow.
4521 if (RHSCst->isMaxValue(false))
4522 return ReplaceInstUsesWith(I, LHS);
4523 return InsertRangeTest(LHSVal, LHSCst, AddOne(RHSCst), false,
4525 case ICmpInst::ICMP_SGT: // (X u< 13 | X s> 15) -> no change
4527 case ICmpInst::ICMP_NE: // (X u< 13 | X != 15) -> X != 15
4528 case ICmpInst::ICMP_ULT: // (X u< 13 | X u< 15) -> X u< 15
4529 return ReplaceInstUsesWith(I, RHS);
4530 case ICmpInst::ICMP_SLT: // (X u< 13 | X s< 15) -> no change
4534 case ICmpInst::ICMP_SLT:
4536 default: assert(0 && "Unknown integer condition code!");
4537 case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change
4539 case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) ->(X-13) s> 2
4540 // If RHSCst is [us]MAXINT, it is always false. Not handling
4541 // this can cause overflow.
4542 if (RHSCst->isMaxValue(true))
4543 return ReplaceInstUsesWith(I, LHS);
4544 return InsertRangeTest(LHSVal, LHSCst, AddOne(RHSCst), true,
4546 case ICmpInst::ICMP_UGT: // (X s< 13 | X u> 15) -> no change
4548 case ICmpInst::ICMP_NE: // (X s< 13 | X != 15) -> X != 15
4549 case ICmpInst::ICMP_SLT: // (X s< 13 | X s< 15) -> X s< 15
4550 return ReplaceInstUsesWith(I, RHS);
4551 case ICmpInst::ICMP_ULT: // (X s< 13 | X u< 15) -> no change
4555 case ICmpInst::ICMP_UGT:
4557 default: assert(0 && "Unknown integer condition code!");
4558 case ICmpInst::ICMP_EQ: // (X u> 13 | X == 15) -> X u> 13
4559 case ICmpInst::ICMP_UGT: // (X u> 13 | X u> 15) -> X u> 13
4560 return ReplaceInstUsesWith(I, LHS);
4561 case ICmpInst::ICMP_SGT: // (X u> 13 | X s> 15) -> no change
4563 case ICmpInst::ICMP_NE: // (X u> 13 | X != 15) -> true
4564 case ICmpInst::ICMP_ULT: // (X u> 13 | X u< 15) -> true
4565 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4566 case ICmpInst::ICMP_SLT: // (X u> 13 | X s< 15) -> no change
4570 case ICmpInst::ICMP_SGT:
4572 default: assert(0 && "Unknown integer condition code!");
4573 case ICmpInst::ICMP_EQ: // (X s> 13 | X == 15) -> X > 13
4574 case ICmpInst::ICMP_SGT: // (X s> 13 | X s> 15) -> X > 13
4575 return ReplaceInstUsesWith(I, LHS);
4576 case ICmpInst::ICMP_UGT: // (X s> 13 | X u> 15) -> no change
4578 case ICmpInst::ICMP_NE: // (X s> 13 | X != 15) -> true
4579 case ICmpInst::ICMP_SLT: // (X s> 13 | X s< 15) -> true
4580 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4581 case ICmpInst::ICMP_ULT: // (X s> 13 | X u< 15) -> no change
4589 // fold (or (cast A), (cast B)) -> (cast (or A, B))
4590 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
4591 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
4592 if (Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
4593 if (!isa<ICmpInst>(Op0C->getOperand(0)) ||
4594 !isa<ICmpInst>(Op1C->getOperand(0))) {
4595 const Type *SrcTy = Op0C->getOperand(0)->getType();
4596 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
4597 // Only do this if the casts both really cause code to be
4599 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4601 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4603 Instruction *NewOp = BinaryOperator::createOr(Op0C->getOperand(0),
4604 Op1C->getOperand(0),
4606 InsertNewInstBefore(NewOp, I);
4607 return CastInst::create(Op0C->getOpcode(), NewOp, I.getType());
4614 // (fcmp uno x, c) | (fcmp uno y, c) -> (fcmp uno x, y)
4615 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
4616 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
4617 if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
4618 RHS->getPredicate() == FCmpInst::FCMP_UNO &&
4619 LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType())
4620 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
4621 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
4622 // If either of the constants are nans, then the whole thing returns
4624 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
4625 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4627 // Otherwise, no need to compare the two constants, compare the
4629 return new FCmpInst(FCmpInst::FCMP_UNO, LHS->getOperand(0),
4630 RHS->getOperand(0));
4635 return Changed ? &I : 0;
4638 // XorSelf - Implements: X ^ X --> 0
4641 XorSelf(Value *rhs) : RHS(rhs) {}
4642 bool shouldApply(Value *LHS) const { return LHS == RHS; }
4643 Instruction *apply(BinaryOperator &Xor) const {
4649 Instruction *InstCombiner::visitXor(BinaryOperator &I) {
4650 bool Changed = SimplifyCommutative(I);
4651 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4653 if (isa<UndefValue>(Op1)) {
4654 if (isa<UndefValue>(Op0))
4655 // Handle undef ^ undef -> 0 special case. This is a common
4657 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
4658 return ReplaceInstUsesWith(I, Op1); // X ^ undef -> undef
4661 // xor X, X = 0, even if X is nested in a sequence of Xor's.
4662 if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) {
4663 assert(Result == &I && "AssociativeOpt didn't work?"); Result=Result;
4664 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
4667 // See if we can simplify any instructions used by the instruction whose sole
4668 // purpose is to compute bits we don't care about.
4669 if (!isa<VectorType>(I.getType())) {
4670 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
4671 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4672 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
4673 KnownZero, KnownOne))
4675 } else if (isa<ConstantAggregateZero>(Op1)) {
4676 return ReplaceInstUsesWith(I, Op0); // X ^ <0,0> -> X
4679 // Is this a ~ operation?
4680 if (Value *NotOp = dyn_castNotVal(&I)) {
4681 // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
4682 // ~(~X | Y) === (X & ~Y) - De Morgan's Law
4683 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
4684 if (Op0I->getOpcode() == Instruction::And ||
4685 Op0I->getOpcode() == Instruction::Or) {
4686 if (dyn_castNotVal(Op0I->getOperand(1))) Op0I->swapOperands();
4687 if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
4689 BinaryOperator::createNot(Op0I->getOperand(1),
4690 Op0I->getOperand(1)->getName()+".not");
4691 InsertNewInstBefore(NotY, I);
4692 if (Op0I->getOpcode() == Instruction::And)
4693 return BinaryOperator::createOr(Op0NotVal, NotY);
4695 return BinaryOperator::createAnd(Op0NotVal, NotY);
4702 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
4703 // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
4704 if (RHS == ConstantInt::getTrue() && Op0->hasOneUse()) {
4705 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Op0))
4706 return new ICmpInst(ICI->getInversePredicate(),
4707 ICI->getOperand(0), ICI->getOperand(1));
4709 if (FCmpInst *FCI = dyn_cast<FCmpInst>(Op0))
4710 return new FCmpInst(FCI->getInversePredicate(),
4711 FCI->getOperand(0), FCI->getOperand(1));
4714 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
4715 // ~(c-X) == X-c-1 == X+(-c-1)
4716 if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
4717 if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
4718 Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
4719 Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
4720 ConstantInt::get(I.getType(), 1));
4721 return BinaryOperator::createAdd(Op0I->getOperand(1), ConstantRHS);
4724 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
4725 if (Op0I->getOpcode() == Instruction::Add) {
4726 // ~(X-c) --> (-c-1)-X
4727 if (RHS->isAllOnesValue()) {
4728 Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
4729 return BinaryOperator::createSub(
4730 ConstantExpr::getSub(NegOp0CI,
4731 ConstantInt::get(I.getType(), 1)),
4732 Op0I->getOperand(0));
4733 } else if (RHS->getValue().isSignBit()) {
4734 // (X + C) ^ signbit -> (X + C + signbit)
4735 Constant *C = ConstantInt::get(RHS->getValue() + Op0CI->getValue());
4736 return BinaryOperator::createAdd(Op0I->getOperand(0), C);
4739 } else if (Op0I->getOpcode() == Instruction::Or) {
4740 // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
4741 if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
4742 Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
4743 // Anything in both C1 and C2 is known to be zero, remove it from
4745 Constant *CommonBits = And(Op0CI, RHS);
4746 NewRHS = ConstantExpr::getAnd(NewRHS,
4747 ConstantExpr::getNot(CommonBits));
4748 AddToWorkList(Op0I);
4749 I.setOperand(0, Op0I->getOperand(0));
4750 I.setOperand(1, NewRHS);
4757 // Try to fold constant and into select arguments.
4758 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
4759 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
4761 if (isa<PHINode>(Op0))
4762 if (Instruction *NV = FoldOpIntoPhi(I))
4766 if (Value *X = dyn_castNotVal(Op0)) // ~A ^ A == -1
4768 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4770 if (Value *X = dyn_castNotVal(Op1)) // A ^ ~A == -1
4772 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4775 BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
4778 if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
4779 if (A == Op0) { // B^(B|A) == (A|B)^B
4780 Op1I->swapOperands();
4782 std::swap(Op0, Op1);
4783 } else if (B == Op0) { // B^(A|B) == (A|B)^B
4784 I.swapOperands(); // Simplified below.
4785 std::swap(Op0, Op1);
4787 } else if (match(Op1I, m_Xor(m_Value(A), m_Value(B)))) {
4788 if (Op0 == A) // A^(A^B) == B
4789 return ReplaceInstUsesWith(I, B);
4790 else if (Op0 == B) // A^(B^A) == B
4791 return ReplaceInstUsesWith(I, A);
4792 } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) && Op1I->hasOneUse()){
4793 if (A == Op0) { // A^(A&B) -> A^(B&A)
4794 Op1I->swapOperands();
4797 if (B == Op0) { // A^(B&A) -> (B&A)^A
4798 I.swapOperands(); // Simplified below.
4799 std::swap(Op0, Op1);
4804 BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
4807 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) && Op0I->hasOneUse()) {
4808 if (A == Op1) // (B|A)^B == (A|B)^B
4810 if (B == Op1) { // (A|B)^B == A & ~B
4812 InsertNewInstBefore(BinaryOperator::createNot(Op1, "tmp"), I);
4813 return BinaryOperator::createAnd(A, NotB);
4815 } else if (match(Op0I, m_Xor(m_Value(A), m_Value(B)))) {
4816 if (Op1 == A) // (A^B)^A == B
4817 return ReplaceInstUsesWith(I, B);
4818 else if (Op1 == B) // (B^A)^A == B
4819 return ReplaceInstUsesWith(I, A);
4820 } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) && Op0I->hasOneUse()){
4821 if (A == Op1) // (A&B)^A -> (B&A)^A
4823 if (B == Op1 && // (B&A)^A == ~B & A
4824 !isa<ConstantInt>(Op1)) { // Canonical form is (B&C)^C
4826 InsertNewInstBefore(BinaryOperator::createNot(A, "tmp"), I);
4827 return BinaryOperator::createAnd(N, Op1);
4832 // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
4833 if (Op0I && Op1I && Op0I->isShift() &&
4834 Op0I->getOpcode() == Op1I->getOpcode() &&
4835 Op0I->getOperand(1) == Op1I->getOperand(1) &&
4836 (Op1I->hasOneUse() || Op1I->hasOneUse())) {
4837 Instruction *NewOp =
4838 InsertNewInstBefore(BinaryOperator::createXor(Op0I->getOperand(0),
4839 Op1I->getOperand(0),
4840 Op0I->getName()), I);
4841 return BinaryOperator::create(Op1I->getOpcode(), NewOp,
4842 Op1I->getOperand(1));
4846 Value *A, *B, *C, *D;
4847 // (A & B)^(A | B) -> A ^ B
4848 if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
4849 match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
4850 if ((A == C && B == D) || (A == D && B == C))
4851 return BinaryOperator::createXor(A, B);
4853 // (A | B)^(A & B) -> A ^ B
4854 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
4855 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
4856 if ((A == C && B == D) || (A == D && B == C))
4857 return BinaryOperator::createXor(A, B);
4861 if ((Op0I->hasOneUse() || Op1I->hasOneUse()) &&
4862 match(Op0I, m_And(m_Value(A), m_Value(B))) &&
4863 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
4864 // (X & Y)^(X & Y) -> (Y^Z) & X
4865 Value *X = 0, *Y = 0, *Z = 0;
4867 X = A, Y = B, Z = D;
4869 X = A, Y = B, Z = C;
4871 X = B, Y = A, Z = D;
4873 X = B, Y = A, Z = C;
4876 Instruction *NewOp =
4877 InsertNewInstBefore(BinaryOperator::createXor(Y, Z, Op0->getName()), I);
4878 return BinaryOperator::createAnd(NewOp, X);
4883 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
4884 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
4885 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
4888 // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
4889 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
4890 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
4891 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
4892 const Type *SrcTy = Op0C->getOperand(0)->getType();
4893 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
4894 // Only do this if the casts both really cause code to be generated.
4895 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4897 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4899 Instruction *NewOp = BinaryOperator::createXor(Op0C->getOperand(0),
4900 Op1C->getOperand(0),
4902 InsertNewInstBefore(NewOp, I);
4903 return CastInst::create(Op0C->getOpcode(), NewOp, I.getType());
4907 return Changed ? &I : 0;
4910 /// AddWithOverflow - Compute Result = In1+In2, returning true if the result
4911 /// overflowed for this type.
4912 static bool AddWithOverflow(ConstantInt *&Result, ConstantInt *In1,
4913 ConstantInt *In2, bool IsSigned = false) {
4914 Result = cast<ConstantInt>(Add(In1, In2));
4917 if (In2->getValue().isNegative())
4918 return Result->getValue().sgt(In1->getValue());
4920 return Result->getValue().slt(In1->getValue());
4922 return Result->getValue().ult(In1->getValue());
4925 /// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
4926 /// code necessary to compute the offset from the base pointer (without adding
4927 /// in the base pointer). Return the result as a signed integer of intptr size.
4928 static Value *EmitGEPOffset(User *GEP, Instruction &I, InstCombiner &IC) {
4929 TargetData &TD = IC.getTargetData();
4930 gep_type_iterator GTI = gep_type_begin(GEP);
4931 const Type *IntPtrTy = TD.getIntPtrType();
4932 Value *Result = Constant::getNullValue(IntPtrTy);
4934 // Build a mask for high order bits.
4935 unsigned IntPtrWidth = TD.getPointerSizeInBits();
4936 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
4938 for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
4939 Value *Op = GEP->getOperand(i);
4940 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType()) & PtrSizeMask;
4941 if (ConstantInt *OpC = dyn_cast<ConstantInt>(Op)) {
4942 if (OpC->isZero()) continue;
4944 // Handle a struct index, which adds its field offset to the pointer.
4945 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
4946 Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
4948 if (ConstantInt *RC = dyn_cast<ConstantInt>(Result))
4949 Result = ConstantInt::get(RC->getValue() + APInt(IntPtrWidth, Size));
4951 Result = IC.InsertNewInstBefore(
4952 BinaryOperator::createAdd(Result,
4953 ConstantInt::get(IntPtrTy, Size),
4954 GEP->getName()+".offs"), I);
4958 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
4959 Constant *OC = ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
4960 Scale = ConstantExpr::getMul(OC, Scale);
4961 if (Constant *RC = dyn_cast<Constant>(Result))
4962 Result = ConstantExpr::getAdd(RC, Scale);
4964 // Emit an add instruction.
4965 Result = IC.InsertNewInstBefore(
4966 BinaryOperator::createAdd(Result, Scale,
4967 GEP->getName()+".offs"), I);
4971 // Convert to correct type.
4972 if (Op->getType() != IntPtrTy) {
4973 if (Constant *OpC = dyn_cast<Constant>(Op))
4974 Op = ConstantExpr::getSExt(OpC, IntPtrTy);
4976 Op = IC.InsertNewInstBefore(new SExtInst(Op, IntPtrTy,
4977 Op->getName()+".c"), I);
4980 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
4981 if (Constant *OpC = dyn_cast<Constant>(Op))
4982 Op = ConstantExpr::getMul(OpC, Scale);
4983 else // We'll let instcombine(mul) convert this to a shl if possible.
4984 Op = IC.InsertNewInstBefore(BinaryOperator::createMul(Op, Scale,
4985 GEP->getName()+".idx"), I);
4988 // Emit an add instruction.
4989 if (isa<Constant>(Op) && isa<Constant>(Result))
4990 Result = ConstantExpr::getAdd(cast<Constant>(Op),
4991 cast<Constant>(Result));
4993 Result = IC.InsertNewInstBefore(BinaryOperator::createAdd(Op, Result,
4994 GEP->getName()+".offs"), I);
5000 /// EvaluateGEPOffsetExpression - Return an value that can be used to compare of
5001 /// the *offset* implied by GEP to zero. For example, if we have &A[i], we want
5002 /// to return 'i' for "icmp ne i, 0". Note that, in general, indices can be
5003 /// complex, and scales are involved. The above expression would also be legal
5004 /// to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32). This
5005 /// later form is less amenable to optimization though, and we are allowed to
5006 /// generate the first by knowing that pointer arithmetic doesn't overflow.
5008 /// If we can't emit an optimized form for this expression, this returns null.
5010 static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I,
5012 TargetData &TD = IC.getTargetData();
5013 gep_type_iterator GTI = gep_type_begin(GEP);
5015 // Check to see if this gep only has a single variable index. If so, and if
5016 // any constant indices are a multiple of its scale, then we can compute this
5017 // in terms of the scale of the variable index. For example, if the GEP
5018 // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
5019 // because the expression will cross zero at the same point.
5020 unsigned i, e = GEP->getNumOperands();
5022 for (i = 1; i != e; ++i, ++GTI) {
5023 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5024 // Compute the aggregate offset of constant indices.
5025 if (CI->isZero()) continue;
5027 // Handle a struct index, which adds its field offset to the pointer.
5028 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5029 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
5031 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType());
5032 Offset += Size*CI->getSExtValue();
5035 // Found our variable index.
5040 // If there are no variable indices, we must have a constant offset, just
5041 // evaluate it the general way.
5042 if (i == e) return 0;
5044 Value *VariableIdx = GEP->getOperand(i);
5045 // Determine the scale factor of the variable element. For example, this is
5046 // 4 if the variable index is into an array of i32.
5047 uint64_t VariableScale = TD.getABITypeSize(GTI.getIndexedType());
5049 // Verify that there are no other variable indices. If so, emit the hard way.
5050 for (++i, ++GTI; i != e; ++i, ++GTI) {
5051 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
5054 // Compute the aggregate offset of constant indices.
5055 if (CI->isZero()) continue;
5057 // Handle a struct index, which adds its field offset to the pointer.
5058 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5059 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
5061 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType());
5062 Offset += Size*CI->getSExtValue();
5066 // Okay, we know we have a single variable index, which must be a
5067 // pointer/array/vector index. If there is no offset, life is simple, return
5069 unsigned IntPtrWidth = TD.getPointerSizeInBits();
5071 // Cast to intptrty in case a truncation occurs. If an extension is needed,
5072 // we don't need to bother extending: the extension won't affect where the
5073 // computation crosses zero.
5074 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth)
5075 VariableIdx = new TruncInst(VariableIdx, TD.getIntPtrType(),
5076 VariableIdx->getNameStart(), &I);
5080 // Otherwise, there is an index. The computation we will do will be modulo
5081 // the pointer size, so get it.
5082 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
5084 Offset &= PtrSizeMask;
5085 VariableScale &= PtrSizeMask;
5087 // To do this transformation, any constant index must be a multiple of the
5088 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
5089 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
5090 // multiple of the variable scale.
5091 int64_t NewOffs = Offset / (int64_t)VariableScale;
5092 if (Offset != NewOffs*(int64_t)VariableScale)
5095 // Okay, we can do this evaluation. Start by converting the index to intptr.
5096 const Type *IntPtrTy = TD.getIntPtrType();
5097 if (VariableIdx->getType() != IntPtrTy)
5098 VariableIdx = CastInst::createIntegerCast(VariableIdx, IntPtrTy,
5100 VariableIdx->getNameStart(), &I);
5101 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
5102 return BinaryOperator::createAdd(VariableIdx, OffsetVal, "offset", &I);
5106 /// FoldGEPICmp - Fold comparisons between a GEP instruction and something
5107 /// else. At this point we know that the GEP is on the LHS of the comparison.
5108 Instruction *InstCombiner::FoldGEPICmp(User *GEPLHS, Value *RHS,
5109 ICmpInst::Predicate Cond,
5111 assert(dyn_castGetElementPtr(GEPLHS) && "LHS is not a getelementptr!");
5113 // Look through bitcasts.
5114 if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
5115 RHS = BCI->getOperand(0);
5117 Value *PtrBase = GEPLHS->getOperand(0);
5118 if (PtrBase == RHS) {
5119 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
5120 // This transformation (ignoring the base and scales) is valid because we
5121 // know pointers can't overflow. See if we can output an optimized form.
5122 Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, I, *this);
5124 // If not, synthesize the offset the hard way.
5126 Offset = EmitGEPOffset(GEPLHS, I, *this);
5127 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
5128 Constant::getNullValue(Offset->getType()));
5129 } else if (User *GEPRHS = dyn_castGetElementPtr(RHS)) {
5130 // If the base pointers are different, but the indices are the same, just
5131 // compare the base pointer.
5132 if (PtrBase != GEPRHS->getOperand(0)) {
5133 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
5134 IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
5135 GEPRHS->getOperand(0)->getType();
5137 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
5138 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
5139 IndicesTheSame = false;
5143 // If all indices are the same, just compare the base pointers.
5145 return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
5146 GEPLHS->getOperand(0), GEPRHS->getOperand(0));
5148 // Otherwise, the base pointers are different and the indices are
5149 // different, bail out.
5153 // If one of the GEPs has all zero indices, recurse.
5154 bool AllZeros = true;
5155 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
5156 if (!isa<Constant>(GEPLHS->getOperand(i)) ||
5157 !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
5162 return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
5163 ICmpInst::getSwappedPredicate(Cond), I);
5165 // If the other GEP has all zero indices, recurse.
5167 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
5168 if (!isa<Constant>(GEPRHS->getOperand(i)) ||
5169 !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
5174 return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
5176 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
5177 // If the GEPs only differ by one index, compare it.
5178 unsigned NumDifferences = 0; // Keep track of # differences.
5179 unsigned DiffOperand = 0; // The operand that differs.
5180 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
5181 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
5182 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
5183 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
5184 // Irreconcilable differences.
5188 if (NumDifferences++) break;
5193 if (NumDifferences == 0) // SAME GEP?
5194 return ReplaceInstUsesWith(I, // No comparison is needed here.
5195 ConstantInt::get(Type::Int1Ty,
5196 isTrueWhenEqual(Cond)));
5198 else if (NumDifferences == 1) {
5199 Value *LHSV = GEPLHS->getOperand(DiffOperand);
5200 Value *RHSV = GEPRHS->getOperand(DiffOperand);
5201 // Make sure we do a signed comparison here.
5202 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
5206 // Only lower this if the icmp is the only user of the GEP or if we expect
5207 // the result to fold to a constant!
5208 if ((isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
5209 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
5210 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
5211 Value *L = EmitGEPOffset(GEPLHS, I, *this);
5212 Value *R = EmitGEPOffset(GEPRHS, I, *this);
5213 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
5219 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
5220 bool Changed = SimplifyCompare(I);
5221 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5223 // Fold trivial predicates.
5224 if (I.getPredicate() == FCmpInst::FCMP_FALSE)
5225 return ReplaceInstUsesWith(I, Constant::getNullValue(Type::Int1Ty));
5226 if (I.getPredicate() == FCmpInst::FCMP_TRUE)
5227 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5229 // Simplify 'fcmp pred X, X'
5231 switch (I.getPredicate()) {
5232 default: assert(0 && "Unknown predicate!");
5233 case FCmpInst::FCMP_UEQ: // True if unordered or equal
5234 case FCmpInst::FCMP_UGE: // True if unordered, greater than, or equal
5235 case FCmpInst::FCMP_ULE: // True if unordered, less than, or equal
5236 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5237 case FCmpInst::FCMP_OGT: // True if ordered and greater than
5238 case FCmpInst::FCMP_OLT: // True if ordered and less than
5239 case FCmpInst::FCMP_ONE: // True if ordered and operands are unequal
5240 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5242 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
5243 case FCmpInst::FCMP_ULT: // True if unordered or less than
5244 case FCmpInst::FCMP_UGT: // True if unordered or greater than
5245 case FCmpInst::FCMP_UNE: // True if unordered or not equal
5246 // Canonicalize these to be 'fcmp uno %X, 0.0'.
5247 I.setPredicate(FCmpInst::FCMP_UNO);
5248 I.setOperand(1, Constant::getNullValue(Op0->getType()));
5251 case FCmpInst::FCMP_ORD: // True if ordered (no nans)
5252 case FCmpInst::FCMP_OEQ: // True if ordered and equal
5253 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
5254 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
5255 // Canonicalize these to be 'fcmp ord %X, 0.0'.
5256 I.setPredicate(FCmpInst::FCMP_ORD);
5257 I.setOperand(1, Constant::getNullValue(Op0->getType()));
5262 if (isa<UndefValue>(Op1)) // fcmp pred X, undef -> undef
5263 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
5265 // Handle fcmp with constant RHS
5266 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
5267 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5268 switch (LHSI->getOpcode()) {
5269 case Instruction::PHI:
5270 if (Instruction *NV = FoldOpIntoPhi(I))
5273 case Instruction::Select:
5274 // If either operand of the select is a constant, we can fold the
5275 // comparison into the select arms, which will cause one to be
5276 // constant folded and the select turned into a bitwise or.
5277 Value *Op1 = 0, *Op2 = 0;
5278 if (LHSI->hasOneUse()) {
5279 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
5280 // Fold the known value into the constant operand.
5281 Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
5282 // Insert a new FCmp of the other select operand.
5283 Op2 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
5284 LHSI->getOperand(2), RHSC,
5286 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
5287 // Fold the known value into the constant operand.
5288 Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
5289 // Insert a new FCmp of the other select operand.
5290 Op1 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
5291 LHSI->getOperand(1), RHSC,
5297 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
5302 return Changed ? &I : 0;
5305 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
5306 bool Changed = SimplifyCompare(I);
5307 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5308 const Type *Ty = Op0->getType();
5312 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
5313 isTrueWhenEqual(I)));
5315 if (isa<UndefValue>(Op1)) // X icmp undef -> undef
5316 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
5318 // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
5319 // addresses never equal each other! We already know that Op0 != Op1.
5320 if ((isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0) ||
5321 isa<ConstantPointerNull>(Op0)) &&
5322 (isa<GlobalValue>(Op1) || isa<AllocaInst>(Op1) ||
5323 isa<ConstantPointerNull>(Op1)))
5324 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
5325 !isTrueWhenEqual(I)));
5327 // icmp's with boolean values can always be turned into bitwise operations
5328 if (Ty == Type::Int1Ty) {
5329 switch (I.getPredicate()) {
5330 default: assert(0 && "Invalid icmp instruction!");
5331 case ICmpInst::ICMP_EQ: { // icmp eq bool %A, %B -> ~(A^B)
5332 Instruction *Xor = BinaryOperator::createXor(Op0, Op1, I.getName()+"tmp");
5333 InsertNewInstBefore(Xor, I);
5334 return BinaryOperator::createNot(Xor);
5336 case ICmpInst::ICMP_NE: // icmp eq bool %A, %B -> A^B
5337 return BinaryOperator::createXor(Op0, Op1);
5339 case ICmpInst::ICMP_UGT:
5340 case ICmpInst::ICMP_SGT:
5341 std::swap(Op0, Op1); // Change icmp gt -> icmp lt
5343 case ICmpInst::ICMP_ULT:
5344 case ICmpInst::ICMP_SLT: { // icmp lt bool A, B -> ~X & Y
5345 Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp");
5346 InsertNewInstBefore(Not, I);
5347 return BinaryOperator::createAnd(Not, Op1);
5349 case ICmpInst::ICMP_UGE:
5350 case ICmpInst::ICMP_SGE:
5351 std::swap(Op0, Op1); // Change icmp ge -> icmp le
5353 case ICmpInst::ICMP_ULE:
5354 case ICmpInst::ICMP_SLE: { // icmp le bool %A, %B -> ~A | B
5355 Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp");
5356 InsertNewInstBefore(Not, I);
5357 return BinaryOperator::createOr(Not, Op1);
5362 // See if we are doing a comparison between a constant and an instruction that
5363 // can be folded into the comparison.
5364 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
5367 // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
5368 if (I.isEquality() && CI->isNullValue() &&
5369 match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
5370 // (icmp cond A B) if cond is equality
5371 return new ICmpInst(I.getPredicate(), A, B);
5374 switch (I.getPredicate()) {
5376 case ICmpInst::ICMP_ULT: // A <u MIN -> FALSE
5377 if (CI->isMinValue(false))
5378 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5379 if (CI->isMaxValue(false)) // A <u MAX -> A != MAX
5380 return new ICmpInst(ICmpInst::ICMP_NE, Op0,Op1);
5381 if (isMinValuePlusOne(CI,false)) // A <u MIN+1 -> A == MIN
5382 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
5383 // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
5384 if (CI->isMinValue(true))
5385 return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
5386 ConstantInt::getAllOnesValue(Op0->getType()));
5390 case ICmpInst::ICMP_SLT:
5391 if (CI->isMinValue(true)) // A <s MIN -> FALSE
5392 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5393 if (CI->isMaxValue(true)) // A <s MAX -> A != MAX
5394 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5395 if (isMinValuePlusOne(CI,true)) // A <s MIN+1 -> A == MIN
5396 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
5399 case ICmpInst::ICMP_UGT:
5400 if (CI->isMaxValue(false)) // A >u MAX -> FALSE
5401 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5402 if (CI->isMinValue(false)) // A >u MIN -> A != MIN
5403 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5404 if (isMaxValueMinusOne(CI, false)) // A >u MAX-1 -> A == MAX
5405 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
5407 // (x >u 2147483647) -> (x <s 0) -> true if sign bit set
5408 if (CI->isMaxValue(true))
5409 return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
5410 ConstantInt::getNullValue(Op0->getType()));
5413 case ICmpInst::ICMP_SGT:
5414 if (CI->isMaxValue(true)) // A >s MAX -> FALSE
5415 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5416 if (CI->isMinValue(true)) // A >s MIN -> A != MIN
5417 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5418 if (isMaxValueMinusOne(CI, true)) // A >s MAX-1 -> A == MAX
5419 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
5422 case ICmpInst::ICMP_ULE:
5423 if (CI->isMaxValue(false)) // A <=u MAX -> TRUE
5424 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5425 if (CI->isMinValue(false)) // A <=u MIN -> A == MIN
5426 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5427 if (isMaxValueMinusOne(CI,false)) // A <=u MAX-1 -> A != MAX
5428 return new ICmpInst(ICmpInst::ICMP_NE, Op0, AddOne(CI));
5431 case ICmpInst::ICMP_SLE:
5432 if (CI->isMaxValue(true)) // A <=s MAX -> TRUE
5433 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5434 if (CI->isMinValue(true)) // A <=s MIN -> A == MIN
5435 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5436 if (isMaxValueMinusOne(CI,true)) // A <=s MAX-1 -> A != MAX
5437 return new ICmpInst(ICmpInst::ICMP_NE, Op0, AddOne(CI));
5440 case ICmpInst::ICMP_UGE:
5441 if (CI->isMinValue(false)) // A >=u MIN -> TRUE
5442 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5443 if (CI->isMaxValue(false)) // A >=u MAX -> A == MAX
5444 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5445 if (isMinValuePlusOne(CI,false)) // A >=u MIN-1 -> A != MIN
5446 return new ICmpInst(ICmpInst::ICMP_NE, Op0, SubOne(CI));
5449 case ICmpInst::ICMP_SGE:
5450 if (CI->isMinValue(true)) // A >=s MIN -> TRUE
5451 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5452 if (CI->isMaxValue(true)) // A >=s MAX -> A == MAX
5453 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5454 if (isMinValuePlusOne(CI,true)) // A >=s MIN-1 -> A != MIN
5455 return new ICmpInst(ICmpInst::ICMP_NE, Op0, SubOne(CI));
5459 // If we still have a icmp le or icmp ge instruction, turn it into the
5460 // appropriate icmp lt or icmp gt instruction. Since the border cases have
5461 // already been handled above, this requires little checking.
5463 switch (I.getPredicate()) {
5465 case ICmpInst::ICMP_ULE:
5466 return new ICmpInst(ICmpInst::ICMP_ULT, Op0, AddOne(CI));
5467 case ICmpInst::ICMP_SLE:
5468 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, AddOne(CI));
5469 case ICmpInst::ICMP_UGE:
5470 return new ICmpInst( ICmpInst::ICMP_UGT, Op0, SubOne(CI));
5471 case ICmpInst::ICMP_SGE:
5472 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, SubOne(CI));
5475 // See if we can fold the comparison based on bits known to be zero or one
5476 // in the input. If this comparison is a normal comparison, it demands all
5477 // bits, if it is a sign bit comparison, it only demands the sign bit.
5480 bool isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
5482 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
5483 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
5484 if (SimplifyDemandedBits(Op0,
5485 isSignBit ? APInt::getSignBit(BitWidth)
5486 : APInt::getAllOnesValue(BitWidth),
5487 KnownZero, KnownOne, 0))
5490 // Given the known and unknown bits, compute a range that the LHS could be
5492 if ((KnownOne | KnownZero) != 0) {
5493 // Compute the Min, Max and RHS values based on the known bits. For the
5494 // EQ and NE we use unsigned values.
5495 APInt Min(BitWidth, 0), Max(BitWidth, 0);
5496 const APInt& RHSVal = CI->getValue();
5497 if (ICmpInst::isSignedPredicate(I.getPredicate())) {
5498 ComputeSignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne, Min,
5501 ComputeUnsignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne, Min,
5504 switch (I.getPredicate()) { // LE/GE have been folded already.
5505 default: assert(0 && "Unknown icmp opcode!");
5506 case ICmpInst::ICMP_EQ:
5507 if (Max.ult(RHSVal) || Min.ugt(RHSVal))
5508 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5510 case ICmpInst::ICMP_NE:
5511 if (Max.ult(RHSVal) || Min.ugt(RHSVal))
5512 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5514 case ICmpInst::ICMP_ULT:
5515 if (Max.ult(RHSVal))
5516 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5517 if (Min.uge(RHSVal))
5518 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5520 case ICmpInst::ICMP_UGT:
5521 if (Min.ugt(RHSVal))
5522 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5523 if (Max.ule(RHSVal))
5524 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5526 case ICmpInst::ICMP_SLT:
5527 if (Max.slt(RHSVal))
5528 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5529 if (Min.sgt(RHSVal))
5530 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5532 case ICmpInst::ICMP_SGT:
5533 if (Min.sgt(RHSVal))
5534 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5535 if (Max.sle(RHSVal))
5536 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5541 // Since the RHS is a ConstantInt (CI), if the left hand side is an
5542 // instruction, see if that instruction also has constants so that the
5543 // instruction can be folded into the icmp
5544 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5545 if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
5549 // Handle icmp with constant (but not simple integer constant) RHS
5550 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
5551 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5552 switch (LHSI->getOpcode()) {
5553 case Instruction::GetElementPtr:
5554 if (RHSC->isNullValue()) {
5555 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
5556 bool isAllZeros = true;
5557 for (unsigned i = 1, e = LHSI->getNumOperands(); i != e; ++i)
5558 if (!isa<Constant>(LHSI->getOperand(i)) ||
5559 !cast<Constant>(LHSI->getOperand(i))->isNullValue()) {
5564 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
5565 Constant::getNullValue(LHSI->getOperand(0)->getType()));
5569 case Instruction::PHI:
5570 if (Instruction *NV = FoldOpIntoPhi(I))
5573 case Instruction::Select: {
5574 // If either operand of the select is a constant, we can fold the
5575 // comparison into the select arms, which will cause one to be
5576 // constant folded and the select turned into a bitwise or.
5577 Value *Op1 = 0, *Op2 = 0;
5578 if (LHSI->hasOneUse()) {
5579 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
5580 // Fold the known value into the constant operand.
5581 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
5582 // Insert a new ICmp of the other select operand.
5583 Op2 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
5584 LHSI->getOperand(2), RHSC,
5586 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
5587 // Fold the known value into the constant operand.
5588 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
5589 // Insert a new ICmp of the other select operand.
5590 Op1 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
5591 LHSI->getOperand(1), RHSC,
5597 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
5600 case Instruction::Malloc:
5601 // If we have (malloc != null), and if the malloc has a single use, we
5602 // can assume it is successful and remove the malloc.
5603 if (LHSI->hasOneUse() && isa<ConstantPointerNull>(RHSC)) {
5604 AddToWorkList(LHSI);
5605 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
5606 !isTrueWhenEqual(I)));
5612 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
5613 if (User *GEP = dyn_castGetElementPtr(Op0))
5614 if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
5616 if (User *GEP = dyn_castGetElementPtr(Op1))
5617 if (Instruction *NI = FoldGEPICmp(GEP, Op0,
5618 ICmpInst::getSwappedPredicate(I.getPredicate()), I))
5621 // Test to see if the operands of the icmp are casted versions of other
5622 // values. If the ptr->ptr cast can be stripped off both arguments, we do so
5624 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
5625 if (isa<PointerType>(Op0->getType()) &&
5626 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
5627 // We keep moving the cast from the left operand over to the right
5628 // operand, where it can often be eliminated completely.
5629 Op0 = CI->getOperand(0);
5631 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
5632 // so eliminate it as well.
5633 if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
5634 Op1 = CI2->getOperand(0);
5636 // If Op1 is a constant, we can fold the cast into the constant.
5637 if (Op0->getType() != Op1->getType()) {
5638 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
5639 Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
5641 // Otherwise, cast the RHS right before the icmp
5642 Op1 = InsertBitCastBefore(Op1, Op0->getType(), I);
5645 return new ICmpInst(I.getPredicate(), Op0, Op1);
5649 if (isa<CastInst>(Op0)) {
5650 // Handle the special case of: icmp (cast bool to X), <cst>
5651 // This comes up when you have code like
5654 // For generality, we handle any zero-extension of any operand comparison
5655 // with a constant or another cast from the same type.
5656 if (isa<ConstantInt>(Op1) || isa<CastInst>(Op1))
5657 if (Instruction *R = visitICmpInstWithCastAndCast(I))
5661 if (I.isEquality()) {
5662 Value *A, *B, *C, *D;
5663 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
5664 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
5665 Value *OtherVal = A == Op1 ? B : A;
5666 return new ICmpInst(I.getPredicate(), OtherVal,
5667 Constant::getNullValue(A->getType()));
5670 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
5671 // A^c1 == C^c2 --> A == C^(c1^c2)
5672 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
5673 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D))
5674 if (Op1->hasOneUse()) {
5675 Constant *NC = ConstantInt::get(C1->getValue() ^ C2->getValue());
5676 Instruction *Xor = BinaryOperator::createXor(C, NC, "tmp");
5677 return new ICmpInst(I.getPredicate(), A,
5678 InsertNewInstBefore(Xor, I));
5681 // A^B == A^D -> B == D
5682 if (A == C) return new ICmpInst(I.getPredicate(), B, D);
5683 if (A == D) return new ICmpInst(I.getPredicate(), B, C);
5684 if (B == C) return new ICmpInst(I.getPredicate(), A, D);
5685 if (B == D) return new ICmpInst(I.getPredicate(), A, C);
5689 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
5690 (A == Op0 || B == Op0)) {
5691 // A == (A^B) -> B == 0
5692 Value *OtherVal = A == Op0 ? B : A;
5693 return new ICmpInst(I.getPredicate(), OtherVal,
5694 Constant::getNullValue(A->getType()));
5696 if (match(Op0, m_Sub(m_Value(A), m_Value(B))) && A == Op1) {
5697 // (A-B) == A -> B == 0
5698 return new ICmpInst(I.getPredicate(), B,
5699 Constant::getNullValue(B->getType()));
5701 if (match(Op1, m_Sub(m_Value(A), m_Value(B))) && A == Op0) {
5702 // A == (A-B) -> B == 0
5703 return new ICmpInst(I.getPredicate(), B,
5704 Constant::getNullValue(B->getType()));
5707 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
5708 if (Op0->hasOneUse() && Op1->hasOneUse() &&
5709 match(Op0, m_And(m_Value(A), m_Value(B))) &&
5710 match(Op1, m_And(m_Value(C), m_Value(D)))) {
5711 Value *X = 0, *Y = 0, *Z = 0;
5714 X = B; Y = D; Z = A;
5715 } else if (A == D) {
5716 X = B; Y = C; Z = A;
5717 } else if (B == C) {
5718 X = A; Y = D; Z = B;
5719 } else if (B == D) {
5720 X = A; Y = C; Z = B;
5723 if (X) { // Build (X^Y) & Z
5724 Op1 = InsertNewInstBefore(BinaryOperator::createXor(X, Y, "tmp"), I);
5725 Op1 = InsertNewInstBefore(BinaryOperator::createAnd(Op1, Z, "tmp"), I);
5726 I.setOperand(0, Op1);
5727 I.setOperand(1, Constant::getNullValue(Op1->getType()));
5732 return Changed ? &I : 0;
5736 /// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
5737 /// and CmpRHS are both known to be integer constants.
5738 Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
5739 ConstantInt *DivRHS) {
5740 ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
5741 const APInt &CmpRHSV = CmpRHS->getValue();
5743 // FIXME: If the operand types don't match the type of the divide
5744 // then don't attempt this transform. The code below doesn't have the
5745 // logic to deal with a signed divide and an unsigned compare (and
5746 // vice versa). This is because (x /s C1) <s C2 produces different
5747 // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
5748 // (x /u C1) <u C2. Simply casting the operands and result won't
5749 // work. :( The if statement below tests that condition and bails
5751 bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
5752 if (!ICI.isEquality() && DivIsSigned != ICI.isSignedPredicate())
5754 if (DivRHS->isZero())
5755 return 0; // The ProdOV computation fails on divide by zero.
5757 // Compute Prod = CI * DivRHS. We are essentially solving an equation
5758 // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
5759 // C2 (CI). By solving for X we can turn this into a range check
5760 // instead of computing a divide.
5761 ConstantInt *Prod = Multiply(CmpRHS, DivRHS);
5763 // Determine if the product overflows by seeing if the product is
5764 // not equal to the divide. Make sure we do the same kind of divide
5765 // as in the LHS instruction that we're folding.
5766 bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
5767 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
5769 // Get the ICmp opcode
5770 ICmpInst::Predicate Pred = ICI.getPredicate();
5772 // Figure out the interval that is being checked. For example, a comparison
5773 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
5774 // Compute this interval based on the constants involved and the signedness of
5775 // the compare/divide. This computes a half-open interval, keeping track of
5776 // whether either value in the interval overflows. After analysis each
5777 // overflow variable is set to 0 if it's corresponding bound variable is valid
5778 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
5779 int LoOverflow = 0, HiOverflow = 0;
5780 ConstantInt *LoBound = 0, *HiBound = 0;
5783 if (!DivIsSigned) { // udiv
5784 // e.g. X/5 op 3 --> [15, 20)
5786 HiOverflow = LoOverflow = ProdOV;
5788 HiOverflow = AddWithOverflow(HiBound, LoBound, DivRHS, false);
5789 } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
5790 if (CmpRHSV == 0) { // (X / pos) op 0
5791 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
5792 LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS)));
5794 } else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos
5795 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
5796 HiOverflow = LoOverflow = ProdOV;
5798 HiOverflow = AddWithOverflow(HiBound, Prod, DivRHS, true);
5799 } else { // (X / pos) op neg
5800 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
5801 Constant *DivRHSH = ConstantExpr::getNeg(SubOne(DivRHS));
5802 LoOverflow = AddWithOverflow(LoBound, Prod,
5803 cast<ConstantInt>(DivRHSH), true) ? -1 : 0;
5804 HiBound = AddOne(Prod);
5805 HiOverflow = ProdOV ? -1 : 0;
5807 } else if (DivRHS->getValue().isNegative()) { // Divisor is < 0.
5808 if (CmpRHSV == 0) { // (X / neg) op 0
5809 // e.g. X/-5 op 0 --> [-4, 5)
5810 LoBound = AddOne(DivRHS);
5811 HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
5812 if (HiBound == DivRHS) { // -INTMIN = INTMIN
5813 HiOverflow = 1; // [INTMIN+1, overflow)
5814 HiBound = 0; // e.g. X/INTMIN = 0 --> X > INTMIN
5816 } else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos
5817 // e.g. X/-5 op 3 --> [-19, -14)
5818 HiOverflow = LoOverflow = ProdOV ? -1 : 0;
5820 LoOverflow = AddWithOverflow(LoBound, Prod, AddOne(DivRHS), true) ?-1:0;
5821 HiBound = AddOne(Prod);
5822 } else { // (X / neg) op neg
5823 // e.g. X/-5 op -3 --> [15, 20)
5825 LoOverflow = HiOverflow = ProdOV ? 1 : 0;
5826 HiBound = Subtract(Prod, DivRHS);
5829 // Dividing by a negative swaps the condition. LT <-> GT
5830 Pred = ICmpInst::getSwappedPredicate(Pred);
5833 Value *X = DivI->getOperand(0);
5835 default: assert(0 && "Unhandled icmp opcode!");
5836 case ICmpInst::ICMP_EQ:
5837 if (LoOverflow && HiOverflow)
5838 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
5839 else if (HiOverflow)
5840 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
5841 ICmpInst::ICMP_UGE, X, LoBound);
5842 else if (LoOverflow)
5843 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
5844 ICmpInst::ICMP_ULT, X, HiBound);
5846 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, true, ICI);
5847 case ICmpInst::ICMP_NE:
5848 if (LoOverflow && HiOverflow)
5849 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
5850 else if (HiOverflow)
5851 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
5852 ICmpInst::ICMP_ULT, X, LoBound);
5853 else if (LoOverflow)
5854 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
5855 ICmpInst::ICMP_UGE, X, HiBound);
5857 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, false, ICI);
5858 case ICmpInst::ICMP_ULT:
5859 case ICmpInst::ICMP_SLT:
5860 if (LoOverflow == +1) // Low bound is greater than input range.
5861 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
5862 if (LoOverflow == -1) // Low bound is less than input range.
5863 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
5864 return new ICmpInst(Pred, X, LoBound);
5865 case ICmpInst::ICMP_UGT:
5866 case ICmpInst::ICMP_SGT:
5867 if (HiOverflow == +1) // High bound greater than input range.
5868 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
5869 else if (HiOverflow == -1) // High bound less than input range.
5870 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
5871 if (Pred == ICmpInst::ICMP_UGT)
5872 return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
5874 return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
5879 /// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
5881 Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
5884 const APInt &RHSV = RHS->getValue();
5886 switch (LHSI->getOpcode()) {
5887 case Instruction::Xor: // (icmp pred (xor X, XorCST), CI)
5888 if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
5889 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
5891 if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
5892 (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
5893 Value *CompareVal = LHSI->getOperand(0);
5895 // If the sign bit of the XorCST is not set, there is no change to
5896 // the operation, just stop using the Xor.
5897 if (!XorCST->getValue().isNegative()) {
5898 ICI.setOperand(0, CompareVal);
5899 AddToWorkList(LHSI);
5903 // Was the old condition true if the operand is positive?
5904 bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
5906 // If so, the new one isn't.
5907 isTrueIfPositive ^= true;
5909 if (isTrueIfPositive)
5910 return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal, SubOne(RHS));
5912 return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal, AddOne(RHS));
5916 case Instruction::And: // (icmp pred (and X, AndCST), RHS)
5917 if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
5918 LHSI->getOperand(0)->hasOneUse()) {
5919 ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
5921 // If the LHS is an AND of a truncating cast, we can widen the
5922 // and/compare to be the input width without changing the value
5923 // produced, eliminating a cast.
5924 if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
5925 // We can do this transformation if either the AND constant does not
5926 // have its sign bit set or if it is an equality comparison.
5927 // Extending a relational comparison when we're checking the sign
5928 // bit would not work.
5929 if (Cast->hasOneUse() &&
5930 (ICI.isEquality() ||
5931 (AndCST->getValue().isNonNegative() && RHSV.isNonNegative()))) {
5933 cast<IntegerType>(Cast->getOperand(0)->getType())->getBitWidth();
5934 APInt NewCST = AndCST->getValue();
5935 NewCST.zext(BitWidth);
5937 NewCI.zext(BitWidth);
5938 Instruction *NewAnd =
5939 BinaryOperator::createAnd(Cast->getOperand(0),
5940 ConstantInt::get(NewCST),LHSI->getName());
5941 InsertNewInstBefore(NewAnd, ICI);
5942 return new ICmpInst(ICI.getPredicate(), NewAnd,
5943 ConstantInt::get(NewCI));
5947 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
5948 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
5949 // happens a LOT in code produced by the C front-end, for bitfield
5951 BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
5952 if (Shift && !Shift->isShift())
5956 ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
5957 const Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift.
5958 const Type *AndTy = AndCST->getType(); // Type of the and.
5960 // We can fold this as long as we can't shift unknown bits
5961 // into the mask. This can only happen with signed shift
5962 // rights, as they sign-extend.
5964 bool CanFold = Shift->isLogicalShift();
5966 // To test for the bad case of the signed shr, see if any
5967 // of the bits shifted in could be tested after the mask.
5968 uint32_t TyBits = Ty->getPrimitiveSizeInBits();
5969 int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
5971 uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
5972 if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
5973 AndCST->getValue()) == 0)
5979 if (Shift->getOpcode() == Instruction::Shl)
5980 NewCst = ConstantExpr::getLShr(RHS, ShAmt);
5982 NewCst = ConstantExpr::getShl(RHS, ShAmt);
5984 // Check to see if we are shifting out any of the bits being
5986 if (ConstantExpr::get(Shift->getOpcode(), NewCst, ShAmt) != RHS) {
5987 // If we shifted bits out, the fold is not going to work out.
5988 // As a special case, check to see if this means that the
5989 // result is always true or false now.
5990 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
5991 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
5992 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
5993 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
5995 ICI.setOperand(1, NewCst);
5996 Constant *NewAndCST;
5997 if (Shift->getOpcode() == Instruction::Shl)
5998 NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
6000 NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
6001 LHSI->setOperand(1, NewAndCST);
6002 LHSI->setOperand(0, Shift->getOperand(0));
6003 AddToWorkList(Shift); // Shift is dead.
6004 AddUsesToWorkList(ICI);
6010 // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
6011 // preferable because it allows the C<<Y expression to be hoisted out
6012 // of a loop if Y is invariant and X is not.
6013 if (Shift && Shift->hasOneUse() && RHSV == 0 &&
6014 ICI.isEquality() && !Shift->isArithmeticShift() &&
6015 isa<Instruction>(Shift->getOperand(0))) {
6018 if (Shift->getOpcode() == Instruction::LShr) {
6019 NS = BinaryOperator::createShl(AndCST,
6020 Shift->getOperand(1), "tmp");
6022 // Insert a logical shift.
6023 NS = BinaryOperator::createLShr(AndCST,
6024 Shift->getOperand(1), "tmp");
6026 InsertNewInstBefore(cast<Instruction>(NS), ICI);
6028 // Compute X & (C << Y).
6029 Instruction *NewAnd =
6030 BinaryOperator::createAnd(Shift->getOperand(0), NS, LHSI->getName());
6031 InsertNewInstBefore(NewAnd, ICI);
6033 ICI.setOperand(0, NewAnd);
6039 case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI)
6040 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
6043 uint32_t TypeBits = RHSV.getBitWidth();
6045 // Check that the shift amount is in range. If not, don't perform
6046 // undefined shifts. When the shift is visited it will be
6048 if (ShAmt->uge(TypeBits))
6051 if (ICI.isEquality()) {
6052 // If we are comparing against bits always shifted out, the
6053 // comparison cannot succeed.
6055 ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt), ShAmt);
6056 if (Comp != RHS) {// Comparing against a bit that we know is zero.
6057 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6058 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
6059 return ReplaceInstUsesWith(ICI, Cst);
6062 if (LHSI->hasOneUse()) {
6063 // Otherwise strength reduce the shift into an and.
6064 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
6066 ConstantInt::get(APInt::getLowBitsSet(TypeBits, TypeBits-ShAmtVal));
6069 BinaryOperator::createAnd(LHSI->getOperand(0),
6070 Mask, LHSI->getName()+".mask");
6071 Value *And = InsertNewInstBefore(AndI, ICI);
6072 return new ICmpInst(ICI.getPredicate(), And,
6073 ConstantInt::get(RHSV.lshr(ShAmtVal)));
6077 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
6078 bool TrueIfSigned = false;
6079 if (LHSI->hasOneUse() &&
6080 isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
6081 // (X << 31) <s 0 --> (X&1) != 0
6082 Constant *Mask = ConstantInt::get(APInt(TypeBits, 1) <<
6083 (TypeBits-ShAmt->getZExtValue()-1));
6085 BinaryOperator::createAnd(LHSI->getOperand(0),
6086 Mask, LHSI->getName()+".mask");
6087 Value *And = InsertNewInstBefore(AndI, ICI);
6089 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
6090 And, Constant::getNullValue(And->getType()));
6095 case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI)
6096 case Instruction::AShr: {
6097 // Only handle equality comparisons of shift-by-constant.
6098 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
6099 if (!ShAmt || !ICI.isEquality()) break;
6101 // Check that the shift amount is in range. If not, don't perform
6102 // undefined shifts. When the shift is visited it will be
6104 uint32_t TypeBits = RHSV.getBitWidth();
6105 if (ShAmt->uge(TypeBits))
6108 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
6110 // If we are comparing against bits always shifted out, the
6111 // comparison cannot succeed.
6112 APInt Comp = RHSV << ShAmtVal;
6113 if (LHSI->getOpcode() == Instruction::LShr)
6114 Comp = Comp.lshr(ShAmtVal);
6116 Comp = Comp.ashr(ShAmtVal);
6118 if (Comp != RHSV) { // Comparing against a bit that we know is zero.
6119 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6120 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
6121 return ReplaceInstUsesWith(ICI, Cst);
6124 // Otherwise, check to see if the bits shifted out are known to be zero.
6125 // If so, we can compare against the unshifted value:
6126 // (X & 4) >> 1 == 2 --> (X & 4) == 4.
6127 if (LHSI->hasOneUse() &&
6128 MaskedValueIsZero(LHSI->getOperand(0),
6129 APInt::getLowBitsSet(Comp.getBitWidth(), ShAmtVal))) {
6130 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
6131 ConstantExpr::getShl(RHS, ShAmt));
6134 if (LHSI->hasOneUse()) {
6135 // Otherwise strength reduce the shift into an and.
6136 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
6137 Constant *Mask = ConstantInt::get(Val);
6140 BinaryOperator::createAnd(LHSI->getOperand(0),
6141 Mask, LHSI->getName()+".mask");
6142 Value *And = InsertNewInstBefore(AndI, ICI);
6143 return new ICmpInst(ICI.getPredicate(), And,
6144 ConstantExpr::getShl(RHS, ShAmt));
6149 case Instruction::SDiv:
6150 case Instruction::UDiv:
6151 // Fold: icmp pred ([us]div X, C1), C2 -> range test
6152 // Fold this div into the comparison, producing a range check.
6153 // Determine, based on the divide type, what the range is being
6154 // checked. If there is an overflow on the low or high side, remember
6155 // it, otherwise compute the range [low, hi) bounding the new value.
6156 // See: InsertRangeTest above for the kinds of replacements possible.
6157 if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
6158 if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
6163 case Instruction::Add:
6164 // Fold: icmp pred (add, X, C1), C2
6166 if (!ICI.isEquality()) {
6167 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
6169 const APInt &LHSV = LHSC->getValue();
6171 ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
6174 if (ICI.isSignedPredicate()) {
6175 if (CR.getLower().isSignBit()) {
6176 return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
6177 ConstantInt::get(CR.getUpper()));
6178 } else if (CR.getUpper().isSignBit()) {
6179 return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
6180 ConstantInt::get(CR.getLower()));
6183 if (CR.getLower().isMinValue()) {
6184 return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
6185 ConstantInt::get(CR.getUpper()));
6186 } else if (CR.getUpper().isMinValue()) {
6187 return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
6188 ConstantInt::get(CR.getLower()));
6195 // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
6196 if (ICI.isEquality()) {
6197 bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6199 // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
6200 // the second operand is a constant, simplify a bit.
6201 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
6202 switch (BO->getOpcode()) {
6203 case Instruction::SRem:
6204 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
6205 if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
6206 const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
6207 if (V.sgt(APInt(V.getBitWidth(), 1)) && V.isPowerOf2()) {
6208 Instruction *NewRem =
6209 BinaryOperator::createURem(BO->getOperand(0), BO->getOperand(1),
6211 InsertNewInstBefore(NewRem, ICI);
6212 return new ICmpInst(ICI.getPredicate(), NewRem,
6213 Constant::getNullValue(BO->getType()));
6217 case Instruction::Add:
6218 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
6219 if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
6220 if (BO->hasOneUse())
6221 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6222 Subtract(RHS, BOp1C));
6223 } else if (RHSV == 0) {
6224 // Replace ((add A, B) != 0) with (A != -B) if A or B is
6225 // efficiently invertible, or if the add has just this one use.
6226 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
6228 if (Value *NegVal = dyn_castNegVal(BOp1))
6229 return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
6230 else if (Value *NegVal = dyn_castNegVal(BOp0))
6231 return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
6232 else if (BO->hasOneUse()) {
6233 Instruction *Neg = BinaryOperator::createNeg(BOp1);
6234 InsertNewInstBefore(Neg, ICI);
6236 return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
6240 case Instruction::Xor:
6241 // For the xor case, we can xor two constants together, eliminating
6242 // the explicit xor.
6243 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
6244 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6245 ConstantExpr::getXor(RHS, BOC));
6248 case Instruction::Sub:
6249 // Replace (([sub|xor] A, B) != 0) with (A != B)
6251 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6255 case Instruction::Or:
6256 // If bits are being or'd in that are not present in the constant we
6257 // are comparing against, then the comparison could never succeed!
6258 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
6259 Constant *NotCI = ConstantExpr::getNot(RHS);
6260 if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
6261 return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty,
6266 case Instruction::And:
6267 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
6268 // If bits are being compared against that are and'd out, then the
6269 // comparison can never succeed!
6270 if ((RHSV & ~BOC->getValue()) != 0)
6271 return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty,
6274 // If we have ((X & C) == C), turn it into ((X & C) != 0).
6275 if (RHS == BOC && RHSV.isPowerOf2())
6276 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
6277 ICmpInst::ICMP_NE, LHSI,
6278 Constant::getNullValue(RHS->getType()));
6280 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
6281 if (isSignBit(BOC)) {
6282 Value *X = BO->getOperand(0);
6283 Constant *Zero = Constant::getNullValue(X->getType());
6284 ICmpInst::Predicate pred = isICMP_NE ?
6285 ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
6286 return new ICmpInst(pred, X, Zero);
6289 // ((X & ~7) == 0) --> X < 8
6290 if (RHSV == 0 && isHighOnes(BOC)) {
6291 Value *X = BO->getOperand(0);
6292 Constant *NegX = ConstantExpr::getNeg(BOC);
6293 ICmpInst::Predicate pred = isICMP_NE ?
6294 ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
6295 return new ICmpInst(pred, X, NegX);
6300 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
6301 // Handle icmp {eq|ne} <intrinsic>, intcst.
6302 if (II->getIntrinsicID() == Intrinsic::bswap) {
6304 ICI.setOperand(0, II->getOperand(1));
6305 ICI.setOperand(1, ConstantInt::get(RHSV.byteSwap()));
6309 } else { // Not a ICMP_EQ/ICMP_NE
6310 // If the LHS is a cast from an integral value of the same size,
6311 // then since we know the RHS is a constant, try to simlify.
6312 if (CastInst *Cast = dyn_cast<CastInst>(LHSI)) {
6313 Value *CastOp = Cast->getOperand(0);
6314 const Type *SrcTy = CastOp->getType();
6315 uint32_t SrcTySize = SrcTy->getPrimitiveSizeInBits();
6316 if (SrcTy->isInteger() &&
6317 SrcTySize == Cast->getType()->getPrimitiveSizeInBits()) {
6318 // If this is an unsigned comparison, try to make the comparison use
6319 // smaller constant values.
6320 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && RHSV.isSignBit()) {
6321 // X u< 128 => X s> -1
6322 return new ICmpInst(ICmpInst::ICMP_SGT, CastOp,
6323 ConstantInt::get(APInt::getAllOnesValue(SrcTySize)));
6324 } else if (ICI.getPredicate() == ICmpInst::ICMP_UGT &&
6325 RHSV == APInt::getSignedMaxValue(SrcTySize)) {
6326 // X u> 127 => X s< 0
6327 return new ICmpInst(ICmpInst::ICMP_SLT, CastOp,
6328 Constant::getNullValue(SrcTy));
6336 /// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
6337 /// We only handle extending casts so far.
6339 Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
6340 const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
6341 Value *LHSCIOp = LHSCI->getOperand(0);
6342 const Type *SrcTy = LHSCIOp->getType();
6343 const Type *DestTy = LHSCI->getType();
6346 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
6347 // integer type is the same size as the pointer type.
6348 if (LHSCI->getOpcode() == Instruction::PtrToInt &&
6349 getTargetData().getPointerSizeInBits() ==
6350 cast<IntegerType>(DestTy)->getBitWidth()) {
6352 if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
6353 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
6354 } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
6355 RHSOp = RHSC->getOperand(0);
6356 // If the pointer types don't match, insert a bitcast.
6357 if (LHSCIOp->getType() != RHSOp->getType())
6358 RHSOp = InsertBitCastBefore(RHSOp, LHSCIOp->getType(), ICI);
6362 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
6365 // The code below only handles extension cast instructions, so far.
6367 if (LHSCI->getOpcode() != Instruction::ZExt &&
6368 LHSCI->getOpcode() != Instruction::SExt)
6371 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
6372 bool isSignedCmp = ICI.isSignedPredicate();
6374 if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
6375 // Not an extension from the same type?
6376 RHSCIOp = CI->getOperand(0);
6377 if (RHSCIOp->getType() != LHSCIOp->getType())
6380 // If the signedness of the two casts doesn't agree (i.e. one is a sext
6381 // and the other is a zext), then we can't handle this.
6382 if (CI->getOpcode() != LHSCI->getOpcode())
6385 // Deal with equality cases early.
6386 if (ICI.isEquality())
6387 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
6389 // A signed comparison of sign extended values simplifies into a
6390 // signed comparison.
6391 if (isSignedCmp && isSignedExt)
6392 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
6394 // The other three cases all fold into an unsigned comparison.
6395 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
6398 // If we aren't dealing with a constant on the RHS, exit early
6399 ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
6403 // Compute the constant that would happen if we truncated to SrcTy then
6404 // reextended to DestTy.
6405 Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
6406 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy);
6408 // If the re-extended constant didn't change...
6410 // Make sure that sign of the Cmp and the sign of the Cast are the same.
6411 // For example, we might have:
6412 // %A = sext short %X to uint
6413 // %B = icmp ugt uint %A, 1330
6414 // It is incorrect to transform this into
6415 // %B = icmp ugt short %X, 1330
6416 // because %A may have negative value.
6418 // However, it is OK if SrcTy is bool (See cast-set.ll testcase)
6419 // OR operation is EQ/NE.
6420 if (isSignedExt == isSignedCmp || SrcTy == Type::Int1Ty || ICI.isEquality())
6421 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
6426 // The re-extended constant changed so the constant cannot be represented
6427 // in the shorter type. Consequently, we cannot emit a simple comparison.
6429 // First, handle some easy cases. We know the result cannot be equal at this
6430 // point so handle the ICI.isEquality() cases
6431 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
6432 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6433 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
6434 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6436 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
6437 // should have been folded away previously and not enter in here.
6440 // We're performing a signed comparison.
6441 if (cast<ConstantInt>(CI)->getValue().isNegative())
6442 Result = ConstantInt::getFalse(); // X < (small) --> false
6444 Result = ConstantInt::getTrue(); // X < (large) --> true
6446 // We're performing an unsigned comparison.
6448 // We're performing an unsigned comp with a sign extended value.
6449 // This is true if the input is >= 0. [aka >s -1]
6450 Constant *NegOne = ConstantInt::getAllOnesValue(SrcTy);
6451 Result = InsertNewInstBefore(new ICmpInst(ICmpInst::ICMP_SGT, LHSCIOp,
6452 NegOne, ICI.getName()), ICI);
6454 // Unsigned extend & unsigned compare -> always true.
6455 Result = ConstantInt::getTrue();
6459 // Finally, return the value computed.
6460 if (ICI.getPredicate() == ICmpInst::ICMP_ULT ||
6461 ICI.getPredicate() == ICmpInst::ICMP_SLT) {
6462 return ReplaceInstUsesWith(ICI, Result);
6464 assert((ICI.getPredicate()==ICmpInst::ICMP_UGT ||
6465 ICI.getPredicate()==ICmpInst::ICMP_SGT) &&
6466 "ICmp should be folded!");
6467 if (Constant *CI = dyn_cast<Constant>(Result))
6468 return ReplaceInstUsesWith(ICI, ConstantExpr::getNot(CI));
6470 return BinaryOperator::createNot(Result);
6474 Instruction *InstCombiner::visitShl(BinaryOperator &I) {
6475 return commonShiftTransforms(I);
6478 Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
6479 return commonShiftTransforms(I);
6482 Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
6483 if (Instruction *R = commonShiftTransforms(I))
6486 Value *Op0 = I.getOperand(0);
6488 // ashr int -1, X = -1 (for any arithmetic shift rights of ~0)
6489 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
6490 if (CSI->isAllOnesValue())
6491 return ReplaceInstUsesWith(I, CSI);
6493 // See if we can turn a signed shr into an unsigned shr.
6494 if (MaskedValueIsZero(Op0,
6495 APInt::getSignBit(I.getType()->getPrimitiveSizeInBits())))
6496 return BinaryOperator::createLShr(Op0, I.getOperand(1));
6501 Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
6502 assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
6503 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6505 // shl X, 0 == X and shr X, 0 == X
6506 // shl 0, X == 0 and shr 0, X == 0
6507 if (Op1 == Constant::getNullValue(Op1->getType()) ||
6508 Op0 == Constant::getNullValue(Op0->getType()))
6509 return ReplaceInstUsesWith(I, Op0);
6511 if (isa<UndefValue>(Op0)) {
6512 if (I.getOpcode() == Instruction::AShr) // undef >>s X -> undef
6513 return ReplaceInstUsesWith(I, Op0);
6514 else // undef << X -> 0, undef >>u X -> 0
6515 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
6517 if (isa<UndefValue>(Op1)) {
6518 if (I.getOpcode() == Instruction::AShr) // X >>s undef -> X
6519 return ReplaceInstUsesWith(I, Op0);
6520 else // X << undef, X >>u undef -> 0
6521 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
6524 // Try to fold constant and into select arguments.
6525 if (isa<Constant>(Op0))
6526 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
6527 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
6530 if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1))
6531 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
6536 Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
6537 BinaryOperator &I) {
6538 bool isLeftShift = I.getOpcode() == Instruction::Shl;
6540 // See if we can simplify any instructions used by the instruction whose sole
6541 // purpose is to compute bits we don't care about.
6542 uint32_t TypeBits = Op0->getType()->getPrimitiveSizeInBits();
6543 APInt KnownZero(TypeBits, 0), KnownOne(TypeBits, 0);
6544 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(TypeBits),
6545 KnownZero, KnownOne))
6548 // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr
6549 // of a signed value.
6551 if (Op1->uge(TypeBits)) {
6552 if (I.getOpcode() != Instruction::AShr)
6553 return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
6555 I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1));
6560 // ((X*C1) << C2) == (X * (C1 << C2))
6561 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
6562 if (BO->getOpcode() == Instruction::Mul && isLeftShift)
6563 if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
6564 return BinaryOperator::createMul(BO->getOperand(0),
6565 ConstantExpr::getShl(BOOp, Op1));
6567 // Try to fold constant and into select arguments.
6568 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
6569 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
6571 if (isa<PHINode>(Op0))
6572 if (Instruction *NV = FoldOpIntoPhi(I))
6575 // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
6576 if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
6577 Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
6578 // If 'shift2' is an ashr, we would have to get the sign bit into a funny
6579 // place. Don't try to do this transformation in this case. Also, we
6580 // require that the input operand is a shift-by-constant so that we have
6581 // confidence that the shifts will get folded together. We could do this
6582 // xform in more cases, but it is unlikely to be profitable.
6583 if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
6584 isa<ConstantInt>(TrOp->getOperand(1))) {
6585 // Okay, we'll do this xform. Make the shift of shift.
6586 Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType());
6587 Instruction *NSh = BinaryOperator::create(I.getOpcode(), TrOp, ShAmt,
6589 InsertNewInstBefore(NSh, I); // (shift2 (shift1 & 0x00FF), c2)
6591 // For logical shifts, the truncation has the effect of making the high
6592 // part of the register be zeros. Emulate this by inserting an AND to
6593 // clear the top bits as needed. This 'and' will usually be zapped by
6594 // other xforms later if dead.
6595 unsigned SrcSize = TrOp->getType()->getPrimitiveSizeInBits();
6596 unsigned DstSize = TI->getType()->getPrimitiveSizeInBits();
6597 APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
6599 // The mask we constructed says what the trunc would do if occurring
6600 // between the shifts. We want to know the effect *after* the second
6601 // shift. We know that it is a logical shift by a constant, so adjust the
6602 // mask as appropriate.
6603 if (I.getOpcode() == Instruction::Shl)
6604 MaskV <<= Op1->getZExtValue();
6606 assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
6607 MaskV = MaskV.lshr(Op1->getZExtValue());
6610 Instruction *And = BinaryOperator::createAnd(NSh, ConstantInt::get(MaskV),
6612 InsertNewInstBefore(And, I); // shift1 & 0x00FF
6614 // Return the value truncated to the interesting size.
6615 return new TruncInst(And, I.getType());
6619 if (Op0->hasOneUse()) {
6620 if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
6621 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
6624 switch (Op0BO->getOpcode()) {
6626 case Instruction::Add:
6627 case Instruction::And:
6628 case Instruction::Or:
6629 case Instruction::Xor: {
6630 // These operators commute.
6631 // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C)
6632 if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
6633 match(Op0BO->getOperand(1),
6634 m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) {
6635 Instruction *YS = BinaryOperator::createShl(
6636 Op0BO->getOperand(0), Op1,
6638 InsertNewInstBefore(YS, I); // (Y << C)
6640 BinaryOperator::create(Op0BO->getOpcode(), YS, V1,
6641 Op0BO->getOperand(1)->getName());
6642 InsertNewInstBefore(X, I); // (X + (Y << C))
6643 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
6644 return BinaryOperator::createAnd(X, ConstantInt::get(
6645 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
6648 // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
6649 Value *Op0BOOp1 = Op0BO->getOperand(1);
6650 if (isLeftShift && Op0BOOp1->hasOneUse() &&
6652 m_And(m_Shr(m_Value(V1), m_Value(V2)),m_ConstantInt(CC))) &&
6653 cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse() &&
6655 Instruction *YS = BinaryOperator::createShl(
6656 Op0BO->getOperand(0), Op1,
6658 InsertNewInstBefore(YS, I); // (Y << C)
6660 BinaryOperator::createAnd(V1, ConstantExpr::getShl(CC, Op1),
6661 V1->getName()+".mask");
6662 InsertNewInstBefore(XM, I); // X & (CC << C)
6664 return BinaryOperator::create(Op0BO->getOpcode(), YS, XM);
6669 case Instruction::Sub: {
6670 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
6671 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
6672 match(Op0BO->getOperand(0),
6673 m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) {
6674 Instruction *YS = BinaryOperator::createShl(
6675 Op0BO->getOperand(1), Op1,
6677 InsertNewInstBefore(YS, I); // (Y << C)
6679 BinaryOperator::create(Op0BO->getOpcode(), V1, YS,
6680 Op0BO->getOperand(0)->getName());
6681 InsertNewInstBefore(X, I); // (X + (Y << C))
6682 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
6683 return BinaryOperator::createAnd(X, ConstantInt::get(
6684 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
6687 // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C)
6688 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
6689 match(Op0BO->getOperand(0),
6690 m_And(m_Shr(m_Value(V1), m_Value(V2)),
6691 m_ConstantInt(CC))) && V2 == Op1 &&
6692 cast<BinaryOperator>(Op0BO->getOperand(0))
6693 ->getOperand(0)->hasOneUse()) {
6694 Instruction *YS = BinaryOperator::createShl(
6695 Op0BO->getOperand(1), Op1,
6697 InsertNewInstBefore(YS, I); // (Y << C)
6699 BinaryOperator::createAnd(V1, ConstantExpr::getShl(CC, Op1),
6700 V1->getName()+".mask");
6701 InsertNewInstBefore(XM, I); // X & (CC << C)
6703 return BinaryOperator::create(Op0BO->getOpcode(), XM, YS);
6711 // If the operand is an bitwise operator with a constant RHS, and the
6712 // shift is the only use, we can pull it out of the shift.
6713 if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
6714 bool isValid = true; // Valid only for And, Or, Xor
6715 bool highBitSet = false; // Transform if high bit of constant set?
6717 switch (Op0BO->getOpcode()) {
6718 default: isValid = false; break; // Do not perform transform!
6719 case Instruction::Add:
6720 isValid = isLeftShift;
6722 case Instruction::Or:
6723 case Instruction::Xor:
6726 case Instruction::And:
6731 // If this is a signed shift right, and the high bit is modified
6732 // by the logical operation, do not perform the transformation.
6733 // The highBitSet boolean indicates the value of the high bit of
6734 // the constant which would cause it to be modified for this
6737 if (isValid && I.getOpcode() == Instruction::AShr)
6738 isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
6741 Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
6743 Instruction *NewShift =
6744 BinaryOperator::create(I.getOpcode(), Op0BO->getOperand(0), Op1);
6745 InsertNewInstBefore(NewShift, I);
6746 NewShift->takeName(Op0BO);
6748 return BinaryOperator::create(Op0BO->getOpcode(), NewShift,
6755 // Find out if this is a shift of a shift by a constant.
6756 BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
6757 if (ShiftOp && !ShiftOp->isShift())
6760 if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
6761 ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
6762 uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits);
6763 uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits);
6764 assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
6765 if (ShiftAmt1 == 0) return 0; // Will be simplified in the future.
6766 Value *X = ShiftOp->getOperand(0);
6768 uint32_t AmtSum = ShiftAmt1+ShiftAmt2; // Fold into one big shift.
6769 if (AmtSum > TypeBits)
6772 const IntegerType *Ty = cast<IntegerType>(I.getType());
6774 // Check for (X << c1) << c2 and (X >> c1) >> c2
6775 if (I.getOpcode() == ShiftOp->getOpcode()) {
6776 return BinaryOperator::create(I.getOpcode(), X,
6777 ConstantInt::get(Ty, AmtSum));
6778 } else if (ShiftOp->getOpcode() == Instruction::LShr &&
6779 I.getOpcode() == Instruction::AShr) {
6780 // ((X >>u C1) >>s C2) -> (X >>u (C1+C2)) since C1 != 0.
6781 return BinaryOperator::createLShr(X, ConstantInt::get(Ty, AmtSum));
6782 } else if (ShiftOp->getOpcode() == Instruction::AShr &&
6783 I.getOpcode() == Instruction::LShr) {
6784 // ((X >>s C1) >>u C2) -> ((X >>s (C1+C2)) & mask) since C1 != 0.
6785 Instruction *Shift =
6786 BinaryOperator::createAShr(X, ConstantInt::get(Ty, AmtSum));
6787 InsertNewInstBefore(Shift, I);
6789 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
6790 return BinaryOperator::createAnd(Shift, ConstantInt::get(Mask));
6793 // Okay, if we get here, one shift must be left, and the other shift must be
6794 // right. See if the amounts are equal.
6795 if (ShiftAmt1 == ShiftAmt2) {
6796 // If we have ((X >>? C) << C), turn this into X & (-1 << C).
6797 if (I.getOpcode() == Instruction::Shl) {
6798 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt1));
6799 return BinaryOperator::createAnd(X, ConstantInt::get(Mask));
6801 // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
6802 if (I.getOpcode() == Instruction::LShr) {
6803 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1));
6804 return BinaryOperator::createAnd(X, ConstantInt::get(Mask));
6806 // We can simplify ((X << C) >>s C) into a trunc + sext.
6807 // NOTE: we could do this for any C, but that would make 'unusual' integer
6808 // types. For now, just stick to ones well-supported by the code
6810 const Type *SExtType = 0;
6811 switch (Ty->getBitWidth() - ShiftAmt1) {
6818 SExtType = IntegerType::get(Ty->getBitWidth() - ShiftAmt1);
6823 Instruction *NewTrunc = new TruncInst(X, SExtType, "sext");
6824 InsertNewInstBefore(NewTrunc, I);
6825 return new SExtInst(NewTrunc, Ty);
6827 // Otherwise, we can't handle it yet.
6828 } else if (ShiftAmt1 < ShiftAmt2) {
6829 uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1;
6831 // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2)
6832 if (I.getOpcode() == Instruction::Shl) {
6833 assert(ShiftOp->getOpcode() == Instruction::LShr ||
6834 ShiftOp->getOpcode() == Instruction::AShr);
6835 Instruction *Shift =
6836 BinaryOperator::createShl(X, ConstantInt::get(Ty, ShiftDiff));
6837 InsertNewInstBefore(Shift, I);
6839 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
6840 return BinaryOperator::createAnd(Shift, ConstantInt::get(Mask));
6843 // (X << C1) >>u C2 --> X >>u (C2-C1) & (-1 >> C2)
6844 if (I.getOpcode() == Instruction::LShr) {
6845 assert(ShiftOp->getOpcode() == Instruction::Shl);
6846 Instruction *Shift =
6847 BinaryOperator::createLShr(X, ConstantInt::get(Ty, ShiftDiff));
6848 InsertNewInstBefore(Shift, I);
6850 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
6851 return BinaryOperator::createAnd(Shift, ConstantInt::get(Mask));
6854 // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in.
6856 assert(ShiftAmt2 < ShiftAmt1);
6857 uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2;
6859 // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2)
6860 if (I.getOpcode() == Instruction::Shl) {
6861 assert(ShiftOp->getOpcode() == Instruction::LShr ||
6862 ShiftOp->getOpcode() == Instruction::AShr);
6863 Instruction *Shift =
6864 BinaryOperator::create(ShiftOp->getOpcode(), X,
6865 ConstantInt::get(Ty, ShiftDiff));
6866 InsertNewInstBefore(Shift, I);
6868 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
6869 return BinaryOperator::createAnd(Shift, ConstantInt::get(Mask));
6872 // (X << C1) >>u C2 --> X << (C1-C2) & (-1 >> C2)
6873 if (I.getOpcode() == Instruction::LShr) {
6874 assert(ShiftOp->getOpcode() == Instruction::Shl);
6875 Instruction *Shift =
6876 BinaryOperator::createShl(X, ConstantInt::get(Ty, ShiftDiff));
6877 InsertNewInstBefore(Shift, I);
6879 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
6880 return BinaryOperator::createAnd(Shift, ConstantInt::get(Mask));
6883 // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in.
6890 /// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
6891 /// expression. If so, decompose it, returning some value X, such that Val is
6894 static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
6896 assert(Val->getType() == Type::Int32Ty && "Unexpected allocation size type!");
6897 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
6898 Offset = CI->getZExtValue();
6900 return ConstantInt::get(Type::Int32Ty, 0);
6901 } else if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
6902 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
6903 if (I->getOpcode() == Instruction::Shl) {
6904 // This is a value scaled by '1 << the shift amt'.
6905 Scale = 1U << RHS->getZExtValue();
6907 return I->getOperand(0);
6908 } else if (I->getOpcode() == Instruction::Mul) {
6909 // This value is scaled by 'RHS'.
6910 Scale = RHS->getZExtValue();
6912 return I->getOperand(0);
6913 } else if (I->getOpcode() == Instruction::Add) {
6914 // We have X+C. Check to see if we really have (X*C2)+C1,
6915 // where C1 is divisible by C2.
6918 DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
6919 Offset += RHS->getZExtValue();
6926 // Otherwise, we can't look past this.
6933 /// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
6934 /// try to eliminate the cast by moving the type information into the alloc.
6935 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
6936 AllocationInst &AI) {
6937 const PointerType *PTy = cast<PointerType>(CI.getType());
6939 // Remove any uses of AI that are dead.
6940 assert(!CI.use_empty() && "Dead instructions should be removed earlier!");
6942 for (Value::use_iterator UI = AI.use_begin(), E = AI.use_end(); UI != E; ) {
6943 Instruction *User = cast<Instruction>(*UI++);
6944 if (isInstructionTriviallyDead(User)) {
6945 while (UI != E && *UI == User)
6946 ++UI; // If this instruction uses AI more than once, don't break UI.
6949 DOUT << "IC: DCE: " << *User;
6950 EraseInstFromFunction(*User);
6954 // Get the type really allocated and the type casted to.
6955 const Type *AllocElTy = AI.getAllocatedType();
6956 const Type *CastElTy = PTy->getElementType();
6957 if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
6959 unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
6960 unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
6961 if (CastElTyAlign < AllocElTyAlign) return 0;
6963 // If the allocation has multiple uses, only promote it if we are strictly
6964 // increasing the alignment of the resultant allocation. If we keep it the
6965 // same, we open the door to infinite loops of various kinds.
6966 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
6968 uint64_t AllocElTySize = TD->getABITypeSize(AllocElTy);
6969 uint64_t CastElTySize = TD->getABITypeSize(CastElTy);
6970 if (CastElTySize == 0 || AllocElTySize == 0) return 0;
6972 // See if we can satisfy the modulus by pulling a scale out of the array
6974 unsigned ArraySizeScale;
6976 Value *NumElements = // See if the array size is a decomposable linear expr.
6977 DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
6979 // If we can now satisfy the modulus, by using a non-1 scale, we really can
6981 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
6982 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0;
6984 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
6989 // If the allocation size is constant, form a constant mul expression
6990 Amt = ConstantInt::get(Type::Int32Ty, Scale);
6991 if (isa<ConstantInt>(NumElements))
6992 Amt = Multiply(cast<ConstantInt>(NumElements), cast<ConstantInt>(Amt));
6993 // otherwise multiply the amount and the number of elements
6994 else if (Scale != 1) {
6995 Instruction *Tmp = BinaryOperator::createMul(Amt, NumElements, "tmp");
6996 Amt = InsertNewInstBefore(Tmp, AI);
7000 if (int Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
7001 Value *Off = ConstantInt::get(Type::Int32Ty, Offset, true);
7002 Instruction *Tmp = BinaryOperator::createAdd(Amt, Off, "tmp");
7003 Amt = InsertNewInstBefore(Tmp, AI);
7006 AllocationInst *New;
7007 if (isa<MallocInst>(AI))
7008 New = new MallocInst(CastElTy, Amt, AI.getAlignment());
7010 New = new AllocaInst(CastElTy, Amt, AI.getAlignment());
7011 InsertNewInstBefore(New, AI);
7014 // If the allocation has multiple uses, insert a cast and change all things
7015 // that used it to use the new cast. This will also hack on CI, but it will
7017 if (!AI.hasOneUse()) {
7018 AddUsesToWorkList(AI);
7019 // New is the allocation instruction, pointer typed. AI is the original
7020 // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
7021 CastInst *NewCast = new BitCastInst(New, AI.getType(), "tmpcast");
7022 InsertNewInstBefore(NewCast, AI);
7023 AI.replaceAllUsesWith(NewCast);
7025 return ReplaceInstUsesWith(CI, New);
7028 /// CanEvaluateInDifferentType - Return true if we can take the specified value
7029 /// and return it as type Ty without inserting any new casts and without
7030 /// changing the computed value. This is used by code that tries to decide
7031 /// whether promoting or shrinking integer operations to wider or smaller types
7032 /// will allow us to eliminate a truncate or extend.
7034 /// This is a truncation operation if Ty is smaller than V->getType(), or an
7035 /// extension operation if Ty is larger.
7036 bool InstCombiner::CanEvaluateInDifferentType(Value *V, const IntegerType *Ty,
7038 int &NumCastsRemoved) {
7039 // We can always evaluate constants in another type.
7040 if (isa<ConstantInt>(V))
7043 Instruction *I = dyn_cast<Instruction>(V);
7044 if (!I) return false;
7046 const IntegerType *OrigTy = cast<IntegerType>(V->getType());
7048 // If this is an extension or truncate, we can often eliminate it.
7049 if (isa<TruncInst>(I) || isa<ZExtInst>(I) || isa<SExtInst>(I)) {
7050 // If this is a cast from the destination type, we can trivially eliminate
7051 // it, and this will remove a cast overall.
7052 if (I->getOperand(0)->getType() == Ty) {
7053 // If the first operand is itself a cast, and is eliminable, do not count
7054 // this as an eliminable cast. We would prefer to eliminate those two
7056 if (!isa<CastInst>(I->getOperand(0)))
7062 // We can't extend or shrink something that has multiple uses: doing so would
7063 // require duplicating the instruction in general, which isn't profitable.
7064 if (!I->hasOneUse()) return false;
7066 switch (I->getOpcode()) {
7067 case Instruction::Add:
7068 case Instruction::Sub:
7069 case Instruction::And:
7070 case Instruction::Or:
7071 case Instruction::Xor:
7072 // These operators can all arbitrarily be extended or truncated.
7073 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7075 CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc,
7078 case Instruction::Mul:
7079 // A multiply can be truncated by truncating its operands.
7080 return Ty->getBitWidth() < OrigTy->getBitWidth() &&
7081 CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7083 CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc,
7086 case Instruction::Shl:
7087 // If we are truncating the result of this SHL, and if it's a shift of a
7088 // constant amount, we can always perform a SHL in a smaller type.
7089 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
7090 uint32_t BitWidth = Ty->getBitWidth();
7091 if (BitWidth < OrigTy->getBitWidth() &&
7092 CI->getLimitedValue(BitWidth) < BitWidth)
7093 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7097 case Instruction::LShr:
7098 // If this is a truncate of a logical shr, we can truncate it to a smaller
7099 // lshr iff we know that the bits we would otherwise be shifting in are
7101 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
7102 uint32_t OrigBitWidth = OrigTy->getBitWidth();
7103 uint32_t BitWidth = Ty->getBitWidth();
7104 if (BitWidth < OrigBitWidth &&
7105 MaskedValueIsZero(I->getOperand(0),
7106 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
7107 CI->getLimitedValue(BitWidth) < BitWidth) {
7108 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7113 case Instruction::ZExt:
7114 case Instruction::SExt:
7115 case Instruction::Trunc:
7116 // If this is the same kind of case as our original (e.g. zext+zext), we
7117 // can safely replace it. Note that replacing it does not reduce the number
7118 // of casts in the input.
7119 if (I->getOpcode() == CastOpc)
7124 // TODO: Can handle more cases here.
7131 /// EvaluateInDifferentType - Given an expression that
7132 /// CanEvaluateInDifferentType returns true for, actually insert the code to
7133 /// evaluate the expression.
7134 Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
7136 if (Constant *C = dyn_cast<Constant>(V))
7137 return ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
7139 // Otherwise, it must be an instruction.
7140 Instruction *I = cast<Instruction>(V);
7141 Instruction *Res = 0;
7142 switch (I->getOpcode()) {
7143 case Instruction::Add:
7144 case Instruction::Sub:
7145 case Instruction::Mul:
7146 case Instruction::And:
7147 case Instruction::Or:
7148 case Instruction::Xor:
7149 case Instruction::AShr:
7150 case Instruction::LShr:
7151 case Instruction::Shl: {
7152 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
7153 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
7154 Res = BinaryOperator::create((Instruction::BinaryOps)I->getOpcode(),
7155 LHS, RHS, I->getName());
7158 case Instruction::Trunc:
7159 case Instruction::ZExt:
7160 case Instruction::SExt:
7161 // If the source type of the cast is the type we're trying for then we can
7162 // just return the source. There's no need to insert it because it is not
7164 if (I->getOperand(0)->getType() == Ty)
7165 return I->getOperand(0);
7167 // Otherwise, must be the same type of case, so just reinsert a new one.
7168 Res = CastInst::create(cast<CastInst>(I)->getOpcode(), I->getOperand(0),
7172 // TODO: Can handle more cases here.
7173 assert(0 && "Unreachable!");
7177 return InsertNewInstBefore(Res, *I);
7180 /// @brief Implement the transforms common to all CastInst visitors.
7181 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
7182 Value *Src = CI.getOperand(0);
7184 // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
7185 // eliminate it now.
7186 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
7187 if (Instruction::CastOps opc =
7188 isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
7189 // The first cast (CSrc) is eliminable so we need to fix up or replace
7190 // the second cast (CI). CSrc will then have a good chance of being dead.
7191 return CastInst::create(opc, CSrc->getOperand(0), CI.getType());
7195 // If we are casting a select then fold the cast into the select
7196 if (SelectInst *SI = dyn_cast<SelectInst>(Src))
7197 if (Instruction *NV = FoldOpIntoSelect(CI, SI, this))
7200 // If we are casting a PHI then fold the cast into the PHI
7201 if (isa<PHINode>(Src))
7202 if (Instruction *NV = FoldOpIntoPhi(CI))
7208 /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
7209 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
7210 Value *Src = CI.getOperand(0);
7212 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
7213 // If casting the result of a getelementptr instruction with no offset, turn
7214 // this into a cast of the original pointer!
7215 if (GEP->hasAllZeroIndices()) {
7216 // Changing the cast operand is usually not a good idea but it is safe
7217 // here because the pointer operand is being replaced with another
7218 // pointer operand so the opcode doesn't need to change.
7220 CI.setOperand(0, GEP->getOperand(0));
7224 // If the GEP has a single use, and the base pointer is a bitcast, and the
7225 // GEP computes a constant offset, see if we can convert these three
7226 // instructions into fewer. This typically happens with unions and other
7227 // non-type-safe code.
7228 if (GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0))) {
7229 if (GEP->hasAllConstantIndices()) {
7230 // We are guaranteed to get a constant from EmitGEPOffset.
7231 ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP, CI, *this));
7232 int64_t Offset = OffsetV->getSExtValue();
7234 // Get the base pointer input of the bitcast, and the type it points to.
7235 Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
7236 const Type *GEPIdxTy =
7237 cast<PointerType>(OrigBase->getType())->getElementType();
7238 if (GEPIdxTy->isSized()) {
7239 SmallVector<Value*, 8> NewIndices;
7241 // Start with the index over the outer type. Note that the type size
7242 // might be zero (even if the offset isn't zero) if the indexed type
7243 // is something like [0 x {int, int}]
7244 const Type *IntPtrTy = TD->getIntPtrType();
7245 int64_t FirstIdx = 0;
7246 if (int64_t TySize = TD->getABITypeSize(GEPIdxTy)) {
7247 FirstIdx = Offset/TySize;
7250 // Handle silly modulus not returning values values [0..TySize).
7254 assert(Offset >= 0);
7256 assert((uint64_t)Offset < (uint64_t)TySize &&"Out of range offset");
7259 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
7261 // Index into the types. If we fail, set OrigBase to null.
7263 if (const StructType *STy = dyn_cast<StructType>(GEPIdxTy)) {
7264 const StructLayout *SL = TD->getStructLayout(STy);
7265 if (Offset < (int64_t)SL->getSizeInBytes()) {
7266 unsigned Elt = SL->getElementContainingOffset(Offset);
7267 NewIndices.push_back(ConstantInt::get(Type::Int32Ty, Elt));
7269 Offset -= SL->getElementOffset(Elt);
7270 GEPIdxTy = STy->getElementType(Elt);
7272 // Otherwise, we can't index into this, bail out.
7276 } else if (isa<ArrayType>(GEPIdxTy) || isa<VectorType>(GEPIdxTy)) {
7277 const SequentialType *STy = cast<SequentialType>(GEPIdxTy);
7278 if (uint64_t EltSize = TD->getABITypeSize(STy->getElementType())){
7279 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
7282 NewIndices.push_back(ConstantInt::get(IntPtrTy, 0));
7284 GEPIdxTy = STy->getElementType();
7286 // Otherwise, we can't index into this, bail out.
7292 // If we were able to index down into an element, create the GEP
7293 // and bitcast the result. This eliminates one bitcast, potentially
7295 Instruction *NGEP = GetElementPtrInst::Create(OrigBase,
7297 NewIndices.end(), "");
7298 InsertNewInstBefore(NGEP, CI);
7299 NGEP->takeName(GEP);
7301 if (isa<BitCastInst>(CI))
7302 return new BitCastInst(NGEP, CI.getType());
7303 assert(isa<PtrToIntInst>(CI));
7304 return new PtrToIntInst(NGEP, CI.getType());
7311 return commonCastTransforms(CI);
7316 /// Only the TRUNC, ZEXT, SEXT, and BITCAST can both operand and result as
7317 /// integer types. This function implements the common transforms for all those
7319 /// @brief Implement the transforms common to CastInst with integer operands
7320 Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
7321 if (Instruction *Result = commonCastTransforms(CI))
7324 Value *Src = CI.getOperand(0);
7325 const Type *SrcTy = Src->getType();
7326 const Type *DestTy = CI.getType();
7327 uint32_t SrcBitSize = SrcTy->getPrimitiveSizeInBits();
7328 uint32_t DestBitSize = DestTy->getPrimitiveSizeInBits();
7330 // See if we can simplify any instructions used by the LHS whose sole
7331 // purpose is to compute bits we don't care about.
7332 APInt KnownZero(DestBitSize, 0), KnownOne(DestBitSize, 0);
7333 if (SimplifyDemandedBits(&CI, APInt::getAllOnesValue(DestBitSize),
7334 KnownZero, KnownOne))
7337 // If the source isn't an instruction or has more than one use then we
7338 // can't do anything more.
7339 Instruction *SrcI = dyn_cast<Instruction>(Src);
7340 if (!SrcI || !Src->hasOneUse())
7343 // Attempt to propagate the cast into the instruction for int->int casts.
7344 int NumCastsRemoved = 0;
7345 if (!isa<BitCastInst>(CI) &&
7346 CanEvaluateInDifferentType(SrcI, cast<IntegerType>(DestTy),
7347 CI.getOpcode(), NumCastsRemoved)) {
7348 // If this cast is a truncate, evaluting in a different type always
7349 // eliminates the cast, so it is always a win. If this is a zero-extension,
7350 // we need to do an AND to maintain the clear top-part of the computation,
7351 // so we require that the input have eliminated at least one cast. If this
7352 // is a sign extension, we insert two new casts (to do the extension) so we
7353 // require that two casts have been eliminated.
7355 switch (CI.getOpcode()) {
7357 // All the others use floating point so we shouldn't actually
7358 // get here because of the check above.
7359 assert(0 && "Unknown cast type");
7360 case Instruction::Trunc:
7363 case Instruction::ZExt:
7364 DoXForm = NumCastsRemoved >= 1;
7366 case Instruction::SExt:
7367 DoXForm = NumCastsRemoved >= 2;
7372 Value *Res = EvaluateInDifferentType(SrcI, DestTy,
7373 CI.getOpcode() == Instruction::SExt);
7374 assert(Res->getType() == DestTy);
7375 switch (CI.getOpcode()) {
7376 default: assert(0 && "Unknown cast type!");
7377 case Instruction::Trunc:
7378 case Instruction::BitCast:
7379 // Just replace this cast with the result.
7380 return ReplaceInstUsesWith(CI, Res);
7381 case Instruction::ZExt: {
7382 // We need to emit an AND to clear the high bits.
7383 assert(SrcBitSize < DestBitSize && "Not a zext?");
7384 Constant *C = ConstantInt::get(APInt::getLowBitsSet(DestBitSize,
7386 return BinaryOperator::createAnd(Res, C);
7388 case Instruction::SExt:
7389 // We need to emit a cast to truncate, then a cast to sext.
7390 return CastInst::create(Instruction::SExt,
7391 InsertCastBefore(Instruction::Trunc, Res, Src->getType(),
7397 Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0;
7398 Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0;
7400 switch (SrcI->getOpcode()) {
7401 case Instruction::Add:
7402 case Instruction::Mul:
7403 case Instruction::And:
7404 case Instruction::Or:
7405 case Instruction::Xor:
7406 // If we are discarding information, rewrite.
7407 if (DestBitSize <= SrcBitSize && DestBitSize != 1) {
7408 // Don't insert two casts if they cannot be eliminated. We allow
7409 // two casts to be inserted if the sizes are the same. This could
7410 // only be converting signedness, which is a noop.
7411 if (DestBitSize == SrcBitSize ||
7412 !ValueRequiresCast(CI.getOpcode(), Op1, DestTy,TD) ||
7413 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
7414 Instruction::CastOps opcode = CI.getOpcode();
7415 Value *Op0c = InsertOperandCastBefore(opcode, Op0, DestTy, SrcI);
7416 Value *Op1c = InsertOperandCastBefore(opcode, Op1, DestTy, SrcI);
7417 return BinaryOperator::create(
7418 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
7422 // cast (xor bool X, true) to int --> xor (cast bool X to int), 1
7423 if (isa<ZExtInst>(CI) && SrcBitSize == 1 &&
7424 SrcI->getOpcode() == Instruction::Xor &&
7425 Op1 == ConstantInt::getTrue() &&
7426 (!Op0->hasOneUse() || !isa<CmpInst>(Op0))) {
7427 Value *New = InsertOperandCastBefore(Instruction::ZExt, Op0, DestTy, &CI);
7428 return BinaryOperator::createXor(New, ConstantInt::get(CI.getType(), 1));
7431 case Instruction::SDiv:
7432 case Instruction::UDiv:
7433 case Instruction::SRem:
7434 case Instruction::URem:
7435 // If we are just changing the sign, rewrite.
7436 if (DestBitSize == SrcBitSize) {
7437 // Don't insert two casts if they cannot be eliminated. We allow
7438 // two casts to be inserted if the sizes are the same. This could
7439 // only be converting signedness, which is a noop.
7440 if (!ValueRequiresCast(CI.getOpcode(), Op1, DestTy, TD) ||
7441 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
7442 Value *Op0c = InsertOperandCastBefore(Instruction::BitCast,
7444 Value *Op1c = InsertOperandCastBefore(Instruction::BitCast,
7446 return BinaryOperator::create(
7447 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
7452 case Instruction::Shl:
7453 // Allow changing the sign of the source operand. Do not allow
7454 // changing the size of the shift, UNLESS the shift amount is a
7455 // constant. We must not change variable sized shifts to a smaller
7456 // size, because it is undefined to shift more bits out than exist
7458 if (DestBitSize == SrcBitSize ||
7459 (DestBitSize < SrcBitSize && isa<Constant>(Op1))) {
7460 Instruction::CastOps opcode = (DestBitSize == SrcBitSize ?
7461 Instruction::BitCast : Instruction::Trunc);
7462 Value *Op0c = InsertOperandCastBefore(opcode, Op0, DestTy, SrcI);
7463 Value *Op1c = InsertOperandCastBefore(opcode, Op1, DestTy, SrcI);
7464 return BinaryOperator::createShl(Op0c, Op1c);
7467 case Instruction::AShr:
7468 // If this is a signed shr, and if all bits shifted in are about to be
7469 // truncated off, turn it into an unsigned shr to allow greater
7471 if (DestBitSize < SrcBitSize &&
7472 isa<ConstantInt>(Op1)) {
7473 uint32_t ShiftAmt = cast<ConstantInt>(Op1)->getLimitedValue(SrcBitSize);
7474 if (SrcBitSize > ShiftAmt && SrcBitSize-ShiftAmt >= DestBitSize) {
7475 // Insert the new logical shift right.
7476 return BinaryOperator::createLShr(Op0, Op1);
7484 Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
7485 if (Instruction *Result = commonIntCastTransforms(CI))
7488 Value *Src = CI.getOperand(0);
7489 const Type *Ty = CI.getType();
7490 uint32_t DestBitWidth = Ty->getPrimitiveSizeInBits();
7491 uint32_t SrcBitWidth = cast<IntegerType>(Src->getType())->getBitWidth();
7493 if (Instruction *SrcI = dyn_cast<Instruction>(Src)) {
7494 switch (SrcI->getOpcode()) {
7496 case Instruction::LShr:
7497 // We can shrink lshr to something smaller if we know the bits shifted in
7498 // are already zeros.
7499 if (ConstantInt *ShAmtV = dyn_cast<ConstantInt>(SrcI->getOperand(1))) {
7500 uint32_t ShAmt = ShAmtV->getLimitedValue(SrcBitWidth);
7502 // Get a mask for the bits shifting in.
7503 APInt Mask(APInt::getLowBitsSet(SrcBitWidth, ShAmt).shl(DestBitWidth));
7504 Value* SrcIOp0 = SrcI->getOperand(0);
7505 if (SrcI->hasOneUse() && MaskedValueIsZero(SrcIOp0, Mask)) {
7506 if (ShAmt >= DestBitWidth) // All zeros.
7507 return ReplaceInstUsesWith(CI, Constant::getNullValue(Ty));
7509 // Okay, we can shrink this. Truncate the input, then return a new
7511 Value *V1 = InsertCastBefore(Instruction::Trunc, SrcIOp0, Ty, CI);
7512 Value *V2 = InsertCastBefore(Instruction::Trunc, SrcI->getOperand(1),
7514 return BinaryOperator::createLShr(V1, V2);
7516 } else { // This is a variable shr.
7518 // Turn 'trunc (lshr X, Y) to bool' into '(X & (1 << Y)) != 0'. This is
7519 // more LLVM instructions, but allows '1 << Y' to be hoisted if
7520 // loop-invariant and CSE'd.
7521 if (CI.getType() == Type::Int1Ty && SrcI->hasOneUse()) {
7522 Value *One = ConstantInt::get(SrcI->getType(), 1);
7524 Value *V = InsertNewInstBefore(
7525 BinaryOperator::createShl(One, SrcI->getOperand(1),
7527 V = InsertNewInstBefore(BinaryOperator::createAnd(V,
7528 SrcI->getOperand(0),
7530 Value *Zero = Constant::getNullValue(V->getType());
7531 return new ICmpInst(ICmpInst::ICMP_NE, V, Zero);
7541 /// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
7542 /// in order to eliminate the icmp.
7543 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
7545 // If we are just checking for a icmp eq of a single bit and zext'ing it
7546 // to an integer, then shift the bit to the appropriate place and then
7547 // cast to integer to avoid the comparison.
7548 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
7549 const APInt &Op1CV = Op1C->getValue();
7551 // zext (x <s 0) to i32 --> x>>u31 true if signbit set.
7552 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
7553 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
7554 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
7555 if (!DoXform) return ICI;
7557 Value *In = ICI->getOperand(0);
7558 Value *Sh = ConstantInt::get(In->getType(),
7559 In->getType()->getPrimitiveSizeInBits()-1);
7560 In = InsertNewInstBefore(BinaryOperator::createLShr(In, Sh,
7561 In->getName()+".lobit"),
7563 if (In->getType() != CI.getType())
7564 In = CastInst::createIntegerCast(In, CI.getType(),
7565 false/*ZExt*/, "tmp", &CI);
7567 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
7568 Constant *One = ConstantInt::get(In->getType(), 1);
7569 In = InsertNewInstBefore(BinaryOperator::createXor(In, One,
7570 In->getName()+".not"),
7574 return ReplaceInstUsesWith(CI, In);
7579 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
7580 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
7581 // zext (X == 1) to i32 --> X iff X has only the low bit set.
7582 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
7583 // zext (X != 0) to i32 --> X iff X has only the low bit set.
7584 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
7585 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
7586 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
7587 if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
7588 // This only works for EQ and NE
7589 ICI->isEquality()) {
7590 // If Op1C some other power of two, convert:
7591 uint32_t BitWidth = Op1C->getType()->getBitWidth();
7592 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
7593 APInt TypeMask(APInt::getAllOnesValue(BitWidth));
7594 ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
7596 APInt KnownZeroMask(~KnownZero);
7597 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
7598 if (!DoXform) return ICI;
7600 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
7601 if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
7602 // (X&4) == 2 --> false
7603 // (X&4) != 2 --> true
7604 Constant *Res = ConstantInt::get(Type::Int1Ty, isNE);
7605 Res = ConstantExpr::getZExt(Res, CI.getType());
7606 return ReplaceInstUsesWith(CI, Res);
7609 uint32_t ShiftAmt = KnownZeroMask.logBase2();
7610 Value *In = ICI->getOperand(0);
7612 // Perform a logical shr by shiftamt.
7613 // Insert the shift to put the result in the low bit.
7614 In = InsertNewInstBefore(BinaryOperator::createLShr(In,
7615 ConstantInt::get(In->getType(), ShiftAmt),
7616 In->getName()+".lobit"), CI);
7619 if ((Op1CV != 0) == isNE) { // Toggle the low bit.
7620 Constant *One = ConstantInt::get(In->getType(), 1);
7621 In = BinaryOperator::createXor(In, One, "tmp");
7622 InsertNewInstBefore(cast<Instruction>(In), CI);
7625 if (CI.getType() == In->getType())
7626 return ReplaceInstUsesWith(CI, In);
7628 return CastInst::createIntegerCast(In, CI.getType(), false/*ZExt*/);
7636 Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
7637 // If one of the common conversion will work ..
7638 if (Instruction *Result = commonIntCastTransforms(CI))
7641 Value *Src = CI.getOperand(0);
7643 // If this is a cast of a cast
7644 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
7645 // If this is a TRUNC followed by a ZEXT then we are dealing with integral
7646 // types and if the sizes are just right we can convert this into a logical
7647 // 'and' which will be much cheaper than the pair of casts.
7648 if (isa<TruncInst>(CSrc)) {
7649 // Get the sizes of the types involved
7650 Value *A = CSrc->getOperand(0);
7651 uint32_t SrcSize = A->getType()->getPrimitiveSizeInBits();
7652 uint32_t MidSize = CSrc->getType()->getPrimitiveSizeInBits();
7653 uint32_t DstSize = CI.getType()->getPrimitiveSizeInBits();
7654 // If we're actually extending zero bits and the trunc is a no-op
7655 if (MidSize < DstSize && SrcSize == DstSize) {
7656 // Replace both of the casts with an And of the type mask.
7657 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
7658 Constant *AndConst = ConstantInt::get(AndValue);
7660 BinaryOperator::createAnd(CSrc->getOperand(0), AndConst);
7661 // Unfortunately, if the type changed, we need to cast it back.
7662 if (And->getType() != CI.getType()) {
7663 And->setName(CSrc->getName()+".mask");
7664 InsertNewInstBefore(And, CI);
7665 And = CastInst::createIntegerCast(And, CI.getType(), false/*ZExt*/);
7672 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
7673 return transformZExtICmp(ICI, CI);
7675 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
7676 if (SrcI && SrcI->getOpcode() == Instruction::Or) {
7677 // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
7678 // of the (zext icmp) will be transformed.
7679 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
7680 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
7681 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
7682 (transformZExtICmp(LHS, CI, false) ||
7683 transformZExtICmp(RHS, CI, false))) {
7684 Value *LCast = InsertCastBefore(Instruction::ZExt, LHS, CI.getType(), CI);
7685 Value *RCast = InsertCastBefore(Instruction::ZExt, RHS, CI.getType(), CI);
7686 return BinaryOperator::create(Instruction::Or, LCast, RCast);
7693 Instruction *InstCombiner::visitSExt(SExtInst &CI) {
7694 if (Instruction *I = commonIntCastTransforms(CI))
7697 Value *Src = CI.getOperand(0);
7699 // sext (x <s 0) -> ashr x, 31 -> all ones if signed
7700 // sext (x >s -1) -> ashr x, 31 -> all ones if not signed
7701 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) {
7702 // If we are just checking for a icmp eq of a single bit and zext'ing it
7703 // to an integer, then shift the bit to the appropriate place and then
7704 // cast to integer to avoid the comparison.
7705 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
7706 const APInt &Op1CV = Op1C->getValue();
7708 // sext (x <s 0) to i32 --> x>>s31 true if signbit set.
7709 // sext (x >s -1) to i32 --> (x>>s31)^-1 true if signbit clear.
7710 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
7711 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())){
7712 Value *In = ICI->getOperand(0);
7713 Value *Sh = ConstantInt::get(In->getType(),
7714 In->getType()->getPrimitiveSizeInBits()-1);
7715 In = InsertNewInstBefore(BinaryOperator::createAShr(In, Sh,
7716 In->getName()+".lobit"),
7718 if (In->getType() != CI.getType())
7719 In = CastInst::createIntegerCast(In, CI.getType(),
7720 true/*SExt*/, "tmp", &CI);
7722 if (ICI->getPredicate() == ICmpInst::ICMP_SGT)
7723 In = InsertNewInstBefore(BinaryOperator::createNot(In,
7724 In->getName()+".not"), CI);
7726 return ReplaceInstUsesWith(CI, In);
7734 /// FitsInFPType - Return a Constant* for the specified FP constant if it fits
7735 /// in the specified FP type without changing its value.
7736 static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
7737 APFloat F = CFP->getValueAPF();
7738 if (F.convert(Sem, APFloat::rmNearestTiesToEven) == APFloat::opOK)
7739 return ConstantFP::get(F);
7743 /// LookThroughFPExtensions - If this is an fp extension instruction, look
7744 /// through it until we get the source value.
7745 static Value *LookThroughFPExtensions(Value *V) {
7746 if (Instruction *I = dyn_cast<Instruction>(V))
7747 if (I->getOpcode() == Instruction::FPExt)
7748 return LookThroughFPExtensions(I->getOperand(0));
7750 // If this value is a constant, return the constant in the smallest FP type
7751 // that can accurately represent it. This allows us to turn
7752 // (float)((double)X+2.0) into x+2.0f.
7753 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
7754 if (CFP->getType() == Type::PPC_FP128Ty)
7755 return V; // No constant folding of this.
7756 // See if the value can be truncated to float and then reextended.
7757 if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
7759 if (CFP->getType() == Type::DoubleTy)
7760 return V; // Won't shrink.
7761 if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
7763 // Don't try to shrink to various long double types.
7769 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
7770 if (Instruction *I = commonCastTransforms(CI))
7773 // If we have fptrunc(add (fpextend x), (fpextend y)), where x and y are
7774 // smaller than the destination type, we can eliminate the truncate by doing
7775 // the add as the smaller type. This applies to add/sub/mul/div as well as
7776 // many builtins (sqrt, etc).
7777 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
7778 if (OpI && OpI->hasOneUse()) {
7779 switch (OpI->getOpcode()) {
7781 case Instruction::Add:
7782 case Instruction::Sub:
7783 case Instruction::Mul:
7784 case Instruction::FDiv:
7785 case Instruction::FRem:
7786 const Type *SrcTy = OpI->getType();
7787 Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
7788 Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
7789 if (LHSTrunc->getType() != SrcTy &&
7790 RHSTrunc->getType() != SrcTy) {
7791 unsigned DstSize = CI.getType()->getPrimitiveSizeInBits();
7792 // If the source types were both smaller than the destination type of
7793 // the cast, do this xform.
7794 if (LHSTrunc->getType()->getPrimitiveSizeInBits() <= DstSize &&
7795 RHSTrunc->getType()->getPrimitiveSizeInBits() <= DstSize) {
7796 LHSTrunc = InsertCastBefore(Instruction::FPExt, LHSTrunc,
7798 RHSTrunc = InsertCastBefore(Instruction::FPExt, RHSTrunc,
7800 return BinaryOperator::create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
7809 Instruction *InstCombiner::visitFPExt(CastInst &CI) {
7810 return commonCastTransforms(CI);
7813 Instruction *InstCombiner::visitFPToUI(CastInst &CI) {
7814 return commonCastTransforms(CI);
7817 Instruction *InstCombiner::visitFPToSI(CastInst &CI) {
7818 return commonCastTransforms(CI);
7821 Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
7822 return commonCastTransforms(CI);
7825 Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
7826 return commonCastTransforms(CI);
7829 Instruction *InstCombiner::visitPtrToInt(CastInst &CI) {
7830 return commonPointerCastTransforms(CI);
7833 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
7834 if (Instruction *I = commonCastTransforms(CI))
7837 const Type *DestPointee = cast<PointerType>(CI.getType())->getElementType();
7838 if (!DestPointee->isSized()) return 0;
7840 // If this is inttoptr(add (ptrtoint x), cst), try to turn this into a GEP.
7843 if (match(CI.getOperand(0), m_Add(m_Cast<PtrToIntInst>(m_Value(X)),
7844 m_ConstantInt(Cst)))) {
7845 // If the source and destination operands have the same type, see if this
7846 // is a single-index GEP.
7847 if (X->getType() == CI.getType()) {
7848 // Get the size of the pointee type.
7849 uint64_t Size = TD->getABITypeSize(DestPointee);
7851 // Convert the constant to intptr type.
7852 APInt Offset = Cst->getValue();
7853 Offset.sextOrTrunc(TD->getPointerSizeInBits());
7855 // If Offset is evenly divisible by Size, we can do this xform.
7856 if (Size && !APIntOps::srem(Offset, APInt(Offset.getBitWidth(), Size))){
7857 Offset = APIntOps::sdiv(Offset, APInt(Offset.getBitWidth(), Size));
7858 return GetElementPtrInst::Create(X, ConstantInt::get(Offset));
7861 // TODO: Could handle other cases, e.g. where add is indexing into field of
7863 } else if (CI.getOperand(0)->hasOneUse() &&
7864 match(CI.getOperand(0), m_Add(m_Value(X), m_ConstantInt(Cst)))) {
7865 // Otherwise, if this is inttoptr(add x, cst), try to turn this into an
7866 // "inttoptr+GEP" instead of "add+intptr".
7868 // Get the size of the pointee type.
7869 uint64_t Size = TD->getABITypeSize(DestPointee);
7871 // Convert the constant to intptr type.
7872 APInt Offset = Cst->getValue();
7873 Offset.sextOrTrunc(TD->getPointerSizeInBits());
7875 // If Offset is evenly divisible by Size, we can do this xform.
7876 if (Size && !APIntOps::srem(Offset, APInt(Offset.getBitWidth(), Size))){
7877 Offset = APIntOps::sdiv(Offset, APInt(Offset.getBitWidth(), Size));
7879 Instruction *P = InsertNewInstBefore(new IntToPtrInst(X, CI.getType(),
7881 return GetElementPtrInst::Create(P, ConstantInt::get(Offset), "tmp");
7887 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
7888 // If the operands are integer typed then apply the integer transforms,
7889 // otherwise just apply the common ones.
7890 Value *Src = CI.getOperand(0);
7891 const Type *SrcTy = Src->getType();
7892 const Type *DestTy = CI.getType();
7894 if (SrcTy->isInteger() && DestTy->isInteger()) {
7895 if (Instruction *Result = commonIntCastTransforms(CI))
7897 } else if (isa<PointerType>(SrcTy)) {
7898 if (Instruction *I = commonPointerCastTransforms(CI))
7901 if (Instruction *Result = commonCastTransforms(CI))
7906 // Get rid of casts from one type to the same type. These are useless and can
7907 // be replaced by the operand.
7908 if (DestTy == Src->getType())
7909 return ReplaceInstUsesWith(CI, Src);
7911 if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
7912 const PointerType *SrcPTy = cast<PointerType>(SrcTy);
7913 const Type *DstElTy = DstPTy->getElementType();
7914 const Type *SrcElTy = SrcPTy->getElementType();
7916 // If the address spaces don't match, don't eliminate the bitcast, which is
7917 // required for changing types.
7918 if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
7921 // If we are casting a malloc or alloca to a pointer to a type of the same
7922 // size, rewrite the allocation instruction to allocate the "right" type.
7923 if (AllocationInst *AI = dyn_cast<AllocationInst>(Src))
7924 if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
7927 // If the source and destination are pointers, and this cast is equivalent
7928 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
7929 // This can enhance SROA and other transforms that want type-safe pointers.
7930 Constant *ZeroUInt = Constant::getNullValue(Type::Int32Ty);
7931 unsigned NumZeros = 0;
7932 while (SrcElTy != DstElTy &&
7933 isa<CompositeType>(SrcElTy) && !isa<PointerType>(SrcElTy) &&
7934 SrcElTy->getNumContainedTypes() /* not "{}" */) {
7935 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
7939 // If we found a path from the src to dest, create the getelementptr now.
7940 if (SrcElTy == DstElTy) {
7941 SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
7942 return GetElementPtrInst::Create(Src, Idxs.begin(), Idxs.end(), "",
7943 ((Instruction*) NULL));
7947 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
7948 if (SVI->hasOneUse()) {
7949 // Okay, we have (bitconvert (shuffle ..)). Check to see if this is
7950 // a bitconvert to a vector with the same # elts.
7951 if (isa<VectorType>(DestTy) &&
7952 cast<VectorType>(DestTy)->getNumElements() ==
7953 SVI->getType()->getNumElements()) {
7955 // If either of the operands is a cast from CI.getType(), then
7956 // evaluating the shuffle in the casted destination's type will allow
7957 // us to eliminate at least one cast.
7958 if (((Tmp = dyn_cast<CastInst>(SVI->getOperand(0))) &&
7959 Tmp->getOperand(0)->getType() == DestTy) ||
7960 ((Tmp = dyn_cast<CastInst>(SVI->getOperand(1))) &&
7961 Tmp->getOperand(0)->getType() == DestTy)) {
7962 Value *LHS = InsertOperandCastBefore(Instruction::BitCast,
7963 SVI->getOperand(0), DestTy, &CI);
7964 Value *RHS = InsertOperandCastBefore(Instruction::BitCast,
7965 SVI->getOperand(1), DestTy, &CI);
7966 // Return a new shuffle vector. Use the same element ID's, as we
7967 // know the vector types match #elts.
7968 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
7976 /// GetSelectFoldableOperands - We want to turn code that looks like this:
7978 /// %D = select %cond, %C, %A
7980 /// %C = select %cond, %B, 0
7983 /// Assuming that the specified instruction is an operand to the select, return
7984 /// a bitmask indicating which operands of this instruction are foldable if they
7985 /// equal the other incoming value of the select.
7987 static unsigned GetSelectFoldableOperands(Instruction *I) {
7988 switch (I->getOpcode()) {
7989 case Instruction::Add:
7990 case Instruction::Mul:
7991 case Instruction::And:
7992 case Instruction::Or:
7993 case Instruction::Xor:
7994 return 3; // Can fold through either operand.
7995 case Instruction::Sub: // Can only fold on the amount subtracted.
7996 case Instruction::Shl: // Can only fold on the shift amount.
7997 case Instruction::LShr:
7998 case Instruction::AShr:
8001 return 0; // Cannot fold
8005 /// GetSelectFoldableConstant - For the same transformation as the previous
8006 /// function, return the identity constant that goes into the select.
8007 static Constant *GetSelectFoldableConstant(Instruction *I) {
8008 switch (I->getOpcode()) {
8009 default: assert(0 && "This cannot happen!"); abort();
8010 case Instruction::Add:
8011 case Instruction::Sub:
8012 case Instruction::Or:
8013 case Instruction::Xor:
8014 case Instruction::Shl:
8015 case Instruction::LShr:
8016 case Instruction::AShr:
8017 return Constant::getNullValue(I->getType());
8018 case Instruction::And:
8019 return Constant::getAllOnesValue(I->getType());
8020 case Instruction::Mul:
8021 return ConstantInt::get(I->getType(), 1);
8025 /// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
8026 /// have the same opcode and only one use each. Try to simplify this.
8027 Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
8029 if (TI->getNumOperands() == 1) {
8030 // If this is a non-volatile load or a cast from the same type,
8033 if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
8036 return 0; // unknown unary op.
8039 // Fold this by inserting a select from the input values.
8040 SelectInst *NewSI = SelectInst::Create(SI.getCondition(), TI->getOperand(0),
8041 FI->getOperand(0), SI.getName()+".v");
8042 InsertNewInstBefore(NewSI, SI);
8043 return CastInst::create(Instruction::CastOps(TI->getOpcode()), NewSI,
8047 // Only handle binary operators here.
8048 if (!isa<BinaryOperator>(TI))
8051 // Figure out if the operations have any operands in common.
8052 Value *MatchOp, *OtherOpT, *OtherOpF;
8054 if (TI->getOperand(0) == FI->getOperand(0)) {
8055 MatchOp = TI->getOperand(0);
8056 OtherOpT = TI->getOperand(1);
8057 OtherOpF = FI->getOperand(1);
8058 MatchIsOpZero = true;
8059 } else if (TI->getOperand(1) == FI->getOperand(1)) {
8060 MatchOp = TI->getOperand(1);
8061 OtherOpT = TI->getOperand(0);
8062 OtherOpF = FI->getOperand(0);
8063 MatchIsOpZero = false;
8064 } else if (!TI->isCommutative()) {
8066 } else if (TI->getOperand(0) == FI->getOperand(1)) {
8067 MatchOp = TI->getOperand(0);
8068 OtherOpT = TI->getOperand(1);
8069 OtherOpF = FI->getOperand(0);
8070 MatchIsOpZero = true;
8071 } else if (TI->getOperand(1) == FI->getOperand(0)) {
8072 MatchOp = TI->getOperand(1);
8073 OtherOpT = TI->getOperand(0);
8074 OtherOpF = FI->getOperand(1);
8075 MatchIsOpZero = true;
8080 // If we reach here, they do have operations in common.
8081 SelectInst *NewSI = SelectInst::Create(SI.getCondition(), OtherOpT,
8082 OtherOpF, SI.getName()+".v");
8083 InsertNewInstBefore(NewSI, SI);
8085 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
8087 return BinaryOperator::create(BO->getOpcode(), MatchOp, NewSI);
8089 return BinaryOperator::create(BO->getOpcode(), NewSI, MatchOp);
8091 assert(0 && "Shouldn't get here");
8095 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
8096 Value *CondVal = SI.getCondition();
8097 Value *TrueVal = SI.getTrueValue();
8098 Value *FalseVal = SI.getFalseValue();
8100 // select true, X, Y -> X
8101 // select false, X, Y -> Y
8102 if (ConstantInt *C = dyn_cast<ConstantInt>(CondVal))
8103 return ReplaceInstUsesWith(SI, C->getZExtValue() ? TrueVal : FalseVal);
8105 // select C, X, X -> X
8106 if (TrueVal == FalseVal)
8107 return ReplaceInstUsesWith(SI, TrueVal);
8109 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
8110 return ReplaceInstUsesWith(SI, FalseVal);
8111 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
8112 return ReplaceInstUsesWith(SI, TrueVal);
8113 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
8114 if (isa<Constant>(TrueVal))
8115 return ReplaceInstUsesWith(SI, TrueVal);
8117 return ReplaceInstUsesWith(SI, FalseVal);
8120 if (SI.getType() == Type::Int1Ty) {
8121 if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
8122 if (C->getZExtValue()) {
8123 // Change: A = select B, true, C --> A = or B, C
8124 return BinaryOperator::createOr(CondVal, FalseVal);
8126 // Change: A = select B, false, C --> A = and !B, C
8128 InsertNewInstBefore(BinaryOperator::createNot(CondVal,
8129 "not."+CondVal->getName()), SI);
8130 return BinaryOperator::createAnd(NotCond, FalseVal);
8132 } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
8133 if (C->getZExtValue() == false) {
8134 // Change: A = select B, C, false --> A = and B, C
8135 return BinaryOperator::createAnd(CondVal, TrueVal);
8137 // Change: A = select B, C, true --> A = or !B, C
8139 InsertNewInstBefore(BinaryOperator::createNot(CondVal,
8140 "not."+CondVal->getName()), SI);
8141 return BinaryOperator::createOr(NotCond, TrueVal);
8145 // select a, b, a -> a&b
8146 // select a, a, b -> a|b
8147 if (CondVal == TrueVal)
8148 return BinaryOperator::createOr(CondVal, FalseVal);
8149 else if (CondVal == FalseVal)
8150 return BinaryOperator::createAnd(CondVal, TrueVal);
8153 // Selecting between two integer constants?
8154 if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
8155 if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
8156 // select C, 1, 0 -> zext C to int
8157 if (FalseValC->isZero() && TrueValC->getValue() == 1) {
8158 return CastInst::create(Instruction::ZExt, CondVal, SI.getType());
8159 } else if (TrueValC->isZero() && FalseValC->getValue() == 1) {
8160 // select C, 0, 1 -> zext !C to int
8162 InsertNewInstBefore(BinaryOperator::createNot(CondVal,
8163 "not."+CondVal->getName()), SI);
8164 return CastInst::create(Instruction::ZExt, NotCond, SI.getType());
8167 // FIXME: Turn select 0/-1 and -1/0 into sext from condition!
8169 if (ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition())) {
8171 // (x <s 0) ? -1 : 0 -> ashr x, 31
8172 if (TrueValC->isAllOnesValue() && FalseValC->isZero())
8173 if (ConstantInt *CmpCst = dyn_cast<ConstantInt>(IC->getOperand(1))) {
8174 if (IC->getPredicate() == ICmpInst::ICMP_SLT && CmpCst->isZero()) {
8175 // The comparison constant and the result are not neccessarily the
8176 // same width. Make an all-ones value by inserting a AShr.
8177 Value *X = IC->getOperand(0);
8178 uint32_t Bits = X->getType()->getPrimitiveSizeInBits();
8179 Constant *ShAmt = ConstantInt::get(X->getType(), Bits-1);
8180 Instruction *SRA = BinaryOperator::create(Instruction::AShr, X,
8182 InsertNewInstBefore(SRA, SI);
8184 // Finally, convert to the type of the select RHS. We figure out
8185 // if this requires a SExt, Trunc or BitCast based on the sizes.
8186 Instruction::CastOps opc = Instruction::BitCast;
8187 uint32_t SRASize = SRA->getType()->getPrimitiveSizeInBits();
8188 uint32_t SISize = SI.getType()->getPrimitiveSizeInBits();
8189 if (SRASize < SISize)
8190 opc = Instruction::SExt;
8191 else if (SRASize > SISize)
8192 opc = Instruction::Trunc;
8193 return CastInst::create(opc, SRA, SI.getType());
8198 // If one of the constants is zero (we know they can't both be) and we
8199 // have an icmp instruction with zero, and we have an 'and' with the
8200 // non-constant value, eliminate this whole mess. This corresponds to
8201 // cases like this: ((X & 27) ? 27 : 0)
8202 if (TrueValC->isZero() || FalseValC->isZero())
8203 if (IC->isEquality() && isa<ConstantInt>(IC->getOperand(1)) &&
8204 cast<Constant>(IC->getOperand(1))->isNullValue())
8205 if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0)))
8206 if (ICA->getOpcode() == Instruction::And &&
8207 isa<ConstantInt>(ICA->getOperand(1)) &&
8208 (ICA->getOperand(1) == TrueValC ||
8209 ICA->getOperand(1) == FalseValC) &&
8210 isOneBitSet(cast<ConstantInt>(ICA->getOperand(1)))) {
8211 // Okay, now we know that everything is set up, we just don't
8212 // know whether we have a icmp_ne or icmp_eq and whether the
8213 // true or false val is the zero.
8214 bool ShouldNotVal = !TrueValC->isZero();
8215 ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
8218 V = InsertNewInstBefore(BinaryOperator::create(
8219 Instruction::Xor, V, ICA->getOperand(1)), SI);
8220 return ReplaceInstUsesWith(SI, V);
8225 // See if we are selecting two values based on a comparison of the two values.
8226 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
8227 if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
8228 // Transform (X == Y) ? X : Y -> Y
8229 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
8230 // This is not safe in general for floating point:
8231 // consider X== -0, Y== +0.
8232 // It becomes safe if either operand is a nonzero constant.
8233 ConstantFP *CFPt, *CFPf;
8234 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
8235 !CFPt->getValueAPF().isZero()) ||
8236 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
8237 !CFPf->getValueAPF().isZero()))
8238 return ReplaceInstUsesWith(SI, FalseVal);
8240 // Transform (X != Y) ? X : Y -> X
8241 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
8242 return ReplaceInstUsesWith(SI, TrueVal);
8243 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
8245 } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
8246 // Transform (X == Y) ? Y : X -> X
8247 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
8248 // This is not safe in general for floating point:
8249 // consider X== -0, Y== +0.
8250 // It becomes safe if either operand is a nonzero constant.
8251 ConstantFP *CFPt, *CFPf;
8252 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
8253 !CFPt->getValueAPF().isZero()) ||
8254 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
8255 !CFPf->getValueAPF().isZero()))
8256 return ReplaceInstUsesWith(SI, FalseVal);
8258 // Transform (X != Y) ? Y : X -> Y
8259 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
8260 return ReplaceInstUsesWith(SI, TrueVal);
8261 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
8265 // See if we are selecting two values based on a comparison of the two values.
8266 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) {
8267 if (ICI->getOperand(0) == TrueVal && ICI->getOperand(1) == FalseVal) {
8268 // Transform (X == Y) ? X : Y -> Y
8269 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
8270 return ReplaceInstUsesWith(SI, FalseVal);
8271 // Transform (X != Y) ? X : Y -> X
8272 if (ICI->getPredicate() == ICmpInst::ICMP_NE)
8273 return ReplaceInstUsesWith(SI, TrueVal);
8274 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
8276 } else if (ICI->getOperand(0) == FalseVal && ICI->getOperand(1) == TrueVal){
8277 // Transform (X == Y) ? Y : X -> X
8278 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
8279 return ReplaceInstUsesWith(SI, FalseVal);
8280 // Transform (X != Y) ? Y : X -> Y
8281 if (ICI->getPredicate() == ICmpInst::ICMP_NE)
8282 return ReplaceInstUsesWith(SI, TrueVal);
8283 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
8287 if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
8288 if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
8289 if (TI->hasOneUse() && FI->hasOneUse()) {
8290 Instruction *AddOp = 0, *SubOp = 0;
8292 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
8293 if (TI->getOpcode() == FI->getOpcode())
8294 if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
8297 // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is
8298 // even legal for FP.
8299 if (TI->getOpcode() == Instruction::Sub &&
8300 FI->getOpcode() == Instruction::Add) {
8301 AddOp = FI; SubOp = TI;
8302 } else if (FI->getOpcode() == Instruction::Sub &&
8303 TI->getOpcode() == Instruction::Add) {
8304 AddOp = TI; SubOp = FI;
8308 Value *OtherAddOp = 0;
8309 if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
8310 OtherAddOp = AddOp->getOperand(1);
8311 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
8312 OtherAddOp = AddOp->getOperand(0);
8316 // So at this point we know we have (Y -> OtherAddOp):
8317 // select C, (add X, Y), (sub X, Z)
8318 Value *NegVal; // Compute -Z
8319 if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) {
8320 NegVal = ConstantExpr::getNeg(C);
8322 NegVal = InsertNewInstBefore(
8323 BinaryOperator::createNeg(SubOp->getOperand(1), "tmp"), SI);
8326 Value *NewTrueOp = OtherAddOp;
8327 Value *NewFalseOp = NegVal;
8329 std::swap(NewTrueOp, NewFalseOp);
8330 Instruction *NewSel =
8331 SelectInst::Create(CondVal, NewTrueOp,NewFalseOp,SI.getName()+".p");
8333 NewSel = InsertNewInstBefore(NewSel, SI);
8334 return BinaryOperator::createAdd(SubOp->getOperand(0), NewSel);
8339 // See if we can fold the select into one of our operands.
8340 if (SI.getType()->isInteger()) {
8341 // See the comment above GetSelectFoldableOperands for a description of the
8342 // transformation we are doing here.
8343 if (Instruction *TVI = dyn_cast<Instruction>(TrueVal))
8344 if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
8345 !isa<Constant>(FalseVal))
8346 if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
8347 unsigned OpToFold = 0;
8348 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
8350 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
8355 Constant *C = GetSelectFoldableConstant(TVI);
8356 Instruction *NewSel =
8357 SelectInst::Create(SI.getCondition(), TVI->getOperand(2-OpToFold), C);
8358 InsertNewInstBefore(NewSel, SI);
8359 NewSel->takeName(TVI);
8360 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
8361 return BinaryOperator::create(BO->getOpcode(), FalseVal, NewSel);
8363 assert(0 && "Unknown instruction!!");
8368 if (Instruction *FVI = dyn_cast<Instruction>(FalseVal))
8369 if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
8370 !isa<Constant>(TrueVal))
8371 if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
8372 unsigned OpToFold = 0;
8373 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
8375 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
8380 Constant *C = GetSelectFoldableConstant(FVI);
8381 Instruction *NewSel =
8382 SelectInst::Create(SI.getCondition(), C, FVI->getOperand(2-OpToFold));
8383 InsertNewInstBefore(NewSel, SI);
8384 NewSel->takeName(FVI);
8385 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
8386 return BinaryOperator::create(BO->getOpcode(), TrueVal, NewSel);
8388 assert(0 && "Unknown instruction!!");
8393 if (BinaryOperator::isNot(CondVal)) {
8394 SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
8395 SI.setOperand(1, FalseVal);
8396 SI.setOperand(2, TrueVal);
8403 /// EnforceKnownAlignment - If the specified pointer points to an object that
8404 /// we control, modify the object's alignment to PrefAlign. This isn't
8405 /// often possible though. If alignment is important, a more reliable approach
8406 /// is to simply align all global variables and allocation instructions to
8407 /// their preferred alignment from the beginning.
8409 static unsigned EnforceKnownAlignment(Value *V,
8410 unsigned Align, unsigned PrefAlign) {
8412 User *U = dyn_cast<User>(V);
8413 if (!U) return Align;
8415 switch (getOpcode(U)) {
8417 case Instruction::BitCast:
8418 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
8419 case Instruction::GetElementPtr: {
8420 // If all indexes are zero, it is just the alignment of the base pointer.
8421 bool AllZeroOperands = true;
8422 for (unsigned i = 1, e = U->getNumOperands(); i != e; ++i)
8423 if (!isa<Constant>(U->getOperand(i)) ||
8424 !cast<Constant>(U->getOperand(i))->isNullValue()) {
8425 AllZeroOperands = false;
8429 if (AllZeroOperands) {
8430 // Treat this like a bitcast.
8431 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
8437 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
8438 // If there is a large requested alignment and we can, bump up the alignment
8440 if (!GV->isDeclaration()) {
8441 GV->setAlignment(PrefAlign);
8444 } else if (AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
8445 // If there is a requested alignment and if this is an alloca, round up. We
8446 // don't do this for malloc, because some systems can't respect the request.
8447 if (isa<AllocaInst>(AI)) {
8448 AI->setAlignment(PrefAlign);
8456 /// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that
8457 /// we can determine, return it, otherwise return 0. If PrefAlign is specified,
8458 /// and it is more than the alignment of the ultimate object, see if we can
8459 /// increase the alignment of the ultimate object, making this check succeed.
8460 unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V,
8461 unsigned PrefAlign) {
8462 unsigned BitWidth = TD ? TD->getTypeSizeInBits(V->getType()) :
8463 sizeof(PrefAlign) * CHAR_BIT;
8464 APInt Mask = APInt::getAllOnesValue(BitWidth);
8465 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
8466 ComputeMaskedBits(V, Mask, KnownZero, KnownOne);
8467 unsigned TrailZ = KnownZero.countTrailingOnes();
8468 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
8470 if (PrefAlign > Align)
8471 Align = EnforceKnownAlignment(V, Align, PrefAlign);
8473 // We don't need to make any adjustment.
8477 Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
8478 unsigned DstAlign = GetOrEnforceKnownAlignment(MI->getOperand(1));
8479 unsigned SrcAlign = GetOrEnforceKnownAlignment(MI->getOperand(2));
8480 unsigned MinAlign = std::min(DstAlign, SrcAlign);
8481 unsigned CopyAlign = MI->getAlignment()->getZExtValue();
8483 if (CopyAlign < MinAlign) {
8484 MI->setAlignment(ConstantInt::get(Type::Int32Ty, MinAlign));
8488 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
8490 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getOperand(3));
8491 if (MemOpLength == 0) return 0;
8493 // Source and destination pointer types are always "i8*" for intrinsic. See
8494 // if the size is something we can handle with a single primitive load/store.
8495 // A single load+store correctly handles overlapping memory in the memmove
8497 unsigned Size = MemOpLength->getZExtValue();
8498 if (Size == 0) return MI; // Delete this mem transfer.
8500 if (Size > 8 || (Size&(Size-1)))
8501 return 0; // If not 1/2/4/8 bytes, exit.
8503 // Use an integer load+store unless we can find something better.
8504 Type *NewPtrTy = PointerType::getUnqual(IntegerType::get(Size<<3));
8506 // Memcpy forces the use of i8* for the source and destination. That means
8507 // that if you're using memcpy to move one double around, you'll get a cast
8508 // from double* to i8*. We'd much rather use a double load+store rather than
8509 // an i64 load+store, here because this improves the odds that the source or
8510 // dest address will be promotable. See if we can find a better type than the
8511 // integer datatype.
8512 if (Value *Op = getBitCastOperand(MI->getOperand(1))) {
8513 const Type *SrcETy = cast<PointerType>(Op->getType())->getElementType();
8514 if (SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
8515 // The SrcETy might be something like {{{double}}} or [1 x double]. Rip
8516 // down through these levels if so.
8517 while (!SrcETy->isFirstClassType()) {
8518 if (const StructType *STy = dyn_cast<StructType>(SrcETy)) {
8519 if (STy->getNumElements() == 1)
8520 SrcETy = STy->getElementType(0);
8523 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
8524 if (ATy->getNumElements() == 1)
8525 SrcETy = ATy->getElementType();
8532 if (SrcETy->isFirstClassType())
8533 NewPtrTy = PointerType::getUnqual(SrcETy);
8538 // If the memcpy/memmove provides better alignment info than we can
8540 SrcAlign = std::max(SrcAlign, CopyAlign);
8541 DstAlign = std::max(DstAlign, CopyAlign);
8543 Value *Src = InsertBitCastBefore(MI->getOperand(2), NewPtrTy, *MI);
8544 Value *Dest = InsertBitCastBefore(MI->getOperand(1), NewPtrTy, *MI);
8545 Instruction *L = new LoadInst(Src, "tmp", false, SrcAlign);
8546 InsertNewInstBefore(L, *MI);
8547 InsertNewInstBefore(new StoreInst(L, Dest, false, DstAlign), *MI);
8549 // Set the size of the copy to 0, it will be deleted on the next iteration.
8550 MI->setOperand(3, Constant::getNullValue(MemOpLength->getType()));
8554 Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
8555 unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest());
8556 if (MI->getAlignment()->getZExtValue() < Alignment) {
8557 MI->setAlignment(ConstantInt::get(Type::Int32Ty, Alignment));
8561 // Extract the length and alignment and fill if they are constant.
8562 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
8563 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
8564 if (!LenC || !FillC || FillC->getType() != Type::Int8Ty)
8566 uint64_t Len = LenC->getZExtValue();
8567 Alignment = MI->getAlignment()->getZExtValue();
8569 // If the length is zero, this is a no-op
8570 if (Len == 0) return MI; // memset(d,c,0,a) -> noop
8572 // memset(s,c,n) -> store s, c (for n=1,2,4,8)
8573 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
8574 const Type *ITy = IntegerType::get(Len*8); // n=1 -> i8.
8576 Value *Dest = MI->getDest();
8577 Dest = InsertBitCastBefore(Dest, PointerType::getUnqual(ITy), *MI);
8579 // Alignment 0 is identity for alignment 1 for memset, but not store.
8580 if (Alignment == 0) Alignment = 1;
8582 // Extract the fill value and store.
8583 uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
8584 InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill), Dest, false,
8587 // Set the size of the copy to 0, it will be deleted on the next iteration.
8588 MI->setLength(Constant::getNullValue(LenC->getType()));
8596 /// visitCallInst - CallInst simplification. This mostly only handles folding
8597 /// of intrinsic instructions. For normal calls, it allows visitCallSite to do
8598 /// the heavy lifting.
8600 Instruction *InstCombiner::visitCallInst(CallInst &CI) {
8601 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
8602 if (!II) return visitCallSite(&CI);
8604 // Intrinsics cannot occur in an invoke, so handle them here instead of in
8606 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
8607 bool Changed = false;
8609 // memmove/cpy/set of zero bytes is a noop.
8610 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
8611 if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
8613 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
8614 if (CI->getZExtValue() == 1) {
8615 // Replace the instruction with just byte operations. We would
8616 // transform other cases to loads/stores, but we don't know if
8617 // alignment is sufficient.
8621 // If we have a memmove and the source operation is a constant global,
8622 // then the source and dest pointers can't alias, so we can change this
8623 // into a call to memcpy.
8624 if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
8625 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
8626 if (GVSrc->isConstant()) {
8627 Module *M = CI.getParent()->getParent()->getParent();
8628 Intrinsic::ID MemCpyID;
8629 if (CI.getOperand(3)->getType() == Type::Int32Ty)
8630 MemCpyID = Intrinsic::memcpy_i32;
8632 MemCpyID = Intrinsic::memcpy_i64;
8633 CI.setOperand(0, Intrinsic::getDeclaration(M, MemCpyID));
8638 // If we can determine a pointer alignment that is bigger than currently
8639 // set, update the alignment.
8640 if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
8641 if (Instruction *I = SimplifyMemTransfer(MI))
8643 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
8644 if (Instruction *I = SimplifyMemSet(MSI))
8648 if (Changed) return II;
8650 switch (II->getIntrinsicID()) {
8652 case Intrinsic::ppc_altivec_lvx:
8653 case Intrinsic::ppc_altivec_lvxl:
8654 case Intrinsic::x86_sse_loadu_ps:
8655 case Intrinsic::x86_sse2_loadu_pd:
8656 case Intrinsic::x86_sse2_loadu_dq:
8657 // Turn PPC lvx -> load if the pointer is known aligned.
8658 // Turn X86 loadups -> load if the pointer is known aligned.
8659 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
8660 Value *Ptr = InsertBitCastBefore(II->getOperand(1),
8661 PointerType::getUnqual(II->getType()),
8663 return new LoadInst(Ptr);
8666 case Intrinsic::ppc_altivec_stvx:
8667 case Intrinsic::ppc_altivec_stvxl:
8668 // Turn stvx -> store if the pointer is known aligned.
8669 if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) {
8670 const Type *OpPtrTy =
8671 PointerType::getUnqual(II->getOperand(1)->getType());
8672 Value *Ptr = InsertBitCastBefore(II->getOperand(2), OpPtrTy, CI);
8673 return new StoreInst(II->getOperand(1), Ptr);
8676 case Intrinsic::x86_sse_storeu_ps:
8677 case Intrinsic::x86_sse2_storeu_pd:
8678 case Intrinsic::x86_sse2_storeu_dq:
8679 case Intrinsic::x86_sse2_storel_dq:
8680 // Turn X86 storeu -> store if the pointer is known aligned.
8681 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
8682 const Type *OpPtrTy =
8683 PointerType::getUnqual(II->getOperand(2)->getType());
8684 Value *Ptr = InsertBitCastBefore(II->getOperand(1), OpPtrTy, CI);
8685 return new StoreInst(II->getOperand(2), Ptr);
8689 case Intrinsic::x86_sse_cvttss2si: {
8690 // These intrinsics only demands the 0th element of its input vector. If
8691 // we can simplify the input based on that, do so now.
8693 if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), 1,
8695 II->setOperand(1, V);
8701 case Intrinsic::ppc_altivec_vperm:
8702 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
8703 if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) {
8704 assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
8706 // Check that all of the elements are integer constants or undefs.
8707 bool AllEltsOk = true;
8708 for (unsigned i = 0; i != 16; ++i) {
8709 if (!isa<ConstantInt>(Mask->getOperand(i)) &&
8710 !isa<UndefValue>(Mask->getOperand(i))) {
8717 // Cast the input vectors to byte vectors.
8718 Value *Op0 =InsertBitCastBefore(II->getOperand(1),Mask->getType(),CI);
8719 Value *Op1 =InsertBitCastBefore(II->getOperand(2),Mask->getType(),CI);
8720 Value *Result = UndefValue::get(Op0->getType());
8722 // Only extract each element once.
8723 Value *ExtractedElts[32];
8724 memset(ExtractedElts, 0, sizeof(ExtractedElts));
8726 for (unsigned i = 0; i != 16; ++i) {
8727 if (isa<UndefValue>(Mask->getOperand(i)))
8729 unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
8730 Idx &= 31; // Match the hardware behavior.
8732 if (ExtractedElts[Idx] == 0) {
8734 new ExtractElementInst(Idx < 16 ? Op0 : Op1, Idx&15, "tmp");
8735 InsertNewInstBefore(Elt, CI);
8736 ExtractedElts[Idx] = Elt;
8739 // Insert this value into the result vector.
8740 Result = InsertElementInst::Create(Result, ExtractedElts[Idx], i, "tmp");
8741 InsertNewInstBefore(cast<Instruction>(Result), CI);
8743 return CastInst::create(Instruction::BitCast, Result, CI.getType());
8748 case Intrinsic::stackrestore: {
8749 // If the save is right next to the restore, remove the restore. This can
8750 // happen when variable allocas are DCE'd.
8751 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
8752 if (SS->getIntrinsicID() == Intrinsic::stacksave) {
8753 BasicBlock::iterator BI = SS;
8755 return EraseInstFromFunction(CI);
8759 // Scan down this block to see if there is another stack restore in the
8760 // same block without an intervening call/alloca.
8761 BasicBlock::iterator BI = II;
8762 TerminatorInst *TI = II->getParent()->getTerminator();
8763 bool CannotRemove = false;
8764 for (++BI; &*BI != TI; ++BI) {
8765 if (isa<AllocaInst>(BI)) {
8766 CannotRemove = true;
8769 if (isa<CallInst>(BI)) {
8770 if (!isa<IntrinsicInst>(BI)) {
8771 CannotRemove = true;
8774 // If there is a stackrestore below this one, remove this one.
8775 return EraseInstFromFunction(CI);
8779 // If the stack restore is in a return/unwind block and if there are no
8780 // allocas or calls between the restore and the return, nuke the restore.
8781 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)))
8782 return EraseInstFromFunction(CI);
8788 return visitCallSite(II);
8791 // InvokeInst simplification
8793 Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
8794 return visitCallSite(&II);
8797 /// isSafeToEliminateVarargsCast - If this cast does not affect the value
8798 /// passed through the varargs area, we can eliminate the use of the cast.
8799 static bool isSafeToEliminateVarargsCast(const CallSite CS,
8800 const CastInst * const CI,
8801 const TargetData * const TD,
8803 if (!CI->isLosslessCast())
8806 // The size of ByVal arguments is derived from the type, so we
8807 // can't change to a type with a different size. If the size were
8808 // passed explicitly we could avoid this check.
8809 if (!CS.paramHasAttr(ix, ParamAttr::ByVal))
8813 cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
8814 const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
8815 if (!SrcTy->isSized() || !DstTy->isSized())
8817 if (TD->getABITypeSize(SrcTy) != TD->getABITypeSize(DstTy))
8822 // visitCallSite - Improvements for call and invoke instructions.
8824 Instruction *InstCombiner::visitCallSite(CallSite CS) {
8825 bool Changed = false;
8827 // If the callee is a constexpr cast of a function, attempt to move the cast
8828 // to the arguments of the call/invoke.
8829 if (transformConstExprCastCall(CS)) return 0;
8831 Value *Callee = CS.getCalledValue();
8833 if (Function *CalleeF = dyn_cast<Function>(Callee))
8834 if (CalleeF->getCallingConv() != CS.getCallingConv()) {
8835 Instruction *OldCall = CS.getInstruction();
8836 // If the call and callee calling conventions don't match, this call must
8837 // be unreachable, as the call is undefined.
8838 new StoreInst(ConstantInt::getTrue(),
8839 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)),
8841 if (!OldCall->use_empty())
8842 OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
8843 if (isa<CallInst>(OldCall)) // Not worth removing an invoke here.
8844 return EraseInstFromFunction(*OldCall);
8848 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
8849 // This instruction is not reachable, just remove it. We insert a store to
8850 // undef so that we know that this code is not reachable, despite the fact
8851 // that we can't modify the CFG here.
8852 new StoreInst(ConstantInt::getTrue(),
8853 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)),
8854 CS.getInstruction());
8856 if (!CS.getInstruction()->use_empty())
8857 CS.getInstruction()->
8858 replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
8860 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
8861 // Don't break the CFG, insert a dummy cond branch.
8862 BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
8863 ConstantInt::getTrue(), II);
8865 return EraseInstFromFunction(*CS.getInstruction());
8868 if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
8869 if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
8870 if (In->getIntrinsicID() == Intrinsic::init_trampoline)
8871 return transformCallThroughTrampoline(CS);
8873 const PointerType *PTy = cast<PointerType>(Callee->getType());
8874 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
8875 if (FTy->isVarArg()) {
8876 int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1);
8877 // See if we can optimize any arguments passed through the varargs area of
8879 for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
8880 E = CS.arg_end(); I != E; ++I, ++ix) {
8881 CastInst *CI = dyn_cast<CastInst>(*I);
8882 if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
8883 *I = CI->getOperand(0);
8889 if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
8890 // Inline asm calls cannot throw - mark them 'nounwind'.
8891 CS.setDoesNotThrow();
8895 return Changed ? CS.getInstruction() : 0;
8898 // transformConstExprCastCall - If the callee is a constexpr cast of a function,
8899 // attempt to move the cast to the arguments of the call/invoke.
8901 bool InstCombiner::transformConstExprCastCall(CallSite CS) {
8902 if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
8903 ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
8904 if (CE->getOpcode() != Instruction::BitCast ||
8905 !isa<Function>(CE->getOperand(0)))
8907 Function *Callee = cast<Function>(CE->getOperand(0));
8908 Instruction *Caller = CS.getInstruction();
8909 const PAListPtr &CallerPAL = CS.getParamAttrs();
8911 // Okay, this is a cast from a function to a different type. Unless doing so
8912 // would cause a type conversion of one of our arguments, change this call to
8913 // be a direct call with arguments casted to the appropriate types.
8915 const FunctionType *FT = Callee->getFunctionType();
8916 const Type *OldRetTy = Caller->getType();
8918 if (isa<StructType>(FT->getReturnType()))
8919 return false; // TODO: Handle multiple return values.
8921 // Check to see if we are changing the return type...
8922 if (OldRetTy != FT->getReturnType()) {
8923 if (Callee->isDeclaration() && !Caller->use_empty() &&
8924 // Conversion is ok if changing from pointer to int of same size.
8925 !(isa<PointerType>(FT->getReturnType()) &&
8926 TD->getIntPtrType() == OldRetTy))
8927 return false; // Cannot transform this return value.
8929 if (!Caller->use_empty() &&
8930 // void -> non-void is handled specially
8931 FT->getReturnType() != Type::VoidTy &&
8932 !CastInst::isCastable(FT->getReturnType(), OldRetTy))
8933 return false; // Cannot transform this return value.
8935 if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
8936 ParameterAttributes RAttrs = CallerPAL.getParamAttrs(0);
8937 if (RAttrs & ParamAttr::typeIncompatible(FT->getReturnType()))
8938 return false; // Attribute not compatible with transformed value.
8941 // If the callsite is an invoke instruction, and the return value is used by
8942 // a PHI node in a successor, we cannot change the return type of the call
8943 // because there is no place to put the cast instruction (without breaking
8944 // the critical edge). Bail out in this case.
8945 if (!Caller->use_empty())
8946 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
8947 for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
8949 if (PHINode *PN = dyn_cast<PHINode>(*UI))
8950 if (PN->getParent() == II->getNormalDest() ||
8951 PN->getParent() == II->getUnwindDest())
8955 unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
8956 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
8958 CallSite::arg_iterator AI = CS.arg_begin();
8959 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
8960 const Type *ParamTy = FT->getParamType(i);
8961 const Type *ActTy = (*AI)->getType();
8963 if (!CastInst::isCastable(ActTy, ParamTy))
8964 return false; // Cannot transform this parameter value.
8966 if (CallerPAL.getParamAttrs(i + 1) & ParamAttr::typeIncompatible(ParamTy))
8967 return false; // Attribute not compatible with transformed value.
8969 ConstantInt *c = dyn_cast<ConstantInt>(*AI);
8970 // Some conversions are safe even if we do not have a body.
8971 // Either we can cast directly, or we can upconvert the argument
8972 bool isConvertible = ActTy == ParamTy ||
8973 (isa<PointerType>(ParamTy) && isa<PointerType>(ActTy)) ||
8974 (ParamTy->isInteger() && ActTy->isInteger() &&
8975 ParamTy->getPrimitiveSizeInBits() >= ActTy->getPrimitiveSizeInBits()) ||
8976 (c && ParamTy->getPrimitiveSizeInBits() >= ActTy->getPrimitiveSizeInBits()
8977 && c->getValue().isStrictlyPositive());
8978 if (Callee->isDeclaration() && !isConvertible) return false;
8981 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
8982 Callee->isDeclaration())
8983 return false; // Do not delete arguments unless we have a function body.
8985 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
8986 !CallerPAL.isEmpty())
8987 // In this case we have more arguments than the new function type, but we
8988 // won't be dropping them. Check that these extra arguments have attributes
8989 // that are compatible with being a vararg call argument.
8990 for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
8991 if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
8993 ParameterAttributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
8994 if (PAttrs & ParamAttr::VarArgsIncompatible)
8998 // Okay, we decided that this is a safe thing to do: go ahead and start
8999 // inserting cast instructions as necessary...
9000 std::vector<Value*> Args;
9001 Args.reserve(NumActualArgs);
9002 SmallVector<ParamAttrsWithIndex, 8> attrVec;
9003 attrVec.reserve(NumCommonArgs);
9005 // Get any return attributes.
9006 ParameterAttributes RAttrs = CallerPAL.getParamAttrs(0);
9008 // If the return value is not being used, the type may not be compatible
9009 // with the existing attributes. Wipe out any problematic attributes.
9010 RAttrs &= ~ParamAttr::typeIncompatible(FT->getReturnType());
9012 // Add the new return attributes.
9014 attrVec.push_back(ParamAttrsWithIndex::get(0, RAttrs));
9016 AI = CS.arg_begin();
9017 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
9018 const Type *ParamTy = FT->getParamType(i);
9019 if ((*AI)->getType() == ParamTy) {
9020 Args.push_back(*AI);
9022 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
9023 false, ParamTy, false);
9024 CastInst *NewCast = CastInst::create(opcode, *AI, ParamTy, "tmp");
9025 Args.push_back(InsertNewInstBefore(NewCast, *Caller));
9028 // Add any parameter attributes.
9029 if (ParameterAttributes PAttrs = CallerPAL.getParamAttrs(i + 1))
9030 attrVec.push_back(ParamAttrsWithIndex::get(i + 1, PAttrs));
9033 // If the function takes more arguments than the call was taking, add them
9035 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
9036 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
9038 // If we are removing arguments to the function, emit an obnoxious warning...
9039 if (FT->getNumParams() < NumActualArgs) {
9040 if (!FT->isVarArg()) {
9041 cerr << "WARNING: While resolving call to function '"
9042 << Callee->getName() << "' arguments were dropped!\n";
9044 // Add all of the arguments in their promoted form to the arg list...
9045 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
9046 const Type *PTy = getPromotedType((*AI)->getType());
9047 if (PTy != (*AI)->getType()) {
9048 // Must promote to pass through va_arg area!
9049 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI, false,
9051 Instruction *Cast = CastInst::create(opcode, *AI, PTy, "tmp");
9052 InsertNewInstBefore(Cast, *Caller);
9053 Args.push_back(Cast);
9055 Args.push_back(*AI);
9058 // Add any parameter attributes.
9059 if (ParameterAttributes PAttrs = CallerPAL.getParamAttrs(i + 1))
9060 attrVec.push_back(ParamAttrsWithIndex::get(i + 1, PAttrs));
9065 if (FT->getReturnType() == Type::VoidTy)
9066 Caller->setName(""); // Void type should not have a name.
9068 const PAListPtr &NewCallerPAL = PAListPtr::get(attrVec.begin(),attrVec.end());
9071 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
9072 NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(),
9073 Args.begin(), Args.end(), Caller->getName(), Caller);
9074 cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
9075 cast<InvokeInst>(NC)->setParamAttrs(NewCallerPAL);
9077 NC = CallInst::Create(Callee, Args.begin(), Args.end(),
9078 Caller->getName(), Caller);
9079 CallInst *CI = cast<CallInst>(Caller);
9080 if (CI->isTailCall())
9081 cast<CallInst>(NC)->setTailCall();
9082 cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
9083 cast<CallInst>(NC)->setParamAttrs(NewCallerPAL);
9086 // Insert a cast of the return type as necessary.
9088 if (OldRetTy != NV->getType() && !Caller->use_empty()) {
9089 if (NV->getType() != Type::VoidTy) {
9090 Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false,
9092 NV = NC = CastInst::create(opcode, NC, OldRetTy, "tmp");
9094 // If this is an invoke instruction, we should insert it after the first
9095 // non-phi, instruction in the normal successor block.
9096 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
9097 BasicBlock::iterator I = II->getNormalDest()->begin();
9098 while (isa<PHINode>(I)) ++I;
9099 InsertNewInstBefore(NC, *I);
9101 // Otherwise, it's a call, just insert cast right after the call instr
9102 InsertNewInstBefore(NC, *Caller);
9104 AddUsersToWorkList(*Caller);
9106 NV = UndefValue::get(Caller->getType());
9110 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
9111 Caller->replaceAllUsesWith(NV);
9112 Caller->eraseFromParent();
9113 RemoveFromWorkList(Caller);
9117 // transformCallThroughTrampoline - Turn a call to a function created by the
9118 // init_trampoline intrinsic into a direct call to the underlying function.
9120 Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
9121 Value *Callee = CS.getCalledValue();
9122 const PointerType *PTy = cast<PointerType>(Callee->getType());
9123 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
9124 const PAListPtr &Attrs = CS.getParamAttrs();
9126 // If the call already has the 'nest' attribute somewhere then give up -
9127 // otherwise 'nest' would occur twice after splicing in the chain.
9128 if (Attrs.hasAttrSomewhere(ParamAttr::Nest))
9131 IntrinsicInst *Tramp =
9132 cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
9135 cast<Function>(IntrinsicInst::StripPointerCasts(Tramp->getOperand(2)));
9136 const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
9137 const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
9139 const PAListPtr &NestAttrs = NestF->getParamAttrs();
9140 if (!NestAttrs.isEmpty()) {
9141 unsigned NestIdx = 1;
9142 const Type *NestTy = 0;
9143 ParameterAttributes NestAttr = ParamAttr::None;
9145 // Look for a parameter marked with the 'nest' attribute.
9146 for (FunctionType::param_iterator I = NestFTy->param_begin(),
9147 E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
9148 if (NestAttrs.paramHasAttr(NestIdx, ParamAttr::Nest)) {
9149 // Record the parameter type and any other attributes.
9151 NestAttr = NestAttrs.getParamAttrs(NestIdx);
9156 Instruction *Caller = CS.getInstruction();
9157 std::vector<Value*> NewArgs;
9158 NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
9160 SmallVector<ParamAttrsWithIndex, 8> NewAttrs;
9161 NewAttrs.reserve(Attrs.getNumSlots() + 1);
9163 // Insert the nest argument into the call argument list, which may
9164 // mean appending it. Likewise for attributes.
9166 // Add any function result attributes.
9167 if (ParameterAttributes Attr = Attrs.getParamAttrs(0))
9168 NewAttrs.push_back(ParamAttrsWithIndex::get(0, Attr));
9172 CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
9174 if (Idx == NestIdx) {
9175 // Add the chain argument and attributes.
9176 Value *NestVal = Tramp->getOperand(3);
9177 if (NestVal->getType() != NestTy)
9178 NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller);
9179 NewArgs.push_back(NestVal);
9180 NewAttrs.push_back(ParamAttrsWithIndex::get(NestIdx, NestAttr));
9186 // Add the original argument and attributes.
9187 NewArgs.push_back(*I);
9188 if (ParameterAttributes Attr = Attrs.getParamAttrs(Idx))
9190 (ParamAttrsWithIndex::get(Idx + (Idx >= NestIdx), Attr));
9196 // The trampoline may have been bitcast to a bogus type (FTy).
9197 // Handle this by synthesizing a new function type, equal to FTy
9198 // with the chain parameter inserted.
9200 std::vector<const Type*> NewTypes;
9201 NewTypes.reserve(FTy->getNumParams()+1);
9203 // Insert the chain's type into the list of parameter types, which may
9204 // mean appending it.
9207 FunctionType::param_iterator I = FTy->param_begin(),
9208 E = FTy->param_end();
9212 // Add the chain's type.
9213 NewTypes.push_back(NestTy);
9218 // Add the original type.
9219 NewTypes.push_back(*I);
9225 // Replace the trampoline call with a direct call. Let the generic
9226 // code sort out any function type mismatches.
9227 FunctionType *NewFTy =
9228 FunctionType::get(FTy->getReturnType(), NewTypes, FTy->isVarArg());
9229 Constant *NewCallee = NestF->getType() == PointerType::getUnqual(NewFTy) ?
9230 NestF : ConstantExpr::getBitCast(NestF, PointerType::getUnqual(NewFTy));
9231 const PAListPtr &NewPAL = PAListPtr::get(NewAttrs.begin(),NewAttrs.end());
9233 Instruction *NewCaller;
9234 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
9235 NewCaller = InvokeInst::Create(NewCallee,
9236 II->getNormalDest(), II->getUnwindDest(),
9237 NewArgs.begin(), NewArgs.end(),
9238 Caller->getName(), Caller);
9239 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
9240 cast<InvokeInst>(NewCaller)->setParamAttrs(NewPAL);
9242 NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(),
9243 Caller->getName(), Caller);
9244 if (cast<CallInst>(Caller)->isTailCall())
9245 cast<CallInst>(NewCaller)->setTailCall();
9246 cast<CallInst>(NewCaller)->
9247 setCallingConv(cast<CallInst>(Caller)->getCallingConv());
9248 cast<CallInst>(NewCaller)->setParamAttrs(NewPAL);
9250 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
9251 Caller->replaceAllUsesWith(NewCaller);
9252 Caller->eraseFromParent();
9253 RemoveFromWorkList(Caller);
9258 // Replace the trampoline call with a direct call. Since there is no 'nest'
9259 // parameter, there is no need to adjust the argument list. Let the generic
9260 // code sort out any function type mismatches.
9261 Constant *NewCallee =
9262 NestF->getType() == PTy ? NestF : ConstantExpr::getBitCast(NestF, PTy);
9263 CS.setCalledFunction(NewCallee);
9264 return CS.getInstruction();
9267 /// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(c,d)]
9268 /// and if a/b/c/d and the add's all have a single use, turn this into two phi's
9269 /// and a single binop.
9270 Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
9271 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
9272 assert(isa<BinaryOperator>(FirstInst) || isa<GetElementPtrInst>(FirstInst) ||
9273 isa<CmpInst>(FirstInst));
9274 unsigned Opc = FirstInst->getOpcode();
9275 Value *LHSVal = FirstInst->getOperand(0);
9276 Value *RHSVal = FirstInst->getOperand(1);
9278 const Type *LHSType = LHSVal->getType();
9279 const Type *RHSType = RHSVal->getType();
9281 // Scan to see if all operands are the same opcode, all have one use, and all
9282 // kill their operands (i.e. the operands have one use).
9283 for (unsigned i = 0; i != PN.getNumIncomingValues(); ++i) {
9284 Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
9285 if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
9286 // Verify type of the LHS matches so we don't fold cmp's of different
9287 // types or GEP's with different index types.
9288 I->getOperand(0)->getType() != LHSType ||
9289 I->getOperand(1)->getType() != RHSType)
9292 // If they are CmpInst instructions, check their predicates
9293 if (Opc == Instruction::ICmp || Opc == Instruction::FCmp)
9294 if (cast<CmpInst>(I)->getPredicate() !=
9295 cast<CmpInst>(FirstInst)->getPredicate())
9298 // Keep track of which operand needs a phi node.
9299 if (I->getOperand(0) != LHSVal) LHSVal = 0;
9300 if (I->getOperand(1) != RHSVal) RHSVal = 0;
9303 // Otherwise, this is safe to transform, determine if it is profitable.
9305 // If this is a GEP, and if the index (not the pointer) needs a PHI, bail out.
9306 // Indexes are often folded into load/store instructions, so we don't want to
9307 // hide them behind a phi.
9308 if (isa<GetElementPtrInst>(FirstInst) && RHSVal == 0)
9311 Value *InLHS = FirstInst->getOperand(0);
9312 Value *InRHS = FirstInst->getOperand(1);
9313 PHINode *NewLHS = 0, *NewRHS = 0;
9315 NewLHS = PHINode::Create(LHSType, FirstInst->getOperand(0)->getName()+".pn");
9316 NewLHS->reserveOperandSpace(PN.getNumOperands()/2);
9317 NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
9318 InsertNewInstBefore(NewLHS, PN);
9323 NewRHS = PHINode::Create(RHSType, FirstInst->getOperand(1)->getName()+".pn");
9324 NewRHS->reserveOperandSpace(PN.getNumOperands()/2);
9325 NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
9326 InsertNewInstBefore(NewRHS, PN);
9330 // Add all operands to the new PHIs.
9331 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
9333 Value *NewInLHS =cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
9334 NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
9337 Value *NewInRHS =cast<Instruction>(PN.getIncomingValue(i))->getOperand(1);
9338 NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
9342 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
9343 return BinaryOperator::create(BinOp->getOpcode(), LHSVal, RHSVal);
9344 else if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
9345 return CmpInst::create(CIOp->getOpcode(), CIOp->getPredicate(), LHSVal,
9348 assert(isa<GetElementPtrInst>(FirstInst));
9349 return GetElementPtrInst::Create(LHSVal, RHSVal);
9353 /// isSafeToSinkLoad - Return true if we know that it is safe sink the load out
9354 /// of the block that defines it. This means that it must be obvious the value
9355 /// of the load is not changed from the point of the load to the end of the
9358 /// Finally, it is safe, but not profitable, to sink a load targetting a
9359 /// non-address-taken alloca. Doing so will cause us to not promote the alloca
9361 static bool isSafeToSinkLoad(LoadInst *L) {
9362 BasicBlock::iterator BBI = L, E = L->getParent()->end();
9364 for (++BBI; BBI != E; ++BBI)
9365 if (BBI->mayWriteToMemory())
9368 // Check for non-address taken alloca. If not address-taken already, it isn't
9369 // profitable to do this xform.
9370 if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
9371 bool isAddressTaken = false;
9372 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
9374 if (isa<LoadInst>(UI)) continue;
9375 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
9376 // If storing TO the alloca, then the address isn't taken.
9377 if (SI->getOperand(1) == AI) continue;
9379 isAddressTaken = true;
9383 if (!isAddressTaken)
9391 // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
9392 // operator and they all are only used by the PHI, PHI together their
9393 // inputs, and do the operation once, to the result of the PHI.
9394 Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
9395 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
9397 // Scan the instruction, looking for input operations that can be folded away.
9398 // If all input operands to the phi are the same instruction (e.g. a cast from
9399 // the same type or "+42") we can pull the operation through the PHI, reducing
9400 // code size and simplifying code.
9401 Constant *ConstantOp = 0;
9402 const Type *CastSrcTy = 0;
9403 bool isVolatile = false;
9404 if (isa<CastInst>(FirstInst)) {
9405 CastSrcTy = FirstInst->getOperand(0)->getType();
9406 } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
9407 // Can fold binop, compare or shift here if the RHS is a constant,
9408 // otherwise call FoldPHIArgBinOpIntoPHI.
9409 ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
9410 if (ConstantOp == 0)
9411 return FoldPHIArgBinOpIntoPHI(PN);
9412 } else if (LoadInst *LI = dyn_cast<LoadInst>(FirstInst)) {
9413 isVolatile = LI->isVolatile();
9414 // We can't sink the load if the loaded value could be modified between the
9415 // load and the PHI.
9416 if (LI->getParent() != PN.getIncomingBlock(0) ||
9417 !isSafeToSinkLoad(LI))
9419 } else if (isa<GetElementPtrInst>(FirstInst)) {
9420 if (FirstInst->getNumOperands() == 2)
9421 return FoldPHIArgBinOpIntoPHI(PN);
9422 // Can't handle general GEPs yet.
9425 return 0; // Cannot fold this operation.
9428 // Check to see if all arguments are the same operation.
9429 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
9430 if (!isa<Instruction>(PN.getIncomingValue(i))) return 0;
9431 Instruction *I = cast<Instruction>(PN.getIncomingValue(i));
9432 if (!I->hasOneUse() || !I->isSameOperationAs(FirstInst))
9435 if (I->getOperand(0)->getType() != CastSrcTy)
9436 return 0; // Cast operation must match.
9437 } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
9438 // We can't sink the load if the loaded value could be modified between
9439 // the load and the PHI.
9440 if (LI->isVolatile() != isVolatile ||
9441 LI->getParent() != PN.getIncomingBlock(i) ||
9442 !isSafeToSinkLoad(LI))
9445 // If the PHI is volatile and its block has multiple successors, sinking
9446 // it would remove a load of the volatile value from the path through the
9449 LI->getParent()->getTerminator()->getNumSuccessors() != 1)
9453 } else if (I->getOperand(1) != ConstantOp) {
9458 // Okay, they are all the same operation. Create a new PHI node of the
9459 // correct type, and PHI together all of the LHS's of the instructions.
9460 PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
9461 PN.getName()+".in");
9462 NewPN->reserveOperandSpace(PN.getNumOperands()/2);
9464 Value *InVal = FirstInst->getOperand(0);
9465 NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
9467 // Add all operands to the new PHI.
9468 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
9469 Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
9470 if (NewInVal != InVal)
9472 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
9477 // The new PHI unions all of the same values together. This is really
9478 // common, so we handle it intelligently here for compile-time speed.
9482 InsertNewInstBefore(NewPN, PN);
9486 // Insert and return the new operation.
9487 if (CastInst* FirstCI = dyn_cast<CastInst>(FirstInst))
9488 return CastInst::create(FirstCI->getOpcode(), PhiVal, PN.getType());
9489 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
9490 return BinaryOperator::create(BinOp->getOpcode(), PhiVal, ConstantOp);
9491 if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
9492 return CmpInst::create(CIOp->getOpcode(), CIOp->getPredicate(),
9493 PhiVal, ConstantOp);
9494 assert(isa<LoadInst>(FirstInst) && "Unknown operation");
9496 // If this was a volatile load that we are merging, make sure to loop through
9497 // and mark all the input loads as non-volatile. If we don't do this, we will
9498 // insert a new volatile load and the old ones will not be deletable.
9500 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
9501 cast<LoadInst>(PN.getIncomingValue(i))->setVolatile(false);
9503 return new LoadInst(PhiVal, "", isVolatile);
9506 /// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
9508 static bool DeadPHICycle(PHINode *PN,
9509 SmallPtrSet<PHINode*, 16> &PotentiallyDeadPHIs) {
9510 if (PN->use_empty()) return true;
9511 if (!PN->hasOneUse()) return false;
9513 // Remember this node, and if we find the cycle, return.
9514 if (!PotentiallyDeadPHIs.insert(PN))
9517 // Don't scan crazily complex things.
9518 if (PotentiallyDeadPHIs.size() == 16)
9521 if (PHINode *PU = dyn_cast<PHINode>(PN->use_back()))
9522 return DeadPHICycle(PU, PotentiallyDeadPHIs);
9527 /// PHIsEqualValue - Return true if this phi node is always equal to
9528 /// NonPhiInVal. This happens with mutually cyclic phi nodes like:
9529 /// z = some value; x = phi (y, z); y = phi (x, z)
9530 static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal,
9531 SmallPtrSet<PHINode*, 16> &ValueEqualPHIs) {
9532 // See if we already saw this PHI node.
9533 if (!ValueEqualPHIs.insert(PN))
9536 // Don't scan crazily complex things.
9537 if (ValueEqualPHIs.size() == 16)
9540 // Scan the operands to see if they are either phi nodes or are equal to
9542 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
9543 Value *Op = PN->getIncomingValue(i);
9544 if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
9545 if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
9547 } else if (Op != NonPhiInVal)
9555 // PHINode simplification
9557 Instruction *InstCombiner::visitPHINode(PHINode &PN) {
9558 // If LCSSA is around, don't mess with Phi nodes
9559 if (MustPreserveLCSSA) return 0;
9561 if (Value *V = PN.hasConstantValue())
9562 return ReplaceInstUsesWith(PN, V);
9564 // If all PHI operands are the same operation, pull them through the PHI,
9565 // reducing code size.
9566 if (isa<Instruction>(PN.getIncomingValue(0)) &&
9567 PN.getIncomingValue(0)->hasOneUse())
9568 if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
9571 // If this is a trivial cycle in the PHI node graph, remove it. Basically, if
9572 // this PHI only has a single use (a PHI), and if that PHI only has one use (a
9573 // PHI)... break the cycle.
9574 if (PN.hasOneUse()) {
9575 Instruction *PHIUser = cast<Instruction>(PN.use_back());
9576 if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
9577 SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
9578 PotentiallyDeadPHIs.insert(&PN);
9579 if (DeadPHICycle(PU, PotentiallyDeadPHIs))
9580 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
9583 // If this phi has a single use, and if that use just computes a value for
9584 // the next iteration of a loop, delete the phi. This occurs with unused
9585 // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this
9586 // common case here is good because the only other things that catch this
9587 // are induction variable analysis (sometimes) and ADCE, which is only run
9589 if (PHIUser->hasOneUse() &&
9590 (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
9591 PHIUser->use_back() == &PN) {
9592 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
9596 // We sometimes end up with phi cycles that non-obviously end up being the
9597 // same value, for example:
9598 // z = some value; x = phi (y, z); y = phi (x, z)
9599 // where the phi nodes don't necessarily need to be in the same block. Do a
9600 // quick check to see if the PHI node only contains a single non-phi value, if
9601 // so, scan to see if the phi cycle is actually equal to that value.
9603 unsigned InValNo = 0, NumOperandVals = PN.getNumIncomingValues();
9604 // Scan for the first non-phi operand.
9605 while (InValNo != NumOperandVals &&
9606 isa<PHINode>(PN.getIncomingValue(InValNo)))
9609 if (InValNo != NumOperandVals) {
9610 Value *NonPhiInVal = PN.getOperand(InValNo);
9612 // Scan the rest of the operands to see if there are any conflicts, if so
9613 // there is no need to recursively scan other phis.
9614 for (++InValNo; InValNo != NumOperandVals; ++InValNo) {
9615 Value *OpVal = PN.getIncomingValue(InValNo);
9616 if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
9620 // If we scanned over all operands, then we have one unique value plus
9621 // phi values. Scan PHI nodes to see if they all merge in each other or
9623 if (InValNo == NumOperandVals) {
9624 SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
9625 if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
9626 return ReplaceInstUsesWith(PN, NonPhiInVal);
9633 static Value *InsertCastToIntPtrTy(Value *V, const Type *DTy,
9634 Instruction *InsertPoint,
9636 unsigned PtrSize = DTy->getPrimitiveSizeInBits();
9637 unsigned VTySize = V->getType()->getPrimitiveSizeInBits();
9638 // We must cast correctly to the pointer type. Ensure that we
9639 // sign extend the integer value if it is smaller as this is
9640 // used for address computation.
9641 Instruction::CastOps opcode =
9642 (VTySize < PtrSize ? Instruction::SExt :
9643 (VTySize == PtrSize ? Instruction::BitCast : Instruction::Trunc));
9644 return IC->InsertCastBefore(opcode, V, DTy, *InsertPoint);
9648 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
9649 Value *PtrOp = GEP.getOperand(0);
9650 // Is it 'getelementptr %P, i32 0' or 'getelementptr %P'
9651 // If so, eliminate the noop.
9652 if (GEP.getNumOperands() == 1)
9653 return ReplaceInstUsesWith(GEP, PtrOp);
9655 if (isa<UndefValue>(GEP.getOperand(0)))
9656 return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));
9658 bool HasZeroPointerIndex = false;
9659 if (Constant *C = dyn_cast<Constant>(GEP.getOperand(1)))
9660 HasZeroPointerIndex = C->isNullValue();
9662 if (GEP.getNumOperands() == 2 && HasZeroPointerIndex)
9663 return ReplaceInstUsesWith(GEP, PtrOp);
9665 // Eliminate unneeded casts for indices.
9666 bool MadeChange = false;
9668 gep_type_iterator GTI = gep_type_begin(GEP);
9669 for (unsigned i = 1, e = GEP.getNumOperands(); i != e; ++i, ++GTI) {
9670 if (isa<SequentialType>(*GTI)) {
9671 if (CastInst *CI = dyn_cast<CastInst>(GEP.getOperand(i))) {
9672 if (CI->getOpcode() == Instruction::ZExt ||
9673 CI->getOpcode() == Instruction::SExt) {
9674 const Type *SrcTy = CI->getOperand(0)->getType();
9675 // We can eliminate a cast from i32 to i64 iff the target
9676 // is a 32-bit pointer target.
9677 if (SrcTy->getPrimitiveSizeInBits() >= TD->getPointerSizeInBits()) {
9679 GEP.setOperand(i, CI->getOperand(0));
9683 // If we are using a wider index than needed for this platform, shrink it
9684 // to what we need. If the incoming value needs a cast instruction,
9685 // insert it. This explicit cast can make subsequent optimizations more
9687 Value *Op = GEP.getOperand(i);
9688 if (TD->getTypeSizeInBits(Op->getType()) > TD->getPointerSizeInBits()) {
9689 if (Constant *C = dyn_cast<Constant>(Op)) {
9690 GEP.setOperand(i, ConstantExpr::getTrunc(C, TD->getIntPtrType()));
9693 Op = InsertCastBefore(Instruction::Trunc, Op, TD->getIntPtrType(),
9695 GEP.setOperand(i, Op);
9701 if (MadeChange) return &GEP;
9703 // If this GEP instruction doesn't move the pointer, and if the input operand
9704 // is a bitcast of another pointer, just replace the GEP with a bitcast of the
9705 // real input to the dest type.
9706 if (GEP.hasAllZeroIndices()) {
9707 if (BitCastInst *BCI = dyn_cast<BitCastInst>(GEP.getOperand(0))) {
9708 // If the bitcast is of an allocation, and the allocation will be
9709 // converted to match the type of the cast, don't touch this.
9710 if (isa<AllocationInst>(BCI->getOperand(0))) {
9711 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
9712 if (Instruction *I = visitBitCast(*BCI)) {
9715 BCI->getParent()->getInstList().insert(BCI, I);
9716 ReplaceInstUsesWith(*BCI, I);
9721 return new BitCastInst(BCI->getOperand(0), GEP.getType());
9725 // Combine Indices - If the source pointer to this getelementptr instruction
9726 // is a getelementptr instruction, combine the indices of the two
9727 // getelementptr instructions into a single instruction.
9729 SmallVector<Value*, 8> SrcGEPOperands;
9730 if (User *Src = dyn_castGetElementPtr(PtrOp))
9731 SrcGEPOperands.append(Src->op_begin(), Src->op_end());
9733 if (!SrcGEPOperands.empty()) {
9734 // Note that if our source is a gep chain itself that we wait for that
9735 // chain to be resolved before we perform this transformation. This
9736 // avoids us creating a TON of code in some cases.
9738 if (isa<GetElementPtrInst>(SrcGEPOperands[0]) &&
9739 cast<Instruction>(SrcGEPOperands[0])->getNumOperands() == 2)
9740 return 0; // Wait until our source is folded to completion.
9742 SmallVector<Value*, 8> Indices;
9744 // Find out whether the last index in the source GEP is a sequential idx.
9745 bool EndsWithSequential = false;
9746 for (gep_type_iterator I = gep_type_begin(*cast<User>(PtrOp)),
9747 E = gep_type_end(*cast<User>(PtrOp)); I != E; ++I)
9748 EndsWithSequential = !isa<StructType>(*I);
9750 // Can we combine the two pointer arithmetics offsets?
9751 if (EndsWithSequential) {
9752 // Replace: gep (gep %P, long B), long A, ...
9753 // With: T = long A+B; gep %P, T, ...
9755 Value *Sum, *SO1 = SrcGEPOperands.back(), *GO1 = GEP.getOperand(1);
9756 if (SO1 == Constant::getNullValue(SO1->getType())) {
9758 } else if (GO1 == Constant::getNullValue(GO1->getType())) {
9761 // If they aren't the same type, convert both to an integer of the
9762 // target's pointer size.
9763 if (SO1->getType() != GO1->getType()) {
9764 if (Constant *SO1C = dyn_cast<Constant>(SO1)) {
9765 SO1 = ConstantExpr::getIntegerCast(SO1C, GO1->getType(), true);
9766 } else if (Constant *GO1C = dyn_cast<Constant>(GO1)) {
9767 GO1 = ConstantExpr::getIntegerCast(GO1C, SO1->getType(), true);
9769 unsigned PS = TD->getPointerSizeInBits();
9770 if (TD->getTypeSizeInBits(SO1->getType()) == PS) {
9771 // Convert GO1 to SO1's type.
9772 GO1 = InsertCastToIntPtrTy(GO1, SO1->getType(), &GEP, this);
9774 } else if (TD->getTypeSizeInBits(GO1->getType()) == PS) {
9775 // Convert SO1 to GO1's type.
9776 SO1 = InsertCastToIntPtrTy(SO1, GO1->getType(), &GEP, this);
9778 const Type *PT = TD->getIntPtrType();
9779 SO1 = InsertCastToIntPtrTy(SO1, PT, &GEP, this);
9780 GO1 = InsertCastToIntPtrTy(GO1, PT, &GEP, this);
9784 if (isa<Constant>(SO1) && isa<Constant>(GO1))
9785 Sum = ConstantExpr::getAdd(cast<Constant>(SO1), cast<Constant>(GO1));
9787 Sum = BinaryOperator::createAdd(SO1, GO1, PtrOp->getName()+".sum");
9788 InsertNewInstBefore(cast<Instruction>(Sum), GEP);
9792 // Recycle the GEP we already have if possible.
9793 if (SrcGEPOperands.size() == 2) {
9794 GEP.setOperand(0, SrcGEPOperands[0]);
9795 GEP.setOperand(1, Sum);
9798 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
9799 SrcGEPOperands.end()-1);
9800 Indices.push_back(Sum);
9801 Indices.insert(Indices.end(), GEP.op_begin()+2, GEP.op_end());
9803 } else if (isa<Constant>(*GEP.idx_begin()) &&
9804 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
9805 SrcGEPOperands.size() != 1) {
9806 // Otherwise we can do the fold if the first index of the GEP is a zero
9807 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
9808 SrcGEPOperands.end());
9809 Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end());
9812 if (!Indices.empty())
9813 return GetElementPtrInst::Create(SrcGEPOperands[0], Indices.begin(),
9814 Indices.end(), GEP.getName());
9816 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(PtrOp)) {
9817 // GEP of global variable. If all of the indices for this GEP are
9818 // constants, we can promote this to a constexpr instead of an instruction.
9820 // Scan for nonconstants...
9821 SmallVector<Constant*, 8> Indices;
9822 User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end();
9823 for (; I != E && isa<Constant>(*I); ++I)
9824 Indices.push_back(cast<Constant>(*I));
9826 if (I == E) { // If they are all constants...
9827 Constant *CE = ConstantExpr::getGetElementPtr(GV,
9828 &Indices[0],Indices.size());
9830 // Replace all uses of the GEP with the new constexpr...
9831 return ReplaceInstUsesWith(GEP, CE);
9833 } else if (Value *X = getBitCastOperand(PtrOp)) { // Is the operand a cast?
9834 if (!isa<PointerType>(X->getType())) {
9835 // Not interesting. Source pointer must be a cast from pointer.
9836 } else if (HasZeroPointerIndex) {
9837 // transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
9838 // into : GEP [10 x i8]* X, i32 0, ...
9840 // This occurs when the program declares an array extern like "int X[];"
9842 const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
9843 const PointerType *XTy = cast<PointerType>(X->getType());
9844 if (const ArrayType *XATy =
9845 dyn_cast<ArrayType>(XTy->getElementType()))
9846 if (const ArrayType *CATy =
9847 dyn_cast<ArrayType>(CPTy->getElementType()))
9848 if (CATy->getElementType() == XATy->getElementType()) {
9849 // At this point, we know that the cast source type is a pointer
9850 // to an array of the same type as the destination pointer
9851 // array. Because the array type is never stepped over (there
9852 // is a leading zero) we can fold the cast into this GEP.
9853 GEP.setOperand(0, X);
9856 } else if (GEP.getNumOperands() == 2) {
9857 // Transform things like:
9858 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
9859 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
9860 const Type *SrcElTy = cast<PointerType>(X->getType())->getElementType();
9861 const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
9862 if (isa<ArrayType>(SrcElTy) &&
9863 TD->getABITypeSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
9864 TD->getABITypeSize(ResElTy)) {
9866 Idx[0] = Constant::getNullValue(Type::Int32Ty);
9867 Idx[1] = GEP.getOperand(1);
9868 Value *V = InsertNewInstBefore(
9869 GetElementPtrInst::Create(X, Idx, Idx + 2, GEP.getName()), GEP);
9870 // V and GEP are both pointer types --> BitCast
9871 return new BitCastInst(V, GEP.getType());
9874 // Transform things like:
9875 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
9876 // (where tmp = 8*tmp2) into:
9877 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
9879 if (isa<ArrayType>(SrcElTy) && ResElTy == Type::Int8Ty) {
9880 uint64_t ArrayEltSize =
9881 TD->getABITypeSize(cast<ArrayType>(SrcElTy)->getElementType());
9883 // Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We
9884 // allow either a mul, shift, or constant here.
9886 ConstantInt *Scale = 0;
9887 if (ArrayEltSize == 1) {
9888 NewIdx = GEP.getOperand(1);
9889 Scale = ConstantInt::get(NewIdx->getType(), 1);
9890 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
9891 NewIdx = ConstantInt::get(CI->getType(), 1);
9893 } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
9894 if (Inst->getOpcode() == Instruction::Shl &&
9895 isa<ConstantInt>(Inst->getOperand(1))) {
9896 ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
9897 uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
9898 Scale = ConstantInt::get(Inst->getType(), 1ULL << ShAmtVal);
9899 NewIdx = Inst->getOperand(0);
9900 } else if (Inst->getOpcode() == Instruction::Mul &&
9901 isa<ConstantInt>(Inst->getOperand(1))) {
9902 Scale = cast<ConstantInt>(Inst->getOperand(1));
9903 NewIdx = Inst->getOperand(0);
9907 // If the index will be to exactly the right offset with the scale taken
9908 // out, perform the transformation. Note, we don't know whether Scale is
9909 // signed or not. We'll use unsigned version of division/modulo
9910 // operation after making sure Scale doesn't have the sign bit set.
9911 if (Scale && Scale->getSExtValue() >= 0LL &&
9912 Scale->getZExtValue() % ArrayEltSize == 0) {
9913 Scale = ConstantInt::get(Scale->getType(),
9914 Scale->getZExtValue() / ArrayEltSize);
9915 if (Scale->getZExtValue() != 1) {
9916 Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
9918 Instruction *Sc = BinaryOperator::createMul(NewIdx, C, "idxscale");
9919 NewIdx = InsertNewInstBefore(Sc, GEP);
9922 // Insert the new GEP instruction.
9924 Idx[0] = Constant::getNullValue(Type::Int32Ty);
9926 Instruction *NewGEP =
9927 GetElementPtrInst::Create(X, Idx, Idx + 2, GEP.getName());
9928 NewGEP = InsertNewInstBefore(NewGEP, GEP);
9929 // The NewGEP must be pointer typed, so must the old one -> BitCast
9930 return new BitCastInst(NewGEP, GEP.getType());
9939 Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) {
9940 // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1
9941 if (AI.isArrayAllocation()) { // Check C != 1
9942 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
9944 ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
9945 AllocationInst *New = 0;
9947 // Create and insert the replacement instruction...
9948 if (isa<MallocInst>(AI))
9949 New = new MallocInst(NewTy, 0, AI.getAlignment(), AI.getName());
9951 assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
9952 New = new AllocaInst(NewTy, 0, AI.getAlignment(), AI.getName());
9955 InsertNewInstBefore(New, AI);
9957 // Scan to the end of the allocation instructions, to skip over a block of
9958 // allocas if possible...
9960 BasicBlock::iterator It = New;
9961 while (isa<AllocationInst>(*It)) ++It;
9963 // Now that I is pointing to the first non-allocation-inst in the block,
9964 // insert our getelementptr instruction...
9966 Value *NullIdx = Constant::getNullValue(Type::Int32Ty);
9970 Value *V = GetElementPtrInst::Create(New, Idx, Idx + 2,
9971 New->getName()+".sub", It);
9973 // Now make everything use the getelementptr instead of the original
9975 return ReplaceInstUsesWith(AI, V);
9976 } else if (isa<UndefValue>(AI.getArraySize())) {
9977 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
9981 // If alloca'ing a zero byte object, replace the alloca with a null pointer.
9982 // Note that we only do this for alloca's, because malloc should allocate and
9983 // return a unique pointer, even for a zero byte allocation.
9984 if (isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized() &&
9985 TD->getABITypeSize(AI.getAllocatedType()) == 0)
9986 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
9991 Instruction *InstCombiner::visitFreeInst(FreeInst &FI) {
9992 Value *Op = FI.getOperand(0);
9994 // free undef -> unreachable.
9995 if (isa<UndefValue>(Op)) {
9996 // Insert a new store to null because we cannot modify the CFG here.
9997 new StoreInst(ConstantInt::getTrue(),
9998 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)), &FI);
9999 return EraseInstFromFunction(FI);
10002 // If we have 'free null' delete the instruction. This can happen in stl code
10003 // when lots of inlining happens.
10004 if (isa<ConstantPointerNull>(Op))
10005 return EraseInstFromFunction(FI);
10007 // Change free <ty>* (cast <ty2>* X to <ty>*) into free <ty2>* X
10008 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op)) {
10009 FI.setOperand(0, CI->getOperand(0));
10013 // Change free (gep X, 0,0,0,0) into free(X)
10014 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
10015 if (GEPI->hasAllZeroIndices()) {
10016 AddToWorkList(GEPI);
10017 FI.setOperand(0, GEPI->getOperand(0));
10022 // Change free(malloc) into nothing, if the malloc has a single use.
10023 if (MallocInst *MI = dyn_cast<MallocInst>(Op))
10024 if (MI->hasOneUse()) {
10025 EraseInstFromFunction(FI);
10026 return EraseInstFromFunction(*MI);
10033 /// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
10034 static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
10035 const TargetData *TD) {
10036 User *CI = cast<User>(LI.getOperand(0));
10037 Value *CastOp = CI->getOperand(0);
10039 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(CI)) {
10040 // Instead of loading constant c string, use corresponding integer value
10041 // directly if string length is small enough.
10042 const std::string &Str = CE->getOperand(0)->getStringValue();
10043 if (!Str.empty()) {
10044 unsigned len = Str.length();
10045 const Type *Ty = cast<PointerType>(CE->getType())->getElementType();
10046 unsigned numBits = Ty->getPrimitiveSizeInBits();
10047 // Replace LI with immediate integer store.
10048 if ((numBits >> 3) == len + 1) {
10049 APInt StrVal(numBits, 0);
10050 APInt SingleChar(numBits, 0);
10051 if (TD->isLittleEndian()) {
10052 for (signed i = len-1; i >= 0; i--) {
10053 SingleChar = (uint64_t) Str[i];
10054 StrVal = (StrVal << 8) | SingleChar;
10057 for (unsigned i = 0; i < len; i++) {
10058 SingleChar = (uint64_t) Str[i];
10059 StrVal = (StrVal << 8) | SingleChar;
10061 // Append NULL at the end.
10063 StrVal = (StrVal << 8) | SingleChar;
10065 Value *NL = ConstantInt::get(StrVal);
10066 return IC.ReplaceInstUsesWith(LI, NL);
10071 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
10072 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
10073 const Type *SrcPTy = SrcTy->getElementType();
10075 if (DestPTy->isInteger() || isa<PointerType>(DestPTy) ||
10076 isa<VectorType>(DestPTy)) {
10077 // If the source is an array, the code below will not succeed. Check to
10078 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
10080 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
10081 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
10082 if (ASrcTy->getNumElements() != 0) {
10084 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
10085 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
10086 SrcTy = cast<PointerType>(CastOp->getType());
10087 SrcPTy = SrcTy->getElementType();
10090 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy) ||
10091 isa<VectorType>(SrcPTy)) &&
10092 // Do not allow turning this into a load of an integer, which is then
10093 // casted to a pointer, this pessimizes pointer analysis a lot.
10094 (isa<PointerType>(SrcPTy) == isa<PointerType>(LI.getType())) &&
10095 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
10096 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
10098 // Okay, we are casting from one integer or pointer type to another of
10099 // the same size. Instead of casting the pointer before the load, cast
10100 // the result of the loaded value.
10101 Value *NewLoad = IC.InsertNewInstBefore(new LoadInst(CastOp,
10103 LI.isVolatile()),LI);
10104 // Now cast the result of the load.
10105 return new BitCastInst(NewLoad, LI.getType());
10112 /// isSafeToLoadUnconditionally - Return true if we know that executing a load
10113 /// from this value cannot trap. If it is not obviously safe to load from the
10114 /// specified pointer, we do a quick local scan of the basic block containing
10115 /// ScanFrom, to determine if the address is already accessed.
10116 static bool isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) {
10117 // If it is an alloca it is always safe to load from.
10118 if (isa<AllocaInst>(V)) return true;
10120 // If it is a global variable it is mostly safe to load from.
10121 if (const GlobalValue *GV = dyn_cast<GlobalVariable>(V))
10122 // Don't try to evaluate aliases. External weak GV can be null.
10123 return !isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage();
10125 // Otherwise, be a little bit agressive by scanning the local block where we
10126 // want to check to see if the pointer is already being loaded or stored
10127 // from/to. If so, the previous load or store would have already trapped,
10128 // so there is no harm doing an extra load (also, CSE will later eliminate
10129 // the load entirely).
10130 BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
10135 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
10136 if (LI->getOperand(0) == V) return true;
10137 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
10138 if (SI->getOperand(1) == V) return true;
10144 /// GetUnderlyingObject - Trace through a series of getelementptrs and bitcasts
10145 /// until we find the underlying object a pointer is referring to or something
10146 /// we don't understand. Note that the returned pointer may be offset from the
10147 /// input, because we ignore GEP indices.
10148 static Value *GetUnderlyingObject(Value *Ptr) {
10150 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
10151 if (CE->getOpcode() == Instruction::BitCast ||
10152 CE->getOpcode() == Instruction::GetElementPtr)
10153 Ptr = CE->getOperand(0);
10156 } else if (BitCastInst *BCI = dyn_cast<BitCastInst>(Ptr)) {
10157 Ptr = BCI->getOperand(0);
10158 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
10159 Ptr = GEP->getOperand(0);
10166 Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
10167 Value *Op = LI.getOperand(0);
10169 // Attempt to improve the alignment.
10170 unsigned KnownAlign = GetOrEnforceKnownAlignment(Op);
10172 (LI.getAlignment() == 0 ? TD->getABITypeAlignment(LI.getType()) :
10173 LI.getAlignment()))
10174 LI.setAlignment(KnownAlign);
10176 // load (cast X) --> cast (load X) iff safe
10177 if (isa<CastInst>(Op))
10178 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
10181 // None of the following transforms are legal for volatile loads.
10182 if (LI.isVolatile()) return 0;
10184 if (&LI.getParent()->front() != &LI) {
10185 BasicBlock::iterator BBI = &LI; --BBI;
10186 // If the instruction immediately before this is a store to the same
10187 // address, do a simple form of store->load forwarding.
10188 if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
10189 if (SI->getOperand(1) == LI.getOperand(0))
10190 return ReplaceInstUsesWith(LI, SI->getOperand(0));
10191 if (LoadInst *LIB = dyn_cast<LoadInst>(BBI))
10192 if (LIB->getOperand(0) == LI.getOperand(0))
10193 return ReplaceInstUsesWith(LI, LIB);
10196 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
10197 const Value *GEPI0 = GEPI->getOperand(0);
10198 // TODO: Consider a target hook for valid address spaces for this xform.
10199 if (isa<ConstantPointerNull>(GEPI0) &&
10200 cast<PointerType>(GEPI0->getType())->getAddressSpace() == 0) {
10201 // Insert a new store to null instruction before the load to indicate
10202 // that this code is not reachable. We do this instead of inserting
10203 // an unreachable instruction directly because we cannot modify the
10205 new StoreInst(UndefValue::get(LI.getType()),
10206 Constant::getNullValue(Op->getType()), &LI);
10207 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10211 if (Constant *C = dyn_cast<Constant>(Op)) {
10212 // load null/undef -> undef
10213 // TODO: Consider a target hook for valid address spaces for this xform.
10214 if (isa<UndefValue>(C) || (C->isNullValue() &&
10215 cast<PointerType>(Op->getType())->getAddressSpace() == 0)) {
10216 // Insert a new store to null instruction before the load to indicate that
10217 // this code is not reachable. We do this instead of inserting an
10218 // unreachable instruction directly because we cannot modify the CFG.
10219 new StoreInst(UndefValue::get(LI.getType()),
10220 Constant::getNullValue(Op->getType()), &LI);
10221 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10224 // Instcombine load (constant global) into the value loaded.
10225 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op))
10226 if (GV->isConstant() && !GV->isDeclaration())
10227 return ReplaceInstUsesWith(LI, GV->getInitializer());
10229 // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded.
10230 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op)) {
10231 if (CE->getOpcode() == Instruction::GetElementPtr) {
10232 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
10233 if (GV->isConstant() && !GV->isDeclaration())
10235 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
10236 return ReplaceInstUsesWith(LI, V);
10237 if (CE->getOperand(0)->isNullValue()) {
10238 // Insert a new store to null instruction before the load to indicate
10239 // that this code is not reachable. We do this instead of inserting
10240 // an unreachable instruction directly because we cannot modify the
10242 new StoreInst(UndefValue::get(LI.getType()),
10243 Constant::getNullValue(Op->getType()), &LI);
10244 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10247 } else if (CE->isCast()) {
10248 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
10254 // If this load comes from anywhere in a constant global, and if the global
10255 // is all undef or zero, we know what it loads.
10256 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Op))) {
10257 if (GV->isConstant() && GV->hasInitializer()) {
10258 if (GV->getInitializer()->isNullValue())
10259 return ReplaceInstUsesWith(LI, Constant::getNullValue(LI.getType()));
10260 else if (isa<UndefValue>(GV->getInitializer()))
10261 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10265 if (Op->hasOneUse()) {
10266 // Change select and PHI nodes to select values instead of addresses: this
10267 // helps alias analysis out a lot, allows many others simplifications, and
10268 // exposes redundancy in the code.
10270 // Note that we cannot do the transformation unless we know that the
10271 // introduced loads cannot trap! Something like this is valid as long as
10272 // the condition is always false: load (select bool %C, int* null, int* %G),
10273 // but it would not be valid if we transformed it to load from null
10274 // unconditionally.
10276 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
10277 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
10278 if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) &&
10279 isSafeToLoadUnconditionally(SI->getOperand(2), SI)) {
10280 Value *V1 = InsertNewInstBefore(new LoadInst(SI->getOperand(1),
10281 SI->getOperand(1)->getName()+".val"), LI);
10282 Value *V2 = InsertNewInstBefore(new LoadInst(SI->getOperand(2),
10283 SI->getOperand(2)->getName()+".val"), LI);
10284 return SelectInst::Create(SI->getCondition(), V1, V2);
10287 // load (select (cond, null, P)) -> load P
10288 if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
10289 if (C->isNullValue()) {
10290 LI.setOperand(0, SI->getOperand(2));
10294 // load (select (cond, P, null)) -> load P
10295 if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
10296 if (C->isNullValue()) {
10297 LI.setOperand(0, SI->getOperand(1));
10305 /// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
10307 static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
10308 User *CI = cast<User>(SI.getOperand(1));
10309 Value *CastOp = CI->getOperand(0);
10311 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
10312 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
10313 const Type *SrcPTy = SrcTy->getElementType();
10315 if (DestPTy->isInteger() || isa<PointerType>(DestPTy)) {
10316 // If the source is an array, the code below will not succeed. Check to
10317 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
10319 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
10320 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
10321 if (ASrcTy->getNumElements() != 0) {
10323 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
10324 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
10325 SrcTy = cast<PointerType>(CastOp->getType());
10326 SrcPTy = SrcTy->getElementType();
10329 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy)) &&
10330 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
10331 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
10333 // Okay, we are casting from one integer or pointer type to another of
10334 // the same size. Instead of casting the pointer before
10335 // the store, cast the value to be stored.
10337 Value *SIOp0 = SI.getOperand(0);
10338 Instruction::CastOps opcode = Instruction::BitCast;
10339 const Type* CastSrcTy = SIOp0->getType();
10340 const Type* CastDstTy = SrcPTy;
10341 if (isa<PointerType>(CastDstTy)) {
10342 if (CastSrcTy->isInteger())
10343 opcode = Instruction::IntToPtr;
10344 } else if (isa<IntegerType>(CastDstTy)) {
10345 if (isa<PointerType>(SIOp0->getType()))
10346 opcode = Instruction::PtrToInt;
10348 if (Constant *C = dyn_cast<Constant>(SIOp0))
10349 NewCast = ConstantExpr::getCast(opcode, C, CastDstTy);
10351 NewCast = IC.InsertNewInstBefore(
10352 CastInst::create(opcode, SIOp0, CastDstTy, SIOp0->getName()+".c"),
10354 return new StoreInst(NewCast, CastOp);
10361 Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
10362 Value *Val = SI.getOperand(0);
10363 Value *Ptr = SI.getOperand(1);
10365 if (isa<UndefValue>(Ptr)) { // store X, undef -> noop (even if volatile)
10366 EraseInstFromFunction(SI);
10371 // If the RHS is an alloca with a single use, zapify the store, making the
10373 if (Ptr->hasOneUse() && !SI.isVolatile()) {
10374 if (isa<AllocaInst>(Ptr)) {
10375 EraseInstFromFunction(SI);
10380 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
10381 if (isa<AllocaInst>(GEP->getOperand(0)) &&
10382 GEP->getOperand(0)->hasOneUse()) {
10383 EraseInstFromFunction(SI);
10389 // Attempt to improve the alignment.
10390 unsigned KnownAlign = GetOrEnforceKnownAlignment(Ptr);
10392 (SI.getAlignment() == 0 ? TD->getABITypeAlignment(Val->getType()) :
10393 SI.getAlignment()))
10394 SI.setAlignment(KnownAlign);
10396 // Do really simple DSE, to catch cases where there are several consequtive
10397 // stores to the same location, separated by a few arithmetic operations. This
10398 // situation often occurs with bitfield accesses.
10399 BasicBlock::iterator BBI = &SI;
10400 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
10404 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
10405 // Prev store isn't volatile, and stores to the same location?
10406 if (!PrevSI->isVolatile() && PrevSI->getOperand(1) == SI.getOperand(1)) {
10409 EraseInstFromFunction(*PrevSI);
10415 // If this is a load, we have to stop. However, if the loaded value is from
10416 // the pointer we're loading and is producing the pointer we're storing,
10417 // then *this* store is dead (X = load P; store X -> P).
10418 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
10419 if (LI == Val && LI->getOperand(0) == Ptr && !SI.isVolatile()) {
10420 EraseInstFromFunction(SI);
10424 // Otherwise, this is a load from some other location. Stores before it
10425 // may not be dead.
10429 // Don't skip over loads or things that can modify memory.
10430 if (BBI->mayWriteToMemory())
10435 if (SI.isVolatile()) return 0; // Don't hack volatile stores.
10437 // store X, null -> turns into 'unreachable' in SimplifyCFG
10438 if (isa<ConstantPointerNull>(Ptr)) {
10439 if (!isa<UndefValue>(Val)) {
10440 SI.setOperand(0, UndefValue::get(Val->getType()));
10441 if (Instruction *U = dyn_cast<Instruction>(Val))
10442 AddToWorkList(U); // Dropped a use.
10445 return 0; // Do not modify these!
10448 // store undef, Ptr -> noop
10449 if (isa<UndefValue>(Val)) {
10450 EraseInstFromFunction(SI);
10455 // If the pointer destination is a cast, see if we can fold the cast into the
10457 if (isa<CastInst>(Ptr))
10458 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
10460 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
10462 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
10466 // If this store is the last instruction in the basic block, and if the block
10467 // ends with an unconditional branch, try to move it to the successor block.
10469 if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
10470 if (BI->isUnconditional())
10471 if (SimplifyStoreAtEndOfBlock(SI))
10472 return 0; // xform done!
10477 /// SimplifyStoreAtEndOfBlock - Turn things like:
10478 /// if () { *P = v1; } else { *P = v2 }
10479 /// into a phi node with a store in the successor.
10481 /// Simplify things like:
10482 /// *P = v1; if () { *P = v2; }
10483 /// into a phi node with a store in the successor.
10485 bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
10486 BasicBlock *StoreBB = SI.getParent();
10488 // Check to see if the successor block has exactly two incoming edges. If
10489 // so, see if the other predecessor contains a store to the same location.
10490 // if so, insert a PHI node (if needed) and move the stores down.
10491 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
10493 // Determine whether Dest has exactly two predecessors and, if so, compute
10494 // the other predecessor.
10495 pred_iterator PI = pred_begin(DestBB);
10496 BasicBlock *OtherBB = 0;
10497 if (*PI != StoreBB)
10500 if (PI == pred_end(DestBB))
10503 if (*PI != StoreBB) {
10508 if (++PI != pred_end(DestBB))
10512 // Verify that the other block ends in a branch and is not otherwise empty.
10513 BasicBlock::iterator BBI = OtherBB->getTerminator();
10514 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
10515 if (!OtherBr || BBI == OtherBB->begin())
10518 // If the other block ends in an unconditional branch, check for the 'if then
10519 // else' case. there is an instruction before the branch.
10520 StoreInst *OtherStore = 0;
10521 if (OtherBr->isUnconditional()) {
10522 // If this isn't a store, or isn't a store to the same location, bail out.
10524 OtherStore = dyn_cast<StoreInst>(BBI);
10525 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1))
10528 // Otherwise, the other block ended with a conditional branch. If one of the
10529 // destinations is StoreBB, then we have the if/then case.
10530 if (OtherBr->getSuccessor(0) != StoreBB &&
10531 OtherBr->getSuccessor(1) != StoreBB)
10534 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
10535 // if/then triangle. See if there is a store to the same ptr as SI that
10536 // lives in OtherBB.
10538 // Check to see if we find the matching store.
10539 if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
10540 if (OtherStore->getOperand(1) != SI.getOperand(1))
10544 // If we find something that may be using the stored value, or if we run
10545 // out of instructions, we can't do the xform.
10546 if (isa<LoadInst>(BBI) || BBI->mayWriteToMemory() ||
10547 BBI == OtherBB->begin())
10551 // In order to eliminate the store in OtherBr, we have to
10552 // make sure nothing reads the stored value in StoreBB.
10553 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
10554 // FIXME: This should really be AA driven.
10555 if (isa<LoadInst>(I) || I->mayWriteToMemory())
10560 // Insert a PHI node now if we need it.
10561 Value *MergedVal = OtherStore->getOperand(0);
10562 if (MergedVal != SI.getOperand(0)) {
10563 PHINode *PN = PHINode::Create(MergedVal->getType(), "storemerge");
10564 PN->reserveOperandSpace(2);
10565 PN->addIncoming(SI.getOperand(0), SI.getParent());
10566 PN->addIncoming(OtherStore->getOperand(0), OtherBB);
10567 MergedVal = InsertNewInstBefore(PN, DestBB->front());
10570 // Advance to a place where it is safe to insert the new store and
10572 BBI = DestBB->begin();
10573 while (isa<PHINode>(BBI)) ++BBI;
10574 InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1),
10575 OtherStore->isVolatile()), *BBI);
10577 // Nuke the old stores.
10578 EraseInstFromFunction(SI);
10579 EraseInstFromFunction(*OtherStore);
10585 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
10586 // Change br (not X), label True, label False to: br X, label False, True
10588 BasicBlock *TrueDest;
10589 BasicBlock *FalseDest;
10590 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
10591 !isa<Constant>(X)) {
10592 // Swap Destinations and condition...
10593 BI.setCondition(X);
10594 BI.setSuccessor(0, FalseDest);
10595 BI.setSuccessor(1, TrueDest);
10599 // Cannonicalize fcmp_one -> fcmp_oeq
10600 FCmpInst::Predicate FPred; Value *Y;
10601 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
10602 TrueDest, FalseDest)))
10603 if ((FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
10604 FPred == FCmpInst::FCMP_OGE) && BI.getCondition()->hasOneUse()) {
10605 FCmpInst *I = cast<FCmpInst>(BI.getCondition());
10606 FCmpInst::Predicate NewPred = FCmpInst::getInversePredicate(FPred);
10607 Instruction *NewSCC = new FCmpInst(NewPred, X, Y, "", I);
10608 NewSCC->takeName(I);
10609 // Swap Destinations and condition...
10610 BI.setCondition(NewSCC);
10611 BI.setSuccessor(0, FalseDest);
10612 BI.setSuccessor(1, TrueDest);
10613 RemoveFromWorkList(I);
10614 I->eraseFromParent();
10615 AddToWorkList(NewSCC);
10619 // Cannonicalize icmp_ne -> icmp_eq
10620 ICmpInst::Predicate IPred;
10621 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
10622 TrueDest, FalseDest)))
10623 if ((IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
10624 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
10625 IPred == ICmpInst::ICMP_SGE) && BI.getCondition()->hasOneUse()) {
10626 ICmpInst *I = cast<ICmpInst>(BI.getCondition());
10627 ICmpInst::Predicate NewPred = ICmpInst::getInversePredicate(IPred);
10628 Instruction *NewSCC = new ICmpInst(NewPred, X, Y, "", I);
10629 NewSCC->takeName(I);
10630 // Swap Destinations and condition...
10631 BI.setCondition(NewSCC);
10632 BI.setSuccessor(0, FalseDest);
10633 BI.setSuccessor(1, TrueDest);
10634 RemoveFromWorkList(I);
10635 I->eraseFromParent();;
10636 AddToWorkList(NewSCC);
10643 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
10644 Value *Cond = SI.getCondition();
10645 if (Instruction *I = dyn_cast<Instruction>(Cond)) {
10646 if (I->getOpcode() == Instruction::Add)
10647 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
10648 // change 'switch (X+4) case 1:' into 'switch (X) case -3'
10649 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
10650 SI.setOperand(i,ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
10652 SI.setOperand(0, I->getOperand(0));
10660 /// CheapToScalarize - Return true if the value is cheaper to scalarize than it
10661 /// is to leave as a vector operation.
10662 static bool CheapToScalarize(Value *V, bool isConstant) {
10663 if (isa<ConstantAggregateZero>(V))
10665 if (ConstantVector *C = dyn_cast<ConstantVector>(V)) {
10666 if (isConstant) return true;
10667 // If all elts are the same, we can extract.
10668 Constant *Op0 = C->getOperand(0);
10669 for (unsigned i = 1; i < C->getNumOperands(); ++i)
10670 if (C->getOperand(i) != Op0)
10674 Instruction *I = dyn_cast<Instruction>(V);
10675 if (!I) return false;
10677 // Insert element gets simplified to the inserted element or is deleted if
10678 // this is constant idx extract element and its a constant idx insertelt.
10679 if (I->getOpcode() == Instruction::InsertElement && isConstant &&
10680 isa<ConstantInt>(I->getOperand(2)))
10682 if (I->getOpcode() == Instruction::Load && I->hasOneUse())
10684 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
10685 if (BO->hasOneUse() &&
10686 (CheapToScalarize(BO->getOperand(0), isConstant) ||
10687 CheapToScalarize(BO->getOperand(1), isConstant)))
10689 if (CmpInst *CI = dyn_cast<CmpInst>(I))
10690 if (CI->hasOneUse() &&
10691 (CheapToScalarize(CI->getOperand(0), isConstant) ||
10692 CheapToScalarize(CI->getOperand(1), isConstant)))
10698 /// Read and decode a shufflevector mask.
10700 /// It turns undef elements into values that are larger than the number of
10701 /// elements in the input.
10702 static std::vector<unsigned> getShuffleMask(const ShuffleVectorInst *SVI) {
10703 unsigned NElts = SVI->getType()->getNumElements();
10704 if (isa<ConstantAggregateZero>(SVI->getOperand(2)))
10705 return std::vector<unsigned>(NElts, 0);
10706 if (isa<UndefValue>(SVI->getOperand(2)))
10707 return std::vector<unsigned>(NElts, 2*NElts);
10709 std::vector<unsigned> Result;
10710 const ConstantVector *CP = cast<ConstantVector>(SVI->getOperand(2));
10711 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
10712 if (isa<UndefValue>(CP->getOperand(i)))
10713 Result.push_back(NElts*2); // undef -> 8
10715 Result.push_back(cast<ConstantInt>(CP->getOperand(i))->getZExtValue());
10719 /// FindScalarElement - Given a vector and an element number, see if the scalar
10720 /// value is already around as a register, for example if it were inserted then
10721 /// extracted from the vector.
10722 static Value *FindScalarElement(Value *V, unsigned EltNo) {
10723 assert(isa<VectorType>(V->getType()) && "Not looking at a vector?");
10724 const VectorType *PTy = cast<VectorType>(V->getType());
10725 unsigned Width = PTy->getNumElements();
10726 if (EltNo >= Width) // Out of range access.
10727 return UndefValue::get(PTy->getElementType());
10729 if (isa<UndefValue>(V))
10730 return UndefValue::get(PTy->getElementType());
10731 else if (isa<ConstantAggregateZero>(V))
10732 return Constant::getNullValue(PTy->getElementType());
10733 else if (ConstantVector *CP = dyn_cast<ConstantVector>(V))
10734 return CP->getOperand(EltNo);
10735 else if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
10736 // If this is an insert to a variable element, we don't know what it is.
10737 if (!isa<ConstantInt>(III->getOperand(2)))
10739 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
10741 // If this is an insert to the element we are looking for, return the
10743 if (EltNo == IIElt)
10744 return III->getOperand(1);
10746 // Otherwise, the insertelement doesn't modify the value, recurse on its
10748 return FindScalarElement(III->getOperand(0), EltNo);
10749 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
10750 unsigned InEl = getShuffleMask(SVI)[EltNo];
10752 return FindScalarElement(SVI->getOperand(0), InEl);
10753 else if (InEl < Width*2)
10754 return FindScalarElement(SVI->getOperand(1), InEl - Width);
10756 return UndefValue::get(PTy->getElementType());
10759 // Otherwise, we don't know.
10763 Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
10765 // If vector val is undef, replace extract with scalar undef.
10766 if (isa<UndefValue>(EI.getOperand(0)))
10767 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
10769 // If vector val is constant 0, replace extract with scalar 0.
10770 if (isa<ConstantAggregateZero>(EI.getOperand(0)))
10771 return ReplaceInstUsesWith(EI, Constant::getNullValue(EI.getType()));
10773 if (ConstantVector *C = dyn_cast<ConstantVector>(EI.getOperand(0))) {
10774 // If vector val is constant with uniform operands, replace EI
10775 // with that operand
10776 Constant *op0 = C->getOperand(0);
10777 for (unsigned i = 1; i < C->getNumOperands(); ++i)
10778 if (C->getOperand(i) != op0) {
10783 return ReplaceInstUsesWith(EI, op0);
10786 // If extracting a specified index from the vector, see if we can recursively
10787 // find a previously computed scalar that was inserted into the vector.
10788 if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
10789 unsigned IndexVal = IdxC->getZExtValue();
10790 unsigned VectorWidth =
10791 cast<VectorType>(EI.getOperand(0)->getType())->getNumElements();
10793 // If this is extracting an invalid index, turn this into undef, to avoid
10794 // crashing the code below.
10795 if (IndexVal >= VectorWidth)
10796 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
10798 // This instruction only demands the single element from the input vector.
10799 // If the input vector has a single use, simplify it based on this use
10801 if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
10802 uint64_t UndefElts;
10803 if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0),
10806 EI.setOperand(0, V);
10811 if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal))
10812 return ReplaceInstUsesWith(EI, Elt);
10814 // If the this extractelement is directly using a bitcast from a vector of
10815 // the same number of elements, see if we can find the source element from
10816 // it. In this case, we will end up needing to bitcast the scalars.
10817 if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
10818 if (const VectorType *VT =
10819 dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
10820 if (VT->getNumElements() == VectorWidth)
10821 if (Value *Elt = FindScalarElement(BCI->getOperand(0), IndexVal))
10822 return new BitCastInst(Elt, EI.getType());
10826 if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
10827 if (I->hasOneUse()) {
10828 // Push extractelement into predecessor operation if legal and
10829 // profitable to do so
10830 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
10831 bool isConstantElt = isa<ConstantInt>(EI.getOperand(1));
10832 if (CheapToScalarize(BO, isConstantElt)) {
10833 ExtractElementInst *newEI0 =
10834 new ExtractElementInst(BO->getOperand(0), EI.getOperand(1),
10835 EI.getName()+".lhs");
10836 ExtractElementInst *newEI1 =
10837 new ExtractElementInst(BO->getOperand(1), EI.getOperand(1),
10838 EI.getName()+".rhs");
10839 InsertNewInstBefore(newEI0, EI);
10840 InsertNewInstBefore(newEI1, EI);
10841 return BinaryOperator::create(BO->getOpcode(), newEI0, newEI1);
10843 } else if (isa<LoadInst>(I)) {
10845 cast<PointerType>(I->getOperand(0)->getType())->getAddressSpace();
10846 Value *Ptr = InsertBitCastBefore(I->getOperand(0),
10847 PointerType::get(EI.getType(), AS),EI);
10848 GetElementPtrInst *GEP =
10849 GetElementPtrInst::Create(Ptr, EI.getOperand(1), I->getName() + ".gep");
10850 InsertNewInstBefore(GEP, EI);
10851 return new LoadInst(GEP);
10854 if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
10855 // Extracting the inserted element?
10856 if (IE->getOperand(2) == EI.getOperand(1))
10857 return ReplaceInstUsesWith(EI, IE->getOperand(1));
10858 // If the inserted and extracted elements are constants, they must not
10859 // be the same value, extract from the pre-inserted value instead.
10860 if (isa<Constant>(IE->getOperand(2)) &&
10861 isa<Constant>(EI.getOperand(1))) {
10862 AddUsesToWorkList(EI);
10863 EI.setOperand(0, IE->getOperand(0));
10866 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
10867 // If this is extracting an element from a shufflevector, figure out where
10868 // it came from and extract from the appropriate input element instead.
10869 if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
10870 unsigned SrcIdx = getShuffleMask(SVI)[Elt->getZExtValue()];
10872 if (SrcIdx < SVI->getType()->getNumElements())
10873 Src = SVI->getOperand(0);
10874 else if (SrcIdx < SVI->getType()->getNumElements()*2) {
10875 SrcIdx -= SVI->getType()->getNumElements();
10876 Src = SVI->getOperand(1);
10878 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
10880 return new ExtractElementInst(Src, SrcIdx);
10887 /// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
10888 /// elements from either LHS or RHS, return the shuffle mask and true.
10889 /// Otherwise, return false.
10890 static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
10891 std::vector<Constant*> &Mask) {
10892 assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
10893 "Invalid CollectSingleShuffleElements");
10894 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
10896 if (isa<UndefValue>(V)) {
10897 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
10899 } else if (V == LHS) {
10900 for (unsigned i = 0; i != NumElts; ++i)
10901 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
10903 } else if (V == RHS) {
10904 for (unsigned i = 0; i != NumElts; ++i)
10905 Mask.push_back(ConstantInt::get(Type::Int32Ty, i+NumElts));
10907 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
10908 // If this is an insert of an extract from some other vector, include it.
10909 Value *VecOp = IEI->getOperand(0);
10910 Value *ScalarOp = IEI->getOperand(1);
10911 Value *IdxOp = IEI->getOperand(2);
10913 if (!isa<ConstantInt>(IdxOp))
10915 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
10917 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector.
10918 // Okay, we can handle this if the vector we are insertinting into is
10919 // transitively ok.
10920 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
10921 // If so, update the mask to reflect the inserted undef.
10922 Mask[InsertedIdx] = UndefValue::get(Type::Int32Ty);
10925 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
10926 if (isa<ConstantInt>(EI->getOperand(1)) &&
10927 EI->getOperand(0)->getType() == V->getType()) {
10928 unsigned ExtractedIdx =
10929 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
10931 // This must be extracting from either LHS or RHS.
10932 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
10933 // Okay, we can handle this if the vector we are insertinting into is
10934 // transitively ok.
10935 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
10936 // If so, update the mask to reflect the inserted value.
10937 if (EI->getOperand(0) == LHS) {
10938 Mask[InsertedIdx & (NumElts-1)] =
10939 ConstantInt::get(Type::Int32Ty, ExtractedIdx);
10941 assert(EI->getOperand(0) == RHS);
10942 Mask[InsertedIdx & (NumElts-1)] =
10943 ConstantInt::get(Type::Int32Ty, ExtractedIdx+NumElts);
10952 // TODO: Handle shufflevector here!
10957 /// CollectShuffleElements - We are building a shuffle of V, using RHS as the
10958 /// RHS of the shuffle instruction, if it is not null. Return a shuffle mask
10959 /// that computes V and the LHS value of the shuffle.
10960 static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
10962 assert(isa<VectorType>(V->getType()) &&
10963 (RHS == 0 || V->getType() == RHS->getType()) &&
10964 "Invalid shuffle!");
10965 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
10967 if (isa<UndefValue>(V)) {
10968 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
10970 } else if (isa<ConstantAggregateZero>(V)) {
10971 Mask.assign(NumElts, ConstantInt::get(Type::Int32Ty, 0));
10973 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
10974 // If this is an insert of an extract from some other vector, include it.
10975 Value *VecOp = IEI->getOperand(0);
10976 Value *ScalarOp = IEI->getOperand(1);
10977 Value *IdxOp = IEI->getOperand(2);
10979 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
10980 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
10981 EI->getOperand(0)->getType() == V->getType()) {
10982 unsigned ExtractedIdx =
10983 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
10984 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
10986 // Either the extracted from or inserted into vector must be RHSVec,
10987 // otherwise we'd end up with a shuffle of three inputs.
10988 if (EI->getOperand(0) == RHS || RHS == 0) {
10989 RHS = EI->getOperand(0);
10990 Value *V = CollectShuffleElements(VecOp, Mask, RHS);
10991 Mask[InsertedIdx & (NumElts-1)] =
10992 ConstantInt::get(Type::Int32Ty, NumElts+ExtractedIdx);
10996 if (VecOp == RHS) {
10997 Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS);
10998 // Everything but the extracted element is replaced with the RHS.
10999 for (unsigned i = 0; i != NumElts; ++i) {
11000 if (i != InsertedIdx)
11001 Mask[i] = ConstantInt::get(Type::Int32Ty, NumElts+i);
11006 // If this insertelement is a chain that comes from exactly these two
11007 // vectors, return the vector and the effective shuffle.
11008 if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask))
11009 return EI->getOperand(0);
11014 // TODO: Handle shufflevector here!
11016 // Otherwise, can't do anything fancy. Return an identity vector.
11017 for (unsigned i = 0; i != NumElts; ++i)
11018 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
11022 Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
11023 Value *VecOp = IE.getOperand(0);
11024 Value *ScalarOp = IE.getOperand(1);
11025 Value *IdxOp = IE.getOperand(2);
11027 // Inserting an undef or into an undefined place, remove this.
11028 if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
11029 ReplaceInstUsesWith(IE, VecOp);
11031 // If the inserted element was extracted from some other vector, and if the
11032 // indexes are constant, try to turn this into a shufflevector operation.
11033 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
11034 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
11035 EI->getOperand(0)->getType() == IE.getType()) {
11036 unsigned NumVectorElts = IE.getType()->getNumElements();
11037 unsigned ExtractedIdx =
11038 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
11039 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
11041 if (ExtractedIdx >= NumVectorElts) // Out of range extract.
11042 return ReplaceInstUsesWith(IE, VecOp);
11044 if (InsertedIdx >= NumVectorElts) // Out of range insert.
11045 return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
11047 // If we are extracting a value from a vector, then inserting it right
11048 // back into the same place, just use the input vector.
11049 if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
11050 return ReplaceInstUsesWith(IE, VecOp);
11052 // We could theoretically do this for ANY input. However, doing so could
11053 // turn chains of insertelement instructions into a chain of shufflevector
11054 // instructions, and right now we do not merge shufflevectors. As such,
11055 // only do this in a situation where it is clear that there is benefit.
11056 if (isa<UndefValue>(VecOp) || isa<ConstantAggregateZero>(VecOp)) {
11057 // Turn this into shuffle(EIOp0, VecOp, Mask). The result has all of
11058 // the values of VecOp, except then one read from EIOp0.
11059 // Build a new shuffle mask.
11060 std::vector<Constant*> Mask;
11061 if (isa<UndefValue>(VecOp))
11062 Mask.assign(NumVectorElts, UndefValue::get(Type::Int32Ty));
11064 assert(isa<ConstantAggregateZero>(VecOp) && "Unknown thing");
11065 Mask.assign(NumVectorElts, ConstantInt::get(Type::Int32Ty,
11068 Mask[InsertedIdx] = ConstantInt::get(Type::Int32Ty, ExtractedIdx);
11069 return new ShuffleVectorInst(EI->getOperand(0), VecOp,
11070 ConstantVector::get(Mask));
11073 // If this insertelement isn't used by some other insertelement, turn it
11074 // (and any insertelements it points to), into one big shuffle.
11075 if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
11076 std::vector<Constant*> Mask;
11078 Value *LHS = CollectShuffleElements(&IE, Mask, RHS);
11079 if (RHS == 0) RHS = UndefValue::get(LHS->getType());
11080 // We now have a shuffle of LHS, RHS, Mask.
11081 return new ShuffleVectorInst(LHS, RHS, ConstantVector::get(Mask));
11090 Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
11091 Value *LHS = SVI.getOperand(0);
11092 Value *RHS = SVI.getOperand(1);
11093 std::vector<unsigned> Mask = getShuffleMask(&SVI);
11095 bool MadeChange = false;
11097 // Undefined shuffle mask -> undefined value.
11098 if (isa<UndefValue>(SVI.getOperand(2)))
11099 return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
11101 // If we have shuffle(x, undef, mask) and any elements of mask refer to
11102 // the undef, change them to undefs.
11103 if (isa<UndefValue>(SVI.getOperand(1))) {
11104 // Scan to see if there are any references to the RHS. If so, replace them
11105 // with undef element refs and set MadeChange to true.
11106 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
11107 if (Mask[i] >= e && Mask[i] != 2*e) {
11114 // Remap any references to RHS to use LHS.
11115 std::vector<Constant*> Elts;
11116 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
11117 if (Mask[i] == 2*e)
11118 Elts.push_back(UndefValue::get(Type::Int32Ty));
11120 Elts.push_back(ConstantInt::get(Type::Int32Ty, Mask[i]));
11122 SVI.setOperand(2, ConstantVector::get(Elts));
11126 // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask')
11127 // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
11128 if (LHS == RHS || isa<UndefValue>(LHS)) {
11129 if (isa<UndefValue>(LHS) && LHS == RHS) {
11130 // shuffle(undef,undef,mask) -> undef.
11131 return ReplaceInstUsesWith(SVI, LHS);
11134 // Remap any references to RHS to use LHS.
11135 std::vector<Constant*> Elts;
11136 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
11137 if (Mask[i] >= 2*e)
11138 Elts.push_back(UndefValue::get(Type::Int32Ty));
11140 if ((Mask[i] >= e && isa<UndefValue>(RHS)) ||
11141 (Mask[i] < e && isa<UndefValue>(LHS)))
11142 Mask[i] = 2*e; // Turn into undef.
11144 Mask[i] &= (e-1); // Force to LHS.
11145 Elts.push_back(ConstantInt::get(Type::Int32Ty, Mask[i]));
11148 SVI.setOperand(0, SVI.getOperand(1));
11149 SVI.setOperand(1, UndefValue::get(RHS->getType()));
11150 SVI.setOperand(2, ConstantVector::get(Elts));
11151 LHS = SVI.getOperand(0);
11152 RHS = SVI.getOperand(1);
11156 // Analyze the shuffle, are the LHS or RHS and identity shuffles?
11157 bool isLHSID = true, isRHSID = true;
11159 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
11160 if (Mask[i] >= e*2) continue; // Ignore undef values.
11161 // Is this an identity shuffle of the LHS value?
11162 isLHSID &= (Mask[i] == i);
11164 // Is this an identity shuffle of the RHS value?
11165 isRHSID &= (Mask[i]-e == i);
11168 // Eliminate identity shuffles.
11169 if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
11170 if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
11172 // If the LHS is a shufflevector itself, see if we can combine it with this
11173 // one without producing an unusual shuffle. Here we are really conservative:
11174 // we are absolutely afraid of producing a shuffle mask not in the input
11175 // program, because the code gen may not be smart enough to turn a merged
11176 // shuffle into two specific shuffles: it may produce worse code. As such,
11177 // we only merge two shuffles if the result is one of the two input shuffle
11178 // masks. In this case, merging the shuffles just removes one instruction,
11179 // which we know is safe. This is good for things like turning:
11180 // (splat(splat)) -> splat.
11181 if (ShuffleVectorInst *LHSSVI = dyn_cast<ShuffleVectorInst>(LHS)) {
11182 if (isa<UndefValue>(RHS)) {
11183 std::vector<unsigned> LHSMask = getShuffleMask(LHSSVI);
11185 std::vector<unsigned> NewMask;
11186 for (unsigned i = 0, e = Mask.size(); i != e; ++i)
11187 if (Mask[i] >= 2*e)
11188 NewMask.push_back(2*e);
11190 NewMask.push_back(LHSMask[Mask[i]]);
11192 // If the result mask is equal to the src shuffle or this shuffle mask, do
11193 // the replacement.
11194 if (NewMask == LHSMask || NewMask == Mask) {
11195 std::vector<Constant*> Elts;
11196 for (unsigned i = 0, e = NewMask.size(); i != e; ++i) {
11197 if (NewMask[i] >= e*2) {
11198 Elts.push_back(UndefValue::get(Type::Int32Ty));
11200 Elts.push_back(ConstantInt::get(Type::Int32Ty, NewMask[i]));
11203 return new ShuffleVectorInst(LHSSVI->getOperand(0),
11204 LHSSVI->getOperand(1),
11205 ConstantVector::get(Elts));
11210 return MadeChange ? &SVI : 0;
11216 /// TryToSinkInstruction - Try to move the specified instruction from its
11217 /// current block into the beginning of DestBlock, which can only happen if it's
11218 /// safe to move the instruction past all of the instructions between it and the
11219 /// end of its block.
11220 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
11221 assert(I->hasOneUse() && "Invariants didn't hold!");
11223 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
11224 if (isa<PHINode>(I) || I->mayWriteToMemory()) return false;
11226 // Do not sink alloca instructions out of the entry block.
11227 if (isa<AllocaInst>(I) && I->getParent() ==
11228 &DestBlock->getParent()->getEntryBlock())
11231 // We can only sink load instructions if there is nothing between the load and
11232 // the end of block that could change the value.
11233 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
11234 for (BasicBlock::iterator Scan = LI, E = LI->getParent()->end();
11236 if (Scan->mayWriteToMemory())
11240 BasicBlock::iterator InsertPos = DestBlock->begin();
11241 while (isa<PHINode>(InsertPos)) ++InsertPos;
11243 I->moveBefore(InsertPos);
11249 /// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
11250 /// all reachable code to the worklist.
11252 /// This has a couple of tricks to make the code faster and more powerful. In
11253 /// particular, we constant fold and DCE instructions as we go, to avoid adding
11254 /// them to the worklist (this significantly speeds up instcombine on code where
11255 /// many instructions are dead or constant). Additionally, if we find a branch
11256 /// whose condition is a known constant, we only visit the reachable successors.
11258 static void AddReachableCodeToWorklist(BasicBlock *BB,
11259 SmallPtrSet<BasicBlock*, 64> &Visited,
11261 const TargetData *TD) {
11262 std::vector<BasicBlock*> Worklist;
11263 Worklist.push_back(BB);
11265 while (!Worklist.empty()) {
11266 BB = Worklist.back();
11267 Worklist.pop_back();
11269 // We have now visited this block! If we've already been here, ignore it.
11270 if (!Visited.insert(BB)) continue;
11272 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
11273 Instruction *Inst = BBI++;
11275 // DCE instruction if trivially dead.
11276 if (isInstructionTriviallyDead(Inst)) {
11278 DOUT << "IC: DCE: " << *Inst;
11279 Inst->eraseFromParent();
11283 // ConstantProp instruction if trivially constant.
11284 if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
11285 DOUT << "IC: ConstFold to: " << *C << " from: " << *Inst;
11286 Inst->replaceAllUsesWith(C);
11288 Inst->eraseFromParent();
11292 IC.AddToWorkList(Inst);
11295 // Recursively visit successors. If this is a branch or switch on a
11296 // constant, only visit the reachable successor.
11297 TerminatorInst *TI = BB->getTerminator();
11298 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
11299 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
11300 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
11301 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
11302 Worklist.push_back(ReachableBB);
11305 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
11306 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
11307 // See if this is an explicit destination.
11308 for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
11309 if (SI->getCaseValue(i) == Cond) {
11310 BasicBlock *ReachableBB = SI->getSuccessor(i);
11311 Worklist.push_back(ReachableBB);
11315 // Otherwise it is the default destination.
11316 Worklist.push_back(SI->getSuccessor(0));
11321 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
11322 Worklist.push_back(TI->getSuccessor(i));
11326 bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
11327 bool Changed = false;
11328 TD = &getAnalysis<TargetData>();
11330 DEBUG(DOUT << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
11331 << F.getNameStr() << "\n");
11334 // Do a depth-first traversal of the function, populate the worklist with
11335 // the reachable instructions. Ignore blocks that are not reachable. Keep
11336 // track of which blocks we visit.
11337 SmallPtrSet<BasicBlock*, 64> Visited;
11338 AddReachableCodeToWorklist(F.begin(), Visited, *this, TD);
11340 // Do a quick scan over the function. If we find any blocks that are
11341 // unreachable, remove any instructions inside of them. This prevents
11342 // the instcombine code from having to deal with some bad special cases.
11343 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
11344 if (!Visited.count(BB)) {
11345 Instruction *Term = BB->getTerminator();
11346 while (Term != BB->begin()) { // Remove instrs bottom-up
11347 BasicBlock::iterator I = Term; --I;
11349 DOUT << "IC: DCE: " << *I;
11352 if (!I->use_empty())
11353 I->replaceAllUsesWith(UndefValue::get(I->getType()));
11354 I->eraseFromParent();
11359 while (!Worklist.empty()) {
11360 Instruction *I = RemoveOneFromWorkList();
11361 if (I == 0) continue; // skip null values.
11363 // Check to see if we can DCE the instruction.
11364 if (isInstructionTriviallyDead(I)) {
11365 // Add operands to the worklist.
11366 if (I->getNumOperands() < 4)
11367 AddUsesToWorkList(*I);
11370 DOUT << "IC: DCE: " << *I;
11372 I->eraseFromParent();
11373 RemoveFromWorkList(I);
11377 // Instruction isn't dead, see if we can constant propagate it.
11378 if (Constant *C = ConstantFoldInstruction(I, TD)) {
11379 DOUT << "IC: ConstFold to: " << *C << " from: " << *I;
11381 // Add operands to the worklist.
11382 AddUsesToWorkList(*I);
11383 ReplaceInstUsesWith(*I, C);
11386 I->eraseFromParent();
11387 RemoveFromWorkList(I);
11391 // See if we can trivially sink this instruction to a successor basic block.
11392 // FIXME: Remove GetResultInst test when first class support for aggregates is
11394 if (I->hasOneUse() && !isa<GetResultInst>(I)) {
11395 BasicBlock *BB = I->getParent();
11396 BasicBlock *UserParent = cast<Instruction>(I->use_back())->getParent();
11397 if (UserParent != BB) {
11398 bool UserIsSuccessor = false;
11399 // See if the user is one of our successors.
11400 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
11401 if (*SI == UserParent) {
11402 UserIsSuccessor = true;
11406 // If the user is one of our immediate successors, and if that successor
11407 // only has us as a predecessors (we'd have to split the critical edge
11408 // otherwise), we can keep going.
11409 if (UserIsSuccessor && !isa<PHINode>(I->use_back()) &&
11410 next(pred_begin(UserParent)) == pred_end(UserParent))
11411 // Okay, the CFG is simple enough, try to sink this instruction.
11412 Changed |= TryToSinkInstruction(I, UserParent);
11416 // Now that we have an instruction, try combining it to simplify it...
11420 DEBUG(std::ostringstream SS; I->print(SS); OrigI = SS.str(););
11421 if (Instruction *Result = visit(*I)) {
11423 // Should we replace the old instruction with a new one?
11425 DOUT << "IC: Old = " << *I
11426 << " New = " << *Result;
11428 // Everything uses the new instruction now.
11429 I->replaceAllUsesWith(Result);
11431 // Push the new instruction and any users onto the worklist.
11432 AddToWorkList(Result);
11433 AddUsersToWorkList(*Result);
11435 // Move the name to the new instruction first.
11436 Result->takeName(I);
11438 // Insert the new instruction into the basic block...
11439 BasicBlock *InstParent = I->getParent();
11440 BasicBlock::iterator InsertPos = I;
11442 if (!isa<PHINode>(Result)) // If combining a PHI, don't insert
11443 while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
11446 InstParent->getInstList().insert(InsertPos, Result);
11448 // Make sure that we reprocess all operands now that we reduced their
11450 AddUsesToWorkList(*I);
11452 // Instructions can end up on the worklist more than once. Make sure
11453 // we do not process an instruction that has been deleted.
11454 RemoveFromWorkList(I);
11456 // Erase the old instruction.
11457 InstParent->getInstList().erase(I);
11460 DOUT << "IC: Mod = " << OrigI
11461 << " New = " << *I;
11464 // If the instruction was modified, it's possible that it is now dead.
11465 // if so, remove it.
11466 if (isInstructionTriviallyDead(I)) {
11467 // Make sure we process all operands now that we are reducing their
11469 AddUsesToWorkList(*I);
11471 // Instructions may end up in the worklist more than once. Erase all
11472 // occurrences of this instruction.
11473 RemoveFromWorkList(I);
11474 I->eraseFromParent();
11477 AddUsersToWorkList(*I);
11484 assert(WorklistMap.empty() && "Worklist empty, but map not?");
11486 // Do an explicit clear, this shrinks the map if needed.
11487 WorklistMap.clear();
11492 bool InstCombiner::runOnFunction(Function &F) {
11493 MustPreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
11495 bool EverMadeChange = false;
11497 // Iterate while there is work to do.
11498 unsigned Iteration = 0;
11499 while (DoOneIteration(F, Iteration++))
11500 EverMadeChange = true;
11501 return EverMadeChange;
11504 FunctionPass *llvm::createInstructionCombiningPass() {
11505 return new InstCombiner();