1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // InstructionCombining - Combine instructions to form fewer, simple
11 // instructions. This pass does not modify the CFG This pass is where algebraic
12 // simplification happens.
14 // This pass combines things like:
20 // This is a simple worklist driven algorithm.
22 // This pass guarantees that the following canonicalizations are performed on
24 // 1. If a binary operator has a constant operand, it is moved to the RHS
25 // 2. Bitwise operators with constant operands are always grouped so that
26 // shifts are performed first, then or's, then and's, then xor's.
27 // 3. SetCC instructions are converted from <,>,<=,>= to ==,!= if possible
28 // 4. All SetCC instructions on boolean values are replaced with logical ops
29 // 5. add X, X is represented as (X*2) => (X << 1)
30 // 6. Multiplies with a power-of-two constant argument are transformed into
32 // N. This list is incomplete
34 //===----------------------------------------------------------------------===//
36 #define DEBUG_TYPE "instcombine"
37 #include "llvm/Transforms/Scalar.h"
38 #include "llvm/Instructions.h"
39 #include "llvm/Intrinsics.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Constants.h"
42 #include "llvm/DerivedTypes.h"
43 #include "llvm/GlobalVariable.h"
44 #include "llvm/Target/TargetData.h"
45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
46 #include "llvm/Transforms/Utils/Local.h"
47 #include "llvm/Support/CallSite.h"
48 #include "llvm/Support/GetElementPtrTypeIterator.h"
49 #include "llvm/Support/InstIterator.h"
50 #include "llvm/Support/InstVisitor.h"
51 #include "Support/Debug.h"
52 #include "Support/Statistic.h"
57 Statistic<> NumCombined ("instcombine", "Number of insts combined");
58 Statistic<> NumConstProp("instcombine", "Number of constant folds");
59 Statistic<> NumDeadInst ("instcombine", "Number of dead inst eliminated");
61 class InstCombiner : public FunctionPass,
62 public InstVisitor<InstCombiner, Instruction*> {
63 // Worklist of all of the instructions that need to be simplified.
64 std::vector<Instruction*> WorkList;
67 /// AddUsersToWorkList - When an instruction is simplified, add all users of
68 /// the instruction to the work lists because they might get more simplified
71 void AddUsersToWorkList(Instruction &I) {
72 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
74 WorkList.push_back(cast<Instruction>(*UI));
77 /// AddUsesToWorkList - When an instruction is simplified, add operands to
78 /// the work lists because they might get more simplified now.
80 void AddUsesToWorkList(Instruction &I) {
81 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
82 if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i)))
83 WorkList.push_back(Op);
86 // removeFromWorkList - remove all instances of I from the worklist.
87 void removeFromWorkList(Instruction *I);
89 virtual bool runOnFunction(Function &F);
91 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
92 AU.addRequired<TargetData>();
96 TargetData &getTargetData() const { return *TD; }
98 // Visitation implementation - Implement instruction combining for different
99 // instruction types. The semantics are as follows:
101 // null - No change was made
102 // I - Change was made, I is still valid, I may be dead though
103 // otherwise - Change was made, replace I with returned instruction
105 Instruction *visitAdd(BinaryOperator &I);
106 Instruction *visitSub(BinaryOperator &I);
107 Instruction *visitMul(BinaryOperator &I);
108 Instruction *visitDiv(BinaryOperator &I);
109 Instruction *visitRem(BinaryOperator &I);
110 Instruction *visitAnd(BinaryOperator &I);
111 Instruction *visitOr (BinaryOperator &I);
112 Instruction *visitXor(BinaryOperator &I);
113 Instruction *visitSetCondInst(BinaryOperator &I);
114 Instruction *visitShiftInst(ShiftInst &I);
115 Instruction *visitCastInst(CastInst &CI);
116 Instruction *visitSelectInst(SelectInst &CI);
117 Instruction *visitCallInst(CallInst &CI);
118 Instruction *visitInvokeInst(InvokeInst &II);
119 Instruction *visitPHINode(PHINode &PN);
120 Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
121 Instruction *visitAllocationInst(AllocationInst &AI);
122 Instruction *visitFreeInst(FreeInst &FI);
123 Instruction *visitLoadInst(LoadInst &LI);
124 Instruction *visitBranchInst(BranchInst &BI);
126 // visitInstruction - Specify what to return for unhandled instructions...
127 Instruction *visitInstruction(Instruction &I) { return 0; }
130 Instruction *visitCallSite(CallSite CS);
131 bool transformConstExprCastCall(CallSite CS);
134 // InsertNewInstBefore - insert an instruction New before instruction Old
135 // in the program. Add the new instruction to the worklist.
137 Value *InsertNewInstBefore(Instruction *New, Instruction &Old) {
138 assert(New && New->getParent() == 0 &&
139 "New instruction already inserted into a basic block!");
140 BasicBlock *BB = Old.getParent();
141 BB->getInstList().insert(&Old, New); // Insert inst
142 WorkList.push_back(New); // Add to worklist
146 // ReplaceInstUsesWith - This method is to be used when an instruction is
147 // found to be dead, replacable with another preexisting expression. Here
148 // we add all uses of I to the worklist, replace all uses of I with the new
149 // value, then return I, so that the inst combiner will know that I was
152 Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
153 AddUsersToWorkList(I); // Add all modified instrs to worklist
155 I.replaceAllUsesWith(V);
158 // If we are replacing the instruction with itself, this must be in a
159 // segment of unreachable code, so just clobber the instruction.
160 I.replaceAllUsesWith(Constant::getNullValue(I.getType()));
165 // EraseInstFromFunction - When dealing with an instruction that has side
166 // effects or produces a void value, we can't rely on DCE to delete the
167 // instruction. Instead, visit methods should return the value returned by
169 Instruction *EraseInstFromFunction(Instruction &I) {
170 assert(I.use_empty() && "Cannot erase instruction that is used!");
171 AddUsesToWorkList(I);
172 removeFromWorkList(&I);
173 I.getParent()->getInstList().erase(&I);
174 return 0; // Don't do anything with FI
179 /// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
180 /// InsertBefore instruction. This is specialized a bit to avoid inserting
181 /// casts that are known to not do anything...
183 Value *InsertOperandCastBefore(Value *V, const Type *DestTy,
184 Instruction *InsertBefore);
186 // SimplifyCommutative - This performs a few simplifications for commutative
188 bool SimplifyCommutative(BinaryOperator &I);
190 Instruction *OptAndOp(Instruction *Op, ConstantIntegral *OpRHS,
191 ConstantIntegral *AndRHS, BinaryOperator &TheAnd);
194 RegisterOpt<InstCombiner> X("instcombine", "Combine redundant instructions");
197 // getComplexity: Assign a complexity or rank value to LLVM Values...
198 // 0 -> Constant, 1 -> Other, 2 -> Argument, 2 -> Unary, 3 -> OtherInst
199 static unsigned getComplexity(Value *V) {
200 if (isa<Instruction>(V)) {
201 if (BinaryOperator::isNeg(V) || BinaryOperator::isNot(V))
205 if (isa<Argument>(V)) return 2;
206 return isa<Constant>(V) ? 0 : 1;
209 // isOnlyUse - Return true if this instruction will be deleted if we stop using
211 static bool isOnlyUse(Value *V) {
212 return V->hasOneUse() || isa<Constant>(V);
215 // getSignedIntegralType - Given an unsigned integral type, return the signed
216 // version of it that has the same size.
217 static const Type *getSignedIntegralType(const Type *Ty) {
218 switch (Ty->getPrimitiveID()) {
219 default: assert(0 && "Invalid unsigned integer type!"); abort();
220 case Type::UByteTyID: return Type::SByteTy;
221 case Type::UShortTyID: return Type::ShortTy;
222 case Type::UIntTyID: return Type::IntTy;
223 case Type::ULongTyID: return Type::LongTy;
227 // getUnsignedIntegralType - Given an signed integral type, return the unsigned
228 // version of it that has the same size.
229 static const Type *getUnsignedIntegralType(const Type *Ty) {
230 switch (Ty->getPrimitiveID()) {
231 default: assert(0 && "Invalid signed integer type!"); abort();
232 case Type::SByteTyID: return Type::UByteTy;
233 case Type::ShortTyID: return Type::UShortTy;
234 case Type::IntTyID: return Type::UIntTy;
235 case Type::LongTyID: return Type::ULongTy;
239 // getPromotedType - Return the specified type promoted as it would be to pass
240 // though a va_arg area...
241 static const Type *getPromotedType(const Type *Ty) {
242 switch (Ty->getPrimitiveID()) {
243 case Type::SByteTyID:
244 case Type::ShortTyID: return Type::IntTy;
245 case Type::UByteTyID:
246 case Type::UShortTyID: return Type::UIntTy;
247 case Type::FloatTyID: return Type::DoubleTy;
252 // SimplifyCommutative - This performs a few simplifications for commutative
255 // 1. Order operands such that they are listed from right (least complex) to
256 // left (most complex). This puts constants before unary operators before
259 // 2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
260 // 3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
262 bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
263 bool Changed = false;
264 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
265 Changed = !I.swapOperands();
267 if (!I.isAssociative()) return Changed;
268 Instruction::BinaryOps Opcode = I.getOpcode();
269 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
270 if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
271 if (isa<Constant>(I.getOperand(1))) {
272 Constant *Folded = ConstantExpr::get(I.getOpcode(),
273 cast<Constant>(I.getOperand(1)),
274 cast<Constant>(Op->getOperand(1)));
275 I.setOperand(0, Op->getOperand(0));
276 I.setOperand(1, Folded);
278 } else if (BinaryOperator *Op1=dyn_cast<BinaryOperator>(I.getOperand(1)))
279 if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
280 isOnlyUse(Op) && isOnlyUse(Op1)) {
281 Constant *C1 = cast<Constant>(Op->getOperand(1));
282 Constant *C2 = cast<Constant>(Op1->getOperand(1));
284 // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
285 Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
286 Instruction *New = BinaryOperator::create(Opcode, Op->getOperand(0),
289 WorkList.push_back(New);
290 I.setOperand(0, New);
291 I.setOperand(1, Folded);
298 // dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
299 // if the LHS is a constant zero (which is the 'negate' form).
301 static inline Value *dyn_castNegVal(Value *V) {
302 if (BinaryOperator::isNeg(V))
303 return BinaryOperator::getNegArgument(cast<BinaryOperator>(V));
305 // Constants can be considered to be negated values if they can be folded...
306 if (Constant *C = dyn_cast<Constant>(V))
307 return ConstantExpr::get(Instruction::Sub,
308 Constant::getNullValue(V->getType()), C);
312 static Constant *NotConstant(Constant *C) {
313 return ConstantExpr::get(Instruction::Xor, C,
314 ConstantIntegral::getAllOnesValue(C->getType()));
317 static inline Value *dyn_castNotVal(Value *V) {
318 if (BinaryOperator::isNot(V))
319 return BinaryOperator::getNotArgument(cast<BinaryOperator>(V));
321 // Constants can be considered to be not'ed values...
322 if (ConstantIntegral *C = dyn_cast<ConstantIntegral>(V))
323 return NotConstant(C);
327 // dyn_castFoldableMul - If this value is a multiply that can be folded into
328 // other computations (because it has a constant operand), return the
329 // non-constant operand of the multiply.
331 static inline Value *dyn_castFoldableMul(Value *V) {
332 if (V->hasOneUse() && V->getType()->isInteger())
333 if (Instruction *I = dyn_cast<Instruction>(V))
334 if (I->getOpcode() == Instruction::Mul)
335 if (isa<Constant>(I->getOperand(1)))
336 return I->getOperand(0);
340 // dyn_castMaskingAnd - If this value is an And instruction masking a value with
341 // a constant, return the constant being anded with.
343 template<class ValueType>
344 static inline Constant *dyn_castMaskingAnd(ValueType *V) {
345 if (Instruction *I = dyn_cast<Instruction>(V))
346 if (I->getOpcode() == Instruction::And)
347 return dyn_cast<Constant>(I->getOperand(1));
349 // If this is a constant, it acts just like we were masking with it.
350 return dyn_cast<Constant>(V);
353 // Log2 - Calculate the log base 2 for the specified value if it is exactly a
355 static unsigned Log2(uint64_t Val) {
356 assert(Val > 1 && "Values 0 and 1 should be handled elsewhere!");
359 if (Val & 1) return 0; // Multiple bits set?
367 /// AssociativeOpt - Perform an optimization on an associative operator. This
368 /// function is designed to check a chain of associative operators for a
369 /// potential to apply a certain optimization. Since the optimization may be
370 /// applicable if the expression was reassociated, this checks the chain, then
371 /// reassociates the expression as necessary to expose the optimization
372 /// opportunity. This makes use of a special Functor, which must define
373 /// 'shouldApply' and 'apply' methods.
375 template<typename Functor>
376 Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) {
377 unsigned Opcode = Root.getOpcode();
378 Value *LHS = Root.getOperand(0);
380 // Quick check, see if the immediate LHS matches...
381 if (F.shouldApply(LHS))
382 return F.apply(Root);
384 // Otherwise, if the LHS is not of the same opcode as the root, return.
385 Instruction *LHSI = dyn_cast<Instruction>(LHS);
386 while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) {
387 // Should we apply this transform to the RHS?
388 bool ShouldApply = F.shouldApply(LHSI->getOperand(1));
390 // If not to the RHS, check to see if we should apply to the LHS...
391 if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) {
392 cast<BinaryOperator>(LHSI)->swapOperands(); // Make the LHS the RHS
396 // If the functor wants to apply the optimization to the RHS of LHSI,
397 // reassociate the expression from ((? op A) op B) to (? op (A op B))
399 BasicBlock *BB = Root.getParent();
400 // All of the instructions have a single use and have no side-effects,
401 // because of this, we can pull them all into the current basic block.
402 if (LHSI->getParent() != BB) {
403 // Move all of the instructions from root to LHSI into the current
405 Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0));
406 Instruction *LastUse = &Root;
407 while (TmpLHSI->getParent() == BB) {
409 TmpLHSI = cast<Instruction>(TmpLHSI->getOperand(0));
412 // Loop over all of the instructions in other blocks, moving them into
414 Value *TmpLHS = TmpLHSI;
416 TmpLHSI = cast<Instruction>(TmpLHS);
417 // Remove from current block...
418 TmpLHSI->getParent()->getInstList().remove(TmpLHSI);
419 // Insert before the last instruction...
420 BB->getInstList().insert(LastUse, TmpLHSI);
421 TmpLHS = TmpLHSI->getOperand(0);
422 } while (TmpLHSI != LHSI);
425 // Now all of the instructions are in the current basic block, go ahead
426 // and perform the reassociation.
427 Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0));
429 // First move the selected RHS to the LHS of the root...
430 Root.setOperand(0, LHSI->getOperand(1));
432 // Make what used to be the LHS of the root be the user of the root...
433 Value *ExtraOperand = TmpLHSI->getOperand(1);
434 if (&Root != TmpLHSI)
435 Root.replaceAllUsesWith(TmpLHSI); // Users now use TmpLHSI
437 Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType()));
440 TmpLHSI->setOperand(1, &Root); // TmpLHSI now uses the root
441 BB->getInstList().remove(&Root); // Remove root from the BB
442 BB->getInstList().insert(TmpLHSI, &Root); // Insert root before TmpLHSI
444 // Now propagate the ExtraOperand down the chain of instructions until we
446 while (TmpLHSI != LHSI) {
447 Instruction *NextLHSI = cast<Instruction>(TmpLHSI->getOperand(0));
448 Value *NextOp = NextLHSI->getOperand(1);
449 NextLHSI->setOperand(1, ExtraOperand);
451 ExtraOperand = NextOp;
454 // Now that the instructions are reassociated, have the functor perform
455 // the transformation...
456 return F.apply(Root);
459 LHSI = dyn_cast<Instruction>(LHSI->getOperand(0));
465 // AddRHS - Implements: X + X --> X << 1
468 AddRHS(Value *rhs) : RHS(rhs) {}
469 bool shouldApply(Value *LHS) const { return LHS == RHS; }
470 Instruction *apply(BinaryOperator &Add) const {
471 return new ShiftInst(Instruction::Shl, Add.getOperand(0),
472 ConstantInt::get(Type::UByteTy, 1));
476 // AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2)
478 struct AddMaskingAnd {
480 AddMaskingAnd(Constant *c) : C2(c) {}
481 bool shouldApply(Value *LHS) const {
482 if (Constant *C1 = dyn_castMaskingAnd(LHS))
483 return ConstantExpr::get(Instruction::And, C1, C2)->isNullValue();
486 Instruction *apply(BinaryOperator &Add) const {
487 return BinaryOperator::create(Instruction::Or, Add.getOperand(0),
492 static Value *FoldOperationIntoSelectOperand(Instruction &BI, Value *SO,
494 // Figure out if the constant is the left or the right argument.
495 bool ConstIsRHS = isa<Constant>(BI.getOperand(1));
496 Constant *ConstOperand = cast<Constant>(BI.getOperand(ConstIsRHS));
498 if (Constant *SOC = dyn_cast<Constant>(SO)) {
500 return ConstantExpr::get(BI.getOpcode(), SOC, ConstOperand);
501 return ConstantExpr::get(BI.getOpcode(), ConstOperand, SOC);
504 Value *Op0 = SO, *Op1 = ConstOperand;
508 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&BI))
509 New = BinaryOperator::create(BO->getOpcode(), Op0, Op1);
510 else if (ShiftInst *SI = dyn_cast<ShiftInst>(&BI))
511 New = new ShiftInst(SI->getOpcode(), Op0, Op1);
513 assert(0 && "Unknown binary instruction type!");
516 return IC->InsertNewInstBefore(New, BI);
519 // FoldBinOpIntoSelect - Given an instruction with a select as one operand and a
520 // constant as the other operand, try to fold the binary operator into the
522 static Instruction *FoldBinOpIntoSelect(Instruction &BI, SelectInst *SI,
524 // Don't modify shared select instructions
525 if (!SI->hasOneUse()) return 0;
526 Value *TV = SI->getOperand(1);
527 Value *FV = SI->getOperand(2);
529 if (isa<Constant>(TV) || isa<Constant>(FV)) {
530 Value *SelectTrueVal = FoldOperationIntoSelectOperand(BI, TV, IC);
531 Value *SelectFalseVal = FoldOperationIntoSelectOperand(BI, FV, IC);
533 return new SelectInst(SI->getCondition(), SelectTrueVal,
539 Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
540 bool Changed = SimplifyCommutative(I);
541 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
543 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
545 if (!I.getType()->isFloatingPoint() && // -0 + +0 = +0, so it's not a noop
547 return ReplaceInstUsesWith(I, LHS);
549 // X + (signbit) --> X ^ signbit
550 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
551 unsigned NumBits = CI->getType()->getPrimitiveSize()*8;
552 uint64_t Val = CI->getRawValue() & (1ULL << NumBits)-1;
553 if (Val == (1ULL << NumBits-1))
554 return BinaryOperator::create(Instruction::Xor, LHS, RHS);
559 if (I.getType()->isInteger())
560 if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS))) return Result;
563 if (Value *V = dyn_castNegVal(LHS))
564 return BinaryOperator::create(Instruction::Sub, RHS, V);
567 if (!isa<Constant>(RHS))
568 if (Value *V = dyn_castNegVal(RHS))
569 return BinaryOperator::create(Instruction::Sub, LHS, V);
571 // X*C + X --> X * (C+1)
572 if (dyn_castFoldableMul(LHS) == RHS) {
574 ConstantExpr::get(Instruction::Add,
575 cast<Constant>(cast<Instruction>(LHS)->getOperand(1)),
576 ConstantInt::get(I.getType(), 1));
577 return BinaryOperator::create(Instruction::Mul, RHS, CP1);
580 // X + X*C --> X * (C+1)
581 if (dyn_castFoldableMul(RHS) == LHS) {
583 ConstantExpr::get(Instruction::Add,
584 cast<Constant>(cast<Instruction>(RHS)->getOperand(1)),
585 ConstantInt::get(I.getType(), 1));
586 return BinaryOperator::create(Instruction::Mul, LHS, CP1);
589 // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0
590 if (Constant *C2 = dyn_castMaskingAnd(RHS))
591 if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2))) return R;
593 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
594 if (Instruction *ILHS = dyn_cast<Instruction>(LHS)) {
595 switch (ILHS->getOpcode()) {
596 case Instruction::Xor:
597 // ~X + C --> (C-1) - X
598 if (ConstantInt *XorRHS = dyn_cast<ConstantInt>(ILHS->getOperand(1)))
599 if (XorRHS->isAllOnesValue())
600 return BinaryOperator::create(Instruction::Sub,
601 ConstantExpr::get(Instruction::Sub,
602 CRHS, ConstantInt::get(I.getType(), 1)),
603 ILHS->getOperand(0));
605 case Instruction::Select:
606 // Try to fold constant add into select arguments.
607 if (Instruction *R = FoldBinOpIntoSelect(I,cast<SelectInst>(ILHS),this))
615 return Changed ? &I : 0;
618 // isSignBit - Return true if the value represented by the constant only has the
619 // highest order bit set.
620 static bool isSignBit(ConstantInt *CI) {
621 unsigned NumBits = CI->getType()->getPrimitiveSize()*8;
622 return (CI->getRawValue() & ~(-1LL << NumBits)) == (1ULL << (NumBits-1));
625 static unsigned getTypeSizeInBits(const Type *Ty) {
626 return Ty == Type::BoolTy ? 1 : Ty->getPrimitiveSize()*8;
629 /// RemoveNoopCast - Strip off nonconverting casts from the value.
631 static Value *RemoveNoopCast(Value *V) {
632 if (CastInst *CI = dyn_cast<CastInst>(V)) {
633 const Type *CTy = CI->getType();
634 const Type *OpTy = CI->getOperand(0)->getType();
635 if (CTy->isInteger() && OpTy->isInteger()) {
636 if (CTy->getPrimitiveSize() == OpTy->getPrimitiveSize())
637 return RemoveNoopCast(CI->getOperand(0));
638 } else if (isa<PointerType>(CTy) && isa<PointerType>(OpTy))
639 return RemoveNoopCast(CI->getOperand(0));
644 Instruction *InstCombiner::visitSub(BinaryOperator &I) {
645 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
647 if (Op0 == Op1) // sub X, X -> 0
648 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
650 // If this is a 'B = x-(-A)', change to B = x+A...
651 if (Value *V = dyn_castNegVal(Op1))
652 return BinaryOperator::create(Instruction::Add, Op0, V);
654 if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
655 // Replace (-1 - A) with (~A)...
656 if (C->isAllOnesValue())
657 return BinaryOperator::createNot(Op1);
659 // C - ~X == X + (1+C)
660 if (BinaryOperator::isNot(Op1))
661 return BinaryOperator::create(Instruction::Add,
662 BinaryOperator::getNotArgument(cast<BinaryOperator>(Op1)),
663 ConstantExpr::get(Instruction::Add, C,
664 ConstantInt::get(I.getType(), 1)));
665 // -((uint)X >> 31) -> ((int)X >> 31)
666 // -((int)X >> 31) -> ((uint)X >> 31)
667 if (C->isNullValue()) {
668 Value *NoopCastedRHS = RemoveNoopCast(Op1);
669 if (ShiftInst *SI = dyn_cast<ShiftInst>(NoopCastedRHS))
670 if (SI->getOpcode() == Instruction::Shr)
671 if (ConstantUInt *CU = dyn_cast<ConstantUInt>(SI->getOperand(1))) {
673 if (SI->getType()->isSigned())
674 NewTy = getUnsignedIntegralType(SI->getType());
676 NewTy = getSignedIntegralType(SI->getType());
677 // Check to see if we are shifting out everything but the sign bit.
678 if (CU->getValue() == SI->getType()->getPrimitiveSize()*8-1) {
679 // Ok, the transformation is safe. Insert a cast of the incoming
680 // value, then the new shift, then the new cast.
681 Instruction *FirstCast = new CastInst(SI->getOperand(0), NewTy,
682 SI->getOperand(0)->getName());
683 Value *InV = InsertNewInstBefore(FirstCast, I);
684 Instruction *NewShift = new ShiftInst(Instruction::Shr, FirstCast,
686 if (NewShift->getType() == I.getType())
689 InV = InsertNewInstBefore(NewShift, I);
690 return new CastInst(NewShift, I.getType());
696 // Try to fold constant sub into select arguments.
697 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
698 if (Instruction *R = FoldBinOpIntoSelect(I, SI, this))
702 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1))
703 if (Op1I->hasOneUse()) {
704 // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
705 // is not used by anyone else...
707 if (Op1I->getOpcode() == Instruction::Sub &&
708 !Op1I->getType()->isFloatingPoint()) {
709 // Swap the two operands of the subexpr...
710 Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
711 Op1I->setOperand(0, IIOp1);
712 Op1I->setOperand(1, IIOp0);
714 // Create the new top level add instruction...
715 return BinaryOperator::create(Instruction::Add, Op0, Op1);
718 // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
720 if (Op1I->getOpcode() == Instruction::And &&
721 (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
722 Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
724 Instruction *NewNot = BinaryOperator::createNot(OtherOp, "B.not", &I);
725 return BinaryOperator::create(Instruction::And, Op0, NewNot);
728 // X - X*C --> X * (1-C)
729 if (dyn_castFoldableMul(Op1I) == Op0) {
731 ConstantExpr::get(Instruction::Sub,
732 ConstantInt::get(I.getType(), 1),
733 cast<Constant>(cast<Instruction>(Op1)->getOperand(1)));
734 assert(CP1 && "Couldn't constant fold 1-C?");
735 return BinaryOperator::create(Instruction::Mul, Op0, CP1);
739 // X*C - X --> X * (C-1)
740 if (dyn_castFoldableMul(Op0) == Op1) {
742 ConstantExpr::get(Instruction::Sub,
743 cast<Constant>(cast<Instruction>(Op0)->getOperand(1)),
744 ConstantInt::get(I.getType(), 1));
745 assert(CP1 && "Couldn't constant fold C - 1?");
746 return BinaryOperator::create(Instruction::Mul, Op1, CP1);
752 /// isSignBitCheck - Given an exploded setcc instruction, return true if it is
753 /// really just returns true if the most significant (sign) bit is set.
754 static bool isSignBitCheck(unsigned Opcode, Value *LHS, ConstantInt *RHS) {
755 if (RHS->getType()->isSigned()) {
756 // True if source is LHS < 0 or LHS <= -1
757 return Opcode == Instruction::SetLT && RHS->isNullValue() ||
758 Opcode == Instruction::SetLE && RHS->isAllOnesValue();
760 ConstantUInt *RHSC = cast<ConstantUInt>(RHS);
761 // True if source is LHS > 127 or LHS >= 128, where the constants depend on
762 // the size of the integer type.
763 if (Opcode == Instruction::SetGE)
764 return RHSC->getValue() == 1ULL<<(RHS->getType()->getPrimitiveSize()*8-1);
765 if (Opcode == Instruction::SetGT)
766 return RHSC->getValue() ==
767 (1ULL << (RHS->getType()->getPrimitiveSize()*8-1))-1;
772 Instruction *InstCombiner::visitMul(BinaryOperator &I) {
773 bool Changed = SimplifyCommutative(I);
774 Value *Op0 = I.getOperand(0);
776 // Simplify mul instructions with a constant RHS...
777 if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
778 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
780 // ((X << C1)*C2) == (X * (C2 << C1))
781 if (ShiftInst *SI = dyn_cast<ShiftInst>(Op0))
782 if (SI->getOpcode() == Instruction::Shl)
783 if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
784 return BinaryOperator::create(Instruction::Mul, SI->getOperand(0),
785 ConstantExpr::get(Instruction::Shl, CI, ShOp));
787 if (CI->isNullValue())
788 return ReplaceInstUsesWith(I, Op1); // X * 0 == 0
789 if (CI->equalsInt(1)) // X * 1 == X
790 return ReplaceInstUsesWith(I, Op0);
791 if (CI->isAllOnesValue()) // X * -1 == 0 - X
792 return BinaryOperator::createNeg(Op0, I.getName());
794 int64_t Val = (int64_t)cast<ConstantInt>(CI)->getRawValue();
795 if (uint64_t C = Log2(Val)) // Replace X*(2^C) with X << C
796 return new ShiftInst(Instruction::Shl, Op0,
797 ConstantUInt::get(Type::UByteTy, C));
799 ConstantFP *Op1F = cast<ConstantFP>(Op1);
800 if (Op1F->isNullValue())
801 return ReplaceInstUsesWith(I, Op1);
803 // "In IEEE floating point, x*1 is not equivalent to x for nans. However,
804 // ANSI says we can drop signals, so we can do this anyway." (from GCC)
805 if (Op1F->getValue() == 1.0)
806 return ReplaceInstUsesWith(I, Op0); // Eliminate 'mul double %X, 1.0'
809 // Try to fold constant mul into select arguments.
810 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
811 if (Instruction *R = FoldBinOpIntoSelect(I, SI, this))
815 if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
816 if (Value *Op1v = dyn_castNegVal(I.getOperand(1)))
817 return BinaryOperator::create(Instruction::Mul, Op0v, Op1v);
819 // If one of the operands of the multiply is a cast from a boolean value, then
820 // we know the bool is either zero or one, so this is a 'masking' multiply.
821 // See if we can simplify things based on how the boolean was originally
823 CastInst *BoolCast = 0;
824 if (CastInst *CI = dyn_cast<CastInst>(I.getOperand(0)))
825 if (CI->getOperand(0)->getType() == Type::BoolTy)
828 if (CastInst *CI = dyn_cast<CastInst>(I.getOperand(1)))
829 if (CI->getOperand(0)->getType() == Type::BoolTy)
832 if (SetCondInst *SCI = dyn_cast<SetCondInst>(BoolCast->getOperand(0))) {
833 Value *SCIOp0 = SCI->getOperand(0), *SCIOp1 = SCI->getOperand(1);
834 const Type *SCOpTy = SCIOp0->getType();
836 // If the setcc is true iff the sign bit of X is set, then convert this
837 // multiply into a shift/and combination.
838 if (isa<ConstantInt>(SCIOp1) &&
839 isSignBitCheck(SCI->getOpcode(), SCIOp0, cast<ConstantInt>(SCIOp1))) {
840 // Shift the X value right to turn it into "all signbits".
841 Constant *Amt = ConstantUInt::get(Type::UByteTy,
842 SCOpTy->getPrimitiveSize()*8-1);
843 if (SCIOp0->getType()->isUnsigned()) {
844 const Type *NewTy = getSignedIntegralType(SCIOp0->getType());
845 SCIOp0 = InsertNewInstBefore(new CastInst(SCIOp0, NewTy,
846 SCIOp0->getName()), I);
850 InsertNewInstBefore(new ShiftInst(Instruction::Shr, SCIOp0, Amt,
851 BoolCast->getOperand(0)->getName()+
854 // If the multiply type is not the same as the source type, sign extend
855 // or truncate to the multiply type.
856 if (I.getType() != V->getType())
857 V = InsertNewInstBefore(new CastInst(V, I.getType(), V->getName()),I);
859 Value *OtherOp = Op0 == BoolCast ? I.getOperand(1) : Op0;
860 return BinaryOperator::create(Instruction::And, V, OtherOp);
865 return Changed ? &I : 0;
868 Instruction *InstCombiner::visitDiv(BinaryOperator &I) {
870 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I.getOperand(1))) {
871 if (RHS->equalsInt(1))
872 return ReplaceInstUsesWith(I, I.getOperand(0));
874 // Check to see if this is an unsigned division with an exact power of 2,
875 // if so, convert to a right shift.
876 if (ConstantUInt *C = dyn_cast<ConstantUInt>(RHS))
877 if (uint64_t Val = C->getValue()) // Don't break X / 0
878 if (uint64_t C = Log2(Val))
879 return new ShiftInst(Instruction::Shr, I.getOperand(0),
880 ConstantUInt::get(Type::UByteTy, C));
883 // 0 / X == 0, we don't need to preserve faults!
884 if (ConstantInt *LHS = dyn_cast<ConstantInt>(I.getOperand(0)))
885 if (LHS->equalsInt(0))
886 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
892 Instruction *InstCombiner::visitRem(BinaryOperator &I) {
893 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I.getOperand(1))) {
894 if (RHS->equalsInt(1)) // X % 1 == 0
895 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
896 if (RHS->isAllOnesValue()) // X % -1 == 0
897 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
899 // Check to see if this is an unsigned remainder with an exact power of 2,
900 // if so, convert to a bitwise and.
901 if (ConstantUInt *C = dyn_cast<ConstantUInt>(RHS))
902 if (uint64_t Val = C->getValue()) // Don't break X % 0 (divide by zero)
904 return BinaryOperator::create(Instruction::And, I.getOperand(0),
905 ConstantUInt::get(I.getType(), Val-1));
908 // 0 % X == 0, we don't need to preserve faults!
909 if (ConstantInt *LHS = dyn_cast<ConstantInt>(I.getOperand(0)))
910 if (LHS->equalsInt(0))
911 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
916 // isMaxValueMinusOne - return true if this is Max-1
917 static bool isMaxValueMinusOne(const ConstantInt *C) {
918 if (const ConstantUInt *CU = dyn_cast<ConstantUInt>(C)) {
919 // Calculate -1 casted to the right type...
920 unsigned TypeBits = C->getType()->getPrimitiveSize()*8;
921 uint64_t Val = ~0ULL; // All ones
922 Val >>= 64-TypeBits; // Shift out unwanted 1 bits...
923 return CU->getValue() == Val-1;
926 const ConstantSInt *CS = cast<ConstantSInt>(C);
928 // Calculate 0111111111..11111
929 unsigned TypeBits = C->getType()->getPrimitiveSize()*8;
930 int64_t Val = INT64_MAX; // All ones
931 Val >>= 64-TypeBits; // Shift out unwanted 1 bits...
932 return CS->getValue() == Val-1;
935 // isMinValuePlusOne - return true if this is Min+1
936 static bool isMinValuePlusOne(const ConstantInt *C) {
937 if (const ConstantUInt *CU = dyn_cast<ConstantUInt>(C))
938 return CU->getValue() == 1;
940 const ConstantSInt *CS = cast<ConstantSInt>(C);
942 // Calculate 1111111111000000000000
943 unsigned TypeBits = C->getType()->getPrimitiveSize()*8;
944 int64_t Val = -1; // All ones
945 Val <<= TypeBits-1; // Shift over to the right spot
946 return CS->getValue() == Val+1;
949 /// getSetCondCode - Encode a setcc opcode into a three bit mask. These bits
950 /// are carefully arranged to allow folding of expressions such as:
952 /// (A < B) | (A > B) --> (A != B)
954 /// Bit value '4' represents that the comparison is true if A > B, bit value '2'
955 /// represents that the comparison is true if A == B, and bit value '1' is true
958 static unsigned getSetCondCode(const SetCondInst *SCI) {
959 switch (SCI->getOpcode()) {
961 case Instruction::SetGT: return 1;
962 case Instruction::SetEQ: return 2;
963 case Instruction::SetGE: return 3;
964 case Instruction::SetLT: return 4;
965 case Instruction::SetNE: return 5;
966 case Instruction::SetLE: return 6;
969 assert(0 && "Invalid SetCC opcode!");
974 /// getSetCCValue - This is the complement of getSetCondCode, which turns an
975 /// opcode and two operands into either a constant true or false, or a brand new
976 /// SetCC instruction.
977 static Value *getSetCCValue(unsigned Opcode, Value *LHS, Value *RHS) {
979 case 0: return ConstantBool::False;
980 case 1: return new SetCondInst(Instruction::SetGT, LHS, RHS);
981 case 2: return new SetCondInst(Instruction::SetEQ, LHS, RHS);
982 case 3: return new SetCondInst(Instruction::SetGE, LHS, RHS);
983 case 4: return new SetCondInst(Instruction::SetLT, LHS, RHS);
984 case 5: return new SetCondInst(Instruction::SetNE, LHS, RHS);
985 case 6: return new SetCondInst(Instruction::SetLE, LHS, RHS);
986 case 7: return ConstantBool::True;
987 default: assert(0 && "Illegal SetCCCode!"); return 0;
991 // FoldSetCCLogical - Implements (setcc1 A, B) & (setcc2 A, B) --> (setcc3 A, B)
992 struct FoldSetCCLogical {
995 FoldSetCCLogical(InstCombiner &ic, SetCondInst *SCI)
996 : IC(ic), LHS(SCI->getOperand(0)), RHS(SCI->getOperand(1)) {}
997 bool shouldApply(Value *V) const {
998 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
999 return (SCI->getOperand(0) == LHS && SCI->getOperand(1) == RHS ||
1000 SCI->getOperand(0) == RHS && SCI->getOperand(1) == LHS);
1003 Instruction *apply(BinaryOperator &Log) const {
1004 SetCondInst *SCI = cast<SetCondInst>(Log.getOperand(0));
1005 if (SCI->getOperand(0) != LHS) {
1006 assert(SCI->getOperand(1) == LHS);
1007 SCI->swapOperands(); // Swap the LHS and RHS of the SetCC
1010 unsigned LHSCode = getSetCondCode(SCI);
1011 unsigned RHSCode = getSetCondCode(cast<SetCondInst>(Log.getOperand(1)));
1013 switch (Log.getOpcode()) {
1014 case Instruction::And: Code = LHSCode & RHSCode; break;
1015 case Instruction::Or: Code = LHSCode | RHSCode; break;
1016 case Instruction::Xor: Code = LHSCode ^ RHSCode; break;
1017 default: assert(0 && "Illegal logical opcode!"); return 0;
1020 Value *RV = getSetCCValue(Code, LHS, RHS);
1021 if (Instruction *I = dyn_cast<Instruction>(RV))
1023 // Otherwise, it's a constant boolean value...
1024 return IC.ReplaceInstUsesWith(Log, RV);
1029 // OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where
1030 // the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is
1031 // guaranteed to be either a shift instruction or a binary operator.
1032 Instruction *InstCombiner::OptAndOp(Instruction *Op,
1033 ConstantIntegral *OpRHS,
1034 ConstantIntegral *AndRHS,
1035 BinaryOperator &TheAnd) {
1036 Value *X = Op->getOperand(0);
1037 Constant *Together = 0;
1038 if (!isa<ShiftInst>(Op))
1039 Together = ConstantExpr::get(Instruction::And, AndRHS, OpRHS);
1041 switch (Op->getOpcode()) {
1042 case Instruction::Xor:
1043 if (Together->isNullValue()) {
1044 // (X ^ C1) & C2 --> (X & C2) iff (C1&C2) == 0
1045 return BinaryOperator::create(Instruction::And, X, AndRHS);
1046 } else if (Op->hasOneUse()) {
1047 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
1048 std::string OpName = Op->getName(); Op->setName("");
1049 Instruction *And = BinaryOperator::create(Instruction::And,
1051 InsertNewInstBefore(And, TheAnd);
1052 return BinaryOperator::create(Instruction::Xor, And, Together);
1055 case Instruction::Or:
1056 // (X | C1) & C2 --> X & C2 iff C1 & C1 == 0
1057 if (Together->isNullValue())
1058 return BinaryOperator::create(Instruction::And, X, AndRHS);
1060 if (Together == AndRHS) // (X | C) & C --> C
1061 return ReplaceInstUsesWith(TheAnd, AndRHS);
1063 if (Op->hasOneUse() && Together != OpRHS) {
1064 // (X | C1) & C2 --> (X | (C1&C2)) & C2
1065 std::string Op0Name = Op->getName(); Op->setName("");
1066 Instruction *Or = BinaryOperator::create(Instruction::Or, X,
1068 InsertNewInstBefore(Or, TheAnd);
1069 return BinaryOperator::create(Instruction::And, Or, AndRHS);
1073 case Instruction::Add:
1074 if (Op->hasOneUse()) {
1075 // Adding a one to a single bit bit-field should be turned into an XOR
1076 // of the bit. First thing to check is to see if this AND is with a
1077 // single bit constant.
1078 unsigned long long AndRHSV = cast<ConstantInt>(AndRHS)->getRawValue();
1080 // Clear bits that are not part of the constant.
1081 AndRHSV &= (1ULL << AndRHS->getType()->getPrimitiveSize()*8)-1;
1083 // If there is only one bit set...
1084 if ((AndRHSV & (AndRHSV-1)) == 0) {
1085 // Ok, at this point, we know that we are masking the result of the
1086 // ADD down to exactly one bit. If the constant we are adding has
1087 // no bits set below this bit, then we can eliminate the ADD.
1088 unsigned long long AddRHS = cast<ConstantInt>(OpRHS)->getRawValue();
1090 // Check to see if any bits below the one bit set in AndRHSV are set.
1091 if ((AddRHS & (AndRHSV-1)) == 0) {
1092 // If not, the only thing that can effect the output of the AND is
1093 // the bit specified by AndRHSV. If that bit is set, the effect of
1094 // the XOR is to toggle the bit. If it is clear, then the ADD has
1096 if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
1097 TheAnd.setOperand(0, X);
1100 std::string Name = Op->getName(); Op->setName("");
1101 // Pull the XOR out of the AND.
1102 Instruction *NewAnd =
1103 BinaryOperator::create(Instruction::And, X, AndRHS, Name);
1104 InsertNewInstBefore(NewAnd, TheAnd);
1105 return BinaryOperator::create(Instruction::Xor, NewAnd, AndRHS);
1112 case Instruction::Shl: {
1113 // We know that the AND will not produce any of the bits shifted in, so if
1114 // the anded constant includes them, clear them now!
1116 Constant *AllOne = ConstantIntegral::getAllOnesValue(AndRHS->getType());
1117 Constant *CI = ConstantExpr::get(Instruction::And, AndRHS,
1118 ConstantExpr::get(Instruction::Shl, AllOne, OpRHS));
1120 TheAnd.setOperand(1, CI);
1125 case Instruction::Shr:
1126 // We know that the AND will not produce any of the bits shifted in, so if
1127 // the anded constant includes them, clear them now! This only applies to
1128 // unsigned shifts, because a signed shr may bring in set bits!
1130 if (AndRHS->getType()->isUnsigned()) {
1131 Constant *AllOne = ConstantIntegral::getAllOnesValue(AndRHS->getType());
1132 Constant *CI = ConstantExpr::get(Instruction::And, AndRHS,
1133 ConstantExpr::get(Instruction::Shr, AllOne, OpRHS));
1135 TheAnd.setOperand(1, CI);
1145 Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
1146 bool Changed = SimplifyCommutative(I);
1147 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1149 // and X, X = X and X, 0 == 0
1150 if (Op0 == Op1 || Op1 == Constant::getNullValue(I.getType()))
1151 return ReplaceInstUsesWith(I, Op1);
1154 if (ConstantIntegral *RHS = dyn_cast<ConstantIntegral>(Op1)) {
1155 if (RHS->isAllOnesValue())
1156 return ReplaceInstUsesWith(I, Op0);
1158 // Optimize a variety of ((val OP C1) & C2) combinations...
1159 if (isa<BinaryOperator>(Op0) || isa<ShiftInst>(Op0)) {
1160 Instruction *Op0I = cast<Instruction>(Op0);
1161 Value *X = Op0I->getOperand(0);
1162 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
1163 if (Instruction *Res = OptAndOp(Op0I, Op0CI, RHS, I))
1167 // Try to fold constant and into select arguments.
1168 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1169 if (Instruction *R = FoldBinOpIntoSelect(I, SI, this))
1173 Value *Op0NotVal = dyn_castNotVal(Op0);
1174 Value *Op1NotVal = dyn_castNotVal(Op1);
1176 // (~A & ~B) == (~(A | B)) - Demorgan's Law
1177 if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
1178 Instruction *Or = BinaryOperator::create(Instruction::Or, Op0NotVal,
1179 Op1NotVal,I.getName()+".demorgan");
1180 InsertNewInstBefore(Or, I);
1181 return BinaryOperator::createNot(Or);
1184 if (Op0NotVal == Op1 || Op1NotVal == Op0) // A & ~A == ~A & A == 0
1185 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
1187 // (setcc1 A, B) & (setcc2 A, B) --> (setcc3 A, B)
1188 if (SetCondInst *RHS = dyn_cast<SetCondInst>(I.getOperand(1)))
1189 if (Instruction *R = AssociativeOpt(I, FoldSetCCLogical(*this, RHS)))
1192 return Changed ? &I : 0;
1197 Instruction *InstCombiner::visitOr(BinaryOperator &I) {
1198 bool Changed = SimplifyCommutative(I);
1199 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1201 // or X, X = X or X, 0 == X
1202 if (Op0 == Op1 || Op1 == Constant::getNullValue(I.getType()))
1203 return ReplaceInstUsesWith(I, Op0);
1206 if (ConstantIntegral *RHS = dyn_cast<ConstantIntegral>(Op1)) {
1207 if (RHS->isAllOnesValue())
1208 return ReplaceInstUsesWith(I, Op1);
1210 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
1211 // (X & C1) | C2 --> (X | C2) & (C1|C2)
1212 if (Op0I->getOpcode() == Instruction::And && isOnlyUse(Op0))
1213 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
1214 std::string Op0Name = Op0I->getName(); Op0I->setName("");
1215 Instruction *Or = BinaryOperator::create(Instruction::Or,
1216 Op0I->getOperand(0), RHS,
1218 InsertNewInstBefore(Or, I);
1219 return BinaryOperator::create(Instruction::And, Or,
1220 ConstantExpr::get(Instruction::Or, RHS, Op0CI));
1223 // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
1224 if (Op0I->getOpcode() == Instruction::Xor && isOnlyUse(Op0))
1225 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
1226 std::string Op0Name = Op0I->getName(); Op0I->setName("");
1227 Instruction *Or = BinaryOperator::create(Instruction::Or,
1228 Op0I->getOperand(0), RHS,
1230 InsertNewInstBefore(Or, I);
1231 return BinaryOperator::create(Instruction::Xor, Or,
1232 ConstantExpr::get(Instruction::And, Op0CI,
1237 // Try to fold constant and into select arguments.
1238 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1239 if (Instruction *R = FoldBinOpIntoSelect(I, SI, this))
1243 // (A & C1)|(A & C2) == A & (C1|C2)
1244 if (Instruction *LHS = dyn_cast<BinaryOperator>(Op0))
1245 if (Instruction *RHS = dyn_cast<BinaryOperator>(Op1))
1246 if (LHS->getOperand(0) == RHS->getOperand(0))
1247 if (Constant *C0 = dyn_castMaskingAnd(LHS))
1248 if (Constant *C1 = dyn_castMaskingAnd(RHS))
1249 return BinaryOperator::create(Instruction::And, LHS->getOperand(0),
1250 ConstantExpr::get(Instruction::Or, C0, C1));
1252 Value *Op0NotVal = dyn_castNotVal(Op0);
1253 Value *Op1NotVal = dyn_castNotVal(Op1);
1255 if (Op1 == Op0NotVal) // ~A | A == -1
1256 return ReplaceInstUsesWith(I,
1257 ConstantIntegral::getAllOnesValue(I.getType()));
1259 if (Op0 == Op1NotVal) // A | ~A == -1
1260 return ReplaceInstUsesWith(I,
1261 ConstantIntegral::getAllOnesValue(I.getType()));
1263 // (~A | ~B) == (~(A & B)) - Demorgan's Law
1264 if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
1265 Instruction *And = BinaryOperator::create(Instruction::And, Op0NotVal,
1266 Op1NotVal,I.getName()+".demorgan",
1268 WorkList.push_back(And);
1269 return BinaryOperator::createNot(And);
1272 // (setcc1 A, B) | (setcc2 A, B) --> (setcc3 A, B)
1273 if (SetCondInst *RHS = dyn_cast<SetCondInst>(I.getOperand(1)))
1274 if (Instruction *R = AssociativeOpt(I, FoldSetCCLogical(*this, RHS)))
1277 return Changed ? &I : 0;
1280 // XorSelf - Implements: X ^ X --> 0
1283 XorSelf(Value *rhs) : RHS(rhs) {}
1284 bool shouldApply(Value *LHS) const { return LHS == RHS; }
1285 Instruction *apply(BinaryOperator &Xor) const {
1291 Instruction *InstCombiner::visitXor(BinaryOperator &I) {
1292 bool Changed = SimplifyCommutative(I);
1293 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1295 // xor X, X = 0, even if X is nested in a sequence of Xor's.
1296 if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) {
1297 assert(Result == &I && "AssociativeOpt didn't work?");
1298 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
1301 if (ConstantIntegral *RHS = dyn_cast<ConstantIntegral>(Op1)) {
1303 if (RHS->isNullValue())
1304 return ReplaceInstUsesWith(I, Op0);
1306 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
1307 // xor (setcc A, B), true = not (setcc A, B) = setncc A, B
1308 if (SetCondInst *SCI = dyn_cast<SetCondInst>(Op0I))
1309 if (RHS == ConstantBool::True && SCI->hasOneUse())
1310 return new SetCondInst(SCI->getInverseCondition(),
1311 SCI->getOperand(0), SCI->getOperand(1));
1313 // ~(c-X) == X-c-1 == X+(-c-1)
1314 if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
1315 if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
1316 Constant *NegOp0I0C = ConstantExpr::get(Instruction::Sub,
1317 Constant::getNullValue(Op0I0C->getType()), Op0I0C);
1318 Constant *ConstantRHS = ConstantExpr::get(Instruction::Sub, NegOp0I0C,
1319 ConstantInt::get(I.getType(), 1));
1320 return BinaryOperator::create(Instruction::Add, Op0I->getOperand(1),
1324 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
1325 switch (Op0I->getOpcode()) {
1326 case Instruction::Add:
1327 // ~(X-c) --> (-c-1)-X
1328 if (RHS->isAllOnesValue()) {
1329 Constant *NegOp0CI = ConstantExpr::get(Instruction::Sub,
1330 Constant::getNullValue(Op0CI->getType()), Op0CI);
1331 return BinaryOperator::create(Instruction::Sub,
1332 ConstantExpr::get(Instruction::Sub, NegOp0CI,
1333 ConstantInt::get(I.getType(), 1)),
1334 Op0I->getOperand(0));
1337 case Instruction::And:
1338 // (X & C1) ^ C2 --> (X & C1) | C2 iff (C1&C2) == 0
1339 if (ConstantExpr::get(Instruction::And, RHS, Op0CI)->isNullValue())
1340 return BinaryOperator::create(Instruction::Or, Op0, RHS);
1342 case Instruction::Or:
1343 // (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1344 if (ConstantExpr::get(Instruction::And, RHS, Op0CI) == RHS)
1345 return BinaryOperator::create(Instruction::And, Op0,
1352 // Try to fold constant and into select arguments.
1353 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1354 if (Instruction *R = FoldBinOpIntoSelect(I, SI, this))
1358 if (Value *X = dyn_castNotVal(Op0)) // ~A ^ A == -1
1360 return ReplaceInstUsesWith(I,
1361 ConstantIntegral::getAllOnesValue(I.getType()));
1363 if (Value *X = dyn_castNotVal(Op1)) // A ^ ~A == -1
1365 return ReplaceInstUsesWith(I,
1366 ConstantIntegral::getAllOnesValue(I.getType()));
1368 if (Instruction *Op1I = dyn_cast<Instruction>(Op1))
1369 if (Op1I->getOpcode() == Instruction::Or) {
1370 if (Op1I->getOperand(0) == Op0) { // B^(B|A) == (A|B)^B
1371 cast<BinaryOperator>(Op1I)->swapOperands();
1373 std::swap(Op0, Op1);
1374 } else if (Op1I->getOperand(1) == Op0) { // B^(A|B) == (A|B)^B
1376 std::swap(Op0, Op1);
1378 } else if (Op1I->getOpcode() == Instruction::Xor) {
1379 if (Op0 == Op1I->getOperand(0)) // A^(A^B) == B
1380 return ReplaceInstUsesWith(I, Op1I->getOperand(1));
1381 else if (Op0 == Op1I->getOperand(1)) // A^(B^A) == B
1382 return ReplaceInstUsesWith(I, Op1I->getOperand(0));
1385 if (Instruction *Op0I = dyn_cast<Instruction>(Op0))
1386 if (Op0I->getOpcode() == Instruction::Or && Op0I->hasOneUse()) {
1387 if (Op0I->getOperand(0) == Op1) // (B|A)^B == (A|B)^B
1388 cast<BinaryOperator>(Op0I)->swapOperands();
1389 if (Op0I->getOperand(1) == Op1) { // (A|B)^B == A & ~B
1390 Value *NotB = BinaryOperator::createNot(Op1, Op1->getName()+".not", &I);
1391 WorkList.push_back(cast<Instruction>(NotB));
1392 return BinaryOperator::create(Instruction::And, Op0I->getOperand(0),
1395 } else if (Op0I->getOpcode() == Instruction::Xor) {
1396 if (Op1 == Op0I->getOperand(0)) // (A^B)^A == B
1397 return ReplaceInstUsesWith(I, Op0I->getOperand(1));
1398 else if (Op1 == Op0I->getOperand(1)) // (B^A)^A == B
1399 return ReplaceInstUsesWith(I, Op0I->getOperand(0));
1402 // (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1^C2 == 0
1403 if (Constant *C1 = dyn_castMaskingAnd(Op0))
1404 if (Constant *C2 = dyn_castMaskingAnd(Op1))
1405 if (ConstantExpr::get(Instruction::And, C1, C2)->isNullValue())
1406 return BinaryOperator::create(Instruction::Or, Op0, Op1);
1408 // (setcc1 A, B) ^ (setcc2 A, B) --> (setcc3 A, B)
1409 if (SetCondInst *RHS = dyn_cast<SetCondInst>(I.getOperand(1)))
1410 if (Instruction *R = AssociativeOpt(I, FoldSetCCLogical(*this, RHS)))
1413 return Changed ? &I : 0;
1416 // AddOne, SubOne - Add or subtract a constant one from an integer constant...
1417 static Constant *AddOne(ConstantInt *C) {
1418 Constant *Result = ConstantExpr::get(Instruction::Add, C,
1419 ConstantInt::get(C->getType(), 1));
1420 assert(Result && "Constant folding integer addition failed!");
1423 static Constant *SubOne(ConstantInt *C) {
1424 Constant *Result = ConstantExpr::get(Instruction::Sub, C,
1425 ConstantInt::get(C->getType(), 1));
1426 assert(Result && "Constant folding integer addition failed!");
1430 // isTrueWhenEqual - Return true if the specified setcondinst instruction is
1431 // true when both operands are equal...
1433 static bool isTrueWhenEqual(Instruction &I) {
1434 return I.getOpcode() == Instruction::SetEQ ||
1435 I.getOpcode() == Instruction::SetGE ||
1436 I.getOpcode() == Instruction::SetLE;
1439 Instruction *InstCombiner::visitSetCondInst(BinaryOperator &I) {
1440 bool Changed = SimplifyCommutative(I);
1441 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1442 const Type *Ty = Op0->getType();
1446 return ReplaceInstUsesWith(I, ConstantBool::get(isTrueWhenEqual(I)));
1448 // setcc <global/alloca*>, 0 - Global/Stack value addresses are never null!
1449 if (isa<ConstantPointerNull>(Op1) &&
1450 (isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0)))
1451 return ReplaceInstUsesWith(I, ConstantBool::get(!isTrueWhenEqual(I)));
1454 // setcc's with boolean values can always be turned into bitwise operations
1455 if (Ty == Type::BoolTy) {
1456 // If this is <, >, or !=, we can change this into a simple xor instruction
1457 if (!isTrueWhenEqual(I))
1458 return BinaryOperator::create(Instruction::Xor, Op0, Op1);
1460 // Otherwise we need to make a temporary intermediate instruction and insert
1461 // it into the instruction stream. This is what we are after:
1463 // seteq bool %A, %B -> ~(A^B)
1464 // setle bool %A, %B -> ~A | B
1465 // setge bool %A, %B -> A | ~B
1467 if (I.getOpcode() == Instruction::SetEQ) { // seteq case
1468 Instruction *Xor = BinaryOperator::create(Instruction::Xor, Op0, Op1,
1470 InsertNewInstBefore(Xor, I);
1471 return BinaryOperator::createNot(Xor);
1474 // Handle the setXe cases...
1475 assert(I.getOpcode() == Instruction::SetGE ||
1476 I.getOpcode() == Instruction::SetLE);
1478 if (I.getOpcode() == Instruction::SetGE)
1479 std::swap(Op0, Op1); // Change setge -> setle
1481 // Now we just have the SetLE case.
1482 Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp");
1483 InsertNewInstBefore(Not, I);
1484 return BinaryOperator::create(Instruction::Or, Not, Op1);
1487 // Check to see if we are doing one of many comparisons against constant
1488 // integers at the end of their ranges...
1490 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1491 // Simplify seteq and setne instructions...
1492 if (I.getOpcode() == Instruction::SetEQ ||
1493 I.getOpcode() == Instruction::SetNE) {
1494 bool isSetNE = I.getOpcode() == Instruction::SetNE;
1496 // If the first operand is (and|or|xor) with a constant, and the second
1497 // operand is a constant, simplify a bit.
1498 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0)) {
1499 switch (BO->getOpcode()) {
1500 case Instruction::Add:
1501 if (CI->isNullValue()) {
1502 // Replace ((add A, B) != 0) with (A != -B) if A or B is
1503 // efficiently invertible, or if the add has just this one use.
1504 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
1505 if (Value *NegVal = dyn_castNegVal(BOp1))
1506 return new SetCondInst(I.getOpcode(), BOp0, NegVal);
1507 else if (Value *NegVal = dyn_castNegVal(BOp0))
1508 return new SetCondInst(I.getOpcode(), NegVal, BOp1);
1509 else if (BO->hasOneUse()) {
1510 Instruction *Neg = BinaryOperator::createNeg(BOp1, BO->getName());
1512 InsertNewInstBefore(Neg, I);
1513 return new SetCondInst(I.getOpcode(), BOp0, Neg);
1517 case Instruction::Xor:
1518 // For the xor case, we can xor two constants together, eliminating
1519 // the explicit xor.
1520 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
1521 return BinaryOperator::create(I.getOpcode(), BO->getOperand(0),
1522 ConstantExpr::get(Instruction::Xor, CI, BOC));
1525 case Instruction::Sub:
1526 // Replace (([sub|xor] A, B) != 0) with (A != B)
1527 if (CI->isNullValue())
1528 return new SetCondInst(I.getOpcode(), BO->getOperand(0),
1532 case Instruction::Or:
1533 // If bits are being or'd in that are not present in the constant we
1534 // are comparing against, then the comparison could never succeed!
1535 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
1536 Constant *NotCI = NotConstant(CI);
1537 if (!ConstantExpr::get(Instruction::And, BOC, NotCI)->isNullValue())
1538 return ReplaceInstUsesWith(I, ConstantBool::get(isSetNE));
1542 case Instruction::And:
1543 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1544 // If bits are being compared against that are and'd out, then the
1545 // comparison can never succeed!
1546 if (!ConstantExpr::get(Instruction::And, CI,
1547 NotConstant(BOC))->isNullValue())
1548 return ReplaceInstUsesWith(I, ConstantBool::get(isSetNE));
1550 // Replace (and X, (1 << size(X)-1) != 0) with x < 0, converting X
1551 // to be a signed value as appropriate.
1552 if (isSignBit(BOC)) {
1553 Value *X = BO->getOperand(0);
1554 // If 'X' is not signed, insert a cast now...
1555 if (!BOC->getType()->isSigned()) {
1556 const Type *DestTy = getSignedIntegralType(BOC->getType());
1557 CastInst *NewCI = new CastInst(X,DestTy,X->getName()+".signed");
1558 InsertNewInstBefore(NewCI, I);
1561 return new SetCondInst(isSetNE ? Instruction::SetLT :
1562 Instruction::SetGE, X,
1563 Constant::getNullValue(X->getType()));
1569 } else { // Not a SetEQ/SetNE
1570 // If the LHS is a cast from an integral value of the same size,
1571 if (CastInst *Cast = dyn_cast<CastInst>(Op0)) {
1572 Value *CastOp = Cast->getOperand(0);
1573 const Type *SrcTy = CastOp->getType();
1574 unsigned SrcTySize = SrcTy->getPrimitiveSize();
1575 if (SrcTy != Cast->getType() && SrcTy->isInteger() &&
1576 SrcTySize == Cast->getType()->getPrimitiveSize()) {
1577 assert((SrcTy->isSigned() ^ Cast->getType()->isSigned()) &&
1578 "Source and destination signednesses should differ!");
1579 if (Cast->getType()->isSigned()) {
1580 // If this is a signed comparison, check for comparisons in the
1581 // vicinity of zero.
1582 if (I.getOpcode() == Instruction::SetLT && CI->isNullValue())
1584 return BinaryOperator::create(Instruction::SetGT, CastOp,
1585 ConstantUInt::get(SrcTy, (1ULL << (SrcTySize*8-1))-1));
1586 else if (I.getOpcode() == Instruction::SetGT &&
1587 cast<ConstantSInt>(CI)->getValue() == -1)
1588 // X > -1 => x < 128
1589 return BinaryOperator::create(Instruction::SetLT, CastOp,
1590 ConstantUInt::get(SrcTy, 1ULL << (SrcTySize*8-1)));
1592 ConstantUInt *CUI = cast<ConstantUInt>(CI);
1593 if (I.getOpcode() == Instruction::SetLT &&
1594 CUI->getValue() == 1ULL << (SrcTySize*8-1))
1595 // X < 128 => X > -1
1596 return BinaryOperator::create(Instruction::SetGT, CastOp,
1597 ConstantSInt::get(SrcTy, -1));
1598 else if (I.getOpcode() == Instruction::SetGT &&
1599 CUI->getValue() == (1ULL << (SrcTySize*8-1))-1)
1601 return BinaryOperator::create(Instruction::SetLT, CastOp,
1602 Constant::getNullValue(SrcTy));
1608 // Check to see if we are comparing against the minimum or maximum value...
1609 if (CI->isMinValue()) {
1610 if (I.getOpcode() == Instruction::SetLT) // A < MIN -> FALSE
1611 return ReplaceInstUsesWith(I, ConstantBool::False);
1612 if (I.getOpcode() == Instruction::SetGE) // A >= MIN -> TRUE
1613 return ReplaceInstUsesWith(I, ConstantBool::True);
1614 if (I.getOpcode() == Instruction::SetLE) // A <= MIN -> A == MIN
1615 return BinaryOperator::create(Instruction::SetEQ, Op0, Op1);
1616 if (I.getOpcode() == Instruction::SetGT) // A > MIN -> A != MIN
1617 return BinaryOperator::create(Instruction::SetNE, Op0, Op1);
1619 } else if (CI->isMaxValue()) {
1620 if (I.getOpcode() == Instruction::SetGT) // A > MAX -> FALSE
1621 return ReplaceInstUsesWith(I, ConstantBool::False);
1622 if (I.getOpcode() == Instruction::SetLE) // A <= MAX -> TRUE
1623 return ReplaceInstUsesWith(I, ConstantBool::True);
1624 if (I.getOpcode() == Instruction::SetGE) // A >= MAX -> A == MAX
1625 return BinaryOperator::create(Instruction::SetEQ, Op0, Op1);
1626 if (I.getOpcode() == Instruction::SetLT) // A < MAX -> A != MAX
1627 return BinaryOperator::create(Instruction::SetNE, Op0, Op1);
1629 // Comparing against a value really close to min or max?
1630 } else if (isMinValuePlusOne(CI)) {
1631 if (I.getOpcode() == Instruction::SetLT) // A < MIN+1 -> A == MIN
1632 return BinaryOperator::create(Instruction::SetEQ, Op0, SubOne(CI));
1633 if (I.getOpcode() == Instruction::SetGE) // A >= MIN-1 -> A != MIN
1634 return BinaryOperator::create(Instruction::SetNE, Op0, SubOne(CI));
1636 } else if (isMaxValueMinusOne(CI)) {
1637 if (I.getOpcode() == Instruction::SetGT) // A > MAX-1 -> A == MAX
1638 return BinaryOperator::create(Instruction::SetEQ, Op0, AddOne(CI));
1639 if (I.getOpcode() == Instruction::SetLE) // A <= MAX-1 -> A != MAX
1640 return BinaryOperator::create(Instruction::SetNE, Op0, AddOne(CI));
1643 // If we still have a setle or setge instruction, turn it into the
1644 // appropriate setlt or setgt instruction. Since the border cases have
1645 // already been handled above, this requires little checking.
1647 if (I.getOpcode() == Instruction::SetLE)
1648 return BinaryOperator::create(Instruction::SetLT, Op0, AddOne(CI));
1649 if (I.getOpcode() == Instruction::SetGE)
1650 return BinaryOperator::create(Instruction::SetGT, Op0, SubOne(CI));
1653 // Test to see if the operands of the setcc are casted versions of other
1654 // values. If the cast can be stripped off both arguments, we do so now.
1655 if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
1656 Value *CastOp0 = CI->getOperand(0);
1657 if (CastOp0->getType()->isLosslesslyConvertibleTo(CI->getType()) &&
1658 (isa<Constant>(Op1) || isa<CastInst>(Op1)) &&
1659 (I.getOpcode() == Instruction::SetEQ ||
1660 I.getOpcode() == Instruction::SetNE)) {
1661 // We keep moving the cast from the left operand over to the right
1662 // operand, where it can often be eliminated completely.
1665 // If operand #1 is a cast instruction, see if we can eliminate it as
1667 if (CastInst *CI2 = dyn_cast<CastInst>(Op1))
1668 if (CI2->getOperand(0)->getType()->isLosslesslyConvertibleTo(
1670 Op1 = CI2->getOperand(0);
1672 // If Op1 is a constant, we can fold the cast into the constant.
1673 if (Op1->getType() != Op0->getType())
1674 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
1675 Op1 = ConstantExpr::getCast(Op1C, Op0->getType());
1677 // Otherwise, cast the RHS right before the setcc
1678 Op1 = new CastInst(Op1, Op0->getType(), Op1->getName());
1679 InsertNewInstBefore(cast<Instruction>(Op1), I);
1681 return BinaryOperator::create(I.getOpcode(), Op0, Op1);
1684 // Handle the special case of: setcc (cast bool to X), <cst>
1685 // This comes up when you have code like
1688 // For generality, we handle any zero-extension of any operand comparison
1690 if (ConstantInt *ConstantRHS = dyn_cast<ConstantInt>(Op1)) {
1691 const Type *SrcTy = CastOp0->getType();
1692 const Type *DestTy = Op0->getType();
1693 if (SrcTy->getPrimitiveSize() < DestTy->getPrimitiveSize() &&
1694 (SrcTy->isUnsigned() || SrcTy == Type::BoolTy)) {
1695 // Ok, we have an expansion of operand 0 into a new type. Get the
1696 // constant value, masink off bits which are not set in the RHS. These
1697 // could be set if the destination value is signed.
1698 uint64_t ConstVal = ConstantRHS->getRawValue();
1699 ConstVal &= (1ULL << DestTy->getPrimitiveSize()*8)-1;
1701 // If the constant we are comparing it with has high bits set, which
1702 // don't exist in the original value, the values could never be equal,
1703 // because the source would be zero extended.
1705 SrcTy == Type::BoolTy ? 1 : SrcTy->getPrimitiveSize()*8;
1706 bool HasSignBit = ConstVal & (1ULL << (DestTy->getPrimitiveSize()*8-1));
1707 if (ConstVal & ~((1ULL << SrcBits)-1)) {
1708 switch (I.getOpcode()) {
1709 default: assert(0 && "Unknown comparison type!");
1710 case Instruction::SetEQ:
1711 return ReplaceInstUsesWith(I, ConstantBool::False);
1712 case Instruction::SetNE:
1713 return ReplaceInstUsesWith(I, ConstantBool::True);
1714 case Instruction::SetLT:
1715 case Instruction::SetLE:
1716 if (DestTy->isSigned() && HasSignBit)
1717 return ReplaceInstUsesWith(I, ConstantBool::False);
1718 return ReplaceInstUsesWith(I, ConstantBool::True);
1719 case Instruction::SetGT:
1720 case Instruction::SetGE:
1721 if (DestTy->isSigned() && HasSignBit)
1722 return ReplaceInstUsesWith(I, ConstantBool::True);
1723 return ReplaceInstUsesWith(I, ConstantBool::False);
1727 // Otherwise, we can replace the setcc with a setcc of the smaller
1729 Op1 = ConstantExpr::getCast(cast<Constant>(Op1), SrcTy);
1730 return BinaryOperator::create(I.getOpcode(), CastOp0, Op1);
1734 return Changed ? &I : 0;
1739 Instruction *InstCombiner::visitShiftInst(ShiftInst &I) {
1740 assert(I.getOperand(1)->getType() == Type::UByteTy);
1741 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1742 bool isLeftShift = I.getOpcode() == Instruction::Shl;
1744 // shl X, 0 == X and shr X, 0 == X
1745 // shl 0, X == 0 and shr 0, X == 0
1746 if (Op1 == Constant::getNullValue(Type::UByteTy) ||
1747 Op0 == Constant::getNullValue(Op0->getType()))
1748 return ReplaceInstUsesWith(I, Op0);
1750 // shr int -1, X = -1 (for any arithmetic shift rights of ~0)
1752 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(Op0))
1753 if (CSI->isAllOnesValue())
1754 return ReplaceInstUsesWith(I, CSI);
1756 // Try to fold constant and into select arguments.
1757 if (isa<Constant>(Op0))
1758 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1759 if (Instruction *R = FoldBinOpIntoSelect(I, SI, this))
1762 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(Op1)) {
1763 // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr
1764 // of a signed value.
1766 unsigned TypeBits = Op0->getType()->getPrimitiveSize()*8;
1767 if (CUI->getValue() >= TypeBits) {
1768 if (!Op0->getType()->isSigned() || isLeftShift)
1769 return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
1771 I.setOperand(1, ConstantUInt::get(Type::UByteTy, TypeBits-1));
1776 // ((X*C1) << C2) == (X * (C1 << C2))
1777 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
1778 if (BO->getOpcode() == Instruction::Mul && isLeftShift)
1779 if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
1780 return BinaryOperator::create(Instruction::Mul, BO->getOperand(0),
1781 ConstantExpr::get(Instruction::Shl, BOOp, CUI));
1783 // Try to fold constant and into select arguments.
1784 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1785 if (Instruction *R = FoldBinOpIntoSelect(I, SI, this))
1788 // If the operand is an bitwise operator with a constant RHS, and the
1789 // shift is the only use, we can pull it out of the shift.
1790 if (Op0->hasOneUse())
1791 if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0))
1792 if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
1793 bool isValid = true; // Valid only for And, Or, Xor
1794 bool highBitSet = false; // Transform if high bit of constant set?
1796 switch (Op0BO->getOpcode()) {
1797 default: isValid = false; break; // Do not perform transform!
1798 case Instruction::Or:
1799 case Instruction::Xor:
1802 case Instruction::And:
1807 // If this is a signed shift right, and the high bit is modified
1808 // by the logical operation, do not perform the transformation.
1809 // The highBitSet boolean indicates the value of the high bit of
1810 // the constant which would cause it to be modified for this
1813 if (isValid && !isLeftShift && !I.getType()->isUnsigned()) {
1814 uint64_t Val = Op0C->getRawValue();
1815 isValid = ((Val & (1 << (TypeBits-1))) != 0) == highBitSet;
1819 Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, CUI);
1821 Instruction *NewShift =
1822 new ShiftInst(I.getOpcode(), Op0BO->getOperand(0), CUI,
1825 InsertNewInstBefore(NewShift, I);
1827 return BinaryOperator::create(Op0BO->getOpcode(), NewShift,
1832 // If this is a shift of a shift, see if we can fold the two together...
1833 if (ShiftInst *Op0SI = dyn_cast<ShiftInst>(Op0))
1834 if (ConstantUInt *ShiftAmt1C =
1835 dyn_cast<ConstantUInt>(Op0SI->getOperand(1))) {
1836 unsigned ShiftAmt1 = ShiftAmt1C->getValue();
1837 unsigned ShiftAmt2 = CUI->getValue();
1839 // Check for (A << c1) << c2 and (A >> c1) >> c2
1840 if (I.getOpcode() == Op0SI->getOpcode()) {
1841 unsigned Amt = ShiftAmt1+ShiftAmt2; // Fold into one big shift...
1842 if (Op0->getType()->getPrimitiveSize()*8 < Amt)
1843 Amt = Op0->getType()->getPrimitiveSize()*8;
1844 return new ShiftInst(I.getOpcode(), Op0SI->getOperand(0),
1845 ConstantUInt::get(Type::UByteTy, Amt));
1848 // Check for (A << c1) >> c2 or visaversa. If we are dealing with
1849 // signed types, we can only support the (A >> c1) << c2 configuration,
1850 // because it can not turn an arbitrary bit of A into a sign bit.
1851 if (I.getType()->isUnsigned() || isLeftShift) {
1852 // Calculate bitmask for what gets shifted off the edge...
1853 Constant *C = ConstantIntegral::getAllOnesValue(I.getType());
1855 C = ConstantExpr::get(Instruction::Shl, C, ShiftAmt1C);
1857 C = ConstantExpr::get(Instruction::Shr, C, ShiftAmt1C);
1860 BinaryOperator::create(Instruction::And, Op0SI->getOperand(0),
1861 C, Op0SI->getOperand(0)->getName()+".mask");
1862 InsertNewInstBefore(Mask, I);
1864 // Figure out what flavor of shift we should use...
1865 if (ShiftAmt1 == ShiftAmt2)
1866 return ReplaceInstUsesWith(I, Mask); // (A << c) >> c === A & c2
1867 else if (ShiftAmt1 < ShiftAmt2) {
1868 return new ShiftInst(I.getOpcode(), Mask,
1869 ConstantUInt::get(Type::UByteTy, ShiftAmt2-ShiftAmt1));
1871 return new ShiftInst(Op0SI->getOpcode(), Mask,
1872 ConstantUInt::get(Type::UByteTy, ShiftAmt1-ShiftAmt2));
1882 // isEliminableCastOfCast - Return true if it is valid to eliminate the CI
1885 static inline bool isEliminableCastOfCast(const Type *SrcTy, const Type *MidTy,
1886 const Type *DstTy) {
1888 // It is legal to eliminate the instruction if casting A->B->A if the sizes
1889 // are identical and the bits don't get reinterpreted (for example
1890 // int->float->int would not be allowed)
1891 if (SrcTy == DstTy && SrcTy->isLosslesslyConvertibleTo(MidTy))
1894 // Allow free casting and conversion of sizes as long as the sign doesn't
1896 if (SrcTy->isIntegral() && MidTy->isIntegral() && DstTy->isIntegral()) {
1897 unsigned SrcSize = SrcTy->getPrimitiveSize();
1898 unsigned MidSize = MidTy->getPrimitiveSize();
1899 unsigned DstSize = DstTy->getPrimitiveSize();
1901 // Cases where we are monotonically decreasing the size of the type are
1902 // always ok, regardless of what sign changes are going on.
1904 if (SrcSize >= MidSize && MidSize >= DstSize)
1907 // Cases where the source and destination type are the same, but the middle
1908 // type is bigger are noops.
1910 if (SrcSize == DstSize && MidSize > SrcSize)
1913 // If we are monotonically growing, things are more complex.
1915 if (SrcSize <= MidSize && MidSize <= DstSize) {
1916 // We have eight combinations of signedness to worry about. Here's the
1918 static const int SignTable[8] = {
1919 // CODE, SrcSigned, MidSigned, DstSigned, Comment
1920 1, // U U U Always ok
1921 1, // U U S Always ok
1922 3, // U S U Ok iff SrcSize != MidSize
1923 3, // U S S Ok iff SrcSize != MidSize
1924 0, // S U U Never ok
1925 2, // S U S Ok iff MidSize == DstSize
1926 1, // S S U Always ok
1927 1, // S S S Always ok
1930 // Choose an action based on the current entry of the signtable that this
1931 // cast of cast refers to...
1932 unsigned Row = SrcTy->isSigned()*4+MidTy->isSigned()*2+DstTy->isSigned();
1933 switch (SignTable[Row]) {
1934 case 0: return false; // Never ok
1935 case 1: return true; // Always ok
1936 case 2: return MidSize == DstSize; // Ok iff MidSize == DstSize
1937 case 3: // Ok iff SrcSize != MidSize
1938 return SrcSize != MidSize || SrcTy == Type::BoolTy;
1939 default: assert(0 && "Bad entry in sign table!");
1944 // Otherwise, we cannot succeed. Specifically we do not want to allow things
1945 // like: short -> ushort -> uint, because this can create wrong results if
1946 // the input short is negative!
1951 static bool ValueRequiresCast(const Value *V, const Type *Ty) {
1952 if (V->getType() == Ty || isa<Constant>(V)) return false;
1953 if (const CastInst *CI = dyn_cast<CastInst>(V))
1954 if (isEliminableCastOfCast(CI->getOperand(0)->getType(), CI->getType(), Ty))
1959 /// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
1960 /// InsertBefore instruction. This is specialized a bit to avoid inserting
1961 /// casts that are known to not do anything...
1963 Value *InstCombiner::InsertOperandCastBefore(Value *V, const Type *DestTy,
1964 Instruction *InsertBefore) {
1965 if (V->getType() == DestTy) return V;
1966 if (Constant *C = dyn_cast<Constant>(V))
1967 return ConstantExpr::getCast(C, DestTy);
1969 CastInst *CI = new CastInst(V, DestTy, V->getName());
1970 InsertNewInstBefore(CI, *InsertBefore);
1974 // CastInst simplification
1976 Instruction *InstCombiner::visitCastInst(CastInst &CI) {
1977 Value *Src = CI.getOperand(0);
1979 // If the user is casting a value to the same type, eliminate this cast
1981 if (CI.getType() == Src->getType())
1982 return ReplaceInstUsesWith(CI, Src);
1984 // If casting the result of another cast instruction, try to eliminate this
1987 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) {
1988 if (isEliminableCastOfCast(CSrc->getOperand(0)->getType(),
1989 CSrc->getType(), CI.getType())) {
1990 // This instruction now refers directly to the cast's src operand. This
1991 // has a good chance of making CSrc dead.
1992 CI.setOperand(0, CSrc->getOperand(0));
1996 // If this is an A->B->A cast, and we are dealing with integral types, try
1997 // to convert this into a logical 'and' instruction.
1999 if (CSrc->getOperand(0)->getType() == CI.getType() &&
2000 CI.getType()->isInteger() && CSrc->getType()->isInteger() &&
2001 CI.getType()->isUnsigned() && CSrc->getType()->isUnsigned() &&
2002 CSrc->getType()->getPrimitiveSize() < CI.getType()->getPrimitiveSize()){
2003 assert(CSrc->getType() != Type::ULongTy &&
2004 "Cannot have type bigger than ulong!");
2005 uint64_t AndValue = (1ULL << CSrc->getType()->getPrimitiveSize()*8)-1;
2006 Constant *AndOp = ConstantUInt::get(CI.getType(), AndValue);
2007 return BinaryOperator::create(Instruction::And, CSrc->getOperand(0),
2012 // If casting the result of a getelementptr instruction with no offset, turn
2013 // this into a cast of the original pointer!
2015 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
2016 bool AllZeroOperands = true;
2017 for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i)
2018 if (!isa<Constant>(GEP->getOperand(i)) ||
2019 !cast<Constant>(GEP->getOperand(i))->isNullValue()) {
2020 AllZeroOperands = false;
2023 if (AllZeroOperands) {
2024 CI.setOperand(0, GEP->getOperand(0));
2029 // If we are casting a malloc or alloca to a pointer to a type of the same
2030 // size, rewrite the allocation instruction to allocate the "right" type.
2032 if (AllocationInst *AI = dyn_cast<AllocationInst>(Src))
2033 if (AI->hasOneUse() && !AI->isArrayAllocation())
2034 if (const PointerType *PTy = dyn_cast<PointerType>(CI.getType())) {
2035 // Get the type really allocated and the type casted to...
2036 const Type *AllocElTy = AI->getAllocatedType();
2037 unsigned AllocElTySize = TD->getTypeSize(AllocElTy);
2038 const Type *CastElTy = PTy->getElementType();
2039 unsigned CastElTySize = TD->getTypeSize(CastElTy);
2041 // If the allocation is for an even multiple of the cast type size
2042 if (CastElTySize && (AllocElTySize % CastElTySize == 0)) {
2043 Value *Amt = ConstantUInt::get(Type::UIntTy,
2044 AllocElTySize/CastElTySize);
2045 std::string Name = AI->getName(); AI->setName("");
2046 AllocationInst *New;
2047 if (isa<MallocInst>(AI))
2048 New = new MallocInst(CastElTy, Amt, Name);
2050 New = new AllocaInst(CastElTy, Amt, Name);
2051 InsertNewInstBefore(New, CI);
2052 return ReplaceInstUsesWith(CI, New);
2056 // If the source value is an instruction with only this use, we can attempt to
2057 // propagate the cast into the instruction. Also, only handle integral types
2059 if (Instruction *SrcI = dyn_cast<Instruction>(Src))
2060 if (SrcI->hasOneUse() && Src->getType()->isIntegral() &&
2061 CI.getType()->isInteger()) { // Don't mess with casts to bool here
2062 const Type *DestTy = CI.getType();
2063 unsigned SrcBitSize = getTypeSizeInBits(Src->getType());
2064 unsigned DestBitSize = getTypeSizeInBits(DestTy);
2066 Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0;
2067 Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0;
2069 switch (SrcI->getOpcode()) {
2070 case Instruction::Add:
2071 case Instruction::Mul:
2072 case Instruction::And:
2073 case Instruction::Or:
2074 case Instruction::Xor:
2075 // If we are discarding information, or just changing the sign, rewrite.
2076 if (DestBitSize <= SrcBitSize && DestBitSize != 1) {
2077 // Don't insert two casts if they cannot be eliminated. We allow two
2078 // casts to be inserted if the sizes are the same. This could only be
2079 // converting signedness, which is a noop.
2080 if (DestBitSize == SrcBitSize || !ValueRequiresCast(Op1, DestTy) ||
2081 !ValueRequiresCast(Op0, DestTy)) {
2082 Value *Op0c = InsertOperandCastBefore(Op0, DestTy, SrcI);
2083 Value *Op1c = InsertOperandCastBefore(Op1, DestTy, SrcI);
2084 return BinaryOperator::create(cast<BinaryOperator>(SrcI)
2085 ->getOpcode(), Op0c, Op1c);
2089 case Instruction::Shl:
2090 // Allow changing the sign of the source operand. Do not allow changing
2091 // the size of the shift, UNLESS the shift amount is a constant. We
2092 // mush not change variable sized shifts to a smaller size, because it
2093 // is undefined to shift more bits out than exist in the value.
2094 if (DestBitSize == SrcBitSize ||
2095 (DestBitSize < SrcBitSize && isa<Constant>(Op1))) {
2096 Value *Op0c = InsertOperandCastBefore(Op0, DestTy, SrcI);
2097 return new ShiftInst(Instruction::Shl, Op0c, Op1);
2106 /// GetSelectFoldableOperands - We want to turn code that looks like this:
2108 /// %D = select %cond, %C, %A
2110 /// %C = select %cond, %B, 0
2113 /// Assuming that the specified instruction is an operand to the select, return
2114 /// a bitmask indicating which operands of this instruction are foldable if they
2115 /// equal the other incoming value of the select.
2117 static unsigned GetSelectFoldableOperands(Instruction *I) {
2118 switch (I->getOpcode()) {
2119 case Instruction::Add:
2120 case Instruction::Mul:
2121 case Instruction::And:
2122 case Instruction::Or:
2123 case Instruction::Xor:
2124 return 3; // Can fold through either operand.
2125 case Instruction::Sub: // Can only fold on the amount subtracted.
2126 case Instruction::Shl: // Can only fold on the shift amount.
2127 case Instruction::Shr:
2130 return 0; // Cannot fold
2134 /// GetSelectFoldableConstant - For the same transformation as the previous
2135 /// function, return the identity constant that goes into the select.
2136 static Constant *GetSelectFoldableConstant(Instruction *I) {
2137 switch (I->getOpcode()) {
2138 default: assert(0 && "This cannot happen!"); abort();
2139 case Instruction::Add:
2140 case Instruction::Sub:
2141 case Instruction::Or:
2142 case Instruction::Xor:
2143 return Constant::getNullValue(I->getType());
2144 case Instruction::Shl:
2145 case Instruction::Shr:
2146 return Constant::getNullValue(Type::UByteTy);
2147 case Instruction::And:
2148 return ConstantInt::getAllOnesValue(I->getType());
2149 case Instruction::Mul:
2150 return ConstantInt::get(I->getType(), 1);
2154 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
2155 Value *CondVal = SI.getCondition();
2156 Value *TrueVal = SI.getTrueValue();
2157 Value *FalseVal = SI.getFalseValue();
2159 // select true, X, Y -> X
2160 // select false, X, Y -> Y
2161 if (ConstantBool *C = dyn_cast<ConstantBool>(CondVal))
2162 if (C == ConstantBool::True)
2163 return ReplaceInstUsesWith(SI, TrueVal);
2165 assert(C == ConstantBool::False);
2166 return ReplaceInstUsesWith(SI, FalseVal);
2169 // select C, X, X -> X
2170 if (TrueVal == FalseVal)
2171 return ReplaceInstUsesWith(SI, TrueVal);
2173 if (SI.getType() == Type::BoolTy)
2174 if (ConstantBool *C = dyn_cast<ConstantBool>(TrueVal)) {
2175 if (C == ConstantBool::True) {
2176 // Change: A = select B, true, C --> A = or B, C
2177 return BinaryOperator::create(Instruction::Or, CondVal, FalseVal);
2179 // Change: A = select B, false, C --> A = and !B, C
2181 InsertNewInstBefore(BinaryOperator::createNot(CondVal,
2182 "not."+CondVal->getName()), SI);
2183 return BinaryOperator::create(Instruction::And, NotCond, FalseVal);
2185 } else if (ConstantBool *C = dyn_cast<ConstantBool>(FalseVal)) {
2186 if (C == ConstantBool::False) {
2187 // Change: A = select B, C, false --> A = and B, C
2188 return BinaryOperator::create(Instruction::And, CondVal, TrueVal);
2190 // Change: A = select B, C, true --> A = or !B, C
2192 InsertNewInstBefore(BinaryOperator::createNot(CondVal,
2193 "not."+CondVal->getName()), SI);
2194 return BinaryOperator::create(Instruction::Or, NotCond, TrueVal);
2198 // Selecting between two integer constants?
2199 if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
2200 if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
2201 // select C, 1, 0 -> cast C to int
2202 if (FalseValC->isNullValue() && TrueValC->getRawValue() == 1) {
2203 return new CastInst(CondVal, SI.getType());
2204 } else if (TrueValC->isNullValue() && FalseValC->getRawValue() == 1) {
2205 // select C, 0, 1 -> cast !C to int
2207 InsertNewInstBefore(BinaryOperator::createNot(CondVal,
2208 "not."+CondVal->getName()), SI);
2209 return new CastInst(NotCond, SI.getType());
2213 // See if we are selecting two values based on a comparison of the two values.
2214 if (SetCondInst *SCI = dyn_cast<SetCondInst>(CondVal)) {
2215 if (SCI->getOperand(0) == TrueVal && SCI->getOperand(1) == FalseVal) {
2216 // Transform (X == Y) ? X : Y -> Y
2217 if (SCI->getOpcode() == Instruction::SetEQ)
2218 return ReplaceInstUsesWith(SI, FalseVal);
2219 // Transform (X != Y) ? X : Y -> X
2220 if (SCI->getOpcode() == Instruction::SetNE)
2221 return ReplaceInstUsesWith(SI, TrueVal);
2222 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
2224 } else if (SCI->getOperand(0) == FalseVal && SCI->getOperand(1) == TrueVal){
2225 // Transform (X == Y) ? Y : X -> X
2226 if (SCI->getOpcode() == Instruction::SetEQ)
2227 return ReplaceInstUsesWith(SI, FalseVal);
2228 // Transform (X != Y) ? Y : X -> Y
2229 if (SCI->getOpcode() == Instruction::SetNE)
2230 return ReplaceInstUsesWith(SI, TrueVal);
2231 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
2235 // See if we can fold the select into one of our operands.
2236 if (SI.getType()->isInteger()) {
2237 // See the comment above GetSelectFoldableOperands for a description of the
2238 // transformation we are doing here.
2239 if (Instruction *TVI = dyn_cast<Instruction>(TrueVal))
2240 if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
2241 !isa<Constant>(FalseVal))
2242 if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
2243 unsigned OpToFold = 0;
2244 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
2246 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
2251 Constant *C = GetSelectFoldableConstant(TVI);
2252 std::string Name = TVI->getName(); TVI->setName("");
2253 Instruction *NewSel =
2254 new SelectInst(SI.getCondition(), TVI->getOperand(2-OpToFold), C,
2256 InsertNewInstBefore(NewSel, SI);
2257 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
2258 return BinaryOperator::create(BO->getOpcode(), FalseVal, NewSel);
2259 else if (ShiftInst *SI = dyn_cast<ShiftInst>(TVI))
2260 return new ShiftInst(SI->getOpcode(), FalseVal, NewSel);
2262 assert(0 && "Unknown instruction!!");
2267 if (Instruction *FVI = dyn_cast<Instruction>(FalseVal))
2268 if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
2269 !isa<Constant>(TrueVal))
2270 if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
2271 unsigned OpToFold = 0;
2272 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
2274 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
2279 Constant *C = GetSelectFoldableConstant(FVI);
2280 std::string Name = FVI->getName(); FVI->setName("");
2281 Instruction *NewSel =
2282 new SelectInst(SI.getCondition(), C, FVI->getOperand(2-OpToFold),
2284 InsertNewInstBefore(NewSel, SI);
2285 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
2286 return BinaryOperator::create(BO->getOpcode(), TrueVal, NewSel);
2287 else if (ShiftInst *SI = dyn_cast<ShiftInst>(FVI))
2288 return new ShiftInst(SI->getOpcode(), TrueVal, NewSel);
2290 assert(0 && "Unknown instruction!!");
2299 // CallInst simplification
2301 Instruction *InstCombiner::visitCallInst(CallInst &CI) {
2302 // Intrinsics cannot occur in an invoke, so handle them here instead of in
2304 if (Function *F = CI.getCalledFunction())
2305 switch (F->getIntrinsicID()) {
2306 case Intrinsic::memmove:
2307 case Intrinsic::memcpy:
2308 case Intrinsic::memset:
2309 // memmove/cpy/set of zero bytes is a noop.
2310 if (Constant *NumBytes = dyn_cast<Constant>(CI.getOperand(3))) {
2311 if (NumBytes->isNullValue())
2312 return EraseInstFromFunction(CI);
2319 return visitCallSite(&CI);
2322 // InvokeInst simplification
2324 Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
2325 return visitCallSite(&II);
2328 // visitCallSite - Improvements for call and invoke instructions.
2330 Instruction *InstCombiner::visitCallSite(CallSite CS) {
2331 bool Changed = false;
2333 // If the callee is a constexpr cast of a function, attempt to move the cast
2334 // to the arguments of the call/invoke.
2335 if (transformConstExprCastCall(CS)) return 0;
2337 Value *Callee = CS.getCalledValue();
2338 const PointerType *PTy = cast<PointerType>(Callee->getType());
2339 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
2340 if (FTy->isVarArg()) {
2341 // See if we can optimize any arguments passed through the varargs area of
2343 for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
2344 E = CS.arg_end(); I != E; ++I)
2345 if (CastInst *CI = dyn_cast<CastInst>(*I)) {
2346 // If this cast does not effect the value passed through the varargs
2347 // area, we can eliminate the use of the cast.
2348 Value *Op = CI->getOperand(0);
2349 if (CI->getType()->isLosslesslyConvertibleTo(Op->getType())) {
2356 return Changed ? CS.getInstruction() : 0;
2359 // transformConstExprCastCall - If the callee is a constexpr cast of a function,
2360 // attempt to move the cast to the arguments of the call/invoke.
2362 bool InstCombiner::transformConstExprCastCall(CallSite CS) {
2363 if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
2364 ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
2365 if (CE->getOpcode() != Instruction::Cast ||
2366 !isa<ConstantPointerRef>(CE->getOperand(0)))
2368 ConstantPointerRef *CPR = cast<ConstantPointerRef>(CE->getOperand(0));
2369 if (!isa<Function>(CPR->getValue())) return false;
2370 Function *Callee = cast<Function>(CPR->getValue());
2371 Instruction *Caller = CS.getInstruction();
2373 // Okay, this is a cast from a function to a different type. Unless doing so
2374 // would cause a type conversion of one of our arguments, change this call to
2375 // be a direct call with arguments casted to the appropriate types.
2377 const FunctionType *FT = Callee->getFunctionType();
2378 const Type *OldRetTy = Caller->getType();
2380 // Check to see if we are changing the return type...
2381 if (OldRetTy != FT->getReturnType()) {
2382 if (Callee->isExternal() &&
2383 !OldRetTy->isLosslesslyConvertibleTo(FT->getReturnType()) &&
2384 !Caller->use_empty())
2385 return false; // Cannot transform this return value...
2387 // If the callsite is an invoke instruction, and the return value is used by
2388 // a PHI node in a successor, we cannot change the return type of the call
2389 // because there is no place to put the cast instruction (without breaking
2390 // the critical edge). Bail out in this case.
2391 if (!Caller->use_empty())
2392 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
2393 for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
2395 if (PHINode *PN = dyn_cast<PHINode>(*UI))
2396 if (PN->getParent() == II->getNormalDest() ||
2397 PN->getParent() == II->getUnwindDest())
2401 unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
2402 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
2404 CallSite::arg_iterator AI = CS.arg_begin();
2405 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
2406 const Type *ParamTy = FT->getParamType(i);
2407 bool isConvertible = (*AI)->getType()->isLosslesslyConvertibleTo(ParamTy);
2408 if (Callee->isExternal() && !isConvertible) return false;
2411 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
2412 Callee->isExternal())
2413 return false; // Do not delete arguments unless we have a function body...
2415 // Okay, we decided that this is a safe thing to do: go ahead and start
2416 // inserting cast instructions as necessary...
2417 std::vector<Value*> Args;
2418 Args.reserve(NumActualArgs);
2420 AI = CS.arg_begin();
2421 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
2422 const Type *ParamTy = FT->getParamType(i);
2423 if ((*AI)->getType() == ParamTy) {
2424 Args.push_back(*AI);
2426 Args.push_back(InsertNewInstBefore(new CastInst(*AI, ParamTy, "tmp"),
2431 // If the function takes more arguments than the call was taking, add them
2433 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
2434 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
2436 // If we are removing arguments to the function, emit an obnoxious warning...
2437 if (FT->getNumParams() < NumActualArgs)
2438 if (!FT->isVarArg()) {
2439 std::cerr << "WARNING: While resolving call to function '"
2440 << Callee->getName() << "' arguments were dropped!\n";
2442 // Add all of the arguments in their promoted form to the arg list...
2443 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
2444 const Type *PTy = getPromotedType((*AI)->getType());
2445 if (PTy != (*AI)->getType()) {
2446 // Must promote to pass through va_arg area!
2447 Instruction *Cast = new CastInst(*AI, PTy, "tmp");
2448 InsertNewInstBefore(Cast, *Caller);
2449 Args.push_back(Cast);
2451 Args.push_back(*AI);
2456 if (FT->getReturnType() == Type::VoidTy)
2457 Caller->setName(""); // Void type should not have a name...
2460 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
2461 NC = new InvokeInst(Callee, II->getNormalDest(), II->getUnwindDest(),
2462 Args, Caller->getName(), Caller);
2464 NC = new CallInst(Callee, Args, Caller->getName(), Caller);
2467 // Insert a cast of the return type as necessary...
2469 if (Caller->getType() != NV->getType() && !Caller->use_empty()) {
2470 if (NV->getType() != Type::VoidTy) {
2471 NV = NC = new CastInst(NC, Caller->getType(), "tmp");
2473 // If this is an invoke instruction, we should insert it after the first
2474 // non-phi, instruction in the normal successor block.
2475 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
2476 BasicBlock::iterator I = II->getNormalDest()->begin();
2477 while (isa<PHINode>(I)) ++I;
2478 InsertNewInstBefore(NC, *I);
2480 // Otherwise, it's a call, just insert cast right after the call instr
2481 InsertNewInstBefore(NC, *Caller);
2483 AddUsersToWorkList(*Caller);
2485 NV = Constant::getNullValue(Caller->getType());
2489 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
2490 Caller->replaceAllUsesWith(NV);
2491 Caller->getParent()->getInstList().erase(Caller);
2492 removeFromWorkList(Caller);
2498 // PHINode simplification
2500 Instruction *InstCombiner::visitPHINode(PHINode &PN) {
2501 if (Value *V = hasConstantValue(&PN))
2502 return ReplaceInstUsesWith(PN, V);
2504 // If the only user of this instruction is a cast instruction, and all of the
2505 // incoming values are constants, change this PHI to merge together the casted
2508 if (CastInst *CI = dyn_cast<CastInst>(PN.use_back()))
2509 if (CI->getType() != PN.getType()) { // noop casts will be folded
2510 bool AllConstant = true;
2511 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2512 if (!isa<Constant>(PN.getIncomingValue(i))) {
2513 AllConstant = false;
2517 // Make a new PHI with all casted values.
2518 PHINode *New = new PHINode(CI->getType(), PN.getName(), &PN);
2519 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
2520 Constant *OldArg = cast<Constant>(PN.getIncomingValue(i));
2521 New->addIncoming(ConstantExpr::getCast(OldArg, New->getType()),
2522 PN.getIncomingBlock(i));
2525 // Update the cast instruction.
2526 CI->setOperand(0, New);
2527 WorkList.push_back(CI); // revisit the cast instruction to fold.
2528 WorkList.push_back(New); // Make sure to revisit the new Phi
2529 return &PN; // PN is now dead!
2535 static Value *InsertSignExtendToPtrTy(Value *V, const Type *DTy,
2536 Instruction *InsertPoint,
2538 unsigned PS = IC->getTargetData().getPointerSize();
2539 const Type *VTy = V->getType();
2541 if (!VTy->isSigned() && VTy->getPrimitiveSize() < PS)
2542 // We must insert a cast to ensure we sign-extend.
2543 V = IC->InsertNewInstBefore(new CastInst(V, VTy->getSignedVersion(),
2544 V->getName()), *InsertPoint);
2545 return IC->InsertNewInstBefore(new CastInst(V, DTy, V->getName()),
2550 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
2551 // Is it 'getelementptr %P, long 0' or 'getelementptr %P'
2552 // If so, eliminate the noop.
2553 if (GEP.getNumOperands() == 1)
2554 return ReplaceInstUsesWith(GEP, GEP.getOperand(0));
2556 bool HasZeroPointerIndex = false;
2557 if (Constant *C = dyn_cast<Constant>(GEP.getOperand(1)))
2558 HasZeroPointerIndex = C->isNullValue();
2560 if (GEP.getNumOperands() == 2 && HasZeroPointerIndex)
2561 return ReplaceInstUsesWith(GEP, GEP.getOperand(0));
2563 // Eliminate unneeded casts for indices.
2564 bool MadeChange = false;
2565 gep_type_iterator GTI = gep_type_begin(GEP);
2566 for (unsigned i = 1, e = GEP.getNumOperands(); i != e; ++i, ++GTI)
2567 if (isa<SequentialType>(*GTI)) {
2568 if (CastInst *CI = dyn_cast<CastInst>(GEP.getOperand(i))) {
2569 Value *Src = CI->getOperand(0);
2570 const Type *SrcTy = Src->getType();
2571 const Type *DestTy = CI->getType();
2572 if (Src->getType()->isInteger()) {
2573 if (SrcTy->getPrimitiveSize() == DestTy->getPrimitiveSize()) {
2574 // We can always eliminate a cast from ulong or long to the other.
2575 // We can always eliminate a cast from uint to int or the other on
2576 // 32-bit pointer platforms.
2577 if (DestTy->getPrimitiveSize() >= TD->getPointerSize()) {
2579 GEP.setOperand(i, Src);
2581 } else if (SrcTy->getPrimitiveSize() < DestTy->getPrimitiveSize() &&
2582 SrcTy->getPrimitiveSize() == 4) {
2583 // We can always eliminate a cast from int to [u]long. We can
2584 // eliminate a cast from uint to [u]long iff the target is a 32-bit
2586 if (SrcTy->isSigned() ||
2587 SrcTy->getPrimitiveSize() >= TD->getPointerSize()) {
2589 GEP.setOperand(i, Src);
2594 // If we are using a wider index than needed for this platform, shrink it
2595 // to what we need. If the incoming value needs a cast instruction,
2596 // insert it. This explicit cast can make subsequent optimizations more
2598 Value *Op = GEP.getOperand(i);
2599 if (Op->getType()->getPrimitiveSize() > TD->getPointerSize())
2600 if (!isa<Constant>(Op)) {
2601 Op = InsertNewInstBefore(new CastInst(Op, TD->getIntPtrType(),
2602 Op->getName()), GEP);
2603 GEP.setOperand(i, Op);
2607 if (MadeChange) return &GEP;
2609 // Combine Indices - If the source pointer to this getelementptr instruction
2610 // is a getelementptr instruction, combine the indices of the two
2611 // getelementptr instructions into a single instruction.
2613 std::vector<Value*> SrcGEPOperands;
2614 if (GetElementPtrInst *Src = dyn_cast<GetElementPtrInst>(GEP.getOperand(0))) {
2615 SrcGEPOperands.assign(Src->op_begin(), Src->op_end());
2616 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP.getOperand(0))) {
2617 if (CE->getOpcode() == Instruction::GetElementPtr)
2618 SrcGEPOperands.assign(CE->op_begin(), CE->op_end());
2621 if (!SrcGEPOperands.empty()) {
2622 std::vector<Value *> Indices;
2624 // Can we combine the two pointer arithmetics offsets?
2625 if (SrcGEPOperands.size() == 2 && isa<Constant>(SrcGEPOperands[1]) &&
2626 isa<Constant>(GEP.getOperand(1))) {
2627 Constant *SGC = cast<Constant>(SrcGEPOperands[1]);
2628 Constant *GC = cast<Constant>(GEP.getOperand(1));
2629 if (SGC->getType() != GC->getType()) {
2630 SGC = ConstantExpr::getSignExtend(SGC, Type::LongTy);
2631 GC = ConstantExpr::getSignExtend(GC, Type::LongTy);
2634 // Replace: gep (gep %P, long C1), long C2, ...
2635 // With: gep %P, long (C1+C2), ...
2636 GEP.setOperand(0, SrcGEPOperands[0]);
2637 GEP.setOperand(1, ConstantExpr::getAdd(SGC, GC));
2638 if (Instruction *I = dyn_cast<Instruction>(GEP.getOperand(0)))
2639 AddUsersToWorkList(*I); // Reduce use count of Src
2641 } else if (SrcGEPOperands.size() == 2) {
2642 // Replace: gep (gep %P, long B), long A, ...
2643 // With: T = long A+B; gep %P, T, ...
2645 // Note that if our source is a gep chain itself that we wait for that
2646 // chain to be resolved before we perform this transformation. This
2647 // avoids us creating a TON of code in some cases.
2649 if (isa<GetElementPtrInst>(SrcGEPOperands[0]) &&
2650 cast<Instruction>(SrcGEPOperands[0])->getNumOperands() == 2)
2651 return 0; // Wait until our source is folded to completion.
2653 Value *Sum, *SO1 = SrcGEPOperands[1], *GO1 = GEP.getOperand(1);
2654 if (SO1 == Constant::getNullValue(SO1->getType())) {
2656 } else if (GO1 == Constant::getNullValue(GO1->getType())) {
2659 // If they aren't the same type, convert both to an integer of the
2660 // target's pointer size.
2661 if (SO1->getType() != GO1->getType()) {
2662 if (Constant *SO1C = dyn_cast<Constant>(SO1)) {
2663 SO1 = ConstantExpr::getCast(SO1C, GO1->getType());
2664 } else if (Constant *GO1C = dyn_cast<Constant>(GO1)) {
2665 GO1 = ConstantExpr::getCast(GO1C, SO1->getType());
2667 unsigned PS = TD->getPointerSize();
2669 if (SO1->getType()->getPrimitiveSize() == PS) {
2670 // Convert GO1 to SO1's type.
2671 GO1 = InsertSignExtendToPtrTy(GO1, SO1->getType(), &GEP, this);
2673 } else if (GO1->getType()->getPrimitiveSize() == PS) {
2674 // Convert SO1 to GO1's type.
2675 SO1 = InsertSignExtendToPtrTy(SO1, GO1->getType(), &GEP, this);
2677 const Type *PT = TD->getIntPtrType();
2678 SO1 = InsertSignExtendToPtrTy(SO1, PT, &GEP, this);
2679 GO1 = InsertSignExtendToPtrTy(GO1, PT, &GEP, this);
2683 Sum = BinaryOperator::create(Instruction::Add, SO1, GO1,
2684 GEP.getOperand(0)->getName()+".sum", &GEP);
2685 WorkList.push_back(cast<Instruction>(Sum));
2687 GEP.setOperand(0, SrcGEPOperands[0]);
2688 GEP.setOperand(1, Sum);
2690 } else if (isa<Constant>(*GEP.idx_begin()) &&
2691 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
2692 SrcGEPOperands.size() != 1) {
2693 // Otherwise we can do the fold if the first index of the GEP is a zero
2694 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
2695 SrcGEPOperands.end());
2696 Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end());
2697 } else if (SrcGEPOperands.back() ==
2698 Constant::getNullValue(SrcGEPOperands.back()->getType())) {
2699 // We have to check to make sure this really is an ARRAY index we are
2700 // ending up with, not a struct index.
2701 generic_gep_type_iterator<std::vector<Value*>::iterator>
2702 GTI = gep_type_begin(SrcGEPOperands[0]->getType(),
2703 SrcGEPOperands.begin()+1, SrcGEPOperands.end());
2704 std::advance(GTI, SrcGEPOperands.size()-2);
2705 if (isa<SequentialType>(*GTI)) {
2706 // If the src gep ends with a constant array index, merge this get into
2707 // it, even if we have a non-zero array index.
2708 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
2709 SrcGEPOperands.end()-1);
2710 Indices.insert(Indices.end(), GEP.idx_begin(), GEP.idx_end());
2714 if (!Indices.empty())
2715 return new GetElementPtrInst(SrcGEPOperands[0], Indices, GEP.getName());
2717 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(GEP.getOperand(0))) {
2718 // GEP of global variable. If all of the indices for this GEP are
2719 // constants, we can promote this to a constexpr instead of an instruction.
2721 // Scan for nonconstants...
2722 std::vector<Constant*> Indices;
2723 User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end();
2724 for (; I != E && isa<Constant>(*I); ++I)
2725 Indices.push_back(cast<Constant>(*I));
2727 if (I == E) { // If they are all constants...
2729 ConstantExpr::getGetElementPtr(ConstantPointerRef::get(GV), Indices);
2731 // Replace all uses of the GEP with the new constexpr...
2732 return ReplaceInstUsesWith(GEP, CE);
2734 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP.getOperand(0))) {
2735 if (CE->getOpcode() == Instruction::Cast) {
2736 if (HasZeroPointerIndex) {
2737 // transform: GEP (cast [10 x ubyte]* X to [0 x ubyte]*), long 0, ...
2738 // into : GEP [10 x ubyte]* X, long 0, ...
2740 // This occurs when the program declares an array extern like "int X[];"
2742 Constant *X = CE->getOperand(0);
2743 const PointerType *CPTy = cast<PointerType>(CE->getType());
2744 if (const PointerType *XTy = dyn_cast<PointerType>(X->getType()))
2745 if (const ArrayType *XATy =
2746 dyn_cast<ArrayType>(XTy->getElementType()))
2747 if (const ArrayType *CATy =
2748 dyn_cast<ArrayType>(CPTy->getElementType()))
2749 if (CATy->getElementType() == XATy->getElementType()) {
2750 // At this point, we know that the cast source type is a pointer
2751 // to an array of the same type as the destination pointer
2752 // array. Because the array type is never stepped over (there
2753 // is a leading zero) we can fold the cast into this GEP.
2754 GEP.setOperand(0, X);
2764 Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) {
2765 // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1
2766 if (AI.isArrayAllocation()) // Check C != 1
2767 if (const ConstantUInt *C = dyn_cast<ConstantUInt>(AI.getArraySize())) {
2768 const Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getValue());
2769 AllocationInst *New = 0;
2771 // Create and insert the replacement instruction...
2772 if (isa<MallocInst>(AI))
2773 New = new MallocInst(NewTy, 0, AI.getName());
2775 assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
2776 New = new AllocaInst(NewTy, 0, AI.getName());
2779 InsertNewInstBefore(New, AI);
2781 // Scan to the end of the allocation instructions, to skip over a block of
2782 // allocas if possible...
2784 BasicBlock::iterator It = New;
2785 while (isa<AllocationInst>(*It)) ++It;
2787 // Now that I is pointing to the first non-allocation-inst in the block,
2788 // insert our getelementptr instruction...
2790 std::vector<Value*> Idx(2, Constant::getNullValue(Type::IntTy));
2791 Value *V = new GetElementPtrInst(New, Idx, New->getName()+".sub", It);
2793 // Now make everything use the getelementptr instead of the original
2795 return ReplaceInstUsesWith(AI, V);
2798 // If alloca'ing a zero byte object, replace the alloca with a null pointer.
2799 // Note that we only do this for alloca's, because malloc should allocate and
2800 // return a unique pointer, even for a zero byte allocation.
2801 if (isa<AllocaInst>(AI) && TD->getTypeSize(AI.getAllocatedType()) == 0)
2802 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
2807 Instruction *InstCombiner::visitFreeInst(FreeInst &FI) {
2808 Value *Op = FI.getOperand(0);
2810 // Change free <ty>* (cast <ty2>* X to <ty>*) into free <ty2>* X
2811 if (CastInst *CI = dyn_cast<CastInst>(Op))
2812 if (isa<PointerType>(CI->getOperand(0)->getType())) {
2813 FI.setOperand(0, CI->getOperand(0));
2817 // If we have 'free null' delete the instruction. This can happen in stl code
2818 // when lots of inlining happens.
2819 if (isa<ConstantPointerNull>(Op))
2820 return EraseInstFromFunction(FI);
2826 /// GetGEPGlobalInitializer - Given a constant, and a getelementptr
2827 /// constantexpr, return the constant value being addressed by the constant
2828 /// expression, or null if something is funny.
2830 static Constant *GetGEPGlobalInitializer(Constant *C, ConstantExpr *CE) {
2831 if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType()))
2832 return 0; // Do not allow stepping over the value!
2834 // Loop over all of the operands, tracking down which value we are
2836 for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i)
2837 if (ConstantUInt *CU = dyn_cast<ConstantUInt>(CE->getOperand(i))) {
2838 ConstantStruct *CS = dyn_cast<ConstantStruct>(C);
2839 if (CS == 0) return 0;
2840 if (CU->getValue() >= CS->getValues().size()) return 0;
2841 C = cast<Constant>(CS->getValues()[CU->getValue()]);
2842 } else if (ConstantSInt *CS = dyn_cast<ConstantSInt>(CE->getOperand(i))) {
2843 ConstantArray *CA = dyn_cast<ConstantArray>(C);
2844 if (CA == 0) return 0;
2845 if ((uint64_t)CS->getValue() >= CA->getValues().size()) return 0;
2846 C = cast<Constant>(CA->getValues()[CS->getValue()]);
2852 Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
2853 Value *Op = LI.getOperand(0);
2854 if (LI.isVolatile()) return 0;
2856 if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Op))
2857 Op = CPR->getValue();
2859 // Instcombine load (constant global) into the value loaded...
2860 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op))
2861 if (GV->isConstant() && !GV->isExternal())
2862 return ReplaceInstUsesWith(LI, GV->getInitializer());
2864 // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded...
2865 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op))
2866 if (CE->getOpcode() == Instruction::GetElementPtr)
2867 if (ConstantPointerRef *G=dyn_cast<ConstantPointerRef>(CE->getOperand(0)))
2868 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getValue()))
2869 if (GV->isConstant() && !GV->isExternal())
2870 if (Constant *V = GetGEPGlobalInitializer(GV->getInitializer(), CE))
2871 return ReplaceInstUsesWith(LI, V);
2873 // load (cast X) --> cast (load X) iff safe
2874 if (CastInst *CI = dyn_cast<CastInst>(Op)) {
2875 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
2876 if (const PointerType *SrcTy =
2877 dyn_cast<PointerType>(CI->getOperand(0)->getType())) {
2878 const Type *SrcPTy = SrcTy->getElementType();
2879 if (TD->getTypeSize(SrcPTy) == TD->getTypeSize(DestPTy) &&
2880 (SrcPTy->isInteger() || isa<PointerType>(SrcPTy)) &&
2881 (DestPTy->isInteger() || isa<PointerType>(DestPTy))) {
2882 // Okay, we are casting from one integer or pointer type to another of
2883 // the same size. Instead of casting the pointer before the load, cast
2884 // the result of the loaded value.
2885 Value *NewLoad = InsertNewInstBefore(new LoadInst(CI->getOperand(0),
2886 CI->getName()), LI);
2887 // Now cast the result of the load.
2888 return new CastInst(NewLoad, LI.getType());
2897 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
2898 // Change br (not X), label True, label False to: br X, label False, True
2899 if (BI.isConditional() && !isa<Constant>(BI.getCondition())) {
2900 if (Value *V = dyn_castNotVal(BI.getCondition())) {
2901 BasicBlock *TrueDest = BI.getSuccessor(0);
2902 BasicBlock *FalseDest = BI.getSuccessor(1);
2903 // Swap Destinations and condition...
2905 BI.setSuccessor(0, FalseDest);
2906 BI.setSuccessor(1, TrueDest);
2908 } else if (SetCondInst *I = dyn_cast<SetCondInst>(BI.getCondition())) {
2909 // Cannonicalize setne -> seteq
2910 if ((I->getOpcode() == Instruction::SetNE ||
2911 I->getOpcode() == Instruction::SetLE ||
2912 I->getOpcode() == Instruction::SetGE) && I->hasOneUse()) {
2913 std::string Name = I->getName(); I->setName("");
2914 Instruction::BinaryOps NewOpcode =
2915 SetCondInst::getInverseCondition(I->getOpcode());
2916 Value *NewSCC = BinaryOperator::create(NewOpcode, I->getOperand(0),
2917 I->getOperand(1), Name, I);
2918 BasicBlock *TrueDest = BI.getSuccessor(0);
2919 BasicBlock *FalseDest = BI.getSuccessor(1);
2920 // Swap Destinations and condition...
2921 BI.setCondition(NewSCC);
2922 BI.setSuccessor(0, FalseDest);
2923 BI.setSuccessor(1, TrueDest);
2924 removeFromWorkList(I);
2925 I->getParent()->getInstList().erase(I);
2926 WorkList.push_back(cast<Instruction>(NewSCC));
2935 void InstCombiner::removeFromWorkList(Instruction *I) {
2936 WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), I),
2940 bool InstCombiner::runOnFunction(Function &F) {
2941 bool Changed = false;
2942 TD = &getAnalysis<TargetData>();
2944 WorkList.insert(WorkList.end(), inst_begin(F), inst_end(F));
2946 while (!WorkList.empty()) {
2947 Instruction *I = WorkList.back(); // Get an instruction from the worklist
2948 WorkList.pop_back();
2950 // Check to see if we can DCE or ConstantPropagate the instruction...
2951 // Check to see if we can DIE the instruction...
2952 if (isInstructionTriviallyDead(I)) {
2953 // Add operands to the worklist...
2954 if (I->getNumOperands() < 4)
2955 AddUsesToWorkList(*I);
2958 I->getParent()->getInstList().erase(I);
2959 removeFromWorkList(I);
2963 // Instruction isn't dead, see if we can constant propagate it...
2964 if (Constant *C = ConstantFoldInstruction(I)) {
2965 // Add operands to the worklist...
2966 AddUsesToWorkList(*I);
2967 ReplaceInstUsesWith(*I, C);
2970 I->getParent()->getInstList().erase(I);
2971 removeFromWorkList(I);
2975 // Check to see if any of the operands of this instruction are a
2976 // ConstantPointerRef. Since they sneak in all over the place and inhibit
2977 // optimization, we want to strip them out unconditionally!
2978 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
2979 if (ConstantPointerRef *CPR =
2980 dyn_cast<ConstantPointerRef>(I->getOperand(i))) {
2981 I->setOperand(i, CPR->getValue());
2985 // Now that we have an instruction, try combining it to simplify it...
2986 if (Instruction *Result = visit(*I)) {
2988 // Should we replace the old instruction with a new one?
2990 DEBUG(std::cerr << "IC: Old = " << *I
2991 << " New = " << *Result);
2993 // Instructions can end up on the worklist more than once. Make sure
2994 // we do not process an instruction that has been deleted.
2995 removeFromWorkList(I);
2997 // Move the name to the new instruction first...
2998 std::string OldName = I->getName(); I->setName("");
2999 Result->setName(OldName);
3001 // Insert the new instruction into the basic block...
3002 BasicBlock *InstParent = I->getParent();
3003 InstParent->getInstList().insert(I, Result);
3005 // Everything uses the new instruction now...
3006 I->replaceAllUsesWith(Result);
3008 // Erase the old instruction.
3009 InstParent->getInstList().erase(I);
3011 DEBUG(std::cerr << "IC: MOD = " << *I);
3013 BasicBlock::iterator II = I;
3015 // If the instruction was modified, it's possible that it is now dead.
3016 // if so, remove it.
3017 if (dceInstruction(II)) {
3018 // Instructions may end up in the worklist more than once. Erase them
3020 removeFromWorkList(I);
3026 WorkList.push_back(Result);
3027 AddUsersToWorkList(*Result);
3036 Pass *llvm::createInstructionCombiningPass() {
3037 return new InstCombiner();