1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the Jump Threading pass.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "jump-threading"
15 #include "llvm/Transforms/Scalar.h"
16 #include "llvm/IntrinsicInst.h"
17 #include "llvm/LLVMContext.h"
18 #include "llvm/Pass.h"
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
21 #include "llvm/Transforms/Utils/Local.h"
22 #include "llvm/Target/TargetData.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/Compiler.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ValueHandle.h"
34 STATISTIC(NumThreads, "Number of jumps threaded");
35 STATISTIC(NumFolds, "Number of terminators folded");
37 static cl::opt<unsigned>
38 Threshold("jump-threading-threshold",
39 cl::desc("Max block size to duplicate for jump threading"),
40 cl::init(6), cl::Hidden);
43 /// This pass performs 'jump threading', which looks at blocks that have
44 /// multiple predecessors and multiple successors. If one or more of the
45 /// predecessors of the block can be proven to always jump to one of the
46 /// successors, we forward the edge from the predecessor to the successor by
47 /// duplicating the contents of this block.
49 /// An example of when this can occur is code like this:
56 /// In this case, the unconditional branch at the end of the first if can be
57 /// revectored to the false side of the second if.
59 class VISIBILITY_HIDDEN JumpThreading : public FunctionPass {
62 SmallPtrSet<BasicBlock*, 16> LoopHeaders;
64 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
67 static char ID; // Pass identification
68 JumpThreading() : FunctionPass(&ID) {}
70 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
71 AU.addRequired<TargetData>();
74 bool runOnFunction(Function &F);
75 void FindLoopHeaders(Function &F);
77 bool ProcessBlock(BasicBlock *BB);
78 bool ThreadEdge(BasicBlock *BB, BasicBlock *PredBB, BasicBlock *SuccBB,
79 unsigned JumpThreadCost);
80 BasicBlock *FactorCommonPHIPreds(PHINode *PN, Value *Val);
81 bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
82 bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
84 bool ProcessJumpOnPHI(PHINode *PN);
85 bool ProcessBranchOnLogical(Value *V, BasicBlock *BB, bool isAnd);
86 bool ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB);
88 bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
92 char JumpThreading::ID = 0;
93 static RegisterPass<JumpThreading>
94 X("jump-threading", "Jump Threading");
96 // Public interface to the Jump Threading pass
97 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
99 /// runOnFunction - Top level algorithm.
101 bool JumpThreading::runOnFunction(Function &F) {
102 DOUT << "Jump threading on function '" << F.getNameStart() << "'\n";
103 TD = &getAnalysis<TargetData>();
107 bool AnotherIteration = true, EverChanged = false;
108 while (AnotherIteration) {
109 AnotherIteration = false;
110 bool Changed = false;
111 for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
113 while (ProcessBlock(BB))
118 // If the block is trivially dead, zap it. This eliminates the successor
119 // edges which simplifies the CFG.
120 if (pred_begin(BB) == pred_end(BB) &&
121 BB != &BB->getParent()->getEntryBlock()) {
122 DOUT << " JT: Deleting dead block '" << BB->getNameStart()
123 << "' with terminator: " << *BB->getTerminator();
124 LoopHeaders.erase(BB);
129 AnotherIteration = Changed;
130 EverChanged |= Changed;
137 /// FindLoopHeaders - We do not want jump threading to turn proper loop
138 /// structures into irreducible loops. Doing this breaks up the loop nesting
139 /// hierarchy and pessimizes later transformations. To prevent this from
140 /// happening, we first have to find the loop headers. Here we approximate this
141 /// by finding targets of backedges in the CFG.
143 /// Note that there definitely are cases when we want to allow threading of
144 /// edges across a loop header. For example, threading a jump from outside the
145 /// loop (the preheader) to an exit block of the loop is definitely profitable.
146 /// It is also almost always profitable to thread backedges from within the loop
147 /// to exit blocks, and is often profitable to thread backedges to other blocks
148 /// within the loop (forming a nested loop). This simple analysis is not rich
149 /// enough to track all of these properties and keep it up-to-date as the CFG
150 /// mutates, so we don't allow any of these transformations.
152 void JumpThreading::FindLoopHeaders(Function &F) {
153 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
154 FindFunctionBackedges(F, Edges);
156 for (unsigned i = 0, e = Edges.size(); i != e; ++i)
157 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
161 /// FactorCommonPHIPreds - If there are multiple preds with the same incoming
162 /// value for the PHI, factor them together so we get one block to thread for
164 /// This is important for things like "phi i1 [true, true, false, true, x]"
165 /// where we only need to clone the block for the true blocks once.
167 BasicBlock *JumpThreading::FactorCommonPHIPreds(PHINode *PN, Value *Val) {
168 SmallVector<BasicBlock*, 16> CommonPreds;
169 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
170 if (PN->getIncomingValue(i) == Val)
171 CommonPreds.push_back(PN->getIncomingBlock(i));
173 if (CommonPreds.size() == 1)
174 return CommonPreds[0];
176 DOUT << " Factoring out " << CommonPreds.size()
177 << " common predecessors.\n";
178 return SplitBlockPredecessors(PN->getParent(),
179 &CommonPreds[0], CommonPreds.size(),
184 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
185 /// thread across it.
186 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
187 /// Ignore PHI nodes, these will be flattened when duplication happens.
188 BasicBlock::const_iterator I = BB->getFirstNonPHI();
190 // Sum up the cost of each instruction until we get to the terminator. Don't
191 // include the terminator because the copy won't include it.
193 for (; !isa<TerminatorInst>(I); ++I) {
194 // Debugger intrinsics don't incur code size.
195 if (isa<DbgInfoIntrinsic>(I)) continue;
197 // If this is a pointer->pointer bitcast, it is free.
198 if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
201 // All other instructions count for at least one unit.
204 // Calls are more expensive. If they are non-intrinsic calls, we model them
205 // as having cost of 4. If they are a non-vector intrinsic, we model them
206 // as having cost of 2 total, and if they are a vector intrinsic, we model
207 // them as having cost 1.
208 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
209 if (!isa<IntrinsicInst>(CI))
211 else if (!isa<VectorType>(CI->getType()))
216 // Threading through a switch statement is particularly profitable. If this
217 // block ends in a switch, decrease its cost to make it more likely to happen.
218 if (isa<SwitchInst>(I))
219 Size = Size > 6 ? Size-6 : 0;
224 /// ProcessBlock - If there are any predecessors whose control can be threaded
225 /// through to a successor, transform them now.
226 bool JumpThreading::ProcessBlock(BasicBlock *BB) {
227 // If this block has a single predecessor, and if that pred has a single
228 // successor, merge the blocks. This encourages recursive jump threading
229 // because now the condition in this block can be threaded through
230 // predecessors of our predecessor block.
231 if (BasicBlock *SinglePred = BB->getSinglePredecessor())
232 if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
234 // If SinglePred was a loop header, BB becomes one.
235 if (LoopHeaders.erase(SinglePred))
236 LoopHeaders.insert(BB);
238 // Remember if SinglePred was the entry block of the function. If so, we
239 // will need to move BB back to the entry position.
240 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
241 MergeBasicBlockIntoOnlyPred(BB);
243 if (isEntry && BB != &BB->getParent()->getEntryBlock())
244 BB->moveBefore(&BB->getParent()->getEntryBlock());
248 // See if this block ends with a branch or switch. If so, see if the
249 // condition is a phi node. If so, and if an entry of the phi node is a
250 // constant, we can thread the block.
252 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
253 // Can't thread an unconditional jump.
254 if (BI->isUnconditional()) return false;
255 Condition = BI->getCondition();
256 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
257 Condition = SI->getCondition();
259 return false; // Must be an invoke.
261 // If the terminator of this block is branching on a constant, simplify the
262 // terminator to an unconditional branch. This can occur due to threading in
264 if (isa<ConstantInt>(Condition)) {
265 DOUT << " In block '" << BB->getNameStart()
266 << "' folding terminator: " << *BB->getTerminator();
268 ConstantFoldTerminator(BB);
272 // If the terminator is branching on an undef, we can pick any of the
273 // successors to branch to. Since this is arbitrary, we pick the successor
274 // with the fewest predecessors. This should reduce the in-degree of the
276 if (isa<UndefValue>(Condition)) {
277 TerminatorInst *BBTerm = BB->getTerminator();
278 unsigned MinSucc = 0;
279 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
280 // Compute the successor with the minimum number of predecessors.
281 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
282 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
283 TestBB = BBTerm->getSuccessor(i);
284 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
285 if (NumPreds < MinNumPreds)
289 // Fold the branch/switch.
290 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
291 if (i == MinSucc) continue;
292 BBTerm->getSuccessor(i)->removePredecessor(BB);
295 DOUT << " In block '" << BB->getNameStart()
296 << "' folding undef terminator: " << *BBTerm;
297 BranchInst::Create(BBTerm->getSuccessor(MinSucc), BBTerm);
298 BBTerm->eraseFromParent();
302 Instruction *CondInst = dyn_cast<Instruction>(Condition);
304 // If the condition is an instruction defined in another block, see if a
305 // predecessor has the same condition:
309 if (!Condition->hasOneUse() && // Multiple uses.
310 (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
311 pred_iterator PI = pred_begin(BB), E = pred_end(BB);
312 if (isa<BranchInst>(BB->getTerminator())) {
313 for (; PI != E; ++PI)
314 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
315 if (PBI->isConditional() && PBI->getCondition() == Condition &&
316 ProcessBranchOnDuplicateCond(*PI, BB))
319 assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
320 for (; PI != E; ++PI)
321 if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator()))
322 if (PSI->getCondition() == Condition &&
323 ProcessSwitchOnDuplicateCond(*PI, BB))
328 // All the rest of our checks depend on the condition being an instruction.
332 // See if this is a phi node in the current block.
333 if (PHINode *PN = dyn_cast<PHINode>(CondInst))
334 if (PN->getParent() == BB)
335 return ProcessJumpOnPHI(PN);
337 // If this is a conditional branch whose condition is and/or of a phi, try to
339 if ((CondInst->getOpcode() == Instruction::And ||
340 CondInst->getOpcode() == Instruction::Or) &&
341 isa<BranchInst>(BB->getTerminator()) &&
342 ProcessBranchOnLogical(CondInst, BB,
343 CondInst->getOpcode() == Instruction::And))
346 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
347 if (isa<PHINode>(CondCmp->getOperand(0))) {
348 // If we have "br (phi != 42)" and the phi node has any constant values
349 // as operands, we can thread through this block.
351 // If we have "br (cmp phi, x)" and the phi node contains x such that the
352 // comparison uniquely identifies the branch target, we can thread
353 // through this block.
355 if (ProcessBranchOnCompare(CondCmp, BB))
359 // If we have a comparison, loop over the predecessors to see if there is
360 // a condition with the same value.
361 pred_iterator PI = pred_begin(BB), E = pred_end(BB);
362 for (; PI != E; ++PI)
363 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
364 if (PBI->isConditional() && *PI != BB) {
365 if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
366 if (CI->getOperand(0) == CondCmp->getOperand(0) &&
367 CI->getOperand(1) == CondCmp->getOperand(1) &&
368 CI->getPredicate() == CondCmp->getPredicate()) {
369 // TODO: Could handle things like (x != 4) --> (x == 17)
370 if (ProcessBranchOnDuplicateCond(*PI, BB))
377 // Check for some cases that are worth simplifying. Right now we want to look
378 // for loads that are used by a switch or by the condition for the branch. If
379 // we see one, check to see if it's partially redundant. If so, insert a PHI
380 // which can then be used to thread the values.
382 // This is particularly important because reg2mem inserts loads and stores all
383 // over the place, and this blocks jump threading if we don't zap them.
384 Value *SimplifyValue = CondInst;
385 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
386 if (isa<Constant>(CondCmp->getOperand(1)))
387 SimplifyValue = CondCmp->getOperand(0);
389 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
390 if (SimplifyPartiallyRedundantLoad(LI))
393 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know
394 // "(X == 4)" thread through this block.
399 /// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
400 /// block that jump on exactly the same condition. This means that we almost
401 /// always know the direction of the edge in the DESTBB:
403 /// br COND, DESTBB, BBY
405 /// br COND, BBZ, BBW
407 /// If DESTBB has multiple predecessors, we can't just constant fold the branch
408 /// in DESTBB, we have to thread over it.
409 bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
411 BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
413 // If both successors of PredBB go to DESTBB, we don't know anything. We can
414 // fold the branch to an unconditional one, which allows other recursive
417 if (PredBI->getSuccessor(1) != BB)
419 else if (PredBI->getSuccessor(0) != BB)
422 DOUT << " In block '" << PredBB->getNameStart()
423 << "' folding terminator: " << *PredBB->getTerminator();
425 ConstantFoldTerminator(PredBB);
429 BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
431 // If the dest block has one predecessor, just fix the branch condition to a
432 // constant and fold it.
433 if (BB->getSinglePredecessor()) {
434 DOUT << " In block '" << BB->getNameStart()
435 << "' folding condition to '" << BranchDir << "': "
436 << *BB->getTerminator();
438 DestBI->setCondition(BB->getContext().getConstantInt(Type::Int1Ty,
440 ConstantFoldTerminator(BB);
444 // Otherwise we need to thread from PredBB to DestBB's successor which
445 // involves code duplication. Check to see if it is worth it.
446 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
447 if (JumpThreadCost > Threshold) {
448 DOUT << " Not threading BB '" << BB->getNameStart()
449 << "' - Cost is too high: " << JumpThreadCost << "\n";
453 // Next, figure out which successor we are threading to.
454 BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
456 // Ok, try to thread it!
457 return ThreadEdge(BB, PredBB, SuccBB, JumpThreadCost);
460 /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
461 /// block that switch on exactly the same condition. This means that we almost
462 /// always know the direction of the edge in the DESTBB:
464 /// switch COND [... DESTBB, BBY ... ]
466 /// switch COND [... BBZ, BBW ]
468 /// Optimizing switches like this is very important, because simplifycfg builds
469 /// switches out of repeated 'if' conditions.
470 bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
471 BasicBlock *DestBB) {
472 // Can't thread edge to self.
473 if (PredBB == DestBB)
477 SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
478 SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
480 // There are a variety of optimizations that we can potentially do on these
481 // blocks: we order them from most to least preferable.
483 // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
484 // directly to their destination. This does not introduce *any* code size
485 // growth. Skip debug info first.
486 BasicBlock::iterator BBI = DestBB->begin();
487 while (isa<DbgInfoIntrinsic>(BBI))
490 // FIXME: Thread if it just contains a PHI.
491 if (isa<SwitchInst>(BBI)) {
492 bool MadeChange = false;
493 // Ignore the default edge for now.
494 for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
495 ConstantInt *DestVal = DestSI->getCaseValue(i);
496 BasicBlock *DestSucc = DestSI->getSuccessor(i);
498 // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'. See if
499 // PredSI has an explicit case for it. If so, forward. If it is covered
500 // by the default case, we can't update PredSI.
501 unsigned PredCase = PredSI->findCaseValue(DestVal);
502 if (PredCase == 0) continue;
504 // If PredSI doesn't go to DestBB on this value, then it won't reach the
505 // case on this condition.
506 if (PredSI->getSuccessor(PredCase) != DestBB &&
507 DestSI->getSuccessor(i) != DestBB)
510 // Otherwise, we're safe to make the change. Make sure that the edge from
511 // DestSI to DestSucc is not critical and has no PHI nodes.
512 DOUT << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI;
513 DOUT << "THROUGH: " << *DestSI;
515 // If the destination has PHI nodes, just split the edge for updating
517 if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
518 SplitCriticalEdge(DestSI, i, this);
519 DestSucc = DestSI->getSuccessor(i);
521 FoldSingleEntryPHINodes(DestSucc);
522 PredSI->setSuccessor(PredCase, DestSucc);
534 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
535 /// load instruction, eliminate it by replacing it with a PHI node. This is an
536 /// important optimization that encourages jump threading, and needs to be run
537 /// interlaced with other jump threading tasks.
538 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
539 // Don't hack volatile loads.
540 if (LI->isVolatile()) return false;
542 // If the load is defined in a block with exactly one predecessor, it can't be
543 // partially redundant.
544 BasicBlock *LoadBB = LI->getParent();
545 if (LoadBB->getSinglePredecessor())
548 Value *LoadedPtr = LI->getOperand(0);
550 // If the loaded operand is defined in the LoadBB, it can't be available.
551 // FIXME: Could do PHI translation, that would be fun :)
552 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
553 if (PtrOp->getParent() == LoadBB)
556 // Scan a few instructions up from the load, to see if it is obviously live at
557 // the entry to its block.
558 BasicBlock::iterator BBIt = LI;
560 if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB,
562 // If the value if the load is locally available within the block, just use
563 // it. This frequently occurs for reg2mem'd allocas.
564 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
566 // If the returned value is the load itself, replace with an undef. This can
567 // only happen in dead loops.
568 if (AvailableVal == LI) AvailableVal =
569 AvailableVal->getContext().getUndef(LI->getType());
570 LI->replaceAllUsesWith(AvailableVal);
571 LI->eraseFromParent();
575 // Otherwise, if we scanned the whole block and got to the top of the block,
576 // we know the block is locally transparent to the load. If not, something
577 // might clobber its value.
578 if (BBIt != LoadBB->begin())
582 SmallPtrSet<BasicBlock*, 8> PredsScanned;
583 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
584 AvailablePredsTy AvailablePreds;
585 BasicBlock *OneUnavailablePred = 0;
587 // If we got here, the loaded value is transparent through to the start of the
588 // block. Check to see if it is available in any of the predecessor blocks.
589 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
591 BasicBlock *PredBB = *PI;
593 // If we already scanned this predecessor, skip it.
594 if (!PredsScanned.insert(PredBB))
597 // Scan the predecessor to see if the value is available in the pred.
598 BBIt = PredBB->end();
599 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
600 if (!PredAvailable) {
601 OneUnavailablePred = PredBB;
605 // If so, this load is partially redundant. Remember this info so that we
606 // can create a PHI node.
607 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
610 // If the loaded value isn't available in any predecessor, it isn't partially
612 if (AvailablePreds.empty()) return false;
614 // Okay, the loaded value is available in at least one (and maybe all!)
615 // predecessors. If the value is unavailable in more than one unique
616 // predecessor, we want to insert a merge block for those common predecessors.
617 // This ensures that we only have to insert one reload, thus not increasing
619 BasicBlock *UnavailablePred = 0;
621 // If there is exactly one predecessor where the value is unavailable, the
622 // already computed 'OneUnavailablePred' block is it. If it ends in an
623 // unconditional branch, we know that it isn't a critical edge.
624 if (PredsScanned.size() == AvailablePreds.size()+1 &&
625 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
626 UnavailablePred = OneUnavailablePred;
627 } else if (PredsScanned.size() != AvailablePreds.size()) {
628 // Otherwise, we had multiple unavailable predecessors or we had a critical
629 // edge from the one.
630 SmallVector<BasicBlock*, 8> PredsToSplit;
631 SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
633 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
634 AvailablePredSet.insert(AvailablePreds[i].first);
636 // Add all the unavailable predecessors to the PredsToSplit list.
637 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
639 if (!AvailablePredSet.count(*PI))
640 PredsToSplit.push_back(*PI);
642 // Split them out to their own block.
644 SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
645 "thread-split", this);
648 // If the value isn't available in all predecessors, then there will be
649 // exactly one where it isn't available. Insert a load on that edge and add
650 // it to the AvailablePreds list.
651 if (UnavailablePred) {
652 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
653 "Can't handle critical edge here!");
654 Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr",
655 UnavailablePred->getTerminator());
656 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
659 // Now we know that each predecessor of this block has a value in
660 // AvailablePreds, sort them for efficient access as we're walking the preds.
661 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
663 // Create a PHI node at the start of the block for the PRE'd load value.
664 PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
667 // Insert new entries into the PHI for each predecessor. A single block may
668 // have multiple entries here.
669 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
671 AvailablePredsTy::iterator I =
672 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
673 std::make_pair(*PI, (Value*)0));
675 assert(I != AvailablePreds.end() && I->first == *PI &&
676 "Didn't find entry for predecessor!");
678 PN->addIncoming(I->second, I->first);
681 //cerr << "PRE: " << *LI << *PN << "\n";
683 LI->replaceAllUsesWith(PN);
684 LI->eraseFromParent();
690 /// ProcessJumpOnPHI - We have a conditional branch of switch on a PHI node in
691 /// the current block. See if there are any simplifications we can do based on
692 /// inputs to the phi node.
694 bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
695 // See if the phi node has any constant values. If so, we can determine where
696 // the corresponding predecessor will branch.
697 ConstantInt *PredCst = 0;
698 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
699 if ((PredCst = dyn_cast<ConstantInt>(PN->getIncomingValue(i))))
702 // If no incoming value has a constant, we don't know the destination of any
707 // See if the cost of duplicating this block is low enough.
708 BasicBlock *BB = PN->getParent();
709 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
710 if (JumpThreadCost > Threshold) {
711 DOUT << " Not threading BB '" << BB->getNameStart()
712 << "' - Cost is too high: " << JumpThreadCost << "\n";
716 // If so, we can actually do this threading. Merge any common predecessors
717 // that will act the same.
718 BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
720 // Next, figure out which successor we are threading to.
722 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
723 SuccBB = BI->getSuccessor(PredCst == PredBB->getContext().getFalse());
725 SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
726 SuccBB = SI->getSuccessor(SI->findCaseValue(PredCst));
729 // Ok, try to thread it!
730 return ThreadEdge(BB, PredBB, SuccBB, JumpThreadCost);
733 /// ProcessJumpOnLogicalPHI - PN's basic block contains a conditional branch
734 /// whose condition is an AND/OR where one side is PN. If PN has constant
735 /// operands that permit us to evaluate the condition for some operand, thread
736 /// through the block. For example with:
737 /// br (and X, phi(Y, Z, false))
738 /// the predecessor corresponding to the 'false' will always jump to the false
739 /// destination of the branch.
741 bool JumpThreading::ProcessBranchOnLogical(Value *V, BasicBlock *BB,
743 // If this is a binary operator tree of the same AND/OR opcode, check the
745 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V))
746 if ((isAnd && BO->getOpcode() == Instruction::And) ||
747 (!isAnd && BO->getOpcode() == Instruction::Or)) {
748 if (ProcessBranchOnLogical(BO->getOperand(0), BB, isAnd))
750 if (ProcessBranchOnLogical(BO->getOperand(1), BB, isAnd))
754 // If this isn't a PHI node, we can't handle it.
755 PHINode *PN = dyn_cast<PHINode>(V);
756 if (!PN || PN->getParent() != BB) return false;
758 // We can only do the simplification for phi nodes of 'false' with AND or
759 // 'true' with OR. See if we have any entries in the phi for this.
760 unsigned PredNo = ~0U;
761 ConstantInt *PredCst = V->getContext().getConstantInt(Type::Int1Ty, !isAnd);
762 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
763 if (PN->getIncomingValue(i) == PredCst) {
769 // If no match, bail out.
773 // See if the cost of duplicating this block is low enough.
774 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
775 if (JumpThreadCost > Threshold) {
776 DOUT << " Not threading BB '" << BB->getNameStart()
777 << "' - Cost is too high: " << JumpThreadCost << "\n";
781 // If so, we can actually do this threading. Merge any common predecessors
782 // that will act the same.
783 BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
785 // Next, figure out which successor we are threading to. If this was an AND,
786 // the constant must be FALSE, and we must be targeting the 'false' block.
787 // If this is an OR, the constant must be TRUE, and we must be targeting the
789 BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(isAnd);
791 // Ok, try to thread it!
792 return ThreadEdge(BB, PredBB, SuccBB, JumpThreadCost);
795 /// GetResultOfComparison - Given an icmp/fcmp predicate and the left and right
796 /// hand sides of the compare instruction, try to determine the result. If the
797 /// result can not be determined, a null pointer is returned.
798 static Constant *GetResultOfComparison(CmpInst::Predicate pred,
799 Value *LHS, Value *RHS,
800 LLVMContext &Context) {
801 if (Constant *CLHS = dyn_cast<Constant>(LHS))
802 if (Constant *CRHS = dyn_cast<Constant>(RHS))
803 return Context.getConstantExprCompare(pred, CLHS, CRHS);
806 if (isa<IntegerType>(LHS->getType()) || isa<PointerType>(LHS->getType()))
807 return ICmpInst::isTrueWhenEqual(pred) ?
808 Context.getTrue() : Context.getFalse();
813 /// ProcessBranchOnCompare - We found a branch on a comparison between a phi
814 /// node and a value. If we can identify when the comparison is true between
815 /// the phi inputs and the value, we can fold the compare for that edge and
816 /// thread through it.
817 bool JumpThreading::ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB) {
818 PHINode *PN = cast<PHINode>(Cmp->getOperand(0));
819 Value *RHS = Cmp->getOperand(1);
821 // If the phi isn't in the current block, an incoming edge to this block
822 // doesn't control the destination.
823 if (PN->getParent() != BB)
826 // We can do this simplification if any comparisons fold to true or false.
829 bool TrueDirection = false;
830 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
831 PredVal = PN->getIncomingValue(i);
833 Constant *Res = GetResultOfComparison(Cmp->getPredicate(), PredVal,
834 RHS, Cmp->getContext());
840 // If this folded to a constant expr, we can't do anything.
841 if (ConstantInt *ResC = dyn_cast<ConstantInt>(Res)) {
842 TrueDirection = ResC->getZExtValue();
845 // If this folded to undef, just go the false way.
846 if (isa<UndefValue>(Res)) {
847 TrueDirection = false;
851 // Otherwise, we can't fold this input.
855 // If no match, bail out.
859 // See if the cost of duplicating this block is low enough.
860 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
861 if (JumpThreadCost > Threshold) {
862 DOUT << " Not threading BB '" << BB->getNameStart()
863 << "' - Cost is too high: " << JumpThreadCost << "\n";
867 // If so, we can actually do this threading. Merge any common predecessors
868 // that will act the same.
869 BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredVal);
871 // Next, get our successor.
872 BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(!TrueDirection);
874 // Ok, try to thread it!
875 return ThreadEdge(BB, PredBB, SuccBB, JumpThreadCost);
879 /// ThreadEdge - We have decided that it is safe and profitable to thread an
880 /// edge from PredBB to SuccBB across BB. Transform the IR to reflect this
882 bool JumpThreading::ThreadEdge(BasicBlock *BB, BasicBlock *PredBB,
883 BasicBlock *SuccBB, unsigned JumpThreadCost) {
885 // If threading to the same block as we come from, we would infinite loop.
887 DOUT << " Not threading across BB '" << BB->getNameStart()
888 << "' - would thread to self!\n";
892 // If threading this would thread across a loop header, don't thread the edge.
893 // See the comments above FindLoopHeaders for justifications and caveats.
894 if (LoopHeaders.count(BB)) {
895 DOUT << " Not threading from '" << PredBB->getNameStart()
896 << "' across loop header BB '" << BB->getNameStart()
897 << "' to dest BB '" << SuccBB->getNameStart()
898 << "' - it might create an irreducible loop!\n";
902 // And finally, do it!
903 DOUT << " Threading edge from '" << PredBB->getNameStart() << "' to '"
904 << SuccBB->getNameStart() << "' with cost: " << JumpThreadCost
905 << ", across block:\n "
908 // Jump Threading can not update SSA properties correctly if the values
909 // defined in the duplicated block are used outside of the block itself. For
910 // this reason, we spill all values that are used outside of BB to the stack.
911 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
912 if (!I->isUsedOutsideOfBlock(BB))
915 // We found a use of I outside of BB. Create a new stack slot to
916 // break this inter-block usage pattern.
917 DemoteRegToStack(*I);
920 // We are going to have to map operands from the original BB block to the new
921 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
922 // account for entry from PredBB.
923 DenseMap<Instruction*, Value*> ValueMapping;
926 BasicBlock::Create(BB->getName()+".thread", BB->getParent(), BB);
927 NewBB->moveAfter(PredBB);
929 BasicBlock::iterator BI = BB->begin();
930 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
931 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
933 // Clone the non-phi instructions of BB into NewBB, keeping track of the
934 // mapping and using it to remap operands in the cloned instructions.
935 for (; !isa<TerminatorInst>(BI); ++BI) {
936 Instruction *New = BI->clone(BI->getContext());
937 New->setName(BI->getNameStart());
938 NewBB->getInstList().push_back(New);
939 ValueMapping[BI] = New;
941 // Remap operands to patch up intra-block references.
942 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
943 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
944 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
945 if (I != ValueMapping.end())
946 New->setOperand(i, I->second);
950 // We didn't copy the terminator from BB over to NewBB, because there is now
951 // an unconditional jump to SuccBB. Insert the unconditional jump.
952 BranchInst::Create(SuccBB, NewBB);
954 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
955 // PHI nodes for NewBB now.
956 for (BasicBlock::iterator PNI = SuccBB->begin(); isa<PHINode>(PNI); ++PNI) {
957 PHINode *PN = cast<PHINode>(PNI);
958 // Ok, we have a PHI node. Figure out what the incoming value was for the
960 Value *IV = PN->getIncomingValueForBlock(BB);
962 // Remap the value if necessary.
963 if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
964 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
965 if (I != ValueMapping.end())
968 PN->addIncoming(IV, NewBB);
971 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to
972 // NewBB instead of BB. This eliminates predecessors from BB, which requires
973 // us to simplify any PHI nodes in BB.
974 TerminatorInst *PredTerm = PredBB->getTerminator();
975 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
976 if (PredTerm->getSuccessor(i) == BB) {
977 BB->removePredecessor(PredBB);
978 PredTerm->setSuccessor(i, NewBB);
981 // At this point, the IR is fully up to date and consistent. Do a quick scan
982 // over the new instructions and zap any that are constants or dead. This
983 // frequently happens because of phi translation.
985 for (BasicBlock::iterator E = NewBB->end(); BI != E; ) {
986 Instruction *Inst = BI++;
987 if (Constant *C = ConstantFoldInstruction(Inst, BB->getContext(), TD)) {
988 Inst->replaceAllUsesWith(C);
989 Inst->eraseFromParent();
993 RecursivelyDeleteTriviallyDeadInstructions(Inst);