1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the Jump Threading pass.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "jump-threading"
15 #include "llvm/Transforms/Scalar.h"
16 #include "llvm/IntrinsicInst.h"
17 #include "llvm/LLVMContext.h"
18 #include "llvm/Pass.h"
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
21 #include "llvm/Transforms/Utils/Local.h"
22 #include "llvm/Transforms/Utils/SSAUpdater.h"
23 #include "llvm/Target/TargetData.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/raw_ostream.h"
34 STATISTIC(NumThreads, "Number of jumps threaded");
35 STATISTIC(NumFolds, "Number of terminators folded");
36 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi");
38 static cl::opt<unsigned>
39 Threshold("jump-threading-threshold",
40 cl::desc("Max block size to duplicate for jump threading"),
41 cl::init(6), cl::Hidden);
44 /// This pass performs 'jump threading', which looks at blocks that have
45 /// multiple predecessors and multiple successors. If one or more of the
46 /// predecessors of the block can be proven to always jump to one of the
47 /// successors, we forward the edge from the predecessor to the successor by
48 /// duplicating the contents of this block.
50 /// An example of when this can occur is code like this:
57 /// In this case, the unconditional branch at the end of the first if can be
58 /// revectored to the false side of the second if.
60 class JumpThreading : public FunctionPass {
63 SmallPtrSet<BasicBlock*, 16> LoopHeaders;
65 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
68 static char ID; // Pass identification
69 JumpThreading() : FunctionPass(&ID) {}
71 bool runOnFunction(Function &F);
72 void FindLoopHeaders(Function &F);
74 bool ProcessBlock(BasicBlock *BB);
75 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
77 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
80 typedef SmallVectorImpl<std::pair<ConstantInt*,
81 BasicBlock*> > PredValueInfo;
83 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
84 PredValueInfo &Result);
85 bool ProcessThreadableEdges(Instruction *CondInst, BasicBlock *BB);
88 bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
89 bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
91 bool ProcessJumpOnPHI(PHINode *PN);
93 bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
97 char JumpThreading::ID = 0;
98 static RegisterPass<JumpThreading>
99 X("jump-threading", "Jump Threading");
101 // Public interface to the Jump Threading pass
102 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
104 /// runOnFunction - Top level algorithm.
106 bool JumpThreading::runOnFunction(Function &F) {
107 DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n");
108 TD = getAnalysisIfAvailable<TargetData>();
112 bool AnotherIteration = true, EverChanged = false;
113 while (AnotherIteration) {
114 AnotherIteration = false;
115 bool Changed = false;
116 for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
118 while (ProcessBlock(BB))
123 // If the block is trivially dead, zap it. This eliminates the successor
124 // edges which simplifies the CFG.
125 if (pred_begin(BB) == pred_end(BB) &&
126 BB != &BB->getParent()->getEntryBlock()) {
127 DEBUG(errs() << " JT: Deleting dead block '" << BB->getName()
128 << "' with terminator: " << *BB->getTerminator() << '\n');
129 LoopHeaders.erase(BB);
134 AnotherIteration = Changed;
135 EverChanged |= Changed;
142 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
143 /// thread across it.
144 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
145 /// Ignore PHI nodes, these will be flattened when duplication happens.
146 BasicBlock::const_iterator I = BB->getFirstNonPHI();
148 // Sum up the cost of each instruction until we get to the terminator. Don't
149 // include the terminator because the copy won't include it.
151 for (; !isa<TerminatorInst>(I); ++I) {
152 // Debugger intrinsics don't incur code size.
153 if (isa<DbgInfoIntrinsic>(I)) continue;
155 // If this is a pointer->pointer bitcast, it is free.
156 if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
159 // All other instructions count for at least one unit.
162 // Calls are more expensive. If they are non-intrinsic calls, we model them
163 // as having cost of 4. If they are a non-vector intrinsic, we model them
164 // as having cost of 2 total, and if they are a vector intrinsic, we model
165 // them as having cost 1.
166 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
167 if (!isa<IntrinsicInst>(CI))
169 else if (!isa<VectorType>(CI->getType()))
174 // Threading through a switch statement is particularly profitable. If this
175 // block ends in a switch, decrease its cost to make it more likely to happen.
176 if (isa<SwitchInst>(I))
177 Size = Size > 6 ? Size-6 : 0;
184 /// FindLoopHeaders - We do not want jump threading to turn proper loop
185 /// structures into irreducible loops. Doing this breaks up the loop nesting
186 /// hierarchy and pessimizes later transformations. To prevent this from
187 /// happening, we first have to find the loop headers. Here we approximate this
188 /// by finding targets of backedges in the CFG.
190 /// Note that there definitely are cases when we want to allow threading of
191 /// edges across a loop header. For example, threading a jump from outside the
192 /// loop (the preheader) to an exit block of the loop is definitely profitable.
193 /// It is also almost always profitable to thread backedges from within the loop
194 /// to exit blocks, and is often profitable to thread backedges to other blocks
195 /// within the loop (forming a nested loop). This simple analysis is not rich
196 /// enough to track all of these properties and keep it up-to-date as the CFG
197 /// mutates, so we don't allow any of these transformations.
199 void JumpThreading::FindLoopHeaders(Function &F) {
200 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
201 FindFunctionBackedges(F, Edges);
203 for (unsigned i = 0, e = Edges.size(); i != e; ++i)
204 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
207 /// GetResultOfComparison - Given an icmp/fcmp predicate and the left and right
208 /// hand sides of the compare instruction, try to determine the result. If the
209 /// result can not be determined, a null pointer is returned.
210 static Constant *GetResultOfComparison(CmpInst::Predicate pred,
211 Value *LHS, Value *RHS) {
212 if (Constant *CLHS = dyn_cast<Constant>(LHS))
213 if (Constant *CRHS = dyn_cast<Constant>(RHS))
214 return ConstantExpr::getCompare(pred, CLHS, CRHS);
217 if (isa<IntegerType>(LHS->getType()) || isa<PointerType>(LHS->getType())) {
218 if (ICmpInst::isTrueWhenEqual(pred))
219 return ConstantInt::getTrue(LHS->getContext());
221 return ConstantInt::getFalse(LHS->getContext());
227 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
228 /// if we can infer that the value is a known ConstantInt in any of our
229 /// predecessors. If so, return the known the list of value and pred BB in the
230 /// result vector. If a value is known to be undef, it is returned as null.
232 /// The BB basic block is known to start with a PHI node.
234 /// This returns true if there were any known values.
237 /// TODO: Per PR2563, we could infer value range information about a predecessor
238 /// based on its terminator.
240 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
241 PHINode *TheFirstPHI = cast<PHINode>(BB->begin());
243 // If V is a constantint, then it is known in all predecessors.
244 if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
245 ConstantInt *CI = dyn_cast<ConstantInt>(V);
246 Result.resize(TheFirstPHI->getNumIncomingValues());
247 for (unsigned i = 0, e = Result.size(); i != e; ++i)
248 Result[i] = std::make_pair(CI, TheFirstPHI->getIncomingBlock(i));
252 // If V is a non-instruction value, or an instruction in a different block,
253 // then it can't be derived from a PHI.
254 Instruction *I = dyn_cast<Instruction>(V);
255 if (I == 0 || I->getParent() != BB)
258 /// If I is a PHI node, then we know the incoming values for any constants.
259 if (PHINode *PN = dyn_cast<PHINode>(I)) {
260 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
261 Value *InVal = PN->getIncomingValue(i);
262 if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
263 ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
264 Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
267 return !Result.empty();
270 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
272 // Handle some boolean conditions.
273 if (I->getType()->getPrimitiveSizeInBits() == 1) {
275 // X & false -> false
276 if (I->getOpcode() == Instruction::Or ||
277 I->getOpcode() == Instruction::And) {
278 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
279 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
281 if (LHSVals.empty() && RHSVals.empty())
284 ConstantInt *InterestingVal;
285 if (I->getOpcode() == Instruction::Or)
286 InterestingVal = ConstantInt::getTrue(I->getContext());
288 InterestingVal = ConstantInt::getFalse(I->getContext());
290 // Scan for the sentinel.
291 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
292 if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0)
293 Result.push_back(LHSVals[i]);
294 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
295 if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0)
296 Result.push_back(RHSVals[i]);
297 return !Result.empty();
300 // TODO: Should handle the NOT form of XOR.
304 // Handle compare with phi operand, where the PHI is defined in this block.
305 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
306 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
307 if (PN && PN->getParent() == BB) {
308 // We can do this simplification if any comparisons fold to true or false.
310 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
311 BasicBlock *PredBB = PN->getIncomingBlock(i);
312 Value *LHS = PN->getIncomingValue(i);
313 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
315 Constant *Res = GetResultOfComparison(Cmp->getPredicate(), LHS, RHS);
316 if (Res == 0) continue;
318 if (isa<UndefValue>(Res))
319 Result.push_back(std::make_pair((ConstantInt*)0, PredBB));
320 else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res))
321 Result.push_back(std::make_pair(CI, PredBB));
324 return !Result.empty();
327 // TODO: We could also recurse to see if we can determine constants another
335 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
336 /// in an undefined jump, decide which block is best to revector to.
338 /// Since we can pick an arbitrary destination, we pick the successor with the
339 /// fewest predecessors. This should reduce the in-degree of the others.
341 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
342 TerminatorInst *BBTerm = BB->getTerminator();
343 unsigned MinSucc = 0;
344 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
345 // Compute the successor with the minimum number of predecessors.
346 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
347 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
348 TestBB = BBTerm->getSuccessor(i);
349 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
350 if (NumPreds < MinNumPreds)
357 /// ProcessBlock - If there are any predecessors whose control can be threaded
358 /// through to a successor, transform them now.
359 bool JumpThreading::ProcessBlock(BasicBlock *BB) {
360 // If this block has a single predecessor, and if that pred has a single
361 // successor, merge the blocks. This encourages recursive jump threading
362 // because now the condition in this block can be threaded through
363 // predecessors of our predecessor block.
364 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
365 if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
367 // If SinglePred was a loop header, BB becomes one.
368 if (LoopHeaders.erase(SinglePred))
369 LoopHeaders.insert(BB);
371 // Remember if SinglePred was the entry block of the function. If so, we
372 // will need to move BB back to the entry position.
373 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
374 MergeBasicBlockIntoOnlyPred(BB);
376 if (isEntry && BB != &BB->getParent()->getEntryBlock())
377 BB->moveBefore(&BB->getParent()->getEntryBlock());
382 // Look to see if the terminator is a branch of switch, if not we can't thread
385 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
386 // Can't thread an unconditional jump.
387 if (BI->isUnconditional()) return false;
388 Condition = BI->getCondition();
389 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
390 Condition = SI->getCondition();
392 return false; // Must be an invoke.
394 // If the terminator of this block is branching on a constant, simplify the
395 // terminator to an unconditional branch. This can occur due to threading in
397 if (isa<ConstantInt>(Condition)) {
398 DEBUG(errs() << " In block '" << BB->getName()
399 << "' folding terminator: " << *BB->getTerminator() << '\n');
401 ConstantFoldTerminator(BB);
405 // If the terminator is branching on an undef, we can pick any of the
406 // successors to branch to. Let GetBestDestForJumpOnUndef decide.
407 if (isa<UndefValue>(Condition)) {
408 unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
410 // Fold the branch/switch.
411 TerminatorInst *BBTerm = BB->getTerminator();
412 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
413 if (i == BestSucc) continue;
414 BBTerm->getSuccessor(i)->removePredecessor(BB);
417 DEBUG(errs() << " In block '" << BB->getName()
418 << "' folding undef terminator: " << *BBTerm << '\n');
419 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
420 BBTerm->eraseFromParent();
424 Instruction *CondInst = dyn_cast<Instruction>(Condition);
426 // If the condition is an instruction defined in another block, see if a
427 // predecessor has the same condition:
431 if (!Condition->hasOneUse() && // Multiple uses.
432 (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
433 pred_iterator PI = pred_begin(BB), E = pred_end(BB);
434 if (isa<BranchInst>(BB->getTerminator())) {
435 for (; PI != E; ++PI)
436 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
437 if (PBI->isConditional() && PBI->getCondition() == Condition &&
438 ProcessBranchOnDuplicateCond(*PI, BB))
441 assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
442 for (; PI != E; ++PI)
443 if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator()))
444 if (PSI->getCondition() == Condition &&
445 ProcessSwitchOnDuplicateCond(*PI, BB))
450 // All the rest of our checks depend on the condition being an instruction.
454 // See if this is a phi node in the current block.
455 if (PHINode *PN = dyn_cast<PHINode>(CondInst))
456 if (PN->getParent() == BB)
457 return ProcessJumpOnPHI(PN);
459 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
460 if (!isa<PHINode>(CondCmp->getOperand(0)) ||
461 cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB) {
462 // If we have a comparison, loop over the predecessors to see if there is
463 // a condition with a lexically identical value.
464 pred_iterator PI = pred_begin(BB), E = pred_end(BB);
465 for (; PI != E; ++PI)
466 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
467 if (PBI->isConditional() && *PI != BB) {
468 if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
469 if (CI->getOperand(0) == CondCmp->getOperand(0) &&
470 CI->getOperand(1) == CondCmp->getOperand(1) &&
471 CI->getPredicate() == CondCmp->getPredicate()) {
472 // TODO: Could handle things like (x != 4) --> (x == 17)
473 if (ProcessBranchOnDuplicateCond(*PI, BB))
481 // Check for some cases that are worth simplifying. Right now we want to look
482 // for loads that are used by a switch or by the condition for the branch. If
483 // we see one, check to see if it's partially redundant. If so, insert a PHI
484 // which can then be used to thread the values.
486 // This is particularly important because reg2mem inserts loads and stores all
487 // over the place, and this blocks jump threading if we don't zap them.
488 Value *SimplifyValue = CondInst;
489 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
490 if (isa<Constant>(CondCmp->getOperand(1)))
491 SimplifyValue = CondCmp->getOperand(0);
493 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
494 if (SimplifyPartiallyRedundantLoad(LI))
498 // Handle a variety of cases where we are branching on something derived from
499 // a PHI node in the current block. If we can prove that any predecessors
500 // compute a predictable value based on a PHI node, thread those predecessors.
502 // We only bother doing this if the current block has a PHI node and if the
503 // conditional instruction lives in the current block. If either condition
504 // fail, this won't be a computable value anyway.
505 if (CondInst->getParent() == BB && isa<PHINode>(BB->front()))
506 if (ProcessThreadableEdges(CondInst, BB))
510 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know
511 // "(X == 4)" thread through this block.
516 /// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
517 /// block that jump on exactly the same condition. This means that we almost
518 /// always know the direction of the edge in the DESTBB:
520 /// br COND, DESTBB, BBY
522 /// br COND, BBZ, BBW
524 /// If DESTBB has multiple predecessors, we can't just constant fold the branch
525 /// in DESTBB, we have to thread over it.
526 bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
528 BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
530 // If both successors of PredBB go to DESTBB, we don't know anything. We can
531 // fold the branch to an unconditional one, which allows other recursive
534 if (PredBI->getSuccessor(1) != BB)
536 else if (PredBI->getSuccessor(0) != BB)
539 DEBUG(errs() << " In block '" << PredBB->getName()
540 << "' folding terminator: " << *PredBB->getTerminator() << '\n');
542 ConstantFoldTerminator(PredBB);
546 BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
548 // If the dest block has one predecessor, just fix the branch condition to a
549 // constant and fold it.
550 if (BB->getSinglePredecessor()) {
551 DEBUG(errs() << " In block '" << BB->getName()
552 << "' folding condition to '" << BranchDir << "': "
553 << *BB->getTerminator() << '\n');
555 Value *OldCond = DestBI->getCondition();
556 DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
558 ConstantFoldTerminator(BB);
559 RecursivelyDeleteTriviallyDeadInstructions(OldCond);
564 // Next, figure out which successor we are threading to.
565 BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
567 SmallVector<BasicBlock*, 2> Preds;
568 Preds.push_back(PredBB);
570 // Ok, try to thread it!
571 return ThreadEdge(BB, Preds, SuccBB);
574 /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
575 /// block that switch on exactly the same condition. This means that we almost
576 /// always know the direction of the edge in the DESTBB:
578 /// switch COND [... DESTBB, BBY ... ]
580 /// switch COND [... BBZ, BBW ]
582 /// Optimizing switches like this is very important, because simplifycfg builds
583 /// switches out of repeated 'if' conditions.
584 bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
585 BasicBlock *DestBB) {
586 // Can't thread edge to self.
587 if (PredBB == DestBB)
590 SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
591 SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
593 // There are a variety of optimizations that we can potentially do on these
594 // blocks: we order them from most to least preferable.
596 // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
597 // directly to their destination. This does not introduce *any* code size
598 // growth. Skip debug info first.
599 BasicBlock::iterator BBI = DestBB->begin();
600 while (isa<DbgInfoIntrinsic>(BBI))
603 // FIXME: Thread if it just contains a PHI.
604 if (isa<SwitchInst>(BBI)) {
605 bool MadeChange = false;
606 // Ignore the default edge for now.
607 for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
608 ConstantInt *DestVal = DestSI->getCaseValue(i);
609 BasicBlock *DestSucc = DestSI->getSuccessor(i);
611 // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'. See if
612 // PredSI has an explicit case for it. If so, forward. If it is covered
613 // by the default case, we can't update PredSI.
614 unsigned PredCase = PredSI->findCaseValue(DestVal);
615 if (PredCase == 0) continue;
617 // If PredSI doesn't go to DestBB on this value, then it won't reach the
618 // case on this condition.
619 if (PredSI->getSuccessor(PredCase) != DestBB &&
620 DestSI->getSuccessor(i) != DestBB)
623 // Otherwise, we're safe to make the change. Make sure that the edge from
624 // DestSI to DestSucc is not critical and has no PHI nodes.
625 DEBUG(errs() << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI);
626 DEBUG(errs() << "THROUGH: " << *DestSI);
628 // If the destination has PHI nodes, just split the edge for updating
630 if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
631 SplitCriticalEdge(DestSI, i, this);
632 DestSucc = DestSI->getSuccessor(i);
634 FoldSingleEntryPHINodes(DestSucc);
635 PredSI->setSuccessor(PredCase, DestSucc);
647 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
648 /// load instruction, eliminate it by replacing it with a PHI node. This is an
649 /// important optimization that encourages jump threading, and needs to be run
650 /// interlaced with other jump threading tasks.
651 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
652 // Don't hack volatile loads.
653 if (LI->isVolatile()) return false;
655 // If the load is defined in a block with exactly one predecessor, it can't be
656 // partially redundant.
657 BasicBlock *LoadBB = LI->getParent();
658 if (LoadBB->getSinglePredecessor())
661 Value *LoadedPtr = LI->getOperand(0);
663 // If the loaded operand is defined in the LoadBB, it can't be available.
664 // FIXME: Could do PHI translation, that would be fun :)
665 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
666 if (PtrOp->getParent() == LoadBB)
669 // Scan a few instructions up from the load, to see if it is obviously live at
670 // the entry to its block.
671 BasicBlock::iterator BBIt = LI;
673 if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB,
675 // If the value if the load is locally available within the block, just use
676 // it. This frequently occurs for reg2mem'd allocas.
677 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
679 // If the returned value is the load itself, replace with an undef. This can
680 // only happen in dead loops.
681 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
682 LI->replaceAllUsesWith(AvailableVal);
683 LI->eraseFromParent();
687 // Otherwise, if we scanned the whole block and got to the top of the block,
688 // we know the block is locally transparent to the load. If not, something
689 // might clobber its value.
690 if (BBIt != LoadBB->begin())
694 SmallPtrSet<BasicBlock*, 8> PredsScanned;
695 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
696 AvailablePredsTy AvailablePreds;
697 BasicBlock *OneUnavailablePred = 0;
699 // If we got here, the loaded value is transparent through to the start of the
700 // block. Check to see if it is available in any of the predecessor blocks.
701 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
703 BasicBlock *PredBB = *PI;
705 // If we already scanned this predecessor, skip it.
706 if (!PredsScanned.insert(PredBB))
709 // Scan the predecessor to see if the value is available in the pred.
710 BBIt = PredBB->end();
711 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
712 if (!PredAvailable) {
713 OneUnavailablePred = PredBB;
717 // If so, this load is partially redundant. Remember this info so that we
718 // can create a PHI node.
719 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
722 // If the loaded value isn't available in any predecessor, it isn't partially
724 if (AvailablePreds.empty()) return false;
726 // Okay, the loaded value is available in at least one (and maybe all!)
727 // predecessors. If the value is unavailable in more than one unique
728 // predecessor, we want to insert a merge block for those common predecessors.
729 // This ensures that we only have to insert one reload, thus not increasing
731 BasicBlock *UnavailablePred = 0;
733 // If there is exactly one predecessor where the value is unavailable, the
734 // already computed 'OneUnavailablePred' block is it. If it ends in an
735 // unconditional branch, we know that it isn't a critical edge.
736 if (PredsScanned.size() == AvailablePreds.size()+1 &&
737 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
738 UnavailablePred = OneUnavailablePred;
739 } else if (PredsScanned.size() != AvailablePreds.size()) {
740 // Otherwise, we had multiple unavailable predecessors or we had a critical
741 // edge from the one.
742 SmallVector<BasicBlock*, 8> PredsToSplit;
743 SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
745 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
746 AvailablePredSet.insert(AvailablePreds[i].first);
748 // Add all the unavailable predecessors to the PredsToSplit list.
749 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
751 if (!AvailablePredSet.count(*PI))
752 PredsToSplit.push_back(*PI);
754 // Split them out to their own block.
756 SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
757 "thread-split", this);
760 // If the value isn't available in all predecessors, then there will be
761 // exactly one where it isn't available. Insert a load on that edge and add
762 // it to the AvailablePreds list.
763 if (UnavailablePred) {
764 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
765 "Can't handle critical edge here!");
766 Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr",
767 UnavailablePred->getTerminator());
768 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
771 // Now we know that each predecessor of this block has a value in
772 // AvailablePreds, sort them for efficient access as we're walking the preds.
773 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
775 // Create a PHI node at the start of the block for the PRE'd load value.
776 PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
779 // Insert new entries into the PHI for each predecessor. A single block may
780 // have multiple entries here.
781 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
783 AvailablePredsTy::iterator I =
784 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
785 std::make_pair(*PI, (Value*)0));
787 assert(I != AvailablePreds.end() && I->first == *PI &&
788 "Didn't find entry for predecessor!");
790 PN->addIncoming(I->second, I->first);
793 //cerr << "PRE: " << *LI << *PN << "\n";
795 LI->replaceAllUsesWith(PN);
796 LI->eraseFromParent();
801 /// FindMostPopularDest - The specified list contains multiple possible
802 /// threadable destinations. Pick the one that occurs the most frequently in
805 FindMostPopularDest(BasicBlock *BB,
806 const SmallVectorImpl<std::pair<BasicBlock*,
807 BasicBlock*> > &PredToDestList) {
808 assert(!PredToDestList.empty());
810 // Determine popularity. If there are multiple possible destinations, we
811 // explicitly choose to ignore 'undef' destinations. We prefer to thread
812 // blocks with known and real destinations to threading undef. We'll handle
813 // them later if interesting.
814 DenseMap<BasicBlock*, unsigned> DestPopularity;
815 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
816 if (PredToDestList[i].second)
817 DestPopularity[PredToDestList[i].second]++;
819 // Find the most popular dest.
820 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
821 BasicBlock *MostPopularDest = DPI->first;
822 unsigned Popularity = DPI->second;
823 SmallVector<BasicBlock*, 4> SamePopularity;
825 for (++DPI; DPI != DestPopularity.end(); ++DPI) {
826 // If the popularity of this entry isn't higher than the popularity we've
827 // seen so far, ignore it.
828 if (DPI->second < Popularity)
830 else if (DPI->second == Popularity) {
831 // If it is the same as what we've seen so far, keep track of it.
832 SamePopularity.push_back(DPI->first);
834 // If it is more popular, remember it.
835 SamePopularity.clear();
836 MostPopularDest = DPI->first;
837 Popularity = DPI->second;
841 // Okay, now we know the most popular destination. If there is more than
842 // destination, we need to determine one. This is arbitrary, but we need
843 // to make a deterministic decision. Pick the first one that appears in the
845 if (!SamePopularity.empty()) {
846 SamePopularity.push_back(MostPopularDest);
847 TerminatorInst *TI = BB->getTerminator();
848 for (unsigned i = 0; ; ++i) {
849 assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
851 if (std::find(SamePopularity.begin(), SamePopularity.end(),
852 TI->getSuccessor(i)) == SamePopularity.end())
855 MostPopularDest = TI->getSuccessor(i);
860 // Okay, we have finally picked the most popular destination.
861 return MostPopularDest;
864 bool JumpThreading::ProcessThreadableEdges(Instruction *CondInst,
866 // If threading this would thread across a loop header, don't even try to
868 if (LoopHeaders.count(BB))
873 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
874 if (!ComputeValueKnownInPredecessors(CondInst, BB, PredValues))
876 assert(!PredValues.empty() &&
877 "ComputeValueKnownInPredecessors returned true with no values");
879 DEBUG(errs() << "IN BB: " << *BB;
880 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
881 errs() << " BB '" << BB->getName() << "': FOUND condition = ";
882 if (PredValues[i].first)
883 errs() << *PredValues[i].first;
886 errs() << " for pred '" << PredValues[i].second->getName()
890 // Decide what we want to thread through. Convert our list of known values to
891 // a list of known destinations for each pred. This also discards duplicate
892 // predecessors and keeps track of the undefined inputs (which are represented
893 // as a null dest in the PredToDestList.
894 SmallPtrSet<BasicBlock*, 16> SeenPreds;
895 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
897 BasicBlock *OnlyDest = 0;
898 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
900 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
901 BasicBlock *Pred = PredValues[i].second;
902 if (!SeenPreds.insert(Pred))
903 continue; // Duplicate predecessor entry.
905 // If the predecessor ends with an indirect goto, we can't change its
907 if (isa<IndirectBrInst>(Pred->getTerminator()))
910 ConstantInt *Val = PredValues[i].first;
913 if (Val == 0) // Undef.
915 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
916 DestBB = BI->getSuccessor(Val->isZero());
918 SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
919 DestBB = SI->getSuccessor(SI->findCaseValue(Val));
922 // If we have exactly one destination, remember it for efficiency below.
925 else if (OnlyDest != DestBB)
926 OnlyDest = MultipleDestSentinel;
928 PredToDestList.push_back(std::make_pair(Pred, DestBB));
931 // If all edges were unthreadable, we fail.
932 if (PredToDestList.empty())
935 // Determine which is the most common successor. If we have many inputs and
936 // this block is a switch, we want to start by threading the batch that goes
937 // to the most popular destination first. If we only know about one
938 // threadable destination (the common case) we can avoid this.
939 BasicBlock *MostPopularDest = OnlyDest;
941 if (MostPopularDest == MultipleDestSentinel)
942 MostPopularDest = FindMostPopularDest(BB, PredToDestList);
944 // Now that we know what the most popular destination is, factor all
945 // predecessors that will jump to it into a single predecessor.
946 SmallVector<BasicBlock*, 16> PredsToFactor;
947 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
948 if (PredToDestList[i].second == MostPopularDest) {
949 BasicBlock *Pred = PredToDestList[i].first;
951 // This predecessor may be a switch or something else that has multiple
952 // edges to the block. Factor each of these edges by listing them
953 // according to # occurrences in PredsToFactor.
954 TerminatorInst *PredTI = Pred->getTerminator();
955 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
956 if (PredTI->getSuccessor(i) == BB)
957 PredsToFactor.push_back(Pred);
960 // If the threadable edges are branching on an undefined value, we get to pick
961 // the destination that these predecessors should get to.
962 if (MostPopularDest == 0)
963 MostPopularDest = BB->getTerminator()->
964 getSuccessor(GetBestDestForJumpOnUndef(BB));
966 // Ok, try to thread it!
967 return ThreadEdge(BB, PredsToFactor, MostPopularDest);
970 /// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in
971 /// the current block. See if there are any simplifications we can do based on
972 /// inputs to the phi node.
974 bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
975 BasicBlock *BB = PN->getParent();
977 // If any of the predecessor blocks end in an unconditional branch, we can
978 // *duplicate* the jump into that block in order to further encourage jump
979 // threading and to eliminate cases where we have branch on a phi of an icmp
980 // (branch on icmp is much better).
982 // We don't want to do this tranformation for switches, because we don't
983 // really want to duplicate a switch.
984 if (isa<SwitchInst>(BB->getTerminator()))
987 // Look for unconditional branch predecessors.
988 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
989 BasicBlock *PredBB = PN->getIncomingBlock(i);
990 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
991 if (PredBr->isUnconditional() &&
992 // Try to duplicate BB into PredBB.
993 DuplicateCondBranchOnPHIIntoPred(BB, PredBB))
1001 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1002 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for
1003 /// NewPred using the entries from OldPred (suitably mapped).
1004 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1005 BasicBlock *OldPred,
1006 BasicBlock *NewPred,
1007 DenseMap<Instruction*, Value*> &ValueMap) {
1008 for (BasicBlock::iterator PNI = PHIBB->begin();
1009 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1010 // Ok, we have a PHI node. Figure out what the incoming value was for the
1012 Value *IV = PN->getIncomingValueForBlock(OldPred);
1014 // Remap the value if necessary.
1015 if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1016 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1017 if (I != ValueMap.end())
1021 PN->addIncoming(IV, NewPred);
1025 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1026 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1027 /// across BB. Transform the IR to reflect this change.
1028 bool JumpThreading::ThreadEdge(BasicBlock *BB,
1029 const SmallVectorImpl<BasicBlock*> &PredBBs,
1030 BasicBlock *SuccBB) {
1031 // If threading to the same block as we come from, we would infinite loop.
1033 DEBUG(errs() << " Not threading across BB '" << BB->getName()
1034 << "' - would thread to self!\n");
1038 // If threading this would thread across a loop header, don't thread the edge.
1039 // See the comments above FindLoopHeaders for justifications and caveats.
1040 if (LoopHeaders.count(BB)) {
1041 DEBUG(errs() << " Not threading across loop header BB '" << BB->getName()
1042 << "' to dest BB '" << SuccBB->getName()
1043 << "' - it might create an irreducible loop!\n");
1047 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1048 if (JumpThreadCost > Threshold) {
1049 DEBUG(errs() << " Not threading BB '" << BB->getName()
1050 << "' - Cost is too high: " << JumpThreadCost << "\n");
1054 // And finally, do it! Start by factoring the predecessors is needed.
1056 if (PredBBs.size() == 1)
1057 PredBB = PredBBs[0];
1059 DEBUG(errs() << " Factoring out " << PredBBs.size()
1060 << " common predecessors.\n");
1061 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1065 // And finally, do it!
1066 DEBUG(errs() << " Threading edge from '" << PredBB->getName() << "' to '"
1067 << SuccBB->getName() << "' with cost: " << JumpThreadCost
1068 << ", across block:\n "
1071 // We are going to have to map operands from the original BB block to the new
1072 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
1073 // account for entry from PredBB.
1074 DenseMap<Instruction*, Value*> ValueMapping;
1076 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1077 BB->getName()+".thread",
1078 BB->getParent(), BB);
1079 NewBB->moveAfter(PredBB);
1081 BasicBlock::iterator BI = BB->begin();
1082 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1083 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1085 // Clone the non-phi instructions of BB into NewBB, keeping track of the
1086 // mapping and using it to remap operands in the cloned instructions.
1087 for (; !isa<TerminatorInst>(BI); ++BI) {
1088 Instruction *New = BI->clone();
1089 New->setName(BI->getName());
1090 NewBB->getInstList().push_back(New);
1091 ValueMapping[BI] = New;
1093 // Remap operands to patch up intra-block references.
1094 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1095 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1096 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1097 if (I != ValueMapping.end())
1098 New->setOperand(i, I->second);
1102 // We didn't copy the terminator from BB over to NewBB, because there is now
1103 // an unconditional jump to SuccBB. Insert the unconditional jump.
1104 BranchInst::Create(SuccBB, NewBB);
1106 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1107 // PHI nodes for NewBB now.
1108 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1110 // If there were values defined in BB that are used outside the block, then we
1111 // now have to update all uses of the value to use either the original value,
1112 // the cloned value, or some PHI derived value. This can require arbitrary
1113 // PHI insertion, of which we are prepared to do, clean these up now.
1114 SSAUpdater SSAUpdate;
1115 SmallVector<Use*, 16> UsesToRename;
1116 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1117 // Scan all uses of this instruction to see if it is used outside of its
1118 // block, and if so, record them in UsesToRename.
1119 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1121 Instruction *User = cast<Instruction>(*UI);
1122 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1123 if (UserPN->getIncomingBlock(UI) == BB)
1125 } else if (User->getParent() == BB)
1128 UsesToRename.push_back(&UI.getUse());
1131 // If there are no uses outside the block, we're done with this instruction.
1132 if (UsesToRename.empty())
1135 DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1137 // We found a use of I outside of BB. Rename all uses of I that are outside
1138 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
1139 // with the two values we know.
1140 SSAUpdate.Initialize(I);
1141 SSAUpdate.AddAvailableValue(BB, I);
1142 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1144 while (!UsesToRename.empty())
1145 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1146 DEBUG(errs() << "\n");
1150 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to
1151 // NewBB instead of BB. This eliminates predecessors from BB, which requires
1152 // us to simplify any PHI nodes in BB.
1153 TerminatorInst *PredTerm = PredBB->getTerminator();
1154 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1155 if (PredTerm->getSuccessor(i) == BB) {
1156 BB->removePredecessor(PredBB);
1157 PredTerm->setSuccessor(i, NewBB);
1160 // At this point, the IR is fully up to date and consistent. Do a quick scan
1161 // over the new instructions and zap any that are constants or dead. This
1162 // frequently happens because of phi translation.
1163 BI = NewBB->begin();
1164 for (BasicBlock::iterator E = NewBB->end(); BI != E; ) {
1165 Instruction *Inst = BI++;
1166 if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
1167 Inst->replaceAllUsesWith(C);
1168 Inst->eraseFromParent();
1172 RecursivelyDeleteTriviallyDeadInstructions(Inst);
1175 // Threaded an edge!
1180 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1181 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1182 /// If we can duplicate the contents of BB up into PredBB do so now, this
1183 /// improves the odds that the branch will be on an analyzable instruction like
1185 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1186 BasicBlock *PredBB) {
1187 // If BB is a loop header, then duplicating this block outside the loop would
1188 // cause us to transform this into an irreducible loop, don't do this.
1189 // See the comments above FindLoopHeaders for justifications and caveats.
1190 if (LoopHeaders.count(BB)) {
1191 DEBUG(errs() << " Not duplicating loop header '" << BB->getName()
1192 << "' into predecessor block '" << PredBB->getName()
1193 << "' - it might create an irreducible loop!\n");
1197 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1198 if (DuplicationCost > Threshold) {
1199 DEBUG(errs() << " Not duplicating BB '" << BB->getName()
1200 << "' - Cost is too high: " << DuplicationCost << "\n");
1204 // Okay, we decided to do this! Clone all the instructions in BB onto the end
1206 DEBUG(errs() << " Duplicating block '" << BB->getName() << "' into end of '"
1207 << PredBB->getName() << "' to eliminate branch on phi. Cost: "
1208 << DuplicationCost << " block is:" << *BB << "\n");
1210 // We are going to have to map operands from the original BB block into the
1211 // PredBB block. Evaluate PHI nodes in BB.
1212 DenseMap<Instruction*, Value*> ValueMapping;
1214 BasicBlock::iterator BI = BB->begin();
1215 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1216 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1218 BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1220 // Clone the non-phi instructions of BB into PredBB, keeping track of the
1221 // mapping and using it to remap operands in the cloned instructions.
1222 for (; BI != BB->end(); ++BI) {
1223 Instruction *New = BI->clone();
1224 New->setName(BI->getName());
1225 PredBB->getInstList().insert(OldPredBranch, New);
1226 ValueMapping[BI] = New;
1228 // Remap operands to patch up intra-block references.
1229 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1230 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1231 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1232 if (I != ValueMapping.end())
1233 New->setOperand(i, I->second);
1237 // Check to see if the targets of the branch had PHI nodes. If so, we need to
1238 // add entries to the PHI nodes for branch from PredBB now.
1239 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1240 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1242 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1245 // If there were values defined in BB that are used outside the block, then we
1246 // now have to update all uses of the value to use either the original value,
1247 // the cloned value, or some PHI derived value. This can require arbitrary
1248 // PHI insertion, of which we are prepared to do, clean these up now.
1249 SSAUpdater SSAUpdate;
1250 SmallVector<Use*, 16> UsesToRename;
1251 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1252 // Scan all uses of this instruction to see if it is used outside of its
1253 // block, and if so, record them in UsesToRename.
1254 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1256 Instruction *User = cast<Instruction>(*UI);
1257 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1258 if (UserPN->getIncomingBlock(UI) == BB)
1260 } else if (User->getParent() == BB)
1263 UsesToRename.push_back(&UI.getUse());
1266 // If there are no uses outside the block, we're done with this instruction.
1267 if (UsesToRename.empty())
1270 DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1272 // We found a use of I outside of BB. Rename all uses of I that are outside
1273 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
1274 // with the two values we know.
1275 SSAUpdate.Initialize(I);
1276 SSAUpdate.AddAvailableValue(BB, I);
1277 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1279 while (!UsesToRename.empty())
1280 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1281 DEBUG(errs() << "\n");
1284 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1286 BB->removePredecessor(PredBB);
1288 // Remove the unconditional branch at the end of the PredBB block.
1289 OldPredBranch->eraseFromParent();