1 //===- LoopStrengthReduce.cpp - Strength Reduce GEPs in Loops -------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass performs a strength reduction on array references inside loops that
11 // have as one or more of their components the loop induction variable. This is
12 // accomplished by creating a new Value to hold the initial value of the array
13 // access for the first iteration, and then creating a new GEP instruction in
14 // the loop to increment the value by the appropriate amount.
16 //===----------------------------------------------------------------------===//
18 #define DEBUG_TYPE "loop-reduce"
19 #include "llvm/Transforms/Scalar.h"
20 #include "llvm/Constants.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/IntrinsicInst.h"
23 #include "llvm/Type.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Analysis/Dominators.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/Analysis/LoopPass.h"
28 #include "llvm/Analysis/ScalarEvolutionExpander.h"
29 #include "llvm/Support/CFG.h"
30 #include "llvm/Support/GetElementPtrTypeIterator.h"
31 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 #include "llvm/Target/TargetData.h"
34 #include "llvm/ADT/SmallPtrSet.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/Compiler.h"
38 #include "llvm/Target/TargetLowering.h"
43 STATISTIC(NumReduced , "Number of GEPs strength reduced");
44 STATISTIC(NumInserted, "Number of PHIs inserted");
45 STATISTIC(NumVariable, "Number of PHIs with variable strides");
46 STATISTIC(NumEliminated, "Number of strides eliminated");
47 STATISTIC(NumShadow, "Number of Shadow IVs optimized");
53 /// IVStrideUse - Keep track of one use of a strided induction variable, where
54 /// the stride is stored externally. The Offset member keeps track of the
55 /// offset from the IV, User is the actual user of the operand, and
56 /// 'OperandValToReplace' is the operand of the User that is the use.
57 struct VISIBILITY_HIDDEN IVStrideUse {
60 Value *OperandValToReplace;
62 // isUseOfPostIncrementedValue - True if this should use the
63 // post-incremented version of this IV, not the preincremented version.
64 // This can only be set in special cases, such as the terminating setcc
65 // instruction for a loop or uses dominated by the loop.
66 bool isUseOfPostIncrementedValue;
68 IVStrideUse(const SCEVHandle &Offs, Instruction *U, Value *O)
69 : Offset(Offs), User(U), OperandValToReplace(O),
70 isUseOfPostIncrementedValue(false) {}
73 /// IVUsersOfOneStride - This structure keeps track of all instructions that
74 /// have an operand that is based on the trip count multiplied by some stride.
75 /// The stride for all of these users is common and kept external to this
77 struct VISIBILITY_HIDDEN IVUsersOfOneStride {
78 /// Users - Keep track of all of the users of this stride as well as the
79 /// initial value and the operand that uses the IV.
80 std::vector<IVStrideUse> Users;
82 void addUser(const SCEVHandle &Offset,Instruction *User, Value *Operand) {
83 Users.push_back(IVStrideUse(Offset, User, Operand));
87 /// IVInfo - This structure keeps track of one IV expression inserted during
88 /// StrengthReduceStridedIVUsers. It contains the stride, the common base, as
89 /// well as the PHI node and increment value created for rewrite.
90 struct VISIBILITY_HIDDEN IVExpr {
96 IVExpr(const SCEVHandle &stride, const SCEVHandle &base, PHINode *phi,
98 : Stride(stride), Base(base), PHI(phi), IncV(incv) {}
101 /// IVsOfOneStride - This structure keeps track of all IV expression inserted
102 /// during StrengthReduceStridedIVUsers for a particular stride of the IV.
103 struct VISIBILITY_HIDDEN IVsOfOneStride {
104 std::vector<IVExpr> IVs;
106 void addIV(const SCEVHandle &Stride, const SCEVHandle &Base, PHINode *PHI,
108 IVs.push_back(IVExpr(Stride, Base, PHI, IncV));
112 class VISIBILITY_HIDDEN LoopStrengthReduce : public LoopPass {
116 const TargetData *TD;
117 const Type *UIntPtrTy;
120 /// IVUsesByStride - Keep track of all uses of induction variables that we
121 /// are interested in. The key of the map is the stride of the access.
122 std::map<SCEVHandle, IVUsersOfOneStride> IVUsesByStride;
124 /// IVsByStride - Keep track of all IVs that have been inserted for a
125 /// particular stride.
126 std::map<SCEVHandle, IVsOfOneStride> IVsByStride;
128 /// StrideOrder - An ordering of the keys in IVUsesByStride that is stable:
129 /// We use this to iterate over the IVUsesByStride collection without being
130 /// dependent on random ordering of pointers in the process.
131 SmallVector<SCEVHandle, 16> StrideOrder;
133 /// GEPlist - A list of the GEP's that have been remembered in the SCEV
134 /// data structures. SCEV does not know to update these when the operands
135 /// of the GEP are changed, which means we cannot leave them live across
137 SmallVector<GetElementPtrInst *, 16> GEPlist;
139 /// CastedValues - As we need to cast values to uintptr_t, this keeps track
140 /// of the casted version of each value. This is accessed by
141 /// getCastedVersionOf.
142 DenseMap<Value*, Value*> CastedPointers;
144 /// DeadInsts - Keep track of instructions we may have made dead, so that
145 /// we can remove them after we are done working.
146 SmallVector<Instruction*, 16> DeadInsts;
148 /// TLI - Keep a pointer of a TargetLowering to consult for determining
149 /// transformation profitability.
150 const TargetLowering *TLI;
153 static char ID; // Pass ID, replacement for typeid
154 explicit LoopStrengthReduce(const TargetLowering *tli = NULL) :
155 LoopPass(&ID), TLI(tli) {
158 bool runOnLoop(Loop *L, LPPassManager &LPM);
160 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
161 // We split critical edges, so we change the CFG. However, we do update
162 // many analyses if they are around.
163 AU.addPreservedID(LoopSimplifyID);
164 AU.addPreserved<LoopInfo>();
165 AU.addPreserved<DominanceFrontier>();
166 AU.addPreserved<DominatorTree>();
168 AU.addRequiredID(LoopSimplifyID);
169 AU.addRequired<LoopInfo>();
170 AU.addRequired<DominatorTree>();
171 AU.addRequired<TargetData>();
172 AU.addRequired<ScalarEvolution>();
173 AU.addPreserved<ScalarEvolution>();
176 /// getCastedVersionOf - Return the specified value casted to uintptr_t.
178 Value *getCastedVersionOf(Instruction::CastOps opcode, Value *V);
180 bool AddUsersIfInteresting(Instruction *I, Loop *L,
181 SmallPtrSet<Instruction*,16> &Processed);
182 SCEVHandle GetExpressionSCEV(Instruction *E);
183 ICmpInst *ChangeCompareStride(Loop *L, ICmpInst *Cond,
184 IVStrideUse* &CondUse,
185 const SCEVHandle* &CondStride);
186 void OptimizeIndvars(Loop *L);
188 /// OptimizeShadowIV - If IV is used in a int-to-float cast
189 /// inside the loop then try to eliminate the cast opeation.
190 void OptimizeShadowIV(Loop *L);
192 /// OptimizeSMax - Rewrite the loop's terminating condition
193 /// if it uses an smax computation.
194 ICmpInst *OptimizeSMax(Loop *L, ICmpInst *Cond,
195 IVStrideUse* &CondUse);
197 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse,
198 const SCEVHandle *&CondStride);
199 bool RequiresTypeConversion(const Type *Ty, const Type *NewTy);
200 SCEVHandle CheckForIVReuse(bool, bool, bool, const SCEVHandle&,
201 IVExpr&, const Type*,
202 const std::vector<BasedUser>& UsersToProcess);
203 bool ValidStride(bool, int64_t,
204 const std::vector<BasedUser>& UsersToProcess);
205 SCEVHandle CollectIVUsers(const SCEVHandle &Stride,
206 IVUsersOfOneStride &Uses,
208 bool &AllUsesAreAddresses,
209 bool &AllUsesAreOutsideLoop,
210 std::vector<BasedUser> &UsersToProcess);
211 void StrengthReduceStridedIVUsers(const SCEVHandle &Stride,
212 IVUsersOfOneStride &Uses,
213 Loop *L, bool isOnlyStride);
214 void DeleteTriviallyDeadInstructions();
218 char LoopStrengthReduce::ID = 0;
219 static RegisterPass<LoopStrengthReduce>
220 X("loop-reduce", "Loop Strength Reduction");
222 Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
223 return new LoopStrengthReduce(TLI);
226 /// getCastedVersionOf - Return the specified value casted to uintptr_t. This
227 /// assumes that the Value* V is of integer or pointer type only.
229 Value *LoopStrengthReduce::getCastedVersionOf(Instruction::CastOps opcode,
231 if (V->getType() == UIntPtrTy) return V;
232 if (Constant *CB = dyn_cast<Constant>(V))
233 return ConstantExpr::getCast(opcode, CB, UIntPtrTy);
235 Value *&New = CastedPointers[V];
238 New = SCEVExpander::InsertCastOfTo(opcode, V, UIntPtrTy);
239 DeadInsts.push_back(cast<Instruction>(New));
244 /// DeleteTriviallyDeadInstructions - If any of the instructions is the
245 /// specified set are trivially dead, delete them and see if this makes any of
246 /// their operands subsequently dead.
247 void LoopStrengthReduce::DeleteTriviallyDeadInstructions() {
248 if (DeadInsts.empty()) return;
250 // Sort the deadinsts list so that we can trivially eliminate duplicates as we
251 // go. The code below never adds a non-dead instruction to the worklist, but
252 // callers may not be so careful.
253 array_pod_sort(DeadInsts.begin(), DeadInsts.end());
255 // Drop duplicate instructions and those with uses.
256 for (unsigned i = 0, e = DeadInsts.size()-1; i < e; ++i) {
257 Instruction *I = DeadInsts[i];
258 if (!I->use_empty()) DeadInsts[i] = 0;
259 while (i != e && DeadInsts[i+1] == I)
263 while (!DeadInsts.empty()) {
264 Instruction *I = DeadInsts.back();
265 DeadInsts.pop_back();
267 if (I == 0 || !isInstructionTriviallyDead(I))
270 SE->deleteValueFromRecords(I);
272 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) {
273 if (Instruction *U = dyn_cast<Instruction>(*OI)) {
276 DeadInsts.push_back(U);
280 I->eraseFromParent();
286 /// GetExpressionSCEV - Compute and return the SCEV for the specified
288 SCEVHandle LoopStrengthReduce::GetExpressionSCEV(Instruction *Exp) {
289 // Pointer to pointer bitcast instructions return the same value as their
291 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Exp)) {
292 if (SE->hasSCEV(BCI) || !isa<Instruction>(BCI->getOperand(0)))
293 return SE->getSCEV(BCI);
294 SCEVHandle R = GetExpressionSCEV(cast<Instruction>(BCI->getOperand(0)));
299 // Scalar Evolutions doesn't know how to compute SCEV's for GEP instructions.
300 // If this is a GEP that SE doesn't know about, compute it now and insert it.
301 // If this is not a GEP, or if we have already done this computation, just let
303 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Exp);
304 if (!GEP || SE->hasSCEV(GEP))
305 return SE->getSCEV(Exp);
307 // Analyze all of the subscripts of this getelementptr instruction, looking
308 // for uses that are determined by the trip count of the loop. First, skip
309 // all operands the are not dependent on the IV.
311 // Build up the base expression. Insert an LLVM cast of the pointer to
313 SCEVHandle GEPVal = SE->getUnknown(
314 getCastedVersionOf(Instruction::PtrToInt, GEP->getOperand(0)));
316 gep_type_iterator GTI = gep_type_begin(GEP);
318 for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
319 i != e; ++i, ++GTI) {
320 // If this is a use of a recurrence that we can analyze, and it comes before
321 // Op does in the GEP operand list, we will handle this when we process this
323 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
324 const StructLayout *SL = TD->getStructLayout(STy);
325 unsigned Idx = cast<ConstantInt>(*i)->getZExtValue();
326 uint64_t Offset = SL->getElementOffset(Idx);
327 GEPVal = SE->getAddExpr(GEPVal,
328 SE->getIntegerSCEV(Offset, UIntPtrTy));
330 unsigned GEPOpiBits =
331 (*i)->getType()->getPrimitiveSizeInBits();
332 unsigned IntPtrBits = UIntPtrTy->getPrimitiveSizeInBits();
333 Instruction::CastOps opcode = (GEPOpiBits < IntPtrBits ?
334 Instruction::SExt : (GEPOpiBits > IntPtrBits ? Instruction::Trunc :
335 Instruction::BitCast));
336 Value *OpVal = getCastedVersionOf(opcode, *i);
337 SCEVHandle Idx = SE->getSCEV(OpVal);
339 uint64_t TypeSize = TD->getTypePaddedSize(GTI.getIndexedType());
341 Idx = SE->getMulExpr(Idx,
342 SE->getConstant(ConstantInt::get(UIntPtrTy,
344 GEPVal = SE->getAddExpr(GEPVal, Idx);
348 SE->setSCEV(GEP, GEPVal);
349 GEPlist.push_back(GEP);
353 /// containsAddRecFromDifferentLoop - Determine whether expression S involves a
354 /// subexpression that is an AddRec from a loop other than L. An outer loop
355 /// of L is OK, but not an inner loop nor a disjoint loop.
356 static bool containsAddRecFromDifferentLoop(SCEVHandle S, Loop *L) {
357 // This is very common, put it first.
358 if (isa<SCEVConstant>(S))
360 if (SCEVCommutativeExpr *AE = dyn_cast<SCEVCommutativeExpr>(S)) {
361 for (unsigned int i=0; i< AE->getNumOperands(); i++)
362 if (containsAddRecFromDifferentLoop(AE->getOperand(i), L))
366 if (SCEVAddRecExpr *AE = dyn_cast<SCEVAddRecExpr>(S)) {
367 if (const Loop *newLoop = AE->getLoop()) {
370 // if newLoop is an outer loop of L, this is OK.
371 if (!LoopInfoBase<BasicBlock>::isNotAlreadyContainedIn(L, newLoop))
376 if (SCEVUDivExpr *DE = dyn_cast<SCEVUDivExpr>(S))
377 return containsAddRecFromDifferentLoop(DE->getLHS(), L) ||
378 containsAddRecFromDifferentLoop(DE->getRHS(), L);
380 // SCEVSDivExpr has been backed out temporarily, but will be back; we'll
381 // need this when it is.
382 if (SCEVSDivExpr *DE = dyn_cast<SCEVSDivExpr>(S))
383 return containsAddRecFromDifferentLoop(DE->getLHS(), L) ||
384 containsAddRecFromDifferentLoop(DE->getRHS(), L);
386 if (SCEVTruncateExpr *TE = dyn_cast<SCEVTruncateExpr>(S))
387 return containsAddRecFromDifferentLoop(TE->getOperand(), L);
388 if (SCEVZeroExtendExpr *ZE = dyn_cast<SCEVZeroExtendExpr>(S))
389 return containsAddRecFromDifferentLoop(ZE->getOperand(), L);
390 if (SCEVSignExtendExpr *SE = dyn_cast<SCEVSignExtendExpr>(S))
391 return containsAddRecFromDifferentLoop(SE->getOperand(), L);
395 /// getSCEVStartAndStride - Compute the start and stride of this expression,
396 /// returning false if the expression is not a start/stride pair, or true if it
397 /// is. The stride must be a loop invariant expression, but the start may be
398 /// a mix of loop invariant and loop variant expressions. The start cannot,
399 /// however, contain an AddRec from a different loop, unless that loop is an
400 /// outer loop of the current loop.
401 static bool getSCEVStartAndStride(const SCEVHandle &SH, Loop *L,
402 SCEVHandle &Start, SCEVHandle &Stride,
403 ScalarEvolution *SE) {
404 SCEVHandle TheAddRec = Start; // Initialize to zero.
406 // If the outer level is an AddExpr, the operands are all start values except
407 // for a nested AddRecExpr.
408 if (SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(SH)) {
409 for (unsigned i = 0, e = AE->getNumOperands(); i != e; ++i)
410 if (SCEVAddRecExpr *AddRec =
411 dyn_cast<SCEVAddRecExpr>(AE->getOperand(i))) {
412 if (AddRec->getLoop() == L)
413 TheAddRec = SE->getAddExpr(AddRec, TheAddRec);
415 return false; // Nested IV of some sort?
417 Start = SE->getAddExpr(Start, AE->getOperand(i));
420 } else if (isa<SCEVAddRecExpr>(SH)) {
423 return false; // not analyzable.
426 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(TheAddRec);
427 if (!AddRec || AddRec->getLoop() != L) return false;
429 // FIXME: Generalize to non-affine IV's.
430 if (!AddRec->isAffine()) return false;
432 // If Start contains an SCEVAddRecExpr from a different loop, other than an
433 // outer loop of the current loop, reject it. SCEV has no concept of operating
434 // on one loop at a time so don't confuse it with such expressions.
435 if (containsAddRecFromDifferentLoop(Start, L))
438 Start = SE->getAddExpr(Start, AddRec->getOperand(0));
440 if (!isa<SCEVConstant>(AddRec->getOperand(1)))
441 DOUT << "[" << L->getHeader()->getName()
442 << "] Variable stride: " << *AddRec << "\n";
444 Stride = AddRec->getOperand(1);
448 /// IVUseShouldUsePostIncValue - We have discovered a "User" of an IV expression
449 /// and now we need to decide whether the user should use the preinc or post-inc
450 /// value. If this user should use the post-inc version of the IV, return true.
452 /// Choosing wrong here can break dominance properties (if we choose to use the
453 /// post-inc value when we cannot) or it can end up adding extra live-ranges to
454 /// the loop, resulting in reg-reg copies (if we use the pre-inc value when we
455 /// should use the post-inc value).
456 static bool IVUseShouldUsePostIncValue(Instruction *User, Instruction *IV,
457 Loop *L, DominatorTree *DT, Pass *P,
458 SmallVectorImpl<Instruction*> &DeadInsts){
459 // If the user is in the loop, use the preinc value.
460 if (L->contains(User->getParent())) return false;
462 BasicBlock *LatchBlock = L->getLoopLatch();
464 // Ok, the user is outside of the loop. If it is dominated by the latch
465 // block, use the post-inc value.
466 if (DT->dominates(LatchBlock, User->getParent()))
469 // There is one case we have to be careful of: PHI nodes. These little guys
470 // can live in blocks that do not dominate the latch block, but (since their
471 // uses occur in the predecessor block, not the block the PHI lives in) should
472 // still use the post-inc value. Check for this case now.
473 PHINode *PN = dyn_cast<PHINode>(User);
474 if (!PN) return false; // not a phi, not dominated by latch block.
476 // Look at all of the uses of IV by the PHI node. If any use corresponds to
477 // a block that is not dominated by the latch block, give up and use the
478 // preincremented value.
479 unsigned NumUses = 0;
480 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
481 if (PN->getIncomingValue(i) == IV) {
483 if (!DT->dominates(LatchBlock, PN->getIncomingBlock(i)))
487 // Okay, all uses of IV by PN are in predecessor blocks that really are
488 // dominated by the latch block. Split the critical edges and use the
489 // post-incremented value.
490 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
491 if (PN->getIncomingValue(i) == IV) {
492 SplitCriticalEdge(PN->getIncomingBlock(i), PN->getParent(), P, false);
493 // Splitting the critical edge can reduce the number of entries in this
495 e = PN->getNumIncomingValues();
496 if (--NumUses == 0) break;
499 // PHI node might have become a constant value after SplitCriticalEdge.
500 DeadInsts.push_back(User);
505 /// isAddress - Returns true if the specified instruction is using the
506 /// specified value as an address.
507 static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
508 bool isAddress = isa<LoadInst>(Inst);
509 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
510 if (SI->getOperand(1) == OperandVal)
512 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
513 // Addressing modes can also be folded into prefetches and a variety
515 switch (II->getIntrinsicID()) {
517 case Intrinsic::prefetch:
518 case Intrinsic::x86_sse2_loadu_dq:
519 case Intrinsic::x86_sse2_loadu_pd:
520 case Intrinsic::x86_sse_loadu_ps:
521 case Intrinsic::x86_sse_storeu_ps:
522 case Intrinsic::x86_sse2_storeu_pd:
523 case Intrinsic::x86_sse2_storeu_dq:
524 case Intrinsic::x86_sse2_storel_dq:
525 if (II->getOperand(1) == OperandVal)
533 /// AddUsersIfInteresting - Inspect the specified instruction. If it is a
534 /// reducible SCEV, recursively add its users to the IVUsesByStride set and
535 /// return true. Otherwise, return false.
536 bool LoopStrengthReduce::AddUsersIfInteresting(Instruction *I, Loop *L,
537 SmallPtrSet<Instruction*,16> &Processed) {
538 if (!I->getType()->isInteger() && !isa<PointerType>(I->getType()))
539 return false; // Void and FP expressions cannot be reduced.
540 if (!Processed.insert(I))
541 return true; // Instruction already handled.
543 // Get the symbolic expression for this instruction.
544 SCEVHandle ISE = GetExpressionSCEV(I);
545 if (isa<SCEVCouldNotCompute>(ISE)) return false;
547 // Get the start and stride for this expression.
548 SCEVHandle Start = SE->getIntegerSCEV(0, ISE->getType());
549 SCEVHandle Stride = Start;
550 if (!getSCEVStartAndStride(ISE, L, Start, Stride, SE))
551 return false; // Non-reducible symbolic expression, bail out.
553 std::vector<Instruction *> IUsers;
554 // Collect all I uses now because IVUseShouldUsePostIncValue may
555 // invalidate use_iterator.
556 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
557 IUsers.push_back(cast<Instruction>(*UI));
559 for (unsigned iused_index = 0, iused_size = IUsers.size();
560 iused_index != iused_size; ++iused_index) {
562 Instruction *User = IUsers[iused_index];
564 // Do not infinitely recurse on PHI nodes.
565 if (isa<PHINode>(User) && Processed.count(User))
568 // Descend recursively, but not into PHI nodes outside the current loop.
569 // It's important to see the entire expression outside the loop to get
570 // choices that depend on addressing mode use right, although we won't
571 // consider references ouside the loop in all cases.
572 // If User is already in Processed, we don't want to recurse into it again,
573 // but do want to record a second reference in the same instruction.
574 bool AddUserToIVUsers = false;
575 if (LI->getLoopFor(User->getParent()) != L) {
576 if (isa<PHINode>(User) || Processed.count(User) ||
577 !AddUsersIfInteresting(User, L, Processed)) {
578 DOUT << "FOUND USER in other loop: " << *User
579 << " OF SCEV: " << *ISE << "\n";
580 AddUserToIVUsers = true;
582 } else if (Processed.count(User) ||
583 !AddUsersIfInteresting(User, L, Processed)) {
584 DOUT << "FOUND USER: " << *User
585 << " OF SCEV: " << *ISE << "\n";
586 AddUserToIVUsers = true;
589 if (AddUserToIVUsers) {
590 IVUsersOfOneStride &StrideUses = IVUsesByStride[Stride];
591 if (StrideUses.Users.empty()) // First occurrence of this stride?
592 StrideOrder.push_back(Stride);
594 // Okay, we found a user that we cannot reduce. Analyze the instruction
595 // and decide what to do with it. If we are a use inside of the loop, use
596 // the value before incrementation, otherwise use it after incrementation.
597 if (IVUseShouldUsePostIncValue(User, I, L, DT, this, DeadInsts)) {
598 // The value used will be incremented by the stride more than we are
599 // expecting, so subtract this off.
600 SCEVHandle NewStart = SE->getMinusSCEV(Start, Stride);
601 StrideUses.addUser(NewStart, User, I);
602 StrideUses.Users.back().isUseOfPostIncrementedValue = true;
603 DOUT << " USING POSTINC SCEV, START=" << *NewStart<< "\n";
605 StrideUses.addUser(Start, User, I);
613 /// BasedUser - For a particular base value, keep information about how we've
614 /// partitioned the expression so far.
616 /// SE - The current ScalarEvolution object.
619 /// Base - The Base value for the PHI node that needs to be inserted for
620 /// this use. As the use is processed, information gets moved from this
621 /// field to the Imm field (below). BasedUser values are sorted by this
625 /// Inst - The instruction using the induction variable.
628 /// OperandValToReplace - The operand value of Inst to replace with the
630 Value *OperandValToReplace;
632 /// Imm - The immediate value that should be added to the base immediately
633 /// before Inst, because it will be folded into the imm field of the
637 // isUseOfPostIncrementedValue - True if this should use the
638 // post-incremented version of this IV, not the preincremented version.
639 // This can only be set in special cases, such as the terminating setcc
640 // instruction for a loop and uses outside the loop that are dominated by
642 bool isUseOfPostIncrementedValue;
644 BasedUser(IVStrideUse &IVSU, ScalarEvolution *se)
645 : SE(se), Base(IVSU.Offset), Inst(IVSU.User),
646 OperandValToReplace(IVSU.OperandValToReplace),
647 Imm(SE->getIntegerSCEV(0, Base->getType())),
648 isUseOfPostIncrementedValue(IVSU.isUseOfPostIncrementedValue) {}
650 // Once we rewrite the code to insert the new IVs we want, update the
651 // operands of Inst to use the new expression 'NewBase', with 'Imm' added
653 void RewriteInstructionToUseNewBase(const SCEVHandle &NewBase,
654 Instruction *InsertPt,
655 SCEVExpander &Rewriter, Loop *L, Pass *P,
656 SmallVectorImpl<Instruction*> &DeadInsts);
658 Value *InsertCodeForBaseAtPosition(const SCEVHandle &NewBase,
659 SCEVExpander &Rewriter,
660 Instruction *IP, Loop *L);
665 void BasedUser::dump() const {
666 cerr << " Base=" << *Base;
667 cerr << " Imm=" << *Imm;
668 cerr << " Inst: " << *Inst;
671 Value *BasedUser::InsertCodeForBaseAtPosition(const SCEVHandle &NewBase,
672 SCEVExpander &Rewriter,
673 Instruction *IP, Loop *L) {
674 // Figure out where we *really* want to insert this code. In particular, if
675 // the user is inside of a loop that is nested inside of L, we really don't
676 // want to insert this expression before the user, we'd rather pull it out as
677 // many loops as possible.
678 LoopInfo &LI = Rewriter.getLoopInfo();
679 Instruction *BaseInsertPt = IP;
681 // Figure out the most-nested loop that IP is in.
682 Loop *InsertLoop = LI.getLoopFor(IP->getParent());
684 // If InsertLoop is not L, and InsertLoop is nested inside of L, figure out
685 // the preheader of the outer-most loop where NewBase is not loop invariant.
686 if (L->contains(IP->getParent()))
687 while (InsertLoop && NewBase->isLoopInvariant(InsertLoop)) {
688 BaseInsertPt = InsertLoop->getLoopPreheader()->getTerminator();
689 InsertLoop = InsertLoop->getParentLoop();
692 // If there is no immediate value, skip the next part.
694 return Rewriter.expandCodeFor(NewBase, BaseInsertPt);
696 Value *Base = Rewriter.expandCodeFor(NewBase, BaseInsertPt);
698 // If we are inserting the base and imm values in the same block, make sure to
699 // adjust the IP position if insertion reused a result.
700 if (IP == BaseInsertPt)
701 IP = Rewriter.getInsertionPoint();
703 // Always emit the immediate (if non-zero) into the same block as the user.
704 SCEVHandle NewValSCEV = SE->getAddExpr(SE->getUnknown(Base), Imm);
705 return Rewriter.expandCodeFor(NewValSCEV, IP);
710 // Once we rewrite the code to insert the new IVs we want, update the
711 // operands of Inst to use the new expression 'NewBase', with 'Imm' added
712 // to it. NewBasePt is the last instruction which contributes to the
713 // value of NewBase in the case that it's a diffferent instruction from
714 // the PHI that NewBase is computed from, or null otherwise.
716 void BasedUser::RewriteInstructionToUseNewBase(const SCEVHandle &NewBase,
717 Instruction *NewBasePt,
718 SCEVExpander &Rewriter, Loop *L, Pass *P,
719 SmallVectorImpl<Instruction*> &DeadInsts){
720 if (!isa<PHINode>(Inst)) {
721 // By default, insert code at the user instruction.
722 BasicBlock::iterator InsertPt = Inst;
724 // However, if the Operand is itself an instruction, the (potentially
725 // complex) inserted code may be shared by many users. Because of this, we
726 // want to emit code for the computation of the operand right before its old
727 // computation. This is usually safe, because we obviously used to use the
728 // computation when it was computed in its current block. However, in some
729 // cases (e.g. use of a post-incremented induction variable) the NewBase
730 // value will be pinned to live somewhere after the original computation.
731 // In this case, we have to back off.
733 // If this is a use outside the loop (which means after, since it is based
734 // on a loop indvar) we use the post-incremented value, so that we don't
735 // artificially make the preinc value live out the bottom of the loop.
736 if (!isUseOfPostIncrementedValue && L->contains(Inst->getParent())) {
737 if (NewBasePt && isa<PHINode>(OperandValToReplace)) {
738 InsertPt = NewBasePt;
740 } else if (Instruction *OpInst
741 = dyn_cast<Instruction>(OperandValToReplace)) {
743 while (isa<PHINode>(InsertPt)) ++InsertPt;
746 Value *NewVal = InsertCodeForBaseAtPosition(NewBase, Rewriter, InsertPt, L);
747 // Adjust the type back to match the Inst. Note that we can't use InsertPt
748 // here because the SCEVExpander may have inserted the instructions after
749 // that point, in its efforts to avoid inserting redundant expressions.
750 if (isa<PointerType>(OperandValToReplace->getType())) {
751 NewVal = SCEVExpander::InsertCastOfTo(Instruction::IntToPtr,
753 OperandValToReplace->getType());
755 // Replace the use of the operand Value with the new Phi we just created.
756 Inst->replaceUsesOfWith(OperandValToReplace, NewVal);
757 DOUT << " CHANGED: IMM =" << *Imm;
758 DOUT << " \tNEWBASE =" << *NewBase;
759 DOUT << " \tInst = " << *Inst;
763 // PHI nodes are more complex. We have to insert one copy of the NewBase+Imm
764 // expression into each operand block that uses it. Note that PHI nodes can
765 // have multiple entries for the same predecessor. We use a map to make sure
766 // that a PHI node only has a single Value* for each predecessor (which also
767 // prevents us from inserting duplicate code in some blocks).
768 DenseMap<BasicBlock*, Value*> InsertedCode;
769 PHINode *PN = cast<PHINode>(Inst);
770 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
771 if (PN->getIncomingValue(i) == OperandValToReplace) {
772 // If the original expression is outside the loop, put the replacement
773 // code in the same place as the original expression,
774 // which need not be an immediate predecessor of this PHI. This way we
775 // need only one copy of it even if it is referenced multiple times in
776 // the PHI. We don't do this when the original expression is inside the
777 // loop because multiple copies sometimes do useful sinking of code in that
779 Instruction *OldLoc = dyn_cast<Instruction>(OperandValToReplace);
780 if (L->contains(OldLoc->getParent())) {
781 // If this is a critical edge, split the edge so that we do not insert the
782 // code on all predecessor/successor paths. We do this unless this is the
783 // canonical backedge for this loop, as this can make some inserted code
784 // be in an illegal position.
785 BasicBlock *PHIPred = PN->getIncomingBlock(i);
786 if (e != 1 && PHIPred->getTerminator()->getNumSuccessors() > 1 &&
787 (PN->getParent() != L->getHeader() || !L->contains(PHIPred))) {
789 // First step, split the critical edge.
790 SplitCriticalEdge(PHIPred, PN->getParent(), P, false);
792 // Next step: move the basic block. In particular, if the PHI node
793 // is outside of the loop, and PredTI is in the loop, we want to
794 // move the block to be immediately before the PHI block, not
795 // immediately after PredTI.
796 if (L->contains(PHIPred) && !L->contains(PN->getParent())) {
797 BasicBlock *NewBB = PN->getIncomingBlock(i);
798 NewBB->moveBefore(PN->getParent());
801 // Splitting the edge can reduce the number of PHI entries we have.
802 e = PN->getNumIncomingValues();
805 Value *&Code = InsertedCode[PN->getIncomingBlock(i)];
807 // Insert the code into the end of the predecessor block.
808 Instruction *InsertPt = (L->contains(OldLoc->getParent())) ?
809 PN->getIncomingBlock(i)->getTerminator() :
810 OldLoc->getParent()->getTerminator();
811 Code = InsertCodeForBaseAtPosition(NewBase, Rewriter, InsertPt, L);
813 // Adjust the type back to match the PHI. Note that we can't use
814 // InsertPt here because the SCEVExpander may have inserted its
815 // instructions after that point, in its efforts to avoid inserting
816 // redundant expressions.
817 if (isa<PointerType>(PN->getType())) {
818 Code = SCEVExpander::InsertCastOfTo(Instruction::IntToPtr,
824 // Replace the use of the operand Value with the new Phi we just created.
825 PN->setIncomingValue(i, Code);
830 // PHI node might have become a constant value after SplitCriticalEdge.
831 DeadInsts.push_back(Inst);
833 DOUT << " CHANGED: IMM =" << *Imm << " Inst = " << *Inst;
837 /// fitsInAddressMode - Return true if V can be subsumed within an addressing
838 /// mode, and does not need to be put in a register first.
839 static bool fitsInAddressMode(const SCEVHandle &V, const Type *UseTy,
840 const TargetLowering *TLI, bool HasBaseReg) {
841 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
842 int64_t VC = SC->getValue()->getSExtValue();
844 TargetLowering::AddrMode AM;
846 AM.HasBaseReg = HasBaseReg;
847 return TLI->isLegalAddressingMode(AM, UseTy);
849 // Defaults to PPC. PPC allows a sign-extended 16-bit immediate field.
850 return (VC > -(1 << 16) && VC < (1 << 16)-1);
854 if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V))
855 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(SU->getValue()))
856 if (TLI && CE->getOpcode() == Instruction::PtrToInt) {
857 Constant *Op0 = CE->getOperand(0);
858 if (GlobalValue *GV = dyn_cast<GlobalValue>(Op0)) {
859 TargetLowering::AddrMode AM;
861 AM.HasBaseReg = HasBaseReg;
862 return TLI->isLegalAddressingMode(AM, UseTy);
868 /// MoveLoopVariantsToImmediateField - Move any subexpressions from Val that are
869 /// loop varying to the Imm operand.
870 static void MoveLoopVariantsToImmediateField(SCEVHandle &Val, SCEVHandle &Imm,
871 Loop *L, ScalarEvolution *SE) {
872 if (Val->isLoopInvariant(L)) return; // Nothing to do.
874 if (SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) {
875 std::vector<SCEVHandle> NewOps;
876 NewOps.reserve(SAE->getNumOperands());
878 for (unsigned i = 0; i != SAE->getNumOperands(); ++i)
879 if (!SAE->getOperand(i)->isLoopInvariant(L)) {
880 // If this is a loop-variant expression, it must stay in the immediate
881 // field of the expression.
882 Imm = SE->getAddExpr(Imm, SAE->getOperand(i));
884 NewOps.push_back(SAE->getOperand(i));
888 Val = SE->getIntegerSCEV(0, Val->getType());
890 Val = SE->getAddExpr(NewOps);
891 } else if (SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) {
892 // Try to pull immediates out of the start value of nested addrec's.
893 SCEVHandle Start = SARE->getStart();
894 MoveLoopVariantsToImmediateField(Start, Imm, L, SE);
896 std::vector<SCEVHandle> Ops(SARE->op_begin(), SARE->op_end());
898 Val = SE->getAddRecExpr(Ops, SARE->getLoop());
900 // Otherwise, all of Val is variant, move the whole thing over.
901 Imm = SE->getAddExpr(Imm, Val);
902 Val = SE->getIntegerSCEV(0, Val->getType());
907 /// MoveImmediateValues - Look at Val, and pull out any additions of constants
908 /// that can fit into the immediate field of instructions in the target.
909 /// Accumulate these immediate values into the Imm value.
910 static void MoveImmediateValues(const TargetLowering *TLI,
912 SCEVHandle &Val, SCEVHandle &Imm,
913 bool isAddress, Loop *L,
914 ScalarEvolution *SE) {
915 const Type *UseTy = User->getType();
916 if (StoreInst *SI = dyn_cast<StoreInst>(User))
917 UseTy = SI->getOperand(0)->getType();
919 if (SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) {
920 std::vector<SCEVHandle> NewOps;
921 NewOps.reserve(SAE->getNumOperands());
923 for (unsigned i = 0; i != SAE->getNumOperands(); ++i) {
924 SCEVHandle NewOp = SAE->getOperand(i);
925 MoveImmediateValues(TLI, User, NewOp, Imm, isAddress, L, SE);
927 if (!NewOp->isLoopInvariant(L)) {
928 // If this is a loop-variant expression, it must stay in the immediate
929 // field of the expression.
930 Imm = SE->getAddExpr(Imm, NewOp);
932 NewOps.push_back(NewOp);
937 Val = SE->getIntegerSCEV(0, Val->getType());
939 Val = SE->getAddExpr(NewOps);
941 } else if (SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) {
942 // Try to pull immediates out of the start value of nested addrec's.
943 SCEVHandle Start = SARE->getStart();
944 MoveImmediateValues(TLI, User, Start, Imm, isAddress, L, SE);
946 if (Start != SARE->getStart()) {
947 std::vector<SCEVHandle> Ops(SARE->op_begin(), SARE->op_end());
949 Val = SE->getAddRecExpr(Ops, SARE->getLoop());
952 } else if (SCEVMulExpr *SME = dyn_cast<SCEVMulExpr>(Val)) {
953 // Transform "8 * (4 + v)" -> "32 + 8*V" if "32" fits in the immed field.
954 if (isAddress && fitsInAddressMode(SME->getOperand(0), UseTy, TLI, false) &&
955 SME->getNumOperands() == 2 && SME->isLoopInvariant(L)) {
957 SCEVHandle SubImm = SE->getIntegerSCEV(0, Val->getType());
958 SCEVHandle NewOp = SME->getOperand(1);
959 MoveImmediateValues(TLI, User, NewOp, SubImm, isAddress, L, SE);
961 // If we extracted something out of the subexpressions, see if we can
963 if (NewOp != SME->getOperand(1)) {
964 // Scale SubImm up by "8". If the result is a target constant, we are
966 SubImm = SE->getMulExpr(SubImm, SME->getOperand(0));
967 if (fitsInAddressMode(SubImm, UseTy, TLI, false)) {
968 // Accumulate the immediate.
969 Imm = SE->getAddExpr(Imm, SubImm);
971 // Update what is left of 'Val'.
972 Val = SE->getMulExpr(SME->getOperand(0), NewOp);
979 // Loop-variant expressions must stay in the immediate field of the
981 if ((isAddress && fitsInAddressMode(Val, UseTy, TLI, false)) ||
982 !Val->isLoopInvariant(L)) {
983 Imm = SE->getAddExpr(Imm, Val);
984 Val = SE->getIntegerSCEV(0, Val->getType());
988 // Otherwise, no immediates to move.
992 /// SeparateSubExprs - Decompose Expr into all of the subexpressions that are
993 /// added together. This is used to reassociate common addition subexprs
994 /// together for maximal sharing when rewriting bases.
995 static void SeparateSubExprs(std::vector<SCEVHandle> &SubExprs,
997 ScalarEvolution *SE) {
998 if (SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(Expr)) {
999 for (unsigned j = 0, e = AE->getNumOperands(); j != e; ++j)
1000 SeparateSubExprs(SubExprs, AE->getOperand(j), SE);
1001 } else if (SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Expr)) {
1002 SCEVHandle Zero = SE->getIntegerSCEV(0, Expr->getType());
1003 if (SARE->getOperand(0) == Zero) {
1004 SubExprs.push_back(Expr);
1006 // Compute the addrec with zero as its base.
1007 std::vector<SCEVHandle> Ops(SARE->op_begin(), SARE->op_end());
1008 Ops[0] = Zero; // Start with zero base.
1009 SubExprs.push_back(SE->getAddRecExpr(Ops, SARE->getLoop()));
1012 SeparateSubExprs(SubExprs, SARE->getOperand(0), SE);
1014 } else if (!Expr->isZero()) {
1016 SubExprs.push_back(Expr);
1020 // This is logically local to the following function, but C++ says we have
1021 // to make it file scope.
1022 struct SubExprUseData { unsigned Count; bool notAllUsesAreFree; };
1024 /// RemoveCommonExpressionsFromUseBases - Look through all of the Bases of all
1025 /// the Uses, removing any common subexpressions, except that if all such
1026 /// subexpressions can be folded into an addressing mode for all uses inside
1027 /// the loop (this case is referred to as "free" in comments herein) we do
1028 /// not remove anything. This looks for things like (a+b+c) and
1029 /// (a+c+d) and computes the common (a+c) subexpression. The common expression
1030 /// is *removed* from the Bases and returned.
1032 RemoveCommonExpressionsFromUseBases(std::vector<BasedUser> &Uses,
1033 ScalarEvolution *SE, Loop *L,
1034 const TargetLowering *TLI) {
1035 unsigned NumUses = Uses.size();
1037 // Only one use? This is a very common case, so we handle it specially and
1039 SCEVHandle Zero = SE->getIntegerSCEV(0, Uses[0].Base->getType());
1040 SCEVHandle Result = Zero;
1041 SCEVHandle FreeResult = Zero;
1043 // If the use is inside the loop, use its base, regardless of what it is:
1044 // it is clearly shared across all the IV's. If the use is outside the loop
1045 // (which means after it) we don't want to factor anything *into* the loop,
1046 // so just use 0 as the base.
1047 if (L->contains(Uses[0].Inst->getParent()))
1048 std::swap(Result, Uses[0].Base);
1052 // To find common subexpressions, count how many of Uses use each expression.
1053 // If any subexpressions are used Uses.size() times, they are common.
1054 // Also track whether all uses of each expression can be moved into an
1055 // an addressing mode "for free"; such expressions are left within the loop.
1056 // struct SubExprUseData { unsigned Count; bool notAllUsesAreFree; };
1057 std::map<SCEVHandle, SubExprUseData> SubExpressionUseData;
1059 // UniqueSubExprs - Keep track of all of the subexpressions we see in the
1060 // order we see them.
1061 std::vector<SCEVHandle> UniqueSubExprs;
1063 std::vector<SCEVHandle> SubExprs;
1064 unsigned NumUsesInsideLoop = 0;
1065 for (unsigned i = 0; i != NumUses; ++i) {
1066 // If the user is outside the loop, just ignore it for base computation.
1067 // Since the user is outside the loop, it must be *after* the loop (if it
1068 // were before, it could not be based on the loop IV). We don't want users
1069 // after the loop to affect base computation of values *inside* the loop,
1070 // because we can always add their offsets to the result IV after the loop
1071 // is done, ensuring we get good code inside the loop.
1072 if (!L->contains(Uses[i].Inst->getParent()))
1074 NumUsesInsideLoop++;
1076 // If the base is zero (which is common), return zero now, there are no
1077 // CSEs we can find.
1078 if (Uses[i].Base == Zero) return Zero;
1080 // If this use is as an address we may be able to put CSEs in the addressing
1081 // mode rather than hoisting them.
1082 bool isAddrUse = isAddressUse(Uses[i].Inst, Uses[i].OperandValToReplace);
1083 // We may need the UseTy below, but only when isAddrUse, so compute it
1084 // only in that case.
1085 const Type *UseTy = 0;
1087 UseTy = Uses[i].Inst->getType();
1088 if (StoreInst *SI = dyn_cast<StoreInst>(Uses[i].Inst))
1089 UseTy = SI->getOperand(0)->getType();
1092 // Split the expression into subexprs.
1093 SeparateSubExprs(SubExprs, Uses[i].Base, SE);
1094 // Add one to SubExpressionUseData.Count for each subexpr present, and
1095 // if the subexpr is not a valid immediate within an addressing mode use,
1096 // set SubExpressionUseData.notAllUsesAreFree. We definitely want to
1097 // hoist these out of the loop (if they are common to all uses).
1098 for (unsigned j = 0, e = SubExprs.size(); j != e; ++j) {
1099 if (++SubExpressionUseData[SubExprs[j]].Count == 1)
1100 UniqueSubExprs.push_back(SubExprs[j]);
1101 if (!isAddrUse || !fitsInAddressMode(SubExprs[j], UseTy, TLI, false))
1102 SubExpressionUseData[SubExprs[j]].notAllUsesAreFree = true;
1107 // Now that we know how many times each is used, build Result. Iterate over
1108 // UniqueSubexprs so that we have a stable ordering.
1109 for (unsigned i = 0, e = UniqueSubExprs.size(); i != e; ++i) {
1110 std::map<SCEVHandle, SubExprUseData>::iterator I =
1111 SubExpressionUseData.find(UniqueSubExprs[i]);
1112 assert(I != SubExpressionUseData.end() && "Entry not found?");
1113 if (I->second.Count == NumUsesInsideLoop) { // Found CSE!
1114 if (I->second.notAllUsesAreFree)
1115 Result = SE->getAddExpr(Result, I->first);
1117 FreeResult = SE->getAddExpr(FreeResult, I->first);
1119 // Remove non-cse's from SubExpressionUseData.
1120 SubExpressionUseData.erase(I);
1123 if (FreeResult != Zero) {
1124 // We have some subexpressions that can be subsumed into addressing
1125 // modes in every use inside the loop. However, it's possible that
1126 // there are so many of them that the combined FreeResult cannot
1127 // be subsumed, or that the target cannot handle both a FreeResult
1128 // and a Result in the same instruction (for example because it would
1129 // require too many registers). Check this.
1130 for (unsigned i=0; i<NumUses; ++i) {
1131 if (!L->contains(Uses[i].Inst->getParent()))
1133 // We know this is an addressing mode use; if there are any uses that
1134 // are not, FreeResult would be Zero.
1135 const Type *UseTy = Uses[i].Inst->getType();
1136 if (StoreInst *SI = dyn_cast<StoreInst>(Uses[i].Inst))
1137 UseTy = SI->getOperand(0)->getType();
1138 if (!fitsInAddressMode(FreeResult, UseTy, TLI, Result!=Zero)) {
1139 // FIXME: could split up FreeResult into pieces here, some hoisted
1140 // and some not. There is no obvious advantage to this.
1141 Result = SE->getAddExpr(Result, FreeResult);
1148 // If we found no CSE's, return now.
1149 if (Result == Zero) return Result;
1151 // If we still have a FreeResult, remove its subexpressions from
1152 // SubExpressionUseData. This means they will remain in the use Bases.
1153 if (FreeResult != Zero) {
1154 SeparateSubExprs(SubExprs, FreeResult, SE);
1155 for (unsigned j = 0, e = SubExprs.size(); j != e; ++j) {
1156 std::map<SCEVHandle, SubExprUseData>::iterator I =
1157 SubExpressionUseData.find(SubExprs[j]);
1158 SubExpressionUseData.erase(I);
1163 // Otherwise, remove all of the CSE's we found from each of the base values.
1164 for (unsigned i = 0; i != NumUses; ++i) {
1165 // Uses outside the loop don't necessarily include the common base, but
1166 // the final IV value coming into those uses does. Instead of trying to
1167 // remove the pieces of the common base, which might not be there,
1168 // subtract off the base to compensate for this.
1169 if (!L->contains(Uses[i].Inst->getParent())) {
1170 Uses[i].Base = SE->getMinusSCEV(Uses[i].Base, Result);
1174 // Split the expression into subexprs.
1175 SeparateSubExprs(SubExprs, Uses[i].Base, SE);
1177 // Remove any common subexpressions.
1178 for (unsigned j = 0, e = SubExprs.size(); j != e; ++j)
1179 if (SubExpressionUseData.count(SubExprs[j])) {
1180 SubExprs.erase(SubExprs.begin()+j);
1184 // Finally, add the non-shared expressions together.
1185 if (SubExprs.empty())
1186 Uses[i].Base = Zero;
1188 Uses[i].Base = SE->getAddExpr(SubExprs);
1195 /// ValidStride - Check whether the given Scale is valid for all loads and
1196 /// stores in UsersToProcess.
1198 bool LoopStrengthReduce::ValidStride(bool HasBaseReg,
1200 const std::vector<BasedUser>& UsersToProcess) {
1204 for (unsigned i=0, e = UsersToProcess.size(); i!=e; ++i) {
1205 // If this is a load or other access, pass the type of the access in.
1206 const Type *AccessTy = Type::VoidTy;
1207 if (StoreInst *SI = dyn_cast<StoreInst>(UsersToProcess[i].Inst))
1208 AccessTy = SI->getOperand(0)->getType();
1209 else if (LoadInst *LI = dyn_cast<LoadInst>(UsersToProcess[i].Inst))
1210 AccessTy = LI->getType();
1211 else if (isa<PHINode>(UsersToProcess[i].Inst))
1214 TargetLowering::AddrMode AM;
1215 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(UsersToProcess[i].Imm))
1216 AM.BaseOffs = SC->getValue()->getSExtValue();
1217 AM.HasBaseReg = HasBaseReg || !UsersToProcess[i].Base->isZero();
1220 // If load[imm+r*scale] is illegal, bail out.
1221 if (!TLI->isLegalAddressingMode(AM, AccessTy))
1227 /// RequiresTypeConversion - Returns true if converting Ty to NewTy is not
1229 bool LoopStrengthReduce::RequiresTypeConversion(const Type *Ty1,
1233 if (TLI && TLI->isTruncateFree(Ty1, Ty2))
1235 return (!Ty1->canLosslesslyBitCastTo(Ty2) &&
1236 !(isa<PointerType>(Ty2) &&
1237 Ty1->canLosslesslyBitCastTo(UIntPtrTy)) &&
1238 !(isa<PointerType>(Ty1) &&
1239 Ty2->canLosslesslyBitCastTo(UIntPtrTy)));
1242 /// CheckForIVReuse - Returns the multiple if the stride is the multiple
1243 /// of a previous stride and it is a legal value for the target addressing
1244 /// mode scale component and optional base reg. This allows the users of
1245 /// this stride to be rewritten as prev iv * factor. It returns 0 if no
1246 /// reuse is possible. Factors can be negative on same targets, e.g. ARM.
1248 /// If all uses are outside the loop, we don't require that all multiplies
1249 /// be folded into the addressing mode, nor even that the factor be constant;
1250 /// a multiply (executed once) outside the loop is better than another IV
1251 /// within. Well, usually.
1252 SCEVHandle LoopStrengthReduce::CheckForIVReuse(bool HasBaseReg,
1253 bool AllUsesAreAddresses,
1254 bool AllUsesAreOutsideLoop,
1255 const SCEVHandle &Stride,
1256 IVExpr &IV, const Type *Ty,
1257 const std::vector<BasedUser>& UsersToProcess) {
1258 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Stride)) {
1259 int64_t SInt = SC->getValue()->getSExtValue();
1260 for (unsigned NewStride = 0, e = StrideOrder.size(); NewStride != e;
1262 std::map<SCEVHandle, IVsOfOneStride>::iterator SI =
1263 IVsByStride.find(StrideOrder[NewStride]);
1264 if (SI == IVsByStride.end() || !isa<SCEVConstant>(SI->first))
1266 int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
1267 if (SI->first != Stride &&
1268 (unsigned(abs(SInt)) < SSInt || (SInt % SSInt) != 0))
1270 int64_t Scale = SInt / SSInt;
1271 // Check that this stride is valid for all the types used for loads and
1272 // stores; if it can be used for some and not others, we might as well use
1273 // the original stride everywhere, since we have to create the IV for it
1274 // anyway. If the scale is 1, then we don't need to worry about folding
1277 (AllUsesAreAddresses &&
1278 ValidStride(HasBaseReg, Scale, UsersToProcess)))
1279 for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
1280 IE = SI->second.IVs.end(); II != IE; ++II)
1281 // FIXME: Only handle base == 0 for now.
1282 // Only reuse previous IV if it would not require a type conversion.
1283 if (II->Base->isZero() &&
1284 !RequiresTypeConversion(II->Base->getType(), Ty)) {
1286 return SE->getIntegerSCEV(Scale, Stride->getType());
1289 } else if (AllUsesAreOutsideLoop) {
1290 // Accept nonconstant strides here; it is really really right to substitute
1291 // an existing IV if we can.
1292 for (unsigned NewStride = 0, e = StrideOrder.size(); NewStride != e;
1294 std::map<SCEVHandle, IVsOfOneStride>::iterator SI =
1295 IVsByStride.find(StrideOrder[NewStride]);
1296 if (SI == IVsByStride.end() || !isa<SCEVConstant>(SI->first))
1298 int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
1299 if (SI->first != Stride && SSInt != 1)
1301 for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
1302 IE = SI->second.IVs.end(); II != IE; ++II)
1303 // Accept nonzero base here.
1304 // Only reuse previous IV if it would not require a type conversion.
1305 if (!RequiresTypeConversion(II->Base->getType(), Ty)) {
1310 // Special case, old IV is -1*x and this one is x. Can treat this one as
1312 for (unsigned NewStride = 0, e = StrideOrder.size(); NewStride != e;
1314 std::map<SCEVHandle, IVsOfOneStride>::iterator SI =
1315 IVsByStride.find(StrideOrder[NewStride]);
1316 if (SI == IVsByStride.end())
1318 if (SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(SI->first))
1319 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(ME->getOperand(0)))
1320 if (Stride == ME->getOperand(1) &&
1321 SC->getValue()->getSExtValue() == -1LL)
1322 for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
1323 IE = SI->second.IVs.end(); II != IE; ++II)
1324 // Accept nonzero base here.
1325 // Only reuse previous IV if it would not require type conversion.
1326 if (!RequiresTypeConversion(II->Base->getType(), Ty)) {
1328 return SE->getIntegerSCEV(-1LL, Stride->getType());
1332 return SE->getIntegerSCEV(0, Stride->getType());
1335 /// PartitionByIsUseOfPostIncrementedValue - Simple boolean predicate that
1336 /// returns true if Val's isUseOfPostIncrementedValue is true.
1337 static bool PartitionByIsUseOfPostIncrementedValue(const BasedUser &Val) {
1338 return Val.isUseOfPostIncrementedValue;
1341 /// isNonConstantNegative - Return true if the specified scev is negated, but
1343 static bool isNonConstantNegative(const SCEVHandle &Expr) {
1344 SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Expr);
1345 if (!Mul) return false;
1347 // If there is a constant factor, it will be first.
1348 SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
1349 if (!SC) return false;
1351 // Return true if the value is negative, this matches things like (-42 * V).
1352 return SC->getValue()->getValue().isNegative();
1355 // CollectIVUsers - Transform our list of users and offsets to a bit more
1356 // complex table. In this new vector, each 'BasedUser' contains 'Base', the base
1357 // of the strided accesses, as well as the old information from Uses. We
1358 // progressively move information from the Base field to the Imm field, until
1359 // we eventually have the full access expression to rewrite the use.
1360 SCEVHandle LoopStrengthReduce::CollectIVUsers(const SCEVHandle &Stride,
1361 IVUsersOfOneStride &Uses,
1363 bool &AllUsesAreAddresses,
1364 bool &AllUsesAreOutsideLoop,
1365 std::vector<BasedUser> &UsersToProcess) {
1366 UsersToProcess.reserve(Uses.Users.size());
1367 for (unsigned i = 0, e = Uses.Users.size(); i != e; ++i) {
1368 UsersToProcess.push_back(BasedUser(Uses.Users[i], SE));
1370 // Move any loop variant operands from the offset field to the immediate
1371 // field of the use, so that we don't try to use something before it is
1373 MoveLoopVariantsToImmediateField(UsersToProcess.back().Base,
1374 UsersToProcess.back().Imm, L, SE);
1375 assert(UsersToProcess.back().Base->isLoopInvariant(L) &&
1376 "Base value is not loop invariant!");
1379 // We now have a whole bunch of uses of like-strided induction variables, but
1380 // they might all have different bases. We want to emit one PHI node for this
1381 // stride which we fold as many common expressions (between the IVs) into as
1382 // possible. Start by identifying the common expressions in the base values
1383 // for the strides (e.g. if we have "A+C+B" and "A+B+D" as our bases, find
1384 // "A+B"), emit it to the preheader, then remove the expression from the
1385 // UsersToProcess base values.
1386 SCEVHandle CommonExprs =
1387 RemoveCommonExpressionsFromUseBases(UsersToProcess, SE, L, TLI);
1389 // Next, figure out what we can represent in the immediate fields of
1390 // instructions. If we can represent anything there, move it to the imm
1391 // fields of the BasedUsers. We do this so that it increases the commonality
1392 // of the remaining uses.
1393 unsigned NumPHI = 0;
1394 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
1395 // If the user is not in the current loop, this means it is using the exit
1396 // value of the IV. Do not put anything in the base, make sure it's all in
1397 // the immediate field to allow as much factoring as possible.
1398 if (!L->contains(UsersToProcess[i].Inst->getParent())) {
1399 UsersToProcess[i].Imm = SE->getAddExpr(UsersToProcess[i].Imm,
1400 UsersToProcess[i].Base);
1401 UsersToProcess[i].Base =
1402 SE->getIntegerSCEV(0, UsersToProcess[i].Base->getType());
1405 // Addressing modes can be folded into loads and stores. Be careful that
1406 // the store is through the expression, not of the expression though.
1408 bool isAddress = isAddressUse(UsersToProcess[i].Inst,
1409 UsersToProcess[i].OperandValToReplace);
1410 if (isa<PHINode>(UsersToProcess[i].Inst)) {
1415 // Not all uses are outside the loop.
1416 AllUsesAreOutsideLoop = false;
1418 // If this use isn't an address, then not all uses are addresses.
1419 if (!isAddress && !isPHI)
1420 AllUsesAreAddresses = false;
1422 MoveImmediateValues(TLI, UsersToProcess[i].Inst, UsersToProcess[i].Base,
1423 UsersToProcess[i].Imm, isAddress, L, SE);
1427 // If one of the use if a PHI node and all other uses are addresses, still
1428 // allow iv reuse. Essentially we are trading one constant multiplication
1429 // for one fewer iv.
1431 AllUsesAreAddresses = false;
1436 /// StrengthReduceStridedIVUsers - Strength reduce all of the users of a single
1437 /// stride of IV. All of the users may have different starting values, and this
1438 /// may not be the only stride (we know it is if isOnlyStride is true).
1439 void LoopStrengthReduce::StrengthReduceStridedIVUsers(const SCEVHandle &Stride,
1440 IVUsersOfOneStride &Uses,
1442 bool isOnlyStride) {
1443 // If all the users are moved to another stride, then there is nothing to do.
1444 if (Uses.Users.empty())
1447 // Keep track if every use in UsersToProcess is an address. If they all are,
1448 // we may be able to rewrite the entire collection of them in terms of a
1449 // smaller-stride IV.
1450 bool AllUsesAreAddresses = true;
1452 // Keep track if every use of a single stride is outside the loop. If so,
1453 // we want to be more aggressive about reusing a smaller-stride IV; a
1454 // multiply outside the loop is better than another IV inside. Well, usually.
1455 bool AllUsesAreOutsideLoop = true;
1457 // Transform our list of users and offsets to a bit more complex table. In
1458 // this new vector, each 'BasedUser' contains 'Base' the base of the
1459 // strided accessas well as the old information from Uses. We progressively
1460 // move information from the Base field to the Imm field, until we eventually
1461 // have the full access expression to rewrite the use.
1462 std::vector<BasedUser> UsersToProcess;
1463 SCEVHandle CommonExprs = CollectIVUsers(Stride, Uses, L, AllUsesAreAddresses,
1464 AllUsesAreOutsideLoop,
1467 // If we managed to find some expressions in common, we'll need to carry
1468 // their value in a register and add it in for each use. This will take up
1469 // a register operand, which potentially restricts what stride values are
1471 bool HaveCommonExprs = !CommonExprs->isZero();
1473 // If all uses are addresses, check if it is possible to reuse an IV with a
1474 // stride that is a factor of this stride. And that the multiple is a number
1475 // that can be encoded in the scale field of the target addressing mode. And
1476 // that we will have a valid instruction after this substition, including the
1477 // immediate field, if any.
1478 PHINode *NewPHI = NULL;
1480 IVExpr ReuseIV(SE->getIntegerSCEV(0, Type::Int32Ty),
1481 SE->getIntegerSCEV(0, Type::Int32Ty),
1483 SCEVHandle RewriteFactor =
1484 CheckForIVReuse(HaveCommonExprs, AllUsesAreAddresses,
1485 AllUsesAreOutsideLoop,
1486 Stride, ReuseIV, CommonExprs->getType(),
1488 if (!isa<SCEVConstant>(RewriteFactor) ||
1489 !cast<SCEVConstant>(RewriteFactor)->isZero()) {
1490 DOUT << "BASED ON IV of STRIDE " << *ReuseIV.Stride
1491 << " and BASE " << *ReuseIV.Base << " :\n";
1492 NewPHI = ReuseIV.PHI;
1493 IncV = ReuseIV.IncV;
1496 const Type *ReplacedTy = CommonExprs->getType();
1498 // Now that we know what we need to do, insert the PHI node itself.
1500 DOUT << "INSERTING IV of TYPE " << *ReplacedTy << " of STRIDE "
1501 << *Stride << " and BASE " << *CommonExprs << ": ";
1503 SCEVExpander Rewriter(*SE, *LI);
1504 SCEVExpander PreheaderRewriter(*SE, *LI);
1506 BasicBlock *Preheader = L->getLoopPreheader();
1507 Instruction *PreInsertPt = Preheader->getTerminator();
1508 Instruction *PhiInsertBefore = L->getHeader()->begin();
1510 BasicBlock *LatchBlock = L->getLoopLatch();
1513 // Emit the initial base value into the loop preheader.
1515 = PreheaderRewriter.expandCodeFor(CommonExprs, PreInsertPt);
1517 if (isa<SCEVConstant>(RewriteFactor) &&
1518 cast<SCEVConstant>(RewriteFactor)->isZero()) {
1519 // Create a new Phi for this base, and stick it in the loop header.
1520 NewPHI = PHINode::Create(ReplacedTy, "iv.", PhiInsertBefore);
1523 // Add common base to the new Phi node.
1524 NewPHI->addIncoming(CommonBaseV, Preheader);
1526 // If the stride is negative, insert a sub instead of an add for the
1528 bool isNegative = isNonConstantNegative(Stride);
1529 SCEVHandle IncAmount = Stride;
1531 IncAmount = SE->getNegativeSCEV(Stride);
1533 // Insert the stride into the preheader.
1534 Value *StrideV = PreheaderRewriter.expandCodeFor(IncAmount, PreInsertPt);
1535 if (!isa<ConstantInt>(StrideV)) ++NumVariable;
1537 // Emit the increment of the base value before the terminator of the loop
1538 // latch block, and add it to the Phi node.
1539 SCEVHandle IncExp = SE->getUnknown(StrideV);
1541 IncExp = SE->getNegativeSCEV(IncExp);
1542 IncExp = SE->getAddExpr(SE->getUnknown(NewPHI), IncExp);
1544 IncV = Rewriter.expandCodeFor(IncExp, LatchBlock->getTerminator());
1545 IncV->setName(NewPHI->getName()+".inc");
1546 NewPHI->addIncoming(IncV, LatchBlock);
1548 // Remember this in case a later stride is multiple of this.
1549 IVsByStride[Stride].addIV(Stride, CommonExprs, NewPHI, IncV);
1551 DOUT << " IV=%" << NewPHI->getNameStr() << " INC=%" << IncV->getNameStr();
1553 Constant *C = dyn_cast<Constant>(CommonBaseV);
1555 (!C->isNullValue() &&
1556 !fitsInAddressMode(SE->getUnknown(CommonBaseV), ReplacedTy,
1558 // We want the common base emitted into the preheader! This is just
1559 // using cast as a copy so BitCast (no-op cast) is appropriate
1560 CommonBaseV = new BitCastInst(CommonBaseV, CommonBaseV->getType(),
1561 "commonbase", PreInsertPt);
1565 // We want to emit code for users inside the loop first. To do this, we
1566 // rearrange BasedUser so that the entries at the end have
1567 // isUseOfPostIncrementedValue = false, because we pop off the end of the
1568 // vector (so we handle them first).
1569 std::partition(UsersToProcess.begin(), UsersToProcess.end(),
1570 PartitionByIsUseOfPostIncrementedValue);
1572 // Sort this by base, so that things with the same base are handled
1573 // together. By partitioning first and stable-sorting later, we are
1574 // guaranteed that within each base we will pop off users from within the
1575 // loop before users outside of the loop with a particular base.
1577 // We would like to use stable_sort here, but we can't. The problem is that
1578 // SCEVHandle's don't have a deterministic ordering w.r.t to each other, so
1579 // we don't have anything to do a '<' comparison on. Because we think the
1580 // number of uses is small, do a horrible bubble sort which just relies on
1582 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
1583 // Get a base value.
1584 SCEVHandle Base = UsersToProcess[i].Base;
1586 // Compact everything with this base to be consecutive with this one.
1587 for (unsigned j = i+1; j != e; ++j) {
1588 if (UsersToProcess[j].Base == Base) {
1589 std::swap(UsersToProcess[i+1], UsersToProcess[j]);
1595 // Process all the users now. This outer loop handles all bases, the inner
1596 // loop handles all users of a particular base.
1597 while (!UsersToProcess.empty()) {
1598 SCEVHandle Base = UsersToProcess.back().Base;
1600 // Emit the code for Base into the preheader.
1601 Value *BaseV = PreheaderRewriter.expandCodeFor(Base, PreInsertPt);
1603 DOUT << " INSERTING code for BASE = " << *Base << ":";
1604 if (BaseV->hasName())
1605 DOUT << " Result value name = %" << BaseV->getNameStr();
1608 // If BaseV is a constant other than 0, make sure that it gets inserted into
1609 // the preheader, instead of being forward substituted into the uses. We do
1610 // this by forcing a BitCast (noop cast) to be inserted into the preheader
1612 if (Constant *C = dyn_cast<Constant>(BaseV)) {
1613 if (!C->isNullValue() && !fitsInAddressMode(Base, ReplacedTy,
1615 // We want this constant emitted into the preheader! This is just
1616 // using cast as a copy so BitCast (no-op cast) is appropriate
1617 BaseV = new BitCastInst(BaseV, BaseV->getType(), "preheaderinsert",
1622 // Emit the code to add the immediate offset to the Phi value, just before
1623 // the instructions that we identified as using this stride and base.
1625 // FIXME: Use emitted users to emit other users.
1626 BasedUser &User = UsersToProcess.back();
1628 // If this instruction wants to use the post-incremented value, move it
1629 // after the post-inc and use its value instead of the PHI.
1630 Value *RewriteOp = NewPHI;
1631 if (User.isUseOfPostIncrementedValue) {
1634 // If this user is in the loop, make sure it is the last thing in the
1635 // loop to ensure it is dominated by the increment.
1636 if (L->contains(User.Inst->getParent()))
1637 User.Inst->moveBefore(LatchBlock->getTerminator());
1639 if (RewriteOp->getType() != ReplacedTy) {
1640 Instruction::CastOps opcode = Instruction::Trunc;
1641 if (ReplacedTy->getPrimitiveSizeInBits() ==
1642 RewriteOp->getType()->getPrimitiveSizeInBits())
1643 opcode = Instruction::BitCast;
1644 RewriteOp = SCEVExpander::InsertCastOfTo(opcode, RewriteOp, ReplacedTy);
1647 SCEVHandle RewriteExpr = SE->getUnknown(RewriteOp);
1649 // If we had to insert new instructions for RewriteOp, we have to
1650 // consider that they may not have been able to end up immediately
1651 // next to RewriteOp, because non-PHI instructions may never precede
1652 // PHI instructions in a block. In this case, remember where the last
1653 // instruction was inserted so that if we're replacing a different
1654 // PHI node, we can use the later point to expand the final
1656 Instruction *NewBasePt = dyn_cast<Instruction>(RewriteOp);
1657 if (RewriteOp == NewPHI) NewBasePt = 0;
1659 // Clear the SCEVExpander's expression map so that we are guaranteed
1660 // to have the code emitted where we expect it.
1663 // If we are reusing the iv, then it must be multiplied by a constant
1664 // factor take advantage of addressing mode scale component.
1665 if (!isa<SCEVConstant>(RewriteFactor) ||
1666 !cast<SCEVConstant>(RewriteFactor)->isZero()) {
1667 // If we're reusing an IV with a nonzero base (currently this happens
1668 // only when all reuses are outside the loop) subtract that base here.
1669 // The base has been used to initialize the PHI node but we don't want
1671 if (!ReuseIV.Base->isZero())
1672 RewriteExpr = SE->getMinusSCEV(RewriteExpr, ReuseIV.Base);
1674 // Multiply old variable, with base removed, by new scale factor.
1675 RewriteExpr = SE->getMulExpr(RewriteFactor,
1678 // The common base is emitted in the loop preheader. But since we
1679 // are reusing an IV, it has not been used to initialize the PHI node.
1680 // Add it to the expression used to rewrite the uses.
1681 // When this use is outside the loop, we earlier subtracted the
1682 // common base, and are adding it back here. Use the same expression
1683 // as before, rather than CommonBaseV, so DAGCombiner will zap it.
1684 if (!isa<ConstantInt>(CommonBaseV) ||
1685 !cast<ConstantInt>(CommonBaseV)->isZero()) {
1686 if (L->contains(User.Inst->getParent()))
1687 RewriteExpr = SE->getAddExpr(RewriteExpr,
1688 SE->getUnknown(CommonBaseV));
1690 RewriteExpr = SE->getAddExpr(RewriteExpr, CommonExprs);
1694 // Now that we know what we need to do, insert code before User for the
1695 // immediate and any loop-variant expressions.
1696 if (!isa<ConstantInt>(BaseV) || !cast<ConstantInt>(BaseV)->isZero())
1697 // Add BaseV to the PHI value if needed.
1698 RewriteExpr = SE->getAddExpr(RewriteExpr, SE->getUnknown(BaseV));
1700 User.RewriteInstructionToUseNewBase(RewriteExpr, NewBasePt,
1704 // Mark old value we replaced as possibly dead, so that it is eliminated
1705 // if we just replaced the last use of that value.
1706 DeadInsts.push_back(cast<Instruction>(User.OperandValToReplace));
1708 UsersToProcess.pop_back();
1711 // If there are any more users to process with the same base, process them
1712 // now. We sorted by base above, so we just have to check the last elt.
1713 } while (!UsersToProcess.empty() && UsersToProcess.back().Base == Base);
1714 // TODO: Next, find out which base index is the most common, pull it out.
1717 // IMPORTANT TODO: Figure out how to partition the IV's with this stride, but
1718 // different starting values, into different PHIs.
1721 /// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
1722 /// set the IV user and stride information and return true, otherwise return
1724 bool LoopStrengthReduce::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse,
1725 const SCEVHandle *&CondStride) {
1726 for (unsigned Stride = 0, e = StrideOrder.size(); Stride != e && !CondUse;
1728 std::map<SCEVHandle, IVUsersOfOneStride>::iterator SI =
1729 IVUsesByStride.find(StrideOrder[Stride]);
1730 assert(SI != IVUsesByStride.end() && "Stride doesn't exist!");
1732 for (std::vector<IVStrideUse>::iterator UI = SI->second.Users.begin(),
1733 E = SI->second.Users.end(); UI != E; ++UI)
1734 if (UI->User == Cond) {
1735 // NOTE: we could handle setcc instructions with multiple uses here, but
1736 // InstCombine does it as well for simple uses, it's not clear that it
1737 // occurs enough in real life to handle.
1739 CondStride = &SI->first;
1747 // Constant strides come first which in turns are sorted by their absolute
1748 // values. If absolute values are the same, then positive strides comes first.
1750 // 4, -1, X, 1, 2 ==> 1, -1, 2, 4, X
1751 struct StrideCompare {
1752 bool operator()(const SCEVHandle &LHS, const SCEVHandle &RHS) {
1753 SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS);
1754 SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS);
1756 int64_t LV = LHSC->getValue()->getSExtValue();
1757 int64_t RV = RHSC->getValue()->getSExtValue();
1758 uint64_t ALV = (LV < 0) ? -LV : LV;
1759 uint64_t ARV = (RV < 0) ? -RV : RV;
1765 return (LHSC && !RHSC);
1770 /// ChangeCompareStride - If a loop termination compare instruction is the
1771 /// only use of its stride, and the compaison is against a constant value,
1772 /// try eliminate the stride by moving the compare instruction to another
1773 /// stride and change its constant operand accordingly. e.g.
1779 /// if (v2 < 10) goto loop
1784 /// if (v1 < 30) goto loop
1785 ICmpInst *LoopStrengthReduce::ChangeCompareStride(Loop *L, ICmpInst *Cond,
1786 IVStrideUse* &CondUse,
1787 const SCEVHandle* &CondStride) {
1788 if (StrideOrder.size() < 2 ||
1789 IVUsesByStride[*CondStride].Users.size() != 1)
1791 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*CondStride);
1792 if (!SC) return Cond;
1793 ConstantInt *C = dyn_cast<ConstantInt>(Cond->getOperand(1));
1794 if (!C) return Cond;
1796 ICmpInst::Predicate Predicate = Cond->getPredicate();
1797 int64_t CmpSSInt = SC->getValue()->getSExtValue();
1798 int64_t CmpVal = C->getValue().getSExtValue();
1799 unsigned BitWidth = C->getValue().getBitWidth();
1800 uint64_t SignBit = 1ULL << (BitWidth-1);
1801 const Type *CmpTy = C->getType();
1802 const Type *NewCmpTy = NULL;
1803 unsigned TyBits = CmpTy->getPrimitiveSizeInBits();
1804 unsigned NewTyBits = 0;
1805 int64_t NewCmpVal = CmpVal;
1806 SCEVHandle *NewStride = NULL;
1807 Value *NewIncV = NULL;
1810 // Check stride constant and the comparision constant signs to detect
1812 if ((CmpVal & SignBit) != (CmpSSInt & SignBit))
1815 // Look for a suitable stride / iv as replacement.
1816 std::stable_sort(StrideOrder.begin(), StrideOrder.end(), StrideCompare());
1817 for (unsigned i = 0, e = StrideOrder.size(); i != e; ++i) {
1818 std::map<SCEVHandle, IVUsersOfOneStride>::iterator SI =
1819 IVUsesByStride.find(StrideOrder[i]);
1820 if (!isa<SCEVConstant>(SI->first))
1822 int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
1823 if (abs(SSInt) <= abs(CmpSSInt) || (SSInt % CmpSSInt) != 0)
1826 Scale = SSInt / CmpSSInt;
1827 NewCmpVal = CmpVal * Scale;
1828 APInt Mul = APInt(BitWidth, NewCmpVal);
1829 // Check for overflow.
1830 if (Mul.getSExtValue() != NewCmpVal) {
1835 // Watch out for overflow.
1836 if (ICmpInst::isSignedPredicate(Predicate) &&
1837 (CmpVal & SignBit) != (NewCmpVal & SignBit))
1840 if (NewCmpVal != CmpVal) {
1841 // Pick the best iv to use trying to avoid a cast.
1843 for (std::vector<IVStrideUse>::iterator UI = SI->second.Users.begin(),
1844 E = SI->second.Users.end(); UI != E; ++UI) {
1845 NewIncV = UI->OperandValToReplace;
1846 if (NewIncV->getType() == CmpTy)
1854 NewCmpTy = NewIncV->getType();
1855 NewTyBits = isa<PointerType>(NewCmpTy)
1856 ? UIntPtrTy->getPrimitiveSizeInBits()
1857 : NewCmpTy->getPrimitiveSizeInBits();
1858 if (RequiresTypeConversion(NewCmpTy, CmpTy)) {
1859 // Check if it is possible to rewrite it using
1860 // an iv / stride of a smaller integer type.
1861 bool TruncOk = false;
1862 if (NewCmpTy->isInteger()) {
1863 unsigned Bits = NewTyBits;
1864 if (ICmpInst::isSignedPredicate(Predicate))
1866 uint64_t Mask = (1ULL << Bits) - 1;
1867 if (((uint64_t)NewCmpVal & Mask) == (uint64_t)NewCmpVal)
1876 // Don't rewrite if use offset is non-constant and the new type is
1877 // of a different type.
1878 // FIXME: too conservative?
1879 if (NewTyBits != TyBits && !isa<SCEVConstant>(CondUse->Offset)) {
1884 bool AllUsesAreAddresses = true;
1885 bool AllUsesAreOutsideLoop = true;
1886 std::vector<BasedUser> UsersToProcess;
1887 SCEVHandle CommonExprs = CollectIVUsers(SI->first, SI->second, L,
1888 AllUsesAreAddresses,
1889 AllUsesAreOutsideLoop,
1891 // Avoid rewriting the compare instruction with an iv of new stride
1892 // if it's likely the new stride uses will be rewritten using the
1893 if (AllUsesAreAddresses &&
1894 ValidStride(!CommonExprs->isZero(), Scale, UsersToProcess)) {
1899 // If scale is negative, use swapped predicate unless it's testing
1901 if (Scale < 0 && !Cond->isEquality())
1902 Predicate = ICmpInst::getSwappedPredicate(Predicate);
1904 NewStride = &StrideOrder[i];
1909 // Forgo this transformation if it the increment happens to be
1910 // unfortunately positioned after the condition, and the condition
1911 // has multiple uses which prevent it from being moved immediately
1912 // before the branch. See
1913 // test/Transforms/LoopStrengthReduce/change-compare-stride-trickiness-*.ll
1914 // for an example of this situation.
1915 if (!Cond->hasOneUse()) {
1916 for (BasicBlock::iterator I = Cond, E = Cond->getParent()->end();
1922 if (NewCmpVal != CmpVal) {
1923 // Create a new compare instruction using new stride / iv.
1924 ICmpInst *OldCond = Cond;
1926 if (!isa<PointerType>(NewCmpTy))
1927 RHS = ConstantInt::get(NewCmpTy, NewCmpVal);
1929 RHS = ConstantInt::get(UIntPtrTy, NewCmpVal);
1930 RHS = SCEVExpander::InsertCastOfTo(Instruction::IntToPtr, RHS, NewCmpTy);
1932 // Insert new compare instruction.
1933 Cond = new ICmpInst(Predicate, NewIncV, RHS,
1934 L->getHeader()->getName() + ".termcond",
1937 // Remove the old compare instruction. The old indvar is probably dead too.
1938 DeadInsts.push_back(cast<Instruction>(CondUse->OperandValToReplace));
1939 SE->deleteValueFromRecords(OldCond);
1940 OldCond->replaceAllUsesWith(Cond);
1941 OldCond->eraseFromParent();
1943 IVUsesByStride[*CondStride].Users.pop_back();
1944 SCEVHandle NewOffset = TyBits == NewTyBits
1945 ? SE->getMulExpr(CondUse->Offset,
1946 SE->getConstant(ConstantInt::get(CmpTy, Scale)))
1947 : SE->getConstant(ConstantInt::get(NewCmpTy,
1948 cast<SCEVConstant>(CondUse->Offset)->getValue()->getSExtValue()*Scale));
1949 IVUsesByStride[*NewStride].addUser(NewOffset, Cond, NewIncV);
1950 CondUse = &IVUsesByStride[*NewStride].Users.back();
1951 CondStride = NewStride;
1958 /// OptimizeSMax - Rewrite the loop's terminating condition if it uses
1959 /// an smax computation.
1961 /// This is a narrow solution to a specific, but acute, problem. For loops
1967 /// } while (++i < n);
1969 /// where the comparison is signed, the trip count isn't just 'n', because
1970 /// 'n' could be negative. And unfortunately this can come up even for loops
1971 /// where the user didn't use a C do-while loop. For example, seemingly
1972 /// well-behaved top-test loops will commonly be lowered like this:
1978 /// } while (++i < n);
1981 /// and then it's possible for subsequent optimization to obscure the if
1982 /// test in such a way that indvars can't find it.
1984 /// When indvars can't find the if test in loops like this, it creates a
1985 /// signed-max expression, which allows it to give the loop a canonical
1986 /// induction variable:
1989 /// smax = n < 1 ? 1 : n;
1992 /// } while (++i != smax);
1994 /// Canonical induction variables are necessary because the loop passes
1995 /// are designed around them. The most obvious example of this is the
1996 /// LoopInfo analysis, which doesn't remember trip count values. It
1997 /// expects to be able to rediscover the trip count each time it is
1998 /// needed, and it does this using a simple analyis that only succeeds if
1999 /// the loop has a canonical induction variable.
2001 /// However, when it comes time to generate code, the maximum operation
2002 /// can be quite costly, especially if it's inside of an outer loop.
2004 /// This function solves this problem by detecting this type of loop and
2005 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2006 /// the instructions for the maximum computation.
2008 ICmpInst *LoopStrengthReduce::OptimizeSMax(Loop *L, ICmpInst *Cond,
2009 IVStrideUse* &CondUse) {
2010 // Check that the loop matches the pattern we're looking for.
2011 if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2012 Cond->getPredicate() != CmpInst::ICMP_NE)
2015 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2016 if (!Sel || !Sel->hasOneUse()) return Cond;
2018 SCEVHandle IterationCount = SE->getIterationCount(L);
2019 if (isa<SCEVCouldNotCompute>(IterationCount))
2021 SCEVHandle One = SE->getIntegerSCEV(1, IterationCount->getType());
2023 // Adjust for an annoying getIterationCount quirk.
2024 IterationCount = SE->getAddExpr(IterationCount, One);
2026 // Check for a max calculation that matches the pattern.
2027 SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(IterationCount);
2028 if (!SMax || SMax != SE->getSCEV(Sel)) return Cond;
2030 SCEVHandle SMaxLHS = SMax->getOperand(0);
2031 SCEVHandle SMaxRHS = SMax->getOperand(1);
2032 if (!SMaxLHS || SMaxLHS != One) return Cond;
2034 // Check the relevant induction variable for conformance to
2036 SCEVHandle IV = SE->getSCEV(Cond->getOperand(0));
2037 SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2038 if (!AR || !AR->isAffine() ||
2039 AR->getStart() != One ||
2040 AR->getStepRecurrence(*SE) != One)
2043 // Check the right operand of the select, and remember it, as it will
2044 // be used in the new comparison instruction.
2046 if (SE->getSCEV(Sel->getOperand(1)) == SMaxRHS)
2047 NewRHS = Sel->getOperand(1);
2048 else if (SE->getSCEV(Sel->getOperand(2)) == SMaxRHS)
2049 NewRHS = Sel->getOperand(2);
2050 if (!NewRHS) return Cond;
2052 // Ok, everything looks ok to change the condition into an SLT or SGE and
2053 // delete the max calculation.
2055 new ICmpInst(Cond->getPredicate() == CmpInst::ICMP_NE ?
2058 Cond->getOperand(0), NewRHS, "scmp", Cond);
2060 // Delete the max calculation instructions.
2061 SE->deleteValueFromRecords(Cond);
2062 Cond->replaceAllUsesWith(NewCond);
2063 Cond->eraseFromParent();
2064 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2065 SE->deleteValueFromRecords(Sel);
2066 Sel->eraseFromParent();
2067 if (Cmp->use_empty()) {
2068 SE->deleteValueFromRecords(Cmp);
2069 Cmp->eraseFromParent();
2071 CondUse->User = NewCond;
2075 /// OptimizeShadowIV - If IV is used in a int-to-float cast
2076 /// inside the loop then try to eliminate the cast opeation.
2077 void LoopStrengthReduce::OptimizeShadowIV(Loop *L) {
2079 SCEVHandle IterationCount = SE->getIterationCount(L);
2080 if (isa<SCEVCouldNotCompute>(IterationCount))
2083 for (unsigned Stride = 0, e = StrideOrder.size(); Stride != e;
2085 std::map<SCEVHandle, IVUsersOfOneStride>::iterator SI =
2086 IVUsesByStride.find(StrideOrder[Stride]);
2087 assert(SI != IVUsesByStride.end() && "Stride doesn't exist!");
2088 if (!isa<SCEVConstant>(SI->first))
2091 for (std::vector<IVStrideUse>::iterator UI = SI->second.Users.begin(),
2092 E = SI->second.Users.end(); UI != E; /* empty */) {
2093 std::vector<IVStrideUse>::iterator CandidateUI = UI;
2095 Instruction *ShadowUse = CandidateUI->User;
2096 const Type *DestTy = NULL;
2098 /* If shadow use is a int->float cast then insert a second IV
2099 to eliminate this cast.
2101 for (unsigned i = 0; i < n; ++i)
2107 for (unsigned i = 0; i < n; ++i, ++d)
2110 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->User))
2111 DestTy = UCast->getDestTy();
2112 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->User))
2113 DestTy = SCast->getDestTy();
2114 if (!DestTy) continue;
2117 /* If target does not support DestTy natively then do not apply
2118 this transformation. */
2119 MVT DVT = TLI->getValueType(DestTy);
2120 if (!TLI->isTypeLegal(DVT)) continue;
2123 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2125 if (PH->getNumIncomingValues() != 2) continue;
2127 const Type *SrcTy = PH->getType();
2128 int Mantissa = DestTy->getFPMantissaWidth();
2129 if (Mantissa == -1) continue;
2130 if ((int)TD->getTypeSizeInBits(SrcTy) > Mantissa)
2133 unsigned Entry, Latch;
2134 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2142 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2143 if (!Init) continue;
2144 ConstantFP *NewInit = ConstantFP::get(DestTy, Init->getZExtValue());
2146 BinaryOperator *Incr =
2147 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2148 if (!Incr) continue;
2149 if (Incr->getOpcode() != Instruction::Add
2150 && Incr->getOpcode() != Instruction::Sub)
2153 /* Initialize new IV, double d = 0.0 in above example. */
2154 ConstantInt *C = NULL;
2155 if (Incr->getOperand(0) == PH)
2156 C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2157 else if (Incr->getOperand(1) == PH)
2158 C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2164 /* Add new PHINode. */
2165 PHINode *NewPH = PHINode::Create(DestTy, "IV.S.", PH);
2167 /* create new increment. '++d' in above example. */
2168 ConstantFP *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2169 BinaryOperator *NewIncr =
2170 BinaryOperator::Create(Incr->getOpcode(),
2171 NewPH, CFP, "IV.S.next.", Incr);
2173 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2174 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2176 /* Remove cast operation */
2177 SE->deleteValueFromRecords(ShadowUse);
2178 ShadowUse->replaceAllUsesWith(NewPH);
2179 ShadowUse->eraseFromParent();
2180 SI->second.Users.erase(CandidateUI);
2187 // OptimizeIndvars - Now that IVUsesByStride is set up with all of the indvar
2188 // uses in the loop, look to see if we can eliminate some, in favor of using
2189 // common indvars for the different uses.
2190 void LoopStrengthReduce::OptimizeIndvars(Loop *L) {
2191 // TODO: implement optzns here.
2193 OptimizeShadowIV(L);
2195 // Finally, get the terminating condition for the loop if possible. If we
2196 // can, we want to change it to use a post-incremented version of its
2197 // induction variable, to allow coalescing the live ranges for the IV into
2198 // one register value.
2199 PHINode *SomePHI = cast<PHINode>(L->getHeader()->begin());
2200 BasicBlock *Preheader = L->getLoopPreheader();
2201 BasicBlock *LatchBlock =
2202 SomePHI->getIncomingBlock(SomePHI->getIncomingBlock(0) == Preheader);
2203 BranchInst *TermBr = dyn_cast<BranchInst>(LatchBlock->getTerminator());
2204 if (!TermBr || TermBr->isUnconditional() ||
2205 !isa<ICmpInst>(TermBr->getCondition()))
2207 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2209 // Search IVUsesByStride to find Cond's IVUse if there is one.
2210 IVStrideUse *CondUse = 0;
2211 const SCEVHandle *CondStride = 0;
2213 if (!FindIVUserForCond(Cond, CondUse, CondStride))
2214 return; // setcc doesn't use the IV.
2216 // If the trip count is computed in terms of an smax (due to ScalarEvolution
2217 // being unable to find a sufficient guard, for example), change the loop
2218 // comparison to use SLT instead of NE.
2219 Cond = OptimizeSMax(L, Cond, CondUse);
2221 // If possible, change stride and operands of the compare instruction to
2222 // eliminate one stride.
2223 Cond = ChangeCompareStride(L, Cond, CondUse, CondStride);
2225 // It's possible for the setcc instruction to be anywhere in the loop, and
2226 // possible for it to have multiple users. If it is not immediately before
2227 // the latch block branch, move it.
2228 if (&*++BasicBlock::iterator(Cond) != (Instruction*)TermBr) {
2229 if (Cond->hasOneUse()) { // Condition has a single use, just move it.
2230 Cond->moveBefore(TermBr);
2232 // Otherwise, clone the terminating condition and insert into the loopend.
2233 Cond = cast<ICmpInst>(Cond->clone());
2234 Cond->setName(L->getHeader()->getName() + ".termcond");
2235 LatchBlock->getInstList().insert(TermBr, Cond);
2237 // Clone the IVUse, as the old use still exists!
2238 IVUsesByStride[*CondStride].addUser(CondUse->Offset, Cond,
2239 CondUse->OperandValToReplace);
2240 CondUse = &IVUsesByStride[*CondStride].Users.back();
2244 // If we get to here, we know that we can transform the setcc instruction to
2245 // use the post-incremented version of the IV, allowing us to coalesce the
2246 // live ranges for the IV correctly.
2247 CondUse->Offset = SE->getMinusSCEV(CondUse->Offset, *CondStride);
2248 CondUse->isUseOfPostIncrementedValue = true;
2252 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager &LPM) {
2254 LI = &getAnalysis<LoopInfo>();
2255 DT = &getAnalysis<DominatorTree>();
2256 SE = &getAnalysis<ScalarEvolution>();
2257 TD = &getAnalysis<TargetData>();
2258 UIntPtrTy = TD->getIntPtrType();
2261 // Find all uses of induction variables in this loop, and categorize
2262 // them by stride. Start by finding all of the PHI nodes in the header for
2263 // this loop. If they are induction variables, inspect their uses.
2264 SmallPtrSet<Instruction*,16> Processed; // Don't reprocess instructions.
2265 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I)
2266 AddUsersIfInteresting(I, L, Processed);
2268 if (!IVUsesByStride.empty()) {
2269 // Optimize induction variables. Some indvar uses can be transformed to use
2270 // strides that will be needed for other purposes. A common example of this
2271 // is the exit test for the loop, which can often be rewritten to use the
2272 // computation of some other indvar to decide when to terminate the loop.
2275 // FIXME: We can widen subreg IV's here for RISC targets. e.g. instead of
2276 // doing computation in byte values, promote to 32-bit values if safe.
2278 // FIXME: Attempt to reuse values across multiple IV's. In particular, we
2279 // could have something like "for(i) { foo(i*8); bar(i*16) }", which should
2280 // be codegened as "for (j = 0;; j+=8) { foo(j); bar(j+j); }" on X86/PPC.
2281 // Need to be careful that IV's are all the same type. Only works for
2282 // intptr_t indvars.
2284 // If we only have one stride, we can more aggressively eliminate some
2286 bool HasOneStride = IVUsesByStride.size() == 1;
2289 DOUT << "\nLSR on ";
2293 // IVsByStride keeps IVs for one particular loop.
2294 assert(IVsByStride.empty() && "Stale entries in IVsByStride?");
2296 // Sort the StrideOrder so we process larger strides first.
2297 std::stable_sort(StrideOrder.begin(), StrideOrder.end(), StrideCompare());
2299 // Note: this processes each stride/type pair individually. All users
2300 // passed into StrengthReduceStridedIVUsers have the same type AND stride.
2301 // Also, note that we iterate over IVUsesByStride indirectly by using
2302 // StrideOrder. This extra layer of indirection makes the ordering of
2303 // strides deterministic - not dependent on map order.
2304 for (unsigned Stride = 0, e = StrideOrder.size(); Stride != e; ++Stride) {
2305 std::map<SCEVHandle, IVUsersOfOneStride>::iterator SI =
2306 IVUsesByStride.find(StrideOrder[Stride]);
2307 assert(SI != IVUsesByStride.end() && "Stride doesn't exist!");
2308 StrengthReduceStridedIVUsers(SI->first, SI->second, L, HasOneStride);
2312 // We're done analyzing this loop; release all the state we built up for it.
2313 CastedPointers.clear();
2314 IVUsesByStride.clear();
2315 IVsByStride.clear();
2316 StrideOrder.clear();
2317 for (unsigned i=0; i<GEPlist.size(); i++)
2318 SE->deleteValueFromRecords(GEPlist[i]);
2321 // Clean up after ourselves
2322 if (!DeadInsts.empty()) {
2323 DeleteTriviallyDeadInstructions();
2325 BasicBlock::iterator I = L->getHeader()->begin();
2326 while (PHINode *PN = dyn_cast<PHINode>(I++)) {
2327 // At this point, we know that we have killed one or more IV users.
2328 // It is worth checking to see if the cannonical indvar is also
2329 // dead, so that we can remove it as well.
2331 // We can remove a PHI if it is on a cycle in the def-use graph
2332 // where each node in the cycle has degree one, i.e. only one use,
2333 // and is an instruction with no side effects.
2335 // FIXME: this needs to eliminate an induction variable even if it's being
2336 // compared against some value to decide loop termination.
2337 if (!PN->hasOneUse())
2340 SmallPtrSet<PHINode *, 4> PHIs;
2341 for (Instruction *J = dyn_cast<Instruction>(*PN->use_begin());
2342 J && J->hasOneUse() && !J->mayWriteToMemory();
2343 J = dyn_cast<Instruction>(*J->use_begin())) {
2344 // If we find the original PHI, we've discovered a cycle.
2346 // Break the cycle and mark the PHI for deletion.
2347 SE->deleteValueFromRecords(PN);
2348 PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
2349 DeadInsts.push_back(PN);
2353 // If we find a PHI more than once, we're on a cycle that
2354 // won't prove fruitful.
2355 if (isa<PHINode>(J) && !PHIs.insert(cast<PHINode>(J)))
2359 DeleteTriviallyDeadInstructions();