1 //===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass transforms loops that contain branches on loop-invariant conditions
11 // to have multiple loops. For example, it turns the left into the right code:
20 // This can increase the size of the code exponentially (doubling it every time
21 // a loop is unswitched) so we only unswitch if the resultant code will be
22 // smaller than a threshold.
24 // This pass expects LICM to be run before it to hoist invariant conditions out
25 // of the loop, to make the unswitching opportunity obvious.
27 //===----------------------------------------------------------------------===//
29 #define DEBUG_TYPE "loop-unswitch"
30 #include "llvm/Transforms/Scalar.h"
31 #include "llvm/Constants.h"
32 #include "llvm/DerivedTypes.h"
33 #include "llvm/Function.h"
34 #include "llvm/Instructions.h"
35 #include "llvm/Analysis/ConstantFolding.h"
36 #include "llvm/Analysis/LoopInfo.h"
37 #include "llvm/Analysis/LoopPass.h"
38 #include "llvm/Analysis/Dominators.h"
39 #include "llvm/Transforms/Utils/Cloning.h"
40 #include "llvm/Transforms/Utils/Local.h"
41 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
42 #include "llvm/ADT/Statistic.h"
43 #include "llvm/ADT/SmallPtrSet.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Compiler.h"
46 #include "llvm/Support/Debug.h"
51 STATISTIC(NumBranches, "Number of branches unswitched");
52 STATISTIC(NumSwitches, "Number of switches unswitched");
53 STATISTIC(NumSelects , "Number of selects unswitched");
54 STATISTIC(NumTrivial , "Number of unswitches that are trivial");
55 STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
57 static cl::opt<unsigned>
58 Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
59 cl::init(10), cl::Hidden);
62 class VISIBILITY_HIDDEN LoopUnswitch : public LoopPass {
63 LoopInfo *LI; // Loop information
66 // LoopProcessWorklist - Used to check if second loop needs processing
67 // after RewriteLoopBodyWithConditionConstant rewrites first loop.
68 std::vector<Loop*> LoopProcessWorklist;
69 SmallPtrSet<Value *,8> UnswitchedVals;
75 DominanceFrontier *DF;
77 BasicBlock *loopHeader;
78 BasicBlock *loopPreheader;
80 /// LoopDF - Loop's dominance frontier. This set is a collection of
81 /// loop exiting blocks' DF member blocks. However this does set does not
82 /// includes basic blocks that are inside loop.
83 SmallPtrSet<BasicBlock *, 8> LoopDF;
85 /// OrigLoopExitMap - This is used to map loop exiting block with
86 /// corresponding loop exit block, before updating CFG.
87 DenseMap<BasicBlock *, BasicBlock *> OrigLoopExitMap;
89 // LoopBlocks contains all of the basic blocks of the loop, including the
90 // preheader of the loop, the body of the loop, and the exit blocks of the
91 // loop, in that order.
92 std::vector<BasicBlock*> LoopBlocks;
93 // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
94 std::vector<BasicBlock*> NewBlocks;
96 static char ID; // Pass ID, replacement for typeid
97 explicit LoopUnswitch(bool Os = false) :
98 LoopPass((intptr_t)&ID), OptimizeForSize(Os), redoLoop(false),
99 currentLoop(NULL), DF(NULL), DT(NULL), loopHeader(NULL),
100 loopPreheader(NULL) {}
102 bool runOnLoop(Loop *L, LPPassManager &LPM);
103 bool processCurrentLoop();
105 /// This transformation requires natural loop information & requires that
106 /// loop preheaders be inserted into the CFG...
108 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
109 AU.addRequiredID(LoopSimplifyID);
110 AU.addPreservedID(LoopSimplifyID);
111 AU.addRequired<LoopInfo>();
112 AU.addPreserved<LoopInfo>();
113 AU.addRequiredID(LCSSAID);
114 AU.addPreservedID(LCSSAID);
115 // FIXME: Loop Unswitch does not preserve dominator info in all cases.
116 AU.addPreserved<DominatorTree>();
117 AU.addPreserved<DominanceFrontier>();
122 /// RemoveLoopFromWorklist - If the specified loop is on the loop worklist,
124 void RemoveLoopFromWorklist(Loop *L) {
125 std::vector<Loop*>::iterator I = std::find(LoopProcessWorklist.begin(),
126 LoopProcessWorklist.end(), L);
127 if (I != LoopProcessWorklist.end())
128 LoopProcessWorklist.erase(I);
131 void initLoopData() {
132 loopHeader = currentLoop->getHeader();
133 loopPreheader = currentLoop->getLoopPreheader();
136 /// Split all of the edges from inside the loop to their exit blocks.
137 /// Update the appropriate Phi nodes as we do so.
138 void SplitExitEdges(Loop *L, const SmallVector<BasicBlock *, 8> &ExitBlocks,
139 SmallVector<BasicBlock *, 8> &MiddleBlocks);
141 /// If BB's dominance frontier has a member that is not part of loop L then
142 /// remove it. Add NewDFMember in BB's dominance frontier.
143 void ReplaceLoopExternalDFMember(Loop *L, BasicBlock *BB,
144 BasicBlock *NewDFMember);
146 bool UnswitchIfProfitable(Value *LoopCond, Constant *Val);
147 unsigned getLoopUnswitchCost(Value *LIC);
148 void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
149 BasicBlock *ExitBlock);
150 void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L);
152 void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
153 Constant *Val, bool isEqual);
155 void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
156 BasicBlock *TrueDest,
157 BasicBlock *FalseDest,
158 Instruction *InsertPt);
160 void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L);
161 void RemoveBlockIfDead(BasicBlock *BB,
162 std::vector<Instruction*> &Worklist, Loop *l);
163 void RemoveLoopFromHierarchy(Loop *L);
164 bool IsTrivialUnswitchCondition(Value *Cond, Constant **Val = 0,
165 BasicBlock **LoopExit = 0);
169 char LoopUnswitch::ID = 0;
170 static RegisterPass<LoopUnswitch> X("loop-unswitch", "Unswitch loops");
172 LoopPass *llvm::createLoopUnswitchPass(bool Os) {
173 return new LoopUnswitch(Os);
176 /// FindLIVLoopCondition - Cond is a condition that occurs in L. If it is
177 /// invariant in the loop, or has an invariant piece, return the invariant.
178 /// Otherwise, return null.
179 static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) {
180 // Constants should be folded, not unswitched on!
181 if (isa<Constant>(Cond)) return false;
183 // TODO: Handle: br (VARIANT|INVARIANT).
184 // TODO: Hoist simple expressions out of loops.
185 if (L->isLoopInvariant(Cond)) return Cond;
187 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
188 if (BO->getOpcode() == Instruction::And ||
189 BO->getOpcode() == Instruction::Or) {
190 // If either the left or right side is invariant, we can unswitch on this,
191 // which will cause the branch to go away in one loop and the condition to
192 // simplify in the other one.
193 if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed))
195 if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed))
202 bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
203 LI = &getAnalysis<LoopInfo>();
205 DF = getAnalysisToUpdate<DominanceFrontier>();
206 DT = getAnalysisToUpdate<DominatorTree>();
208 bool Changed = false;
210 assert(currentLoop->isLCSSAForm());
212 Changed |= processCurrentLoop();
218 /// processCurrentLoop - Do actual work and unswitch loop if possible
220 bool LoopUnswitch::processCurrentLoop() {
221 bool Changed = false;
223 // Loop over all of the basic blocks in the loop. If we find an interior
224 // block that is branching on a loop-invariant condition, we can unswitch this
226 for (Loop::block_iterator I = currentLoop->block_begin(),
227 E = currentLoop->block_end();
229 TerminatorInst *TI = (*I)->getTerminator();
230 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
231 // If this isn't branching on an invariant condition, we can't unswitch
233 if (BI->isConditional()) {
234 // See if this, or some part of it, is loop invariant. If so, we can
235 // unswitch on it if we desire.
236 Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
237 currentLoop, Changed);
238 if (LoopCond && UnswitchIfProfitable(LoopCond,
239 ConstantInt::getTrue())) {
244 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
245 Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
246 currentLoop, Changed);
247 if (LoopCond && SI->getNumCases() > 1) {
248 // Find a value to unswitch on:
249 // FIXME: this should chose the most expensive case!
250 Constant *UnswitchVal = SI->getCaseValue(1);
251 // Do not process same value again and again.
252 if (!UnswitchedVals.insert(UnswitchVal))
255 if (UnswitchIfProfitable(LoopCond, UnswitchVal)) {
262 // Scan the instructions to check for unswitchable values.
263 for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
265 if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
266 Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
267 currentLoop, Changed);
268 if (LoopCond && UnswitchIfProfitable(LoopCond,
269 ConstantInt::getTrue())) {
278 /// isTrivialLoopExitBlock - Check to see if all paths from BB either:
279 /// 1. Exit the loop with no side effects.
280 /// 2. Branch to the latch block with no side-effects.
282 /// If these conditions are true, we return true and set ExitBB to the block we
285 static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
287 std::set<BasicBlock*> &Visited) {
288 if (!Visited.insert(BB).second) {
289 // Already visited and Ok, end of recursion.
291 } else if (!L->contains(BB)) {
292 // Otherwise, this is a loop exit, this is fine so long as this is the
294 if (ExitBB != 0) return false;
299 // Otherwise, this is an unvisited intra-loop node. Check all successors.
300 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
301 // Check to see if the successor is a trivial loop exit.
302 if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
306 // Okay, everything after this looks good, check to make sure that this block
307 // doesn't include any side effects.
308 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
309 if (I->mayWriteToMemory())
315 /// isTrivialLoopExitBlock - Return true if the specified block unconditionally
316 /// leads to an exit from the specified loop, and has no side-effects in the
317 /// process. If so, return the block that is exited to, otherwise return null.
318 static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
319 std::set<BasicBlock*> Visited;
320 Visited.insert(L->getHeader()); // Branches to header are ok.
321 BasicBlock *ExitBB = 0;
322 if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
327 /// IsTrivialUnswitchCondition - Check to see if this unswitch condition is
328 /// trivial: that is, that the condition controls whether or not the loop does
329 /// anything at all. If this is a trivial condition, unswitching produces no
330 /// code duplications (equivalently, it produces a simpler loop and a new empty
331 /// loop, which gets deleted).
333 /// If this is a trivial condition, return true, otherwise return false. When
334 /// returning true, this sets Cond and Val to the condition that controls the
335 /// trivial condition: when Cond dynamically equals Val, the loop is known to
336 /// exit. Finally, this sets LoopExit to the BB that the loop exits to when
339 bool LoopUnswitch::IsTrivialUnswitchCondition(Value *Cond, Constant **Val,
340 BasicBlock **LoopExit) {
341 BasicBlock *Header = currentLoop->getHeader();
342 TerminatorInst *HeaderTerm = Header->getTerminator();
344 BasicBlock *LoopExitBB = 0;
345 if (BranchInst *BI = dyn_cast<BranchInst>(HeaderTerm)) {
346 // If the header block doesn't end with a conditional branch on Cond, we
348 if (!BI->isConditional() || BI->getCondition() != Cond)
351 // Check to see if a successor of the branch is guaranteed to go to the
352 // latch block or exit through a one exit block without having any
353 // side-effects. If so, determine the value of Cond that causes it to do
355 if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
356 BI->getSuccessor(0)))) {
357 if (Val) *Val = ConstantInt::getTrue();
358 } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
359 BI->getSuccessor(1)))) {
360 if (Val) *Val = ConstantInt::getFalse();
362 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(HeaderTerm)) {
363 // If this isn't a switch on Cond, we can't handle it.
364 if (SI->getCondition() != Cond) return false;
366 // Check to see if a successor of the switch is guaranteed to go to the
367 // latch block or exit through a one exit block without having any
368 // side-effects. If so, determine the value of Cond that causes it to do
369 // this. Note that we can't trivially unswitch on the default case.
370 for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
371 if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
372 SI->getSuccessor(i)))) {
373 // Okay, we found a trivial case, remember the value that is trivial.
374 if (Val) *Val = SI->getCaseValue(i);
379 // If we didn't find a single unique LoopExit block, or if the loop exit block
380 // contains phi nodes, this isn't trivial.
381 if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
382 return false; // Can't handle this.
384 if (LoopExit) *LoopExit = LoopExitBB;
386 // We already know that nothing uses any scalar values defined inside of this
387 // loop. As such, we just have to check to see if this loop will execute any
388 // side-effecting instructions (e.g. stores, calls, volatile loads) in the
389 // part of the loop that the code *would* execute. We already checked the
390 // tail, check the header now.
391 for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I)
392 if (I->mayWriteToMemory())
397 /// getLoopUnswitchCost - Return the cost (code size growth) that will happen if
398 /// we choose to unswitch current loop on the specified value.
400 unsigned LoopUnswitch::getLoopUnswitchCost(Value *LIC) {
401 // If the condition is trivial, always unswitch. There is no code growth for
403 if (IsTrivialUnswitchCondition(LIC))
406 // FIXME: This is really overly conservative. However, more liberal
407 // estimations have thus far resulted in excessive unswitching, which is bad
408 // both in compile time and in code size. This should be replaced once
409 // someone figures out how a good estimation.
410 return currentLoop->getBlocks().size();
413 // FIXME: this is brain dead. It should take into consideration code
415 for (Loop::block_iterator I = currentLoop->block_begin(),
416 E = currentLoop->block_end();
419 // Do not include empty blocks in the cost calculation. This happen due to
420 // loop canonicalization and will be removed.
421 if (BB->begin() == BasicBlock::iterator(BB->getTerminator()))
424 // Count basic blocks.
431 /// UnswitchIfProfitable - We have found that we can unswitch currentLoop when
432 /// LoopCond == Val to simplify the loop. If we decide that this is profitable,
433 /// unswitch the loop, reprocess the pieces, then return true.
434 bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val){
435 // Check to see if it would be profitable to unswitch current loop.
436 unsigned Cost = getLoopUnswitchCost(LoopCond);
438 // Do not do non-trivial unswitch while optimizing for size.
439 if (Cost && OptimizeForSize)
442 if (Cost > Threshold) {
443 // FIXME: this should estimate growth by the amount of code shared by the
444 // resultant unswitched loops.
446 DOUT << "NOT unswitching loop %"
447 << currentLoop->getHeader()->getName() << ", cost too high: "
448 << currentLoop->getBlocks().size() << "\n";
455 BasicBlock *ExitBlock;
456 if (IsTrivialUnswitchCondition(LoopCond, &CondVal, &ExitBlock)) {
457 UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, ExitBlock);
459 UnswitchNontrivialCondition(LoopCond, Val, currentLoop);
462 // FIXME: Reconstruct dom info, because it is not preserved properly.
463 Function *F = loopHeader->getParent();
465 DT->runOnFunction(*F);
467 DF->runOnFunction(*F);
471 // RemapInstruction - Convert the instruction operands from referencing the
472 // current values into those specified by ValueMap.
474 static inline void RemapInstruction(Instruction *I,
475 DenseMap<const Value *, Value*> &ValueMap) {
476 for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
477 Value *Op = I->getOperand(op);
478 DenseMap<const Value *, Value*>::iterator It = ValueMap.find(Op);
479 if (It != ValueMap.end()) Op = It->second;
480 I->setOperand(op, Op);
484 // CloneDomInfo - NewBB is cloned from Orig basic block. Now clone Dominator
487 // If Orig block's immediate dominator is mapped in VM then use corresponding
488 // immediate dominator from the map. Otherwise Orig block's dominator is also
489 // NewBB's dominator.
491 // OrigPreheader is loop pre-header before this pass started
492 // updating CFG. NewPrehader is loops new pre-header. However, after CFG
493 // manipulation, loop L may not exist. So rely on input parameter NewPreheader.
494 static void CloneDomInfo(BasicBlock *NewBB, BasicBlock *Orig,
495 BasicBlock *NewPreheader, BasicBlock *OrigPreheader,
496 BasicBlock *OrigHeader,
497 DominatorTree *DT, DominanceFrontier *DF,
498 DenseMap<const Value*, Value*> &VM) {
500 // If NewBB alreay has found its place in domiantor tree then no need to do
502 if (DT->getNode(NewBB))
505 // If Orig does not have any immediate domiantor then its clone, NewBB, does
506 // not need any immediate dominator.
507 DomTreeNode *OrigNode = DT->getNode(Orig);
510 DomTreeNode *OrigIDomNode = OrigNode->getIDom();
514 BasicBlock *OrigIDom = NULL;
516 // If Orig is original loop header then its immediate dominator is
518 if (Orig == OrigHeader)
519 OrigIDom = NewPreheader;
521 // If Orig is new pre-header then its immediate dominator is
522 // original pre-header.
523 else if (Orig == NewPreheader)
524 OrigIDom = OrigPreheader;
526 // Otherwise ask DT to find Orig's immediate dominator.
528 OrigIDom = OrigIDomNode->getBlock();
530 // Initially use Orig's immediate dominator as NewBB's immediate dominator.
531 BasicBlock *NewIDom = OrigIDom;
532 DenseMap<const Value*, Value*>::iterator I = VM.find(OrigIDom);
534 NewIDom = cast<BasicBlock>(I->second);
536 // If NewIDom does not have corresponding dominatore tree node then
538 if (!DT->getNode(NewIDom))
539 CloneDomInfo(NewIDom, OrigIDom, NewPreheader, OrigPreheader,
540 OrigHeader, DT, DF, VM);
543 DT->addNewBlock(NewBB, NewIDom);
545 // Copy cloned dominance frontiner set
546 DominanceFrontier::DomSetType NewDFSet;
548 DominanceFrontier::iterator DFI = DF->find(Orig);
549 if ( DFI != DF->end()) {
550 DominanceFrontier::DomSetType S = DFI->second;
551 for (DominanceFrontier::DomSetType::iterator I = S.begin(), E = S.end();
554 DenseMap<const Value*, Value*>::iterator IDM = VM.find(BB);
556 NewDFSet.insert(cast<BasicBlock>(IDM->second));
561 DF->addBasicBlock(NewBB, NewDFSet);
565 /// CloneLoop - Recursively clone the specified loop and all of its children,
566 /// mapping the blocks with the specified map.
567 static Loop *CloneLoop(Loop *L, Loop *PL, DenseMap<const Value*, Value*> &VM,
568 LoopInfo *LI, LPPassManager *LPM) {
569 Loop *New = new Loop();
571 LPM->insertLoop(New, PL);
573 // Add all of the blocks in L to the new loop.
574 for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
576 if (LI->getLoopFor(*I) == L)
577 New->addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), LI->getBase());
579 // Add all of the subloops to the new loop.
580 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
581 CloneLoop(*I, New, VM, LI, LPM);
586 /// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values
587 /// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest. Insert the
588 /// code immediately before InsertPt.
589 void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
590 BasicBlock *TrueDest,
591 BasicBlock *FalseDest,
592 Instruction *InsertPt) {
593 // Insert a conditional branch on LIC to the two preheaders. The original
594 // code is the true version and the new code is the false version.
595 Value *BranchVal = LIC;
596 if (!isa<ConstantInt>(Val) || Val->getType() != Type::Int1Ty)
597 BranchVal = new ICmpInst(ICmpInst::ICMP_EQ, LIC, Val, "tmp", InsertPt);
598 else if (Val != ConstantInt::getTrue())
599 // We want to enter the new loop when the condition is true.
600 std::swap(TrueDest, FalseDest);
602 // Insert the new branch.
603 BranchInst::Create(TrueDest, FalseDest, BranchVal, InsertPt);
607 /// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable
608 /// condition in it (a cond branch from its header block to its latch block,
609 /// where the path through the loop that doesn't execute its body has no
610 /// side-effects), unswitch it. This doesn't involve any code duplication, just
611 /// moving the conditional branch outside of the loop and updating loop info.
612 void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond,
614 BasicBlock *ExitBlock) {
615 DOUT << "loop-unswitch: Trivial-Unswitch loop %"
616 << loopHeader->getName() << " [" << L->getBlocks().size()
617 << " blocks] in Function " << L->getHeader()->getParent()->getName()
618 << " on cond: " << *Val << " == " << *Cond << "\n";
620 // First step, split the preheader, so that we know that there is a safe place
621 // to insert the conditional branch. We will change loopPreheader to have a
622 // conditional branch on Cond.
623 BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, this);
625 // Now that we have a place to insert the conditional branch, create a place
626 // to branch to: this is the exit block out of the loop that we should
629 // Split this block now, so that the loop maintains its exit block, and so
630 // that the jump from the preheader can execute the contents of the exit block
631 // without actually branching to it (the exit block should be dominated by the
632 // loop header, not the preheader).
633 assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
634 BasicBlock *NewExit = SplitBlock(ExitBlock, ExitBlock->begin(), this);
636 // Okay, now we have a position to branch from and a position to branch to,
637 // insert the new conditional branch.
638 EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH,
639 loopPreheader->getTerminator());
641 DT->changeImmediateDominator(NewExit, loopPreheader);
642 DT->changeImmediateDominator(NewPH, loopPreheader);
646 // NewExit is now part of NewPH and Loop Header's dominance
648 DominanceFrontier::iterator DFI = DF->find(NewPH);
649 if (DFI != DF->end())
650 DF->addToFrontier(DFI, NewExit);
651 DFI = DF->find(loopHeader);
652 DF->addToFrontier(DFI, NewExit);
654 // ExitBlock does not have successors then NewExit is part of
655 // its dominance frontier.
656 if (succ_begin(ExitBlock) == succ_end(ExitBlock)) {
657 DFI = DF->find(ExitBlock);
658 DF->addToFrontier(DFI, NewExit);
661 LPM->deleteSimpleAnalysisValue(loopPreheader->getTerminator(), L);
662 loopPreheader->getTerminator()->eraseFromParent();
664 // We need to reprocess this loop, it could be unswitched again.
667 // Now that we know that the loop is never entered when this condition is a
668 // particular value, rewrite the loop with this info. We know that this will
669 // at least eliminate the old branch.
670 RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
674 /// ReplaceLoopExternalDFMember -
675 /// If BB's dominance frontier has a member that is not part of loop L then
676 /// remove it. Add NewDFMember in BB's dominance frontier.
677 void LoopUnswitch::ReplaceLoopExternalDFMember(Loop *L, BasicBlock *BB,
678 BasicBlock *NewDFMember) {
680 DominanceFrontier::iterator DFI = DF->find(BB);
681 if (DFI == DF->end())
684 DominanceFrontier::DomSetType &DFSet = DFI->second;
685 for (DominanceFrontier::DomSetType::iterator DI = DFSet.begin(),
686 DE = DFSet.end(); DI != DE;) {
687 BasicBlock *B = *DI++;
691 DF->removeFromFrontier(DFI, B);
695 DF->addToFrontier(DFI, NewDFMember);
698 /// SplitExitEdges - Split all of the edges from inside the loop to their exit
699 /// blocks. Update the appropriate Phi nodes as we do so.
700 void LoopUnswitch::SplitExitEdges(Loop *L,
701 const SmallVector<BasicBlock *, 8> &ExitBlocks,
702 SmallVector<BasicBlock *, 8> &MiddleBlocks) {
704 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
705 BasicBlock *ExitBlock = ExitBlocks[i];
706 std::vector<BasicBlock*> Preds(pred_begin(ExitBlock), pred_end(ExitBlock));
708 for (unsigned j = 0, e = Preds.size(); j != e; ++j) {
709 BasicBlock* MiddleBlock = SplitEdge(Preds[j], ExitBlock, this);
710 MiddleBlocks.push_back(MiddleBlock);
711 BasicBlock* StartBlock = Preds[j];
712 BasicBlock* EndBlock;
713 if (MiddleBlock->getSinglePredecessor() == ExitBlock) {
714 EndBlock = MiddleBlock;
715 MiddleBlock = EndBlock->getSinglePredecessor();;
717 EndBlock = ExitBlock;
720 OrigLoopExitMap[StartBlock] = EndBlock;
722 std::set<PHINode*> InsertedPHIs;
723 PHINode* OldLCSSA = 0;
724 for (BasicBlock::iterator I = EndBlock->begin();
725 (OldLCSSA = dyn_cast<PHINode>(I)); ++I) {
726 Value* OldValue = OldLCSSA->getIncomingValueForBlock(MiddleBlock);
727 PHINode* NewLCSSA = PHINode::Create(OldLCSSA->getType(),
728 OldLCSSA->getName() + ".us-lcssa",
729 MiddleBlock->getTerminator());
730 NewLCSSA->addIncoming(OldValue, StartBlock);
731 OldLCSSA->setIncomingValue(OldLCSSA->getBasicBlockIndex(MiddleBlock),
733 InsertedPHIs.insert(NewLCSSA);
736 BasicBlock::iterator InsertPt = EndBlock->getFirstNonPHI();
737 for (BasicBlock::iterator I = MiddleBlock->begin();
738 (OldLCSSA = dyn_cast<PHINode>(I)) && InsertedPHIs.count(OldLCSSA) == 0;
740 PHINode *NewLCSSA = PHINode::Create(OldLCSSA->getType(),
741 OldLCSSA->getName() + ".us-lcssa",
743 OldLCSSA->replaceAllUsesWith(NewLCSSA);
744 NewLCSSA->addIncoming(OldLCSSA, MiddleBlock);
748 // StartBlock -- > MiddleBlock -- > EndBlock
749 // StartBlock is loop exiting block. EndBlock will become merge point
750 // of two loop exits after loop unswitch.
752 // If StartBlock's DF member includes a block that is not loop member
753 // then replace that DF member with EndBlock.
755 // If MiddleBlock's DF member includes a block that is not loop member
756 // tnen replace that DF member with EndBlock.
758 ReplaceLoopExternalDFMember(L, StartBlock, EndBlock);
759 ReplaceLoopExternalDFMember(L, MiddleBlock, EndBlock);
766 /// addBBToDomFrontier - Helper function. Insert DFBB in Basic Block BB's
767 /// dominance frontier using iterator DFI.
768 static void addBBToDomFrontier(DominanceFrontier &DF,
769 DominanceFrontier::iterator &DFI,
770 BasicBlock *BB, BasicBlock *DFBB) {
771 if (DFI != DF.end()) {
772 DF.addToFrontier(DFI, DFBB);
776 DominanceFrontier::DomSetType NSet;
778 DF.addBasicBlock(BB, NSet);
782 /// UnswitchNontrivialCondition - We determined that the loop is profitable
783 /// to unswitch when LIC equal Val. Split it into loop versions and test the
784 /// condition outside of either loop. Return the loops created as Out1/Out2.
785 void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
787 Function *F = loopHeader->getParent();
788 DOUT << "loop-unswitch: Unswitching loop %"
789 << loopHeader->getName() << " [" << L->getBlocks().size()
790 << " blocks] in Function " << F->getName()
791 << " when '" << *Val << "' == " << *LIC << "\n";
796 // First step, split the preheader and exit blocks, and add these blocks to
797 // the LoopBlocks list.
798 BasicBlock *NewPreheader = SplitEdge(loopPreheader, loopHeader, this);
799 LoopBlocks.push_back(NewPreheader);
801 // We want the loop to come after the preheader, but before the exit blocks.
802 LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
804 SmallVector<BasicBlock*, 8> ExitBlocks;
805 L->getUniqueExitBlocks(ExitBlocks);
807 // Split all of the edges from inside the loop to their exit blocks. Update
808 // the appropriate Phi nodes as we do so.
809 SmallVector<BasicBlock *,8> MiddleBlocks;
810 SplitExitEdges(L, ExitBlocks, MiddleBlocks);
812 // The exit blocks may have been changed due to edge splitting, recompute.
814 L->getUniqueExitBlocks(ExitBlocks);
816 // Add exit blocks to the loop blocks.
817 LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
819 // Next step, clone all of the basic blocks that make up the loop (including
820 // the loop preheader and exit blocks), keeping track of the mapping between
821 // the instructions and blocks.
822 NewBlocks.reserve(LoopBlocks.size());
823 DenseMap<const Value*, Value*> ValueMap;
824 for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
825 BasicBlock *New = CloneBasicBlock(LoopBlocks[i], ValueMap, ".us", F);
826 NewBlocks.push_back(New);
827 ValueMap[LoopBlocks[i]] = New; // Keep the BB mapping.
828 LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], New, L);
831 // OutSiders are basic block that are dominated by original header and
832 // at the same time they are not part of loop.
833 SmallPtrSet<BasicBlock *, 8> OutSiders;
835 DomTreeNode *OrigHeaderNode = DT->getNode(loopHeader);
836 for(std::vector<DomTreeNode*>::iterator DI = OrigHeaderNode->begin(),
837 DE = OrigHeaderNode->end(); DI != DE; ++DI) {
838 BasicBlock *B = (*DI)->getBlock();
840 DenseMap<const Value*, Value*>::iterator VI = ValueMap.find(B);
841 if (VI == ValueMap.end())
846 // Splice the newly inserted blocks into the function right before the
847 // original preheader.
848 F->getBasicBlockList().splice(LoopBlocks[0], F->getBasicBlockList(),
849 NewBlocks[0], F->end());
851 // Now we create the new Loop object for the versioned loop.
852 Loop *NewLoop = CloneLoop(L, L->getParentLoop(), ValueMap, LI, LPM);
853 Loop *ParentLoop = L->getParentLoop();
855 // Make sure to add the cloned preheader and exit blocks to the parent loop
857 ParentLoop->addBasicBlockToLoop(NewBlocks[0], LI->getBase());
860 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
861 BasicBlock *NewExit = cast<BasicBlock>(ValueMap[ExitBlocks[i]]);
862 // The new exit block should be in the same loop as the old one.
863 if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
864 ExitBBLoop->addBasicBlockToLoop(NewExit, LI->getBase());
866 assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
867 "Exit block should have been split to have one successor!");
868 BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
870 // If the successor of the exit block had PHI nodes, add an entry for
873 for (BasicBlock::iterator I = ExitSucc->begin();
874 (PN = dyn_cast<PHINode>(I)); ++I) {
875 Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]);
876 DenseMap<const Value *, Value*>::iterator It = ValueMap.find(V);
877 if (It != ValueMap.end()) V = It->second;
878 PN->addIncoming(V, NewExit);
882 // Rewrite the code to refer to itself.
883 for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i)
884 for (BasicBlock::iterator I = NewBlocks[i]->begin(),
885 E = NewBlocks[i]->end(); I != E; ++I)
886 RemapInstruction(I, ValueMap);
888 // Rewrite the original preheader to select between versions of the loop.
889 BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator());
890 assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
891 "Preheader splitting did not work correctly!");
893 // Emit the new branch that selects between the two versions of this loop.
894 EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR);
895 LPM->deleteSimpleAnalysisValue(OldBR, L);
896 OldBR->eraseFromParent();
898 // Update dominator info
901 SmallVector<BasicBlock *,4> ExitingBlocks;
902 L->getExitingBlocks(ExitingBlocks);
904 // Clone dominator info for all cloned basic block.
905 for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
906 BasicBlock *LBB = LoopBlocks[i];
907 BasicBlock *NBB = NewBlocks[i];
908 CloneDomInfo(NBB, LBB, NewPreheader, loopPreheader,
909 loopHeader, DT, DF, ValueMap);
911 // If LBB's dominance frontier includes DFMember
912 // such that DFMember is also a member of LoopDF then
913 // - Remove DFMember from LBB's dominance frontier
914 // - Copy loop exiting blocks', that are dominated by BB,
915 // dominance frontier member in BB's dominance frontier
917 DominanceFrontier::iterator LBBI = DF->find(LBB);
918 DominanceFrontier::iterator NBBI = DF->find(NBB);
919 if (LBBI == DF->end())
922 DominanceFrontier::DomSetType &LBSet = LBBI->second;
923 for (DominanceFrontier::DomSetType::iterator LI = LBSet.begin(),
924 LE = LBSet.end(); LI != LE; /* NULL */) {
925 BasicBlock *B = *LI++;
926 if (B == LBB && B == loopHeader)
928 bool removeB = false;
929 if (!LoopDF.count(B))
932 // If LBB dominates loop exits then insert loop exit block's DF
934 for(SmallVector<BasicBlock *, 4>::iterator
935 LExitI = ExitingBlocks.begin(),
936 LExitE = ExitingBlocks.end(); LExitI != LExitE; ++LExitI) {
937 BasicBlock *E = *LExitI;
939 if (!DT->dominates(LBB,E))
942 DenseMap<BasicBlock *, BasicBlock *>::iterator DFBI =
943 OrigLoopExitMap.find(E);
944 if (DFBI == OrigLoopExitMap.end())
947 BasicBlock *DFB = DFBI->second;
948 DF->addToFrontier(LBBI, DFB);
949 DF->addToFrontier(NBBI, DFB);
953 // If B's replacement is inserted in DF then now is the time to remove
956 DF->removeFromFrontier(LBBI, B);
958 DF->removeFromFrontier(NBBI, cast<BasicBlock>(ValueMap[B]));
960 DF->removeFromFrontier(NBBI, B);
966 // MiddleBlocks are dominated by original pre header. SplitEdge updated
967 // MiddleBlocks' dominance frontier appropriately.
968 for (unsigned i = 0, e = MiddleBlocks.size(); i != e; ++i) {
969 BasicBlock *MBB = MiddleBlocks[i];
970 if (!MBB->getSinglePredecessor())
971 DT->changeImmediateDominator(MBB, loopPreheader);
974 // All Outsiders are now dominated by original pre header.
975 for (SmallPtrSet<BasicBlock *, 8>::iterator OI = OutSiders.begin(),
976 OE = OutSiders.end(); OI != OE; ++OI) {
977 BasicBlock *OB = *OI;
978 DT->changeImmediateDominator(OB, loopPreheader);
981 // New loop headers are dominated by original preheader
982 DT->changeImmediateDominator(NewBlocks[0], loopPreheader);
983 DT->changeImmediateDominator(LoopBlocks[0], loopPreheader);
986 LoopProcessWorklist.push_back(NewLoop);
989 // Now we rewrite the original code to know that the condition is true and the
990 // new code to know that the condition is false.
991 RewriteLoopBodyWithConditionConstant(L , LIC, Val, false);
993 // It's possible that simplifying one loop could cause the other to be
994 // deleted. If so, don't simplify it.
995 if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop)
996 RewriteLoopBodyWithConditionConstant(NewLoop, LIC, Val, true);
999 /// RemoveFromWorklist - Remove all instances of I from the worklist vector
1001 static void RemoveFromWorklist(Instruction *I,
1002 std::vector<Instruction*> &Worklist) {
1003 std::vector<Instruction*>::iterator WI = std::find(Worklist.begin(),
1005 while (WI != Worklist.end()) {
1006 unsigned Offset = WI-Worklist.begin();
1008 WI = std::find(Worklist.begin()+Offset, Worklist.end(), I);
1012 /// ReplaceUsesOfWith - When we find that I really equals V, remove I from the
1013 /// program, replacing all uses with V and update the worklist.
1014 static void ReplaceUsesOfWith(Instruction *I, Value *V,
1015 std::vector<Instruction*> &Worklist,
1016 Loop *L, LPPassManager *LPM) {
1017 DOUT << "Replace with '" << *V << "': " << *I;
1019 // Add uses to the worklist, which may be dead now.
1020 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1021 if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
1022 Worklist.push_back(Use);
1024 // Add users to the worklist which may be simplified now.
1025 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1027 Worklist.push_back(cast<Instruction>(*UI));
1028 LPM->deleteSimpleAnalysisValue(I, L);
1029 RemoveFromWorklist(I, Worklist);
1030 I->replaceAllUsesWith(V);
1031 I->eraseFromParent();
1035 /// RemoveBlockIfDead - If the specified block is dead, remove it, update loop
1036 /// information, and remove any dead successors it has.
1038 void LoopUnswitch::RemoveBlockIfDead(BasicBlock *BB,
1039 std::vector<Instruction*> &Worklist,
1041 if (pred_begin(BB) != pred_end(BB)) {
1042 // This block isn't dead, since an edge to BB was just removed, see if there
1043 // are any easy simplifications we can do now.
1044 if (BasicBlock *Pred = BB->getSinglePredecessor()) {
1045 // If it has one pred, fold phi nodes in BB.
1046 while (isa<PHINode>(BB->begin()))
1047 ReplaceUsesOfWith(BB->begin(),
1048 cast<PHINode>(BB->begin())->getIncomingValue(0),
1051 // If this is the header of a loop and the only pred is the latch, we now
1052 // have an unreachable loop.
1053 if (Loop *L = LI->getLoopFor(BB))
1054 if (loopHeader == BB && L->contains(Pred)) {
1055 // Remove the branch from the latch to the header block, this makes
1056 // the header dead, which will make the latch dead (because the header
1057 // dominates the latch).
1058 LPM->deleteSimpleAnalysisValue(Pred->getTerminator(), L);
1059 Pred->getTerminator()->eraseFromParent();
1060 new UnreachableInst(Pred);
1062 // The loop is now broken, remove it from LI.
1063 RemoveLoopFromHierarchy(L);
1065 // Reprocess the header, which now IS dead.
1066 RemoveBlockIfDead(BB, Worklist, L);
1070 // If pred ends in a uncond branch, add uncond branch to worklist so that
1071 // the two blocks will get merged.
1072 if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator()))
1073 if (BI->isUnconditional())
1074 Worklist.push_back(BI);
1079 DOUT << "Nuking dead block: " << *BB;
1081 // Remove the instructions in the basic block from the worklist.
1082 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1083 RemoveFromWorklist(I, Worklist);
1085 // Anything that uses the instructions in this basic block should have their
1086 // uses replaced with undefs.
1087 if (!I->use_empty())
1088 I->replaceAllUsesWith(UndefValue::get(I->getType()));
1091 // If this is the edge to the header block for a loop, remove the loop and
1092 // promote all subloops.
1093 if (Loop *BBLoop = LI->getLoopFor(BB)) {
1094 if (BBLoop->getLoopLatch() == BB)
1095 RemoveLoopFromHierarchy(BBLoop);
1098 // Remove the block from the loop info, which removes it from any loops it
1100 LI->removeBlock(BB);
1103 // Remove phi node entries in successors for this block.
1104 TerminatorInst *TI = BB->getTerminator();
1105 std::vector<BasicBlock*> Succs;
1106 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1107 Succs.push_back(TI->getSuccessor(i));
1108 TI->getSuccessor(i)->removePredecessor(BB);
1111 // Unique the successors, remove anything with multiple uses.
1112 std::sort(Succs.begin(), Succs.end());
1113 Succs.erase(std::unique(Succs.begin(), Succs.end()), Succs.end());
1115 // Remove the basic block, including all of the instructions contained in it.
1116 LPM->deleteSimpleAnalysisValue(BB, L);
1117 BB->eraseFromParent();
1118 // Remove successor blocks here that are not dead, so that we know we only
1119 // have dead blocks in this list. Nondead blocks have a way of becoming dead,
1120 // then getting removed before we revisit them, which is badness.
1122 for (unsigned i = 0; i != Succs.size(); ++i)
1123 if (pred_begin(Succs[i]) != pred_end(Succs[i])) {
1124 // One exception is loop headers. If this block was the preheader for a
1125 // loop, then we DO want to visit the loop so the loop gets deleted.
1126 // We know that if the successor is a loop header, that this loop had to
1127 // be the preheader: the case where this was the latch block was handled
1128 // above and headers can only have two predecessors.
1129 if (!LI->isLoopHeader(Succs[i])) {
1130 Succs.erase(Succs.begin()+i);
1135 for (unsigned i = 0, e = Succs.size(); i != e; ++i)
1136 RemoveBlockIfDead(Succs[i], Worklist, L);
1139 /// RemoveLoopFromHierarchy - We have discovered that the specified loop has
1140 /// become unwrapped, either because the backedge was deleted, or because the
1141 /// edge into the header was removed. If the edge into the header from the
1142 /// latch block was removed, the loop is unwrapped but subloops are still alive,
1143 /// so they just reparent loops. If the loops are actually dead, they will be
1145 void LoopUnswitch::RemoveLoopFromHierarchy(Loop *L) {
1146 LPM->deleteLoopFromQueue(L);
1147 RemoveLoopFromWorklist(L);
1152 // RewriteLoopBodyWithConditionConstant - We know either that the value LIC has
1153 // the value specified by Val in the specified loop, or we know it does NOT have
1154 // that value. Rewrite any uses of LIC or of properties correlated to it.
1155 void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
1158 assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
1160 // FIXME: Support correlated properties, like:
1167 // FOLD boolean conditions (X|LIC), (X&LIC). Fold conditional branches,
1168 // selects, switches.
1169 std::vector<User*> Users(LIC->use_begin(), LIC->use_end());
1170 std::vector<Instruction*> Worklist;
1172 // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
1173 // in the loop with the appropriate one directly.
1174 if (IsEqual || (isa<ConstantInt>(Val) && Val->getType() == Type::Int1Ty)) {
1179 Replacement = ConstantInt::get(Type::Int1Ty,
1180 !cast<ConstantInt>(Val)->getZExtValue());
1182 for (unsigned i = 0, e = Users.size(); i != e; ++i)
1183 if (Instruction *U = cast<Instruction>(Users[i])) {
1184 if (!L->contains(U->getParent()))
1186 U->replaceUsesOfWith(LIC, Replacement);
1187 Worklist.push_back(U);
1190 // Otherwise, we don't know the precise value of LIC, but we do know that it
1191 // is certainly NOT "Val". As such, simplify any uses in the loop that we
1192 // can. This case occurs when we unswitch switch statements.
1193 for (unsigned i = 0, e = Users.size(); i != e; ++i)
1194 if (Instruction *U = cast<Instruction>(Users[i])) {
1195 if (!L->contains(U->getParent()))
1198 Worklist.push_back(U);
1200 // If we know that LIC is not Val, use this info to simplify code.
1201 if (SwitchInst *SI = dyn_cast<SwitchInst>(U)) {
1202 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) {
1203 if (SI->getCaseValue(i) == Val) {
1204 // Found a dead case value. Don't remove PHI nodes in the
1205 // successor if they become single-entry, those PHI nodes may
1206 // be in the Users list.
1208 // FIXME: This is a hack. We need to keep the successor around
1209 // and hooked up so as to preserve the loop structure, because
1210 // trying to update it is complicated. So instead we preserve the
1211 // loop structure and put the block on an dead code path.
1213 BasicBlock* Old = SI->getParent();
1214 BasicBlock* Split = SplitBlock(Old, SI, this);
1216 Instruction* OldTerm = Old->getTerminator();
1217 BranchInst::Create(Split, SI->getSuccessor(i),
1218 ConstantInt::getTrue(), OldTerm);
1220 LPM->deleteSimpleAnalysisValue(Old->getTerminator(), L);
1221 Old->getTerminator()->eraseFromParent();
1224 for (BasicBlock::iterator II = SI->getSuccessor(i)->begin();
1225 (PN = dyn_cast<PHINode>(II)); ++II) {
1226 Value *InVal = PN->removeIncomingValue(Split, false);
1227 PN->addIncoming(InVal, Old);
1236 // TODO: We could do other simplifications, for example, turning
1237 // LIC == Val -> false.
1241 SimplifyCode(Worklist, L);
1244 /// SimplifyCode - Okay, now that we have simplified some instructions in the
1245 /// loop, walk over it and constant prop, dce, and fold control flow where
1246 /// possible. Note that this is effectively a very simple loop-structure-aware
1247 /// optimizer. During processing of this loop, L could very well be deleted, so
1248 /// it must not be used.
1250 /// FIXME: When the loop optimizer is more mature, separate this out to a new
1253 void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
1254 while (!Worklist.empty()) {
1255 Instruction *I = Worklist.back();
1256 Worklist.pop_back();
1258 // Simple constant folding.
1259 if (Constant *C = ConstantFoldInstruction(I)) {
1260 ReplaceUsesOfWith(I, C, Worklist, L, LPM);
1265 if (isInstructionTriviallyDead(I)) {
1266 DOUT << "Remove dead instruction '" << *I;
1268 // Add uses to the worklist, which may be dead now.
1269 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1270 if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
1271 Worklist.push_back(Use);
1272 LPM->deleteSimpleAnalysisValue(I, L);
1273 RemoveFromWorklist(I, Worklist);
1274 I->eraseFromParent();
1279 // Special case hacks that appear commonly in unswitched code.
1280 switch (I->getOpcode()) {
1281 case Instruction::Select:
1282 if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(0))) {
1283 ReplaceUsesOfWith(I, I->getOperand(!CB->getZExtValue()+1), Worklist, L,
1288 case Instruction::And:
1289 if (isa<ConstantInt>(I->getOperand(0)) &&
1290 I->getOperand(0)->getType() == Type::Int1Ty) // constant -> RHS
1291 cast<BinaryOperator>(I)->swapOperands();
1292 if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(1)))
1293 if (CB->getType() == Type::Int1Ty) {
1294 if (CB->isOne()) // X & 1 -> X
1295 ReplaceUsesOfWith(I, I->getOperand(0), Worklist, L, LPM);
1297 ReplaceUsesOfWith(I, I->getOperand(1), Worklist, L, LPM);
1301 case Instruction::Or:
1302 if (isa<ConstantInt>(I->getOperand(0)) &&
1303 I->getOperand(0)->getType() == Type::Int1Ty) // constant -> RHS
1304 cast<BinaryOperator>(I)->swapOperands();
1305 if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(1)))
1306 if (CB->getType() == Type::Int1Ty) {
1307 if (CB->isOne()) // X | 1 -> 1
1308 ReplaceUsesOfWith(I, I->getOperand(1), Worklist, L, LPM);
1310 ReplaceUsesOfWith(I, I->getOperand(0), Worklist, L, LPM);
1314 case Instruction::Br: {
1315 BranchInst *BI = cast<BranchInst>(I);
1316 if (BI->isUnconditional()) {
1317 // If BI's parent is the only pred of the successor, fold the two blocks
1319 BasicBlock *Pred = BI->getParent();
1320 BasicBlock *Succ = BI->getSuccessor(0);
1321 BasicBlock *SinglePred = Succ->getSinglePredecessor();
1322 if (!SinglePred) continue; // Nothing to do.
1323 assert(SinglePred == Pred && "CFG broken");
1325 DOUT << "Merging blocks: " << Pred->getName() << " <- "
1326 << Succ->getName() << "\n";
1328 // Resolve any single entry PHI nodes in Succ.
1329 while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
1330 ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM);
1332 // Move all of the successor contents from Succ to Pred.
1333 Pred->getInstList().splice(BI, Succ->getInstList(), Succ->begin(),
1335 LPM->deleteSimpleAnalysisValue(BI, L);
1336 BI->eraseFromParent();
1337 RemoveFromWorklist(BI, Worklist);
1339 // If Succ has any successors with PHI nodes, update them to have
1340 // entries coming from Pred instead of Succ.
1341 Succ->replaceAllUsesWith(Pred);
1343 // Remove Succ from the loop tree.
1344 LI->removeBlock(Succ);
1345 LPM->deleteSimpleAnalysisValue(Succ, L);
1346 Succ->eraseFromParent();
1348 } else if (ConstantInt *CB = dyn_cast<ConstantInt>(BI->getCondition())){
1349 // Conditional branch. Turn it into an unconditional branch, then
1350 // remove dead blocks.
1351 break; // FIXME: Enable.
1353 DOUT << "Folded branch: " << *BI;
1354 BasicBlock *DeadSucc = BI->getSuccessor(CB->getZExtValue());
1355 BasicBlock *LiveSucc = BI->getSuccessor(!CB->getZExtValue());
1356 DeadSucc->removePredecessor(BI->getParent(), true);
1357 Worklist.push_back(BranchInst::Create(LiveSucc, BI));
1358 LPM->deleteSimpleAnalysisValue(BI, L);
1359 BI->eraseFromParent();
1360 RemoveFromWorklist(BI, Worklist);
1363 RemoveBlockIfDead(DeadSucc, Worklist, L);