1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // Rewrite an existing set of gc.statepoints such that they make potential
11 // relocations performed by the garbage collector explicit in the IR.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Pass.h"
16 #include "llvm/Analysis/CFG.h"
17 #include "llvm/Analysis/InstructionSimplify.h"
18 #include "llvm/Analysis/TargetTransformInfo.h"
19 #include "llvm/ADT/SetOperations.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/MapVector.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/CallSite.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/InstIterator.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/IR/MDBuilder.h"
36 #include "llvm/IR/Statepoint.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/IR/Verifier.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Transforms/Scalar.h"
42 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
43 #include "llvm/Transforms/Utils/Cloning.h"
44 #include "llvm/Transforms/Utils/Local.h"
45 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
47 #define DEBUG_TYPE "rewrite-statepoints-for-gc"
51 // Print the liveset found at the insert location
52 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
54 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
56 // Print out the base pointers for debugging
57 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
60 // Cost threshold measuring when it is profitable to rematerialize value instead
62 static cl::opt<unsigned>
63 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
67 static bool ClobberNonLive = true;
69 static bool ClobberNonLive = false;
71 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
72 cl::location(ClobberNonLive),
75 static cl::opt<bool> UseDeoptBundles("rs4gc-use-deopt-bundles", cl::Hidden,
78 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
79 cl::Hidden, cl::init(true));
82 struct RewriteStatepointsForGC : public ModulePass {
83 static char ID; // Pass identification, replacement for typeid
85 RewriteStatepointsForGC() : ModulePass(ID) {
86 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry());
88 bool runOnFunction(Function &F);
89 bool runOnModule(Module &M) override {
92 Changed |= runOnFunction(F);
95 // stripNonValidAttributes asserts that shouldRewriteStatepointsIn
96 // returns true for at least one function in the module. Since at least
97 // one function changed, we know that the precondition is satisfied.
98 stripNonValidAttributes(M);
104 void getAnalysisUsage(AnalysisUsage &AU) const override {
105 // We add and rewrite a bunch of instructions, but don't really do much
106 // else. We could in theory preserve a lot more analyses here.
107 AU.addRequired<DominatorTreeWrapperPass>();
108 AU.addRequired<TargetTransformInfoWrapperPass>();
111 /// The IR fed into RewriteStatepointsForGC may have had attributes implying
112 /// dereferenceability that are no longer valid/correct after
113 /// RewriteStatepointsForGC has run. This is because semantically, after
114 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
115 /// heap. stripNonValidAttributes (conservatively) restores correctness
116 /// by erasing all attributes in the module that externally imply
117 /// dereferenceability.
118 /// Similar reasoning also applies to the noalias attributes. gc.statepoint
119 /// can touch the entire heap including noalias objects.
120 void stripNonValidAttributes(Module &M);
122 // Helpers for stripNonValidAttributes
123 void stripNonValidAttributesFromBody(Function &F);
124 void stripNonValidAttributesFromPrototype(Function &F);
128 char RewriteStatepointsForGC::ID = 0;
130 ModulePass *llvm::createRewriteStatepointsForGCPass() {
131 return new RewriteStatepointsForGC();
134 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
135 "Make relocations explicit at statepoints", false, false)
136 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
137 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
138 "Make relocations explicit at statepoints", false, false)
141 struct GCPtrLivenessData {
142 /// Values defined in this block.
143 DenseMap<BasicBlock *, DenseSet<Value *>> KillSet;
144 /// Values used in this block (and thus live); does not included values
145 /// killed within this block.
146 DenseMap<BasicBlock *, DenseSet<Value *>> LiveSet;
148 /// Values live into this basic block (i.e. used by any
149 /// instruction in this basic block or ones reachable from here)
150 DenseMap<BasicBlock *, DenseSet<Value *>> LiveIn;
152 /// Values live out of this basic block (i.e. live into
153 /// any successor block)
154 DenseMap<BasicBlock *, DenseSet<Value *>> LiveOut;
157 // The type of the internal cache used inside the findBasePointers family
158 // of functions. From the callers perspective, this is an opaque type and
159 // should not be inspected.
161 // In the actual implementation this caches two relations:
162 // - The base relation itself (i.e. this pointer is based on that one)
163 // - The base defining value relation (i.e. before base_phi insertion)
164 // Generally, after the execution of a full findBasePointer call, only the
165 // base relation will remain. Internally, we add a mixture of the two
166 // types, then update all the second type to the first type
167 typedef DenseMap<Value *, Value *> DefiningValueMapTy;
168 typedef DenseSet<Value *> StatepointLiveSetTy;
169 typedef DenseMap<AssertingVH<Instruction>, AssertingVH<Value>>
170 RematerializedValueMapTy;
172 struct PartiallyConstructedSafepointRecord {
173 /// The set of values known to be live across this safepoint
174 StatepointLiveSetTy LiveSet;
176 /// Mapping from live pointers to a base-defining-value
177 DenseMap<Value *, Value *> PointerToBase;
179 /// The *new* gc.statepoint instruction itself. This produces the token
180 /// that normal path gc.relocates and the gc.result are tied to.
181 Instruction *StatepointToken;
183 /// Instruction to which exceptional gc relocates are attached
184 /// Makes it easier to iterate through them during relocationViaAlloca.
185 Instruction *UnwindToken;
187 /// Record live values we are rematerialized instead of relocating.
188 /// They are not included into 'LiveSet' field.
189 /// Maps rematerialized copy to it's original value.
190 RematerializedValueMapTy RematerializedValues;
194 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) {
195 assert(UseDeoptBundles && "Should not be called otherwise!");
197 Optional<OperandBundleUse> DeoptBundle = CS.getOperandBundle("deopt");
199 if (!DeoptBundle.hasValue()) {
200 assert(AllowStatepointWithNoDeoptInfo &&
201 "Found non-leaf call without deopt info!");
205 return DeoptBundle.getValue().Inputs;
208 /// Compute the live-in set for every basic block in the function
209 static void computeLiveInValues(DominatorTree &DT, Function &F,
210 GCPtrLivenessData &Data);
212 /// Given results from the dataflow liveness computation, find the set of live
213 /// Values at a particular instruction.
214 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
215 StatepointLiveSetTy &out);
217 // TODO: Once we can get to the GCStrategy, this becomes
218 // Optional<bool> isGCManagedPointer(const Value *V) const override {
220 static bool isGCPointerType(Type *T) {
221 if (auto *PT = dyn_cast<PointerType>(T))
222 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
223 // GC managed heap. We know that a pointer into this heap needs to be
224 // updated and that no other pointer does.
225 return (1 == PT->getAddressSpace());
229 // Return true if this type is one which a) is a gc pointer or contains a GC
230 // pointer and b) is of a type this code expects to encounter as a live value.
231 // (The insertion code will assert that a type which matches (a) and not (b)
232 // is not encountered.)
233 static bool isHandledGCPointerType(Type *T) {
234 // We fully support gc pointers
235 if (isGCPointerType(T))
237 // We partially support vectors of gc pointers. The code will assert if it
238 // can't handle something.
239 if (auto VT = dyn_cast<VectorType>(T))
240 if (isGCPointerType(VT->getElementType()))
246 /// Returns true if this type contains a gc pointer whether we know how to
247 /// handle that type or not.
248 static bool containsGCPtrType(Type *Ty) {
249 if (isGCPointerType(Ty))
251 if (VectorType *VT = dyn_cast<VectorType>(Ty))
252 return isGCPointerType(VT->getScalarType());
253 if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
254 return containsGCPtrType(AT->getElementType());
255 if (StructType *ST = dyn_cast<StructType>(Ty))
257 ST->subtypes().begin(), ST->subtypes().end(),
258 [](Type *SubType) { return containsGCPtrType(SubType); });
262 // Returns true if this is a type which a) is a gc pointer or contains a GC
263 // pointer and b) is of a type which the code doesn't expect (i.e. first class
264 // aggregates). Used to trip assertions.
265 static bool isUnhandledGCPointerType(Type *Ty) {
266 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
270 static bool order_by_name(Value *a, Value *b) {
271 if (a->hasName() && b->hasName()) {
272 return -1 == a->getName().compare(b->getName());
273 } else if (a->hasName() && !b->hasName()) {
275 } else if (!a->hasName() && b->hasName()) {
278 // Better than nothing, but not stable
283 // Return the name of the value suffixed with the provided value, or if the
284 // value didn't have a name, the default value specified.
285 static std::string suffixed_name_or(Value *V, StringRef Suffix,
286 StringRef DefaultName) {
287 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
290 // Conservatively identifies any definitions which might be live at the
291 // given instruction. The analysis is performed immediately before the
292 // given instruction. Values defined by that instruction are not considered
293 // live. Values used by that instruction are considered live.
294 static void analyzeParsePointLiveness(
295 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData,
296 const CallSite &CS, PartiallyConstructedSafepointRecord &result) {
297 Instruction *inst = CS.getInstruction();
299 StatepointLiveSetTy LiveSet;
300 findLiveSetAtInst(inst, OriginalLivenessData, LiveSet);
303 // Note: This output is used by several of the test cases
304 // The order of elements in a set is not stable, put them in a vec and sort
306 SmallVector<Value *, 64> Temp;
307 Temp.insert(Temp.end(), LiveSet.begin(), LiveSet.end());
308 std::sort(Temp.begin(), Temp.end(), order_by_name);
309 errs() << "Live Variables:\n";
310 for (Value *V : Temp)
311 dbgs() << " " << V->getName() << " " << *V << "\n";
313 if (PrintLiveSetSize) {
314 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n";
315 errs() << "Number live values: " << LiveSet.size() << "\n";
317 result.LiveSet = LiveSet;
320 static bool isKnownBaseResult(Value *V);
322 /// A single base defining value - An immediate base defining value for an
323 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
324 /// For instructions which have multiple pointer [vector] inputs or that
325 /// transition between vector and scalar types, there is no immediate base
326 /// defining value. The 'base defining value' for 'Def' is the transitive
327 /// closure of this relation stopping at the first instruction which has no
328 /// immediate base defining value. The b.d.v. might itself be a base pointer,
329 /// but it can also be an arbitrary derived pointer.
330 struct BaseDefiningValueResult {
331 /// Contains the value which is the base defining value.
333 /// True if the base defining value is also known to be an actual base
335 const bool IsKnownBase;
336 BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
337 : BDV(BDV), IsKnownBase(IsKnownBase) {
339 // Check consistency between new and old means of checking whether a BDV is
341 bool MustBeBase = isKnownBaseResult(BDV);
342 assert(!MustBeBase || MustBeBase == IsKnownBase);
348 static BaseDefiningValueResult findBaseDefiningValue(Value *I);
350 /// Return a base defining value for the 'Index' element of the given vector
351 /// instruction 'I'. If Index is null, returns a BDV for the entire vector
352 /// 'I'. As an optimization, this method will try to determine when the
353 /// element is known to already be a base pointer. If this can be established,
354 /// the second value in the returned pair will be true. Note that either a
355 /// vector or a pointer typed value can be returned. For the former, the
356 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
357 /// If the later, the return pointer is a BDV (or possibly a base) for the
358 /// particular element in 'I'.
359 static BaseDefiningValueResult
360 findBaseDefiningValueOfVector(Value *I) {
361 assert(I->getType()->isVectorTy() &&
362 cast<VectorType>(I->getType())->getElementType()->isPointerTy() &&
363 "Illegal to ask for the base pointer of a non-pointer type");
365 // Each case parallels findBaseDefiningValue below, see that code for
366 // detailed motivation.
368 if (isa<Argument>(I))
369 // An incoming argument to the function is a base pointer
370 return BaseDefiningValueResult(I, true);
372 // We shouldn't see the address of a global as a vector value?
373 assert(!isa<GlobalVariable>(I) &&
374 "unexpected global variable found in base of vector");
376 // inlining could possibly introduce phi node that contains
377 // undef if callee has multiple returns
378 if (isa<UndefValue>(I))
379 // utterly meaningless, but useful for dealing with partially optimized
381 return BaseDefiningValueResult(I, true);
383 // Due to inheritance, this must be _after_ the global variable and undef
385 if (Constant *Con = dyn_cast<Constant>(I)) {
386 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) &&
387 "order of checks wrong!");
388 assert(Con->isNullValue() && "null is the only case which makes sense");
389 return BaseDefiningValueResult(Con, true);
392 if (isa<LoadInst>(I))
393 return BaseDefiningValueResult(I, true);
395 if (isa<InsertElementInst>(I))
396 // We don't know whether this vector contains entirely base pointers or
397 // not. To be conservatively correct, we treat it as a BDV and will
398 // duplicate code as needed to construct a parallel vector of bases.
399 return BaseDefiningValueResult(I, false);
401 if (isa<ShuffleVectorInst>(I))
402 // We don't know whether this vector contains entirely base pointers or
403 // not. To be conservatively correct, we treat it as a BDV and will
404 // duplicate code as needed to construct a parallel vector of bases.
405 // TODO: There a number of local optimizations which could be applied here
406 // for particular sufflevector patterns.
407 return BaseDefiningValueResult(I, false);
409 // A PHI or Select is a base defining value. The outer findBasePointer
410 // algorithm is responsible for constructing a base value for this BDV.
411 assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
412 "unknown vector instruction - no base found for vector element");
413 return BaseDefiningValueResult(I, false);
416 /// Helper function for findBasePointer - Will return a value which either a)
417 /// defines the base pointer for the input, b) blocks the simple search
418 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change
419 /// from pointer to vector type or back.
420 static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
421 if (I->getType()->isVectorTy())
422 return findBaseDefiningValueOfVector(I);
424 assert(I->getType()->isPointerTy() &&
425 "Illegal to ask for the base pointer of a non-pointer type");
427 if (isa<Argument>(I))
428 // An incoming argument to the function is a base pointer
429 // We should have never reached here if this argument isn't an gc value
430 return BaseDefiningValueResult(I, true);
432 if (isa<GlobalVariable>(I))
434 return BaseDefiningValueResult(I, true);
436 // inlining could possibly introduce phi node that contains
437 // undef if callee has multiple returns
438 if (isa<UndefValue>(I))
439 // utterly meaningless, but useful for dealing with
440 // partially optimized code.
441 return BaseDefiningValueResult(I, true);
443 // Due to inheritance, this must be _after_ the global variable and undef
445 if (isa<Constant>(I)) {
446 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) &&
447 "order of checks wrong!");
448 // Note: Finding a constant base for something marked for relocation
449 // doesn't really make sense. The most likely case is either a) some
450 // screwed up the address space usage or b) your validating against
451 // compiled C++ code w/o the proper separation. The only real exception
452 // is a null pointer. You could have generic code written to index of
453 // off a potentially null value and have proven it null. We also use
454 // null pointers in dead paths of relocation phis (which we might later
455 // want to find a base pointer for).
456 assert(isa<ConstantPointerNull>(I) &&
457 "null is the only case which makes sense");
458 return BaseDefiningValueResult(I, true);
461 if (CastInst *CI = dyn_cast<CastInst>(I)) {
462 Value *Def = CI->stripPointerCasts();
463 // If we find a cast instruction here, it means we've found a cast which is
464 // not simply a pointer cast (i.e. an inttoptr). We don't know how to
465 // handle int->ptr conversion.
466 assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
467 return findBaseDefiningValue(Def);
470 if (isa<LoadInst>(I))
471 // The value loaded is an gc base itself
472 return BaseDefiningValueResult(I, true);
475 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
476 // The base of this GEP is the base
477 return findBaseDefiningValue(GEP->getPointerOperand());
479 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
480 switch (II->getIntrinsicID()) {
481 case Intrinsic::experimental_gc_result_ptr:
483 // fall through to general call handling
485 case Intrinsic::experimental_gc_statepoint:
486 case Intrinsic::experimental_gc_result_float:
487 case Intrinsic::experimental_gc_result_int:
488 llvm_unreachable("these don't produce pointers");
489 case Intrinsic::experimental_gc_relocate: {
490 // Rerunning safepoint insertion after safepoints are already
491 // inserted is not supported. It could probably be made to work,
492 // but why are you doing this? There's no good reason.
493 llvm_unreachable("repeat safepoint insertion is not supported");
495 case Intrinsic::gcroot:
496 // Currently, this mechanism hasn't been extended to work with gcroot.
497 // There's no reason it couldn't be, but I haven't thought about the
498 // implications much.
500 "interaction with the gcroot mechanism is not supported");
503 // We assume that functions in the source language only return base
504 // pointers. This should probably be generalized via attributes to support
505 // both source language and internal functions.
506 if (isa<CallInst>(I) || isa<InvokeInst>(I))
507 return BaseDefiningValueResult(I, true);
509 // I have absolutely no idea how to implement this part yet. It's not
510 // necessarily hard, I just haven't really looked at it yet.
511 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
513 if (isa<AtomicCmpXchgInst>(I))
514 // A CAS is effectively a atomic store and load combined under a
515 // predicate. From the perspective of base pointers, we just treat it
517 return BaseDefiningValueResult(I, true);
519 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
520 "binary ops which don't apply to pointers");
522 // The aggregate ops. Aggregates can either be in the heap or on the
523 // stack, but in either case, this is simply a field load. As a result,
524 // this is a defining definition of the base just like a load is.
525 if (isa<ExtractValueInst>(I))
526 return BaseDefiningValueResult(I, true);
528 // We should never see an insert vector since that would require we be
529 // tracing back a struct value not a pointer value.
530 assert(!isa<InsertValueInst>(I) &&
531 "Base pointer for a struct is meaningless");
533 // An extractelement produces a base result exactly when it's input does.
534 // We may need to insert a parallel instruction to extract the appropriate
535 // element out of the base vector corresponding to the input. Given this,
536 // it's analogous to the phi and select case even though it's not a merge.
537 if (isa<ExtractElementInst>(I))
538 // Note: There a lot of obvious peephole cases here. This are deliberately
539 // handled after the main base pointer inference algorithm to make writing
540 // test cases to exercise that code easier.
541 return BaseDefiningValueResult(I, false);
543 // The last two cases here don't return a base pointer. Instead, they
544 // return a value which dynamically selects from among several base
545 // derived pointers (each with it's own base potentially). It's the job of
546 // the caller to resolve these.
547 assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
548 "missing instruction case in findBaseDefiningValing");
549 return BaseDefiningValueResult(I, false);
552 /// Returns the base defining value for this value.
553 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
554 Value *&Cached = Cache[I];
556 Cached = findBaseDefiningValue(I).BDV;
557 DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
558 << Cached->getName() << "\n");
560 assert(Cache[I] != nullptr);
564 /// Return a base pointer for this value if known. Otherwise, return it's
565 /// base defining value.
566 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
567 Value *Def = findBaseDefiningValueCached(I, Cache);
568 auto Found = Cache.find(Def);
569 if (Found != Cache.end()) {
570 // Either a base-of relation, or a self reference. Caller must check.
571 return Found->second;
573 // Only a BDV available
577 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
578 /// is it known to be a base pointer? Or do we need to continue searching.
579 static bool isKnownBaseResult(Value *V) {
580 if (!isa<PHINode>(V) && !isa<SelectInst>(V) &&
581 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
582 !isa<ShuffleVectorInst>(V)) {
583 // no recursion possible
586 if (isa<Instruction>(V) &&
587 cast<Instruction>(V)->getMetadata("is_base_value")) {
588 // This is a previously inserted base phi or select. We know
589 // that this is a base value.
593 // We need to keep searching
598 /// Models the state of a single base defining value in the findBasePointer
599 /// algorithm for determining where a new instruction is needed to propagate
600 /// the base of this BDV.
603 enum Status { Unknown, Base, Conflict };
605 BDVState(Status s, Value *b = nullptr) : status(s), base(b) {
606 assert(status != Base || b);
608 explicit BDVState(Value *b) : status(Base), base(b) {}
609 BDVState() : status(Unknown), base(nullptr) {}
611 Status getStatus() const { return status; }
612 Value *getBase() const { return base; }
614 bool isBase() const { return getStatus() == Base; }
615 bool isUnknown() const { return getStatus() == Unknown; }
616 bool isConflict() const { return getStatus() == Conflict; }
618 bool operator==(const BDVState &other) const {
619 return base == other.base && status == other.status;
622 bool operator!=(const BDVState &other) const { return !(*this == other); }
625 void dump() const { print(dbgs()); dbgs() << '\n'; }
627 void print(raw_ostream &OS) const {
639 OS << " (" << base << " - "
640 << (base ? base->getName() : "nullptr") << "): ";
645 Value *base; // non null only if status == base
650 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
657 // Values of type BDVState form a lattice, and this is a helper
658 // class that implementes the meet operation. The meat of the meet
659 // operation is implemented in MeetBDVStates::pureMeet
660 class MeetBDVStates {
662 /// Initializes the currentResult to the TOP state so that if can be met with
663 /// any other state to produce that state.
666 // Destructively meet the current result with the given BDVState
667 void meetWith(BDVState otherState) {
668 currentResult = meet(otherState, currentResult);
671 BDVState getResult() const { return currentResult; }
674 BDVState currentResult;
676 /// Perform a meet operation on two elements of the BDVState lattice.
677 static BDVState meet(BDVState LHS, BDVState RHS) {
678 assert((pureMeet(LHS, RHS) == pureMeet(RHS, LHS)) &&
679 "math is wrong: meet does not commute!");
680 BDVState Result = pureMeet(LHS, RHS);
681 DEBUG(dbgs() << "meet of " << LHS << " with " << RHS
682 << " produced " << Result << "\n");
686 static BDVState pureMeet(const BDVState &stateA, const BDVState &stateB) {
687 switch (stateA.getStatus()) {
688 case BDVState::Unknown:
692 assert(stateA.getBase() && "can't be null");
693 if (stateB.isUnknown())
696 if (stateB.isBase()) {
697 if (stateA.getBase() == stateB.getBase()) {
698 assert(stateA == stateB && "equality broken!");
701 return BDVState(BDVState::Conflict);
703 assert(stateB.isConflict() && "only three states!");
704 return BDVState(BDVState::Conflict);
706 case BDVState::Conflict:
709 llvm_unreachable("only three states!");
715 /// For a given value or instruction, figure out what base ptr it's derived
716 /// from. For gc objects, this is simply itself. On success, returns a value
717 /// which is the base pointer. (This is reliable and can be used for
718 /// relocation.) On failure, returns nullptr.
719 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) {
720 Value *def = findBaseOrBDV(I, cache);
722 if (isKnownBaseResult(def)) {
726 // Here's the rough algorithm:
727 // - For every SSA value, construct a mapping to either an actual base
728 // pointer or a PHI which obscures the base pointer.
729 // - Construct a mapping from PHI to unknown TOP state. Use an
730 // optimistic algorithm to propagate base pointer information. Lattice
735 // When algorithm terminates, all PHIs will either have a single concrete
736 // base or be in a conflict state.
737 // - For every conflict, insert a dummy PHI node without arguments. Add
738 // these to the base[Instruction] = BasePtr mapping. For every
739 // non-conflict, add the actual base.
740 // - For every conflict, add arguments for the base[a] of each input
743 // Note: A simpler form of this would be to add the conflict form of all
744 // PHIs without running the optimistic algorithm. This would be
745 // analogous to pessimistic data flow and would likely lead to an
746 // overall worse solution.
749 auto isExpectedBDVType = [](Value *BDV) {
750 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
751 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV);
755 // Once populated, will contain a mapping from each potentially non-base BDV
756 // to a lattice value (described above) which corresponds to that BDV.
757 // We use the order of insertion (DFS over the def/use graph) to provide a
758 // stable deterministic ordering for visiting DenseMaps (which are unordered)
759 // below. This is important for deterministic compilation.
760 MapVector<Value *, BDVState> States;
762 // Recursively fill in all base defining values reachable from the initial
763 // one for which we don't already know a definite base value for
765 SmallVector<Value*, 16> Worklist;
766 Worklist.push_back(def);
767 States.insert(std::make_pair(def, BDVState()));
768 while (!Worklist.empty()) {
769 Value *Current = Worklist.pop_back_val();
770 assert(!isKnownBaseResult(Current) && "why did it get added?");
772 auto visitIncomingValue = [&](Value *InVal) {
773 Value *Base = findBaseOrBDV(InVal, cache);
774 if (isKnownBaseResult(Base))
775 // Known bases won't need new instructions introduced and can be
778 assert(isExpectedBDVType(Base) && "the only non-base values "
779 "we see should be base defining values");
780 if (States.insert(std::make_pair(Base, BDVState())).second)
781 Worklist.push_back(Base);
783 if (PHINode *Phi = dyn_cast<PHINode>(Current)) {
784 for (Value *InVal : Phi->incoming_values())
785 visitIncomingValue(InVal);
786 } else if (SelectInst *Sel = dyn_cast<SelectInst>(Current)) {
787 visitIncomingValue(Sel->getTrueValue());
788 visitIncomingValue(Sel->getFalseValue());
789 } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) {
790 visitIncomingValue(EE->getVectorOperand());
791 } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) {
792 visitIncomingValue(IE->getOperand(0)); // vector operand
793 visitIncomingValue(IE->getOperand(1)); // scalar operand
795 // There is one known class of instructions we know we don't handle.
796 assert(isa<ShuffleVectorInst>(Current));
797 llvm_unreachable("unimplemented instruction case");
803 DEBUG(dbgs() << "States after initialization:\n");
804 for (auto Pair : States) {
805 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
809 // Return a phi state for a base defining value. We'll generate a new
810 // base state for known bases and expect to find a cached state otherwise.
811 auto getStateForBDV = [&](Value *baseValue) {
812 if (isKnownBaseResult(baseValue))
813 return BDVState(baseValue);
814 auto I = States.find(baseValue);
815 assert(I != States.end() && "lookup failed!");
819 bool progress = true;
822 const size_t oldSize = States.size();
825 // We're only changing values in this loop, thus safe to keep iterators.
826 // Since this is computing a fixed point, the order of visit does not
827 // effect the result. TODO: We could use a worklist here and make this run
829 for (auto Pair : States) {
830 Value *BDV = Pair.first;
831 assert(!isKnownBaseResult(BDV) && "why did it get added?");
833 // Given an input value for the current instruction, return a BDVState
834 // instance which represents the BDV of that value.
835 auto getStateForInput = [&](Value *V) mutable {
836 Value *BDV = findBaseOrBDV(V, cache);
837 return getStateForBDV(BDV);
840 MeetBDVStates calculateMeet;
841 if (SelectInst *select = dyn_cast<SelectInst>(BDV)) {
842 calculateMeet.meetWith(getStateForInput(select->getTrueValue()));
843 calculateMeet.meetWith(getStateForInput(select->getFalseValue()));
844 } else if (PHINode *Phi = dyn_cast<PHINode>(BDV)) {
845 for (Value *Val : Phi->incoming_values())
846 calculateMeet.meetWith(getStateForInput(Val));
847 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
848 // The 'meet' for an extractelement is slightly trivial, but it's still
849 // useful in that it drives us to conflict if our input is.
850 calculateMeet.meetWith(getStateForInput(EE->getVectorOperand()));
852 // Given there's a inherent type mismatch between the operands, will
853 // *always* produce Conflict.
854 auto *IE = cast<InsertElementInst>(BDV);
855 calculateMeet.meetWith(getStateForInput(IE->getOperand(0)));
856 calculateMeet.meetWith(getStateForInput(IE->getOperand(1)));
859 BDVState oldState = States[BDV];
860 BDVState newState = calculateMeet.getResult();
861 if (oldState != newState) {
863 States[BDV] = newState;
867 assert(oldSize == States.size() &&
868 "fixed point shouldn't be adding any new nodes to state");
872 DEBUG(dbgs() << "States after meet iteration:\n");
873 for (auto Pair : States) {
874 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
878 // Insert Phis for all conflicts
879 // TODO: adjust naming patterns to avoid this order of iteration dependency
880 for (auto Pair : States) {
881 Instruction *I = cast<Instruction>(Pair.first);
882 BDVState State = Pair.second;
883 assert(!isKnownBaseResult(I) && "why did it get added?");
884 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
886 // extractelement instructions are a bit special in that we may need to
887 // insert an extract even when we know an exact base for the instruction.
888 // The problem is that we need to convert from a vector base to a scalar
889 // base for the particular indice we're interested in.
890 if (State.isBase() && isa<ExtractElementInst>(I) &&
891 isa<VectorType>(State.getBase()->getType())) {
892 auto *EE = cast<ExtractElementInst>(I);
893 // TODO: In many cases, the new instruction is just EE itself. We should
894 // exploit this, but can't do it here since it would break the invariant
895 // about the BDV not being known to be a base.
896 auto *BaseInst = ExtractElementInst::Create(State.getBase(),
897 EE->getIndexOperand(),
899 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
900 States[I] = BDVState(BDVState::Base, BaseInst);
903 // Since we're joining a vector and scalar base, they can never be the
904 // same. As a result, we should always see insert element having reached
905 // the conflict state.
906 if (isa<InsertElementInst>(I)) {
907 assert(State.isConflict());
910 if (!State.isConflict())
913 /// Create and insert a new instruction which will represent the base of
914 /// the given instruction 'I'.
915 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* {
916 if (isa<PHINode>(I)) {
917 BasicBlock *BB = I->getParent();
918 int NumPreds = std::distance(pred_begin(BB), pred_end(BB));
919 assert(NumPreds > 0 && "how did we reach here");
920 std::string Name = suffixed_name_or(I, ".base", "base_phi");
921 return PHINode::Create(I->getType(), NumPreds, Name, I);
922 } else if (SelectInst *Sel = dyn_cast<SelectInst>(I)) {
923 // The undef will be replaced later
924 UndefValue *Undef = UndefValue::get(Sel->getType());
925 std::string Name = suffixed_name_or(I, ".base", "base_select");
926 return SelectInst::Create(Sel->getCondition(), Undef,
928 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
929 UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType());
930 std::string Name = suffixed_name_or(I, ".base", "base_ee");
931 return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name,
934 auto *IE = cast<InsertElementInst>(I);
935 UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType());
936 UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType());
937 std::string Name = suffixed_name_or(I, ".base", "base_ie");
938 return InsertElementInst::Create(VecUndef, ScalarUndef,
939 IE->getOperand(2), Name, IE);
943 Instruction *BaseInst = MakeBaseInstPlaceholder(I);
944 // Add metadata marking this as a base value
945 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
946 States[I] = BDVState(BDVState::Conflict, BaseInst);
949 // Returns a instruction which produces the base pointer for a given
950 // instruction. The instruction is assumed to be an input to one of the BDVs
951 // seen in the inference algorithm above. As such, we must either already
952 // know it's base defining value is a base, or have inserted a new
953 // instruction to propagate the base of it's BDV and have entered that newly
954 // introduced instruction into the state table. In either case, we are
955 // assured to be able to determine an instruction which produces it's base
957 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
958 Value *BDV = findBaseOrBDV(Input, cache);
959 Value *Base = nullptr;
960 if (isKnownBaseResult(BDV)) {
963 // Either conflict or base.
964 assert(States.count(BDV));
965 Base = States[BDV].getBase();
967 assert(Base && "can't be null");
968 // The cast is needed since base traversal may strip away bitcasts
969 if (Base->getType() != Input->getType() &&
971 Base = new BitCastInst(Base, Input->getType(), "cast",
977 // Fixup all the inputs of the new PHIs. Visit order needs to be
978 // deterministic and predictable because we're naming newly created
980 for (auto Pair : States) {
981 Instruction *BDV = cast<Instruction>(Pair.first);
982 BDVState State = Pair.second;
984 assert(!isKnownBaseResult(BDV) && "why did it get added?");
985 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
986 if (!State.isConflict())
989 if (PHINode *basephi = dyn_cast<PHINode>(State.getBase())) {
990 PHINode *phi = cast<PHINode>(BDV);
991 unsigned NumPHIValues = phi->getNumIncomingValues();
992 for (unsigned i = 0; i < NumPHIValues; i++) {
993 Value *InVal = phi->getIncomingValue(i);
994 BasicBlock *InBB = phi->getIncomingBlock(i);
996 // If we've already seen InBB, add the same incoming value
997 // we added for it earlier. The IR verifier requires phi
998 // nodes with multiple entries from the same basic block
999 // to have the same incoming value for each of those
1000 // entries. If we don't do this check here and basephi
1001 // has a different type than base, we'll end up adding two
1002 // bitcasts (and hence two distinct values) as incoming
1003 // values for the same basic block.
1005 int blockIndex = basephi->getBasicBlockIndex(InBB);
1006 if (blockIndex != -1) {
1007 Value *oldBase = basephi->getIncomingValue(blockIndex);
1008 basephi->addIncoming(oldBase, InBB);
1011 Value *Base = getBaseForInput(InVal, nullptr);
1012 // In essence this assert states: the only way two
1013 // values incoming from the same basic block may be
1014 // different is by being different bitcasts of the same
1015 // value. A cleanup that remains TODO is changing
1016 // findBaseOrBDV to return an llvm::Value of the correct
1017 // type (and still remain pure). This will remove the
1018 // need to add bitcasts.
1019 assert(Base->stripPointerCasts() == oldBase->stripPointerCasts() &&
1020 "sanity -- findBaseOrBDV should be pure!");
1025 // Find the instruction which produces the base for each input. We may
1026 // need to insert a bitcast in the incoming block.
1027 // TODO: Need to split critical edges if insertion is needed
1028 Value *Base = getBaseForInput(InVal, InBB->getTerminator());
1029 basephi->addIncoming(Base, InBB);
1031 assert(basephi->getNumIncomingValues() == NumPHIValues);
1032 } else if (SelectInst *BaseSel = dyn_cast<SelectInst>(State.getBase())) {
1033 SelectInst *Sel = cast<SelectInst>(BDV);
1034 // Operand 1 & 2 are true, false path respectively. TODO: refactor to
1035 // something more safe and less hacky.
1036 for (int i = 1; i <= 2; i++) {
1037 Value *InVal = Sel->getOperand(i);
1038 // Find the instruction which produces the base for each input. We may
1039 // need to insert a bitcast.
1040 Value *Base = getBaseForInput(InVal, BaseSel);
1041 BaseSel->setOperand(i, Base);
1043 } else if (auto *BaseEE = dyn_cast<ExtractElementInst>(State.getBase())) {
1044 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
1045 // Find the instruction which produces the base for each input. We may
1046 // need to insert a bitcast.
1047 Value *Base = getBaseForInput(InVal, BaseEE);
1048 BaseEE->setOperand(0, Base);
1050 auto *BaseIE = cast<InsertElementInst>(State.getBase());
1051 auto *BdvIE = cast<InsertElementInst>(BDV);
1052 auto UpdateOperand = [&](int OperandIdx) {
1053 Value *InVal = BdvIE->getOperand(OperandIdx);
1054 Value *Base = getBaseForInput(InVal, BaseIE);
1055 BaseIE->setOperand(OperandIdx, Base);
1057 UpdateOperand(0); // vector operand
1058 UpdateOperand(1); // scalar operand
1063 // Now that we're done with the algorithm, see if we can optimize the
1064 // results slightly by reducing the number of new instructions needed.
1065 // Arguably, this should be integrated into the algorithm above, but
1066 // doing as a post process step is easier to reason about for the moment.
1067 DenseMap<Value *, Value *> ReverseMap;
1068 SmallPtrSet<Instruction *, 16> NewInsts;
1069 SmallSetVector<AssertingVH<Instruction>, 16> Worklist;
1070 // Note: We need to visit the states in a deterministic order. We uses the
1071 // Keys we sorted above for this purpose. Note that we are papering over a
1072 // bigger problem with the algorithm above - it's visit order is not
1073 // deterministic. A larger change is needed to fix this.
1074 for (auto Pair : States) {
1075 auto *BDV = Pair.first;
1076 auto State = Pair.second;
1077 Value *Base = State.getBase();
1078 assert(BDV && Base);
1079 assert(!isKnownBaseResult(BDV) && "why did it get added?");
1080 assert(isKnownBaseResult(Base) &&
1081 "must be something we 'know' is a base pointer");
1082 if (!State.isConflict())
1085 ReverseMap[Base] = BDV;
1086 if (auto *BaseI = dyn_cast<Instruction>(Base)) {
1087 NewInsts.insert(BaseI);
1088 Worklist.insert(BaseI);
1091 auto ReplaceBaseInstWith = [&](Value *BDV, Instruction *BaseI,
1092 Value *Replacement) {
1093 // Add users which are new instructions (excluding self references)
1094 for (User *U : BaseI->users())
1095 if (auto *UI = dyn_cast<Instruction>(U))
1096 if (NewInsts.count(UI) && UI != BaseI)
1097 Worklist.insert(UI);
1098 // Then do the actual replacement
1099 NewInsts.erase(BaseI);
1100 ReverseMap.erase(BaseI);
1101 BaseI->replaceAllUsesWith(Replacement);
1102 BaseI->eraseFromParent();
1103 assert(States.count(BDV));
1104 assert(States[BDV].isConflict() && States[BDV].getBase() == BaseI);
1105 States[BDV] = BDVState(BDVState::Conflict, Replacement);
1107 const DataLayout &DL = cast<Instruction>(def)->getModule()->getDataLayout();
1108 while (!Worklist.empty()) {
1109 Instruction *BaseI = Worklist.pop_back_val();
1110 assert(NewInsts.count(BaseI));
1111 Value *Bdv = ReverseMap[BaseI];
1112 if (auto *BdvI = dyn_cast<Instruction>(Bdv))
1113 if (BaseI->isIdenticalTo(BdvI)) {
1114 DEBUG(dbgs() << "Identical Base: " << *BaseI << "\n");
1115 ReplaceBaseInstWith(Bdv, BaseI, Bdv);
1118 if (Value *V = SimplifyInstruction(BaseI, DL)) {
1119 DEBUG(dbgs() << "Base " << *BaseI << " simplified to " << *V << "\n");
1120 ReplaceBaseInstWith(Bdv, BaseI, V);
1125 // Cache all of our results so we can cheaply reuse them
1126 // NOTE: This is actually two caches: one of the base defining value
1127 // relation and one of the base pointer relation! FIXME
1128 for (auto Pair : States) {
1129 auto *BDV = Pair.first;
1130 Value *base = Pair.second.getBase();
1131 assert(BDV && base);
1133 std::string fromstr = cache.count(BDV) ? cache[BDV]->getName() : "none";
1134 DEBUG(dbgs() << "Updating base value cache"
1135 << " for: " << BDV->getName()
1136 << " from: " << fromstr
1137 << " to: " << base->getName() << "\n");
1139 if (cache.count(BDV)) {
1140 // Once we transition from the BDV relation being store in the cache to
1141 // the base relation being stored, it must be stable
1142 assert((!isKnownBaseResult(cache[BDV]) || cache[BDV] == base) &&
1143 "base relation should be stable");
1147 assert(cache.find(def) != cache.end());
1151 // For a set of live pointers (base and/or derived), identify the base
1152 // pointer of the object which they are derived from. This routine will
1153 // mutate the IR graph as needed to make the 'base' pointer live at the
1154 // definition site of 'derived'. This ensures that any use of 'derived' can
1155 // also use 'base'. This may involve the insertion of a number of
1156 // additional PHI nodes.
1158 // preconditions: live is a set of pointer type Values
1160 // side effects: may insert PHI nodes into the existing CFG, will preserve
1161 // CFG, will not remove or mutate any existing nodes
1163 // post condition: PointerToBase contains one (derived, base) pair for every
1164 // pointer in live. Note that derived can be equal to base if the original
1165 // pointer was a base pointer.
1167 findBasePointers(const StatepointLiveSetTy &live,
1168 DenseMap<Value *, Value *> &PointerToBase,
1169 DominatorTree *DT, DefiningValueMapTy &DVCache) {
1170 // For the naming of values inserted to be deterministic - which makes for
1171 // much cleaner and more stable tests - we need to assign an order to the
1172 // live values. DenseSets do not provide a deterministic order across runs.
1173 SmallVector<Value *, 64> Temp;
1174 Temp.insert(Temp.end(), live.begin(), live.end());
1175 std::sort(Temp.begin(), Temp.end(), order_by_name);
1176 for (Value *ptr : Temp) {
1177 Value *base = findBasePointer(ptr, DVCache);
1178 assert(base && "failed to find base pointer");
1179 PointerToBase[ptr] = base;
1180 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
1181 DT->dominates(cast<Instruction>(base)->getParent(),
1182 cast<Instruction>(ptr)->getParent())) &&
1183 "The base we found better dominate the derived pointer");
1185 // If you see this trip and like to live really dangerously, the code should
1186 // be correct, just with idioms the verifier can't handle. You can try
1187 // disabling the verifier at your own substantial risk.
1188 assert(!isa<ConstantPointerNull>(base) &&
1189 "the relocation code needs adjustment to handle the relocation of "
1190 "a null pointer constant without causing false positives in the "
1191 "safepoint ir verifier.");
1195 /// Find the required based pointers (and adjust the live set) for the given
1197 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1199 PartiallyConstructedSafepointRecord &result) {
1200 DenseMap<Value *, Value *> PointerToBase;
1201 findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache);
1203 if (PrintBasePointers) {
1204 // Note: Need to print these in a stable order since this is checked in
1206 errs() << "Base Pairs (w/o Relocation):\n";
1207 SmallVector<Value *, 64> Temp;
1208 Temp.reserve(PointerToBase.size());
1209 for (auto Pair : PointerToBase) {
1210 Temp.push_back(Pair.first);
1212 std::sort(Temp.begin(), Temp.end(), order_by_name);
1213 for (Value *Ptr : Temp) {
1214 Value *Base = PointerToBase[Ptr];
1215 errs() << " derived %" << Ptr->getName() << " base %" << Base->getName()
1220 result.PointerToBase = PointerToBase;
1223 /// Given an updated version of the dataflow liveness results, update the
1224 /// liveset and base pointer maps for the call site CS.
1225 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
1227 PartiallyConstructedSafepointRecord &result);
1229 static void recomputeLiveInValues(
1230 Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate,
1231 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1232 // TODO-PERF: reuse the original liveness, then simply run the dataflow
1233 // again. The old values are still live and will help it stabilize quickly.
1234 GCPtrLivenessData RevisedLivenessData;
1235 computeLiveInValues(DT, F, RevisedLivenessData);
1236 for (size_t i = 0; i < records.size(); i++) {
1237 struct PartiallyConstructedSafepointRecord &info = records[i];
1238 const CallSite &CS = toUpdate[i];
1239 recomputeLiveInValues(RevisedLivenessData, CS, info);
1243 // When inserting gc.relocate and gc.result calls, we need to ensure there are
1244 // no uses of the original value / return value between the gc.statepoint and
1245 // the gc.relocate / gc.result call. One case which can arise is a phi node
1246 // starting one of the successor blocks. We also need to be able to insert the
1247 // gc.relocates only on the path which goes through the statepoint. We might
1248 // need to split an edge to make this possible.
1250 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
1251 DominatorTree &DT) {
1252 BasicBlock *Ret = BB;
1253 if (!BB->getUniquePredecessor())
1254 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
1256 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
1258 FoldSingleEntryPHINodes(Ret);
1259 assert(!isa<PHINode>(Ret->begin()) &&
1260 "All PHI nodes should have been removed!");
1262 // At this point, we can safely insert a gc.relocate or gc.result as the first
1263 // instruction in Ret if needed.
1267 // Create new attribute set containing only attributes which can be transferred
1268 // from original call to the safepoint.
1269 static AttributeSet legalizeCallAttributes(AttributeSet AS) {
1272 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) {
1273 unsigned Index = AS.getSlotIndex(Slot);
1275 if (Index == AttributeSet::ReturnIndex ||
1276 Index == AttributeSet::FunctionIndex) {
1278 for (Attribute Attr : make_range(AS.begin(Slot), AS.end(Slot))) {
1280 // Do not allow certain attributes - just skip them
1281 // Safepoint can not be read only or read none.
1282 if (Attr.hasAttribute(Attribute::ReadNone) ||
1283 Attr.hasAttribute(Attribute::ReadOnly))
1286 // These attributes control the generation of the gc.statepoint call /
1287 // invoke itself; and once the gc.statepoint is in place, they're of no
1289 if (Attr.hasAttribute("statepoint-num-patch-bytes") ||
1290 Attr.hasAttribute("statepoint-id"))
1293 Ret = Ret.addAttributes(
1294 AS.getContext(), Index,
1295 AttributeSet::get(AS.getContext(), Index, AttrBuilder(Attr)));
1299 // Just skip parameter attributes for now
1305 /// Helper function to place all gc relocates necessary for the given
1308 /// liveVariables - list of variables to be relocated.
1309 /// liveStart - index of the first live variable.
1310 /// basePtrs - base pointers.
1311 /// statepointToken - statepoint instruction to which relocates should be
1313 /// Builder - Llvm IR builder to be used to construct new calls.
1314 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
1315 const int LiveStart,
1316 ArrayRef<Value *> BasePtrs,
1317 Instruction *StatepointToken,
1318 IRBuilder<> Builder) {
1319 if (LiveVariables.empty())
1322 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
1323 auto ValIt = std::find(LiveVec.begin(), LiveVec.end(), Val);
1324 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
1325 size_t Index = std::distance(LiveVec.begin(), ValIt);
1326 assert(Index < LiveVec.size() && "Bug in std::find?");
1330 // All gc_relocate are set to i8 addrspace(1)* type. We originally generated
1331 // unique declarations for each pointer type, but this proved problematic
1332 // because the intrinsic mangling code is incomplete and fragile. Since
1333 // we're moving towards a single unified pointer type anyways, we can just
1334 // cast everything to an i8* of the right address space. A bitcast is added
1335 // later to convert gc_relocate to the actual value's type.
1336 Module *M = StatepointToken->getModule();
1337 auto AS = cast<PointerType>(LiveVariables[0]->getType())->getAddressSpace();
1338 Type *Types[] = {Type::getInt8PtrTy(M->getContext(), AS)};
1339 Value *GCRelocateDecl =
1340 Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, Types);
1342 for (unsigned i = 0; i < LiveVariables.size(); i++) {
1343 // Generate the gc.relocate call and save the result
1345 Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i]));
1346 Value *LiveIdx = Builder.getInt32(LiveStart + i);
1348 // only specify a debug name if we can give a useful one
1349 CallInst *Reloc = Builder.CreateCall(
1350 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
1351 suffixed_name_or(LiveVariables[i], ".relocated", ""));
1352 // Trick CodeGen into thinking there are lots of free registers at this
1354 Reloc->setCallingConv(CallingConv::Cold);
1360 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this
1361 /// avoids having to worry about keeping around dangling pointers to Values.
1362 class DeferredReplacement {
1363 AssertingVH<Instruction> Old;
1364 AssertingVH<Instruction> New;
1367 explicit DeferredReplacement(Instruction *Old, Instruction *New) :
1368 Old(Old), New(New) {
1369 assert(Old != New && "Not allowed!");
1372 /// Does the task represented by this instance.
1373 void doReplacement() {
1374 Instruction *OldI = Old;
1375 Instruction *NewI = New;
1377 assert(OldI != NewI && "Disallowed at construction?!");
1383 OldI->replaceAllUsesWith(NewI);
1384 OldI->eraseFromParent();
1390 makeStatepointExplicitImpl(const CallSite CS, /* to replace */
1391 const SmallVectorImpl<Value *> &BasePtrs,
1392 const SmallVectorImpl<Value *> &LiveVariables,
1393 PartiallyConstructedSafepointRecord &Result,
1394 std::vector<DeferredReplacement> &Replacements) {
1395 assert(BasePtrs.size() == LiveVariables.size());
1396 assert((UseDeoptBundles || isStatepoint(CS)) &&
1397 "This method expects to be rewriting a statepoint");
1399 // Then go ahead and use the builder do actually do the inserts. We insert
1400 // immediately before the previous instruction under the assumption that all
1401 // arguments will be available here. We can't insert afterwards since we may
1402 // be replacing a terminator.
1403 Instruction *InsertBefore = CS.getInstruction();
1404 IRBuilder<> Builder(InsertBefore);
1406 ArrayRef<Value *> GCArgs(LiveVariables);
1407 uint64_t StatepointID = 0xABCDEF00;
1408 uint32_t NumPatchBytes = 0;
1409 uint32_t Flags = uint32_t(StatepointFlags::None);
1411 ArrayRef<Use> CallArgs;
1412 ArrayRef<Use> DeoptArgs;
1413 ArrayRef<Use> TransitionArgs;
1415 Value *CallTarget = nullptr;
1417 if (UseDeoptBundles) {
1418 CallArgs = {CS.arg_begin(), CS.arg_end()};
1419 DeoptArgs = GetDeoptBundleOperands(CS);
1420 // TODO: we don't fill in TransitionArgs or Flags in this branch, but we
1421 // could have an operand bundle for that too.
1422 AttributeSet OriginalAttrs = CS.getAttributes();
1424 Attribute AttrID = OriginalAttrs.getAttribute(AttributeSet::FunctionIndex,
1426 if (AttrID.isStringAttribute())
1427 AttrID.getValueAsString().getAsInteger(10, StatepointID);
1429 Attribute AttrNumPatchBytes = OriginalAttrs.getAttribute(
1430 AttributeSet::FunctionIndex, "statepoint-num-patch-bytes");
1431 if (AttrNumPatchBytes.isStringAttribute())
1432 AttrNumPatchBytes.getValueAsString().getAsInteger(10, NumPatchBytes);
1434 CallTarget = CS.getCalledValue();
1436 // This branch will be gone soon, and we will soon only support the
1437 // UseDeoptBundles == true configuration.
1438 Statepoint OldSP(CS);
1439 StatepointID = OldSP.getID();
1440 NumPatchBytes = OldSP.getNumPatchBytes();
1441 Flags = OldSP.getFlags();
1443 CallArgs = {OldSP.arg_begin(), OldSP.arg_end()};
1444 DeoptArgs = {OldSP.vm_state_begin(), OldSP.vm_state_end()};
1445 TransitionArgs = {OldSP.gc_transition_args_begin(),
1446 OldSP.gc_transition_args_end()};
1447 CallTarget = OldSP.getCalledValue();
1450 // Create the statepoint given all the arguments
1451 Instruction *Token = nullptr;
1452 AttributeSet ReturnAttrs;
1454 CallInst *ToReplace = cast<CallInst>(CS.getInstruction());
1455 CallInst *Call = Builder.CreateGCStatepointCall(
1456 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
1457 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
1459 Call->setTailCall(ToReplace->isTailCall());
1460 Call->setCallingConv(ToReplace->getCallingConv());
1462 // Currently we will fail on parameter attributes and on certain
1463 // function attributes.
1464 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes());
1465 // In case if we can handle this set of attributes - set up function attrs
1466 // directly on statepoint and return attrs later for gc_result intrinsic.
1467 Call->setAttributes(NewAttrs.getFnAttributes());
1468 ReturnAttrs = NewAttrs.getRetAttributes();
1472 // Put the following gc_result and gc_relocate calls immediately after the
1473 // the old call (which we're about to delete)
1474 assert(ToReplace->getNextNode() && "Not a terminator, must have next!");
1475 Builder.SetInsertPoint(ToReplace->getNextNode());
1476 Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc());
1478 InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction());
1480 // Insert the new invoke into the old block. We'll remove the old one in a
1481 // moment at which point this will become the new terminator for the
1483 InvokeInst *Invoke = Builder.CreateGCStatepointInvoke(
1484 StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(),
1485 ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs,
1486 GCArgs, "statepoint_token");
1488 Invoke->setCallingConv(ToReplace->getCallingConv());
1490 // Currently we will fail on parameter attributes and on certain
1491 // function attributes.
1492 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes());
1493 // In case if we can handle this set of attributes - set up function attrs
1494 // directly on statepoint and return attrs later for gc_result intrinsic.
1495 Invoke->setAttributes(NewAttrs.getFnAttributes());
1496 ReturnAttrs = NewAttrs.getRetAttributes();
1500 // Generate gc relocates in exceptional path
1501 BasicBlock *UnwindBlock = ToReplace->getUnwindDest();
1502 assert(!isa<PHINode>(UnwindBlock->begin()) &&
1503 UnwindBlock->getUniquePredecessor() &&
1504 "can't safely insert in this block!");
1506 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
1507 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
1509 // Extract second element from landingpad return value. We will attach
1510 // exceptional gc relocates to it.
1511 Instruction *ExceptionalToken =
1512 cast<Instruction>(Builder.CreateExtractValue(
1513 UnwindBlock->getLandingPadInst(), 1, "relocate_token"));
1514 Result.UnwindToken = ExceptionalToken;
1516 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1517 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken,
1520 // Generate gc relocates and returns for normal block
1521 BasicBlock *NormalDest = ToReplace->getNormalDest();
1522 assert(!isa<PHINode>(NormalDest->begin()) &&
1523 NormalDest->getUniquePredecessor() &&
1524 "can't safely insert in this block!");
1526 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
1528 // gc relocates will be generated later as if it were regular call
1531 assert(Token && "Should be set in one of the above branches!");
1533 if (UseDeoptBundles) {
1534 Token->setName("statepoint_token");
1535 if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) {
1537 CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : "";
1538 CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name);
1539 GCResult->setAttributes(CS.getAttributes().getRetAttributes());
1541 // We cannot RAUW or delete CS.getInstruction() because it could be in the
1542 // live set of some other safepoint, in which case that safepoint's
1543 // PartiallyConstructedSafepointRecord will hold a raw pointer to this
1544 // llvm::Instruction. Instead, we defer the replacement and deletion to
1545 // after the live sets have been made explicit in the IR, and we no longer
1546 // have raw pointers to worry about.
1547 Replacements.emplace_back(CS.getInstruction(), GCResult);
1549 Replacements.emplace_back(CS.getInstruction(), nullptr);
1552 assert(!CS.getInstruction()->hasNUsesOrMore(2) &&
1553 "only valid use before rewrite is gc.result");
1554 assert(!CS.getInstruction()->hasOneUse() ||
1555 isGCResult(cast<Instruction>(*CS.getInstruction()->user_begin())));
1557 // Take the name of the original statepoint token if there was one.
1558 Token->takeName(CS.getInstruction());
1560 // Update the gc.result of the original statepoint (if any) to use the newly
1561 // inserted statepoint. This is safe to do here since the token can't be
1562 // considered a live reference.
1563 CS.getInstruction()->replaceAllUsesWith(Token);
1564 CS.getInstruction()->eraseFromParent();
1567 Result.StatepointToken = Token;
1569 // Second, create a gc.relocate for every live variable
1570 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1571 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder);
1575 struct NameOrdering {
1579 bool operator()(NameOrdering const &a, NameOrdering const &b) {
1580 return -1 == a.Derived->getName().compare(b.Derived->getName());
1585 static void StabilizeOrder(SmallVectorImpl<Value *> &BaseVec,
1586 SmallVectorImpl<Value *> &LiveVec) {
1587 assert(BaseVec.size() == LiveVec.size());
1589 SmallVector<NameOrdering, 64> Temp;
1590 for (size_t i = 0; i < BaseVec.size(); i++) {
1592 v.Base = BaseVec[i];
1593 v.Derived = LiveVec[i];
1597 std::sort(Temp.begin(), Temp.end(), NameOrdering());
1598 for (size_t i = 0; i < BaseVec.size(); i++) {
1599 BaseVec[i] = Temp[i].Base;
1600 LiveVec[i] = Temp[i].Derived;
1604 // Replace an existing gc.statepoint with a new one and a set of gc.relocates
1605 // which make the relocations happening at this safepoint explicit.
1607 // WARNING: Does not do any fixup to adjust users of the original live
1608 // values. That's the callers responsibility.
1610 makeStatepointExplicit(DominatorTree &DT, const CallSite &CS,
1611 PartiallyConstructedSafepointRecord &Result,
1612 std::vector<DeferredReplacement> &Replacements) {
1613 const auto &LiveSet = Result.LiveSet;
1614 const auto &PointerToBase = Result.PointerToBase;
1616 // Convert to vector for efficient cross referencing.
1617 SmallVector<Value *, 64> BaseVec, LiveVec;
1618 LiveVec.reserve(LiveSet.size());
1619 BaseVec.reserve(LiveSet.size());
1620 for (Value *L : LiveSet) {
1621 LiveVec.push_back(L);
1622 assert(PointerToBase.count(L));
1623 Value *Base = PointerToBase.find(L)->second;
1624 BaseVec.push_back(Base);
1626 assert(LiveVec.size() == BaseVec.size());
1628 // To make the output IR slightly more stable (for use in diffs), ensure a
1629 // fixed order of the values in the safepoint (by sorting the value name).
1630 // The order is otherwise meaningless.
1631 StabilizeOrder(BaseVec, LiveVec);
1633 // Do the actual rewriting and delete the old statepoint
1634 makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements);
1637 // Helper function for the relocationViaAlloca.
1639 // It receives iterator to the statepoint gc relocates and emits a store to the
1640 // assigned location (via allocaMap) for the each one of them. It adds the
1641 // visited values into the visitedLiveValues set, which we will later use them
1642 // for sanity checking.
1644 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
1645 DenseMap<Value *, Value *> &AllocaMap,
1646 DenseSet<Value *> &VisitedLiveValues) {
1648 for (User *U : GCRelocs) {
1649 if (!isa<IntrinsicInst>(U))
1652 IntrinsicInst *RelocatedValue = cast<IntrinsicInst>(U);
1654 // We only care about relocates
1655 if (RelocatedValue->getIntrinsicID() !=
1656 Intrinsic::experimental_gc_relocate) {
1660 GCRelocateOperands RelocateOperands(RelocatedValue);
1661 Value *OriginalValue =
1662 const_cast<Value *>(RelocateOperands.getDerivedPtr());
1663 assert(AllocaMap.count(OriginalValue));
1664 Value *Alloca = AllocaMap[OriginalValue];
1666 // Emit store into the related alloca
1667 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
1668 // the correct type according to alloca.
1669 assert(RelocatedValue->getNextNode() &&
1670 "Should always have one since it's not a terminator");
1671 IRBuilder<> Builder(RelocatedValue->getNextNode());
1672 Value *CastedRelocatedValue =
1673 Builder.CreateBitCast(RelocatedValue,
1674 cast<AllocaInst>(Alloca)->getAllocatedType(),
1675 suffixed_name_or(RelocatedValue, ".casted", ""));
1677 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca);
1678 Store->insertAfter(cast<Instruction>(CastedRelocatedValue));
1681 VisitedLiveValues.insert(OriginalValue);
1686 // Helper function for the "relocationViaAlloca". Similar to the
1687 // "insertRelocationStores" but works for rematerialized values.
1689 insertRematerializationStores(
1690 RematerializedValueMapTy RematerializedValues,
1691 DenseMap<Value *, Value *> &AllocaMap,
1692 DenseSet<Value *> &VisitedLiveValues) {
1694 for (auto RematerializedValuePair: RematerializedValues) {
1695 Instruction *RematerializedValue = RematerializedValuePair.first;
1696 Value *OriginalValue = RematerializedValuePair.second;
1698 assert(AllocaMap.count(OriginalValue) &&
1699 "Can not find alloca for rematerialized value");
1700 Value *Alloca = AllocaMap[OriginalValue];
1702 StoreInst *Store = new StoreInst(RematerializedValue, Alloca);
1703 Store->insertAfter(RematerializedValue);
1706 VisitedLiveValues.insert(OriginalValue);
1711 /// Do all the relocation update via allocas and mem2reg
1712 static void relocationViaAlloca(
1713 Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
1714 ArrayRef<PartiallyConstructedSafepointRecord> Records) {
1716 // record initial number of (static) allocas; we'll check we have the same
1717 // number when we get done.
1718 int InitialAllocaNum = 0;
1719 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E;
1721 if (isa<AllocaInst>(*I))
1725 // TODO-PERF: change data structures, reserve
1726 DenseMap<Value *, Value *> AllocaMap;
1727 SmallVector<AllocaInst *, 200> PromotableAllocas;
1728 // Used later to chack that we have enough allocas to store all values
1729 std::size_t NumRematerializedValues = 0;
1730 PromotableAllocas.reserve(Live.size());
1732 // Emit alloca for "LiveValue" and record it in "allocaMap" and
1733 // "PromotableAllocas"
1734 auto emitAllocaFor = [&](Value *LiveValue) {
1735 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "",
1736 F.getEntryBlock().getFirstNonPHI());
1737 AllocaMap[LiveValue] = Alloca;
1738 PromotableAllocas.push_back(Alloca);
1741 // Emit alloca for each live gc pointer
1742 for (Value *V : Live)
1745 // Emit allocas for rematerialized values
1746 for (const auto &Info : Records)
1747 for (auto RematerializedValuePair : Info.RematerializedValues) {
1748 Value *OriginalValue = RematerializedValuePair.second;
1749 if (AllocaMap.count(OriginalValue) != 0)
1752 emitAllocaFor(OriginalValue);
1753 ++NumRematerializedValues;
1756 // The next two loops are part of the same conceptual operation. We need to
1757 // insert a store to the alloca after the original def and at each
1758 // redefinition. We need to insert a load before each use. These are split
1759 // into distinct loops for performance reasons.
1761 // Update gc pointer after each statepoint: either store a relocated value or
1762 // null (if no relocated value was found for this gc pointer and it is not a
1763 // gc_result). This must happen before we update the statepoint with load of
1764 // alloca otherwise we lose the link between statepoint and old def.
1765 for (const auto &Info : Records) {
1766 Value *Statepoint = Info.StatepointToken;
1768 // This will be used for consistency check
1769 DenseSet<Value *> VisitedLiveValues;
1771 // Insert stores for normal statepoint gc relocates
1772 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
1774 // In case if it was invoke statepoint
1775 // we will insert stores for exceptional path gc relocates.
1776 if (isa<InvokeInst>(Statepoint)) {
1777 insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
1781 // Do similar thing with rematerialized values
1782 insertRematerializationStores(Info.RematerializedValues, AllocaMap,
1785 if (ClobberNonLive) {
1786 // As a debugging aid, pretend that an unrelocated pointer becomes null at
1787 // the gc.statepoint. This will turn some subtle GC problems into
1788 // slightly easier to debug SEGVs. Note that on large IR files with
1789 // lots of gc.statepoints this is extremely costly both memory and time
1791 SmallVector<AllocaInst *, 64> ToClobber;
1792 for (auto Pair : AllocaMap) {
1793 Value *Def = Pair.first;
1794 AllocaInst *Alloca = cast<AllocaInst>(Pair.second);
1796 // This value was relocated
1797 if (VisitedLiveValues.count(Def)) {
1800 ToClobber.push_back(Alloca);
1803 auto InsertClobbersAt = [&](Instruction *IP) {
1804 for (auto *AI : ToClobber) {
1805 auto AIType = cast<PointerType>(AI->getType());
1806 auto PT = cast<PointerType>(AIType->getElementType());
1807 Constant *CPN = ConstantPointerNull::get(PT);
1808 StoreInst *Store = new StoreInst(CPN, AI);
1809 Store->insertBefore(IP);
1813 // Insert the clobbering stores. These may get intermixed with the
1814 // gc.results and gc.relocates, but that's fine.
1815 if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
1816 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
1817 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
1819 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
1824 // Update use with load allocas and add store for gc_relocated.
1825 for (auto Pair : AllocaMap) {
1826 Value *Def = Pair.first;
1827 Value *Alloca = Pair.second;
1829 // We pre-record the uses of allocas so that we dont have to worry about
1830 // later update that changes the user information..
1832 SmallVector<Instruction *, 20> Uses;
1833 // PERF: trade a linear scan for repeated reallocation
1834 Uses.reserve(std::distance(Def->user_begin(), Def->user_end()));
1835 for (User *U : Def->users()) {
1836 if (!isa<ConstantExpr>(U)) {
1837 // If the def has a ConstantExpr use, then the def is either a
1838 // ConstantExpr use itself or null. In either case
1839 // (recursively in the first, directly in the second), the oop
1840 // it is ultimately dependent on is null and this particular
1841 // use does not need to be fixed up.
1842 Uses.push_back(cast<Instruction>(U));
1846 std::sort(Uses.begin(), Uses.end());
1847 auto Last = std::unique(Uses.begin(), Uses.end());
1848 Uses.erase(Last, Uses.end());
1850 for (Instruction *Use : Uses) {
1851 if (isa<PHINode>(Use)) {
1852 PHINode *Phi = cast<PHINode>(Use);
1853 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
1854 if (Def == Phi->getIncomingValue(i)) {
1855 LoadInst *Load = new LoadInst(
1856 Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
1857 Phi->setIncomingValue(i, Load);
1861 LoadInst *Load = new LoadInst(Alloca, "", Use);
1862 Use->replaceUsesOfWith(Def, Load);
1866 // Emit store for the initial gc value. Store must be inserted after load,
1867 // otherwise store will be in alloca's use list and an extra load will be
1868 // inserted before it.
1869 StoreInst *Store = new StoreInst(Def, Alloca);
1870 if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
1871 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
1872 // InvokeInst is a TerminatorInst so the store need to be inserted
1873 // into its normal destination block.
1874 BasicBlock *NormalDest = Invoke->getNormalDest();
1875 Store->insertBefore(NormalDest->getFirstNonPHI());
1877 assert(!Inst->isTerminator() &&
1878 "The only TerminatorInst that can produce a value is "
1879 "InvokeInst which is handled above.");
1880 Store->insertAfter(Inst);
1883 assert(isa<Argument>(Def));
1884 Store->insertAfter(cast<Instruction>(Alloca));
1888 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
1889 "we must have the same allocas with lives");
1890 if (!PromotableAllocas.empty()) {
1891 // Apply mem2reg to promote alloca to SSA
1892 PromoteMemToReg(PromotableAllocas, DT);
1896 for (auto &I : F.getEntryBlock())
1897 if (isa<AllocaInst>(I))
1899 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
1903 /// Implement a unique function which doesn't require we sort the input
1904 /// vector. Doing so has the effect of changing the output of a couple of
1905 /// tests in ways which make them less useful in testing fused safepoints.
1906 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
1907 SmallSet<T, 8> Seen;
1908 Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) {
1909 return !Seen.insert(V).second;
1913 /// Insert holders so that each Value is obviously live through the entire
1914 /// lifetime of the call.
1915 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values,
1916 SmallVectorImpl<CallInst *> &Holders) {
1918 // No values to hold live, might as well not insert the empty holder
1921 Module *M = CS.getInstruction()->getParent()->getParent()->getParent();
1922 // Use a dummy vararg function to actually hold the values live
1923 Function *Func = cast<Function>(M->getOrInsertFunction(
1924 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)));
1926 // For call safepoints insert dummy calls right after safepoint
1927 Holders.push_back(CallInst::Create(Func, Values, "",
1928 &*++CS.getInstruction()->getIterator()));
1931 // For invoke safepooints insert dummy calls both in normal and
1932 // exceptional destination blocks
1933 auto *II = cast<InvokeInst>(CS.getInstruction());
1934 Holders.push_back(CallInst::Create(
1935 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
1936 Holders.push_back(CallInst::Create(
1937 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
1940 static void findLiveReferences(
1941 Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate,
1942 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1943 GCPtrLivenessData OriginalLivenessData;
1944 computeLiveInValues(DT, F, OriginalLivenessData);
1945 for (size_t i = 0; i < records.size(); i++) {
1946 struct PartiallyConstructedSafepointRecord &info = records[i];
1947 const CallSite &CS = toUpdate[i];
1948 analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info);
1952 /// Remove any vector of pointers from the live set by scalarizing them over the
1953 /// statepoint instruction. Adds the scalarized pieces to the live set. It
1954 /// would be preferable to include the vector in the statepoint itself, but
1955 /// the lowering code currently does not handle that. Extending it would be
1956 /// slightly non-trivial since it requires a format change. Given how rare
1957 /// such cases are (for the moment?) scalarizing is an acceptable compromise.
1958 static void splitVectorValues(Instruction *StatepointInst,
1959 StatepointLiveSetTy &LiveSet,
1960 DenseMap<Value *, Value *>& PointerToBase,
1961 DominatorTree &DT) {
1962 SmallVector<Value *, 16> ToSplit;
1963 for (Value *V : LiveSet)
1964 if (isa<VectorType>(V->getType()))
1965 ToSplit.push_back(V);
1967 if (ToSplit.empty())
1970 DenseMap<Value *, SmallVector<Value *, 16>> ElementMapping;
1972 Function &F = *(StatepointInst->getParent()->getParent());
1974 DenseMap<Value *, AllocaInst *> AllocaMap;
1975 // First is normal return, second is exceptional return (invoke only)
1976 DenseMap<Value *, std::pair<Value *, Value *>> Replacements;
1977 for (Value *V : ToSplit) {
1978 AllocaInst *Alloca =
1979 new AllocaInst(V->getType(), "", F.getEntryBlock().getFirstNonPHI());
1980 AllocaMap[V] = Alloca;
1982 VectorType *VT = cast<VectorType>(V->getType());
1983 IRBuilder<> Builder(StatepointInst);
1984 SmallVector<Value *, 16> Elements;
1985 for (unsigned i = 0; i < VT->getNumElements(); i++)
1986 Elements.push_back(Builder.CreateExtractElement(V, Builder.getInt32(i)));
1987 ElementMapping[V] = Elements;
1989 auto InsertVectorReform = [&](Instruction *IP) {
1990 Builder.SetInsertPoint(IP);
1991 Builder.SetCurrentDebugLocation(IP->getDebugLoc());
1992 Value *ResultVec = UndefValue::get(VT);
1993 for (unsigned i = 0; i < VT->getNumElements(); i++)
1994 ResultVec = Builder.CreateInsertElement(ResultVec, Elements[i],
1995 Builder.getInt32(i));
1999 if (isa<CallInst>(StatepointInst)) {
2000 BasicBlock::iterator Next(StatepointInst);
2002 Instruction *IP = &*(Next);
2003 Replacements[V].first = InsertVectorReform(IP);
2004 Replacements[V].second = nullptr;
2006 InvokeInst *Invoke = cast<InvokeInst>(StatepointInst);
2007 // We've already normalized - check that we don't have shared destination
2009 BasicBlock *NormalDest = Invoke->getNormalDest();
2010 assert(!isa<PHINode>(NormalDest->begin()));
2011 BasicBlock *UnwindDest = Invoke->getUnwindDest();
2012 assert(!isa<PHINode>(UnwindDest->begin()));
2013 // Insert insert element sequences in both successors
2014 Instruction *IP = &*(NormalDest->getFirstInsertionPt());
2015 Replacements[V].first = InsertVectorReform(IP);
2016 IP = &*(UnwindDest->getFirstInsertionPt());
2017 Replacements[V].second = InsertVectorReform(IP);
2021 for (Value *V : ToSplit) {
2022 AllocaInst *Alloca = AllocaMap[V];
2024 // Capture all users before we start mutating use lists
2025 SmallVector<Instruction *, 16> Users;
2026 for (User *U : V->users())
2027 Users.push_back(cast<Instruction>(U));
2029 for (Instruction *I : Users) {
2030 if (auto Phi = dyn_cast<PHINode>(I)) {
2031 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++)
2032 if (V == Phi->getIncomingValue(i)) {
2033 LoadInst *Load = new LoadInst(
2034 Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
2035 Phi->setIncomingValue(i, Load);
2038 LoadInst *Load = new LoadInst(Alloca, "", I);
2039 I->replaceUsesOfWith(V, Load);
2043 // Store the original value and the replacement value into the alloca
2044 StoreInst *Store = new StoreInst(V, Alloca);
2045 if (auto I = dyn_cast<Instruction>(V))
2046 Store->insertAfter(I);
2048 Store->insertAfter(Alloca);
2050 // Normal return for invoke, or call return
2051 Instruction *Replacement = cast<Instruction>(Replacements[V].first);
2052 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement);
2053 // Unwind return for invoke only
2054 Replacement = cast_or_null<Instruction>(Replacements[V].second);
2056 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement);
2059 // apply mem2reg to promote alloca to SSA
2060 SmallVector<AllocaInst *, 16> Allocas;
2061 for (Value *V : ToSplit)
2062 Allocas.push_back(AllocaMap[V]);
2063 PromoteMemToReg(Allocas, DT);
2065 // Update our tracking of live pointers and base mappings to account for the
2066 // changes we just made.
2067 for (Value *V : ToSplit) {
2068 auto &Elements = ElementMapping[V];
2071 LiveSet.insert(Elements.begin(), Elements.end());
2072 // We need to update the base mapping as well.
2073 assert(PointerToBase.count(V));
2074 Value *OldBase = PointerToBase[V];
2075 auto &BaseElements = ElementMapping[OldBase];
2076 PointerToBase.erase(V);
2077 assert(Elements.size() == BaseElements.size());
2078 for (unsigned i = 0; i < Elements.size(); i++) {
2079 Value *Elem = Elements[i];
2080 PointerToBase[Elem] = BaseElements[i];
2085 // Helper function for the "rematerializeLiveValues". It walks use chain
2086 // starting from the "CurrentValue" until it meets "BaseValue". Only "simple"
2087 // values are visited (currently it is GEP's and casts). Returns true if it
2088 // successfully reached "BaseValue" and false otherwise.
2089 // Fills "ChainToBase" array with all visited values. "BaseValue" is not
2091 static bool findRematerializableChainToBasePointer(
2092 SmallVectorImpl<Instruction*> &ChainToBase,
2093 Value *CurrentValue, Value *BaseValue) {
2095 // We have found a base value
2096 if (CurrentValue == BaseValue) {
2100 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
2101 ChainToBase.push_back(GEP);
2102 return findRematerializableChainToBasePointer(ChainToBase,
2103 GEP->getPointerOperand(),
2107 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
2108 Value *Def = CI->stripPointerCasts();
2110 // This two checks are basically similar. First one is here for the
2111 // consistency with findBasePointers logic.
2112 assert(!isa<CastInst>(Def) && "not a pointer cast found");
2113 if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
2116 ChainToBase.push_back(CI);
2117 return findRematerializableChainToBasePointer(ChainToBase, Def, BaseValue);
2120 // Not supported instruction in the chain
2124 // Helper function for the "rematerializeLiveValues". Compute cost of the use
2125 // chain we are going to rematerialize.
2127 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain,
2128 TargetTransformInfo &TTI) {
2131 for (Instruction *Instr : Chain) {
2132 if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
2133 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
2134 "non noop cast is found during rematerialization");
2136 Type *SrcTy = CI->getOperand(0)->getType();
2137 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy);
2139 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
2140 // Cost of the address calculation
2141 Type *ValTy = GEP->getPointerOperandType()->getPointerElementType();
2142 Cost += TTI.getAddressComputationCost(ValTy);
2144 // And cost of the GEP itself
2145 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
2146 // allowed for the external usage)
2147 if (!GEP->hasAllConstantIndices())
2151 llvm_unreachable("unsupported instruciton type during rematerialization");
2158 // From the statepoint live set pick values that are cheaper to recompute then
2159 // to relocate. Remove this values from the live set, rematerialize them after
2160 // statepoint and record them in "Info" structure. Note that similar to
2161 // relocated values we don't do any user adjustments here.
2162 static void rematerializeLiveValues(CallSite CS,
2163 PartiallyConstructedSafepointRecord &Info,
2164 TargetTransformInfo &TTI) {
2165 const unsigned int ChainLengthThreshold = 10;
2167 // Record values we are going to delete from this statepoint live set.
2168 // We can not di this in following loop due to iterator invalidation.
2169 SmallVector<Value *, 32> LiveValuesToBeDeleted;
2171 for (Value *LiveValue: Info.LiveSet) {
2172 // For each live pointer find it's defining chain
2173 SmallVector<Instruction *, 3> ChainToBase;
2174 assert(Info.PointerToBase.count(LiveValue));
2176 findRematerializableChainToBasePointer(ChainToBase,
2178 Info.PointerToBase[LiveValue]);
2179 // Nothing to do, or chain is too long
2181 ChainToBase.size() == 0 ||
2182 ChainToBase.size() > ChainLengthThreshold)
2185 // Compute cost of this chain
2186 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI);
2187 // TODO: We can also account for cases when we will be able to remove some
2188 // of the rematerialized values by later optimization passes. I.e if
2189 // we rematerialized several intersecting chains. Or if original values
2190 // don't have any uses besides this statepoint.
2192 // For invokes we need to rematerialize each chain twice - for normal and
2193 // for unwind basic blocks. Model this by multiplying cost by two.
2194 if (CS.isInvoke()) {
2197 // If it's too expensive - skip it
2198 if (Cost >= RematerializationThreshold)
2201 // Remove value from the live set
2202 LiveValuesToBeDeleted.push_back(LiveValue);
2204 // Clone instructions and record them inside "Info" structure
2206 // Walk backwards to visit top-most instructions first
2207 std::reverse(ChainToBase.begin(), ChainToBase.end());
2209 // Utility function which clones all instructions from "ChainToBase"
2210 // and inserts them before "InsertBefore". Returns rematerialized value
2211 // which should be used after statepoint.
2212 auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) {
2213 Instruction *LastClonedValue = nullptr;
2214 Instruction *LastValue = nullptr;
2215 for (Instruction *Instr: ChainToBase) {
2216 // Only GEP's and casts are suported as we need to be careful to not
2217 // introduce any new uses of pointers not in the liveset.
2218 // Note that it's fine to introduce new uses of pointers which were
2219 // otherwise not used after this statepoint.
2220 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
2222 Instruction *ClonedValue = Instr->clone();
2223 ClonedValue->insertBefore(InsertBefore);
2224 ClonedValue->setName(Instr->getName() + ".remat");
2226 // If it is not first instruction in the chain then it uses previously
2227 // cloned value. We should update it to use cloned value.
2228 if (LastClonedValue) {
2230 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
2232 // Assert that cloned instruction does not use any instructions from
2233 // this chain other than LastClonedValue
2234 for (auto OpValue : ClonedValue->operand_values()) {
2235 assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) ==
2236 ChainToBase.end() &&
2237 "incorrect use in rematerialization chain");
2242 LastClonedValue = ClonedValue;
2245 assert(LastClonedValue);
2246 return LastClonedValue;
2249 // Different cases for calls and invokes. For invokes we need to clone
2250 // instructions both on normal and unwind path.
2252 Instruction *InsertBefore = CS.getInstruction()->getNextNode();
2253 assert(InsertBefore);
2254 Instruction *RematerializedValue = rematerializeChain(InsertBefore);
2255 Info.RematerializedValues[RematerializedValue] = LiveValue;
2257 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction());
2259 Instruction *NormalInsertBefore =
2260 &*Invoke->getNormalDest()->getFirstInsertionPt();
2261 Instruction *UnwindInsertBefore =
2262 &*Invoke->getUnwindDest()->getFirstInsertionPt();
2264 Instruction *NormalRematerializedValue =
2265 rematerializeChain(NormalInsertBefore);
2266 Instruction *UnwindRematerializedValue =
2267 rematerializeChain(UnwindInsertBefore);
2269 Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
2270 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
2274 // Remove rematerializaed values from the live set
2275 for (auto LiveValue: LiveValuesToBeDeleted) {
2276 Info.LiveSet.erase(LiveValue);
2280 static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P,
2281 SmallVectorImpl<CallSite> &ToUpdate) {
2283 // sanity check the input
2284 std::set<CallSite> Uniqued;
2285 Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
2286 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
2288 for (CallSite CS : ToUpdate) {
2289 assert(CS.getInstruction()->getParent()->getParent() == &F);
2290 assert((UseDeoptBundles || isStatepoint(CS)) &&
2291 "expected to already be a deopt statepoint");
2295 // When inserting gc.relocates for invokes, we need to be able to insert at
2296 // the top of the successor blocks. See the comment on
2297 // normalForInvokeSafepoint on exactly what is needed. Note that this step
2298 // may restructure the CFG.
2299 for (CallSite CS : ToUpdate) {
2302 auto *II = cast<InvokeInst>(CS.getInstruction());
2303 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
2304 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
2307 // A list of dummy calls added to the IR to keep various values obviously
2308 // live in the IR. We'll remove all of these when done.
2309 SmallVector<CallInst *, 64> Holders;
2311 // Insert a dummy call with all of the arguments to the vm_state we'll need
2312 // for the actual safepoint insertion. This ensures reference arguments in
2313 // the deopt argument list are considered live through the safepoint (and
2314 // thus makes sure they get relocated.)
2315 for (CallSite CS : ToUpdate) {
2316 SmallVector<Value *, 64> DeoptValues;
2318 iterator_range<const Use *> DeoptStateRange =
2320 ? iterator_range<const Use *>(GetDeoptBundleOperands(CS))
2321 : iterator_range<const Use *>(Statepoint(CS).vm_state_args());
2323 for (Value *Arg : DeoptStateRange) {
2324 assert(!isUnhandledGCPointerType(Arg->getType()) &&
2325 "support for FCA unimplemented");
2326 if (isHandledGCPointerType(Arg->getType()))
2327 DeoptValues.push_back(Arg);
2330 insertUseHolderAfter(CS, DeoptValues, Holders);
2333 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
2335 // A) Identify all gc pointers which are statically live at the given call
2337 findLiveReferences(F, DT, P, ToUpdate, Records);
2339 // B) Find the base pointers for each live pointer
2340 /* scope for caching */ {
2341 // Cache the 'defining value' relation used in the computation and
2342 // insertion of base phis and selects. This ensures that we don't insert
2343 // large numbers of duplicate base_phis.
2344 DefiningValueMapTy DVCache;
2346 for (size_t i = 0; i < Records.size(); i++) {
2347 PartiallyConstructedSafepointRecord &info = Records[i];
2348 findBasePointers(DT, DVCache, ToUpdate[i], info);
2350 } // end of cache scope
2352 // The base phi insertion logic (for any safepoint) may have inserted new
2353 // instructions which are now live at some safepoint. The simplest such
2356 // phi a <-- will be a new base_phi here
2357 // safepoint 1 <-- that needs to be live here
2361 // We insert some dummy calls after each safepoint to definitely hold live
2362 // the base pointers which were identified for that safepoint. We'll then
2363 // ask liveness for _every_ base inserted to see what is now live. Then we
2364 // remove the dummy calls.
2365 Holders.reserve(Holders.size() + Records.size());
2366 for (size_t i = 0; i < Records.size(); i++) {
2367 PartiallyConstructedSafepointRecord &Info = Records[i];
2369 SmallVector<Value *, 128> Bases;
2370 for (auto Pair : Info.PointerToBase)
2371 Bases.push_back(Pair.second);
2373 insertUseHolderAfter(ToUpdate[i], Bases, Holders);
2376 // By selecting base pointers, we've effectively inserted new uses. Thus, we
2377 // need to rerun liveness. We may *also* have inserted new defs, but that's
2378 // not the key issue.
2379 recomputeLiveInValues(F, DT, P, ToUpdate, Records);
2381 if (PrintBasePointers) {
2382 for (auto &Info : Records) {
2383 errs() << "Base Pairs: (w/Relocation)\n";
2384 for (auto Pair : Info.PointerToBase)
2385 errs() << " derived %" << Pair.first->getName() << " base %"
2386 << Pair.second->getName() << "\n";
2390 for (CallInst *CI : Holders)
2391 CI->eraseFromParent();
2395 // Do a limited scalarization of any live at safepoint vector values which
2396 // contain pointers. This enables this pass to run after vectorization at
2397 // the cost of some possible performance loss. TODO: it would be nice to
2398 // natively support vectors all the way through the backend so we don't need
2399 // to scalarize here.
2400 for (size_t i = 0; i < Records.size(); i++) {
2401 PartiallyConstructedSafepointRecord &Info = Records[i];
2402 Instruction *Statepoint = ToUpdate[i].getInstruction();
2403 splitVectorValues(cast<Instruction>(Statepoint), Info.LiveSet,
2404 Info.PointerToBase, DT);
2407 // In order to reduce live set of statepoint we might choose to rematerialize
2408 // some values instead of relocating them. This is purely an optimization and
2409 // does not influence correctness.
2410 TargetTransformInfo &TTI =
2411 P->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2413 for (size_t i = 0; i < Records.size(); i++)
2414 rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
2416 // We need this to safely RAUW and delete call or invoke return values that
2417 // may themselves be live over a statepoint. For details, please see usage in
2418 // makeStatepointExplicitImpl.
2419 std::vector<DeferredReplacement> Replacements;
2421 // Now run through and replace the existing statepoints with new ones with
2422 // the live variables listed. We do not yet update uses of the values being
2423 // relocated. We have references to live variables that need to
2424 // survive to the last iteration of this loop. (By construction, the
2425 // previous statepoint can not be a live variable, thus we can and remove
2426 // the old statepoint calls as we go.)
2427 for (size_t i = 0; i < Records.size(); i++)
2428 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);
2430 ToUpdate.clear(); // prevent accident use of invalid CallSites
2432 for (auto &PR : Replacements)
2435 Replacements.clear();
2437 for (auto &Info : Records) {
2438 // These live sets may contain state Value pointers, since we replaced calls
2439 // with operand bundles with calls wrapped in gc.statepoint, and some of
2440 // those calls may have been def'ing live gc pointers. Clear these out to
2441 // avoid accidentally using them.
2443 // TODO: We should create a separate data structure that does not contain
2444 // these live sets, and migrate to using that data structure from this point
2446 Info.LiveSet.clear();
2447 Info.PointerToBase.clear();
2450 // Do all the fixups of the original live variables to their relocated selves
2451 SmallVector<Value *, 128> Live;
2452 for (size_t i = 0; i < Records.size(); i++) {
2453 PartiallyConstructedSafepointRecord &Info = Records[i];
2455 // We can't simply save the live set from the original insertion. One of
2456 // the live values might be the result of a call which needs a safepoint.
2457 // That Value* no longer exists and we need to use the new gc_result.
2458 // Thankfully, the live set is embedded in the statepoint (and updated), so
2459 // we just grab that.
2460 Statepoint Statepoint(Info.StatepointToken);
2461 Live.insert(Live.end(), Statepoint.gc_args_begin(),
2462 Statepoint.gc_args_end());
2464 // Do some basic sanity checks on our liveness results before performing
2465 // relocation. Relocation can and will turn mistakes in liveness results
2466 // into non-sensical code which is must harder to debug.
2467 // TODO: It would be nice to test consistency as well
2468 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
2469 "statepoint must be reachable or liveness is meaningless");
2470 for (Value *V : Statepoint.gc_args()) {
2471 if (!isa<Instruction>(V))
2472 // Non-instruction values trivial dominate all possible uses
2474 auto *LiveInst = cast<Instruction>(V);
2475 assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
2476 "unreachable values should never be live");
2477 assert(DT.dominates(LiveInst, Info.StatepointToken) &&
2478 "basic SSA liveness expectation violated by liveness analysis");
2482 unique_unsorted(Live);
2486 for (auto *Ptr : Live)
2487 assert(isGCPointerType(Ptr->getType()) && "must be a gc pointer type");
2490 relocationViaAlloca(F, DT, Live, Records);
2491 return !Records.empty();
2494 // Handles both return values and arguments for Functions and CallSites.
2495 template <typename AttrHolder>
2496 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
2499 if (AH.getDereferenceableBytes(Index))
2500 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
2501 AH.getDereferenceableBytes(Index)));
2502 if (AH.getDereferenceableOrNullBytes(Index))
2503 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
2504 AH.getDereferenceableOrNullBytes(Index)));
2505 if (AH.doesNotAlias(Index))
2506 R.addAttribute(Attribute::NoAlias);
2509 AH.setAttributes(AH.getAttributes().removeAttributes(
2510 Ctx, Index, AttributeSet::get(Ctx, Index, R)));
2514 RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) {
2515 LLVMContext &Ctx = F.getContext();
2517 for (Argument &A : F.args())
2518 if (isa<PointerType>(A.getType()))
2519 RemoveNonValidAttrAtIndex(Ctx, F, A.getArgNo() + 1);
2521 if (isa<PointerType>(F.getReturnType()))
2522 RemoveNonValidAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex);
2525 void RewriteStatepointsForGC::stripNonValidAttributesFromBody(Function &F) {
2529 LLVMContext &Ctx = F.getContext();
2530 MDBuilder Builder(Ctx);
2532 for (Instruction &I : instructions(F)) {
2533 if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) {
2534 assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!");
2535 bool IsImmutableTBAA =
2536 MD->getNumOperands() == 4 &&
2537 mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1;
2539 if (!IsImmutableTBAA)
2540 continue; // no work to do, MD_tbaa is already marked mutable
2542 MDNode *Base = cast<MDNode>(MD->getOperand(0));
2543 MDNode *Access = cast<MDNode>(MD->getOperand(1));
2545 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue();
2547 MDNode *MutableTBAA =
2548 Builder.createTBAAStructTagNode(Base, Access, Offset);
2549 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
2552 if (CallSite CS = CallSite(&I)) {
2553 for (int i = 0, e = CS.arg_size(); i != e; i++)
2554 if (isa<PointerType>(CS.getArgument(i)->getType()))
2555 RemoveNonValidAttrAtIndex(Ctx, CS, i + 1);
2556 if (isa<PointerType>(CS.getType()))
2557 RemoveNonValidAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex);
2562 /// Returns true if this function should be rewritten by this pass. The main
2563 /// point of this function is as an extension point for custom logic.
2564 static bool shouldRewriteStatepointsIn(Function &F) {
2565 // TODO: This should check the GCStrategy
2567 const char *FunctionGCName = F.getGC();
2568 const StringRef StatepointExampleName("statepoint-example");
2569 const StringRef CoreCLRName("coreclr");
2570 return (StatepointExampleName == FunctionGCName) ||
2571 (CoreCLRName == FunctionGCName);
2576 void RewriteStatepointsForGC::stripNonValidAttributes(Module &M) {
2578 assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) &&
2582 for (Function &F : M)
2583 stripNonValidAttributesFromPrototype(F);
2585 for (Function &F : M)
2586 stripNonValidAttributesFromBody(F);
2589 bool RewriteStatepointsForGC::runOnFunction(Function &F) {
2590 // Nothing to do for declarations.
2591 if (F.isDeclaration() || F.empty())
2594 // Policy choice says not to rewrite - the most common reason is that we're
2595 // compiling code without a GCStrategy.
2596 if (!shouldRewriteStatepointsIn(F))
2599 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
2601 auto NeedsRewrite = [](Instruction &I) {
2602 if (UseDeoptBundles) {
2603 if (ImmutableCallSite CS = ImmutableCallSite(&I))
2604 return !callsGCLeafFunction(CS);
2608 return isStatepoint(I);
2611 // Gather all the statepoints which need rewritten. Be careful to only
2612 // consider those in reachable code since we need to ask dominance queries
2613 // when rewriting. We'll delete the unreachable ones in a moment.
2614 SmallVector<CallSite, 64> ParsePointNeeded;
2615 bool HasUnreachableStatepoint = false;
2616 for (Instruction &I : instructions(F)) {
2617 // TODO: only the ones with the flag set!
2618 if (NeedsRewrite(I)) {
2619 if (DT.isReachableFromEntry(I.getParent()))
2620 ParsePointNeeded.push_back(CallSite(&I));
2622 HasUnreachableStatepoint = true;
2626 bool MadeChange = false;
2628 // Delete any unreachable statepoints so that we don't have unrewritten
2629 // statepoints surviving this pass. This makes testing easier and the
2630 // resulting IR less confusing to human readers. Rather than be fancy, we
2631 // just reuse a utility function which removes the unreachable blocks.
2632 if (HasUnreachableStatepoint)
2633 MadeChange |= removeUnreachableBlocks(F);
2635 // Return early if no work to do.
2636 if (ParsePointNeeded.empty())
2639 // As a prepass, go ahead and aggressively destroy single entry phi nodes.
2640 // These are created by LCSSA. They have the effect of increasing the size
2641 // of liveness sets for no good reason. It may be harder to do this post
2642 // insertion since relocations and base phis can confuse things.
2643 for (BasicBlock &BB : F)
2644 if (BB.getUniquePredecessor()) {
2646 FoldSingleEntryPHINodes(&BB);
2649 // Before we start introducing relocations, we want to tweak the IR a bit to
2650 // avoid unfortunate code generation effects. The main example is that we
2651 // want to try to make sure the comparison feeding a branch is after any
2652 // safepoints. Otherwise, we end up with a comparison of pre-relocation
2653 // values feeding a branch after relocation. This is semantically correct,
2654 // but results in extra register pressure since both the pre-relocation and
2655 // post-relocation copies must be available in registers. For code without
2656 // relocations this is handled elsewhere, but teaching the scheduler to
2657 // reverse the transform we're about to do would be slightly complex.
2658 // Note: This may extend the live range of the inputs to the icmp and thus
2659 // increase the liveset of any statepoint we move over. This is profitable
2660 // as long as all statepoints are in rare blocks. If we had in-register
2661 // lowering for live values this would be a much safer transform.
2662 auto getConditionInst = [](TerminatorInst *TI) -> Instruction* {
2663 if (auto *BI = dyn_cast<BranchInst>(TI))
2664 if (BI->isConditional())
2665 return dyn_cast<Instruction>(BI->getCondition());
2666 // TODO: Extend this to handle switches
2669 for (BasicBlock &BB : F) {
2670 TerminatorInst *TI = BB.getTerminator();
2671 if (auto *Cond = getConditionInst(TI))
2672 // TODO: Handle more than just ICmps here. We should be able to move
2673 // most instructions without side effects or memory access.
2674 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
2676 Cond->moveBefore(TI);
2680 MadeChange |= insertParsePoints(F, DT, this, ParsePointNeeded);
2684 // liveness computation via standard dataflow
2685 // -------------------------------------------------------------------
2687 // TODO: Consider using bitvectors for liveness, the set of potentially
2688 // interesting values should be small and easy to pre-compute.
2690 /// Compute the live-in set for the location rbegin starting from
2691 /// the live-out set of the basic block
2692 static void computeLiveInValues(BasicBlock::reverse_iterator rbegin,
2693 BasicBlock::reverse_iterator rend,
2694 DenseSet<Value *> &LiveTmp) {
2696 for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) {
2697 Instruction *I = &*ritr;
2699 // KILL/Def - Remove this definition from LiveIn
2702 // Don't consider *uses* in PHI nodes, we handle their contribution to
2703 // predecessor blocks when we seed the LiveOut sets
2704 if (isa<PHINode>(I))
2707 // USE - Add to the LiveIn set for this instruction
2708 for (Value *V : I->operands()) {
2709 assert(!isUnhandledGCPointerType(V->getType()) &&
2710 "support for FCA unimplemented");
2711 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2712 // The choice to exclude all things constant here is slightly subtle.
2713 // There are two independent reasons:
2714 // - We assume that things which are constant (from LLVM's definition)
2715 // do not move at runtime. For example, the address of a global
2716 // variable is fixed, even though it's contents may not be.
2717 // - Second, we can't disallow arbitrary inttoptr constants even
2718 // if the language frontend does. Optimization passes are free to
2719 // locally exploit facts without respect to global reachability. This
2720 // can create sections of code which are dynamically unreachable and
2721 // contain just about anything. (see constants.ll in tests)
2728 static void computeLiveOutSeed(BasicBlock *BB, DenseSet<Value *> &LiveTmp) {
2730 for (BasicBlock *Succ : successors(BB)) {
2731 const BasicBlock::iterator E(Succ->getFirstNonPHI());
2732 for (BasicBlock::iterator I = Succ->begin(); I != E; I++) {
2733 PHINode *Phi = cast<PHINode>(&*I);
2734 Value *V = Phi->getIncomingValueForBlock(BB);
2735 assert(!isUnhandledGCPointerType(V->getType()) &&
2736 "support for FCA unimplemented");
2737 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2744 static DenseSet<Value *> computeKillSet(BasicBlock *BB) {
2745 DenseSet<Value *> KillSet;
2746 for (Instruction &I : *BB)
2747 if (isHandledGCPointerType(I.getType()))
2753 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic
2754 /// sanity check for the liveness computation.
2755 static void checkBasicSSA(DominatorTree &DT, DenseSet<Value *> &Live,
2756 TerminatorInst *TI, bool TermOkay = false) {
2757 for (Value *V : Live) {
2758 if (auto *I = dyn_cast<Instruction>(V)) {
2759 // The terminator can be a member of the LiveOut set. LLVM's definition
2760 // of instruction dominance states that V does not dominate itself. As
2761 // such, we need to special case this to allow it.
2762 if (TermOkay && TI == I)
2764 assert(DT.dominates(I, TI) &&
2765 "basic SSA liveness expectation violated by liveness analysis");
2770 /// Check that all the liveness sets used during the computation of liveness
2771 /// obey basic SSA properties. This is useful for finding cases where we miss
2773 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
2775 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
2776 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
2777 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
2781 static void computeLiveInValues(DominatorTree &DT, Function &F,
2782 GCPtrLivenessData &Data) {
2784 SmallSetVector<BasicBlock *, 200> Worklist;
2785 auto AddPredsToWorklist = [&](BasicBlock *BB) {
2786 // We use a SetVector so that we don't have duplicates in the worklist.
2787 Worklist.insert(pred_begin(BB), pred_end(BB));
2789 auto NextItem = [&]() {
2790 BasicBlock *BB = Worklist.back();
2791 Worklist.pop_back();
2795 // Seed the liveness for each individual block
2796 for (BasicBlock &BB : F) {
2797 Data.KillSet[&BB] = computeKillSet(&BB);
2798 Data.LiveSet[&BB].clear();
2799 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
2802 for (Value *Kill : Data.KillSet[&BB])
2803 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
2806 Data.LiveOut[&BB] = DenseSet<Value *>();
2807 computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
2808 Data.LiveIn[&BB] = Data.LiveSet[&BB];
2809 set_union(Data.LiveIn[&BB], Data.LiveOut[&BB]);
2810 set_subtract(Data.LiveIn[&BB], Data.KillSet[&BB]);
2811 if (!Data.LiveIn[&BB].empty())
2812 AddPredsToWorklist(&BB);
2815 // Propagate that liveness until stable
2816 while (!Worklist.empty()) {
2817 BasicBlock *BB = NextItem();
2819 // Compute our new liveout set, then exit early if it hasn't changed
2820 // despite the contribution of our successor.
2821 DenseSet<Value *> LiveOut = Data.LiveOut[BB];
2822 const auto OldLiveOutSize = LiveOut.size();
2823 for (BasicBlock *Succ : successors(BB)) {
2824 assert(Data.LiveIn.count(Succ));
2825 set_union(LiveOut, Data.LiveIn[Succ]);
2827 // assert OutLiveOut is a subset of LiveOut
2828 if (OldLiveOutSize == LiveOut.size()) {
2829 // If the sets are the same size, then we didn't actually add anything
2830 // when unioning our successors LiveIn Thus, the LiveIn of this block
2834 Data.LiveOut[BB] = LiveOut;
2836 // Apply the effects of this basic block
2837 DenseSet<Value *> LiveTmp = LiveOut;
2838 set_union(LiveTmp, Data.LiveSet[BB]);
2839 set_subtract(LiveTmp, Data.KillSet[BB]);
2841 assert(Data.LiveIn.count(BB));
2842 const DenseSet<Value *> &OldLiveIn = Data.LiveIn[BB];
2843 // assert: OldLiveIn is a subset of LiveTmp
2844 if (OldLiveIn.size() != LiveTmp.size()) {
2845 Data.LiveIn[BB] = LiveTmp;
2846 AddPredsToWorklist(BB);
2848 } // while( !worklist.empty() )
2851 // Sanity check our output against SSA properties. This helps catch any
2852 // missing kills during the above iteration.
2853 for (BasicBlock &BB : F) {
2854 checkBasicSSA(DT, Data, BB);
2859 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
2860 StatepointLiveSetTy &Out) {
2862 BasicBlock *BB = Inst->getParent();
2864 // Note: The copy is intentional and required
2865 assert(Data.LiveOut.count(BB));
2866 DenseSet<Value *> LiveOut = Data.LiveOut[BB];
2868 // We want to handle the statepoint itself oddly. It's
2869 // call result is not live (normal), nor are it's arguments
2870 // (unless they're used again later). This adjustment is
2871 // specifically what we need to relocate
2872 BasicBlock::reverse_iterator rend(Inst->getIterator());
2873 computeLiveInValues(BB->rbegin(), rend, LiveOut);
2874 LiveOut.erase(Inst);
2875 Out.insert(LiveOut.begin(), LiveOut.end());
2878 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
2880 PartiallyConstructedSafepointRecord &Info) {
2881 Instruction *Inst = CS.getInstruction();
2882 StatepointLiveSetTy Updated;
2883 findLiveSetAtInst(Inst, RevisedLivenessData, Updated);
2886 DenseSet<Value *> Bases;
2887 for (auto KVPair : Info.PointerToBase) {
2888 Bases.insert(KVPair.second);
2891 // We may have base pointers which are now live that weren't before. We need
2892 // to update the PointerToBase structure to reflect this.
2893 for (auto V : Updated)
2894 if (!Info.PointerToBase.count(V)) {
2895 assert(Bases.count(V) && "can't find base for unexpected live value");
2896 Info.PointerToBase[V] = V;
2901 for (auto V : Updated) {
2902 assert(Info.PointerToBase.count(V) &&
2903 "must be able to find base for live value");
2907 // Remove any stale base mappings - this can happen since our liveness is
2908 // more precise then the one inherent in the base pointer analysis
2909 DenseSet<Value *> ToErase;
2910 for (auto KVPair : Info.PointerToBase)
2911 if (!Updated.count(KVPair.first))
2912 ToErase.insert(KVPair.first);
2913 for (auto V : ToErase)
2914 Info.PointerToBase.erase(V);
2917 for (auto KVPair : Info.PointerToBase)
2918 assert(Updated.count(KVPair.first) && "record for non-live value");
2921 Info.LiveSet = Updated;