1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file transforms calls of the current function (self recursion) followed
11 // by a return instruction with a branch to the entry of the function, creating
12 // a loop. This pass also implements the following extensions to the basic
15 // 1. Trivial instructions between the call and return do not prevent the
16 // transformation from taking place, though currently the analysis cannot
17 // support moving any really useful instructions (only dead ones).
18 // 2. This pass transforms functions that are prevented from being tail
19 // recursive by an associative and commutative expression to use an
20 // accumulator variable, thus compiling the typical naive factorial or
21 // 'fib' implementation into efficient code.
22 // 3. TRE is performed if the function returns void, if the return
23 // returns the result returned by the call, or if the function returns a
24 // run-time constant on all exits from the function. It is possible, though
25 // unlikely, that the return returns something else (like constant 0), and
26 // can still be TRE'd. It can be TRE'd if ALL OTHER return instructions in
27 // the function return the exact same value.
28 // 4. If it can prove that callees do not access their caller stack frame,
29 // they are marked as eligible for tail call elimination (by the code
32 // There are several improvements that could be made:
34 // 1. If the function has any alloca instructions, these instructions will be
35 // moved out of the entry block of the function, causing them to be
36 // evaluated each time through the tail recursion. Safely keeping allocas
37 // in the entry block requires analysis to proves that the tail-called
38 // function does not read or write the stack object.
39 // 2. Tail recursion is only performed if the call immediately precedes the
40 // return instruction. It's possible that there could be a jump between
41 // the call and the return.
42 // 3. There can be intervening operations between the call and the return that
43 // prevent the TRE from occurring. For example, there could be GEP's and
44 // stores to memory that will not be read or written by the call. This
45 // requires some substantial analysis (such as with DSA) to prove safe to
46 // move ahead of the call, but doing so could allow many more TREs to be
47 // performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
48 // 4. The algorithm we use to detect if callees access their caller stack
49 // frames is very primitive.
51 //===----------------------------------------------------------------------===//
53 #include "llvm/Transforms/Scalar.h"
54 #include "llvm/ADT/STLExtras.h"
55 #include "llvm/ADT/SmallPtrSet.h"
56 #include "llvm/ADT/Statistic.h"
57 #include "llvm/Analysis/GlobalsModRef.h"
58 #include "llvm/Analysis/CFG.h"
59 #include "llvm/Analysis/CaptureTracking.h"
60 #include "llvm/Analysis/InlineCost.h"
61 #include "llvm/Analysis/InstructionSimplify.h"
62 #include "llvm/Analysis/Loads.h"
63 #include "llvm/Analysis/TargetTransformInfo.h"
64 #include "llvm/IR/CFG.h"
65 #include "llvm/IR/CallSite.h"
66 #include "llvm/IR/Constants.h"
67 #include "llvm/IR/DataLayout.h"
68 #include "llvm/IR/DerivedTypes.h"
69 #include "llvm/IR/DiagnosticInfo.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/IR/Instructions.h"
72 #include "llvm/IR/IntrinsicInst.h"
73 #include "llvm/IR/Module.h"
74 #include "llvm/IR/ValueHandle.h"
75 #include "llvm/Pass.h"
76 #include "llvm/Support/Debug.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
79 #include "llvm/Transforms/Utils/Local.h"
82 #define DEBUG_TYPE "tailcallelim"
84 STATISTIC(NumEliminated, "Number of tail calls removed");
85 STATISTIC(NumRetDuped, "Number of return duplicated");
86 STATISTIC(NumAccumAdded, "Number of accumulators introduced");
89 struct TailCallElim : public FunctionPass {
90 const TargetTransformInfo *TTI;
92 static char ID; // Pass identification, replacement for typeid
93 TailCallElim() : FunctionPass(ID) {
94 initializeTailCallElimPass(*PassRegistry::getPassRegistry());
97 void getAnalysisUsage(AnalysisUsage &AU) const override;
99 bool runOnFunction(Function &F) override;
102 bool runTRE(Function &F);
103 bool markTails(Function &F, bool &AllCallsAreTailCalls);
105 CallInst *FindTRECandidate(Instruction *I,
106 bool CannotTailCallElimCallsMarkedTail);
107 bool EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret,
108 BasicBlock *&OldEntry,
109 bool &TailCallsAreMarkedTail,
110 SmallVectorImpl<PHINode *> &ArgumentPHIs,
111 bool CannotTailCallElimCallsMarkedTail);
112 bool FoldReturnAndProcessPred(BasicBlock *BB,
113 ReturnInst *Ret, BasicBlock *&OldEntry,
114 bool &TailCallsAreMarkedTail,
115 SmallVectorImpl<PHINode *> &ArgumentPHIs,
116 bool CannotTailCallElimCallsMarkedTail);
117 bool ProcessReturningBlock(ReturnInst *RI, BasicBlock *&OldEntry,
118 bool &TailCallsAreMarkedTail,
119 SmallVectorImpl<PHINode *> &ArgumentPHIs,
120 bool CannotTailCallElimCallsMarkedTail);
121 bool CanMoveAboveCall(Instruction *I, CallInst *CI);
122 Value *CanTransformAccumulatorRecursion(Instruction *I, CallInst *CI);
126 char TailCallElim::ID = 0;
127 INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim",
128 "Tail Call Elimination", false, false)
129 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
130 INITIALIZE_PASS_END(TailCallElim, "tailcallelim",
131 "Tail Call Elimination", false, false)
133 // Public interface to the TailCallElimination pass
134 FunctionPass *llvm::createTailCallEliminationPass() {
135 return new TailCallElim();
138 void TailCallElim::getAnalysisUsage(AnalysisUsage &AU) const {
139 AU.addRequired<TargetTransformInfoWrapperPass>();
140 AU.addPreserved<GlobalsAAWrapperPass>();
143 /// \brief Scan the specified function for alloca instructions.
144 /// If it contains any dynamic allocas, returns false.
145 static bool CanTRE(Function &F) {
146 // Because of PR962, we don't TRE dynamic allocas.
149 if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
150 if (!AI->isStaticAlloca())
159 bool TailCallElim::runOnFunction(Function &F) {
160 if (skipOptnoneFunction(F))
163 if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
166 bool AllCallsAreTailCalls = false;
167 bool Modified = markTails(F, AllCallsAreTailCalls);
168 if (AllCallsAreTailCalls)
169 Modified |= runTRE(F);
174 struct AllocaDerivedValueTracker {
175 // Start at a root value and walk its use-def chain to mark calls that use the
176 // value or a derived value in AllocaUsers, and places where it may escape in
178 void walk(Value *Root) {
179 SmallVector<Use *, 32> Worklist;
180 SmallPtrSet<Use *, 32> Visited;
182 auto AddUsesToWorklist = [&](Value *V) {
183 for (auto &U : V->uses()) {
184 if (!Visited.insert(&U).second)
186 Worklist.push_back(&U);
190 AddUsesToWorklist(Root);
192 while (!Worklist.empty()) {
193 Use *U = Worklist.pop_back_val();
194 Instruction *I = cast<Instruction>(U->getUser());
196 switch (I->getOpcode()) {
197 case Instruction::Call:
198 case Instruction::Invoke: {
200 bool IsNocapture = !CS.isCallee(U) &&
201 CS.doesNotCapture(CS.getArgumentNo(U));
202 callUsesLocalStack(CS, IsNocapture);
204 // If the alloca-derived argument is passed in as nocapture, then it
205 // can't propagate to the call's return. That would be capturing.
210 case Instruction::Load: {
211 // The result of a load is not alloca-derived (unless an alloca has
212 // otherwise escaped, but this is a local analysis).
215 case Instruction::Store: {
216 if (U->getOperandNo() == 0)
217 EscapePoints.insert(I);
218 continue; // Stores have no users to analyze.
220 case Instruction::BitCast:
221 case Instruction::GetElementPtr:
222 case Instruction::PHI:
223 case Instruction::Select:
224 case Instruction::AddrSpaceCast:
227 EscapePoints.insert(I);
231 AddUsesToWorklist(I);
235 void callUsesLocalStack(CallSite CS, bool IsNocapture) {
236 // Add it to the list of alloca users.
237 AllocaUsers.insert(CS.getInstruction());
239 // If it's nocapture then it can't capture this alloca.
243 // If it can write to memory, it can leak the alloca value.
244 if (!CS.onlyReadsMemory())
245 EscapePoints.insert(CS.getInstruction());
248 SmallPtrSet<Instruction *, 32> AllocaUsers;
249 SmallPtrSet<Instruction *, 32> EscapePoints;
253 bool TailCallElim::markTails(Function &F, bool &AllCallsAreTailCalls) {
254 if (F.callsFunctionThatReturnsTwice())
256 AllCallsAreTailCalls = true;
258 // The local stack holds all alloca instructions and all byval arguments.
259 AllocaDerivedValueTracker Tracker;
260 for (Argument &Arg : F.args()) {
261 if (Arg.hasByValAttr())
266 if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
270 bool Modified = false;
272 // Track whether a block is reachable after an alloca has escaped. Blocks that
273 // contain the escaping instruction will be marked as being visited without an
274 // escaped alloca, since that is how the block began.
280 DenseMap<BasicBlock *, VisitType> Visited;
282 // We propagate the fact that an alloca has escaped from block to successor.
283 // Visit the blocks that are propagating the escapedness first. To do this, we
284 // maintain two worklists.
285 SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped;
287 // We may enter a block and visit it thinking that no alloca has escaped yet,
288 // then see an escape point and go back around a loop edge and come back to
289 // the same block twice. Because of this, we defer setting tail on calls when
290 // we first encounter them in a block. Every entry in this list does not
291 // statically use an alloca via use-def chain analysis, but may find an alloca
292 // through other means if the block turns out to be reachable after an escape
294 SmallVector<CallInst *, 32> DeferredTails;
296 BasicBlock *BB = &F.getEntryBlock();
297 VisitType Escaped = UNESCAPED;
299 for (auto &I : *BB) {
300 if (Tracker.EscapePoints.count(&I))
303 CallInst *CI = dyn_cast<CallInst>(&I);
304 if (!CI || CI->isTailCall())
307 bool IsNoTail = CI->isNoTailCall();
309 if (!IsNoTail && CI->doesNotAccessMemory()) {
310 // A call to a readnone function whose arguments are all things computed
311 // outside this function can be marked tail. Even if you stored the
312 // alloca address into a global, a readnone function can't load the
315 // Note that this runs whether we know an alloca has escaped or not. If
316 // it has, then we can't trust Tracker.AllocaUsers to be accurate.
317 bool SafeToTail = true;
318 for (auto &Arg : CI->arg_operands()) {
319 if (isa<Constant>(Arg.getUser()))
321 if (Argument *A = dyn_cast<Argument>(Arg.getUser()))
322 if (!A->hasByValAttr())
328 emitOptimizationRemark(
329 F.getContext(), "tailcallelim", F, CI->getDebugLoc(),
330 "marked this readnone call a tail call candidate");
337 if (!IsNoTail && Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI)) {
338 DeferredTails.push_back(CI);
340 AllCallsAreTailCalls = false;
344 for (auto *SuccBB : make_range(succ_begin(BB), succ_end(BB))) {
345 auto &State = Visited[SuccBB];
346 if (State < Escaped) {
348 if (State == ESCAPED)
349 WorklistEscaped.push_back(SuccBB);
351 WorklistUnescaped.push_back(SuccBB);
355 if (!WorklistEscaped.empty()) {
356 BB = WorklistEscaped.pop_back_val();
360 while (!WorklistUnescaped.empty()) {
361 auto *NextBB = WorklistUnescaped.pop_back_val();
362 if (Visited[NextBB] == UNESCAPED) {
371 for (CallInst *CI : DeferredTails) {
372 if (Visited[CI->getParent()] != ESCAPED) {
373 // If the escape point was part way through the block, calls after the
374 // escape point wouldn't have been put into DeferredTails.
375 emitOptimizationRemark(F.getContext(), "tailcallelim", F,
377 "marked this call a tail call candidate");
381 AllCallsAreTailCalls = false;
388 bool TailCallElim::runTRE(Function &F) {
389 // If this function is a varargs function, we won't be able to PHI the args
390 // right, so don't even try to convert it...
391 if (F.getFunctionType()->isVarArg()) return false;
393 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
394 BasicBlock *OldEntry = nullptr;
395 bool TailCallsAreMarkedTail = false;
396 SmallVector<PHINode*, 8> ArgumentPHIs;
397 bool MadeChange = false;
399 // If false, we cannot perform TRE on tail calls marked with the 'tail'
400 // attribute, because doing so would cause the stack size to increase (real
401 // TRE would deallocate variable sized allocas, TRE doesn't).
402 bool CanTRETailMarkedCall = CanTRE(F);
404 // Change any tail recursive calls to loops.
406 // FIXME: The code generator produces really bad code when an 'escaping
407 // alloca' is changed from being a static alloca to being a dynamic alloca.
408 // Until this is resolved, disable this transformation if that would ever
409 // happen. This bug is PR962.
410 for (Function::iterator BBI = F.begin(), E = F.end(); BBI != E; /*in loop*/) {
411 BasicBlock *BB = &*BBI++; // FoldReturnAndProcessPred may delete BB.
412 if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator())) {
413 bool Change = ProcessReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail,
414 ArgumentPHIs, !CanTRETailMarkedCall);
415 if (!Change && BB->getFirstNonPHIOrDbg() == Ret)
416 Change = FoldReturnAndProcessPred(BB, Ret, OldEntry,
417 TailCallsAreMarkedTail, ArgumentPHIs,
418 !CanTRETailMarkedCall);
419 MadeChange |= Change;
423 // If we eliminated any tail recursions, it's possible that we inserted some
424 // silly PHI nodes which just merge an initial value (the incoming operand)
425 // with themselves. Check to see if we did and clean up our mess if so. This
426 // occurs when a function passes an argument straight through to its tail
428 for (unsigned i = 0, e = ArgumentPHIs.size(); i != e; ++i) {
429 PHINode *PN = ArgumentPHIs[i];
431 // If the PHI Node is a dynamic constant, replace it with the value it is.
432 if (Value *PNV = SimplifyInstruction(PN, F.getParent()->getDataLayout())) {
433 PN->replaceAllUsesWith(PNV);
434 PN->eraseFromParent();
442 /// Return true if it is safe to move the specified
443 /// instruction from after the call to before the call, assuming that all
444 /// instructions between the call and this instruction are movable.
446 bool TailCallElim::CanMoveAboveCall(Instruction *I, CallInst *CI) {
447 // FIXME: We can move load/store/call/free instructions above the call if the
448 // call does not mod/ref the memory location being processed.
449 if (I->mayHaveSideEffects()) // This also handles volatile loads.
452 if (LoadInst *L = dyn_cast<LoadInst>(I)) {
453 // Loads may always be moved above calls without side effects.
454 if (CI->mayHaveSideEffects()) {
455 // Non-volatile loads may be moved above a call with side effects if it
456 // does not write to memory and the load provably won't trap.
457 // FIXME: Writes to memory only matter if they may alias the pointer
458 // being loaded from.
459 if (CI->mayWriteToMemory() ||
460 !isSafeToLoadUnconditionally(L->getPointerOperand(), L,
466 // Otherwise, if this is a side-effect free instruction, check to make sure
467 // that it does not use the return value of the call. If it doesn't use the
468 // return value of the call, it must only use things that are defined before
469 // the call, or movable instructions between the call and the instruction
471 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
472 if (I->getOperand(i) == CI)
477 /// Return true if the specified value is the same when the return would exit
478 /// as it was when the initial iteration of the recursive function was executed.
480 /// We currently handle static constants and arguments that are not modified as
481 /// part of the recursion.
482 static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) {
483 if (isa<Constant>(V)) return true; // Static constants are always dyn consts
485 // Check to see if this is an immutable argument, if so, the value
486 // will be available to initialize the accumulator.
487 if (Argument *Arg = dyn_cast<Argument>(V)) {
488 // Figure out which argument number this is...
490 Function *F = CI->getParent()->getParent();
491 for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI)
494 // If we are passing this argument into call as the corresponding
495 // argument operand, then the argument is dynamically constant.
496 // Otherwise, we cannot transform this function safely.
497 if (CI->getArgOperand(ArgNo) == Arg)
501 // Switch cases are always constant integers. If the value is being switched
502 // on and the return is only reachable from one of its cases, it's
503 // effectively constant.
504 if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor())
505 if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator()))
506 if (SI->getCondition() == V)
507 return SI->getDefaultDest() != RI->getParent();
509 // Not a constant or immutable argument, we can't safely transform.
513 /// Check to see if the function containing the specified tail call consistently
514 /// returns the same runtime-constant value at all exit points except for
515 /// IgnoreRI. If so, return the returned value.
516 static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) {
517 Function *F = CI->getParent()->getParent();
518 Value *ReturnedValue = nullptr;
520 for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI) {
521 ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator());
522 if (RI == nullptr || RI == IgnoreRI) continue;
524 // We can only perform this transformation if the value returned is
525 // evaluatable at the start of the initial invocation of the function,
526 // instead of at the end of the evaluation.
528 Value *RetOp = RI->getOperand(0);
529 if (!isDynamicConstant(RetOp, CI, RI))
532 if (ReturnedValue && RetOp != ReturnedValue)
533 return nullptr; // Cannot transform if differing values are returned.
534 ReturnedValue = RetOp;
536 return ReturnedValue;
539 /// If the specified instruction can be transformed using accumulator recursion
540 /// elimination, return the constant which is the start of the accumulator
541 /// value. Otherwise return null.
542 Value *TailCallElim::CanTransformAccumulatorRecursion(Instruction *I,
544 if (!I->isAssociative() || !I->isCommutative()) return nullptr;
545 assert(I->getNumOperands() == 2 &&
546 "Associative/commutative operations should have 2 args!");
548 // Exactly one operand should be the result of the call instruction.
549 if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
550 (I->getOperand(0) != CI && I->getOperand(1) != CI))
553 // The only user of this instruction we allow is a single return instruction.
554 if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back()))
557 // Ok, now we have to check all of the other return instructions in this
558 // function. If they return non-constants or differing values, then we cannot
559 // transform the function safely.
560 return getCommonReturnValue(cast<ReturnInst>(I->user_back()), CI);
563 static Instruction *FirstNonDbg(BasicBlock::iterator I) {
564 while (isa<DbgInfoIntrinsic>(I))
570 TailCallElim::FindTRECandidate(Instruction *TI,
571 bool CannotTailCallElimCallsMarkedTail) {
572 BasicBlock *BB = TI->getParent();
573 Function *F = BB->getParent();
575 if (&BB->front() == TI) // Make sure there is something before the terminator.
578 // Scan backwards from the return, checking to see if there is a tail call in
579 // this block. If so, set CI to it.
580 CallInst *CI = nullptr;
581 BasicBlock::iterator BBI(TI);
583 CI = dyn_cast<CallInst>(BBI);
584 if (CI && CI->getCalledFunction() == F)
587 if (BBI == BB->begin())
588 return nullptr; // Didn't find a potential tail call.
592 // If this call is marked as a tail call, and if there are dynamic allocas in
593 // the function, we cannot perform this optimization.
594 if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail)
597 // As a special case, detect code like this:
598 // double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
599 // and disable this xform in this case, because the code generator will
600 // lower the call to fabs into inline code.
601 if (BB == &F->getEntryBlock() &&
602 FirstNonDbg(BB->front().getIterator()) == CI &&
603 FirstNonDbg(std::next(BB->begin())) == TI && CI->getCalledFunction() &&
604 !TTI->isLoweredToCall(CI->getCalledFunction())) {
605 // A single-block function with just a call and a return. Check that
606 // the arguments match.
607 CallSite::arg_iterator I = CallSite(CI).arg_begin(),
608 E = CallSite(CI).arg_end();
609 Function::arg_iterator FI = F->arg_begin(),
611 for (; I != E && FI != FE; ++I, ++FI)
612 if (*I != &*FI) break;
613 if (I == E && FI == FE)
620 bool TailCallElim::EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret,
621 BasicBlock *&OldEntry,
622 bool &TailCallsAreMarkedTail,
623 SmallVectorImpl<PHINode *> &ArgumentPHIs,
624 bool CannotTailCallElimCallsMarkedTail) {
625 // If we are introducing accumulator recursion to eliminate operations after
626 // the call instruction that are both associative and commutative, the initial
627 // value for the accumulator is placed in this variable. If this value is set
628 // then we actually perform accumulator recursion elimination instead of
629 // simple tail recursion elimination. If the operation is an LLVM instruction
630 // (eg: "add") then it is recorded in AccumulatorRecursionInstr. If not, then
631 // we are handling the case when the return instruction returns a constant C
632 // which is different to the constant returned by other return instructions
633 // (which is recorded in AccumulatorRecursionEliminationInitVal). This is a
634 // special case of accumulator recursion, the operation being "return C".
635 Value *AccumulatorRecursionEliminationInitVal = nullptr;
636 Instruction *AccumulatorRecursionInstr = nullptr;
638 // Ok, we found a potential tail call. We can currently only transform the
639 // tail call if all of the instructions between the call and the return are
640 // movable to above the call itself, leaving the call next to the return.
641 // Check that this is the case now.
642 BasicBlock::iterator BBI(CI);
643 for (++BBI; &*BBI != Ret; ++BBI) {
644 if (CanMoveAboveCall(&*BBI, CI)) continue;
646 // If we can't move the instruction above the call, it might be because it
647 // is an associative and commutative operation that could be transformed
648 // using accumulator recursion elimination. Check to see if this is the
649 // case, and if so, remember the initial accumulator value for later.
650 if ((AccumulatorRecursionEliminationInitVal =
651 CanTransformAccumulatorRecursion(&*BBI, CI))) {
652 // Yes, this is accumulator recursion. Remember which instruction
654 AccumulatorRecursionInstr = &*BBI;
656 return false; // Otherwise, we cannot eliminate the tail recursion!
660 // We can only transform call/return pairs that either ignore the return value
661 // of the call and return void, ignore the value of the call and return a
662 // constant, return the value returned by the tail call, or that are being
663 // accumulator recursion variable eliminated.
664 if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI &&
665 !isa<UndefValue>(Ret->getReturnValue()) &&
666 AccumulatorRecursionEliminationInitVal == nullptr &&
667 !getCommonReturnValue(nullptr, CI)) {
668 // One case remains that we are able to handle: the current return
669 // instruction returns a constant, and all other return instructions
670 // return a different constant.
671 if (!isDynamicConstant(Ret->getReturnValue(), CI, Ret))
672 return false; // Current return instruction does not return a constant.
673 // Check that all other return instructions return a common constant. If
674 // so, record it in AccumulatorRecursionEliminationInitVal.
675 AccumulatorRecursionEliminationInitVal = getCommonReturnValue(Ret, CI);
676 if (!AccumulatorRecursionEliminationInitVal)
680 BasicBlock *BB = Ret->getParent();
681 Function *F = BB->getParent();
683 emitOptimizationRemark(F->getContext(), "tailcallelim", *F, CI->getDebugLoc(),
684 "transforming tail recursion to loop");
686 // OK! We can transform this tail call. If this is the first one found,
687 // create the new entry block, allowing us to branch back to the old entry.
689 OldEntry = &F->getEntryBlock();
690 BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry);
691 NewEntry->takeName(OldEntry);
692 OldEntry->setName("tailrecurse");
693 BranchInst::Create(OldEntry, NewEntry);
695 // If this tail call is marked 'tail' and if there are any allocas in the
696 // entry block, move them up to the new entry block.
697 TailCallsAreMarkedTail = CI->isTailCall();
698 if (TailCallsAreMarkedTail)
699 // Move all fixed sized allocas from OldEntry to NewEntry.
700 for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(),
701 NEBI = NewEntry->begin(); OEBI != E; )
702 if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
703 if (isa<ConstantInt>(AI->getArraySize()))
704 AI->moveBefore(&*NEBI);
706 // Now that we have created a new block, which jumps to the entry
707 // block, insert a PHI node for each argument of the function.
708 // For now, we initialize each PHI to only have the real arguments
709 // which are passed in.
710 Instruction *InsertPos = &OldEntry->front();
711 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
713 PHINode *PN = PHINode::Create(I->getType(), 2,
714 I->getName() + ".tr", InsertPos);
715 I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
716 PN->addIncoming(&*I, NewEntry);
717 ArgumentPHIs.push_back(PN);
721 // If this function has self recursive calls in the tail position where some
722 // are marked tail and some are not, only transform one flavor or another. We
723 // have to choose whether we move allocas in the entry block to the new entry
724 // block or not, so we can't make a good choice for both. NOTE: We could do
725 // slightly better here in the case that the function has no entry block
727 if (TailCallsAreMarkedTail && !CI->isTailCall())
730 // Ok, now that we know we have a pseudo-entry block WITH all of the
731 // required PHI nodes, add entries into the PHI node for the actual
732 // parameters passed into the tail-recursive call.
733 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
734 ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB);
736 // If we are introducing an accumulator variable to eliminate the recursion,
737 // do so now. Note that we _know_ that no subsequent tail recursion
738 // eliminations will happen on this function because of the way the
739 // accumulator recursion predicate is set up.
741 if (AccumulatorRecursionEliminationInitVal) {
742 Instruction *AccRecInstr = AccumulatorRecursionInstr;
743 // Start by inserting a new PHI node for the accumulator.
744 pred_iterator PB = pred_begin(OldEntry), PE = pred_end(OldEntry);
745 PHINode *AccPN = PHINode::Create(
746 AccumulatorRecursionEliminationInitVal->getType(),
747 std::distance(PB, PE) + 1, "accumulator.tr", &OldEntry->front());
749 // Loop over all of the predecessors of the tail recursion block. For the
750 // real entry into the function we seed the PHI with the initial value,
751 // computed earlier. For any other existing branches to this block (due to
752 // other tail recursions eliminated) the accumulator is not modified.
753 // Because we haven't added the branch in the current block to OldEntry yet,
754 // it will not show up as a predecessor.
755 for (pred_iterator PI = PB; PI != PE; ++PI) {
757 if (P == &F->getEntryBlock())
758 AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P);
760 AccPN->addIncoming(AccPN, P);
764 // Add an incoming argument for the current block, which is computed by
765 // our associative and commutative accumulator instruction.
766 AccPN->addIncoming(AccRecInstr, BB);
768 // Next, rewrite the accumulator recursion instruction so that it does not
769 // use the result of the call anymore, instead, use the PHI node we just
771 AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
773 // Add an incoming argument for the current block, which is just the
774 // constant returned by the current return instruction.
775 AccPN->addIncoming(Ret->getReturnValue(), BB);
778 // Finally, rewrite any return instructions in the program to return the PHI
779 // node instead of the "initval" that they do currently. This loop will
780 // actually rewrite the return value we are destroying, but that's ok.
781 for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI)
782 if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()))
783 RI->setOperand(0, AccPN);
787 // Now that all of the PHI nodes are in place, remove the call and
788 // ret instructions, replacing them with an unconditional branch.
789 BranchInst *NewBI = BranchInst::Create(OldEntry, Ret);
790 NewBI->setDebugLoc(CI->getDebugLoc());
792 BB->getInstList().erase(Ret); // Remove return.
793 BB->getInstList().erase(CI); // Remove call.
798 bool TailCallElim::FoldReturnAndProcessPred(BasicBlock *BB,
799 ReturnInst *Ret, BasicBlock *&OldEntry,
800 bool &TailCallsAreMarkedTail,
801 SmallVectorImpl<PHINode *> &ArgumentPHIs,
802 bool CannotTailCallElimCallsMarkedTail) {
805 // If the return block contains nothing but the return and PHI's,
806 // there might be an opportunity to duplicate the return in its
807 // predecessors and perform TRC there. Look for predecessors that end
808 // in unconditional branch and recursive call(s).
809 SmallVector<BranchInst*, 8> UncondBranchPreds;
810 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
811 BasicBlock *Pred = *PI;
812 TerminatorInst *PTI = Pred->getTerminator();
813 if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
814 if (BI->isUnconditional())
815 UncondBranchPreds.push_back(BI);
818 while (!UncondBranchPreds.empty()) {
819 BranchInst *BI = UncondBranchPreds.pop_back_val();
820 BasicBlock *Pred = BI->getParent();
821 if (CallInst *CI = FindTRECandidate(BI, CannotTailCallElimCallsMarkedTail)){
822 DEBUG(dbgs() << "FOLDING: " << *BB
823 << "INTO UNCOND BRANCH PRED: " << *Pred);
824 ReturnInst *RI = FoldReturnIntoUncondBranch(Ret, BB, Pred);
826 // Cleanup: if all predecessors of BB have been eliminated by
827 // FoldReturnIntoUncondBranch, delete it. It is important to empty it,
828 // because the ret instruction in there is still using a value which
829 // EliminateRecursiveTailCall will attempt to remove.
830 if (!BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
831 BB->eraseFromParent();
833 EliminateRecursiveTailCall(CI, RI, OldEntry, TailCallsAreMarkedTail,
835 CannotTailCallElimCallsMarkedTail);
845 TailCallElim::ProcessReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry,
846 bool &TailCallsAreMarkedTail,
847 SmallVectorImpl<PHINode *> &ArgumentPHIs,
848 bool CannotTailCallElimCallsMarkedTail) {
849 CallInst *CI = FindTRECandidate(Ret, CannotTailCallElimCallsMarkedTail);
853 return EliminateRecursiveTailCall(CI, Ret, OldEntry, TailCallsAreMarkedTail,
855 CannotTailCallElimCallsMarkedTail);