1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the interface to tear out a code region, such as an
11 // individual loop or a parallel section, into a new function, replacing it with
12 // a call to the new function.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Transforms/Utils/FunctionUtils.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Intrinsics.h"
21 #include "llvm/LLVMContext.h"
22 #include "llvm/Module.h"
23 #include "llvm/Pass.h"
24 #include "llvm/Analysis/Dominators.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/Verifier.h"
27 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/ADT/SetVector.h"
33 #include "llvm/ADT/StringExtras.h"
38 // Provide a command-line option to aggregate function arguments into a struct
39 // for functions produced by the code extractor. This is useful when converting
40 // extracted functions to pthread-based code, as only one argument (void*) can
41 // be passed in to pthread_create().
43 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
44 cl::desc("Aggregate arguments to code-extracted functions"));
48 typedef SetVector<Value*> Values;
49 SetVector<BasicBlock*> BlocksToExtract;
52 unsigned NumExitBlocks;
55 CodeExtractor(DominatorTree* dt = 0, bool AggArgs = false)
56 : DT(dt), AggregateArgs(AggArgs||AggregateArgsOpt), NumExitBlocks(~0U) {}
58 Function *ExtractCodeRegion(const std::vector<BasicBlock*> &code);
60 bool isEligible(const std::vector<BasicBlock*> &code);
63 /// definedInRegion - Return true if the specified value is defined in the
65 bool definedInRegion(Value *V) const {
66 if (Instruction *I = dyn_cast<Instruction>(V))
67 if (BlocksToExtract.count(I->getParent()))
72 /// definedInCaller - Return true if the specified value is defined in the
73 /// function being code extracted, but not in the region being extracted.
74 /// These values must be passed in as live-ins to the function.
75 bool definedInCaller(Value *V) const {
76 if (isa<Argument>(V)) return true;
77 if (Instruction *I = dyn_cast<Instruction>(V))
78 if (!BlocksToExtract.count(I->getParent()))
83 void severSplitPHINodes(BasicBlock *&Header);
84 void splitReturnBlocks();
85 void findInputsOutputs(Values &inputs, Values &outputs);
87 Function *constructFunction(const Values &inputs,
88 const Values &outputs,
90 BasicBlock *newRootNode, BasicBlock *newHeader,
91 Function *oldFunction, Module *M);
93 void moveCodeToFunction(Function *newFunction);
95 void emitCallAndSwitchStatement(Function *newFunction,
96 BasicBlock *newHeader,
103 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the
104 /// region, we need to split the entry block of the region so that the PHI node
105 /// is easier to deal with.
106 void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) {
107 unsigned NumPredsFromRegion = 0;
108 unsigned NumPredsOutsideRegion = 0;
110 if (Header != &Header->getParent()->getEntryBlock()) {
111 PHINode *PN = dyn_cast<PHINode>(Header->begin());
112 if (!PN) return; // No PHI nodes.
114 // If the header node contains any PHI nodes, check to see if there is more
115 // than one entry from outside the region. If so, we need to sever the
116 // header block into two.
117 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
118 if (BlocksToExtract.count(PN->getIncomingBlock(i)))
119 ++NumPredsFromRegion;
121 ++NumPredsOutsideRegion;
123 // If there is one (or fewer) predecessor from outside the region, we don't
124 // need to do anything special.
125 if (NumPredsOutsideRegion <= 1) return;
128 // Otherwise, we need to split the header block into two pieces: one
129 // containing PHI nodes merging values from outside of the region, and a
130 // second that contains all of the code for the block and merges back any
131 // incoming values from inside of the region.
132 BasicBlock::iterator AfterPHIs = Header->getFirstNonPHI();
133 BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs,
134 Header->getName()+".ce");
136 // We only want to code extract the second block now, and it becomes the new
137 // header of the region.
138 BasicBlock *OldPred = Header;
139 BlocksToExtract.remove(OldPred);
140 BlocksToExtract.insert(NewBB);
143 // Okay, update dominator sets. The blocks that dominate the new one are the
144 // blocks that dominate TIBB plus the new block itself.
146 DT->splitBlock(NewBB);
148 // Okay, now we need to adjust the PHI nodes and any branches from within the
149 // region to go to the new header block instead of the old header block.
150 if (NumPredsFromRegion) {
151 PHINode *PN = cast<PHINode>(OldPred->begin());
152 // Loop over all of the predecessors of OldPred that are in the region,
153 // changing them to branch to NewBB instead.
154 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
155 if (BlocksToExtract.count(PN->getIncomingBlock(i))) {
156 TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator();
157 TI->replaceUsesOfWith(OldPred, NewBB);
160 // Okay, everthing within the region is now branching to the right block, we
161 // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
162 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
163 PHINode *PN = cast<PHINode>(AfterPHIs);
164 // Create a new PHI node in the new region, which has an incoming value
165 // from OldPred of PN.
166 PHINode *NewPN = PHINode::Create(PN->getType(), PN->getName()+".ce",
168 NewPN->reserveOperandSpace(1+NumPredsFromRegion);
169 NewPN->addIncoming(PN, OldPred);
171 // Loop over all of the incoming value in PN, moving them to NewPN if they
172 // are from the extracted region.
173 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
174 if (BlocksToExtract.count(PN->getIncomingBlock(i))) {
175 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
176 PN->removeIncomingValue(i);
184 void CodeExtractor::splitReturnBlocks() {
185 for (SetVector<BasicBlock*>::iterator I = BlocksToExtract.begin(),
186 E = BlocksToExtract.end(); I != E; ++I)
187 if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator())) {
188 BasicBlock *New = (*I)->splitBasicBlock(RI, (*I)->getName()+".ret");
190 // Old dominates New. New node dominates all other nodes dominated
192 DomTreeNode *OldNode = DT->getNode(*I);
193 SmallVector<DomTreeNode*, 8> Children;
194 for (DomTreeNode::iterator DI = OldNode->begin(), DE = OldNode->end();
196 Children.push_back(*DI);
198 DomTreeNode *NewNode = DT->addNewBlock(New, *I);
200 for (SmallVector<DomTreeNode*, 8>::iterator I = Children.begin(),
201 E = Children.end(); I != E; ++I)
202 DT->changeImmediateDominator(*I, NewNode);
207 // findInputsOutputs - Find inputs to, outputs from the code region.
209 void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs) {
210 std::set<BasicBlock*> ExitBlocks;
211 for (SetVector<BasicBlock*>::const_iterator ci = BlocksToExtract.begin(),
212 ce = BlocksToExtract.end(); ci != ce; ++ci) {
213 BasicBlock *BB = *ci;
215 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
216 // If a used value is defined outside the region, it's an input. If an
217 // instruction is used outside the region, it's an output.
218 for (User::op_iterator O = I->op_begin(), E = I->op_end(); O != E; ++O)
219 if (definedInCaller(*O))
222 // Consider uses of this instruction (outputs).
223 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
225 if (!definedInRegion(*UI)) {
231 // Keep track of the exit blocks from the region.
232 TerminatorInst *TI = BB->getTerminator();
233 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
234 if (!BlocksToExtract.count(TI->getSuccessor(i)))
235 ExitBlocks.insert(TI->getSuccessor(i));
236 } // for: basic blocks
238 NumExitBlocks = ExitBlocks.size();
241 /// constructFunction - make a function based on inputs and outputs, as follows:
242 /// f(in0, ..., inN, out0, ..., outN)
244 Function *CodeExtractor::constructFunction(const Values &inputs,
245 const Values &outputs,
247 BasicBlock *newRootNode,
248 BasicBlock *newHeader,
249 Function *oldFunction,
251 DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
252 DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
254 // This function returns unsigned, outputs will go back by reference.
255 switch (NumExitBlocks) {
257 case 1: RetTy = Type::getVoidTy(header->getContext()); break;
258 case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
259 default: RetTy = Type::getInt16Ty(header->getContext()); break;
262 std::vector<const Type*> paramTy;
264 // Add the types of the input values to the function's argument list
265 for (Values::const_iterator i = inputs.begin(),
266 e = inputs.end(); i != e; ++i) {
267 const Value *value = *i;
268 DEBUG(dbgs() << "value used in func: " << *value << "\n");
269 paramTy.push_back(value->getType());
272 // Add the types of the output values to the function's argument list.
273 for (Values::const_iterator I = outputs.begin(), E = outputs.end();
275 DEBUG(dbgs() << "instr used in func: " << **I << "\n");
277 paramTy.push_back((*I)->getType());
279 paramTy.push_back(PointerType::getUnqual((*I)->getType()));
282 DEBUG(dbgs() << "Function type: " << *RetTy << " f(");
283 for (std::vector<const Type*>::iterator i = paramTy.begin(),
284 e = paramTy.end(); i != e; ++i)
285 DEBUG(dbgs() << **i << ", ");
286 DEBUG(dbgs() << ")\n");
288 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
289 PointerType *StructPtr =
290 PointerType::getUnqual(StructType::get(M->getContext(), paramTy));
292 paramTy.push_back(StructPtr);
294 const FunctionType *funcType =
295 FunctionType::get(RetTy, paramTy, false);
297 // Create the new function
298 Function *newFunction = Function::Create(funcType,
299 GlobalValue::InternalLinkage,
300 oldFunction->getName() + "_" +
301 header->getName(), M);
302 // If the old function is no-throw, so is the new one.
303 if (oldFunction->doesNotThrow())
304 newFunction->setDoesNotThrow(true);
306 newFunction->getBasicBlockList().push_back(newRootNode);
308 // Create an iterator to name all of the arguments we inserted.
309 Function::arg_iterator AI = newFunction->arg_begin();
311 // Rewrite all users of the inputs in the extracted region to use the
312 // arguments (or appropriate addressing into struct) instead.
313 for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
317 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
318 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
319 TerminatorInst *TI = newFunction->begin()->getTerminator();
320 GetElementPtrInst *GEP =
321 GetElementPtrInst::Create(AI, Idx, Idx+2,
322 "gep_" + inputs[i]->getName(), TI);
323 RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI);
327 std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end());
328 for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end();
330 if (Instruction* inst = dyn_cast<Instruction>(*use))
331 if (BlocksToExtract.count(inst->getParent()))
332 inst->replaceUsesOfWith(inputs[i], RewriteVal);
335 // Set names for input and output arguments.
336 if (!AggregateArgs) {
337 AI = newFunction->arg_begin();
338 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
339 AI->setName(inputs[i]->getName());
340 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
341 AI->setName(outputs[i]->getName()+".out");
344 // Rewrite branches to basic blocks outside of the loop to new dummy blocks
345 // within the new function. This must be done before we lose track of which
346 // blocks were originally in the code region.
347 std::vector<User*> Users(header->use_begin(), header->use_end());
348 for (unsigned i = 0, e = Users.size(); i != e; ++i)
349 // The BasicBlock which contains the branch is not in the region
350 // modify the branch target to a new block
351 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i]))
352 if (!BlocksToExtract.count(TI->getParent()) &&
353 TI->getParent()->getParent() == oldFunction)
354 TI->replaceUsesOfWith(header, newHeader);
359 /// FindPhiPredForUseInBlock - Given a value and a basic block, find a PHI
360 /// that uses the value within the basic block, and return the predecessor
361 /// block associated with that use, or return 0 if none is found.
362 static BasicBlock* FindPhiPredForUseInBlock(Value* Used, BasicBlock* BB) {
363 for (Value::use_iterator UI = Used->use_begin(),
364 UE = Used->use_end(); UI != UE; ++UI) {
365 PHINode *P = dyn_cast<PHINode>(*UI);
366 if (P && P->getParent() == BB)
367 return P->getIncomingBlock(UI);
373 /// emitCallAndSwitchStatement - This method sets up the caller side by adding
374 /// the call instruction, splitting any PHI nodes in the header block as
377 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
378 Values &inputs, Values &outputs) {
379 // Emit a call to the new function, passing in: *pointer to struct (if
380 // aggregating parameters), or plan inputs and allocated memory for outputs
381 std::vector<Value*> params, StructValues, ReloadOutputs, Reloads;
383 LLVMContext &Context = newFunction->getContext();
385 // Add inputs as params, or to be filled into the struct
386 for (Values::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i)
388 StructValues.push_back(*i);
390 params.push_back(*i);
392 // Create allocas for the outputs
393 for (Values::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) {
395 StructValues.push_back(*i);
398 new AllocaInst((*i)->getType(), 0, (*i)->getName()+".loc",
399 codeReplacer->getParent()->begin()->begin());
400 ReloadOutputs.push_back(alloca);
401 params.push_back(alloca);
405 AllocaInst *Struct = 0;
406 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
407 std::vector<const Type*> ArgTypes;
408 for (Values::iterator v = StructValues.begin(),
409 ve = StructValues.end(); v != ve; ++v)
410 ArgTypes.push_back((*v)->getType());
412 // Allocate a struct at the beginning of this function
413 Type *StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
415 new AllocaInst(StructArgTy, 0, "structArg",
416 codeReplacer->getParent()->begin()->begin());
417 params.push_back(Struct);
419 for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
421 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
422 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
423 GetElementPtrInst *GEP =
424 GetElementPtrInst::Create(Struct, Idx, Idx + 2,
425 "gep_" + StructValues[i]->getName());
426 codeReplacer->getInstList().push_back(GEP);
427 StoreInst *SI = new StoreInst(StructValues[i], GEP);
428 codeReplacer->getInstList().push_back(SI);
432 // Emit the call to the function
433 CallInst *call = CallInst::Create(newFunction, params.begin(), params.end(),
434 NumExitBlocks > 1 ? "targetBlock" : "");
435 codeReplacer->getInstList().push_back(call);
437 Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
438 unsigned FirstOut = inputs.size();
440 std::advance(OutputArgBegin, inputs.size());
442 // Reload the outputs passed in by reference
443 for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
447 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
448 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
449 GetElementPtrInst *GEP
450 = GetElementPtrInst::Create(Struct, Idx, Idx + 2,
451 "gep_reload_" + outputs[i]->getName());
452 codeReplacer->getInstList().push_back(GEP);
455 Output = ReloadOutputs[i];
457 LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload");
458 Reloads.push_back(load);
459 codeReplacer->getInstList().push_back(load);
460 std::vector<User*> Users(outputs[i]->use_begin(), outputs[i]->use_end());
461 for (unsigned u = 0, e = Users.size(); u != e; ++u) {
462 Instruction *inst = cast<Instruction>(Users[u]);
463 if (!BlocksToExtract.count(inst->getParent()))
464 inst->replaceUsesOfWith(outputs[i], load);
468 // Now we can emit a switch statement using the call as a value.
469 SwitchInst *TheSwitch =
470 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
471 codeReplacer, 0, codeReplacer);
473 // Since there may be multiple exits from the original region, make the new
474 // function return an unsigned, switch on that number. This loop iterates
475 // over all of the blocks in the extracted region, updating any terminator
476 // instructions in the to-be-extracted region that branch to blocks that are
477 // not in the region to be extracted.
478 std::map<BasicBlock*, BasicBlock*> ExitBlockMap;
480 unsigned switchVal = 0;
481 for (SetVector<BasicBlock*>::const_iterator i = BlocksToExtract.begin(),
482 e = BlocksToExtract.end(); i != e; ++i) {
483 TerminatorInst *TI = (*i)->getTerminator();
484 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
485 if (!BlocksToExtract.count(TI->getSuccessor(i))) {
486 BasicBlock *OldTarget = TI->getSuccessor(i);
487 // add a new basic block which returns the appropriate value
488 BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
490 // If we don't already have an exit stub for this non-extracted
491 // destination, create one now!
492 NewTarget = BasicBlock::Create(Context,
493 OldTarget->getName() + ".exitStub",
495 unsigned SuccNum = switchVal++;
498 switch (NumExitBlocks) {
500 case 1: break; // No value needed.
501 case 2: // Conditional branch, return a bool
502 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
505 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
509 ReturnInst *NTRet = ReturnInst::Create(Context, brVal, NewTarget);
511 // Update the switch instruction.
512 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
516 // Restore values just before we exit
517 Function::arg_iterator OAI = OutputArgBegin;
518 for (unsigned out = 0, e = outputs.size(); out != e; ++out) {
519 // For an invoke, the normal destination is the only one that is
520 // dominated by the result of the invocation
521 BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent();
523 bool DominatesDef = true;
525 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) {
526 DefBlock = Invoke->getNormalDest();
528 // Make sure we are looking at the original successor block, not
529 // at a newly inserted exit block, which won't be in the dominator
531 for (std::map<BasicBlock*, BasicBlock*>::iterator I =
532 ExitBlockMap.begin(), E = ExitBlockMap.end(); I != E; ++I)
533 if (DefBlock == I->second) {
538 // In the extract block case, if the block we are extracting ends
539 // with an invoke instruction, make sure that we don't emit a
540 // store of the invoke value for the unwind block.
541 if (!DT && DefBlock != OldTarget)
542 DominatesDef = false;
546 DominatesDef = DT->dominates(DefBlock, OldTarget);
548 // If the output value is used by a phi in the target block,
549 // then we need to test for dominance of the phi's predecessor
550 // instead. Unfortunately, this a little complicated since we
551 // have already rewritten uses of the value to uses of the reload.
552 BasicBlock* pred = FindPhiPredForUseInBlock(Reloads[out],
554 if (pred && DT && DT->dominates(DefBlock, pred))
561 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
562 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context),
564 GetElementPtrInst *GEP =
565 GetElementPtrInst::Create(OAI, Idx, Idx + 2,
566 "gep_" + outputs[out]->getName(),
568 new StoreInst(outputs[out], GEP, NTRet);
570 new StoreInst(outputs[out], OAI, NTRet);
573 // Advance output iterator even if we don't emit a store
574 if (!AggregateArgs) ++OAI;
578 // rewrite the original branch instruction with this new target
579 TI->setSuccessor(i, NewTarget);
583 // Now that we've done the deed, simplify the switch instruction.
584 const Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
585 switch (NumExitBlocks) {
587 // There are no successors (the block containing the switch itself), which
588 // means that previously this was the last part of the function, and hence
589 // this should be rewritten as a `ret'
591 // Check if the function should return a value
592 if (OldFnRetTy->isVoidTy()) {
593 ReturnInst::Create(Context, 0, TheSwitch); // Return void
594 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
595 // return what we have
596 ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
598 // Otherwise we must have code extracted an unwind or something, just
599 // return whatever we want.
600 ReturnInst::Create(Context,
601 Constant::getNullValue(OldFnRetTy), TheSwitch);
604 TheSwitch->eraseFromParent();
607 // Only a single destination, change the switch into an unconditional
609 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
610 TheSwitch->eraseFromParent();
613 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
615 TheSwitch->eraseFromParent();
618 // Otherwise, make the default destination of the switch instruction be one
619 // of the other successors.
620 TheSwitch->setOperand(0, call);
621 TheSwitch->setSuccessor(0, TheSwitch->getSuccessor(NumExitBlocks));
622 TheSwitch->removeCase(NumExitBlocks); // Remove redundant case
627 void CodeExtractor::moveCodeToFunction(Function *newFunction) {
628 Function *oldFunc = (*BlocksToExtract.begin())->getParent();
629 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
630 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
632 for (SetVector<BasicBlock*>::const_iterator i = BlocksToExtract.begin(),
633 e = BlocksToExtract.end(); i != e; ++i) {
634 // Delete the basic block from the old function, and the list of blocks
635 oldBlocks.remove(*i);
637 // Insert this basic block into the new function
638 newBlocks.push_back(*i);
642 /// ExtractRegion - Removes a loop from a function, replaces it with a call to
643 /// new function. Returns pointer to the new function.
647 /// find inputs and outputs for the region
649 /// for inputs: add to function as args, map input instr* to arg#
650 /// for outputs: add allocas for scalars,
651 /// add to func as args, map output instr* to arg#
653 /// rewrite func to use argument #s instead of instr*
655 /// for each scalar output in the function: at every exit, store intermediate
656 /// computed result back into memory.
658 Function *CodeExtractor::
659 ExtractCodeRegion(const std::vector<BasicBlock*> &code) {
660 if (!isEligible(code))
663 // 1) Find inputs, outputs
664 // 2) Construct new function
665 // * Add allocas for defs, pass as args by reference
666 // * Pass in uses as args
667 // 3) Move code region, add call instr to func
669 BlocksToExtract.insert(code.begin(), code.end());
671 Values inputs, outputs;
673 // Assumption: this is a single-entry code region, and the header is the first
674 // block in the region.
675 BasicBlock *header = code[0];
677 for (unsigned i = 1, e = code.size(); i != e; ++i)
678 for (pred_iterator PI = pred_begin(code[i]), E = pred_end(code[i]);
680 assert(BlocksToExtract.count(*PI) &&
681 "No blocks in this region may have entries from outside the region"
682 " except for the first block!");
684 // If we have to split PHI nodes or the entry block, do so now.
685 severSplitPHINodes(header);
687 // If we have any return instructions in the region, split those blocks so
688 // that the return is not in the region.
691 Function *oldFunction = header->getParent();
693 // This takes place of the original loop
694 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
695 "codeRepl", oldFunction,
698 // The new function needs a root node because other nodes can branch to the
699 // head of the region, but the entry node of a function cannot have preds.
700 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
702 newFuncRoot->getInstList().push_back(BranchInst::Create(header));
704 // Find inputs to, outputs from the code region.
705 findInputsOutputs(inputs, outputs);
707 // Construct new function based on inputs/outputs & add allocas for all defs.
708 Function *newFunction = constructFunction(inputs, outputs, header,
710 codeReplacer, oldFunction,
711 oldFunction->getParent());
713 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
715 moveCodeToFunction(newFunction);
717 // Loop over all of the PHI nodes in the header block, and change any
718 // references to the old incoming edge to be the new incoming edge.
719 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
720 PHINode *PN = cast<PHINode>(I);
721 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
722 if (!BlocksToExtract.count(PN->getIncomingBlock(i)))
723 PN->setIncomingBlock(i, newFuncRoot);
726 // Look at all successors of the codeReplacer block. If any of these blocks
727 // had PHI nodes in them, we need to update the "from" block to be the code
728 // replacer, not the original block in the extracted region.
729 std::vector<BasicBlock*> Succs(succ_begin(codeReplacer),
730 succ_end(codeReplacer));
731 for (unsigned i = 0, e = Succs.size(); i != e; ++i)
732 for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) {
733 PHINode *PN = cast<PHINode>(I);
734 std::set<BasicBlock*> ProcessedPreds;
735 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
736 if (BlocksToExtract.count(PN->getIncomingBlock(i))) {
737 if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second)
738 PN->setIncomingBlock(i, codeReplacer);
740 // There were multiple entries in the PHI for this block, now there
741 // is only one, so remove the duplicated entries.
742 PN->removeIncomingValue(i, false);
748 //cerr << "NEW FUNCTION: " << *newFunction;
749 // verifyFunction(*newFunction);
751 // cerr << "OLD FUNCTION: " << *oldFunction;
752 // verifyFunction(*oldFunction);
754 DEBUG(if (verifyFunction(*newFunction))
755 report_fatal_error("verifyFunction failed!"));
759 bool CodeExtractor::isEligible(const std::vector<BasicBlock*> &code) {
760 // Deny code region if it contains allocas or vastarts.
761 for (std::vector<BasicBlock*>::const_iterator BB = code.begin(), e=code.end();
763 for (BasicBlock::const_iterator I = (*BB)->begin(), Ie = (*BB)->end();
765 if (isa<AllocaInst>(*I))
767 else if (const CallInst *CI = dyn_cast<CallInst>(I))
768 if (const Function *F = CI->getCalledFunction())
769 if (F->getIntrinsicID() == Intrinsic::vastart)
775 /// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new
778 Function* llvm::ExtractCodeRegion(DominatorTree &DT,
779 const std::vector<BasicBlock*> &code,
780 bool AggregateArgs) {
781 return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(code);
784 /// ExtractBasicBlock - slurp a natural loop into a brand new function
786 Function* llvm::ExtractLoop(DominatorTree &DT, Loop *L, bool AggregateArgs) {
787 return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(L->getBlocks());
790 /// ExtractBasicBlock - slurp a basic block into a brand new function
792 Function* llvm::ExtractBasicBlock(BasicBlock *BB, bool AggregateArgs) {
793 std::vector<BasicBlock*> Blocks;
794 Blocks.push_back(BB);
795 return CodeExtractor(0, AggregateArgs).ExtractCodeRegion(Blocks);