Revert r146822 at Pete Cooper's request as it broke clang self hosting.
[oota-llvm.git] / lib / Transforms / Utils / InlineFunction.cpp
1 //===- InlineFunction.cpp - Code to perform function inlining -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements inlining of a function into a call site, resolving
11 // parameters and the return value as appropriate.
12 //
13 // The code in this file for handling inlines through invoke
14 // instructions preserves semantics only under some assumptions about
15 // the behavior of unwinders which correspond to gcc-style libUnwind
16 // exception personality functions.  Eventually the IR will be
17 // improved to make this unnecessary, but until then, this code is
18 // marked [LIBUNWIND].
19 //
20 //===----------------------------------------------------------------------===//
21
22 #include "llvm/Transforms/Utils/Cloning.h"
23 #include "llvm/Constants.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Module.h"
26 #include "llvm/Instructions.h"
27 #include "llvm/IntrinsicInst.h"
28 #include "llvm/Intrinsics.h"
29 #include "llvm/Attributes.h"
30 #include "llvm/Analysis/CallGraph.h"
31 #include "llvm/Analysis/DebugInfo.h"
32 #include "llvm/Analysis/InstructionSimplify.h"
33 #include "llvm/Target/TargetData.h"
34 #include "llvm/Transforms/Utils/Local.h"
35 #include "llvm/ADT/SmallVector.h"
36 #include "llvm/ADT/StringExtras.h"
37 #include "llvm/Support/CallSite.h"
38 #include "llvm/Support/IRBuilder.h"
39 using namespace llvm;
40
41 bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI) {
42   return InlineFunction(CallSite(CI), IFI);
43 }
44 bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI) {
45   return InlineFunction(CallSite(II), IFI);
46 }
47
48 // FIXME: New EH - Remove the functions marked [LIBUNWIND] when new EH is
49 // turned on.
50
51 /// [LIBUNWIND] Look for an llvm.eh.exception call in the given block.
52 static EHExceptionInst *findExceptionInBlock(BasicBlock *bb) {
53   for (BasicBlock::iterator i = bb->begin(), e = bb->end(); i != e; i++) {
54     EHExceptionInst *exn = dyn_cast<EHExceptionInst>(i);
55     if (exn) return exn;
56   }
57
58   return 0;
59 }
60
61 /// [LIBUNWIND] Look for the 'best' llvm.eh.selector instruction for
62 /// the given llvm.eh.exception call.
63 static EHSelectorInst *findSelectorForException(EHExceptionInst *exn) {
64   BasicBlock *exnBlock = exn->getParent();
65
66   EHSelectorInst *outOfBlockSelector = 0;
67   for (Instruction::use_iterator
68          ui = exn->use_begin(), ue = exn->use_end(); ui != ue; ++ui) {
69     EHSelectorInst *sel = dyn_cast<EHSelectorInst>(*ui);
70     if (!sel) continue;
71
72     // Immediately accept an eh.selector in the same block as the
73     // excepton call.
74     if (sel->getParent() == exnBlock) return sel;
75
76     // Otherwise, use the first selector we see.
77     if (!outOfBlockSelector) outOfBlockSelector = sel;
78   }
79
80   return outOfBlockSelector;
81 }
82
83 /// [LIBUNWIND] Find the (possibly absent) call to @llvm.eh.selector
84 /// in the given landing pad.  In principle, llvm.eh.exception is
85 /// required to be in the landing pad; in practice, SplitCriticalEdge
86 /// can break that invariant, and then inlining can break it further.
87 /// There's a real need for a reliable solution here, but until that
88 /// happens, we have some fragile workarounds here.
89 static EHSelectorInst *findSelectorForLandingPad(BasicBlock *lpad) {
90   // Look for an exception call in the actual landing pad.
91   EHExceptionInst *exn = findExceptionInBlock(lpad);
92   if (exn) return findSelectorForException(exn);
93
94   // Okay, if that failed, look for one in an obvious successor.  If
95   // we find one, we'll fix the IR by moving things back to the
96   // landing pad.
97
98   bool dominates = true; // does the lpad dominate the exn call
99   BasicBlock *nonDominated = 0; // if not, the first non-dominated block
100   BasicBlock *lastDominated = 0; // and the block which branched to it
101
102   BasicBlock *exnBlock = lpad;
103
104   // We need to protect against lpads that lead into infinite loops.
105   SmallPtrSet<BasicBlock*,4> visited;
106   visited.insert(exnBlock);
107
108   do {
109     // We're not going to apply this hack to anything more complicated
110     // than a series of unconditional branches, so if the block
111     // doesn't terminate in an unconditional branch, just fail.  More
112     // complicated cases can arise when, say, sinking a call into a
113     // split unwind edge and then inlining it; but that can do almost
114     // *anything* to the CFG, including leaving the selector
115     // completely unreachable.  The only way to fix that properly is
116     // to (1) prohibit transforms which move the exception or selector
117     // values away from the landing pad, e.g. by producing them with
118     // instructions that are pinned to an edge like a phi, or
119     // producing them with not-really-instructions, and (2) making
120     // transforms which split edges deal with that.
121     BranchInst *branch = dyn_cast<BranchInst>(&exnBlock->back());
122     if (!branch || branch->isConditional()) return 0;
123
124     BasicBlock *successor = branch->getSuccessor(0);
125
126     // Fail if we found an infinite loop.
127     if (!visited.insert(successor)) return 0;
128
129     // If the successor isn't dominated by exnBlock:
130     if (!successor->getSinglePredecessor()) {
131       // We don't want to have to deal with threading the exception
132       // through multiple levels of phi, so give up if we've already
133       // followed a non-dominating edge.
134       if (!dominates) return 0;
135
136       // Otherwise, remember this as a non-dominating edge.
137       dominates = false;
138       nonDominated = successor;
139       lastDominated = exnBlock;
140     }
141
142     exnBlock = successor;
143
144     // Can we stop here?
145     exn = findExceptionInBlock(exnBlock);
146   } while (!exn);
147
148   // Look for a selector call for the exception we found.
149   EHSelectorInst *selector = findSelectorForException(exn);
150   if (!selector) return 0;
151
152   // The easy case is when the landing pad still dominates the
153   // exception call, in which case we can just move both calls back to
154   // the landing pad.
155   if (dominates) {
156     selector->moveBefore(lpad->getFirstNonPHI());
157     exn->moveBefore(selector);
158     return selector;
159   }
160
161   // Otherwise, we have to split at the first non-dominating block.
162   // The CFG looks basically like this:
163   //    lpad:
164   //      phis_0
165   //      insnsAndBranches_1
166   //      br label %nonDominated
167   //    nonDominated:
168   //      phis_2
169   //      insns_3
170   //      %exn = call i8* @llvm.eh.exception()
171   //      insnsAndBranches_4
172   //      %selector = call @llvm.eh.selector(i8* %exn, ...
173   // We need to turn this into:
174   //    lpad:
175   //      phis_0
176   //      %exn0 = call i8* @llvm.eh.exception()
177   //      %selector0 = call @llvm.eh.selector(i8* %exn0, ...
178   //      insnsAndBranches_1
179   //      br label %split // from lastDominated
180   //    nonDominated:
181   //      phis_2 (without edge from lastDominated)
182   //      %exn1 = call i8* @llvm.eh.exception()
183   //      %selector1 = call i8* @llvm.eh.selector(i8* %exn1, ...
184   //      br label %split
185   //    split:
186   //      phis_2 (edge from lastDominated, edge from split)
187   //      %exn = phi ...
188   //      %selector = phi ...
189   //      insns_3
190   //      insnsAndBranches_4
191
192   assert(nonDominated);
193   assert(lastDominated);
194
195   // First, make clones of the intrinsics to go in lpad.
196   EHExceptionInst *lpadExn = cast<EHExceptionInst>(exn->clone());
197   EHSelectorInst *lpadSelector = cast<EHSelectorInst>(selector->clone());
198   lpadSelector->setArgOperand(0, lpadExn);
199   lpadSelector->insertBefore(lpad->getFirstNonPHI());
200   lpadExn->insertBefore(lpadSelector);
201
202   // Split the non-dominated block.
203   BasicBlock *split =
204     nonDominated->splitBasicBlock(nonDominated->getFirstNonPHI(),
205                                   nonDominated->getName() + ".lpad-fix");
206
207   // Redirect the last dominated branch there.
208   cast<BranchInst>(lastDominated->back()).setSuccessor(0, split);
209
210   // Move the existing intrinsics to the end of the old block.
211   selector->moveBefore(&nonDominated->back());
212   exn->moveBefore(selector);
213
214   Instruction *splitIP = &split->front();
215
216   // For all the phis in nonDominated, make a new phi in split to join
217   // that phi with the edge from lastDominated.
218   for (BasicBlock::iterator
219          i = nonDominated->begin(), e = nonDominated->end(); i != e; ++i) {
220     PHINode *phi = dyn_cast<PHINode>(i);
221     if (!phi) break;
222
223     PHINode *splitPhi = PHINode::Create(phi->getType(), 2, phi->getName(),
224                                         splitIP);
225     phi->replaceAllUsesWith(splitPhi);
226     splitPhi->addIncoming(phi, nonDominated);
227     splitPhi->addIncoming(phi->removeIncomingValue(lastDominated),
228                           lastDominated);
229   }
230
231   // Make new phis for the exception and selector.
232   PHINode *exnPhi = PHINode::Create(exn->getType(), 2, "", splitIP);
233   exn->replaceAllUsesWith(exnPhi);
234   selector->setArgOperand(0, exn); // except for this use
235   exnPhi->addIncoming(exn, nonDominated);
236   exnPhi->addIncoming(lpadExn, lastDominated);
237
238   PHINode *selectorPhi = PHINode::Create(selector->getType(), 2, "", splitIP);
239   selector->replaceAllUsesWith(selectorPhi);
240   selectorPhi->addIncoming(selector, nonDominated);
241   selectorPhi->addIncoming(lpadSelector, lastDominated);
242
243   return lpadSelector;
244 }
245
246 namespace {
247   /// A class for recording information about inlining through an invoke.
248   class InvokeInliningInfo {
249     BasicBlock *OuterUnwindDest;
250     EHSelectorInst *OuterSelector;
251     BasicBlock *InnerUnwindDest;
252     PHINode *InnerExceptionPHI;
253     PHINode *InnerSelectorPHI;
254     SmallVector<Value*, 8> UnwindDestPHIValues;
255
256     // FIXME: New EH - These will replace the analogous ones above.
257     BasicBlock *OuterResumeDest; //< Destination of the invoke's unwind.
258     BasicBlock *InnerResumeDest; //< Destination for the callee's resume.
259     LandingPadInst *CallerLPad;  //< LandingPadInst associated with the invoke.
260     PHINode *InnerEHValuesPHI;   //< PHI for EH values from landingpad insts.
261
262   public:
263     InvokeInliningInfo(InvokeInst *II)
264       : OuterUnwindDest(II->getUnwindDest()), OuterSelector(0),
265         InnerUnwindDest(0), InnerExceptionPHI(0), InnerSelectorPHI(0),
266         OuterResumeDest(II->getUnwindDest()), InnerResumeDest(0),
267         CallerLPad(0), InnerEHValuesPHI(0) {
268       // If there are PHI nodes in the unwind destination block, we need to keep
269       // track of which values came into them from the invoke before removing
270       // the edge from this block.
271       llvm::BasicBlock *InvokeBB = II->getParent();
272       BasicBlock::iterator I = OuterUnwindDest->begin();
273       for (; isa<PHINode>(I); ++I) {
274         // Save the value to use for this edge.
275         PHINode *PHI = cast<PHINode>(I);
276         UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
277       }
278
279       // FIXME: With the new EH, this if/dyn_cast should be a 'cast'.
280       if (LandingPadInst *LPI = dyn_cast<LandingPadInst>(I)) {
281         CallerLPad = LPI;
282       }
283     }
284
285     /// The outer unwind destination is the target of unwind edges
286     /// introduced for calls within the inlined function.
287     BasicBlock *getOuterUnwindDest() const {
288       return OuterUnwindDest;
289     }
290
291     EHSelectorInst *getOuterSelector() {
292       if (!OuterSelector)
293         OuterSelector = findSelectorForLandingPad(OuterUnwindDest);
294       return OuterSelector;
295     }
296
297     BasicBlock *getInnerUnwindDest();
298
299     // FIXME: New EH - Rename when new EH is turned on.
300     BasicBlock *getInnerUnwindDestNewEH();
301
302     LandingPadInst *getLandingPadInst() const { return CallerLPad; }
303
304     bool forwardEHResume(CallInst *call, BasicBlock *src);
305
306     /// forwardResume - Forward the 'resume' instruction to the caller's landing
307     /// pad block. When the landing pad block has only one predecessor, this is
308     /// a simple branch. When there is more than one predecessor, we need to
309     /// split the landing pad block after the landingpad instruction and jump
310     /// to there.
311     void forwardResume(ResumeInst *RI);
312
313     /// addIncomingPHIValuesFor - Add incoming-PHI values to the unwind
314     /// destination block for the given basic block, using the values for the
315     /// original invoke's source block.
316     void addIncomingPHIValuesFor(BasicBlock *BB) const {
317       addIncomingPHIValuesForInto(BB, OuterUnwindDest);
318     }
319
320     void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
321       BasicBlock::iterator I = dest->begin();
322       for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
323         PHINode *phi = cast<PHINode>(I);
324         phi->addIncoming(UnwindDestPHIValues[i], src);
325       }
326     }
327   };
328 }
329
330 /// [LIBUNWIND] Get or create a target for the branch out of rewritten calls to
331 /// llvm.eh.resume.
332 BasicBlock *InvokeInliningInfo::getInnerUnwindDest() {
333   if (InnerUnwindDest) return InnerUnwindDest;
334
335   // Find and hoist the llvm.eh.exception and llvm.eh.selector calls
336   // in the outer landing pad to immediately following the phis.
337   EHSelectorInst *selector = getOuterSelector();
338   if (!selector) return 0;
339
340   // The call to llvm.eh.exception *must* be in the landing pad.
341   Instruction *exn = cast<Instruction>(selector->getArgOperand(0));
342   assert(exn->getParent() == OuterUnwindDest);
343
344   // TODO: recognize when we've already done this, so that we don't
345   // get a linear number of these when inlining calls into lots of
346   // invokes with the same landing pad.
347
348   // Do the hoisting.
349   Instruction *splitPoint = exn->getParent()->getFirstNonPHI();
350   assert(splitPoint != selector && "selector-on-exception dominance broken!");
351   if (splitPoint == exn) {
352     selector->removeFromParent();
353     selector->insertAfter(exn);
354     splitPoint = selector->getNextNode();
355   } else {
356     exn->moveBefore(splitPoint);
357     selector->moveBefore(splitPoint);
358   }
359
360   // Split the landing pad.
361   InnerUnwindDest = OuterUnwindDest->splitBasicBlock(splitPoint,
362                                         OuterUnwindDest->getName() + ".body");
363
364   // The number of incoming edges we expect to the inner landing pad.
365   const unsigned phiCapacity = 2;
366
367   // Create corresponding new phis for all the phis in the outer landing pad.
368   BasicBlock::iterator insertPoint = InnerUnwindDest->begin();
369   BasicBlock::iterator I = OuterUnwindDest->begin();
370   for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
371     PHINode *outerPhi = cast<PHINode>(I);
372     PHINode *innerPhi = PHINode::Create(outerPhi->getType(), phiCapacity,
373                                         outerPhi->getName() + ".lpad-body",
374                                         insertPoint);
375     outerPhi->replaceAllUsesWith(innerPhi);
376     innerPhi->addIncoming(outerPhi, OuterUnwindDest);
377   }
378
379   // Create a phi for the exception value...
380   InnerExceptionPHI = PHINode::Create(exn->getType(), phiCapacity,
381                                       "exn.lpad-body", insertPoint);
382   exn->replaceAllUsesWith(InnerExceptionPHI);
383   selector->setArgOperand(0, exn); // restore this use
384   InnerExceptionPHI->addIncoming(exn, OuterUnwindDest);
385
386   // ...and the selector.
387   InnerSelectorPHI = PHINode::Create(selector->getType(), phiCapacity,
388                                      "selector.lpad-body", insertPoint);
389   selector->replaceAllUsesWith(InnerSelectorPHI);
390   InnerSelectorPHI->addIncoming(selector, OuterUnwindDest);
391
392   // All done.
393   return InnerUnwindDest;
394 }
395
396 /// [LIBUNWIND] Try to forward the given call, which logically occurs
397 /// at the end of the given block, as a branch to the inner unwind
398 /// block.  Returns true if the call was forwarded.
399 bool InvokeInliningInfo::forwardEHResume(CallInst *call, BasicBlock *src) {
400   // First, check whether this is a call to the intrinsic.
401   Function *fn = dyn_cast<Function>(call->getCalledValue());
402   if (!fn || fn->getName() != "llvm.eh.resume")
403     return false;
404   
405   // At this point, we need to return true on all paths, because
406   // otherwise we'll construct an invoke of the intrinsic, which is
407   // not well-formed.
408
409   // Try to find or make an inner unwind dest, which will fail if we
410   // can't find a selector call for the outer unwind dest.
411   BasicBlock *dest = getInnerUnwindDest();
412   bool hasSelector = (dest != 0);
413
414   // If we failed, just use the outer unwind dest, dropping the
415   // exception and selector on the floor.
416   if (!hasSelector)
417     dest = OuterUnwindDest;
418
419   // Make a branch.
420   BranchInst::Create(dest, src);
421
422   // Update the phis in the destination.  They were inserted in an
423   // order which makes this work.
424   addIncomingPHIValuesForInto(src, dest);
425
426   if (hasSelector) {
427     InnerExceptionPHI->addIncoming(call->getArgOperand(0), src);
428     InnerSelectorPHI->addIncoming(call->getArgOperand(1), src);
429   }
430
431   return true;
432 }
433
434 /// Get or create a target for the branch from ResumeInsts.
435 BasicBlock *InvokeInliningInfo::getInnerUnwindDestNewEH() {
436   // FIXME: New EH - rename this function when new EH is turned on.
437   if (InnerResumeDest) return InnerResumeDest;
438
439   // Split the landing pad.
440   BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint;
441   InnerResumeDest =
442     OuterResumeDest->splitBasicBlock(SplitPoint,
443                                      OuterResumeDest->getName() + ".body");
444
445   // The number of incoming edges we expect to the inner landing pad.
446   const unsigned PHICapacity = 2;
447
448   // Create corresponding new PHIs for all the PHIs in the outer landing pad.
449   BasicBlock::iterator InsertPoint = InnerResumeDest->begin();
450   BasicBlock::iterator I = OuterResumeDest->begin();
451   for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
452     PHINode *OuterPHI = cast<PHINode>(I);
453     PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
454                                         OuterPHI->getName() + ".lpad-body",
455                                         InsertPoint);
456     OuterPHI->replaceAllUsesWith(InnerPHI);
457     InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
458   }
459
460   // Create a PHI for the exception values.
461   InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
462                                      "eh.lpad-body", InsertPoint);
463   CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
464   InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
465
466   // All done.
467   return InnerResumeDest;
468 }
469
470 /// forwardResume - Forward the 'resume' instruction to the caller's landing pad
471 /// block. When the landing pad block has only one predecessor, this is a simple
472 /// branch. When there is more than one predecessor, we need to split the
473 /// landing pad block after the landingpad instruction and jump to there.
474 void InvokeInliningInfo::forwardResume(ResumeInst *RI) {
475   BasicBlock *Dest = getInnerUnwindDestNewEH();
476   BasicBlock *Src = RI->getParent();
477
478   BranchInst::Create(Dest, Src);
479
480   // Update the PHIs in the destination. They were inserted in an order which
481   // makes this work.
482   addIncomingPHIValuesForInto(Src, Dest);
483
484   InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
485   RI->eraseFromParent();
486 }
487
488 /// [LIBUNWIND] Check whether this selector is "only cleanups":
489 ///   call i32 @llvm.eh.selector(blah, blah, i32 0)
490 static bool isCleanupOnlySelector(EHSelectorInst *selector) {
491   if (selector->getNumArgOperands() != 3) return false;
492   ConstantInt *val = dyn_cast<ConstantInt>(selector->getArgOperand(2));
493   return (val && val->isZero());
494 }
495
496 /// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into
497 /// an invoke, we have to turn all of the calls that can throw into
498 /// invokes.  This function analyze BB to see if there are any calls, and if so,
499 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
500 /// nodes in that block with the values specified in InvokeDestPHIValues.
501 ///
502 /// Returns true to indicate that the next block should be skipped.
503 static bool HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
504                                                    InvokeInliningInfo &Invoke) {
505   LandingPadInst *LPI = Invoke.getLandingPadInst();
506
507   for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
508     Instruction *I = BBI++;
509
510     if (LPI) // FIXME: New EH - This won't be NULL in the new EH.
511       if (LandingPadInst *L = dyn_cast<LandingPadInst>(I)) {
512         unsigned NumClauses = LPI->getNumClauses();
513         L->reserveClauses(NumClauses);
514         for (unsigned i = 0; i != NumClauses; ++i)
515           L->addClause(LPI->getClause(i));
516       }
517
518     // We only need to check for function calls: inlined invoke
519     // instructions require no special handling.
520     CallInst *CI = dyn_cast<CallInst>(I);
521     if (CI == 0) continue;
522
523     // LIBUNWIND: merge selector instructions.
524     if (EHSelectorInst *Inner = dyn_cast<EHSelectorInst>(CI)) {
525       EHSelectorInst *Outer = Invoke.getOuterSelector();
526       if (!Outer) continue;
527
528       bool innerIsOnlyCleanup = isCleanupOnlySelector(Inner);
529       bool outerIsOnlyCleanup = isCleanupOnlySelector(Outer);
530
531       // If both selectors contain only cleanups, we don't need to do
532       // anything.  TODO: this is really just a very specific instance
533       // of a much more general optimization.
534       if (innerIsOnlyCleanup && outerIsOnlyCleanup) continue;
535
536       // Otherwise, we just append the outer selector to the inner selector.
537       SmallVector<Value*, 16> NewSelector;
538       for (unsigned i = 0, e = Inner->getNumArgOperands(); i != e; ++i)
539         NewSelector.push_back(Inner->getArgOperand(i));
540       for (unsigned i = 2, e = Outer->getNumArgOperands(); i != e; ++i)
541         NewSelector.push_back(Outer->getArgOperand(i));
542
543       CallInst *NewInner =
544         IRBuilder<>(Inner).CreateCall(Inner->getCalledValue(), NewSelector);
545       // No need to copy attributes, calling convention, etc.
546       NewInner->takeName(Inner);
547       Inner->replaceAllUsesWith(NewInner);
548       Inner->eraseFromParent();
549       continue;
550     }
551     
552     // If this call cannot unwind, don't convert it to an invoke.
553     if (CI->doesNotThrow())
554       continue;
555     
556     // Convert this function call into an invoke instruction.
557     // First, split the basic block.
558     BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
559
560     // Delete the unconditional branch inserted by splitBasicBlock
561     BB->getInstList().pop_back();
562
563     // LIBUNWIND: If this is a call to @llvm.eh.resume, just branch
564     // directly to the new landing pad.
565     if (Invoke.forwardEHResume(CI, BB)) {
566       // TODO: 'Split' is now unreachable; clean it up.
567
568       // We want to leave the original call intact so that the call
569       // graph and other structures won't get misled.  We also have to
570       // avoid processing the next block, or we'll iterate here forever.
571       return true;
572     }
573
574     // Otherwise, create the new invoke instruction.
575     ImmutableCallSite CS(CI);
576     SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end());
577     InvokeInst *II =
578       InvokeInst::Create(CI->getCalledValue(), Split,
579                          Invoke.getOuterUnwindDest(),
580                          InvokeArgs, CI->getName(), BB);
581     II->setCallingConv(CI->getCallingConv());
582     II->setAttributes(CI->getAttributes());
583     
584     // Make sure that anything using the call now uses the invoke!  This also
585     // updates the CallGraph if present, because it uses a WeakVH.
586     CI->replaceAllUsesWith(II);
587
588     Split->getInstList().pop_front();  // Delete the original call
589
590     // Update any PHI nodes in the exceptional block to indicate that
591     // there is now a new entry in them.
592     Invoke.addIncomingPHIValuesFor(BB);
593     return false;
594   }
595
596   return false;
597 }
598   
599
600 /// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
601 /// in the body of the inlined function into invokes and turn unwind
602 /// instructions into branches to the invoke unwind dest.
603 ///
604 /// II is the invoke instruction being inlined.  FirstNewBlock is the first
605 /// block of the inlined code (the last block is the end of the function),
606 /// and InlineCodeInfo is information about the code that got inlined.
607 static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
608                                 ClonedCodeInfo &InlinedCodeInfo) {
609   BasicBlock *InvokeDest = II->getUnwindDest();
610
611   Function *Caller = FirstNewBlock->getParent();
612
613   // The inlined code is currently at the end of the function, scan from the
614   // start of the inlined code to its end, checking for stuff we need to
615   // rewrite.  If the code doesn't have calls or unwinds, we know there is
616   // nothing to rewrite.
617   if (!InlinedCodeInfo.ContainsCalls && !InlinedCodeInfo.ContainsUnwinds) {
618     // Now that everything is happy, we have one final detail.  The PHI nodes in
619     // the exception destination block still have entries due to the original
620     // invoke instruction.  Eliminate these entries (which might even delete the
621     // PHI node) now.
622     InvokeDest->removePredecessor(II->getParent());
623     return;
624   }
625
626   InvokeInliningInfo Invoke(II);
627   
628   for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){
629     if (InlinedCodeInfo.ContainsCalls)
630       if (HandleCallsInBlockInlinedThroughInvoke(BB, Invoke)) {
631         // Honor a request to skip the next block.  We don't need to
632         // consider UnwindInsts in this case either.
633         ++BB;
634         continue;
635       }
636
637     if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
638       // An UnwindInst requires special handling when it gets inlined into an
639       // invoke site.  Once this happens, we know that the unwind would cause
640       // a control transfer to the invoke exception destination, so we can
641       // transform it into a direct branch to the exception destination.
642       BranchInst::Create(InvokeDest, UI);
643
644       // Delete the unwind instruction!
645       UI->eraseFromParent();
646
647       // Update any PHI nodes in the exceptional block to indicate that
648       // there is now a new entry in them.
649       Invoke.addIncomingPHIValuesFor(BB);
650     }
651
652     if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
653       Invoke.forwardResume(RI);
654     }
655   }
656
657   // Now that everything is happy, we have one final detail.  The PHI nodes in
658   // the exception destination block still have entries due to the original
659   // invoke instruction.  Eliminate these entries (which might even delete the
660   // PHI node) now.
661   InvokeDest->removePredecessor(II->getParent());
662 }
663
664 /// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
665 /// into the caller, update the specified callgraph to reflect the changes we
666 /// made.  Note that it's possible that not all code was copied over, so only
667 /// some edges of the callgraph may remain.
668 static void UpdateCallGraphAfterInlining(CallSite CS,
669                                          Function::iterator FirstNewBlock,
670                                          ValueToValueMapTy &VMap,
671                                          InlineFunctionInfo &IFI) {
672   CallGraph &CG = *IFI.CG;
673   const Function *Caller = CS.getInstruction()->getParent()->getParent();
674   const Function *Callee = CS.getCalledFunction();
675   CallGraphNode *CalleeNode = CG[Callee];
676   CallGraphNode *CallerNode = CG[Caller];
677
678   // Since we inlined some uninlined call sites in the callee into the caller,
679   // add edges from the caller to all of the callees of the callee.
680   CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
681
682   // Consider the case where CalleeNode == CallerNode.
683   CallGraphNode::CalledFunctionsVector CallCache;
684   if (CalleeNode == CallerNode) {
685     CallCache.assign(I, E);
686     I = CallCache.begin();
687     E = CallCache.end();
688   }
689
690   for (; I != E; ++I) {
691     const Value *OrigCall = I->first;
692
693     ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
694     // Only copy the edge if the call was inlined!
695     if (VMI == VMap.end() || VMI->second == 0)
696       continue;
697     
698     // If the call was inlined, but then constant folded, there is no edge to
699     // add.  Check for this case.
700     Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
701     if (NewCall == 0) continue;
702
703     // Remember that this call site got inlined for the client of
704     // InlineFunction.
705     IFI.InlinedCalls.push_back(NewCall);
706
707     // It's possible that inlining the callsite will cause it to go from an
708     // indirect to a direct call by resolving a function pointer.  If this
709     // happens, set the callee of the new call site to a more precise
710     // destination.  This can also happen if the call graph node of the caller
711     // was just unnecessarily imprecise.
712     if (I->second->getFunction() == 0)
713       if (Function *F = CallSite(NewCall).getCalledFunction()) {
714         // Indirect call site resolved to direct call.
715         CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);
716
717         continue;
718       }
719
720     CallerNode->addCalledFunction(CallSite(NewCall), I->second);
721   }
722   
723   // Update the call graph by deleting the edge from Callee to Caller.  We must
724   // do this after the loop above in case Caller and Callee are the same.
725   CallerNode->removeCallEdgeFor(CS);
726 }
727
728 /// HandleByValArgument - When inlining a call site that has a byval argument,
729 /// we have to make the implicit memcpy explicit by adding it.
730 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
731                                   const Function *CalledFunc,
732                                   InlineFunctionInfo &IFI,
733                                   unsigned ByValAlignment) {
734   Type *AggTy = cast<PointerType>(Arg->getType())->getElementType();
735
736   // If the called function is readonly, then it could not mutate the caller's
737   // copy of the byval'd memory.  In this case, it is safe to elide the copy and
738   // temporary.
739   if (CalledFunc->onlyReadsMemory()) {
740     // If the byval argument has a specified alignment that is greater than the
741     // passed in pointer, then we either have to round up the input pointer or
742     // give up on this transformation.
743     if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
744       return Arg;
745
746     // If the pointer is already known to be sufficiently aligned, or if we can
747     // round it up to a larger alignment, then we don't need a temporary.
748     if (getOrEnforceKnownAlignment(Arg, ByValAlignment,
749                                    IFI.TD) >= ByValAlignment)
750       return Arg;
751     
752     // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
753     // for code quality, but rarely happens and is required for correctness.
754   }
755   
756   LLVMContext &Context = Arg->getContext();
757
758   Type *VoidPtrTy = Type::getInt8PtrTy(Context);
759   
760   // Create the alloca.  If we have TargetData, use nice alignment.
761   unsigned Align = 1;
762   if (IFI.TD)
763     Align = IFI.TD->getPrefTypeAlignment(AggTy);
764   
765   // If the byval had an alignment specified, we *must* use at least that
766   // alignment, as it is required by the byval argument (and uses of the
767   // pointer inside the callee).
768   Align = std::max(Align, ByValAlignment);
769   
770   Function *Caller = TheCall->getParent()->getParent(); 
771   
772   Value *NewAlloca = new AllocaInst(AggTy, 0, Align, Arg->getName(), 
773                                     &*Caller->begin()->begin());
774   // Emit a memcpy.
775   Type *Tys[3] = {VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context)};
776   Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
777                                                  Intrinsic::memcpy, 
778                                                  Tys);
779   Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
780   Value *SrcCast = new BitCastInst(Arg, VoidPtrTy, "tmp", TheCall);
781   
782   Value *Size;
783   if (IFI.TD == 0)
784     Size = ConstantExpr::getSizeOf(AggTy);
785   else
786     Size = ConstantInt::get(Type::getInt64Ty(Context),
787                             IFI.TD->getTypeStoreSize(AggTy));
788   
789   // Always generate a memcpy of alignment 1 here because we don't know
790   // the alignment of the src pointer.  Other optimizations can infer
791   // better alignment.
792   Value *CallArgs[] = {
793     DestCast, SrcCast, Size,
794     ConstantInt::get(Type::getInt32Ty(Context), 1),
795     ConstantInt::getFalse(Context) // isVolatile
796   };
797   IRBuilder<>(TheCall).CreateCall(MemCpyFn, CallArgs);
798   
799   // Uses of the argument in the function should use our new alloca
800   // instead.
801   return NewAlloca;
802 }
803
804 // isUsedByLifetimeMarker - Check whether this Value is used by a lifetime
805 // intrinsic.
806 static bool isUsedByLifetimeMarker(Value *V) {
807   for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE;
808        ++UI) {
809     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI)) {
810       switch (II->getIntrinsicID()) {
811       default: break;
812       case Intrinsic::lifetime_start:
813       case Intrinsic::lifetime_end:
814         return true;
815       }
816     }
817   }
818   return false;
819 }
820
821 // hasLifetimeMarkers - Check whether the given alloca already has
822 // lifetime.start or lifetime.end intrinsics.
823 static bool hasLifetimeMarkers(AllocaInst *AI) {
824   Type *Int8PtrTy = Type::getInt8PtrTy(AI->getType()->getContext());
825   if (AI->getType() == Int8PtrTy)
826     return isUsedByLifetimeMarker(AI);
827
828   // Do a scan to find all the casts to i8*.
829   for (Value::use_iterator I = AI->use_begin(), E = AI->use_end(); I != E;
830        ++I) {
831     if (I->getType() != Int8PtrTy) continue;
832     if (I->stripPointerCasts() != AI) continue;
833     if (isUsedByLifetimeMarker(*I))
834       return true;
835   }
836   return false;
837 }
838
839 /// updateInlinedAtInfo - Helper function used by fixupLineNumbers to recursively
840 /// update InlinedAtEntry of a DebugLoc.
841 static DebugLoc updateInlinedAtInfo(const DebugLoc &DL, 
842                                     const DebugLoc &InlinedAtDL,
843                                     LLVMContext &Ctx) {
844   if (MDNode *IA = DL.getInlinedAt(Ctx)) {
845     DebugLoc NewInlinedAtDL 
846       = updateInlinedAtInfo(DebugLoc::getFromDILocation(IA), InlinedAtDL, Ctx);
847     return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
848                          NewInlinedAtDL.getAsMDNode(Ctx));
849   }
850                                              
851   return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
852                        InlinedAtDL.getAsMDNode(Ctx));
853 }
854
855
856 /// fixupLineNumbers - Update inlined instructions' line numbers to 
857 /// to encode location where these instructions are inlined.
858 static void fixupLineNumbers(Function *Fn, Function::iterator FI,
859                               Instruction *TheCall) {
860   DebugLoc TheCallDL = TheCall->getDebugLoc();
861   if (TheCallDL.isUnknown())
862     return;
863
864   for (; FI != Fn->end(); ++FI) {
865     for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
866          BI != BE; ++BI) {
867       DebugLoc DL = BI->getDebugLoc();
868       if (!DL.isUnknown()) {
869         BI->setDebugLoc(updateInlinedAtInfo(DL, TheCallDL, BI->getContext()));
870         if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(BI)) {
871           LLVMContext &Ctx = BI->getContext();
872           MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx);
873           DVI->setOperand(2, createInlinedVariable(DVI->getVariable(), 
874                                                    InlinedAt, Ctx));
875         }
876       }
877     }
878   }
879 }
880
881 // InlineFunction - This function inlines the called function into the basic
882 // block of the caller.  This returns false if it is not possible to inline this
883 // call.  The program is still in a well defined state if this occurs though.
884 //
885 // Note that this only does one level of inlining.  For example, if the
886 // instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
887 // exists in the instruction stream.  Similarly this will inline a recursive
888 // function by one level.
889 //
890 bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) {
891   Instruction *TheCall = CS.getInstruction();
892   LLVMContext &Context = TheCall->getContext();
893   assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
894          "Instruction not in function!");
895
896   // If IFI has any state in it, zap it before we fill it in.
897   IFI.reset();
898   
899   const Function *CalledFunc = CS.getCalledFunction();
900   if (CalledFunc == 0 ||          // Can't inline external function or indirect
901       CalledFunc->isDeclaration() || // call, or call to a vararg function!
902       CalledFunc->getFunctionType()->isVarArg()) return false;
903
904   // If the call to the callee is not a tail call, we must clear the 'tail'
905   // flags on any calls that we inline.
906   bool MustClearTailCallFlags =
907     !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall());
908
909   // If the call to the callee cannot throw, set the 'nounwind' flag on any
910   // calls that we inline.
911   bool MarkNoUnwind = CS.doesNotThrow();
912
913   BasicBlock *OrigBB = TheCall->getParent();
914   Function *Caller = OrigBB->getParent();
915
916   // GC poses two hazards to inlining, which only occur when the callee has GC:
917   //  1. If the caller has no GC, then the callee's GC must be propagated to the
918   //     caller.
919   //  2. If the caller has a differing GC, it is invalid to inline.
920   if (CalledFunc->hasGC()) {
921     if (!Caller->hasGC())
922       Caller->setGC(CalledFunc->getGC());
923     else if (CalledFunc->getGC() != Caller->getGC())
924       return false;
925   }
926
927   // Get the personality function from the callee if it contains a landing pad.
928   Value *CalleePersonality = 0;
929   for (Function::const_iterator I = CalledFunc->begin(), E = CalledFunc->end();
930        I != E; ++I)
931     if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
932       const BasicBlock *BB = II->getUnwindDest();
933       // FIXME: This 'if/dyn_cast' here should become a normal 'cast' once
934       // the new EH system is in place.
935       if (const LandingPadInst *LP =
936           dyn_cast<LandingPadInst>(BB->getFirstNonPHI()))
937         CalleePersonality = LP->getPersonalityFn();
938       break;
939     }
940
941   // Find the personality function used by the landing pads of the caller. If it
942   // exists, then check to see that it matches the personality function used in
943   // the callee.
944   if (CalleePersonality)
945     for (Function::const_iterator I = Caller->begin(), E = Caller->end();
946          I != E; ++I)
947       if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
948         const BasicBlock *BB = II->getUnwindDest();
949         // FIXME: This 'isa' here should become go away once the new EH system
950         // is in place.
951         if (!isa<LandingPadInst>(BB->getFirstNonPHI()))
952           continue;
953         const LandingPadInst *LP = cast<LandingPadInst>(BB->getFirstNonPHI());
954
955         // If the personality functions match, then we can perform the
956         // inlining. Otherwise, we can't inline.
957         // TODO: This isn't 100% true. Some personality functions are proper
958         //       supersets of others and can be used in place of the other.
959         if (LP->getPersonalityFn() != CalleePersonality)
960           return false;
961
962         break;
963       }
964
965   // Get an iterator to the last basic block in the function, which will have
966   // the new function inlined after it.
967   //
968   Function::iterator LastBlock = &Caller->back();
969
970   // Make sure to capture all of the return instructions from the cloned
971   // function.
972   SmallVector<ReturnInst*, 8> Returns;
973   ClonedCodeInfo InlinedFunctionInfo;
974   Function::iterator FirstNewBlock;
975
976   { // Scope to destroy VMap after cloning.
977     ValueToValueMapTy VMap;
978
979     assert(CalledFunc->arg_size() == CS.arg_size() &&
980            "No varargs calls can be inlined!");
981
982     // Calculate the vector of arguments to pass into the function cloner, which
983     // matches up the formal to the actual argument values.
984     CallSite::arg_iterator AI = CS.arg_begin();
985     unsigned ArgNo = 0;
986     for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
987          E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
988       Value *ActualArg = *AI;
989
990       // When byval arguments actually inlined, we need to make the copy implied
991       // by them explicit.  However, we don't do this if the callee is readonly
992       // or readnone, because the copy would be unneeded: the callee doesn't
993       // modify the struct.
994       if (CS.isByValArgument(ArgNo)) {
995         ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
996                                         CalledFunc->getParamAlignment(ArgNo+1));
997  
998         // Calls that we inline may use the new alloca, so we need to clear
999         // their 'tail' flags if HandleByValArgument introduced a new alloca and
1000         // the callee has calls.
1001         MustClearTailCallFlags |= ActualArg != *AI;
1002       }
1003
1004       VMap[I] = ActualArg;
1005     }
1006
1007     // We want the inliner to prune the code as it copies.  We would LOVE to
1008     // have no dead or constant instructions leftover after inlining occurs
1009     // (which can happen, e.g., because an argument was constant), but we'll be
1010     // happy with whatever the cloner can do.
1011     CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 
1012                               /*ModuleLevelChanges=*/false, Returns, ".i",
1013                               &InlinedFunctionInfo, IFI.TD, TheCall);
1014
1015     // Remember the first block that is newly cloned over.
1016     FirstNewBlock = LastBlock; ++FirstNewBlock;
1017
1018     // Update the callgraph if requested.
1019     if (IFI.CG)
1020       UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
1021
1022     // Update inlined instructions' line number information.
1023     fixupLineNumbers(Caller, FirstNewBlock, TheCall);
1024   }
1025
1026   // If there are any alloca instructions in the block that used to be the entry
1027   // block for the callee, move them to the entry block of the caller.  First
1028   // calculate which instruction they should be inserted before.  We insert the
1029   // instructions at the end of the current alloca list.
1030   //
1031   {
1032     BasicBlock::iterator InsertPoint = Caller->begin()->begin();
1033     for (BasicBlock::iterator I = FirstNewBlock->begin(),
1034          E = FirstNewBlock->end(); I != E; ) {
1035       AllocaInst *AI = dyn_cast<AllocaInst>(I++);
1036       if (AI == 0) continue;
1037       
1038       // If the alloca is now dead, remove it.  This often occurs due to code
1039       // specialization.
1040       if (AI->use_empty()) {
1041         AI->eraseFromParent();
1042         continue;
1043       }
1044
1045       if (!isa<Constant>(AI->getArraySize()))
1046         continue;
1047       
1048       // Keep track of the static allocas that we inline into the caller.
1049       IFI.StaticAllocas.push_back(AI);
1050       
1051       // Scan for the block of allocas that we can move over, and move them
1052       // all at once.
1053       while (isa<AllocaInst>(I) &&
1054              isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
1055         IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
1056         ++I;
1057       }
1058
1059       // Transfer all of the allocas over in a block.  Using splice means
1060       // that the instructions aren't removed from the symbol table, then
1061       // reinserted.
1062       Caller->getEntryBlock().getInstList().splice(InsertPoint,
1063                                                    FirstNewBlock->getInstList(),
1064                                                    AI, I);
1065     }
1066   }
1067
1068   // Leave lifetime markers for the static alloca's, scoping them to the
1069   // function we just inlined.
1070   if (!IFI.StaticAllocas.empty()) {
1071     IRBuilder<> builder(FirstNewBlock->begin());
1072     for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
1073       AllocaInst *AI = IFI.StaticAllocas[ai];
1074
1075       // If the alloca is already scoped to something smaller than the whole
1076       // function then there's no need to add redundant, less accurate markers.
1077       if (hasLifetimeMarkers(AI))
1078         continue;
1079
1080       builder.CreateLifetimeStart(AI);
1081       for (unsigned ri = 0, re = Returns.size(); ri != re; ++ri) {
1082         IRBuilder<> builder(Returns[ri]);
1083         builder.CreateLifetimeEnd(AI);
1084       }
1085     }
1086   }
1087
1088   // If the inlined code contained dynamic alloca instructions, wrap the inlined
1089   // code with llvm.stacksave/llvm.stackrestore intrinsics.
1090   if (InlinedFunctionInfo.ContainsDynamicAllocas) {
1091     Module *M = Caller->getParent();
1092     // Get the two intrinsics we care about.
1093     Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
1094     Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
1095
1096     // Insert the llvm.stacksave.
1097     CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin())
1098       .CreateCall(StackSave, "savedstack");
1099
1100     // Insert a call to llvm.stackrestore before any return instructions in the
1101     // inlined function.
1102     for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
1103       IRBuilder<>(Returns[i]).CreateCall(StackRestore, SavedPtr);
1104     }
1105
1106     // Count the number of StackRestore calls we insert.
1107     unsigned NumStackRestores = Returns.size();
1108
1109     // If we are inlining an invoke instruction, insert restores before each
1110     // unwind.  These unwinds will be rewritten into branches later.
1111     if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) {
1112       for (Function::iterator BB = FirstNewBlock, E = Caller->end();
1113            BB != E; ++BB)
1114         if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
1115           IRBuilder<>(UI).CreateCall(StackRestore, SavedPtr);
1116           ++NumStackRestores;
1117         }
1118     }
1119   }
1120
1121   // If we are inlining tail call instruction through a call site that isn't
1122   // marked 'tail', we must remove the tail marker for any calls in the inlined
1123   // code.  Also, calls inlined through a 'nounwind' call site should be marked
1124   // 'nounwind'.
1125   if (InlinedFunctionInfo.ContainsCalls &&
1126       (MustClearTailCallFlags || MarkNoUnwind)) {
1127     for (Function::iterator BB = FirstNewBlock, E = Caller->end();
1128          BB != E; ++BB)
1129       for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1130         if (CallInst *CI = dyn_cast<CallInst>(I)) {
1131           if (MustClearTailCallFlags)
1132             CI->setTailCall(false);
1133           if (MarkNoUnwind)
1134             CI->setDoesNotThrow();
1135         }
1136   }
1137
1138   // If we are inlining through a 'nounwind' call site then any inlined 'unwind'
1139   // instructions are unreachable.
1140   if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind)
1141     for (Function::iterator BB = FirstNewBlock, E = Caller->end();
1142          BB != E; ++BB) {
1143       TerminatorInst *Term = BB->getTerminator();
1144       if (isa<UnwindInst>(Term)) {
1145         new UnreachableInst(Context, Term);
1146         BB->getInstList().erase(Term);
1147       }
1148     }
1149
1150   // If we are inlining for an invoke instruction, we must make sure to rewrite
1151   // any inlined 'unwind' instructions into branches to the invoke exception
1152   // destination, and call instructions into invoke instructions.
1153   if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
1154     HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
1155
1156   // If we cloned in _exactly one_ basic block, and if that block ends in a
1157   // return instruction, we splice the body of the inlined callee directly into
1158   // the calling basic block.
1159   if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
1160     // Move all of the instructions right before the call.
1161     OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
1162                                  FirstNewBlock->begin(), FirstNewBlock->end());
1163     // Remove the cloned basic block.
1164     Caller->getBasicBlockList().pop_back();
1165
1166     // If the call site was an invoke instruction, add a branch to the normal
1167     // destination.
1168     if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
1169       BranchInst::Create(II->getNormalDest(), TheCall);
1170
1171     // If the return instruction returned a value, replace uses of the call with
1172     // uses of the returned value.
1173     if (!TheCall->use_empty()) {
1174       ReturnInst *R = Returns[0];
1175       if (TheCall == R->getReturnValue())
1176         TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
1177       else
1178         TheCall->replaceAllUsesWith(R->getReturnValue());
1179     }
1180     // Since we are now done with the Call/Invoke, we can delete it.
1181     TheCall->eraseFromParent();
1182
1183     // Since we are now done with the return instruction, delete it also.
1184     Returns[0]->eraseFromParent();
1185
1186     // We are now done with the inlining.
1187     return true;
1188   }
1189
1190   // Otherwise, we have the normal case, of more than one block to inline or
1191   // multiple return sites.
1192
1193   // We want to clone the entire callee function into the hole between the
1194   // "starter" and "ender" blocks.  How we accomplish this depends on whether
1195   // this is an invoke instruction or a call instruction.
1196   BasicBlock *AfterCallBB;
1197   if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
1198
1199     // Add an unconditional branch to make this look like the CallInst case...
1200     BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
1201
1202     // Split the basic block.  This guarantees that no PHI nodes will have to be
1203     // updated due to new incoming edges, and make the invoke case more
1204     // symmetric to the call case.
1205     AfterCallBB = OrigBB->splitBasicBlock(NewBr,
1206                                           CalledFunc->getName()+".exit");
1207
1208   } else {  // It's a call
1209     // If this is a call instruction, we need to split the basic block that
1210     // the call lives in.
1211     //
1212     AfterCallBB = OrigBB->splitBasicBlock(TheCall,
1213                                           CalledFunc->getName()+".exit");
1214   }
1215
1216   // Change the branch that used to go to AfterCallBB to branch to the first
1217   // basic block of the inlined function.
1218   //
1219   TerminatorInst *Br = OrigBB->getTerminator();
1220   assert(Br && Br->getOpcode() == Instruction::Br &&
1221          "splitBasicBlock broken!");
1222   Br->setOperand(0, FirstNewBlock);
1223
1224
1225   // Now that the function is correct, make it a little bit nicer.  In
1226   // particular, move the basic blocks inserted from the end of the function
1227   // into the space made by splitting the source basic block.
1228   Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
1229                                      FirstNewBlock, Caller->end());
1230
1231   // Handle all of the return instructions that we just cloned in, and eliminate
1232   // any users of the original call/invoke instruction.
1233   Type *RTy = CalledFunc->getReturnType();
1234
1235   PHINode *PHI = 0;
1236   if (Returns.size() > 1) {
1237     // The PHI node should go at the front of the new basic block to merge all
1238     // possible incoming values.
1239     if (!TheCall->use_empty()) {
1240       PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
1241                             AfterCallBB->begin());
1242       // Anything that used the result of the function call should now use the
1243       // PHI node as their operand.
1244       TheCall->replaceAllUsesWith(PHI);
1245     }
1246
1247     // Loop over all of the return instructions adding entries to the PHI node
1248     // as appropriate.
1249     if (PHI) {
1250       for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
1251         ReturnInst *RI = Returns[i];
1252         assert(RI->getReturnValue()->getType() == PHI->getType() &&
1253                "Ret value not consistent in function!");
1254         PHI->addIncoming(RI->getReturnValue(), RI->getParent());
1255       }
1256     }
1257
1258
1259     // Add a branch to the merge points and remove return instructions.
1260     for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
1261       ReturnInst *RI = Returns[i];
1262       BranchInst::Create(AfterCallBB, RI);
1263       RI->eraseFromParent();
1264     }
1265   } else if (!Returns.empty()) {
1266     // Otherwise, if there is exactly one return value, just replace anything
1267     // using the return value of the call with the computed value.
1268     if (!TheCall->use_empty()) {
1269       if (TheCall == Returns[0]->getReturnValue())
1270         TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
1271       else
1272         TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
1273     }
1274
1275     // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
1276     BasicBlock *ReturnBB = Returns[0]->getParent();
1277     ReturnBB->replaceAllUsesWith(AfterCallBB);
1278
1279     // Splice the code from the return block into the block that it will return
1280     // to, which contains the code that was after the call.
1281     AfterCallBB->getInstList().splice(AfterCallBB->begin(),
1282                                       ReturnBB->getInstList());
1283
1284     // Delete the return instruction now and empty ReturnBB now.
1285     Returns[0]->eraseFromParent();
1286     ReturnBB->eraseFromParent();
1287   } else if (!TheCall->use_empty()) {
1288     // No returns, but something is using the return value of the call.  Just
1289     // nuke the result.
1290     TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
1291   }
1292
1293   // Since we are now done with the Call/Invoke, we can delete it.
1294   TheCall->eraseFromParent();
1295
1296   // We should always be able to fold the entry block of the function into the
1297   // single predecessor of the block...
1298   assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
1299   BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
1300
1301   // Splice the code entry block into calling block, right before the
1302   // unconditional branch.
1303   CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
1304   OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
1305
1306   // Remove the unconditional branch.
1307   OrigBB->getInstList().erase(Br);
1308
1309   // Now we can remove the CalleeEntry block, which is now empty.
1310   Caller->getBasicBlockList().erase(CalleeEntry);
1311
1312   // If we inserted a phi node, check to see if it has a single value (e.g. all
1313   // the entries are the same or undef).  If so, remove the PHI so it doesn't
1314   // block other optimizations.
1315   if (PHI)
1316     if (Value *V = SimplifyInstruction(PHI, IFI.TD)) {
1317       PHI->replaceAllUsesWith(V);
1318       PHI->eraseFromParent();
1319     }
1320
1321   return true;
1322 }