Taints the non-acquire RMW's store address with the load part
[oota-llvm.git] / lib / Transforms / Utils / LCSSA.cpp
1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms loops by placing phi nodes at the end of the loops for
11 // all values that are live across the loop boundary.  For example, it turns
12 // the left into the right code:
13 // 
14 // for (...)                for (...)
15 //   if (c)                   if (c)
16 //     X1 = ...                 X1 = ...
17 //   else                     else
18 //     X2 = ...                 X2 = ...
19 //   X3 = phi(X1, X2)         X3 = phi(X1, X2)
20 // ... = X3 + 4             X4 = phi(X3)
21 //                          ... = X4 + 4
22 //
23 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
24 // be trivially eliminated by InstCombine.  The major benefit of this 
25 // transformation is that it makes many other loop optimizations, such as 
26 // LoopUnswitching, simpler.
27 //
28 //===----------------------------------------------------------------------===//
29
30 #include "llvm/Transforms/Scalar.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/Analysis/AliasAnalysis.h"
34 #include "llvm/Analysis/GlobalsModRef.h"
35 #include "llvm/Analysis/LoopPass.h"
36 #include "llvm/Analysis/ScalarEvolution.h"
37 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/PredIteratorCache.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Transforms/Utils/LoopUtils.h"
45 #include "llvm/Transforms/Utils/SSAUpdater.h"
46 using namespace llvm;
47
48 #define DEBUG_TYPE "lcssa"
49
50 STATISTIC(NumLCSSA, "Number of live out of a loop variables");
51
52 /// Return true if the specified block is in the list.
53 static bool isExitBlock(BasicBlock *BB,
54                         const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
55   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
56     if (ExitBlocks[i] == BB)
57       return true;
58   return false;
59 }
60
61 /// Given an instruction in the loop, check to see if it has any uses that are
62 /// outside the current loop.  If so, insert LCSSA PHI nodes and rewrite the
63 /// uses.
64 static bool processInstruction(Loop &L, Instruction &Inst, DominatorTree &DT,
65                                const SmallVectorImpl<BasicBlock *> &ExitBlocks,
66                                PredIteratorCache &PredCache, LoopInfo *LI) {
67   SmallVector<Use *, 16> UsesToRewrite;
68
69   // Tokens cannot be used in PHI nodes, so we skip over them.
70   // We can run into tokens which are live out of a loop with catchswitch
71   // instructions in Windows EH if the catchswitch has one catchpad which
72   // is inside the loop and another which is not.
73   if (Inst.getType()->isTokenTy())
74     return false;
75
76   BasicBlock *InstBB = Inst.getParent();
77
78   for (Use &U : Inst.uses()) {
79     Instruction *User = cast<Instruction>(U.getUser());
80     BasicBlock *UserBB = User->getParent();
81     if (PHINode *PN = dyn_cast<PHINode>(User))
82       UserBB = PN->getIncomingBlock(U);
83
84     if (InstBB != UserBB && !L.contains(UserBB))
85       UsesToRewrite.push_back(&U);
86   }
87
88   // If there are no uses outside the loop, exit with no change.
89   if (UsesToRewrite.empty())
90     return false;
91
92   ++NumLCSSA; // We are applying the transformation
93
94   // Invoke instructions are special in that their result value is not available
95   // along their unwind edge. The code below tests to see whether DomBB
96   // dominates the value, so adjust DomBB to the normal destination block,
97   // which is effectively where the value is first usable.
98   BasicBlock *DomBB = Inst.getParent();
99   if (InvokeInst *Inv = dyn_cast<InvokeInst>(&Inst))
100     DomBB = Inv->getNormalDest();
101
102   DomTreeNode *DomNode = DT.getNode(DomBB);
103
104   SmallVector<PHINode *, 16> AddedPHIs;
105   SmallVector<PHINode *, 8> PostProcessPHIs;
106
107   SSAUpdater SSAUpdate;
108   SSAUpdate.Initialize(Inst.getType(), Inst.getName());
109
110   // Insert the LCSSA phi's into all of the exit blocks dominated by the
111   // value, and add them to the Phi's map.
112   for (BasicBlock *ExitBB : ExitBlocks) {
113     if (!DT.dominates(DomNode, DT.getNode(ExitBB)))
114       continue;
115
116     // If we already inserted something for this BB, don't reprocess it.
117     if (SSAUpdate.HasValueForBlock(ExitBB))
118       continue;
119
120     PHINode *PN = PHINode::Create(Inst.getType(), PredCache.size(ExitBB),
121                                   Inst.getName() + ".lcssa", &ExitBB->front());
122
123     // Add inputs from inside the loop for this PHI.
124     for (BasicBlock *Pred : PredCache.get(ExitBB)) {
125       PN->addIncoming(&Inst, Pred);
126
127       // If the exit block has a predecessor not within the loop, arrange for
128       // the incoming value use corresponding to that predecessor to be
129       // rewritten in terms of a different LCSSA PHI.
130       if (!L.contains(Pred))
131         UsesToRewrite.push_back(
132             &PN->getOperandUse(PN->getOperandNumForIncomingValue(
133                  PN->getNumIncomingValues() - 1)));
134     }
135
136     AddedPHIs.push_back(PN);
137
138     // Remember that this phi makes the value alive in this block.
139     SSAUpdate.AddAvailableValue(ExitBB, PN);
140
141     // LoopSimplify might fail to simplify some loops (e.g. when indirect
142     // branches are involved). In such situations, it might happen that an exit
143     // for Loop L1 is the header of a disjoint Loop L2. Thus, when we create
144     // PHIs in such an exit block, we are also inserting PHIs into L2's header.
145     // This could break LCSSA form for L2 because these inserted PHIs can also
146     // have uses outside of L2. Remember all PHIs in such situation as to
147     // revisit than later on. FIXME: Remove this if indirectbr support into
148     // LoopSimplify gets improved.
149     if (auto *OtherLoop = LI->getLoopFor(ExitBB))
150       if (!L.contains(OtherLoop))
151         PostProcessPHIs.push_back(PN);
152   }
153
154   // Rewrite all uses outside the loop in terms of the new PHIs we just
155   // inserted.
156   for (Use *UseToRewrite : UsesToRewrite) {
157     // If this use is in an exit block, rewrite to use the newly inserted PHI.
158     // This is required for correctness because SSAUpdate doesn't handle uses in
159     // the same block.  It assumes the PHI we inserted is at the end of the
160     // block.
161     Instruction *User = cast<Instruction>(UseToRewrite->getUser());
162     BasicBlock *UserBB = User->getParent();
163     if (PHINode *PN = dyn_cast<PHINode>(User))
164       UserBB = PN->getIncomingBlock(*UseToRewrite);
165
166     if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) {
167       // Tell the VHs that the uses changed. This updates SCEV's caches.
168       if (UseToRewrite->get()->hasValueHandle())
169         ValueHandleBase::ValueIsRAUWd(*UseToRewrite, &UserBB->front());
170       UseToRewrite->set(&UserBB->front());
171       continue;
172     }
173
174     // Otherwise, do full PHI insertion.
175     SSAUpdate.RewriteUse(*UseToRewrite);
176   }
177
178   // Post process PHI instructions that were inserted into another disjoint loop
179   // and update their exits properly.
180   for (auto *I : PostProcessPHIs) {
181     if (I->use_empty())
182       continue;
183
184     BasicBlock *PHIBB = I->getParent();
185     Loop *OtherLoop = LI->getLoopFor(PHIBB);
186     SmallVector<BasicBlock *, 8> EBs;
187     OtherLoop->getExitBlocks(EBs);
188     if (EBs.empty())
189       continue;
190
191     // Recurse and re-process each PHI instruction. FIXME: we should really
192     // convert this entire thing to a worklist approach where we process a
193     // vector of instructions...
194     processInstruction(*OtherLoop, *I, DT, EBs, PredCache, LI);
195   }
196
197   // Remove PHI nodes that did not have any uses rewritten.
198   for (PHINode *PN : AddedPHIs)
199     if (PN->use_empty())
200       PN->eraseFromParent();
201
202   return true;
203 }
204
205 /// Return true if the specified block dominates at least
206 /// one of the blocks in the specified list.
207 static bool
208 blockDominatesAnExit(BasicBlock *BB,
209                      DominatorTree &DT,
210                      const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
211   DomTreeNode *DomNode = DT.getNode(BB);
212   for (BasicBlock *ExitBB : ExitBlocks)
213     if (DT.dominates(DomNode, DT.getNode(ExitBB)))
214       return true;
215
216   return false;
217 }
218
219 bool llvm::formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI,
220                      ScalarEvolution *SE) {
221   bool Changed = false;
222
223   // Get the set of exiting blocks.
224   SmallVector<BasicBlock *, 8> ExitBlocks;
225   L.getExitBlocks(ExitBlocks);
226
227   if (ExitBlocks.empty())
228     return false;
229
230   PredIteratorCache PredCache;
231
232   // Look at all the instructions in the loop, checking to see if they have uses
233   // outside the loop.  If so, rewrite those uses.
234   for (BasicBlock *BB : L.blocks()) {
235     // For large loops, avoid use-scanning by using dominance information:  In
236     // particular, if a block does not dominate any of the loop exits, then none
237     // of the values defined in the block could be used outside the loop.
238     if (!blockDominatesAnExit(BB, DT, ExitBlocks))
239       continue;
240
241     for (Instruction &I : *BB) {
242       // Reject two common cases fast: instructions with no uses (like stores)
243       // and instructions with one use that is in the same block as this.
244       if (I.use_empty() ||
245           (I.hasOneUse() && I.user_back()->getParent() == BB &&
246            !isa<PHINode>(I.user_back())))
247         continue;
248
249       Changed |= processInstruction(L, I, DT, ExitBlocks, PredCache, LI);
250     }
251   }
252
253   // If we modified the code, remove any caches about the loop from SCEV to
254   // avoid dangling entries.
255   // FIXME: This is a big hammer, can we clear the cache more selectively?
256   if (SE && Changed)
257     SE->forgetLoop(&L);
258
259   assert(L.isLCSSAForm(DT));
260
261   return Changed;
262 }
263
264 /// Process a loop nest depth first.
265 bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI,
266                                 ScalarEvolution *SE) {
267   bool Changed = false;
268
269   // Recurse depth-first through inner loops.
270   for (Loop *SubLoop : L.getSubLoops())
271     Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE);
272
273   Changed |= formLCSSA(L, DT, LI, SE);
274   return Changed;
275 }
276
277 namespace {
278 struct LCSSA : public FunctionPass {
279   static char ID; // Pass identification, replacement for typeid
280   LCSSA() : FunctionPass(ID) {
281     initializeLCSSAPass(*PassRegistry::getPassRegistry());
282   }
283
284   // Cached analysis information for the current function.
285   DominatorTree *DT;
286   LoopInfo *LI;
287   ScalarEvolution *SE;
288
289   bool runOnFunction(Function &F) override;
290
291   /// This transformation requires natural loop information & requires that
292   /// loop preheaders be inserted into the CFG.  It maintains both of these,
293   /// as well as the CFG.  It also requires dominator information.
294   void getAnalysisUsage(AnalysisUsage &AU) const override {
295     AU.setPreservesCFG();
296
297     AU.addRequired<DominatorTreeWrapperPass>();
298     AU.addRequired<LoopInfoWrapperPass>();
299     AU.addPreservedID(LoopSimplifyID);
300     AU.addPreserved<AAResultsWrapperPass>();
301     AU.addPreserved<GlobalsAAWrapperPass>();
302     AU.addPreserved<ScalarEvolutionWrapperPass>();
303     AU.addPreserved<SCEVAAWrapperPass>();
304   }
305 };
306 }
307
308 char LCSSA::ID = 0;
309 INITIALIZE_PASS_BEGIN(LCSSA, "lcssa", "Loop-Closed SSA Form Pass", false, false)
310 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
311 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
312 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
313 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
314 INITIALIZE_PASS_END(LCSSA, "lcssa", "Loop-Closed SSA Form Pass", false, false)
315
316 Pass *llvm::createLCSSAPass() { return new LCSSA(); }
317 char &llvm::LCSSAID = LCSSA::ID;
318
319
320 /// Process all loops in the function, inner-most out.
321 bool LCSSA::runOnFunction(Function &F) {
322   bool Changed = false;
323   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
324   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
325   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
326   SE = SEWP ? &SEWP->getSE() : nullptr;
327
328   // Simplify each loop nest in the function.
329   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
330     Changed |= formLCSSARecursively(**I, *DT, LI, SE);
331
332   return Changed;
333 }
334