1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass performs several transformations to transform natural loops into a
11 // simpler form, which makes subsequent analyses and transformations simpler and
14 // Loop pre-header insertion guarantees that there is a single, non-critical
15 // entry edge from outside of the loop to the loop header. This simplifies a
16 // number of analyses and transformations, such as LICM.
18 // Loop exit-block insertion guarantees that all exit blocks from the loop
19 // (blocks which are outside of the loop that have predecessors inside of the
20 // loop) only have predecessors from inside of the loop (and are thus dominated
21 // by the loop header). This simplifies transformations such as store-sinking
22 // that are built into LICM.
24 // This pass also guarantees that loops will have exactly one backedge.
26 // Indirectbr instructions introduce several complications. If the loop
27 // contains or is entered by an indirectbr instruction, it may not be possible
28 // to transform the loop and make these guarantees. Client code should check
29 // that these conditions are true before relying on them.
31 // Note that the simplifycfg pass will clean up blocks which are split out but
32 // end up being unnecessary, so usage of this pass should not pessimize
35 // This pass obviously modifies the CFG, but updates loop information and
36 // dominator information.
38 //===----------------------------------------------------------------------===//
40 #include "llvm/Transforms/Scalar.h"
41 #include "llvm/ADT/DepthFirstIterator.h"
42 #include "llvm/ADT/SetOperations.h"
43 #include "llvm/ADT/SetVector.h"
44 #include "llvm/ADT/SmallVector.h"
45 #include "llvm/ADT/Statistic.h"
46 #include "llvm/Analysis/AliasAnalysis.h"
47 #include "llvm/Analysis/DependenceAnalysis.h"
48 #include "llvm/Analysis/InstructionSimplify.h"
49 #include "llvm/Analysis/LoopInfo.h"
50 #include "llvm/Analysis/ScalarEvolution.h"
51 #include "llvm/IR/CFG.h"
52 #include "llvm/IR/Constants.h"
53 #include "llvm/IR/DataLayout.h"
54 #include "llvm/IR/Dominators.h"
55 #include "llvm/IR/Function.h"
56 #include "llvm/IR/Instructions.h"
57 #include "llvm/IR/IntrinsicInst.h"
58 #include "llvm/IR/LLVMContext.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
62 #include "llvm/Transforms/Utils/Local.h"
63 #include "llvm/Transforms/Utils/LoopUtils.h"
66 #define DEBUG_TYPE "loop-simplify"
68 STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
69 STATISTIC(NumNested , "Number of nested loops split out");
71 // If the block isn't already, move the new block to right after some 'outside
72 // block' block. This prevents the preheader from being placed inside the loop
73 // body, e.g. when the loop hasn't been rotated.
74 static void placeSplitBlockCarefully(BasicBlock *NewBB,
75 SmallVectorImpl<BasicBlock *> &SplitPreds,
77 // Check to see if NewBB is already well placed.
78 Function::iterator BBI = NewBB; --BBI;
79 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
80 if (&*BBI == SplitPreds[i])
84 // If it isn't already after an outside block, move it after one. This is
85 // always good as it makes the uncond branch from the outside block into a
88 // Figure out *which* outside block to put this after. Prefer an outside
89 // block that neighbors a BB actually in the loop.
90 BasicBlock *FoundBB = nullptr;
91 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
92 Function::iterator BBI = SplitPreds[i];
93 if (++BBI != NewBB->getParent()->end() &&
95 FoundBB = SplitPreds[i];
100 // If our heuristic for a *good* bb to place this after doesn't find
101 // anything, just pick something. It's likely better than leaving it within
104 FoundBB = SplitPreds[0];
105 NewBB->moveAfter(FoundBB);
108 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
109 /// preheader, this method is called to insert one. This method has two phases:
110 /// preheader insertion and analysis updating.
112 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, Pass *PP) {
113 BasicBlock *Header = L->getHeader();
115 // Compute the set of predecessors of the loop that are not in the loop.
116 SmallVector<BasicBlock*, 8> OutsideBlocks;
117 for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
120 if (!L->contains(P)) { // Coming in from outside the loop?
121 // If the loop is branched to from an indirect branch, we won't
122 // be able to fully transform the loop, because it prohibits
124 if (isa<IndirectBrInst>(P->getTerminator())) return nullptr;
127 OutsideBlocks.push_back(P);
131 // Split out the loop pre-header.
132 BasicBlock *PreheaderBB;
133 if (!Header->isLandingPad()) {
134 PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader",
137 SmallVector<BasicBlock*, 2> NewBBs;
138 SplitLandingPadPredecessors(Header, OutsideBlocks, ".preheader",
139 ".split-lp", PP, NewBBs);
140 PreheaderBB = NewBBs[0];
143 PreheaderBB->getTerminator()->setDebugLoc(
144 Header->getFirstNonPHI()->getDebugLoc());
145 DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
146 << PreheaderBB->getName() << "\n");
148 // Make sure that NewBB is put someplace intelligent, which doesn't mess up
149 // code layout too horribly.
150 placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
155 /// \brief Ensure that the loop preheader dominates all exit blocks.
157 /// This method is used to split exit blocks that have predecessors outside of
159 static BasicBlock *rewriteLoopExitBlock(Loop *L, BasicBlock *Exit, Pass *PP) {
160 SmallVector<BasicBlock*, 8> LoopBlocks;
161 for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) {
163 if (L->contains(P)) {
164 // Don't do this if the loop is exited via an indirect branch.
165 if (isa<IndirectBrInst>(P->getTerminator())) return nullptr;
167 LoopBlocks.push_back(P);
171 assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
172 BasicBlock *NewExitBB = nullptr;
174 if (Exit->isLandingPad()) {
175 SmallVector<BasicBlock*, 2> NewBBs;
176 SplitLandingPadPredecessors(Exit, LoopBlocks,
177 ".loopexit", ".nonloopexit",
179 NewExitBB = NewBBs[0];
181 NewExitBB = SplitBlockPredecessors(Exit, LoopBlocks, ".loopexit", PP);
184 DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
185 << NewExitBB->getName() << "\n");
189 /// Add the specified block, and all of its predecessors, to the specified set,
190 /// if it's not already in there. Stop predecessor traversal when we reach
192 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
193 std::set<BasicBlock*> &Blocks) {
194 SmallVector<BasicBlock *, 8> Worklist;
195 Worklist.push_back(InputBB);
197 BasicBlock *BB = Worklist.pop_back_val();
198 if (Blocks.insert(BB).second && BB != StopBlock)
199 // If BB is not already processed and it is not a stop block then
200 // insert its predecessor in the work list
201 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
202 BasicBlock *WBB = *I;
203 Worklist.push_back(WBB);
205 } while (!Worklist.empty());
208 /// \brief The first part of loop-nestification is to find a PHI node that tells
209 /// us how to partition the loops.
210 static PHINode *findPHIToPartitionLoops(Loop *L, AliasAnalysis *AA,
212 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
213 PHINode *PN = cast<PHINode>(I);
215 if (Value *V = SimplifyInstruction(PN, nullptr, nullptr, DT)) {
216 // This is a degenerate PHI already, don't modify it!
217 PN->replaceAllUsesWith(V);
218 if (AA) AA->deleteValue(PN);
219 PN->eraseFromParent();
223 // Scan this PHI node looking for a use of the PHI node by itself.
224 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
225 if (PN->getIncomingValue(i) == PN &&
226 L->contains(PN->getIncomingBlock(i)))
227 // We found something tasty to remove.
233 /// \brief If this loop has multiple backedges, try to pull one of them out into
236 /// This is important for code that looks like
241 /// br cond, Loop, Next
243 /// br cond2, Loop, Out
245 /// To identify this common case, we look at the PHI nodes in the header of the
246 /// loop. PHI nodes with unchanging values on one backedge correspond to values
247 /// that change in the "outer" loop, but not in the "inner" loop.
249 /// If we are able to separate out a loop, return the new outer loop that was
252 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader,
253 AliasAnalysis *AA, DominatorTree *DT,
254 LoopInfo *LI, ScalarEvolution *SE, Pass *PP) {
255 // Don't try to separate loops without a preheader.
259 // The header is not a landing pad; preheader insertion should ensure this.
260 assert(!L->getHeader()->isLandingPad() &&
261 "Can't insert backedge to landing pad");
263 PHINode *PN = findPHIToPartitionLoops(L, AA, DT);
264 if (!PN) return nullptr; // No known way to partition.
266 // Pull out all predecessors that have varying values in the loop. This
267 // handles the case when a PHI node has multiple instances of itself as
269 SmallVector<BasicBlock*, 8> OuterLoopPreds;
270 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
271 if (PN->getIncomingValue(i) != PN ||
272 !L->contains(PN->getIncomingBlock(i))) {
273 // We can't split indirectbr edges.
274 if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator()))
276 OuterLoopPreds.push_back(PN->getIncomingBlock(i));
279 DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
281 // If ScalarEvolution is around and knows anything about values in
282 // this loop, tell it to forget them, because we're about to
283 // substantially change it.
287 BasicBlock *Header = L->getHeader();
289 SplitBlockPredecessors(Header, OuterLoopPreds, ".outer", PP);
291 // Make sure that NewBB is put someplace intelligent, which doesn't mess up
292 // code layout too horribly.
293 placeSplitBlockCarefully(NewBB, OuterLoopPreds, L);
295 // Create the new outer loop.
296 Loop *NewOuter = new Loop();
298 // Change the parent loop to use the outer loop as its child now.
299 if (Loop *Parent = L->getParentLoop())
300 Parent->replaceChildLoopWith(L, NewOuter);
302 LI->changeTopLevelLoop(L, NewOuter);
304 // L is now a subloop of our outer loop.
305 NewOuter->addChildLoop(L);
307 for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
309 NewOuter->addBlockEntry(*I);
311 // Now reset the header in L, which had been moved by
312 // SplitBlockPredecessors for the outer loop.
313 L->moveToHeader(Header);
315 // Determine which blocks should stay in L and which should be moved out to
316 // the Outer loop now.
317 std::set<BasicBlock*> BlocksInL;
318 for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
320 if (DT->dominates(Header, P))
321 addBlockAndPredsToSet(P, Header, BlocksInL);
324 // Scan all of the loop children of L, moving them to OuterLoop if they are
325 // not part of the inner loop.
326 const std::vector<Loop*> &SubLoops = L->getSubLoops();
327 for (size_t I = 0; I != SubLoops.size(); )
328 if (BlocksInL.count(SubLoops[I]->getHeader()))
329 ++I; // Loop remains in L
331 NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
333 // Now that we know which blocks are in L and which need to be moved to
334 // OuterLoop, move any blocks that need it.
335 for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
336 BasicBlock *BB = L->getBlocks()[i];
337 if (!BlocksInL.count(BB)) {
338 // Move this block to the parent, updating the exit blocks sets
339 L->removeBlockFromLoop(BB);
341 LI->changeLoopFor(BB, NewOuter);
349 /// \brief This method is called when the specified loop has more than one
352 /// If this occurs, revector all of these backedges to target a new basic block
353 /// and have that block branch to the loop header. This ensures that loops
354 /// have exactly one backedge.
355 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader,
357 DominatorTree *DT, LoopInfo *LI) {
358 assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
360 // Get information about the loop
361 BasicBlock *Header = L->getHeader();
362 Function *F = Header->getParent();
364 // Unique backedge insertion currently depends on having a preheader.
368 // The header is not a landing pad; preheader insertion should ensure this.
369 assert(!Header->isLandingPad() && "Can't insert backedge to landing pad");
371 // Figure out which basic blocks contain back-edges to the loop header.
372 std::vector<BasicBlock*> BackedgeBlocks;
373 for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
376 // Indirectbr edges cannot be split, so we must fail if we find one.
377 if (isa<IndirectBrInst>(P->getTerminator()))
380 if (P != Preheader) BackedgeBlocks.push_back(P);
383 // Create and insert the new backedge block...
384 BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
385 Header->getName()+".backedge", F);
386 BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
388 DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
389 << BEBlock->getName() << "\n");
391 // Move the new backedge block to right after the last backedge block.
392 Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
393 F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
395 // Now that the block has been inserted into the function, create PHI nodes in
396 // the backedge block which correspond to any PHI nodes in the header block.
397 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
398 PHINode *PN = cast<PHINode>(I);
399 PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
400 PN->getName()+".be", BETerminator);
401 if (AA) AA->copyValue(PN, NewPN);
403 // Loop over the PHI node, moving all entries except the one for the
404 // preheader over to the new PHI node.
405 unsigned PreheaderIdx = ~0U;
406 bool HasUniqueIncomingValue = true;
407 Value *UniqueValue = nullptr;
408 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
409 BasicBlock *IBB = PN->getIncomingBlock(i);
410 Value *IV = PN->getIncomingValue(i);
411 if (IBB == Preheader) {
414 NewPN->addIncoming(IV, IBB);
415 if (HasUniqueIncomingValue) {
418 else if (UniqueValue != IV)
419 HasUniqueIncomingValue = false;
424 // Delete all of the incoming values from the old PN except the preheader's
425 assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
426 if (PreheaderIdx != 0) {
427 PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
428 PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
430 // Nuke all entries except the zero'th.
431 for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
432 PN->removeIncomingValue(e-i, false);
434 // Finally, add the newly constructed PHI node as the entry for the BEBlock.
435 PN->addIncoming(NewPN, BEBlock);
437 // As an optimization, if all incoming values in the new PhiNode (which is a
438 // subset of the incoming values of the old PHI node) have the same value,
439 // eliminate the PHI Node.
440 if (HasUniqueIncomingValue) {
441 NewPN->replaceAllUsesWith(UniqueValue);
442 if (AA) AA->deleteValue(NewPN);
443 BEBlock->getInstList().erase(NewPN);
447 // Now that all of the PHI nodes have been inserted and adjusted, modify the
448 // backedge blocks to just to the BEBlock instead of the header.
449 for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
450 TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
451 for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
452 if (TI->getSuccessor(Op) == Header)
453 TI->setSuccessor(Op, BEBlock);
456 //===--- Update all analyses which we must preserve now -----------------===//
458 // Update Loop Information - we know that this block is now in the current
459 // loop and all parent loops.
460 L->addBasicBlockToLoop(BEBlock, LI->getBase());
462 // Update dominator information
463 DT->splitBlock(BEBlock);
468 /// \brief Simplify one loop and queue further loops for simplification.
470 /// FIXME: Currently this accepts both lots of analyses that it uses and a raw
471 /// Pass pointer. The Pass pointer is used by numerous utilities to update
472 /// specific analyses. Rather than a pass it would be much cleaner and more
473 /// explicit if they accepted the analysis directly and then updated it.
474 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist,
475 AliasAnalysis *AA, DominatorTree *DT, LoopInfo *LI,
476 ScalarEvolution *SE, Pass *PP,
477 const DataLayout *DL) {
478 bool Changed = false;
481 // Check to see that no blocks (other than the header) in this loop have
482 // predecessors that are not in the loop. This is not valid for natural
483 // loops, but can occur if the blocks are unreachable. Since they are
484 // unreachable we can just shamelessly delete those CFG edges!
485 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
487 if (*BB == L->getHeader()) continue;
489 SmallPtrSet<BasicBlock*, 4> BadPreds;
490 for (pred_iterator PI = pred_begin(*BB),
491 PE = pred_end(*BB); PI != PE; ++PI) {
497 // Delete each unique out-of-loop (and thus dead) predecessor.
498 for (BasicBlock *P : BadPreds) {
500 DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
501 << P->getName() << "\n");
503 // Inform each successor of each dead pred.
504 for (succ_iterator SI = succ_begin(P), SE = succ_end(P); SI != SE; ++SI)
505 (*SI)->removePredecessor(P);
506 // Zap the dead pred's terminator and replace it with unreachable.
507 TerminatorInst *TI = P->getTerminator();
508 TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
509 P->getTerminator()->eraseFromParent();
510 new UnreachableInst(P->getContext(), P);
515 // If there are exiting blocks with branches on undef, resolve the undef in
516 // the direction which will exit the loop. This will help simplify loop
517 // trip count computations.
518 SmallVector<BasicBlock*, 8> ExitingBlocks;
519 L->getExitingBlocks(ExitingBlocks);
520 for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(),
521 E = ExitingBlocks.end(); I != E; ++I)
522 if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator()))
523 if (BI->isConditional()) {
524 if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
526 DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
527 << (*I)->getName() << "\n");
529 BI->setCondition(ConstantInt::get(Cond->getType(),
530 !L->contains(BI->getSuccessor(0))));
532 // This may make the loop analyzable, force SCEV recomputation.
540 // Does the loop already have a preheader? If so, don't insert one.
541 BasicBlock *Preheader = L->getLoopPreheader();
543 Preheader = InsertPreheaderForLoop(L, PP);
550 // Next, check to make sure that all exit nodes of the loop only have
551 // predecessors that are inside of the loop. This check guarantees that the
552 // loop preheader/header will dominate the exit blocks. If the exit block has
553 // predecessors from outside of the loop, split the edge now.
554 SmallVector<BasicBlock*, 8> ExitBlocks;
555 L->getExitBlocks(ExitBlocks);
557 SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(),
559 for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(),
560 E = ExitBlockSet.end(); I != E; ++I) {
561 BasicBlock *ExitBlock = *I;
562 for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
564 // Must be exactly this loop: no subloops, parent loops, or non-loop preds
566 if (!L->contains(*PI)) {
567 if (rewriteLoopExitBlock(L, ExitBlock, PP)) {
575 // If the header has more than two predecessors at this point (from the
576 // preheader and from multiple backedges), we must adjust the loop.
577 BasicBlock *LoopLatch = L->getLoopLatch();
579 // If this is really a nested loop, rip it out into a child loop. Don't do
580 // this for loops with a giant number of backedges, just factor them into a
581 // common backedge instead.
582 if (L->getNumBackEdges() < 8) {
583 if (Loop *OuterL = separateNestedLoop(L, Preheader, AA, DT, LI, SE, PP)) {
585 // Enqueue the outer loop as it should be processed next in our
586 // depth-first nest walk.
587 Worklist.push_back(OuterL);
589 // This is a big restructuring change, reprocess the whole loop.
591 // GCC doesn't tail recursion eliminate this.
592 // FIXME: It isn't clear we can't rely on LLVM to TRE this.
597 // If we either couldn't, or didn't want to, identify nesting of the loops,
598 // insert a new block that all backedges target, then make it jump to the
600 LoopLatch = insertUniqueBackedgeBlock(L, Preheader, AA, DT, LI);
607 // Scan over the PHI nodes in the loop header. Since they now have only two
608 // incoming values (the loop is canonicalized), we may have simplified the PHI
609 // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
611 for (BasicBlock::iterator I = L->getHeader()->begin();
612 (PN = dyn_cast<PHINode>(I++)); )
613 if (Value *V = SimplifyInstruction(PN, nullptr, nullptr, DT)) {
614 if (AA) AA->deleteValue(PN);
615 if (SE) SE->forgetValue(PN);
616 PN->replaceAllUsesWith(V);
617 PN->eraseFromParent();
620 // If this loop has multiple exits and the exits all go to the same
621 // block, attempt to merge the exits. This helps several passes, such
622 // as LoopRotation, which do not support loops with multiple exits.
623 // SimplifyCFG also does this (and this code uses the same utility
624 // function), however this code is loop-aware, where SimplifyCFG is
625 // not. That gives it the advantage of being able to hoist
626 // loop-invariant instructions out of the way to open up more
627 // opportunities, and the disadvantage of having the responsibility
628 // to preserve dominator information.
629 bool UniqueExit = true;
630 if (!ExitBlocks.empty())
631 for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i)
632 if (ExitBlocks[i] != ExitBlocks[0]) {
637 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
638 BasicBlock *ExitingBlock = ExitingBlocks[i];
639 if (!ExitingBlock->getSinglePredecessor()) continue;
640 BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
641 if (!BI || !BI->isConditional()) continue;
642 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
643 if (!CI || CI->getParent() != ExitingBlock) continue;
645 // Attempt to hoist out all instructions except for the
646 // comparison and the branch.
647 bool AllInvariant = true;
648 bool AnyInvariant = false;
649 for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) {
650 Instruction *Inst = I++;
651 // Skip debug info intrinsics.
652 if (isa<DbgInfoIntrinsic>(Inst))
656 if (!L->makeLoopInvariant(Inst, AnyInvariant,
657 Preheader ? Preheader->getTerminator()
659 AllInvariant = false;
665 // The loop disposition of all SCEV expressions that depend on any
666 // hoisted values have also changed.
668 SE->forgetLoopDispositions(L);
670 if (!AllInvariant) continue;
672 // The block has now been cleared of all instructions except for
673 // a comparison and a conditional branch. SimplifyCFG may be able
675 if (!FoldBranchToCommonDest(BI, DL)) continue;
677 // Success. The block is now dead, so remove it from the loop,
678 // update the dominator tree and delete it.
679 DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
680 << ExitingBlock->getName() << "\n");
682 // Notify ScalarEvolution before deleting this block. Currently assume the
683 // parent loop doesn't change (spliting edges doesn't count). If blocks,
684 // CFG edges, or other values in the parent loop change, then we need call
685 // to forgetLoop() for the parent instead.
689 assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
691 LI->removeBlock(ExitingBlock);
693 DomTreeNode *Node = DT->getNode(ExitingBlock);
694 const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
696 while (!Children.empty()) {
697 DomTreeNode *Child = Children.front();
698 DT->changeImmediateDominator(Child, Node->getIDom());
700 DT->eraseNode(ExitingBlock);
702 BI->getSuccessor(0)->removePredecessor(ExitingBlock);
703 BI->getSuccessor(1)->removePredecessor(ExitingBlock);
704 ExitingBlock->eraseFromParent();
711 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, Pass *PP,
712 AliasAnalysis *AA, ScalarEvolution *SE,
713 const DataLayout *DL) {
714 bool Changed = false;
716 // Worklist maintains our depth-first queue of loops in this nest to process.
717 SmallVector<Loop *, 4> Worklist;
718 Worklist.push_back(L);
720 // Walk the worklist from front to back, pushing newly found sub loops onto
721 // the back. This will let us process loops from back to front in depth-first
722 // order. We can use this simple process because loops form a tree.
723 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
724 Loop *L2 = Worklist[Idx];
725 for (Loop::iterator I = L2->begin(), E = L2->end(); I != E; ++I)
726 Worklist.push_back(*I);
729 while (!Worklist.empty())
730 Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, AA, DT, LI,
737 struct LoopSimplify : public FunctionPass {
738 static char ID; // Pass identification, replacement for typeid
739 LoopSimplify() : FunctionPass(ID) {
740 initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
743 // AA - If we have an alias analysis object to update, this is it, otherwise
749 const DataLayout *DL;
751 bool runOnFunction(Function &F) override;
753 void getAnalysisUsage(AnalysisUsage &AU) const override {
754 // We need loop information to identify the loops...
755 AU.addRequired<DominatorTreeWrapperPass>();
756 AU.addPreserved<DominatorTreeWrapperPass>();
758 AU.addRequired<LoopInfo>();
759 AU.addPreserved<LoopInfo>();
761 AU.addPreserved<AliasAnalysis>();
762 AU.addPreserved<ScalarEvolution>();
763 AU.addPreserved<DependenceAnalysis>();
764 AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added.
767 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
768 void verifyAnalysis() const override;
772 char LoopSimplify::ID = 0;
773 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
774 "Canonicalize natural loops", true, false)
775 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
776 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
777 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
778 "Canonicalize natural loops", true, false)
780 // Publicly exposed interface to pass...
781 char &llvm::LoopSimplifyID = LoopSimplify::ID;
782 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
784 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do
785 /// it in any convenient order) inserting preheaders...
787 bool LoopSimplify::runOnFunction(Function &F) {
788 bool Changed = false;
789 AA = getAnalysisIfAvailable<AliasAnalysis>();
790 LI = &getAnalysis<LoopInfo>();
791 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
792 SE = getAnalysisIfAvailable<ScalarEvolution>();
793 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
794 DL = DLP ? &DLP->getDataLayout() : nullptr;
796 // Simplify each loop nest in the function.
797 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
798 Changed |= simplifyLoop(*I, DT, LI, this, AA, SE, DL);
803 // FIXME: Restore this code when we re-enable verification in verifyAnalysis
806 static void verifyLoop(Loop *L) {
808 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
811 // It used to be possible to just assert L->isLoopSimplifyForm(), however
812 // with the introduction of indirectbr, there are now cases where it's
813 // not possible to transform a loop as necessary. We can at least check
814 // that there is an indirectbr near any time there's trouble.
816 // Indirectbr can interfere with preheader and unique backedge insertion.
817 if (!L->getLoopPreheader() || !L->getLoopLatch()) {
818 bool HasIndBrPred = false;
819 for (pred_iterator PI = pred_begin(L->getHeader()),
820 PE = pred_end(L->getHeader()); PI != PE; ++PI)
821 if (isa<IndirectBrInst>((*PI)->getTerminator())) {
825 assert(HasIndBrPred &&
826 "LoopSimplify has no excuse for missing loop header info!");
830 // Indirectbr can interfere with exit block canonicalization.
831 if (!L->hasDedicatedExits()) {
832 bool HasIndBrExiting = false;
833 SmallVector<BasicBlock*, 8> ExitingBlocks;
834 L->getExitingBlocks(ExitingBlocks);
835 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
836 if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
837 HasIndBrExiting = true;
842 assert(HasIndBrExiting &&
843 "LoopSimplify has no excuse for missing exit block info!");
844 (void)HasIndBrExiting;
849 void LoopSimplify::verifyAnalysis() const {
850 // FIXME: This routine is being called mid-way through the loop pass manager
851 // as loop passes destroy this analysis. That's actually fine, but we have no
852 // way of expressing that here. Once all of the passes that destroy this are
853 // hoisted out of the loop pass manager we can add back verification here.
855 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)