1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass performs several transformations to transform natural loops into a
11 // simpler form, which makes subsequent analyses and transformations simpler and
14 // Loop pre-header insertion guarantees that there is a single, non-critical
15 // entry edge from outside of the loop to the loop header. This simplifies a
16 // number of analyses and transformations, such as LICM.
18 // Loop exit-block insertion guarantees that all exit blocks from the loop
19 // (blocks which are outside of the loop that have predecessors inside of the
20 // loop) only have predecessors from inside of the loop (and are thus dominated
21 // by the loop header). This simplifies transformations such as store-sinking
22 // that are built into LICM.
24 // This pass also guarantees that loops will have exactly one backedge.
26 // Indirectbr instructions introduce several complications. If the loop
27 // contains or is entered by an indirectbr instruction, it may not be possible
28 // to transform the loop and make these guarantees. Client code should check
29 // that these conditions are true before relying on them.
31 // Note that the simplifycfg pass will clean up blocks which are split out but
32 // end up being unnecessary, so usage of this pass should not pessimize
35 // This pass obviously modifies the CFG, but updates loop information and
36 // dominator information.
38 //===----------------------------------------------------------------------===//
40 #define DEBUG_TYPE "loop-simplify"
41 #include "llvm/Transforms/Scalar.h"
42 #include "llvm/ADT/DepthFirstIterator.h"
43 #include "llvm/ADT/SetOperations.h"
44 #include "llvm/ADT/SetVector.h"
45 #include "llvm/ADT/Statistic.h"
46 #include "llvm/Analysis/AliasAnalysis.h"
47 #include "llvm/Analysis/DependenceAnalysis.h"
48 #include "llvm/Analysis/Dominators.h"
49 #include "llvm/Analysis/InstructionSimplify.h"
50 #include "llvm/Analysis/LoopPass.h"
51 #include "llvm/Analysis/ScalarEvolution.h"
52 #include "llvm/IR/Constants.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/Instructions.h"
55 #include "llvm/IR/IntrinsicInst.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/Support/CFG.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
61 #include "llvm/Transforms/Utils/Local.h"
62 #include "llvm/Transforms/Utils/LoopUtils.h"
65 STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
66 STATISTIC(NumNested , "Number of nested loops split out");
69 struct LoopSimplify : public LoopPass {
70 static char ID; // Pass identification, replacement for typeid
71 LoopSimplify() : LoopPass(ID) {
72 initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
75 // AA - If we have an alias analysis object to update, this is it, otherwise
82 virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
84 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
85 // We need loop information to identify the loops...
86 AU.addRequired<DominatorTree>();
87 AU.addPreserved<DominatorTree>();
89 AU.addRequired<LoopInfo>();
90 AU.addPreserved<LoopInfo>();
92 AU.addPreserved<AliasAnalysis>();
93 AU.addPreserved<ScalarEvolution>();
94 AU.addPreserved<DependenceAnalysis>();
95 AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added.
98 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
99 void verifyAnalysis() const;
102 bool ProcessLoop(Loop *L, LPPassManager &LPM);
103 BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
104 Loop *SeparateNestedLoop(Loop *L, LPPassManager &LPM,
105 BasicBlock *Preheader);
106 BasicBlock *InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader);
110 static void PlaceSplitBlockCarefully(BasicBlock *NewBB,
111 SmallVectorImpl<BasicBlock*> &SplitPreds,
114 char LoopSimplify::ID = 0;
115 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
116 "Canonicalize natural loops", true, false)
117 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
118 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
119 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
120 "Canonicalize natural loops", true, false)
122 // Publicly exposed interface to pass...
123 char &llvm::LoopSimplifyID = LoopSimplify::ID;
124 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
126 /// runOnLoop - Run down all loops in the CFG (recursively, but we could do
127 /// it in any convenient order) inserting preheaders...
129 bool LoopSimplify::runOnLoop(Loop *l, LPPassManager &LPM) {
131 bool Changed = false;
132 LI = &getAnalysis<LoopInfo>();
133 AA = getAnalysisIfAvailable<AliasAnalysis>();
134 DT = &getAnalysis<DominatorTree>();
135 SE = getAnalysisIfAvailable<ScalarEvolution>();
137 Changed |= ProcessLoop(L, LPM);
142 /// ProcessLoop - Walk the loop structure in depth first order, ensuring that
143 /// all loops have preheaders.
145 bool LoopSimplify::ProcessLoop(Loop *L, LPPassManager &LPM) {
146 bool Changed = false;
149 // Check to see that no blocks (other than the header) in this loop have
150 // predecessors that are not in the loop. This is not valid for natural
151 // loops, but can occur if the blocks are unreachable. Since they are
152 // unreachable we can just shamelessly delete those CFG edges!
153 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
155 if (*BB == L->getHeader()) continue;
157 SmallPtrSet<BasicBlock*, 4> BadPreds;
158 for (pred_iterator PI = pred_begin(*BB),
159 PE = pred_end(*BB); PI != PE; ++PI) {
165 // Delete each unique out-of-loop (and thus dead) predecessor.
166 for (SmallPtrSet<BasicBlock*, 4>::iterator I = BadPreds.begin(),
167 E = BadPreds.end(); I != E; ++I) {
169 DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
170 << (*I)->getName() << "\n");
172 // Inform each successor of each dead pred.
173 for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI)
174 (*SI)->removePredecessor(*I);
175 // Zap the dead pred's terminator and replace it with unreachable.
176 TerminatorInst *TI = (*I)->getTerminator();
177 TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
178 (*I)->getTerminator()->eraseFromParent();
179 new UnreachableInst((*I)->getContext(), *I);
184 // If there are exiting blocks with branches on undef, resolve the undef in
185 // the direction which will exit the loop. This will help simplify loop
186 // trip count computations.
187 SmallVector<BasicBlock*, 8> ExitingBlocks;
188 L->getExitingBlocks(ExitingBlocks);
189 for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(),
190 E = ExitingBlocks.end(); I != E; ++I)
191 if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator()))
192 if (BI->isConditional()) {
193 if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
195 DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
196 << (*I)->getName() << "\n");
198 BI->setCondition(ConstantInt::get(Cond->getType(),
199 !L->contains(BI->getSuccessor(0))));
201 // This may make the loop analyzable, force SCEV recomputation.
209 // Does the loop already have a preheader? If so, don't insert one.
210 BasicBlock *Preheader = L->getLoopPreheader();
212 Preheader = InsertPreheaderForLoop(L, this);
219 // Next, check to make sure that all exit nodes of the loop only have
220 // predecessors that are inside of the loop. This check guarantees that the
221 // loop preheader/header will dominate the exit blocks. If the exit block has
222 // predecessors from outside of the loop, split the edge now.
223 SmallVector<BasicBlock*, 8> ExitBlocks;
224 L->getExitBlocks(ExitBlocks);
226 SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(),
228 for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(),
229 E = ExitBlockSet.end(); I != E; ++I) {
230 BasicBlock *ExitBlock = *I;
231 for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
233 // Must be exactly this loop: no subloops, parent loops, or non-loop preds
235 if (!L->contains(*PI)) {
236 if (RewriteLoopExitBlock(L, ExitBlock)) {
244 // If the header has more than two predecessors at this point (from the
245 // preheader and from multiple backedges), we must adjust the loop.
246 BasicBlock *LoopLatch = L->getLoopLatch();
248 // If this is really a nested loop, rip it out into a child loop. Don't do
249 // this for loops with a giant number of backedges, just factor them into a
250 // common backedge instead.
251 if (L->getNumBackEdges() < 8) {
252 if (SeparateNestedLoop(L, LPM, Preheader)) {
254 // This is a big restructuring change, reprocess the whole loop.
256 // GCC doesn't tail recursion eliminate this.
261 // If we either couldn't, or didn't want to, identify nesting of the loops,
262 // insert a new block that all backedges target, then make it jump to the
264 LoopLatch = InsertUniqueBackedgeBlock(L, Preheader);
271 // Scan over the PHI nodes in the loop header. Since they now have only two
272 // incoming values (the loop is canonicalized), we may have simplified the PHI
273 // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
275 for (BasicBlock::iterator I = L->getHeader()->begin();
276 (PN = dyn_cast<PHINode>(I++)); )
277 if (Value *V = SimplifyInstruction(PN, 0, 0, DT)) {
278 if (AA) AA->deleteValue(PN);
279 if (SE) SE->forgetValue(PN);
280 PN->replaceAllUsesWith(V);
281 PN->eraseFromParent();
284 // If this loop has multiple exits and the exits all go to the same
285 // block, attempt to merge the exits. This helps several passes, such
286 // as LoopRotation, which do not support loops with multiple exits.
287 // SimplifyCFG also does this (and this code uses the same utility
288 // function), however this code is loop-aware, where SimplifyCFG is
289 // not. That gives it the advantage of being able to hoist
290 // loop-invariant instructions out of the way to open up more
291 // opportunities, and the disadvantage of having the responsibility
292 // to preserve dominator information.
293 bool UniqueExit = true;
294 if (!ExitBlocks.empty())
295 for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i)
296 if (ExitBlocks[i] != ExitBlocks[0]) {
301 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
302 BasicBlock *ExitingBlock = ExitingBlocks[i];
303 if (!ExitingBlock->getSinglePredecessor()) continue;
304 BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
305 if (!BI || !BI->isConditional()) continue;
306 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
307 if (!CI || CI->getParent() != ExitingBlock) continue;
309 // Attempt to hoist out all instructions except for the
310 // comparison and the branch.
311 bool AllInvariant = true;
312 for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) {
313 Instruction *Inst = I++;
314 // Skip debug info intrinsics.
315 if (isa<DbgInfoIntrinsic>(Inst))
319 if (!L->makeLoopInvariant(Inst, Changed,
320 Preheader ? Preheader->getTerminator() : 0)) {
321 AllInvariant = false;
325 if (!AllInvariant) continue;
327 // The block has now been cleared of all instructions except for
328 // a comparison and a conditional branch. SimplifyCFG may be able
330 if (!FoldBranchToCommonDest(BI)) continue;
332 // Success. The block is now dead, so remove it from the loop,
333 // update the dominator tree and delete it.
334 DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
335 << ExitingBlock->getName() << "\n");
337 // If any reachable control flow within this loop has changed, notify
338 // ScalarEvolution. Currently assume the parent loop doesn't change
339 // (spliting edges doesn't count). If blocks, CFG edges, or other values
340 // in the parent loop change, then we need call to forgetLoop() for the
345 assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
347 LI->removeBlock(ExitingBlock);
349 DomTreeNode *Node = DT->getNode(ExitingBlock);
350 const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
352 while (!Children.empty()) {
353 DomTreeNode *Child = Children.front();
354 DT->changeImmediateDominator(Child, Node->getIDom());
356 DT->eraseNode(ExitingBlock);
358 BI->getSuccessor(0)->removePredecessor(ExitingBlock);
359 BI->getSuccessor(1)->removePredecessor(ExitingBlock);
360 ExitingBlock->eraseFromParent();
367 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
368 /// preheader, this method is called to insert one. This method has two phases:
369 /// preheader insertion and analysis updating.
371 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, Pass *PP) {
372 BasicBlock *Header = L->getHeader();
374 // Compute the set of predecessors of the loop that are not in the loop.
375 SmallVector<BasicBlock*, 8> OutsideBlocks;
376 for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
379 if (!L->contains(P)) { // Coming in from outside the loop?
380 // If the loop is branched to from an indirect branch, we won't
381 // be able to fully transform the loop, because it prohibits
383 if (isa<IndirectBrInst>(P->getTerminator())) return 0;
386 OutsideBlocks.push_back(P);
390 // Split out the loop pre-header.
391 BasicBlock *PreheaderBB;
392 if (!Header->isLandingPad()) {
393 PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader",
396 SmallVector<BasicBlock*, 2> NewBBs;
397 SplitLandingPadPredecessors(Header, OutsideBlocks, ".preheader",
398 ".split-lp", PP, NewBBs);
399 PreheaderBB = NewBBs[0];
402 PreheaderBB->getTerminator()->setDebugLoc(
403 Header->getFirstNonPHI()->getDebugLoc());
404 DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
405 << PreheaderBB->getName() << "\n");
407 // Make sure that NewBB is put someplace intelligent, which doesn't mess up
408 // code layout too horribly.
409 PlaceSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
414 /// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit
415 /// blocks. This method is used to split exit blocks that have predecessors
416 /// outside of the loop.
417 BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
418 SmallVector<BasicBlock*, 8> LoopBlocks;
419 for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) {
421 if (L->contains(P)) {
422 // Don't do this if the loop is exited via an indirect branch.
423 if (isa<IndirectBrInst>(P->getTerminator())) return 0;
425 LoopBlocks.push_back(P);
429 assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
430 BasicBlock *NewExitBB = 0;
432 if (Exit->isLandingPad()) {
433 SmallVector<BasicBlock*, 2> NewBBs;
434 SplitLandingPadPredecessors(Exit, ArrayRef<BasicBlock*>(&LoopBlocks[0],
436 ".loopexit", ".nonloopexit",
438 NewExitBB = NewBBs[0];
440 NewExitBB = SplitBlockPredecessors(Exit, LoopBlocks, ".loopexit", this);
443 DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
444 << NewExitBB->getName() << "\n");
448 /// AddBlockAndPredsToSet - Add the specified block, and all of its
449 /// predecessors, to the specified set, if it's not already in there. Stop
450 /// predecessor traversal when we reach StopBlock.
451 static void AddBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
452 std::set<BasicBlock*> &Blocks) {
453 std::vector<BasicBlock *> WorkList;
454 WorkList.push_back(InputBB);
456 BasicBlock *BB = WorkList.back(); WorkList.pop_back();
457 if (Blocks.insert(BB).second && BB != StopBlock)
458 // If BB is not already processed and it is not a stop block then
459 // insert its predecessor in the work list
460 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
461 BasicBlock *WBB = *I;
462 WorkList.push_back(WBB);
464 } while(!WorkList.empty());
467 /// FindPHIToPartitionLoops - The first part of loop-nestification is to find a
468 /// PHI node that tells us how to partition the loops.
469 static PHINode *FindPHIToPartitionLoops(Loop *L, DominatorTree *DT,
470 AliasAnalysis *AA, LoopInfo *LI) {
471 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
472 PHINode *PN = cast<PHINode>(I);
474 if (Value *V = SimplifyInstruction(PN, 0, 0, DT)) {
475 // This is a degenerate PHI already, don't modify it!
476 PN->replaceAllUsesWith(V);
477 if (AA) AA->deleteValue(PN);
478 PN->eraseFromParent();
482 // Scan this PHI node looking for a use of the PHI node by itself.
483 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
484 if (PN->getIncomingValue(i) == PN &&
485 L->contains(PN->getIncomingBlock(i)))
486 // We found something tasty to remove.
492 // PlaceSplitBlockCarefully - If the block isn't already, move the new block to
493 // right after some 'outside block' block. This prevents the preheader from
494 // being placed inside the loop body, e.g. when the loop hasn't been rotated.
495 void PlaceSplitBlockCarefully(BasicBlock *NewBB,
496 SmallVectorImpl<BasicBlock*> &SplitPreds,
498 // Check to see if NewBB is already well placed.
499 Function::iterator BBI = NewBB; --BBI;
500 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
501 if (&*BBI == SplitPreds[i])
505 // If it isn't already after an outside block, move it after one. This is
506 // always good as it makes the uncond branch from the outside block into a
509 // Figure out *which* outside block to put this after. Prefer an outside
510 // block that neighbors a BB actually in the loop.
511 BasicBlock *FoundBB = 0;
512 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
513 Function::iterator BBI = SplitPreds[i];
514 if (++BBI != NewBB->getParent()->end() &&
516 FoundBB = SplitPreds[i];
521 // If our heuristic for a *good* bb to place this after doesn't find
522 // anything, just pick something. It's likely better than leaving it within
525 FoundBB = SplitPreds[0];
526 NewBB->moveAfter(FoundBB);
530 /// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of
531 /// them out into a nested loop. This is important for code that looks like
536 /// br cond, Loop, Next
538 /// br cond2, Loop, Out
540 /// To identify this common case, we look at the PHI nodes in the header of the
541 /// loop. PHI nodes with unchanging values on one backedge correspond to values
542 /// that change in the "outer" loop, but not in the "inner" loop.
544 /// If we are able to separate out a loop, return the new outer loop that was
547 Loop *LoopSimplify::SeparateNestedLoop(Loop *L, LPPassManager &LPM,
548 BasicBlock *Preheader) {
549 // Don't try to separate loops without a preheader.
553 // The header is not a landing pad; preheader insertion should ensure this.
554 assert(!L->getHeader()->isLandingPad() &&
555 "Can't insert backedge to landing pad");
557 PHINode *PN = FindPHIToPartitionLoops(L, DT, AA, LI);
558 if (PN == 0) return 0; // No known way to partition.
560 // Pull out all predecessors that have varying values in the loop. This
561 // handles the case when a PHI node has multiple instances of itself as
563 SmallVector<BasicBlock*, 8> OuterLoopPreds;
564 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
565 if (PN->getIncomingValue(i) != PN ||
566 !L->contains(PN->getIncomingBlock(i))) {
567 // We can't split indirectbr edges.
568 if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator()))
570 OuterLoopPreds.push_back(PN->getIncomingBlock(i));
573 DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
575 // If ScalarEvolution is around and knows anything about values in
576 // this loop, tell it to forget them, because we're about to
577 // substantially change it.
581 BasicBlock *Header = L->getHeader();
583 SplitBlockPredecessors(Header, OuterLoopPreds, ".outer", this);
585 // Make sure that NewBB is put someplace intelligent, which doesn't mess up
586 // code layout too horribly.
587 PlaceSplitBlockCarefully(NewBB, OuterLoopPreds, L);
589 // Create the new outer loop.
590 Loop *NewOuter = new Loop();
592 // Change the parent loop to use the outer loop as its child now.
593 if (Loop *Parent = L->getParentLoop())
594 Parent->replaceChildLoopWith(L, NewOuter);
596 LI->changeTopLevelLoop(L, NewOuter);
598 // L is now a subloop of our outer loop.
599 NewOuter->addChildLoop(L);
601 // Add the new loop to the pass manager queue.
602 LPM.insertLoopIntoQueue(NewOuter);
604 for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
606 NewOuter->addBlockEntry(*I);
608 // Now reset the header in L, which had been moved by
609 // SplitBlockPredecessors for the outer loop.
610 L->moveToHeader(Header);
612 // Determine which blocks should stay in L and which should be moved out to
613 // the Outer loop now.
614 std::set<BasicBlock*> BlocksInL;
615 for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
617 if (DT->dominates(Header, P))
618 AddBlockAndPredsToSet(P, Header, BlocksInL);
621 // Scan all of the loop children of L, moving them to OuterLoop if they are
622 // not part of the inner loop.
623 const std::vector<Loop*> &SubLoops = L->getSubLoops();
624 for (size_t I = 0; I != SubLoops.size(); )
625 if (BlocksInL.count(SubLoops[I]->getHeader()))
626 ++I; // Loop remains in L
628 NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
630 // Now that we know which blocks are in L and which need to be moved to
631 // OuterLoop, move any blocks that need it.
632 for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
633 BasicBlock *BB = L->getBlocks()[i];
634 if (!BlocksInL.count(BB)) {
635 // Move this block to the parent, updating the exit blocks sets
636 L->removeBlockFromLoop(BB);
638 LI->changeLoopFor(BB, NewOuter);
648 /// InsertUniqueBackedgeBlock - This method is called when the specified loop
649 /// has more than one backedge in it. If this occurs, revector all of these
650 /// backedges to target a new basic block and have that block branch to the loop
651 /// header. This ensures that loops have exactly one backedge.
654 LoopSimplify::InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader) {
655 assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
657 // Get information about the loop
658 BasicBlock *Header = L->getHeader();
659 Function *F = Header->getParent();
661 // Unique backedge insertion currently depends on having a preheader.
665 // The header is not a landing pad; preheader insertion should ensure this.
666 assert(!Header->isLandingPad() && "Can't insert backedge to landing pad");
668 // Figure out which basic blocks contain back-edges to the loop header.
669 std::vector<BasicBlock*> BackedgeBlocks;
670 for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
673 // Indirectbr edges cannot be split, so we must fail if we find one.
674 if (isa<IndirectBrInst>(P->getTerminator()))
677 if (P != Preheader) BackedgeBlocks.push_back(P);
680 // Create and insert the new backedge block...
681 BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
682 Header->getName()+".backedge", F);
683 BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
685 DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
686 << BEBlock->getName() << "\n");
688 // Move the new backedge block to right after the last backedge block.
689 Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
690 F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
692 // Now that the block has been inserted into the function, create PHI nodes in
693 // the backedge block which correspond to any PHI nodes in the header block.
694 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
695 PHINode *PN = cast<PHINode>(I);
696 PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
697 PN->getName()+".be", BETerminator);
698 if (AA) AA->copyValue(PN, NewPN);
700 // Loop over the PHI node, moving all entries except the one for the
701 // preheader over to the new PHI node.
702 unsigned PreheaderIdx = ~0U;
703 bool HasUniqueIncomingValue = true;
704 Value *UniqueValue = 0;
705 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
706 BasicBlock *IBB = PN->getIncomingBlock(i);
707 Value *IV = PN->getIncomingValue(i);
708 if (IBB == Preheader) {
711 NewPN->addIncoming(IV, IBB);
712 if (HasUniqueIncomingValue) {
713 if (UniqueValue == 0)
715 else if (UniqueValue != IV)
716 HasUniqueIncomingValue = false;
721 // Delete all of the incoming values from the old PN except the preheader's
722 assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
723 if (PreheaderIdx != 0) {
724 PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
725 PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
727 // Nuke all entries except the zero'th.
728 for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
729 PN->removeIncomingValue(e-i, false);
731 // Finally, add the newly constructed PHI node as the entry for the BEBlock.
732 PN->addIncoming(NewPN, BEBlock);
734 // As an optimization, if all incoming values in the new PhiNode (which is a
735 // subset of the incoming values of the old PHI node) have the same value,
736 // eliminate the PHI Node.
737 if (HasUniqueIncomingValue) {
738 NewPN->replaceAllUsesWith(UniqueValue);
739 if (AA) AA->deleteValue(NewPN);
740 BEBlock->getInstList().erase(NewPN);
744 // Now that all of the PHI nodes have been inserted and adjusted, modify the
745 // backedge blocks to just to the BEBlock instead of the header.
746 for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
747 TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
748 for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
749 if (TI->getSuccessor(Op) == Header)
750 TI->setSuccessor(Op, BEBlock);
753 //===--- Update all analyses which we must preserve now -----------------===//
755 // Update Loop Information - we know that this block is now in the current
756 // loop and all parent loops.
757 L->addBasicBlockToLoop(BEBlock, LI->getBase());
759 // Update dominator information
760 DT->splitBlock(BEBlock);
765 void LoopSimplify::verifyAnalysis() const {
766 // It used to be possible to just assert L->isLoopSimplifyForm(), however
767 // with the introduction of indirectbr, there are now cases where it's
768 // not possible to transform a loop as necessary. We can at least check
769 // that there is an indirectbr near any time there's trouble.
771 // Indirectbr can interfere with preheader and unique backedge insertion.
772 if (!L->getLoopPreheader() || !L->getLoopLatch()) {
773 bool HasIndBrPred = false;
774 for (pred_iterator PI = pred_begin(L->getHeader()),
775 PE = pred_end(L->getHeader()); PI != PE; ++PI)
776 if (isa<IndirectBrInst>((*PI)->getTerminator())) {
780 assert(HasIndBrPred &&
781 "LoopSimplify has no excuse for missing loop header info!");
785 // Indirectbr can interfere with exit block canonicalization.
786 if (!L->hasDedicatedExits()) {
787 bool HasIndBrExiting = false;
788 SmallVector<BasicBlock*, 8> ExitingBlocks;
789 L->getExitingBlocks(ExitingBlocks);
790 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
791 if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
792 HasIndBrExiting = true;
797 assert(HasIndBrExiting &&
798 "LoopSimplify has no excuse for missing exit block info!");
799 (void)HasIndBrExiting;