1 //===- LowerInvoke.cpp - Eliminate Invoke & Unwind instructions -----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This transformation is designed for use by code generators which do not yet
11 // support stack unwinding. This pass supports two models of exception handling
12 // lowering, the 'cheap' support and the 'expensive' support.
14 // 'Cheap' exception handling support gives the program the ability to execute
15 // any program which does not "throw an exception", by turning 'invoke'
16 // instructions into calls and by turning 'unwind' instructions into calls to
17 // abort(). If the program does dynamically use the unwind instruction, the
18 // program will print a message then abort.
20 // 'Expensive' exception handling support gives the full exception handling
21 // support to the program at the cost of making the 'invoke' instruction
22 // really expensive. It basically inserts setjmp/longjmp calls to emulate the
23 // exception handling as necessary.
25 // Because the 'expensive' support slows down programs a lot, and EH is only
26 // used for a subset of the programs, it must be specifically enabled by an
29 // Note that after this pass runs the CFG is not entirely accurate (exceptional
30 // control flow edges are not correct anymore) so only very simple things should
31 // be done after the lowerinvoke pass has run (like generation of native code).
32 // This should not be used as a general purpose "my LLVM-to-LLVM pass doesn't
33 // support the invoke instruction yet" lowering pass.
35 //===----------------------------------------------------------------------===//
37 #define DEBUG_TYPE "lowerinvoke"
38 #include "llvm/Transforms/Scalar.h"
39 #include "llvm/Constants.h"
40 #include "llvm/DerivedTypes.h"
41 #include "llvm/Instructions.h"
42 #include "llvm/Module.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
45 #include "llvm/Transforms/Utils/Local.h"
46 #include "llvm/ADT/Statistic.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Compiler.h"
49 #include "llvm/Target/TargetLowering.h"
50 #include "llvm/Target/TargetOptions.h"
51 #include "llvm/Target/TargetMachine.h"
52 #include "llvm/Target/TargetAsmInfo.h"
57 STATISTIC(NumInvokes, "Number of invokes replaced");
58 STATISTIC(NumUnwinds, "Number of unwinds replaced");
59 STATISTIC(NumSpilled, "Number of registers live across unwind edges");
61 static cl::opt<bool> ExpensiveEHSupport("enable-correct-eh-support",
62 cl::desc("Make the -lowerinvoke pass insert expensive, but correct, EH code"));
65 class VISIBILITY_HIDDEN LowerInvoke : public FunctionPass {
66 // Used for both models.
70 unsigned AbortMessageLength;
72 // Used for expensive EH support.
74 GlobalVariable *JBListHead;
75 Constant *SetJmpFn, *LongJmpFn;
77 // We peek in TLI to grab the target's jmp_buf size and alignment
78 const TargetLowering *TLI;
81 static char ID; // Pass identification, replacement for typeid
82 explicit LowerInvoke(const TargetLowering *tli = NULL)
83 : FunctionPass((intptr_t)&ID), TLI(tli) { }
84 bool doInitialization(Module &M);
85 bool runOnFunction(Function &F);
87 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
88 // This is a cluster of orthogonal Transforms
89 AU.addPreservedID(PromoteMemoryToRegisterID);
90 AU.addPreservedID(LowerSwitchID);
91 AU.addPreservedID(LowerAllocationsID);
95 void createAbortMessage(Module *M);
96 void writeAbortMessage(Instruction *IB);
97 bool insertCheapEHSupport(Function &F);
98 void splitLiveRangesLiveAcrossInvokes(std::vector<InvokeInst*> &Invokes);
99 void rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo,
100 AllocaInst *InvokeNum, SwitchInst *CatchSwitch);
101 bool insertExpensiveEHSupport(Function &F);
104 char LowerInvoke::ID = 0;
105 RegisterPass<LowerInvoke>
106 X("lowerinvoke", "Lower invoke and unwind, for unwindless code generators");
109 const PassInfo *llvm::LowerInvokePassID = X.getPassInfo();
111 // Public Interface To the LowerInvoke pass.
112 FunctionPass *llvm::createLowerInvokePass(const TargetLowering *TLI) {
113 return new LowerInvoke(TLI);
116 // doInitialization - Make sure that there is a prototype for abort in the
118 bool LowerInvoke::doInitialization(Module &M) {
119 const Type *VoidPtrTy = PointerType::getUnqual(Type::Int8Ty);
121 if (ExpensiveEHSupport) {
122 // Insert a type for the linked list of jump buffers.
123 unsigned JBSize = TLI ? TLI->getJumpBufSize() : 0;
124 JBSize = JBSize ? JBSize : 200;
125 const Type *JmpBufTy = ArrayType::get(VoidPtrTy, JBSize);
127 { // The type is recursive, so use a type holder.
128 std::vector<const Type*> Elements;
129 Elements.push_back(JmpBufTy);
130 OpaqueType *OT = OpaqueType::get();
131 Elements.push_back(PointerType::getUnqual(OT));
132 PATypeHolder JBLType(StructType::get(Elements));
133 OT->refineAbstractTypeTo(JBLType.get()); // Complete the cycle.
134 JBLinkTy = JBLType.get();
135 M.addTypeName("llvm.sjljeh.jmpbufty", JBLinkTy);
138 const Type *PtrJBList = PointerType::getUnqual(JBLinkTy);
140 // Now that we've done that, insert the jmpbuf list head global, unless it
142 if (!(JBListHead = M.getGlobalVariable("llvm.sjljeh.jblist", PtrJBList))) {
143 JBListHead = new GlobalVariable(PtrJBList, false,
144 GlobalValue::LinkOnceLinkage,
145 Constant::getNullValue(PtrJBList),
146 "llvm.sjljeh.jblist", &M);
148 SetJmpFn = M.getOrInsertFunction("llvm.setjmp", Type::Int32Ty,
149 PointerType::getUnqual(JmpBufTy),
151 LongJmpFn = M.getOrInsertFunction("llvm.longjmp", Type::VoidTy,
152 PointerType::getUnqual(JmpBufTy),
153 Type::Int32Ty, (Type *)0);
156 // We need the 'write' and 'abort' functions for both models.
157 AbortFn = M.getOrInsertFunction("abort", Type::VoidTy, (Type *)0);
158 #if 0 // "write" is Unix-specific.. code is going away soon anyway.
159 WriteFn = M.getOrInsertFunction("write", Type::VoidTy, Type::Int32Ty,
160 VoidPtrTy, Type::Int32Ty, (Type *)0);
167 void LowerInvoke::createAbortMessage(Module *M) {
168 if (ExpensiveEHSupport) {
169 // The abort message for expensive EH support tells the user that the
170 // program 'unwound' without an 'invoke' instruction.
172 ConstantArray::get("ERROR: Exception thrown, but not caught!\n");
173 AbortMessageLength = Msg->getNumOperands()-1; // don't include \0
175 GlobalVariable *MsgGV = new GlobalVariable(Msg->getType(), true,
176 GlobalValue::InternalLinkage,
178 std::vector<Constant*> GEPIdx(2, Constant::getNullValue(Type::Int32Ty));
179 AbortMessage = ConstantExpr::getGetElementPtr(MsgGV, &GEPIdx[0], 2);
181 // The abort message for cheap EH support tells the user that EH is not
184 ConstantArray::get("Exception handler needed, but not enabled. Recompile"
185 " program with -enable-correct-eh-support.\n");
186 AbortMessageLength = Msg->getNumOperands()-1; // don't include \0
188 GlobalVariable *MsgGV = new GlobalVariable(Msg->getType(), true,
189 GlobalValue::InternalLinkage,
191 std::vector<Constant*> GEPIdx(2, Constant::getNullValue(Type::Int32Ty));
192 AbortMessage = ConstantExpr::getGetElementPtr(MsgGV, &GEPIdx[0], 2);
197 void LowerInvoke::writeAbortMessage(Instruction *IB) {
199 if (AbortMessage == 0)
200 createAbortMessage(IB->getParent()->getParent()->getParent());
202 // These are the arguments we WANT...
204 Args[0] = ConstantInt::get(Type::Int32Ty, 2);
205 Args[1] = AbortMessage;
206 Args[2] = ConstantInt::get(Type::Int32Ty, AbortMessageLength);
207 (new CallInst(WriteFn, Args, 3, "", IB))->setTailCall();
211 bool LowerInvoke::insertCheapEHSupport(Function &F) {
212 bool Changed = false;
213 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
214 if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
215 std::vector<Value*> CallArgs(II->op_begin()+3, II->op_end());
216 // Insert a normal call instruction...
217 CallInst *NewCall = new CallInst(II->getCalledValue(),
218 CallArgs.begin(), CallArgs.end(), "",II);
219 NewCall->takeName(II);
220 NewCall->setCallingConv(II->getCallingConv());
221 NewCall->setParamAttrs(II->getParamAttrs());
222 II->replaceAllUsesWith(NewCall);
224 // Insert an unconditional branch to the normal destination.
225 new BranchInst(II->getNormalDest(), II);
227 // Remove any PHI node entries from the exception destination.
228 II->getUnwindDest()->removePredecessor(BB);
230 // Remove the invoke instruction now.
231 BB->getInstList().erase(II);
233 ++NumInvokes; Changed = true;
234 } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
235 // Insert a new call to write(2, AbortMessage, AbortMessageLength);
236 writeAbortMessage(UI);
238 // Insert a call to abort()
239 (new CallInst(AbortFn, "", UI))->setTailCall();
241 // Insert a return instruction. This really should be a "barrier", as it
243 new ReturnInst(F.getReturnType() == Type::VoidTy ? 0 :
244 Constant::getNullValue(F.getReturnType()), UI);
246 // Remove the unwind instruction now.
247 BB->getInstList().erase(UI);
249 ++NumUnwinds; Changed = true;
254 /// rewriteExpensiveInvoke - Insert code and hack the function to replace the
255 /// specified invoke instruction with a call.
256 void LowerInvoke::rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo,
257 AllocaInst *InvokeNum,
258 SwitchInst *CatchSwitch) {
259 ConstantInt *InvokeNoC = ConstantInt::get(Type::Int32Ty, InvokeNo);
261 // If the unwind edge has phi nodes, split the edge.
262 if (isa<PHINode>(II->getUnwindDest()->begin())) {
263 SplitCriticalEdge(II, 1, this);
265 // If there are any phi nodes left, they must have a single predecessor.
266 while (PHINode *PN = dyn_cast<PHINode>(II->getUnwindDest()->begin())) {
267 PN->replaceAllUsesWith(PN->getIncomingValue(0));
268 PN->eraseFromParent();
272 // Insert a store of the invoke num before the invoke and store zero into the
273 // location afterward.
274 new StoreInst(InvokeNoC, InvokeNum, true, II); // volatile
276 BasicBlock::iterator NI = II->getNormalDest()->begin();
277 while (isa<PHINode>(NI)) ++NI;
279 new StoreInst(Constant::getNullValue(Type::Int32Ty), InvokeNum, false, NI);
281 // Add a switch case to our unwind block.
282 CatchSwitch->addCase(InvokeNoC, II->getUnwindDest());
284 // Insert a normal call instruction.
285 std::vector<Value*> CallArgs(II->op_begin()+3, II->op_end());
286 CallInst *NewCall = new CallInst(II->getCalledValue(),
287 CallArgs.begin(), CallArgs.end(), "",
289 NewCall->takeName(II);
290 NewCall->setCallingConv(II->getCallingConv());
291 NewCall->setParamAttrs(II->getParamAttrs());
292 II->replaceAllUsesWith(NewCall);
294 // Replace the invoke with an uncond branch.
295 new BranchInst(II->getNormalDest(), NewCall->getParent());
296 II->eraseFromParent();
299 /// MarkBlocksLiveIn - Insert BB and all of its predescessors into LiveBBs until
300 /// we reach blocks we've already seen.
301 static void MarkBlocksLiveIn(BasicBlock *BB, std::set<BasicBlock*> &LiveBBs) {
302 if (!LiveBBs.insert(BB).second) return; // already been here.
304 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
305 MarkBlocksLiveIn(*PI, LiveBBs);
308 // First thing we need to do is scan the whole function for values that are
309 // live across unwind edges. Each value that is live across an unwind edge
310 // we spill into a stack location, guaranteeing that there is nothing live
311 // across the unwind edge. This process also splits all critical edges
312 // coming out of invoke's.
314 splitLiveRangesLiveAcrossInvokes(std::vector<InvokeInst*> &Invokes) {
315 // First step, split all critical edges from invoke instructions.
316 for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
317 InvokeInst *II = Invokes[i];
318 SplitCriticalEdge(II, 0, this);
319 SplitCriticalEdge(II, 1, this);
320 assert(!isa<PHINode>(II->getNormalDest()) &&
321 !isa<PHINode>(II->getUnwindDest()) &&
322 "critical edge splitting left single entry phi nodes?");
325 Function *F = Invokes.back()->getParent()->getParent();
327 // To avoid having to handle incoming arguments specially, we lower each arg
328 // to a copy instruction in the entry block. This ensures that the argument
329 // value itself cannot be live across the entry block.
330 BasicBlock::iterator AfterAllocaInsertPt = F->begin()->begin();
331 while (isa<AllocaInst>(AfterAllocaInsertPt) &&
332 isa<ConstantInt>(cast<AllocaInst>(AfterAllocaInsertPt)->getArraySize()))
333 ++AfterAllocaInsertPt;
334 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
336 // This is always a no-op cast because we're casting AI to AI->getType() so
337 // src and destination types are identical. BitCast is the only possibility.
338 CastInst *NC = new BitCastInst(
339 AI, AI->getType(), AI->getName()+".tmp", AfterAllocaInsertPt);
340 AI->replaceAllUsesWith(NC);
341 // Normally its is forbidden to replace a CastInst's operand because it
342 // could cause the opcode to reflect an illegal conversion. However, we're
343 // replacing it here with the same value it was constructed with to simply
345 NC->setOperand(0, AI);
348 // Finally, scan the code looking for instructions with bad live ranges.
349 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
350 for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
351 // Ignore obvious cases we don't have to handle. In particular, most
352 // instructions either have no uses or only have a single use inside the
353 // current block. Ignore them quickly.
354 Instruction *Inst = II;
355 if (Inst->use_empty()) continue;
356 if (Inst->hasOneUse() &&
357 cast<Instruction>(Inst->use_back())->getParent() == BB &&
358 !isa<PHINode>(Inst->use_back())) continue;
360 // If this is an alloca in the entry block, it's not a real register
362 if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst))
363 if (isa<ConstantInt>(AI->getArraySize()) && BB == F->begin())
366 // Avoid iterator invalidation by copying users to a temporary vector.
367 std::vector<Instruction*> Users;
368 for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end();
370 Instruction *User = cast<Instruction>(*UI);
371 if (User->getParent() != BB || isa<PHINode>(User))
372 Users.push_back(User);
375 // Scan all of the uses and see if the live range is live across an unwind
376 // edge. If we find a use live across an invoke edge, create an alloca
377 // and spill the value.
378 std::set<InvokeInst*> InvokesWithStoreInserted;
380 // Find all of the blocks that this value is live in.
381 std::set<BasicBlock*> LiveBBs;
382 LiveBBs.insert(Inst->getParent());
383 while (!Users.empty()) {
384 Instruction *U = Users.back();
387 if (!isa<PHINode>(U)) {
388 MarkBlocksLiveIn(U->getParent(), LiveBBs);
390 // Uses for a PHI node occur in their predecessor block.
391 PHINode *PN = cast<PHINode>(U);
392 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
393 if (PN->getIncomingValue(i) == Inst)
394 MarkBlocksLiveIn(PN->getIncomingBlock(i), LiveBBs);
398 // Now that we know all of the blocks that this thing is live in, see if
399 // it includes any of the unwind locations.
400 bool NeedsSpill = false;
401 for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
402 BasicBlock *UnwindBlock = Invokes[i]->getUnwindDest();
403 if (UnwindBlock != BB && LiveBBs.count(UnwindBlock)) {
408 // If we decided we need a spill, do it.
411 DemoteRegToStack(*Inst, true);
416 bool LowerInvoke::insertExpensiveEHSupport(Function &F) {
417 std::vector<ReturnInst*> Returns;
418 std::vector<UnwindInst*> Unwinds;
419 std::vector<InvokeInst*> Invokes;
421 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
422 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
423 // Remember all return instructions in case we insert an invoke into this
425 Returns.push_back(RI);
426 } else if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
427 Invokes.push_back(II);
428 } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
429 Unwinds.push_back(UI);
432 if (Unwinds.empty() && Invokes.empty()) return false;
434 NumInvokes += Invokes.size();
435 NumUnwinds += Unwinds.size();
437 // TODO: This is not an optimal way to do this. In particular, this always
438 // inserts setjmp calls into the entries of functions with invoke instructions
439 // even though there are possibly paths through the function that do not
440 // execute any invokes. In particular, for functions with early exits, e.g.
441 // the 'addMove' method in hexxagon, it would be nice to not have to do the
442 // setjmp stuff on the early exit path. This requires a bit of dataflow, but
443 // would not be too hard to do.
445 // If we have an invoke instruction, insert a setjmp that dominates all
446 // invokes. After the setjmp, use a cond branch that goes to the original
447 // code path on zero, and to a designated 'catch' block of nonzero.
448 Value *OldJmpBufPtr = 0;
449 if (!Invokes.empty()) {
450 // First thing we need to do is scan the whole function for values that are
451 // live across unwind edges. Each value that is live across an unwind edge
452 // we spill into a stack location, guaranteeing that there is nothing live
453 // across the unwind edge. This process also splits all critical edges
454 // coming out of invoke's.
455 splitLiveRangesLiveAcrossInvokes(Invokes);
457 BasicBlock *EntryBB = F.begin();
459 // Create an alloca for the incoming jump buffer ptr and the new jump buffer
460 // that needs to be restored on all exits from the function. This is an
461 // alloca because the value needs to be live across invokes.
462 unsigned Align = TLI ? TLI->getJumpBufAlignment() : 0;
464 new AllocaInst(JBLinkTy, 0, Align, "jblink", F.begin()->begin());
466 std::vector<Value*> Idx;
467 Idx.push_back(Constant::getNullValue(Type::Int32Ty));
468 Idx.push_back(ConstantInt::get(Type::Int32Ty, 1));
469 OldJmpBufPtr = new GetElementPtrInst(JmpBuf, Idx.begin(), Idx.end(),
470 "OldBuf", EntryBB->getTerminator());
472 // Copy the JBListHead to the alloca.
473 Value *OldBuf = new LoadInst(JBListHead, "oldjmpbufptr", true,
474 EntryBB->getTerminator());
475 new StoreInst(OldBuf, OldJmpBufPtr, true, EntryBB->getTerminator());
477 // Add the new jumpbuf to the list.
478 new StoreInst(JmpBuf, JBListHead, true, EntryBB->getTerminator());
480 // Create the catch block. The catch block is basically a big switch
481 // statement that goes to all of the invoke catch blocks.
482 BasicBlock *CatchBB = new BasicBlock("setjmp.catch", &F);
484 // Create an alloca which keeps track of which invoke is currently
485 // executing. For normal calls it contains zero.
486 AllocaInst *InvokeNum = new AllocaInst(Type::Int32Ty, 0, "invokenum",
488 new StoreInst(ConstantInt::get(Type::Int32Ty, 0), InvokeNum, true,
489 EntryBB->getTerminator());
491 // Insert a load in the Catch block, and a switch on its value. By default,
492 // we go to a block that just does an unwind (which is the correct action
493 // for a standard call).
494 BasicBlock *UnwindBB = new BasicBlock("unwindbb", &F);
495 Unwinds.push_back(new UnwindInst(UnwindBB));
497 Value *CatchLoad = new LoadInst(InvokeNum, "invoke.num", true, CatchBB);
498 SwitchInst *CatchSwitch =
499 new SwitchInst(CatchLoad, UnwindBB, Invokes.size(), CatchBB);
501 // Now that things are set up, insert the setjmp call itself.
503 // Split the entry block to insert the conditional branch for the setjmp.
504 BasicBlock *ContBlock = EntryBB->splitBasicBlock(EntryBB->getTerminator(),
507 Idx[1] = ConstantInt::get(Type::Int32Ty, 0);
508 Value *JmpBufPtr = new GetElementPtrInst(JmpBuf, Idx.begin(), Idx.end(),
510 EntryBB->getTerminator());
511 Value *SJRet = new CallInst(SetJmpFn, JmpBufPtr, "sjret",
512 EntryBB->getTerminator());
514 // Compare the return value to zero.
515 Value *IsNormal = new ICmpInst(ICmpInst::ICMP_EQ, SJRet,
516 Constant::getNullValue(SJRet->getType()),
517 "notunwind", EntryBB->getTerminator());
518 // Nuke the uncond branch.
519 EntryBB->getTerminator()->eraseFromParent();
521 // Put in a new condbranch in its place.
522 new BranchInst(ContBlock, CatchBB, IsNormal, EntryBB);
524 // At this point, we are all set up, rewrite each invoke instruction.
525 for (unsigned i = 0, e = Invokes.size(); i != e; ++i)
526 rewriteExpensiveInvoke(Invokes[i], i+1, InvokeNum, CatchSwitch);
529 // We know that there is at least one unwind.
531 // Create three new blocks, the block to load the jmpbuf ptr and compare
532 // against null, the block to do the longjmp, and the error block for if it
533 // is null. Add them at the end of the function because they are not hot.
534 BasicBlock *UnwindHandler = new BasicBlock("dounwind", &F);
535 BasicBlock *UnwindBlock = new BasicBlock("unwind", &F);
536 BasicBlock *TermBlock = new BasicBlock("unwinderror", &F);
538 // If this function contains an invoke, restore the old jumpbuf ptr.
541 // Before the return, insert a copy from the saved value to the new value.
542 BufPtr = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", UnwindHandler);
543 new StoreInst(BufPtr, JBListHead, UnwindHandler);
545 BufPtr = new LoadInst(JBListHead, "ehlist", UnwindHandler);
548 // Load the JBList, if it's null, then there was no catch!
549 Value *NotNull = new ICmpInst(ICmpInst::ICMP_NE, BufPtr,
550 Constant::getNullValue(BufPtr->getType()),
551 "notnull", UnwindHandler);
552 new BranchInst(UnwindBlock, TermBlock, NotNull, UnwindHandler);
554 // Create the block to do the longjmp.
555 // Get a pointer to the jmpbuf and longjmp.
556 std::vector<Value*> Idx;
557 Idx.push_back(Constant::getNullValue(Type::Int32Ty));
558 Idx.push_back(ConstantInt::get(Type::Int32Ty, 0));
559 Idx[0] = new GetElementPtrInst(BufPtr, Idx.begin(), Idx.end(), "JmpBuf",
561 Idx[1] = ConstantInt::get(Type::Int32Ty, 1);
562 new CallInst(LongJmpFn, Idx.begin(), Idx.end(), "", UnwindBlock);
563 new UnreachableInst(UnwindBlock);
565 // Set up the term block ("throw without a catch").
566 new UnreachableInst(TermBlock);
568 // Insert a new call to write(2, AbortMessage, AbortMessageLength);
569 writeAbortMessage(TermBlock->getTerminator());
571 // Insert a call to abort()
572 (new CallInst(AbortFn, "",
573 TermBlock->getTerminator()))->setTailCall();
576 // Replace all unwinds with a branch to the unwind handler.
577 for (unsigned i = 0, e = Unwinds.size(); i != e; ++i) {
578 new BranchInst(UnwindHandler, Unwinds[i]);
579 Unwinds[i]->eraseFromParent();
582 // Finally, for any returns from this function, if this function contains an
583 // invoke, restore the old jmpbuf pointer to its input value.
585 for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
586 ReturnInst *R = Returns[i];
588 // Before the return, insert a copy from the saved value to the new value.
589 Value *OldBuf = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", true, R);
590 new StoreInst(OldBuf, JBListHead, true, R);
597 bool LowerInvoke::runOnFunction(Function &F) {
598 // If we will be generating exception info, don't do anything here.
599 if ((ExceptionHandling || !F.doesNotThrow()) &&
601 TLI->getTargetMachine().getTargetAsmInfo()->
602 doesSupportExceptionHandling())
604 if (ExpensiveEHSupport)
605 return insertExpensiveEHSupport(F);
607 return insertCheapEHSupport(F);