1 //===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // The LowerSwitch transformation rewrites switch instructions with a sequence
11 // of branches, which allows targets to get away with not implementing the
12 // switch instruction until it is convenient.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Transforms/Scalar.h"
17 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/Instructions.h"
22 #include "llvm/IR/LLVMContext.h"
23 #include "llvm/IR/CFG.h"
24 #include "llvm/Pass.h"
25 #include "llvm/Support/Compiler.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
32 #define DEBUG_TYPE "lower-switch"
35 /// LowerSwitch Pass - Replace all SwitchInst instructions with chained branch
37 class LowerSwitch : public FunctionPass {
39 static char ID; // Pass identification, replacement for typeid
40 LowerSwitch() : FunctionPass(ID) {
41 initializeLowerSwitchPass(*PassRegistry::getPassRegistry());
44 bool runOnFunction(Function &F) override;
46 void getAnalysisUsage(AnalysisUsage &AU) const override {
47 // This is a cluster of orthogonal Transforms
48 AU.addPreserved<UnifyFunctionExitNodes>();
49 AU.addPreserved("mem2reg");
50 AU.addPreservedID(LowerInvokePassID);
58 CaseRange(Constant *low = nullptr, Constant *high = nullptr,
59 BasicBlock *bb = nullptr) :
60 Low(low), High(high), BB(bb) { }
63 typedef std::vector<CaseRange> CaseVector;
64 typedef std::vector<CaseRange>::iterator CaseItr;
66 void processSwitchInst(SwitchInst *SI);
68 BasicBlock *switchConvert(CaseItr Begin, CaseItr End,
69 ConstantInt *LowerBound, ConstantInt *UpperBound,
70 Value *Val, BasicBlock *Predecessor,
71 BasicBlock *OrigBlock, BasicBlock *Default);
72 BasicBlock *newLeafBlock(CaseRange &Leaf, Value *Val, BasicBlock *OrigBlock,
74 unsigned Clusterify(CaseVector &Cases, SwitchInst *SI);
77 /// The comparison function for sorting the switch case values in the vector.
78 /// WARNING: Case ranges should be disjoint!
80 bool operator () (const LowerSwitch::CaseRange& C1,
81 const LowerSwitch::CaseRange& C2) {
83 const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
84 const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
85 return CI1->getValue().slt(CI2->getValue());
90 char LowerSwitch::ID = 0;
91 INITIALIZE_PASS(LowerSwitch, "lowerswitch",
92 "Lower SwitchInst's to branches", false, false)
94 // Publicly exposed interface to pass...
95 char &llvm::LowerSwitchID = LowerSwitch::ID;
96 // createLowerSwitchPass - Interface to this file...
97 FunctionPass *llvm::createLowerSwitchPass() {
98 return new LowerSwitch();
101 bool LowerSwitch::runOnFunction(Function &F) {
102 bool Changed = false;
104 for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
105 BasicBlock *Cur = I++; // Advance over block so we don't traverse new blocks
107 if (SwitchInst *SI = dyn_cast<SwitchInst>(Cur->getTerminator())) {
109 processSwitchInst(SI);
116 // operator<< - Used for debugging purposes.
118 static raw_ostream& operator<<(raw_ostream &O,
119 const LowerSwitch::CaseVector &C)
121 static raw_ostream& operator<<(raw_ostream &O,
122 const LowerSwitch::CaseVector &C) {
125 for (LowerSwitch::CaseVector::const_iterator B = C.begin(),
126 E = C.end(); B != E; ) {
127 O << *B->Low << " -" << *B->High;
128 if (++B != E) O << ", ";
134 static void fixPhis(BasicBlock *Succ,
135 BasicBlock *OrigBlock,
136 BasicBlock *NewNode) {
137 for (BasicBlock::iterator I = Succ->begin(),
138 E = Succ->getFirstNonPHI();
140 PHINode *PN = cast<PHINode>(I);
142 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
143 if (PN->getIncomingBlock(I) == OrigBlock)
144 PN->setIncomingBlock(I, NewNode);
149 // switchConvert - Convert the switch statement into a binary lookup of
150 // the case values. The function recursively builds this tree.
151 // LowerBound and UpperBound are used to keep track of the bounds for Val
152 // that have already been checked by a block emitted by one of the previous
153 // calls to switchConvert in the call stack.
154 BasicBlock *LowerSwitch::switchConvert(CaseItr Begin, CaseItr End,
155 ConstantInt *LowerBound,
156 ConstantInt *UpperBound, Value *Val,
157 BasicBlock *Predecessor,
158 BasicBlock *OrigBlock,
159 BasicBlock *Default) {
160 unsigned Size = End - Begin;
163 // Check if the Case Range is perfectly squeezed in between
164 // already checked Upper and Lower bounds. If it is then we can avoid
165 // emitting the code that checks if the value actually falls in the range
166 // because the bounds already tell us so.
167 if (Begin->Low == LowerBound && Begin->High == UpperBound) {
168 fixPhis(Begin->BB, OrigBlock, Predecessor);
171 return newLeafBlock(*Begin, Val, OrigBlock, Default);
174 unsigned Mid = Size / 2;
175 std::vector<CaseRange> LHS(Begin, Begin + Mid);
176 DEBUG(dbgs() << "LHS: " << LHS << "\n");
177 std::vector<CaseRange> RHS(Begin + Mid, End);
178 DEBUG(dbgs() << "RHS: " << RHS << "\n");
180 CaseRange &Pivot = *(Begin + Mid);
181 DEBUG(dbgs() << "Pivot ==> "
182 << cast<ConstantInt>(Pivot.Low)->getValue()
183 << " -" << cast<ConstantInt>(Pivot.High)->getValue() << "\n");
185 // NewLowerBound here should never be the integer minimal value.
186 // This is because it is computed from a case range that is never
187 // the smallest, so there is always a case range that has at least
189 ConstantInt *NewLowerBound = cast<ConstantInt>(Pivot.Low);
190 ConstantInt *NewUpperBound;
192 // If we don't have a Default block then it means that we can never
193 // have a value outside of a case range, so set the UpperBound to the highest
194 // value in the LHS part of the case ranges.
195 if (Default != nullptr) {
196 // Because NewLowerBound is never the smallest representable integer
197 // it is safe here to subtract one.
198 NewUpperBound = ConstantInt::get(NewLowerBound->getContext(),
199 NewLowerBound->getValue() - 1);
201 CaseItr LastLHS = LHS.begin() + LHS.size() - 1;
202 NewUpperBound = cast<ConstantInt>(LastLHS->High);
205 DEBUG(dbgs() << "LHS Bounds ==> ";
207 dbgs() << cast<ConstantInt>(LowerBound)->getSExtValue();
211 dbgs() << " - " << NewUpperBound->getSExtValue() << "\n";
212 dbgs() << "RHS Bounds ==> ";
213 dbgs() << NewLowerBound->getSExtValue() << " - ";
215 dbgs() << cast<ConstantInt>(UpperBound)->getSExtValue() << "\n";
220 // Create a new node that checks if the value is < pivot. Go to the
221 // left branch if it is and right branch if not.
222 Function* F = OrigBlock->getParent();
223 BasicBlock* NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock");
225 ICmpInst* Comp = new ICmpInst(ICmpInst::ICMP_SLT,
226 Val, Pivot.Low, "Pivot");
228 BasicBlock *LBranch = switchConvert(LHS.begin(), LHS.end(), LowerBound,
229 NewUpperBound, Val, NewNode, OrigBlock,
231 BasicBlock *RBranch = switchConvert(RHS.begin(), RHS.end(), NewLowerBound,
232 UpperBound, Val, NewNode, OrigBlock,
235 Function::iterator FI = OrigBlock;
236 F->getBasicBlockList().insert(++FI, NewNode);
237 NewNode->getInstList().push_back(Comp);
239 BranchInst::Create(LBranch, RBranch, Comp, NewNode);
243 // newLeafBlock - Create a new leaf block for the binary lookup tree. It
244 // checks if the switch's value == the case's value. If not, then it
245 // jumps to the default branch. At this point in the tree, the value
246 // can't be another valid case value, so the jump to the "default" branch
249 BasicBlock* LowerSwitch::newLeafBlock(CaseRange& Leaf, Value* Val,
250 BasicBlock* OrigBlock,
253 Function* F = OrigBlock->getParent();
254 BasicBlock* NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock");
255 Function::iterator FI = OrigBlock;
256 F->getBasicBlockList().insert(++FI, NewLeaf);
259 ICmpInst* Comp = nullptr;
260 if (Leaf.Low == Leaf.High) {
261 // Make the seteq instruction...
262 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_EQ, Val,
263 Leaf.Low, "SwitchLeaf");
265 // Make range comparison
266 if (cast<ConstantInt>(Leaf.Low)->isMinValue(true /*isSigned*/)) {
267 // Val >= Min && Val <= Hi --> Val <= Hi
268 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High,
270 } else if (cast<ConstantInt>(Leaf.Low)->isZero()) {
271 // Val >= 0 && Val <= Hi --> Val <=u Hi
272 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High,
275 // Emit V-Lo <=u Hi-Lo
276 Constant* NegLo = ConstantExpr::getNeg(Leaf.Low);
277 Instruction* Add = BinaryOperator::CreateAdd(Val, NegLo,
278 Val->getName()+".off",
280 Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High);
281 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound,
286 // Make the conditional branch...
287 BasicBlock* Succ = Leaf.BB;
288 BranchInst::Create(Succ, Default, Comp, NewLeaf);
290 // If there were any PHI nodes in this successor, rewrite one entry
291 // from OrigBlock to come from NewLeaf.
292 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
293 PHINode* PN = cast<PHINode>(I);
294 // Remove all but one incoming entries from the cluster
295 uint64_t Range = cast<ConstantInt>(Leaf.High)->getSExtValue() -
296 cast<ConstantInt>(Leaf.Low)->getSExtValue();
297 for (uint64_t j = 0; j < Range; ++j) {
298 PN->removeIncomingValue(OrigBlock);
301 int BlockIdx = PN->getBasicBlockIndex(OrigBlock);
302 assert(BlockIdx != -1 && "Switch didn't go to this successor??");
303 PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf);
309 // Clusterify - Transform simple list of Cases into list of CaseRange's
310 unsigned LowerSwitch::Clusterify(CaseVector& Cases, SwitchInst *SI) {
311 unsigned numCmps = 0;
313 // Start with "simple" cases
314 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i)
315 Cases.push_back(CaseRange(i.getCaseValue(), i.getCaseValue(),
316 i.getCaseSuccessor()));
318 std::sort(Cases.begin(), Cases.end(), CaseCmp());
320 // Merge case into clusters
322 for (CaseItr I = Cases.begin(), J = std::next(Cases.begin());
324 int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
325 int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
326 BasicBlock* nextBB = J->BB;
327 BasicBlock* currentBB = I->BB;
329 // If the two neighboring cases go to the same destination, merge them
330 // into a single case.
331 if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
339 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
340 if (I->Low != I->High)
341 // A range counts double, since it requires two compares.
348 // processSwitchInst - Replace the specified switch instruction with a sequence
349 // of chained if-then insts in a balanced binary search.
351 void LowerSwitch::processSwitchInst(SwitchInst *SI) {
352 BasicBlock *CurBlock = SI->getParent();
353 BasicBlock *OrigBlock = CurBlock;
354 Function *F = CurBlock->getParent();
355 Value *Val = SI->getCondition(); // The value we are switching on...
356 BasicBlock* Default = SI->getDefaultDest();
358 // If there is only the default destination, don't bother with the code below.
359 if (!SI->getNumCases()) {
360 BranchInst::Create(SI->getDefaultDest(), CurBlock);
361 CurBlock->getInstList().erase(SI);
365 const bool DefaultIsUnreachable =
366 Default->size() == 1 && isa<UnreachableInst>(Default->getTerminator());
367 // Create a new, empty default block so that the new hierarchy of
368 // if-then statements go to this and the PHI nodes are happy.
369 // if the default block is set as an unreachable we avoid creating one
370 // because will never be a valid target.
371 BasicBlock *NewDefault = nullptr;
372 if (!DefaultIsUnreachable) {
373 NewDefault = BasicBlock::Create(SI->getContext(), "NewDefault");
374 F->getBasicBlockList().insert(Default, NewDefault);
376 BranchInst::Create(Default, NewDefault);
378 // If there is an entry in any PHI nodes for the default edge, make sure
379 // to update them as well.
380 for (BasicBlock::iterator I = Default->begin(); isa<PHINode>(I); ++I) {
381 PHINode *PN = cast<PHINode>(I);
382 int BlockIdx = PN->getBasicBlockIndex(OrigBlock);
383 assert(BlockIdx != -1 && "Switch didn't go to this successor??");
384 PN->setIncomingBlock((unsigned)BlockIdx, NewDefault);
387 // Prepare cases vector.
389 unsigned numCmps = Clusterify(Cases, SI);
391 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
392 << ". Total compares: " << numCmps << "\n");
393 DEBUG(dbgs() << "Cases: " << Cases << "\n");
396 ConstantInt *UpperBound = nullptr;
397 ConstantInt *LowerBound = nullptr;
399 // Optimize the condition where Default is an unreachable block. In this case
400 // we can make the bounds tightly fitted around the case value ranges,
401 // because we know that the value passed to the switch should always be
402 // exactly one of the case values.
403 if (DefaultIsUnreachable) {
404 CaseItr LastCase = Cases.begin() + Cases.size() - 1;
405 UpperBound = cast<ConstantInt>(LastCase->High);
406 LowerBound = cast<ConstantInt>(Cases.begin()->Low);
408 BasicBlock *SwitchBlock =
409 switchConvert(Cases.begin(), Cases.end(), LowerBound, UpperBound, Val,
410 OrigBlock, OrigBlock, NewDefault);
412 // Branch to our shiny new if-then stuff...
413 BranchInst::Create(SwitchBlock, OrigBlock);
415 // We are now done with the switch instruction, delete it.
416 CurBlock->getInstList().erase(SI);
418 pred_iterator PI = pred_begin(Default), E = pred_end(Default);
419 // If the Default block has no more predecessors just remove it
421 DeleteDeadBlock(Default);